1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of two TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 int sysctl_tcp_mtu_probing __read_mostly = 0; 63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS; 64 65 /* By default, RFC2861 behavior. */ 66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 67 68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 69 int push_one, gfp_t gfp); 70 71 /* Account for new data that has been sent to the network. */ 72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 73 { 74 struct inet_connection_sock *icsk = inet_csk(sk); 75 struct tcp_sock *tp = tcp_sk(sk); 76 unsigned int prior_packets = tp->packets_out; 77 78 tcp_advance_send_head(sk, skb); 79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 80 81 tp->packets_out += tcp_skb_pcount(skb); 82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 84 tcp_rearm_rto(sk); 85 } 86 } 87 88 /* SND.NXT, if window was not shrunk. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 99 return tp->snd_nxt; 100 else 101 return tcp_wnd_end(tp); 102 } 103 104 /* Calculate mss to advertise in SYN segment. 105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 106 * 107 * 1. It is independent of path mtu. 108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 110 * attached devices, because some buggy hosts are confused by 111 * large MSS. 112 * 4. We do not make 3, we advertise MSS, calculated from first 113 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 114 * This may be overridden via information stored in routing table. 115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 116 * probably even Jumbo". 117 */ 118 static __u16 tcp_advertise_mss(struct sock *sk) 119 { 120 struct tcp_sock *tp = tcp_sk(sk); 121 const struct dst_entry *dst = __sk_dst_get(sk); 122 int mss = tp->advmss; 123 124 if (dst) { 125 unsigned int metric = dst_metric_advmss(dst); 126 127 if (metric < mss) { 128 mss = metric; 129 tp->advmss = mss; 130 } 131 } 132 133 return (__u16)mss; 134 } 135 136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 137 * This is the first part of cwnd validation mechanism. */ 138 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 139 { 140 struct tcp_sock *tp = tcp_sk(sk); 141 s32 delta = tcp_time_stamp - tp->lsndtime; 142 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 143 u32 cwnd = tp->snd_cwnd; 144 145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 146 147 tp->snd_ssthresh = tcp_current_ssthresh(sk); 148 restart_cwnd = min(restart_cwnd, cwnd); 149 150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 151 cwnd >>= 1; 152 tp->snd_cwnd = max(cwnd, restart_cwnd); 153 tp->snd_cwnd_stamp = tcp_time_stamp; 154 tp->snd_cwnd_used = 0; 155 } 156 157 /* Congestion state accounting after a packet has been sent. */ 158 static void tcp_event_data_sent(struct tcp_sock *tp, 159 struct sock *sk) 160 { 161 struct inet_connection_sock *icsk = inet_csk(sk); 162 const u32 now = tcp_time_stamp; 163 const struct dst_entry *dst = __sk_dst_get(sk); 164 165 if (sysctl_tcp_slow_start_after_idle && 166 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 167 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 168 169 tp->lsndtime = now; 170 171 /* If it is a reply for ato after last received 172 * packet, enter pingpong mode. 173 */ 174 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato && 175 (!dst || !dst_metric(dst, RTAX_QUICKACK))) 176 icsk->icsk_ack.pingpong = 1; 177 } 178 179 /* Account for an ACK we sent. */ 180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 181 { 182 tcp_dec_quickack_mode(sk, pkts); 183 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 184 } 185 186 187 u32 tcp_default_init_rwnd(u32 mss) 188 { 189 /* Initial receive window should be twice of TCP_INIT_CWND to 190 * enable proper sending of new unsent data during fast recovery 191 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 192 * limit when mss is larger than 1460. 193 */ 194 u32 init_rwnd = TCP_INIT_CWND * 2; 195 196 if (mss > 1460) 197 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 198 return init_rwnd; 199 } 200 201 /* Determine a window scaling and initial window to offer. 202 * Based on the assumption that the given amount of space 203 * will be offered. Store the results in the tp structure. 204 * NOTE: for smooth operation initial space offering should 205 * be a multiple of mss if possible. We assume here that mss >= 1. 206 * This MUST be enforced by all callers. 207 */ 208 void tcp_select_initial_window(int __space, __u32 mss, 209 __u32 *rcv_wnd, __u32 *window_clamp, 210 int wscale_ok, __u8 *rcv_wscale, 211 __u32 init_rcv_wnd) 212 { 213 unsigned int space = (__space < 0 ? 0 : __space); 214 215 /* If no clamp set the clamp to the max possible scaled window */ 216 if (*window_clamp == 0) 217 (*window_clamp) = (65535 << 14); 218 space = min(*window_clamp, space); 219 220 /* Quantize space offering to a multiple of mss if possible. */ 221 if (space > mss) 222 space = (space / mss) * mss; 223 224 /* NOTE: offering an initial window larger than 32767 225 * will break some buggy TCP stacks. If the admin tells us 226 * it is likely we could be speaking with such a buggy stack 227 * we will truncate our initial window offering to 32K-1 228 * unless the remote has sent us a window scaling option, 229 * which we interpret as a sign the remote TCP is not 230 * misinterpreting the window field as a signed quantity. 231 */ 232 if (sysctl_tcp_workaround_signed_windows) 233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 234 else 235 (*rcv_wnd) = space; 236 237 (*rcv_wscale) = 0; 238 if (wscale_ok) { 239 /* Set window scaling on max possible window 240 * See RFC1323 for an explanation of the limit to 14 241 */ 242 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 243 space = min_t(u32, space, *window_clamp); 244 while (space > 65535 && (*rcv_wscale) < 14) { 245 space >>= 1; 246 (*rcv_wscale)++; 247 } 248 } 249 250 if (mss > (1 << *rcv_wscale)) { 251 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 252 init_rcv_wnd = tcp_default_init_rwnd(mss); 253 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 254 } 255 256 /* Set the clamp no higher than max representable value */ 257 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 258 } 259 EXPORT_SYMBOL(tcp_select_initial_window); 260 261 /* Chose a new window to advertise, update state in tcp_sock for the 262 * socket, and return result with RFC1323 scaling applied. The return 263 * value can be stuffed directly into th->window for an outgoing 264 * frame. 265 */ 266 static u16 tcp_select_window(struct sock *sk) 267 { 268 struct tcp_sock *tp = tcp_sk(sk); 269 u32 cur_win = tcp_receive_window(tp); 270 u32 new_win = __tcp_select_window(sk); 271 272 /* Never shrink the offered window */ 273 if (new_win < cur_win) { 274 /* Danger Will Robinson! 275 * Don't update rcv_wup/rcv_wnd here or else 276 * we will not be able to advertise a zero 277 * window in time. --DaveM 278 * 279 * Relax Will Robinson. 280 */ 281 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 282 } 283 tp->rcv_wnd = new_win; 284 tp->rcv_wup = tp->rcv_nxt; 285 286 /* Make sure we do not exceed the maximum possible 287 * scaled window. 288 */ 289 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 290 new_win = min(new_win, MAX_TCP_WINDOW); 291 else 292 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 293 294 /* RFC1323 scaling applied */ 295 new_win >>= tp->rx_opt.rcv_wscale; 296 297 /* If we advertise zero window, disable fast path. */ 298 if (new_win == 0) 299 tp->pred_flags = 0; 300 301 return new_win; 302 } 303 304 /* Packet ECN state for a SYN-ACK */ 305 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb) 306 { 307 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 308 if (!(tp->ecn_flags & TCP_ECN_OK)) 309 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 310 } 311 312 /* Packet ECN state for a SYN. */ 313 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb) 314 { 315 struct tcp_sock *tp = tcp_sk(sk); 316 317 tp->ecn_flags = 0; 318 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) { 319 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 320 tp->ecn_flags = TCP_ECN_OK; 321 } 322 } 323 324 static __inline__ void 325 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th) 326 { 327 if (inet_rsk(req)->ecn_ok) 328 th->ece = 1; 329 } 330 331 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 332 * be sent. 333 */ 334 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb, 335 int tcp_header_len) 336 { 337 struct tcp_sock *tp = tcp_sk(sk); 338 339 if (tp->ecn_flags & TCP_ECN_OK) { 340 /* Not-retransmitted data segment: set ECT and inject CWR. */ 341 if (skb->len != tcp_header_len && 342 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 343 INET_ECN_xmit(sk); 344 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 345 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 346 tcp_hdr(skb)->cwr = 1; 347 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 348 } 349 } else { 350 /* ACK or retransmitted segment: clear ECT|CE */ 351 INET_ECN_dontxmit(sk); 352 } 353 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 354 tcp_hdr(skb)->ece = 1; 355 } 356 } 357 358 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 359 * auto increment end seqno. 360 */ 361 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 362 { 363 skb->ip_summed = CHECKSUM_PARTIAL; 364 skb->csum = 0; 365 366 TCP_SKB_CB(skb)->tcp_flags = flags; 367 TCP_SKB_CB(skb)->sacked = 0; 368 369 skb_shinfo(skb)->gso_segs = 1; 370 skb_shinfo(skb)->gso_size = 0; 371 skb_shinfo(skb)->gso_type = 0; 372 373 TCP_SKB_CB(skb)->seq = seq; 374 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 375 seq++; 376 TCP_SKB_CB(skb)->end_seq = seq; 377 } 378 379 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 380 { 381 return tp->snd_una != tp->snd_up; 382 } 383 384 #define OPTION_SACK_ADVERTISE (1 << 0) 385 #define OPTION_TS (1 << 1) 386 #define OPTION_MD5 (1 << 2) 387 #define OPTION_WSCALE (1 << 3) 388 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 389 390 struct tcp_out_options { 391 u16 options; /* bit field of OPTION_* */ 392 u16 mss; /* 0 to disable */ 393 u8 ws; /* window scale, 0 to disable */ 394 u8 num_sack_blocks; /* number of SACK blocks to include */ 395 u8 hash_size; /* bytes in hash_location */ 396 __u8 *hash_location; /* temporary pointer, overloaded */ 397 __u32 tsval, tsecr; /* need to include OPTION_TS */ 398 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 399 }; 400 401 /* Write previously computed TCP options to the packet. 402 * 403 * Beware: Something in the Internet is very sensitive to the ordering of 404 * TCP options, we learned this through the hard way, so be careful here. 405 * Luckily we can at least blame others for their non-compliance but from 406 * inter-operatibility perspective it seems that we're somewhat stuck with 407 * the ordering which we have been using if we want to keep working with 408 * those broken things (not that it currently hurts anybody as there isn't 409 * particular reason why the ordering would need to be changed). 410 * 411 * At least SACK_PERM as the first option is known to lead to a disaster 412 * (but it may well be that other scenarios fail similarly). 