1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 tcp_check_space(sk); 86 } 87 88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 89 * window scaling factor due to loss of precision. 90 * If window has been shrunk, what should we make? It is not clear at all. 91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 93 * invalid. OK, let's make this for now: 94 */ 95 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 96 { 97 const struct tcp_sock *tp = tcp_sk(sk); 98 99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 100 (tp->rx_opt.wscale_ok && 101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. 141 */ 142 void tcp_cwnd_restart(struct sock *sk, s32 delta) 143 { 144 struct tcp_sock *tp = tcp_sk(sk); 145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 146 u32 cwnd = tcp_snd_cwnd(tp); 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 156 tp->snd_cwnd_stamp = tcp_jiffies32; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_jiffies32; 166 167 if (tcp_packets_in_flight(tp) == 0) 168 tcp_ca_event(sk, CA_EVENT_TX_START); 169 170 tp->lsndtime = now; 171 172 /* If it is a reply for ato after last received 173 * packet, enter pingpong mode. 174 */ 175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_enter_pingpong_mode(sk); 177 } 178 179 /* Account for an ACK we sent. */ 180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 181 u32 rcv_nxt) 182 { 183 struct tcp_sock *tp = tcp_sk(sk); 184 185 if (unlikely(tp->compressed_ack)) { 186 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 187 tp->compressed_ack); 188 tp->compressed_ack = 0; 189 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 190 __sock_put(sk); 191 } 192 193 if (unlikely(rcv_nxt != tp->rcv_nxt)) 194 return; /* Special ACK sent by DCTCP to reflect ECN */ 195 tcp_dec_quickack_mode(sk, pkts); 196 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 197 } 198 199 /* Determine a window scaling and initial window to offer. 200 * Based on the assumption that the given amount of space 201 * will be offered. Store the results in the tp structure. 202 * NOTE: for smooth operation initial space offering should 203 * be a multiple of mss if possible. We assume here that mss >= 1. 204 * This MUST be enforced by all callers. 205 */ 206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 207 __u32 *rcv_wnd, __u32 *window_clamp, 208 int wscale_ok, __u8 *rcv_wscale, 209 __u32 init_rcv_wnd) 210 { 211 unsigned int space = (__space < 0 ? 0 : __space); 212 213 /* If no clamp set the clamp to the max possible scaled window */ 214 if (*window_clamp == 0) 215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 216 space = min(*window_clamp, space); 217 218 /* Quantize space offering to a multiple of mss if possible. */ 219 if (space > mss) 220 space = rounddown(space, mss); 221 222 /* NOTE: offering an initial window larger than 32767 223 * will break some buggy TCP stacks. If the admin tells us 224 * it is likely we could be speaking with such a buggy stack 225 * we will truncate our initial window offering to 32K-1 226 * unless the remote has sent us a window scaling option, 227 * which we interpret as a sign the remote TCP is not 228 * misinterpreting the window field as a signed quantity. 229 */ 230 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 232 else 233 (*rcv_wnd) = min_t(u32, space, U16_MAX); 234 235 if (init_rcv_wnd) 236 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 237 238 *rcv_wscale = 0; 239 if (wscale_ok) { 240 /* Set window scaling on max possible window */ 241 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 242 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 243 space = min_t(u32, space, *window_clamp); 244 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 245 0, TCP_MAX_WSCALE); 246 } 247 /* Set the clamp no higher than max representable value */ 248 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 249 } 250 EXPORT_SYMBOL(tcp_select_initial_window); 251 252 /* Chose a new window to advertise, update state in tcp_sock for the 253 * socket, and return result with RFC1323 scaling applied. The return 254 * value can be stuffed directly into th->window for an outgoing 255 * frame. 256 */ 257 static u16 tcp_select_window(struct sock *sk) 258 { 259 struct tcp_sock *tp = tcp_sk(sk); 260 u32 old_win = tp->rcv_wnd; 261 u32 cur_win = tcp_receive_window(tp); 262 u32 new_win = __tcp_select_window(sk); 263 264 /* Never shrink the offered window */ 265 if (new_win < cur_win) { 266 /* Danger Will Robinson! 267 * Don't update rcv_wup/rcv_wnd here or else 268 * we will not be able to advertise a zero 269 * window in time. --DaveM 270 * 271 * Relax Will Robinson. 272 */ 273 if (new_win == 0) 274 NET_INC_STATS(sock_net(sk), 275 LINUX_MIB_TCPWANTZEROWINDOWADV); 276 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 277 } 278 tp->rcv_wnd = new_win; 279 tp->rcv_wup = tp->rcv_nxt; 280 281 /* Make sure we do not exceed the maximum possible 282 * scaled window. 