413 */ 414 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 415 struct tcp_out_options *opts) 416 { 417 u16 options = opts->options; /* mungable copy */ 418 419 if (unlikely(OPTION_MD5 & options)) { 420 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 421 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 422 /* overload cookie hash location */ 423 opts->hash_location = (__u8 *)ptr; 424 ptr += 4; 425 } 426 427 if (unlikely(opts->mss)) { 428 *ptr++ = htonl((TCPOPT_MSS << 24) | 429 (TCPOLEN_MSS << 16) | 430 opts->mss); 431 } 432 433 if (likely(OPTION_TS & options)) { 434 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 435 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 436 (TCPOLEN_SACK_PERM << 16) | 437 (TCPOPT_TIMESTAMP << 8) | 438 TCPOLEN_TIMESTAMP); 439 options &= ~OPTION_SACK_ADVERTISE; 440 } else { 441 *ptr++ = htonl((TCPOPT_NOP << 24) | 442 (TCPOPT_NOP << 16) | 443 (TCPOPT_TIMESTAMP << 8) | 444 TCPOLEN_TIMESTAMP); 445 } 446 *ptr++ = htonl(opts->tsval); 447 *ptr++ = htonl(opts->tsecr); 448 } 449 450 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 451 *ptr++ = htonl((TCPOPT_NOP << 24) | 452 (TCPOPT_NOP << 16) | 453 (TCPOPT_SACK_PERM << 8) | 454 TCPOLEN_SACK_PERM); 455 } 456 457 if (unlikely(OPTION_WSCALE & options)) { 458 *ptr++ = htonl((TCPOPT_NOP << 24) | 459 (TCPOPT_WINDOW << 16) | 460 (TCPOLEN_WINDOW << 8) | 461 opts->ws); 462 } 463 464 if (unlikely(opts->num_sack_blocks)) { 465 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 466 tp->duplicate_sack : tp->selective_acks; 467 int this_sack; 468 469 *ptr++ = htonl((TCPOPT_NOP << 24) | 470 (TCPOPT_NOP << 16) | 471 (TCPOPT_SACK << 8) | 472 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 473 TCPOLEN_SACK_PERBLOCK))); 474 475 for (this_sack = 0; this_sack < opts->num_sack_blocks; 476 ++this_sack) { 477 *ptr++ = htonl(sp[this_sack].start_seq); 478 *ptr++ = htonl(sp[this_sack].end_seq); 479 } 480 481 tp->rx_opt.dsack = 0; 482 } 483 484 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 485 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 486 487 *ptr++ = htonl((TCPOPT_EXP << 24) | 488 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) | 489 TCPOPT_FASTOPEN_MAGIC); 490 491 memcpy(ptr, foc->val, foc->len); 492 if ((foc->len & 3) == 2) { 493 u8 *align = ((u8 *)ptr) + foc->len; 494 align[0] = align[1] = TCPOPT_NOP; 495 } 496 ptr += (foc->len + 3) >> 2; 497 } 498 } 499 500 /* Compute TCP options for SYN packets. This is not the final 501 * network wire format yet. 502 */ 503 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 504 struct tcp_out_options *opts, 505 struct tcp_md5sig_key **md5) 506 { 507 struct tcp_sock *tp = tcp_sk(sk); 508 unsigned int remaining = MAX_TCP_OPTION_SPACE; 509 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 510 511 #ifdef CONFIG_TCP_MD5SIG 512 *md5 = tp->af_specific->md5_lookup(sk, sk); 513 if (*md5) { 514 opts->options |= OPTION_MD5; 515 remaining -= TCPOLEN_MD5SIG_ALIGNED; 516 } 517 #else 518 *md5 = NULL; 519 #endif 520 521 /* We always get an MSS option. The option bytes which will be seen in 522 * normal data packets should timestamps be used, must be in the MSS 523 * advertised. But we subtract them from tp->mss_cache so that 524 * calculations in tcp_sendmsg are simpler etc. So account for this 525 * fact here if necessary. If we don't do this correctly, as a 526 * receiver we won't recognize data packets as being full sized when we 527 * should, and thus we won't abide by the delayed ACK rules correctly. 528 * SACKs don't matter, we never delay an ACK when we have any of those 529 * going out. */ 530 opts->mss = tcp_advertise_mss(sk); 531 remaining -= TCPOLEN_MSS_ALIGNED; 532 533 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 534 opts->options |= OPTION_TS; 535 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset; 536 opts->tsecr = tp->rx_opt.ts_recent; 537 remaining -= TCPOLEN_TSTAMP_ALIGNED; 538 } 539 if (likely(sysctl_tcp_window_scaling)) { 540 opts->ws = tp->rx_opt.rcv_wscale; 541 opts->options |= OPTION_WSCALE; 542 remaining -= TCPOLEN_WSCALE_ALIGNED; 543 } 544 if (likely(sysctl_tcp_sack)) { 545 opts->options |= OPTION_SACK_ADVERTISE; 546 if (unlikely(!(OPTION_TS & opts->options))) 547 remaining -= TCPOLEN_SACKPERM_ALIGNED; 548 } 549 550 if (fastopen && fastopen->cookie.len >= 0) { 551 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len; 552 need = (need + 3) & ~3U; /* Align to 32 bits */ 553 if (remaining >= need) { 554 opts->options |= OPTION_FAST_OPEN_COOKIE; 555 opts->fastopen_cookie = &fastopen->cookie; 556 remaining -= need; 557 tp->syn_fastopen = 1; 558 } 559 } 560 561 return MAX_TCP_OPTION_SPACE - remaining; 562 } 563 564 /* Set up TCP options for SYN-ACKs. */ 565 static unsigned int tcp_synack_options(struct sock *sk, 566 struct request_sock *req, 567 unsigned int mss, struct sk_buff *skb, 568 struct tcp_out_options *opts, 569 struct tcp_md5sig_key **md5, 570 struct tcp_fastopen_cookie *foc) 571 { 572 struct inet_request_sock *ireq = inet_rsk(req); 573 unsigned int remaining = MAX_TCP_OPTION_SPACE; 574 575 #ifdef CONFIG_TCP_MD5SIG 576 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 577 if (*md5) { 578 opts->options |= OPTION_MD5; 579 remaining -= TCPOLEN_MD5SIG_ALIGNED; 580 581 /* We can't fit any SACK blocks in a packet with MD5 + TS 582 * options. There was discussion about disabling SACK 583 * rather than TS in order to fit in better with old, 584 * buggy kernels, but that was deemed to be unnecessary. 585 */ 586 ireq->tstamp_ok &= !ireq->sack_ok; 587 } 588 #else 589 *md5 = NULL; 590 #endif 591 592 /* We always send an MSS option. */ 593 opts->mss = mss; 594 remaining -= TCPOLEN_MSS_ALIGNED; 595 596 if (likely(ireq->wscale_ok)) { 597 opts->ws = ireq->rcv_wscale; 598 opts->options |= OPTION_WSCALE; 599 remaining -= TCPOLEN_WSCALE_ALIGNED; 600 } 601 if (likely(ireq->tstamp_ok)) { 602 opts->options |= OPTION_TS; 603 opts->tsval = TCP_SKB_CB(skb)->when; 604 opts->tsecr = req->ts_recent; 605 remaining -= TCPOLEN_TSTAMP_ALIGNED; 606 } 607 if (likely(ireq->sack_ok)) { 608 opts->options |= OPTION_SACK_ADVERTISE; 609 if (unlikely(!ireq->tstamp_ok)) 610 remaining -= TCPOLEN_SACKPERM_ALIGNED; 611 } 612 if (foc != NULL) { 613 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 614 need = (need + 3) & ~3U; /* Align to 32 bits */ 615 if (remaining >= need) { 616 opts->options |= OPTION_FAST_OPEN_COOKIE; 617 opts->fastopen_cookie = foc; 618 remaining -= need; 619 } 620 } 621 622 return MAX_TCP_OPTION_SPACE - remaining; 623 } 624 625 /* Compute TCP options for ESTABLISHED sockets. This is not the 626 * final wire format yet. 627 */ 628 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 629 struct tcp_out_options *opts, 630 struct tcp_md5sig_key **md5) 631 { 632 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL; 633 struct tcp_sock *tp = tcp_sk(sk); 634 unsigned int size = 0; 635 unsigned int eff_sacks; 636 637 #ifdef CONFIG_TCP_MD5SIG 638 *md5 = tp->af_specific->md5_lookup(sk, sk); 639 if (unlikely(*md5)) { 640 opts->options |= OPTION_MD5; 641 size += TCPOLEN_MD5SIG_ALIGNED; 642 } 643 #else 644 *md5 = NULL; 645 #endif 646 647 if (likely(tp->rx_opt.tstamp_ok)) { 648 opts->options |= OPTION_TS; 649 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0; 650 opts->tsecr = tp->rx_opt.ts_recent; 651 size += TCPOLEN_TSTAMP_ALIGNED; 652 } 653 654 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 655 if (unlikely(eff_sacks)) { 656 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 657 opts->num_sack_blocks = 658 min_t(unsigned int, eff_sacks, 659 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 660 TCPOLEN_SACK_PERBLOCK); 661 size += TCPOLEN_SACK_BASE_ALIGNED + 662 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 663 } 664 665 return size; 666 } 667 668 669 /* TCP SMALL QUEUES (TSQ) 670 * 671 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 672 * to reduce RTT and bufferbloat. 673 * We do this using a special skb destructor (tcp_wfree). 674 * 675 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 676 * needs to be reallocated in a driver. 677 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc 678 * 679 * Since transmit from skb destructor is forbidden, we use a tasklet 680 * to process all sockets that eventually need to send more skbs. 681 * We use one tasklet per cpu, with its own queue of sockets. 682 */ 683 struct tsq_tasklet { 684 struct tasklet_struct tasklet; 685 struct list_head head; /* queue of tcp sockets */ 686 }; 687 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 688 689 static void tcp_tsq_handler(struct sock *sk) 690 { 691 if ((1 << sk->sk_state) & 692 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 693 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 694 tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC); 695 } 696 /* 697 * One tasklest per cpu tries to send more skbs. 698 * We run in tasklet context but need to disable irqs when 699 * transfering tsq->head because tcp_wfree() might 700 * interrupt us (non NAPI drivers) 701 */ 702 static void tcp_tasklet_func(unsigned long data) 703 { 704 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 705 LIST_HEAD(list); 706 unsigned long flags; 707 struct list_head *q, *n; 708 struct tcp_sock *tp; 709 struct sock *sk; 710 711 local_irq_save(flags); 712 list_splice_init(&tsq->head, &list); 713 local_irq_restore(flags); 714 715 list_for_each_safe(q, n, &list) { 716 tp = list_entry(q, struct tcp_sock, tsq_node); 717 list_del(&tp->tsq_node); 718 719 sk = (struct sock *)tp; 720 bh_lock_sock(sk); 721 722 if (!sock_owned_by_user(sk)) { 723 tcp_tsq_handler(sk); 724 } else { 725 /* defer the work to tcp_release_cb() */ 726 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 727 } 728 bh_unlock_sock(sk); 729 730 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 731 sk_free(sk); 732 } 733 } 734 735 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 736 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 737 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 738 (1UL << TCP_MTU_REDUCED_DEFERRED)) 739 /** 740 * tcp_release_cb - tcp release_sock() callback 741 * @sk: socket 742 * 743 * called from release_sock() to perform protocol dependent 744 * actions before socket release. 745 */ 746 void tcp_release_cb(struct sock *sk) 747 { 748 struct tcp_sock *tp = tcp_sk(sk); 749 unsigned long flags, nflags; 750 751 /* perform an atomic operation only if at least one flag is set */ 752 do { 753 flags = tp->tsq_flags; 754 if (!(flags & TCP_DEFERRED_ALL)) 755 return; 756 nflags = flags & ~TCP_DEFERRED_ALL; 757 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 758 759 if (flags & (1UL << TCP_TSQ_DEFERRED)) 760 tcp_tsq_handler(sk); 761 762 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 763 tcp_write_timer_handler(sk); 764 __sock_put(sk); 765 } 766 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 767 tcp_delack_timer_handler(sk); 768 __sock_put(sk); 769 } 770 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 771 sk->sk_prot->mtu_reduced(sk); 772 __sock_put(sk); 773 } 774 } 775 EXPORT_SYMBOL(tcp_release_cb); 776 777 void __init tcp_tasklet_init(void) 778 { 779 int i; 780 781 for_each_possible_cpu(i) { 782 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 783 784 INIT_LIST_HEAD(&tsq->head); 785 tasklet_init(&tsq->tasklet, 786 tcp_tasklet_func, 787 (unsigned long)tsq); 788 } 789 } 790 791 /* 792 * Write buffer destructor automatically called from kfree_skb. 793 * We cant xmit new skbs from this context, as we might already 794 * hold qdisc lock. 795 */ 796 void tcp_wfree(struct sk_buff *skb) 797 { 798 struct sock *sk = skb->sk; 799 struct tcp_sock *tp = tcp_sk(sk); 800 801 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 802 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 803 unsigned long flags; 804 struct tsq_tasklet *tsq; 805 806 /* Keep a ref on socket. 807 * This last ref will be released in tcp_tasklet_func() 808 */ 809 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc); 810 811 /* queue this socket to tasklet queue */ 812 local_irq_save(flags); 813 tsq = &__get_cpu_var(tsq_tasklet); 814 list_add(&tp->tsq_node, &tsq->head); 815 tasklet_schedule(&tsq->tasklet); 816 local_irq_restore(flags); 817 } else { 818 sock_wfree(skb); 819 } 820 } 821 822 /* This routine actually transmits TCP packets queued in by 823 * tcp_do_sendmsg(). This is used by both the initial 824 * transmission and possible later retransmissions. 825 * All SKB's seen here are completely headerless. It is our 826 * job to build the TCP header, and pass the packet down to 827 * IP so it can do the same plus pass the packet off to the 828 * device. 829 * 830 * We are working here with either a clone of the original 831 * SKB, or a fresh unique copy made by the retransmit engine. 832 */ 833 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 834 gfp_t gfp_mask) 835 { 836 const struct inet_connection_sock *icsk = inet_csk(sk); 837 struct inet_sock *inet; 838 struct tcp_sock *tp; 839 struct tcp_skb_cb *tcb; 840 struct tcp_out_options opts; 841 unsigned int tcp_options_size, tcp_header_size; 842 struct tcp_md5sig_key *md5; 843 struct tcphdr *th; 844 int err; 845 846 BUG_ON(!skb || !tcp_skb_pcount(skb)); 847 848 /* If congestion control is doing timestamping, we must 849 * take such a timestamp before we potentially clone/copy. 850 */ 851 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP) 852 __net_timestamp(skb); 853 854 if (likely(clone_it)) { 855 const struct sk_buff *fclone = skb + 1; 856 857 if (unlikely(skb->fclone == SKB_FCLONE_ORIG && 858 fclone->fclone == SKB_FCLONE_CLONE)) 859 NET_INC_STATS_BH(sock_net(sk), 860 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 861 862 if (unlikely(skb_cloned(skb))) 863 skb = pskb_copy(skb, gfp_mask); 864 else 865 skb = skb_clone(skb, gfp_mask); 866 if (unlikely(!skb)) 867 return -ENOBUFS; 868 } 869 870 inet = inet_sk(sk); 871 tp = tcp_sk(sk); 872 tcb = TCP_SKB_CB(skb); 873 memset(&opts, 0, sizeof(opts)); 874 875 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 876 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 877 else 878 tcp_options_size = tcp_established_options(sk, skb, &opts, 879 &md5); 880 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 881 882 if (tcp_packets_in_flight(tp) == 0) 883 tcp_ca_event(sk, CA_EVENT_TX_START); 884 885 /* if no packet is in qdisc/device queue, then allow XPS to select 886 * another queue. 887 */ 888 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0; 889 890 skb_push(skb, tcp_header_size); 891 skb_reset_transport_header(skb); 892 893 skb_orphan(skb); 894 skb->sk = sk; 895 skb->destructor = (sysctl_tcp_limit_output_bytes > 0) ? 896 tcp_wfree : sock_wfree; 897 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 898 899 /* Build TCP header and checksum it. */ 900 th = tcp_hdr(skb); 901 th->source = inet->inet_sport; 902 th->dest = inet->inet_dport; 903 th->seq = htonl(tcb->seq); 904 th->ack_seq = htonl(tp->rcv_nxt); 905 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 906 tcb->tcp_flags); 907 908 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 909 /* RFC1323: The window in SYN & SYN/ACK segments 910 * is never scaled. 911 */ 912 th->window = htons(min(tp->rcv_wnd, 65535U)); 913 } else { 914 th->window = htons(tcp_select_window(sk)); 915 } 916 th->check = 0; 917 th->urg_ptr = 0; 918 919 /* The urg_mode check is necessary during a below snd_una win probe */ 920 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 921 if (before(tp->snd_up, tcb->seq + 0x10000)) { 922 th->urg_ptr = htons(tp->snd_up - tcb->seq); 923 th->urg = 1; 924 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 925 th->urg_ptr = htons(0xFFFF); 926 th->urg = 1; 927 } 928 } 929 930 tcp_options_write((__be32 *)(th + 1), tp, &opts); 931 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 932 TCP_ECN_send(sk, skb, tcp_header_size); 933 934 #ifdef CONFIG_TCP_MD5SIG 935 /* Calculate the MD5 hash, as we have all we need now */ 936 if (md5) { 937 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 938 tp->af_specific->calc_md5_hash(opts.hash_location, 939 md5, sk, NULL, skb); 940 } 941 #endif 942 943 icsk->icsk_af_ops->send_check(sk, skb); 944 945 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 946 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 947 948 if (skb->len != tcp_header_size) 949 tcp_event_data_sent(tp, sk); 950 951 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 952 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 953 tcp_skb_pcount(skb)); 954 955 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl); 956 if (likely(err <= 0)) 957 return err; 958 959 tcp_enter_cwr(sk, 1); 960 961 return net_xmit_eval(err); 962 } 963 964 /* This routine just queues the buffer for sending. 965 * 966 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 967 * otherwise socket can stall. 968 */ 969 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 970 { 971 struct tcp_sock *tp = tcp_sk(sk); 972 973 /* Advance write_seq and place onto the write_queue. */ 974 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 975 skb_header_release(skb); 976 tcp_add_write_queue_tail(sk, skb); 977 sk->sk_wmem_queued += skb->truesize; 978 sk_mem_charge(sk, skb->truesize); 979 } 980 981 /* Initialize TSO segments for a packet. */ 982 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 983 unsigned int mss_now) 984 { 985 if (skb->len <= mss_now || !sk_can_gso(sk) || 986 skb->ip_summed == CHECKSUM_NONE) { 987 /* Avoid the costly divide in the normal 988 * non-TSO case. 989 */ 990 skb_shinfo(skb)->gso_segs = 1; 991 skb_shinfo(skb)->gso_size = 0; 992 skb_shinfo(skb)->gso_type = 0; 993 } else { 994 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now); 995 skb_shinfo(skb)->gso_size = mss_now; 996 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 997 } 998 } 999 1000 /* When a modification to fackets out becomes necessary, we need to check 1001 * skb is counted to fackets_out or not. 1002 */ 1003 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1004 int decr) 1005 { 1006 struct tcp_sock *tp = tcp_sk(sk); 1007 1008 if (!tp->sacked_out || tcp_is_reno(tp)) 1009 return; 1010 1011 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1012 tp->fackets_out -= decr; 1013 } 1014 1015 /* Pcount in the middle of the write queue got changed, we need to do various 1016 * tweaks to fix counters 1017 */ 1018 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1019 { 1020 struct tcp_sock *tp = tcp_sk(sk); 1021 1022 tp->packets_out -= decr; 1023 1024 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1025 tp->sacked_out -= decr; 1026 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1027 tp->retrans_out -= decr; 1028 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1029 tp->lost_out -= decr; 1030 1031 /* Reno case is special. Sigh... */ 1032 if (tcp_is_reno(tp) && decr > 0) 1033 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1034 1035 tcp_adjust_fackets_out(sk, skb, decr); 1036 1037 if (tp->lost_skb_hint && 1038 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1039 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1040 tp->lost_cnt_hint -= decr; 1041 1042 tcp_verify_left_out(tp); 1043 } 1044 1045 /* Function to create two new TCP segments. Shrinks the given segment 1046 * to the specified size and appends a new segment with the rest of the 1047 * packet to the list. This won't be called frequently, I hope. 1048 * Remember, these are still headerless SKBs at this point. 1049 */ 1050 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1051 unsigned int mss_now) 1052 { 1053 struct tcp_sock *tp = tcp_sk(sk); 1054 struct sk_buff *buff; 1055 int nsize, old_factor; 1056 int nlen; 1057 u8 flags; 1058 1059 if (WARN_ON(len > skb->len)) 1060 return -EINVAL; 1061 1062 nsize = skb_headlen(skb) - len; 1063 if (nsize < 0) 1064 nsize = 0; 1065 1066 if (skb_cloned(skb) && 1067 skb_is_nonlinear(skb) && 1068 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1069 return -ENOMEM; 1070 1071 /* Get a new skb... force flag on. */ 1072 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 1073 if (buff == NULL) 1074 return -ENOMEM; /* We'll just try again later. */ 1075 1076 sk->sk_wmem_queued += buff->truesize; 1077 sk_mem_charge(sk, buff->truesize); 1078 nlen = skb->len - len - nsize; 1079 buff->truesize += nlen; 1080 skb->truesize -= nlen; 1081 1082 /* Correct the sequence numbers. */ 1083 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1084 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1085 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1086 1087 /* PSH and FIN should only be set in the second packet. */ 1088 flags = TCP_SKB_CB(skb)->tcp_flags; 1089 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1090 TCP_SKB_CB(buff)->tcp_flags = flags; 1091 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1092 1093 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1094 /* Copy and checksum data tail into the new buffer. */ 1095 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1096 skb_put(buff, nsize), 1097 nsize, 0); 1098 1099 skb_trim(skb, len); 1100 1101 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1102 } else { 1103 skb->ip_summed = CHECKSUM_PARTIAL; 1104 skb_split(skb, buff, len); 1105 } 1106 1107 buff->ip_summed = skb->ip_summed; 1108 1109 /* Looks stupid, but our code really uses when of 1110 * skbs, which it never sent before. --ANK 1111 */ 1112 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 1113 buff->tstamp = skb->tstamp; 1114 1115 old_factor = tcp_skb_pcount(skb); 1116 1117 /* Fix up tso_factor for both original and new SKB. */ 1118 tcp_set_skb_tso_segs(sk, skb, mss_now); 1119 tcp_set_skb_tso_segs(sk, buff, mss_now); 1120 1121 /* If this packet has been sent out already, we must 1122 * adjust the various packet counters. 1123 */ 1124 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1125 int diff = old_factor - tcp_skb_pcount(skb) - 1126 tcp_skb_pcount(buff); 1127 1128 if (diff) 1129 tcp_adjust_pcount(sk, skb, diff); 1130 } 1131 1132 /* Link BUFF into the send queue. */ 1133 skb_header_release(buff); 1134 tcp_insert_write_queue_after(skb, buff, sk); 1135 1136 return 0; 1137 } 1138 1139 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1140 * eventually). The difference is that pulled data not copied, but 1141 * immediately discarded. 1142 */ 1143 static void __pskb_trim_head(struct sk_buff *skb, int len) 1144 { 1145 int i, k, eat; 1146 1147 eat = min_t(int, len, skb_headlen(skb)); 1148 if (eat) { 1149 __skb_pull(skb, eat); 1150 len -= eat; 1151 if (!len) 1152 return; 1153 } 1154 eat = len; 1155 k = 0; 1156 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1157 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1158 1159 if (size <= eat) { 1160 skb_frag_unref(skb, i); 1161 eat -= size; 1162 } else { 1163 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1164 if (eat) { 1165 skb_shinfo(skb)->frags[k].page_offset += eat; 1166 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1167 eat = 0; 1168 } 1169 k++; 1170 } 1171 } 1172 skb_shinfo(skb)->nr_frags = k; 1173 1174 skb_reset_tail_pointer(skb); 1175 skb->data_len -= len; 1176 skb->len = skb->data_len; 1177 } 1178 1179 /* Remove acked data from a packet in the transmit queue. */ 1180 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1181 { 1182 if (skb_unclone(skb, GFP_ATOMIC)) 1183 return -ENOMEM; 1184 1185 __pskb_trim_head(skb, len); 1186 1187 TCP_SKB_CB(skb)->seq += len; 1188 skb->ip_summed = CHECKSUM_PARTIAL; 1189 1190 skb->truesize -= len; 1191 sk->sk_wmem_queued -= len; 1192 sk_mem_uncharge(sk, len); 1193 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1194 1195 /* Any change of skb->len requires recalculation of tso factor. */ 1196 if (tcp_skb_pcount(skb) > 1) 1197 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1198 1199 return 0; 1200 } 1201 1202 /* Calculate MSS not accounting any TCP options. */ 1203 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1204 { 1205 const struct tcp_sock *tp = tcp_sk(sk); 1206 const struct inet_connection_sock *icsk = inet_csk(sk); 1207 int mss_now; 1208 1209 /* Calculate base mss without TCP options: 1210 It is MMS_S - sizeof(tcphdr) of rfc1122 1211 */ 1212 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1213 1214 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1215 if (icsk->icsk_af_ops->net_frag_header_len) { 1216 const struct dst_entry *dst = __sk_dst_get(sk); 1217 1218 if (dst && dst_allfrag(dst)) 1219 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1220 } 1221 1222 /* Clamp it (mss_clamp does not include tcp options) */ 1223 if (mss_now > tp->rx_opt.mss_clamp) 1224 mss_now = tp->rx_opt.mss_clamp; 1225 1226 /* Now subtract optional transport overhead */ 1227 mss_now -= icsk->icsk_ext_hdr_len; 1228 1229 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1230 if (mss_now < 48) 1231 mss_now = 48; 1232 return mss_now; 1233 } 1234 1235 /* Calculate MSS. Not accounting for SACKs here. */ 1236 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1237 { 1238 /* Subtract TCP options size, not including SACKs */ 1239 return __tcp_mtu_to_mss(sk, pmtu) - 1240 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1241 } 1242 1243 /* Inverse of above */ 1244 int tcp_mss_to_mtu(struct sock *sk, int mss) 1245 { 1246 const struct tcp_sock *tp = tcp_sk(sk); 1247 const struct inet_connection_sock *icsk = inet_csk(sk); 1248 int mtu; 1249 1250 mtu = mss + 1251 tp->tcp_header_len + 1252 icsk->icsk_ext_hdr_len + 1253 icsk->icsk_af_ops->net_header_len; 1254 1255 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1256 if (icsk->icsk_af_ops->net_frag_header_len) { 1257 const struct dst_entry *dst = __sk_dst_get(sk); 1258 1259 if (dst && dst_allfrag(dst)) 1260 mtu += icsk->icsk_af_ops->net_frag_header_len; 1261 } 1262 return mtu; 1263 } 1264 1265 /* MTU probing init per socket */ 1266 void tcp_mtup_init(struct sock *sk) 1267 { 1268 struct tcp_sock *tp = tcp_sk(sk); 1269 struct inet_connection_sock *icsk = inet_csk(sk); 1270 1271 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 1272 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1273 icsk->icsk_af_ops->net_header_len; 1274 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 1275 icsk->icsk_mtup.probe_size = 0; 1276 } 1277 EXPORT_SYMBOL(tcp_mtup_init); 1278 1279 /* This function synchronize snd mss to current pmtu/exthdr set. 1280 1281 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1282 for TCP options, but includes only bare TCP header. 