283 */ 284 if (!tp->rx_opt.rcv_wscale && 285 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 286 new_win = min(new_win, MAX_TCP_WINDOW); 287 else 288 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 289 290 /* RFC1323 scaling applied */ 291 new_win >>= tp->rx_opt.rcv_wscale; 292 293 /* If we advertise zero window, disable fast path. */ 294 if (new_win == 0) { 295 tp->pred_flags = 0; 296 if (old_win) 297 NET_INC_STATS(sock_net(sk), 298 LINUX_MIB_TCPTOZEROWINDOWADV); 299 } else if (old_win == 0) { 300 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 301 } 302 303 return new_win; 304 } 305 306 /* Packet ECN state for a SYN-ACK */ 307 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 308 { 309 const struct tcp_sock *tp = tcp_sk(sk); 310 311 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 312 if (!(tp->ecn_flags & TCP_ECN_OK)) 313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 314 else if (tcp_ca_needs_ecn(sk) || 315 tcp_bpf_ca_needs_ecn(sk)) 316 INET_ECN_xmit(sk); 317 } 318 319 /* Packet ECN state for a SYN. */ 320 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 321 { 322 struct tcp_sock *tp = tcp_sk(sk); 323 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 324 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 325 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 326 327 if (!use_ecn) { 328 const struct dst_entry *dst = __sk_dst_get(sk); 329 330 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 331 use_ecn = true; 332 } 333 334 tp->ecn_flags = 0; 335 336 if (use_ecn) { 337 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 338 tp->ecn_flags = TCP_ECN_OK; 339 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 340 INET_ECN_xmit(sk); 341 } 342 } 343 344 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 345 { 346 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 347 /* tp->ecn_flags are cleared at a later point in time when 348 * SYN ACK is ultimatively being received. 349 */ 350 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 351 } 352 353 static void 354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 355 { 356 if (inet_rsk(req)->ecn_ok) 357 th->ece = 1; 358 } 359 360 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 361 * be sent. 362 */ 363 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 364 struct tcphdr *th, int tcp_header_len) 365 { 366 struct tcp_sock *tp = tcp_sk(sk); 367 368 if (tp->ecn_flags & TCP_ECN_OK) { 369 /* Not-retransmitted data segment: set ECT and inject CWR. */ 370 if (skb->len != tcp_header_len && 371 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 372 INET_ECN_xmit(sk); 373 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 374 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 375 th->cwr = 1; 376 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 377 } 378 } else if (!tcp_ca_needs_ecn(sk)) { 379 /* ACK or retransmitted segment: clear ECT|CE */ 380 INET_ECN_dontxmit(sk); 381 } 382 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 383 th->ece = 1; 384 } 385 } 386 387 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 388 * auto increment end seqno. 389 */ 390 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 391 { 392 skb->ip_summed = CHECKSUM_PARTIAL; 393 394 TCP_SKB_CB(skb)->tcp_flags = flags; 395 396 tcp_skb_pcount_set(skb, 1); 397 398 TCP_SKB_CB(skb)->seq = seq; 399 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 400 seq++; 401 TCP_SKB_CB(skb)->end_seq = seq; 402 } 403 404 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 405 { 406 return tp->snd_una != tp->snd_up; 407 } 408 409 #define OPTION_SACK_ADVERTISE BIT(0) 410 #define OPTION_TS BIT(1) 411 #define OPTION_MD5 BIT(2) 412 #define OPTION_WSCALE BIT(3) 413 #define OPTION_FAST_OPEN_COOKIE BIT(8) 414 #define OPTION_SMC BIT(9) 415 #define OPTION_MPTCP BIT(10) 416 417 static void smc_options_write(__be32 *ptr, u16 *options) 418 { 419 #if IS_ENABLED(CONFIG_SMC) 420 if (static_branch_unlikely(&tcp_have_smc)) { 421 if (unlikely(OPTION_SMC & *options)) { 422 *ptr++ = htonl((TCPOPT_NOP << 24) | 423 (TCPOPT_NOP << 16) | 424 (TCPOPT_EXP << 8) | 425 (TCPOLEN_EXP_SMC_BASE)); 426 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 427 } 428 } 429 #endif 430 } 431 432 struct tcp_out_options { 433 u16 options; /* bit field of OPTION_* */ 434 u16 mss; /* 0 to disable */ 435 u8 ws; /* window scale, 0 to disable */ 436 u8 num_sack_blocks; /* number of SACK blocks to include */ 437 u8 hash_size; /* bytes in hash_location */ 438 u8 bpf_opt_len; /* length of BPF hdr option */ 439 __u8 *hash_location; /* temporary pointer, overloaded */ 440 __u32 tsval, tsecr; /* need to include OPTION_TS */ 441 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 442 struct