1283 1284 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1285 It is minimum of user_mss and mss received with SYN. 1286 It also does not include TCP options. 1287 1288 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1289 1290 tp->mss_cache is current effective sending mss, including 1291 all tcp options except for SACKs. It is evaluated, 1292 taking into account current pmtu, but never exceeds 1293 tp->rx_opt.mss_clamp. 1294 1295 NOTE1. rfc1122 clearly states that advertised MSS 1296 DOES NOT include either tcp or ip options. 1297 1298 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1299 are READ ONLY outside this function. --ANK (980731) 1300 */ 1301 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1302 { 1303 struct tcp_sock *tp = tcp_sk(sk); 1304 struct inet_connection_sock *icsk = inet_csk(sk); 1305 int mss_now; 1306 1307 if (icsk->icsk_mtup.search_high > pmtu) 1308 icsk->icsk_mtup.search_high = pmtu; 1309 1310 mss_now = tcp_mtu_to_mss(sk, pmtu); 1311 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1312 1313 /* And store cached results */ 1314 icsk->icsk_pmtu_cookie = pmtu; 1315 if (icsk->icsk_mtup.enabled) 1316 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1317 tp->mss_cache = mss_now; 1318 1319 return mss_now; 1320 } 1321 EXPORT_SYMBOL(tcp_sync_mss); 1322 1323 /* Compute the current effective MSS, taking SACKs and IP options, 1324 * and even PMTU discovery events into account. 1325 */ 1326 unsigned int tcp_current_mss(struct sock *sk) 1327 { 1328 const struct tcp_sock *tp = tcp_sk(sk); 1329 const struct dst_entry *dst = __sk_dst_get(sk); 1330 u32 mss_now; 1331 unsigned int header_len; 1332 struct tcp_out_options opts; 1333 struct tcp_md5sig_key *md5; 1334 1335 mss_now = tp->mss_cache; 1336 1337 if (dst) { 1338 u32 mtu = dst_mtu(dst); 1339 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1340 mss_now = tcp_sync_mss(sk, mtu); 1341 } 1342 1343 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1344 sizeof(struct tcphdr); 1345 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1346 * some common options. If this is an odd packet (because we have SACK 1347 * blocks etc) then our calculated header_len will be different, and 1348 * we have to adjust mss_now correspondingly */ 1349 if (header_len != tp->tcp_header_len) { 1350 int delta = (int) header_len - tp->tcp_header_len; 1351 mss_now -= delta; 1352 } 1353 1354 return mss_now; 1355 } 1356 1357 /* Congestion window validation. (RFC2861) */ 1358 static void tcp_cwnd_validate(struct sock *sk) 1359 { 1360 struct tcp_sock *tp = tcp_sk(sk); 1361 1362 if (tp->packets_out >= tp->snd_cwnd) { 1363 /* Network is feed fully. */ 1364 tp->snd_cwnd_used = 0; 1365 tp->snd_cwnd_stamp = tcp_time_stamp; 1366 } else { 1367 /* Network starves. */ 1368 if (tp->packets_out > tp->snd_cwnd_used) 1369 tp->snd_cwnd_used = tp->packets_out; 1370 1371 if (sysctl_tcp_slow_start_after_idle && 1372 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1373 tcp_cwnd_application_limited(sk); 1374 } 1375 } 1376 1377 /* Returns the portion of skb which can be sent right away without 1378 * introducing MSS oddities to segment boundaries. In rare cases where 1379 * mss_now != mss_cache, we will request caller to create a small skb 1380 * per input skb which could be mostly avoided here (if desired). 1381 * 1382 * We explicitly want to create a request for splitting write queue tail 1383 * to a small skb for Nagle purposes while avoiding unnecessary modulos, 1384 * thus all the complexity (cwnd_len is always MSS multiple which we 1385 * return whenever allowed by the other factors). Basically we need the 1386 * modulo only when the receiver window alone is the limiting factor or 1387 * when we would be allowed to send the split-due-to-Nagle skb fully. 1388 */ 1389 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb, 1390 unsigned int mss_now, unsigned int max_segs) 1391 { 1392 const struct tcp_sock *tp = tcp_sk(sk); 1393 u32 needed, window, max_len; 1394 1395 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1396 max_len = mss_now * max_segs; 1397 1398 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1399 return max_len; 1400 1401 needed = min(skb->len, window); 1402 1403 if (max_len <= needed) 1404 return max_len; 1405 1406 return needed - needed % mss_now; 1407 } 1408 1409 /* Can at least one segment of SKB be sent right now, according to the 1410 * congestion window rules? If so, return how many segments are allowed. 1411 */ 1412 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1413 const struct sk_buff *skb) 1414 { 1415 u32 in_flight, cwnd; 1416 1417 /* Don't be strict about the congestion window for the final FIN. */ 1418 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1419 tcp_skb_pcount(skb) == 1) 1420 return 1; 1421 1422 in_flight = tcp_packets_in_flight(tp); 1423 cwnd = tp->snd_cwnd; 1424 if (in_flight < cwnd) 1425 return (cwnd - in_flight); 1426 1427 return 0; 1428 } 1429 1430 /* Initialize TSO state of a skb. 1431 * This must be invoked the first time we consider transmitting 1432 * SKB onto the wire. 1433 */ 1434 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1435 unsigned int mss_now) 1436 { 1437 int tso_segs = tcp_skb_pcount(skb); 1438 1439 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1440 tcp_set_skb_tso_segs(sk, skb, mss_now); 1441 tso_segs = tcp_skb_pcount(skb); 1442 } 1443 return tso_segs; 1444 } 1445 1446 /* Minshall's variant of the Nagle send check. */ 1447 static inline bool tcp_minshall_check(const struct tcp_sock *tp) 1448 { 1449 return after(tp->snd_sml, tp->snd_una) && 1450 !after(tp->snd_sml, tp->snd_nxt); 1451 } 1452 1453 /* Return false, if packet can be sent now without violation Nagle's rules: 1454 * 1. It is full sized. 1455 * 2. Or it contains FIN. (already checked by caller) 1456 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1457 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1458 * With Minshall's modification: all sent small packets are ACKed. 1459 */ 1460 static inline bool tcp_nagle_check(const struct tcp_sock *tp, 1461 const struct sk_buff *skb, 1462 unsigned int mss_now, int nonagle) 1463 { 1464 return skb->len < mss_now && 1465 ((nonagle & TCP_NAGLE_CORK) || 1466 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1467 } 1468 1469 /* Return true if the Nagle test allows this packet to be 1470 * sent now. 1471 */ 1472 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1473 unsigned int cur_mss, int nonagle) 1474 { 1475 /* Nagle rule does not apply to frames, which sit in the middle of the 1476 * write_queue (they have no chances to get new data). 1477 * 1478 * This is implemented in the callers, where they modify the 'nonagle' 1479 * argument based upon the location of SKB in the send queue. 1480 */ 1481 if (nonagle & TCP_NAGLE_PUSH) 1482 return true; 1483 1484 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1485 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1486 return true; 1487 1488 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 1489 return true; 1490 1491 return false; 1492 } 1493 1494 /* Does at least the first segment of SKB fit into the send window? */ 1495 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1496 const struct sk_buff *skb, 1497 unsigned int cur_mss) 1498 { 1499 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1500 1501 if (skb->len > cur_mss) 1502 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1503 1504 return !after(end_seq, tcp_wnd_end(tp)); 1505 } 1506 1507 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1508 * should be put on the wire right now. If so, it returns the number of 1509 * packets allowed by the congestion window. 1510 */ 1511 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1512 unsigned int cur_mss, int nonagle) 1513 { 1514 const struct tcp_sock *tp = tcp_sk(sk); 1515 unsigned int cwnd_quota; 1516 1517 tcp_init_tso_segs(sk, skb, cur_mss); 1518 1519 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1520 return 0; 1521 1522 cwnd_quota = tcp_cwnd_test(tp, skb); 1523 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1524 cwnd_quota = 0; 1525 1526 return cwnd_quota; 1527 } 1528 1529 /* Test if sending is allowed right now. */ 1530 bool tcp_may_send_now(struct sock *sk) 1531 { 1532 const struct tcp_sock *tp = tcp_sk(sk); 1533 struct sk_buff *skb = tcp_send_head(sk); 1534 1535 return skb && 1536 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1537 (tcp_skb_is_last(sk, skb) ? 1538 tp->nonagle : TCP_NAGLE_PUSH)); 1539 } 1540 1541 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1542 * which is put after SKB on the list. It is very much like 1543 * tcp_fragment() except that it may make several kinds of assumptions 1544 * in order to speed up the splitting operation. In particular, we 1545 * know that all the data is in scatter-gather pages, and that the 1546 * packet has never been sent out before (and thus is not cloned). 1547 */ 1548 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1549 unsigned int mss_now, gfp_t gfp) 1550 { 1551 struct sk_buff *buff; 1552 int nlen = skb->len - len; 1553 u8 flags; 1554 1555 /* All of a TSO frame must be composed of paged data. */ 1556 if (skb->len != skb->data_len) 1557 return tcp_fragment(sk, skb, len, mss_now); 1558 1559 buff = sk_stream_alloc_skb(sk, 0, gfp); 1560 if (unlikely(buff == NULL)) 1561 return -ENOMEM; 1562 1563 sk->sk_wmem_queued += buff->truesize; 1564 sk_mem_charge(sk, buff->truesize); 1565 buff->truesize += nlen; 1566 skb->truesize -= nlen; 1567 1568 /* Correct the sequence numbers. */ 1569 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1570 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1571 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1572 1573 /* PSH and FIN should only be set in the second packet. */ 1574 flags = TCP_SKB_CB(skb)->tcp_flags; 1575 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1576 TCP_SKB_CB(buff)->tcp_flags = flags; 1577 1578 /* This packet was never sent out yet, so no SACK bits. */ 1579 TCP_SKB_CB(buff)->sacked = 0; 1580 1581 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1582 skb_split(skb, buff, len); 1583 1584 /* Fix up tso_factor for both original and new SKB. */ 1585 tcp_set_skb_tso_segs(sk, skb, mss_now); 1586 tcp_set_skb_tso_segs(sk, buff, mss_now); 1587 1588 /* Link BUFF into the send queue. */ 1589 skb_header_release(buff); 1590 tcp_insert_write_queue_after(skb, buff, sk); 1591 1592 return 0; 1593 } 1594 1595 /* Try to defer sending, if possible, in order to minimize the amount 1596 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1597 * 1598 * This algorithm is from John Heffner. 1599 */ 1600 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb) 1601 { 1602 struct tcp_sock *tp = tcp_sk(sk); 1603 const struct inet_connection_sock *icsk = inet_csk(sk); 1604 u32 send_win, cong_win, limit, in_flight; 1605 int win_divisor; 1606 1607 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1608 goto send_now; 1609 1610 if (icsk->icsk_ca_state != TCP_CA_Open) 1611 goto send_now; 1612 1613 /* Defer for less than two clock ticks. */ 1614 if (tp->tso_deferred && 1615 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1616 goto send_now; 1617 1618 in_flight = tcp_packets_in_flight(tp); 1619 1620 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1621 1622 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1623 1624 /* From in_flight test above, we know that cwnd > in_flight. */ 1625 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1626 1627 limit = min(send_win, cong_win); 1628 1629 /* If a full-sized TSO skb can be sent, do it. */ 1630 if (limit >= min_t(unsigned int, sk->sk_gso_max_size, 1631 sk->sk_gso_max_segs * tp->mss_cache)) 1632 goto send_now; 1633 1634 /* Middle in queue won't get any more data, full sendable already? */ 1635 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1636 goto send_now; 1637 1638 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1639 if (win_divisor) { 1640 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1641 1642 /* If at least some fraction of a window is available, 1643 * just use it. 1644 */ 1645 chunk /= win_divisor; 1646 if (limit >= chunk) 1647 goto send_now; 1648 } else { 1649 /* Different approach, try not to defer past a single 1650 * ACK. Receiver should ACK every other full sized 1651 * frame, so if we have space for more than 3 frames 1652 * then send now. 1653 */ 1654 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1655 goto send_now; 1656 } 1657 1658 /* Ok, it looks like it is advisable to defer. 1659 * Do not rearm the timer if already set to not break TCP ACK clocking. 1660 */ 1661 if (!tp->tso_deferred) 1662 tp->tso_deferred = 1 | (jiffies << 1); 1663 1664 return true; 1665 1666 send_now: 1667 tp->tso_deferred = 0; 1668 return false; 1669 } 1670 1671 /* Create a new MTU probe if we are ready. 1672 * MTU probe is regularly attempting to increase the path MTU by 1673 * deliberately sending larger packets. This discovers routing 1674 * changes resulting in larger path MTUs. 1675 * 1676 * Returns 0 if we should wait to probe (no cwnd available), 1677 * 1 if a probe was sent, 1678 * -1 otherwise 1679 */ 1680 static int tcp_mtu_probe(struct sock *sk) 1681 { 1682 struct tcp_sock *tp = tcp_sk(sk); 1683 struct inet_connection_sock *icsk = inet_csk(sk); 1684 struct sk_buff *skb, *nskb, *next; 1685 int len; 1686 int probe_size; 1687 int size_needed; 1688 int copy; 1689 int mss_now; 1690 1691 /* Not currently probing/verifying, 1692 * not in recovery, 1693 * have enough cwnd, and 1694 * not SACKing (the variable headers throw things off) */ 1695 if (!icsk->icsk_mtup.enabled || 1696 icsk->icsk_mtup.probe_size || 1697 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1698 tp->snd_cwnd < 11 || 1699 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1700 return -1; 1701 1702 /* Very simple search strategy: just double the MSS. */ 1703 mss_now = tcp_current_mss(sk); 1704 probe_size = 2 * tp->mss_cache; 1705 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1706 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1707 /* TODO: set timer for probe_converge_event */ 1708 return -1; 1709 } 1710 1711 /* Have enough data in the send queue to probe? */ 1712 if (tp->write_seq - tp->snd_nxt < size_needed) 1713 return -1; 1714 1715 if (tp->snd_wnd < size_needed) 1716 return -1; 1717 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1718 return 0; 1719 1720 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1721 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1722 if (!tcp_packets_in_flight(tp)) 1723 return -1; 1724 else 1725 return 0; 1726 } 1727 1728 /* We're allowed to probe. Build it now. */ 1729 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1730 return -1; 1731 sk->sk_wmem_queued += nskb->truesize; 1732 sk_mem_charge(sk, nskb->truesize); 1733 1734 skb = tcp_send_head(sk); 1735 1736 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1737 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1738 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1739 TCP_SKB_CB(nskb)->sacked = 0; 1740 nskb->csum = 0; 1741 nskb->ip_summed = skb->ip_summed; 1742 1743 tcp_insert_write_queue_before(nskb, skb, sk); 1744 1745 len = 0; 1746 tcp_for_write_queue_from_safe(skb, next, sk) { 1747 copy = min_t(int, skb->len, probe_size - len); 1748 if (nskb->ip_summed) 1749 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1750 else 1751 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1752 skb_put(nskb, copy), 1753 copy, nskb->csum); 1754 1755 if (skb->len <= copy) { 1756 /* We've eaten all the data from this skb. 1757 * Throw it away. */ 1758 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1759 tcp_unlink_write_queue(skb, sk); 1760 sk_wmem_free_skb(sk, skb); 1761 } else { 1762 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1763 ~(TCPHDR_FIN|TCPHDR_PSH); 1764 if (!skb_shinfo(skb)->nr_frags) { 1765 skb_pull(skb, copy); 1766 if (skb->ip_summed != CHECKSUM_PARTIAL) 1767 skb->csum = csum_partial(skb->data, 1768 skb->len, 0); 1769 } else { 1770 __pskb_trim_head(skb, copy); 1771 tcp_set_skb_tso_segs(sk, skb, mss_now); 1772 } 1773 TCP_SKB_CB(skb)->seq += copy; 1774 } 1775 1776 len += copy; 1777 1778 if (len >= probe_size) 1779 break; 1780 } 1781 tcp_init_tso_segs(sk, nskb, nskb->len); 1782 1783 /* We're ready to send. If this fails, the probe will 1784 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1785 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1786 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1787 /* Decrement cwnd here because we are sending 1788 * effectively two packets. */ 1789 tp->snd_cwnd--; 1790 tcp_event_new_data_sent(sk, nskb); 1791 1792 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1793 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1794 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1795 1796 return 1; 1797 } 1798 1799 return -1; 1800 } 1801 1802 /* This routine writes packets to the network. It advances the 1803 * send_head. This happens as incoming acks open up the remote 1804 * window for us. 1805 * 1806 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1807 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1808 * account rare use of URG, this is not a big flaw. 1809 * 1810 * Send at most one packet when push_one > 0. Temporarily ignore 1811 * cwnd limit to force at most one packet out when push_one == 2. 1812 1813 * Returns true, if no segments are in flight and we have queued segments, 1814 * but cannot send anything now because of SWS or another problem. 1815 */ 1816 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1817 int push_one, gfp_t gfp) 1818 { 1819 struct tcp_sock *tp = tcp_sk(sk); 1820 struct sk_buff *skb; 1821 unsigned int tso_segs, sent_pkts; 1822 int cwnd_quota; 1823 int result; 1824 1825 sent_pkts = 0; 1826 1827 if (!push_one) { 1828 /* Do MTU probing. */ 1829 result = tcp_mtu_probe(sk); 1830 if (!result) { 1831 return false; 1832 } else if (result > 0) { 1833 sent_pkts = 1; 1834 } 1835 } 1836 1837 while ((skb = tcp_send_head(sk))) { 1838 unsigned int limit; 1839 1840 1841 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1842 BUG_ON(!tso_segs); 1843 1844 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) 1845 goto repair; /* Skip network transmission */ 1846 1847 cwnd_quota = tcp_cwnd_test(tp, skb); 1848 if (!cwnd_quota) { 1849 if (push_one == 2) 1850 /* Force out a loss probe pkt. */ 1851 cwnd_quota = 1; 1852 else 1853 break; 1854 } 1855 1856 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1857 break; 1858 1859 if (tso_segs == 1) { 1860 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1861 (tcp_skb_is_last(sk, skb) ? 1862 nonagle : TCP_NAGLE_PUSH)))) 1863 break; 1864 } else { 1865 if (!push_one && tcp_tso_should_defer(sk, skb)) 1866 break; 1867 } 1868 1869 /* TSQ : sk_wmem_alloc accounts skb truesize, 1870 * including skb overhead. But thats OK. 1871 */ 1872 if (atomic_read(&sk->sk_wmem_alloc) >= sysctl_tcp_limit_output_bytes) { 1873 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 1874 break; 1875 } 1876 limit = mss_now; 1877 if (tso_segs > 1 && !tcp_urg_mode(tp)) 1878 limit = tcp_mss_split_point(sk, skb, mss_now, 1879 min_t(unsigned int, 1880 cwnd_quota, 1881 sk->sk_gso_max_segs)); 1882 1883 if (skb->len > limit && 1884 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 1885 break; 1886 1887 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1888 1889 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 1890 break; 1891 1892 repair: 1893 /* Advance the send_head. This one is sent out. 1894 * This call will increment packets_out. 1895 */ 1896 tcp_event_new_data_sent(sk, skb); 1897 1898 tcp_minshall_update(tp, mss_now, skb); 1899 sent_pkts += tcp_skb_pcount(skb); 1900 1901 if (push_one) 1902 break; 1903 } 1904 1905 if (likely(sent_pkts)) { 1906 if (tcp_in_cwnd_reduction(sk)) 1907 tp->prr_out += sent_pkts; 1908 1909 /* Send one loss probe per tail loss episode. */ 1910 if (push_one != 2) 1911 tcp_schedule_loss_probe(sk); 1912 tcp_cwnd_validate(sk); 1913 return false; 1914 } 1915 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk)); 1916 } 1917 1918 bool tcp_schedule_loss_probe(struct sock *sk) 1919 { 1920 struct inet_connection_sock *icsk = inet_csk(sk); 1921 struct tcp_sock *tp = tcp_sk(sk); 1922 u32 timeout, tlp_time_stamp, rto_time_stamp; 1923 u32 rtt = tp->srtt >> 3; 1924 1925 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 1926 return false; 1927 /* No consecutive loss probes. */ 1928 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 1929 tcp_rearm_rto(sk); 1930 return false; 1931 } 1932 /* Don't do any loss probe on a Fast Open connection before 3WHS 1933 * finishes. 1934 */ 1935 if (sk->sk_state == TCP_SYN_RECV) 1936 return false; 1937 1938 /* TLP is only scheduled when next timer event is RTO. */ 1939 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 1940 return false; 1941 1942 /* Schedule a loss probe in 2*RTT for SACK capable connections 1943 * in Open state, that are either limited by cwnd or application. 1944 */ 1945 if (sysctl_tcp_early_retrans < 3 || !rtt || !tp->packets_out || 1946 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 1947 return false; 1948 1949 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 1950 tcp_send_head(sk)) 1951 return false; 1952 1953 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 1954 * for delayed ack when there's one outstanding packet. 1955 */ 1956 timeout = rtt << 1; 1957 if (tp->packets_out == 1) 1958 timeout = max_t(u32, timeout, 1959 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 1960 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 1961 1962 /* If RTO is shorter, just schedule TLP in its place. */ 1963 tlp_time_stamp = tcp_time_stamp + timeout; 1964 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 1965 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 1966 s32 delta = rto_time_stamp - tcp_time_stamp; 1967 if (delta > 0) 1968 timeout = delta; 1969 } 1970 1971 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 1972 TCP_RTO_MAX); 1973 return true; 1974 } 1975 1976 /* When probe timeout (PTO) fires, send a new segment if one exists, else 1977 * retransmit the last segment. 1978 */ 1979 void tcp_send_loss_probe(struct sock *sk) 1980 { 1981 struct tcp_sock *tp = tcp_sk(sk); 1982 struct sk_buff *skb; 1983 int pcount; 1984 int mss = tcp_current_mss(sk); 1985 int err = -1; 1986 1987 if (tcp_send_head(sk) != NULL) { 1988 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 1989 goto rearm_timer; 1990 } 1991 1992 /* At most one outstanding TLP retransmission. */ 1993 if (tp->tlp_high_seq) 1994 goto rearm_timer; 1995 1996 /* Retransmit last segment. */ 1997 skb = tcp_write_queue_tail(sk); 1998 if (WARN_ON(!skb)) 1999 goto rearm_timer; 2000 2001 pcount = tcp_skb_pcount(skb); 2002 if (WARN_ON(!pcount)) 2003 goto rearm_timer; 2004 2005 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2006 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss))) 2007 goto rearm_timer; 2008 skb = tcp_write_queue_tail(sk); 2009 } 2010 2011 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2012 goto rearm_timer; 2013 2014 /* Probe with zero data doesn't trigger fast recovery. */ 2015 if (skb->len > 0) 2016 err = __tcp_retransmit_skb(sk, skb); 2017 2018 /* Record snd_nxt for loss detection. */ 2019 if (likely(!err)) 2020 tp->tlp_high_seq = tp->snd_nxt; 2021 2022 rearm_timer: 2023 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2024 inet_csk(sk)->icsk_rto, 2025 TCP_RTO_MAX); 2026 2027 if (likely(!err)) 2028 NET_INC_STATS_BH(sock_net(sk), 2029 LINUX_MIB_TCPLOSSPROBES); 2030 return; 2031 } 2032 2033 /* Push out any pending frames which were held back due to 2034 * TCP_CORK or attempt at coalescing tiny packets. 2035 * The socket must be locked by the caller. 2036 */ 2037 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2038 int nonagle) 2039 { 2040 /* If we are closed, the bytes will have to remain here. 2041 * In time closedown will finish, we empty the write queue and 2042 * all will be happy. 2043 */ 2044 if (unlikely(sk->sk_state == TCP_CLOSE)) 2045 return; 2046 2047 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2048 sk_gfp_atomic(sk, GFP_ATOMIC))) 2049 tcp_check_probe_timer(sk); 2050 } 2051 2052 /* Send _single_ skb sitting at the send head. This function requires 2053 * true push pending frames to setup probe timer etc. 2054 */ 2055 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2056 { 2057 struct sk_buff *skb = tcp_send_head(sk); 2058 2059 BUG_ON(!skb || skb->len < mss_now); 2060 2061 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2062 } 2063 2064 /* This function returns the amount that we can raise the 2065 * usable window based on the following constraints 2066 * 2067 * 1. The window can never be shrunk once it is offered (RFC 793) 2068 * 2. We limit memory per socket 2069 * 2070 * RFC 1122: 2071 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2072 * RECV.NEXT + RCV.WIN fixed until: 2073 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2074 * 2075 * i.e. don't raise the right edge of the window until you can raise 2076 * it at least MSS bytes. 2077 * 2078 * Unfortunately, the recommended algorithm breaks header prediction, 2079 * since header prediction assumes th->window stays fixed. 2080 * 2081 * Strictly speaking, keeping th->window fixed violates the receiver 2082 * side SWS prevention criteria. The problem is that under this rule 2083 * a stream of single byte packets will cause the right side of the 2084 * window to always advance by a single byte. 2085 * 2086 * Of course, if the sender implements sender side SWS prevention 2087 * then this will not be a problem. 2088 * 2089 * BSD seems to make the following compromise: 2090 * 2091 * If the free space is less than the 1/4 of the maximum 2092 * space available and the free space is less than 1/2 mss, 2093 * then set the window to 0. 2094 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2095 * Otherwise, just prevent the window from shrinking 2096 * and from being larger than the largest representable value. 2097 * 2098 * This prevents incremental opening of the window in the regime 2099 * where TCP is limited by the speed of the reader side taking 2100 * data out of the TCP receive queue. It does nothing about 2101 * those cases where the window is constrained on the sender side 2102 * because the pipeline is full. 2103 * 2104 * BSD also seems to "accidentally" limit itself to windows that are a 2105 * multiple of MSS, at least until the free space gets quite small. 2106 * This would appear to be a side effect of the mbuf implementation. 2107 * Combining these two algorithms results in the observed behavior 2108 * of having a fixed window size at almost all times. 2109 * 2110 * Below we obtain similar behavior by forcing the offered window to 2111 * a multiple of the mss when it is feasible to do so. 2112 * 2113 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2114 * Regular options like TIMESTAMP are taken into account. 2115 */ 2116 u32 __tcp_select_window(struct sock *sk) 2117 { 2118 struct inet_connection_sock *icsk = inet_csk(sk); 2119 struct tcp_sock *tp = tcp_sk(sk); 2120 /* MSS for the peer's data. Previous versions used mss_clamp 2121 * here. I don't know if the value based on our guesses 2122 * of peer's MSS is better for the performance. It's more correct 2123 * but may be worse for the performance because of rcv_mss 2124 * fluctuations. --SAW 1998/11/1 2125 */ 2126 int mss = icsk->icsk_ack.rcv_mss; 2127 int free_space = tcp_space(sk); 2128 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 2129 int window; 2130 2131 if (mss > full_space) 2132 mss = full_space; 2133 2134 if (free_space < (full_space >> 1)) { 2135 icsk->icsk_ack.quick = 0; 2136 2137 if (sk_under_memory_pressure(sk)) 2138 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2139 4U * tp->advmss); 2140 2141 if (free_space < mss) 2142 return 0; 2143 } 2144 2145 if (free_space > tp->rcv_ssthresh) 2146 free_space = tp->rcv_ssthresh; 2147 2148 /* Don't do rounding if we are using window scaling, since the 2149 * scaled window will not line up with the MSS boundary anyway. 2150 */ 2151 window = tp->rcv_wnd; 2152 if (tp->rx_opt.rcv_wscale) { 2153 window = free_space; 2154 2155 /* Advertise enough space so that it won't get scaled away. 2156 * Import case: prevent zero window announcement if 2157 * 1<<rcv_wscale > mss. 2158 */ 2159 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2160 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2161 << tp->rx_opt.rcv_wscale); 2162 } else { 2163 /* Get the largest window that is a nice multiple of mss. 2164 * Window clamp already applied above. 2165 * If our current window offering is within 1 mss of the 2166 * free space we just keep it. This prevents the divide 2167 * and multiply from happening most of the time. 2168 * We also don't do any window rounding when the free space 2169 * is too small. 2170 */ 2171 if (window <= free_space - mss || window > free_space) 2172 window = (free_space / mss) * mss; 2173 else if (mss == full_space && 2174 free_space > window + (full_space >> 1)) 2175 window = free_space; 2176 } 2177 2178 return window; 2179 } 2180 2181 /* Collapses two adjacent SKB's during retransmission. */ 2182 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2183 { 2184 struct tcp_sock *tp = tcp_sk(sk); 2185 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2186 int skb_size, next_skb_size; 2187 2188 skb_size = skb->len; 2189 next_skb_size = next_skb->len; 2190 2191 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2192 2193 tcp_highest_sack_combine(sk, next_skb, skb); 2194 2195 tcp_unlink_write_queue(next_skb, sk); 2196 2197 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2198 next_skb_size); 2199 2200 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2201 skb->ip_summed = CHECKSUM_PARTIAL; 2202 2203 if (skb->ip_summed != CHECKSUM_PARTIAL) 2204 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2205 2206 /* Update sequence range on original skb. */ 2207 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2208 2209 /* Merge over control information. This moves PSH/FIN etc. over */ 2210 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2211 2212 /* All done, get rid of second SKB and account for it so 2213 * packet counting does not break. 2214 */ 2215 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2216 2217 /* changed transmit queue under us so clear hints */ 2218 tcp_clear_retrans_hints_partial(tp); 2219 if (next_skb == tp->retransmit_skb_hint) 2220 tp->retransmit_skb_hint = skb; 2221 2222 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2223 2224 sk_wmem_free_skb(sk, next_skb); 2225 } 2226 2227 /* Check if coalescing SKBs is legal. */ 2228 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2229 { 2230 if (tcp_skb_pcount(skb) > 1) 2231 return false; 2232 /* TODO: SACK collapsing could be used to remove this condition */ 2233 if (skb_shinfo(skb)->nr_frags != 0) 2234 return false; 2235 if (skb_cloned(skb)) 2236 return false; 2237 if (skb == tcp_send_head(sk)) 2238 return false; 2239 /* Some heurestics for collapsing over SACK'd could be invented */ 2240 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2241 return false; 2242 2243 return true; 2244 } 2245 2246 /* Collapse packets in the retransmit queue to make to create 2247 * less packets on the wire. This is only done on retransmission. 2248 */ 2249 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2250 int space) 2251 { 2252 struct tcp_sock *tp = tcp_sk(sk); 2253 struct sk_buff *skb = to, *tmp; 2254 bool first = true; 2255 2256 if (!sysctl_tcp_retrans_collapse) 2257 return; 2258 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2259 return; 2260 2261 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2262 if (!tcp_can_collapse(sk, skb)) 2263 break; 2264 2265 space -= skb->len; 2266 2267 if (first) { 2268 first = false; 2269 continue; 2270 } 2271 2272 if (space < 0) 2273 break; 2274 /* Punt if not enough space exists in the first SKB for 2275 * the data in the second 2276 */ 2277 if (skb->len > skb_availroom(to)) 2278 break; 2279 2280 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2281 break; 2282 2283 tcp_collapse_retrans(sk, to); 2284 } 2285 } 2286 2287 /* This retransmits one SKB. Policy decisions and retransmit queue 2288 * state updates are done by the caller. Returns non-zero if an 2289 * error occurred which prevented the send. 2290 */ 2291 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2292 { 2293 struct tcp_sock *tp = tcp_sk(sk); 2294 struct inet_connection_sock *icsk = inet_csk(sk); 2295 unsigned int cur_mss; 2296 2297 /* Inconslusive MTU probe */ 2298 if (icsk->icsk_mtup.probe_size) { 2299 icsk->icsk_mtup.probe_size = 0; 2300 } 2301 2302 /* Do not sent more than we queued. 1/4 is reserved for possible 2303 * copying overhead: fragmentation, tunneling, mangling etc. 2304 */ 2305 if (atomic_read(&sk->sk_wmem_alloc) > 2306 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2307 return -EAGAIN; 2308 2309 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2310 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2311 BUG(); 2312 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2313 return -ENOMEM; 2314 } 2315 2316 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2317 return -EHOSTUNREACH; /* Routing failure or similar. */ 2318 2319 cur_mss = tcp_current_mss(sk); 2320 2321 /* If receiver has shrunk his window, and skb is out of 2322 * new window, do not retransmit it. The exception is the 2323 * case, when window is shrunk to zero. In this case 2324 * our retransmit serves as a zero window probe. 2325 */ 2326 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2327 TCP_SKB_CB(skb)->seq != tp->snd_una) 2328 return -EAGAIN; 2329 2330 if (skb->len > cur_mss) { 2331 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 2332 return -ENOMEM; /* We'll try again later. */ 2333 } else { 2334 int oldpcount = tcp_skb_pcount(skb); 2335 2336 if (unlikely(oldpcount > 1)) { 2337 tcp_init_tso_segs(sk, skb, cur_mss); 2338 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2339 } 2340 } 2341 2342 tcp_retrans_try_collapse(sk, skb, cur_mss); 2343 2344 /* Some Solaris stacks overoptimize and ignore the FIN on a 2345 * retransmit when old data is attached. So strip it off 2346 * since it is cheap to do so and saves bytes on the network. 2347 */ 2348 if (skb->len > 0 && 2349 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2350 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 2351 if (!pskb_trim(skb, 0)) { 2352 /* Reuse, even though it does some unnecessary work */ 2353 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1, 2354 TCP_SKB_CB(skb)->tcp_flags); 2355 skb->ip_summed = CHECKSUM_NONE; 2356 } 2357 } 2358 2359 /* Make a copy, if the first transmission SKB clone we made 2360 * is still in somebody's hands, else make a clone. 2361 */ 2362 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2363 2364 /* make sure skb->data is aligned on arches that require it 2365 * and check if ack-trimming & collapsing extended the headroom 2366 * beyond what csum_start can cover. 2367 */ 2368 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2369 skb_headroom(skb) >= 0xFFFF)) { 2370 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2371 GFP_ATOMIC); 2372 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2373 -ENOBUFS; 2374 } else { 2375 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2376 } 2377 } 2378 2379 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2380 { 2381 struct tcp_sock *tp = tcp_sk(sk); 2382 int err = __tcp_retransmit_skb(sk, skb); 2383 2384 if (err == 0) { 2385 /* Update global TCP statistics. */ 2386 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2387 2388 tp->total_retrans++; 2389 2390 #if FASTRETRANS_DEBUG > 0 2391 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2392 net_dbg_ratelimited("retrans_out leaked\n"); 2393 } 2394 #endif 2395 if (!tp->retrans_out) 2396 tp->lost_retrans_low = tp->snd_nxt; 2397 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2398 tp->retrans_out += tcp_skb_pcount(skb); 2399 2400 /* Save stamp of the first retransmit. */ 2401 if (!tp->retrans_stamp) 2402 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 2403 2404 tp->undo_retrans += tcp_skb_pcount(skb); 2405 2406 /* snd_nxt is stored to detect loss of retransmitted segment, 2407 * see tcp_input.c tcp_sacktag_write_queue(). 2408 */ 2409 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2410 } else { 2411 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2412 } 2413 return err; 2414 } 2415 2416 /* Check if we forward retransmits are possible in the current 2417 * window/congestion state. 2418 */ 2419 static bool tcp_can_forward_retransmit(struct sock *sk) 2420 { 2421 const struct inet_connection_sock *icsk = inet_csk(sk); 2422 const struct tcp_sock *tp = tcp_sk(sk); 2423 2424 /* Forward retransmissions are possible only during Recovery. */ 2425 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2426 return false; 2427 2428 /* No forward retransmissions in Reno are possible. */ 2429 if (tcp_is_reno(tp)) 2430 return false; 2431 2432 /* Yeah, we have to make difficult choice between forward transmission 2433 * and retransmission... Both ways have their merits... 2434 * 2435 * For now we do not retransmit anything, while we have some new 2436 * segments to send. In the other cases, follow rule 3 for 2437 * NextSeg() specified in RFC3517. 2438 */ 2439 2440 if (tcp_may_send_now(sk)) 2441 return false; 2442 2443 return true; 2444 } 2445 2446 /* This gets called after a retransmit timeout, and the initially 2447 * retransmitted data is acknowledged. It tries to continue 2448 * resending the rest of the retransmit queue, until either 2449 * we've sent it all or the congestion window limit is reached. 2450 * If doing SACK, the first ACK which comes back for a timeout 2451 * based retransmit packet might feed us FACK information again. 2452 * If so, we use it to avoid unnecessarily retransmissions. 2453 */ 2454 void tcp_xmit_retransmit_queue(struct sock *sk) 2455 { 2456 const struct inet_connection_sock *icsk = inet_csk(sk); 2457 struct tcp_sock *tp = tcp_sk(sk); 2458 struct sk_buff *skb; 2459 struct sk_buff *hole = NULL; 2460 u32 last_lost; 2461 int mib_idx; 2462 int fwd_rexmitting = 0; 2463 2464 if (!tp->packets_out) 2465 return; 2466 2467 if (!tp->lost_out) 2468 tp->retransmit_high = tp->snd_una; 2469 2470 if (tp->retransmit_skb_hint) { 2471 skb = tp->retransmit_skb_hint; 2472 last_lost = TCP_SKB_CB(skb)->end_seq; 2473 if (after(last_lost, tp->retransmit_high)) 2474 last_lost = tp->retransmit_high; 2475 } else { 2476 skb = tcp_write_queue_head(sk); 2477 last_lost = tp->snd_una; 2478 } 2479 2480 tcp_for_write_queue_from(skb, sk) { 2481 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2482 2483 if (skb == tcp_send_head(sk)) 2484 break; 2485 /* we could do better than to assign each time */ 2486 if (hole == NULL) 2487 tp->retransmit_skb_hint = skb; 2488 2489 /* Assume this retransmit will generate 2490 * only one packet for congestion window 2491 * calculation purposes. This works because 2492 * tcp_retransmit_skb() will chop up the 2493 * packet to be MSS sized and all the 2494 * packet counting works out. 2495 */ 2496 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2497 return; 2498 2499 if (fwd_rexmitting) { 2500 begin_fwd: 2501 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2502 break; 2503 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2504 2505 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2506 tp->retransmit_high = last_lost; 2507 if (!tcp_can_forward_retransmit(sk)) 2508 break; 2509 /* Backtrack if necessary to non-L'ed skb */ 2510 if (hole != NULL) { 2511 skb = hole; 2512 hole = NULL; 2513 } 2514 fwd_rexmitting = 1; 2515 goto begin_fwd; 2516 2517 } else if (!(sacked & TCPCB_LOST)) { 2518 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2519 hole = skb; 2520 continue; 2521 2522 } else { 2523 last_lost = TCP_SKB_CB(skb)->end_seq; 2524 if (icsk->icsk_ca_state != TCP_CA_Loss) 2525 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2526 else 2527 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2528 } 2529 2530 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2531 continue; 2532 2533 if (tcp_retransmit_skb(sk, skb)) 2534 return; 2535 2536 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2537 2538 if (tcp_in_cwnd_reduction(sk)) 2539 tp->prr_out += tcp_skb_pcount(skb); 2540 2541 if (skb == tcp_write_queue_head(sk)) 2542 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2543 inet_csk(sk)->icsk_rto, 2544 TCP_RTO_MAX); 2545 } 2546 } 2547 2548 /* Send a fin. The caller locks the socket for us. This cannot be 2549 * allowed to fail queueing a FIN frame under any circumstances. 2550 */ 2551 void tcp_send_fin(struct sock *sk) 2552 { 2553 struct tcp_sock *tp = tcp_sk(sk); 2554 struct sk_buff *skb = tcp_write_queue_tail(sk); 2555 int mss_now; 2556 2557 /* Optimization, tack on the FIN if we have a queue of 2558 * unsent frames. But be careful about outgoing SACKS 2559 * and IP options. 2560 */ 2561 mss_now = tcp_current_mss(sk); 2562 2563 if (tcp_send_head(sk) != NULL) { 2564 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN; 2565 TCP_SKB_CB(skb)->end_seq++; 2566 tp->write_seq++; 2567 } else { 2568 /* Socket is locked, keep trying until memory is available. */ 2569 for (;;) { 2570 skb = alloc_skb_fclone(MAX_TCP_HEADER, 2571 sk->sk_allocation); 2572 if (skb) 2573 break; 2574 yield(); 2575 } 2576 2577 /* Reserve space for headers and prepare control bits. */ 2578 skb_reserve(skb, MAX_TCP_HEADER); 2579 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2580 tcp_init_nondata_skb(skb, tp->write_seq, 2581 TCPHDR_ACK | TCPHDR_FIN); 2582 tcp_queue_skb(sk, skb); 2583 } 2584 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2585 } 2586 2587 /* We get here when a process closes a file descriptor (either due to 2588 * an explicit close() or as a byproduct of exit()'ing) and there 2589 * was unread data in the receive queue. This behavior is recommended 2590 * by RFC 2525, section 2.17. -DaveM 2591 */ 2592 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2593 { 2594 struct sk_buff *skb; 2595 2596 /* NOTE: No TCP options attached and we never retransmit this. */ 2597 skb = alloc_skb(MAX_TCP_HEADER, priority); 2598 if (!skb) { 2599 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2600 return; 2601 } 2602 2603 /* Reserve space for headers and prepare control bits. */ 2604 skb_reserve(skb, MAX_TCP_HEADER); 2605 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2606 TCPHDR_ACK | TCPHDR_RST); 2607 /* Send it off. */ 2608 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2609 if (tcp_transmit_skb(sk, skb, 0, priority)) 2610 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2611 2612 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2613 } 2614 2615 /* Send a crossed SYN-ACK during socket establishment. 2616 * WARNING: This routine must only be called when we have already sent 2617 * a SYN packet that crossed the incoming SYN that caused this routine 2618 * to get called. If this assumption fails then the initial rcv_wnd 2619 * and rcv_wscale values will not be correct. 2620 */ 2621 int tcp_send_synack(struct sock *sk) 2622 { 2623 struct sk_buff *skb; 2624 2625 skb = tcp_write_queue_head(sk); 2626 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2627 pr_debug("%s: wrong queue state\n", __func__); 2628 return -EFAULT; 2629 } 2630 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2631 if (skb_cloned(skb)) { 2632 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2633 if (nskb == NULL) 2634 return -ENOMEM; 2635 tcp_unlink_write_queue(skb, sk); 2636 skb_header_release(nskb); 2637 __tcp_add_write_queue_head(sk, nskb); 2638 sk_wmem_free_skb(sk, skb); 2639 sk->sk_wmem_queued += nskb->truesize; 2640 sk_mem_charge(sk, nskb->truesize); 2641 skb = nskb; 2642 } 2643 2644 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2645 TCP_ECN_send_synack(tcp_sk(sk), skb); 2646 } 2647 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2648 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2649 } 2650 2651 /** 2652 * tcp_make_synack - Prepare a SYN-ACK. 2653 * sk: listener socket 2654 * dst: dst entry attached to the SYNACK 2655 * req: request_sock pointer 2656 * 2657 * Allocate one skb and build a SYNACK packet. 2658 * @dst is consumed : Caller should not use it again. 2659 */ 2660 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2661 struct request_sock *req, 2662 struct tcp_fastopen_cookie *foc) 2663 { 2664 struct tcp_out_options opts; 2665 struct inet_request_sock *ireq = inet_rsk(req); 2666 struct tcp_sock *tp = tcp_sk(sk); 2667 struct tcphdr *th; 2668 struct sk_buff *skb; 2669 struct tcp_md5sig_key *md5; 2670 int tcp_header_size; 2671 int mss; 2672 2673 skb = alloc_skb(MAX_TCP_HEADER + 15, sk_gfp_atomic(sk, GFP_ATOMIC)); 2674 if (unlikely(!skb)) { 2675 dst_release(dst); 2676 return NULL; 2677 } 2678 /* Reserve space for headers. */ 2679 skb_reserve(skb, MAX_TCP_HEADER); 2680 2681 skb_dst_set(skb, dst); 2682 security_skb_owned_by(skb, sk); 2683 2684 mss = dst_metric_advmss(dst); 2685 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2686 mss = tp->rx_opt.user_mss; 2687 2688 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 2689 __u8 rcv_wscale; 2690 /* Set this up on the first call only */ 2691 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 2692 2693 /* limit the window selection if the user enforce a smaller rx buffer */ 2694 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2695 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0)) 2696 req->window_clamp = tcp_full_space(sk); 2697 2698 /* tcp_full_space because it is guaranteed to be the first packet */ 2699 tcp_select_initial_window(tcp_full_space(sk), 2700 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 2701 &req->rcv_wnd, 2702 &req->window_clamp, 2703 ireq->wscale_ok, 2704 &rcv_wscale, 2705 dst_metric(dst, RTAX_INITRWND)); 2706 ireq->rcv_wscale = rcv_wscale; 2707 } 2708 2709 memset(&opts, 0, sizeof(opts)); 2710 #ifdef CONFIG_SYN_COOKIES 2711 if (unlikely(req->cookie_ts)) 2712 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req); 2713 else 2714 #endif 2715 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2716 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5, 2717 foc) + sizeof(*th); 2718 2719 skb_push(skb, tcp_header_size); 2720 skb_reset_transport_header(skb); 2721 2722 th = tcp_hdr(skb); 2723 memset(th, 0, sizeof(struct tcphdr)); 2724 th->syn = 1; 2725 th->ack = 1; 2726 TCP_ECN_make_synack(req, th); 2727 th->source = ireq->loc_port; 2728 th->dest = ireq->rmt_port; 2729 /* Setting of flags are superfluous here for callers (and ECE is 2730 * not even correctly set) 2731 */ 2732 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2733 TCPHDR_SYN | TCPHDR_ACK); 2734 2735 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2736 /* XXX data is queued and acked as is. No buffer/window check */ 2737 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 2738 2739 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2740 th->window = htons(min(req->rcv_wnd, 65535U)); 2741 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2742 th->doff = (tcp_header_size >> 2); 2743 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb)); 2744 2745 #ifdef CONFIG_TCP_MD5SIG 2746 /* Okay, we have all we need - do the md5 hash if needed */ 2747 if (md5) { 2748 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2749 md5, NULL, req, skb); 2750 } 2751 #endif 2752 2753 return skb; 2754 } 2755 EXPORT_SYMBOL(tcp_make_synack); 2756 2757 /* Do all connect socket setups that can be done AF independent. */ 2758 void tcp_connect_init(struct sock *sk) 2759 { 2760 const struct dst_entry *dst = __sk_dst_get(sk); 2761 struct tcp_sock *tp = tcp_sk(sk); 2762 __u8 rcv_wscale; 2763 2764 /* We'll fix this up when we get a response from the other end. 2765 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2766 */ 2767 tp->tcp_header_len = sizeof(struct tcphdr) + 2768 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2769 2770 #ifdef CONFIG_TCP_MD5SIG 2771 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2772 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2773 #endif 2774 2775 /* If user gave his TCP_MAXSEG, record it to clamp */ 2776 if (tp->rx_opt.user_mss) 2777 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2778 tp->max_window = 0; 2779 tcp_mtup_init(sk); 2780 tcp_sync_mss(sk, dst_mtu(dst)); 2781 2782 if (!tp->window_clamp) 2783 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2784 tp->advmss = dst_metric_advmss(dst); 2785 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2786 tp->advmss = tp->rx_opt.user_mss; 2787 2788 tcp_initialize_rcv_mss(sk); 2789 2790 /* limit the window selection if the user enforce a smaller rx buffer */ 2791 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2792 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 2793 tp->window_clamp = tcp_full_space(sk); 2794 2795 tcp_select_initial_window(tcp_full_space(sk), 2796 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2797 &tp->rcv_wnd, 2798 &tp->window_clamp, 2799 sysctl_tcp_window_scaling, 2800 &rcv_wscale, 2801 dst_metric(dst, RTAX_INITRWND)); 2802 2803 tp->rx_opt.rcv_wscale = rcv_wscale; 2804 tp->rcv_ssthresh = tp->rcv_wnd; 2805 2806 sk->sk_err = 0; 2807 sock_reset_flag(sk, SOCK_DONE); 2808 tp->snd_wnd = 0; 2809 tcp_init_wl(tp, 0); 2810 tp->snd_una = tp->write_seq; 2811 tp->snd_sml = tp->write_seq; 2812 tp->snd_up = tp->write_seq; 2813 tp->snd_nxt = tp->write_seq; 2814 2815 if (likely(!tp->repair)) 2816 tp->rcv_nxt = 0; 2817 tp->rcv_wup = tp->rcv_nxt; 2818 tp->copied_seq = tp->rcv_nxt; 2819 2820 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2821 inet_csk(sk)->icsk_retransmits = 0; 2822 tcp_clear_retrans(tp); 2823 } 2824 2825 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 2826 { 2827 struct tcp_sock *tp = tcp_sk(sk); 2828 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 2829 2830 tcb->end_seq += skb->len; 2831 skb_header_release(skb); 2832 __tcp_add_write_queue_tail(sk, skb); 2833 sk->sk_wmem_queued += skb->truesize; 2834 sk_mem_charge(sk, skb->truesize); 2835 tp->write_seq = tcb->end_seq; 2836 tp->packets_out += tcp_skb_pcount(skb); 2837 } 2838 2839 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 2840 * queue a data-only packet after the regular SYN, such that regular SYNs 2841 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 2842 * only the SYN sequence, the data are retransmitted in the first ACK. 2843 * If cookie is not cached or other error occurs, falls back to send a 2844 * regular SYN with Fast Open cookie request option. 2845 */ 2846 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 2847 { 2848 struct tcp_sock *tp = tcp_sk(sk); 2849 struct tcp_fastopen_request *fo = tp->fastopen_req; 2850 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen; 2851 struct sk_buff *syn_data = NULL, *data; 2852 unsigned long last_syn_loss = 0; 2853 2854 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 2855 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 2856 &syn_loss, &last_syn_loss); 2857 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 2858 if (syn_loss > 1 && 2859 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 2860 fo->cookie.len = -1; 2861 goto fallback; 2862 } 2863 2864 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 2865 fo->cookie.len = -1; 2866 else if (fo->cookie.len <= 0) 2867 goto fallback; 2868 2869 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 2870 * user-MSS. Reserve maximum option space for middleboxes that add 2871 * private TCP options. The cost is reduced data space in SYN :( 2872 */ 2873 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 2874 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2875 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 2876 MAX_TCP_OPTION_SPACE; 2877 2878 syn_data = skb_copy_expand(syn, skb_headroom(syn), space, 2879 sk->sk_allocation); 2880 if (syn_data == NULL) 2881 goto fallback; 2882 2883 for (i = 0; i < iovlen && syn_data->len < space; ++i) { 2884 struct iovec *iov = &fo->data->msg_iov[i]; 2885 unsigned char __user *from = iov->iov_base; 2886 int len = iov->iov_len; 2887 2888 if (syn_data->len + len > space) 2889 len = space - syn_data->len; 2890 else if (i + 1 == iovlen) 2891 /* No more data pending in inet_wait_for_connect() */ 2892 fo->data = NULL; 2893 2894 if (skb_add_data(syn_data, from, len)) 2895 goto fallback; 2896 } 2897 2898 /* Queue a data-only packet after the regular SYN for retransmission */ 2899 data = pskb_copy(syn_data, sk->sk_allocation); 2900 if (data == NULL) 2901 goto fallback; 2902 TCP_SKB_CB(data)->seq++; 2903 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN; 2904 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH); 2905 tcp_connect_queue_skb(sk, data); 2906 fo->copied = data->len; 2907 2908 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) { 2909 tp->syn_data = (fo->copied > 0); 2910 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 2911 goto done; 2912 } 2913 syn_data = NULL; 2914 2915 fallback: 2916 /* Send a regular SYN with Fast Open cookie request option */ 2917 if (fo->cookie.len > 0) 2918 fo->cookie.len = 0; 2919 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 2920 if (err) 2921 tp->syn_fastopen = 0; 2922 kfree_skb(syn_data); 2923 done: 2924 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 2925 return err; 2926 } 2927 2928 /* Build a SYN and send it off. */ 2929 int tcp_connect(struct sock *sk) 2930 { 2931 struct tcp_sock *tp = tcp_sk(sk); 2932 struct sk_buff *buff; 2933 int err; 2934 2935 tcp_connect_init(sk); 2936 2937 if (unlikely(tp->repair)) { 2938 tcp_finish_connect(sk, NULL); 2939 return 0; 2940 } 2941 2942 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 2943 if (unlikely(buff == NULL)) 2944 return -ENOBUFS; 2945 2946 /* Reserve space for headers. */ 2947 skb_reserve(buff, MAX_TCP_HEADER); 2948 2949 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 2950 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp; 2951 tcp_connect_queue_skb(sk, buff); 2952 TCP_ECN_send_syn(sk, buff); 2953 2954 /* Send off SYN; include data in Fast Open. */ 2955 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 2956 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 2957 if (err == -ECONNREFUSED) 2958 return err; 2959 2960 /* We change tp->snd_nxt after the tcp_transmit_skb() call 2961 * in order to make this packet get counted in tcpOutSegs. 2962 */ 2963 tp->snd_nxt = tp->write_seq; 2964 tp->pushed_seq = tp->write_seq; 2965 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 2966 2967 /* Timer for repeating the SYN until an answer. */ 2968 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2969 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2970 return 0; 2971 } 2972 EXPORT_SYMBOL(tcp_connect); 2973 2974 /* Send out a delayed ack, the caller does the policy checking 2975 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 2976 * for details. 2977 */ 2978 void tcp_send_delayed_ack(struct sock *sk) 2979 { 2980 struct inet_connection_sock *icsk = inet_csk(sk); 2981 int ato = icsk->icsk_ack.ato; 2982 unsigned long timeout; 2983 2984 if (ato > TCP_DELACK_MIN) { 2985 const struct tcp_sock *tp = tcp_sk(sk); 2986 int max_ato = HZ / 2; 2987 2988 if (icsk->icsk_ack.pingpong || 2989 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 2990 max_ato = TCP_DELACK_MAX; 2991 2992 /* Slow path, intersegment interval is "high". */ 2993 2994 /* If some rtt estimate is known, use it to bound delayed ack. 2995 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 2996 * directly. 2997 */ 2998 if (tp->srtt) { 2999 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN); 3000 3001 if (rtt < max_ato) 3002 max_ato = rtt; 3003 } 3004 3005 ato = min(ato, max_ato); 3006 } 3007 3008 /* Stay within the limit we were given */ 3009 timeout = jiffies + ato; 3010 3011 /* Use new timeout only if there wasn't a older one earlier. */ 3012 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3013 /* If delack timer was blocked or is about to expire, 3014 * send ACK now. 3015 */ 3016 if (icsk->icsk_ack.blocked || 3017 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3018 tcp_send_ack(sk); 3019 return; 3020 } 3021 3022 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3023 timeout = icsk->icsk_ack.timeout; 3024 } 3025 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3026 icsk->icsk_ack.timeout = timeout; 3027 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3028 } 3029 3030 /* This routine sends an ack and also updates the window. */ 3031 void tcp_send_ack(struct sock *sk) 3032 { 3033 struct sk_buff *buff; 3034 3035 /* If we have been reset, we may not send again. */ 3036 if (sk->sk_state == TCP_CLOSE) 3037 return; 3038 3039 /* We are not putting this on the write queue, so 3040 * tcp_transmit_skb() will set the ownership to this 3041 * sock. 3042 */ 3043 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3044 if (buff == NULL) { 3045 inet_csk_schedule_ack(sk); 3046 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3047 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3048 TCP_DELACK_MAX, TCP_RTO_MAX); 3049 return; 3050 } 3051 3052 /* Reserve space for headers and prepare control bits. */ 3053 skb_reserve(buff, MAX_TCP_HEADER); 3054 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3055 3056 /* Send it off, this clears delayed acks for us. */ 3057 TCP_SKB_CB(buff)->when = tcp_time_stamp; 3058 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC)); 3059 } 3060 3061 /* This routine sends a packet with an out of date sequence 3062 * number. It assumes the other end will try to ack it. 3063 * 3064 * Question: what should we make while urgent mode? 3065 * 4.4BSD forces sending single byte of data. We cannot send 3066 * out of window data, because we have SND.NXT==SND.MAX... 3067 * 3068 * Current solution: to send TWO zero-length segments in urgent mode: 3069 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3070 * out-of-date with SND.UNA-1 to probe window. 3071 */ 3072 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 3073 { 3074 struct tcp_sock *tp = tcp_sk(sk); 3075 struct sk_buff *skb; 3076 3077 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3078 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3079 if (skb == NULL) 3080 return -1; 3081 3082 /* Reserve space for headers and set control bits. */ 3083 skb_reserve(skb, MAX_TCP_HEADER); 3084 /* Use a previous sequence. This should cause the other 3085 * end to send an ack. Don't queue or clone SKB, just 3086 * send it. 3087 */ 3088 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3089 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3090 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3091 } 3092 3093 void tcp_send_window_probe(struct sock *sk) 3094 { 3095 if (sk->sk_state == TCP_ESTABLISHED) { 3096 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3097 tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq; 3098 tcp_xmit_probe_skb(sk, 0); 3099 } 3100 } 3101 3102 /* Initiate keepalive or window probe from timer. */ 3103 int tcp_write_wakeup(struct sock *sk) 3104 { 3105 struct tcp_sock *tp = tcp_sk(sk); 3106 struct sk_buff *skb; 3107 3108 if (sk->sk_state == TCP_CLOSE) 3109 return -1; 3110 3111 if ((skb = tcp_send_head(sk)) != NULL && 3112 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3113 int err; 3114 unsigned int mss = tcp_current_mss(sk); 3115 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3116 3117 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3118 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3119 3120 /* We are probing the opening of a window 3121 * but the window size is != 0 3122 * must have been a result SWS avoidance ( sender ) 3123 */ 3124 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3125 skb->len > mss) { 3126 seg_size = min(seg_size, mss); 3127 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3128 if (tcp_fragment(sk, skb, seg_size, mss)) 3129 return -1; 3130 } else if (!tcp_skb_pcount(skb)) 3131 tcp_set_skb_tso_segs(sk, skb, mss); 3132 3133 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3134 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3135 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3136 if (!err) 3137 tcp_event_new_data_sent(sk, skb); 3138 return err; 3139 } else { 3140 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3141 tcp_xmit_probe_skb(sk, 1); 3142 return tcp_xmit_probe_skb(sk, 0); 3143 } 3144 } 3145 3146 /* A window probe timeout has occurred. If window is not closed send 3147 * a partial packet else a zero probe. 3148 */ 3149 void tcp_send_probe0(struct sock *sk) 3150 { 3151 struct inet_connection_sock *icsk = inet_csk(sk); 3152 struct tcp_sock *tp = tcp_sk(sk); 3153 int err; 3154 3155 err = tcp_write_wakeup(sk); 3156 3157 if (tp->packets_out || !tcp_send_head(sk)) { 3158 /* Cancel probe timer, if it is not required. */ 3159 icsk->icsk_probes_out = 0; 3160 icsk->icsk_backoff = 0; 3161 return; 3162 } 3163 3164 if (err <= 0) { 3165 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3166 icsk->icsk_backoff++; 3167 icsk->icsk_probes_out++; 3168 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3169 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3170 TCP_RTO_MAX); 3171 } else { 3172 /* If packet was not sent due to local congestion, 3173 * do not backoff and do not remember icsk_probes_out. 3174 * Let local senders to fight for local resources. 3175 * 3176 * Use accumulated backoff yet. 3177 */ 3178 if (!icsk->icsk_probes_out) 3179 icsk->icsk_probes_out = 1; 3180 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3181 min(icsk->icsk_rto << icsk->icsk_backoff, 3182 TCP_RESOURCE_PROBE_INTERVAL), 3183 TCP_RTO_MAX); 3184 } 3185 } 3186