mptcp_out_options mptcp; 443 }; 444 445 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 446 struct tcp_sock *tp, 447 struct tcp_out_options *opts) 448 { 449 #if IS_ENABLED(CONFIG_MPTCP) 450 if (unlikely(OPTION_MPTCP & opts->options)) 451 mptcp_write_options(th, ptr, tp, &opts->mptcp); 452 #endif 453 } 454 455 #ifdef CONFIG_CGROUP_BPF 456 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 457 enum tcp_synack_type synack_type) 458 { 459 if (unlikely(!skb)) 460 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 461 462 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 463 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 464 465 return 0; 466 } 467 468 /* req, syn_skb and synack_type are used when writing synack */ 469 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 470 struct request_sock *req, 471 struct sk_buff *syn_skb, 472 enum tcp_synack_type synack_type, 473 struct tcp_out_options *opts, 474 unsigned int *remaining) 475 { 476 struct bpf_sock_ops_kern sock_ops; 477 int err; 478 479 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 480 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 481 !*remaining) 482 return; 483 484 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 485 486 /* init sock_ops */ 487 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 488 489 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 490 491 if (req) { 492 /* The listen "sk" cannot be passed here because 493 * it is not locked. It would not make too much 494 * sense to do bpf_setsockopt(listen_sk) based 495 * on individual connection request also. 496 * 497 * Thus, "req" is passed here and the cgroup-bpf-progs 498 * of the listen "sk" will be run. 499 * 500 * "req" is also used here for fastopen even the "sk" here is 501 * a fullsock "child" sk. It is to keep the behavior 502 * consistent between fastopen and non-fastopen on 503 * the bpf programming side. 504 */ 505 sock_ops.sk = (struct sock *)req; 506 sock_ops.syn_skb = syn_skb; 507 } else { 508 sock_owned_by_me(sk); 509 510 sock_ops.is_fullsock = 1; 511 sock_ops.sk = sk; 512 } 513 514 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 515 sock_ops.remaining_opt_len = *remaining; 516 /* tcp_current_mss() does not pass a skb */ 517 if (skb) 518 bpf_skops_init_skb(&sock_ops, skb, 0); 519 520 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 521 522 if (err || sock_ops.remaining_opt_len == *remaining) 523 return; 524 525 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 526 /* round up to 4 bytes */ 527 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 528 529 *remaining -= opts->bpf_opt_len; 530 } 531 532 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 533 struct request_sock *req, 534 struct sk_buff *syn_skb, 535 enum tcp_synack_type synack_type, 536 struct tcp_out_options *opts) 537 { 538 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 539 struct bpf_sock_ops_kern sock_ops; 540 int err; 541 542 if (likely(!max_opt_len)) 543 return; 544 545 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 546 547 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 548 549 if (req) { 550 sock_ops.sk = (struct sock *)req; 551 sock_ops.syn_skb = syn_skb; 552 } else { 553 sock_owned_by_me(sk); 554 555 sock_ops.is_fullsock = 1; 556 sock_ops.sk = sk; 557 } 558 559 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 560 sock_ops.remaining_opt_len = max_opt_len; 561 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 562 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 563 564 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 565 566 if (err) 567 nr_written = 0; 568 else 569 nr_written = max_opt_len - sock_ops.remaining_opt_len; 570 571 if (nr_written < max_opt_len) 572 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 573 max_opt_len - nr_written); 574 } 575 #else 576 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 577 struct request_sock *req, 578 struct sk_buff *syn_skb, 579 enum tcp_synack_type synack_type, 580 struct tcp_out_options *opts, 581 unsigned int *remaining) 582 { 583 } 584 585 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 586 struct request_sock *req, 587 struct sk_buff *syn_skb, 588 enum tcp_synack_type synack_type, 589 struct tcp_out_options *opts) 590 { 591 } 592 #endif 593 594 /* Write previously computed TCP options to the packet. 595 * 596 * Beware: Something in the Internet is very sensitive to the ordering of 597 * TCP options, we learned this through the hard way, so be careful here. 598 * Luckily we can at least blame others for their non-compliance but from 599 * inter-operability perspective it seems that we're somewhat stuck with 600 * the ordering which we have been using if we want to keep working with 601 * those broken things (not that it currently hurts anybody as there isn't 602 * particular reason why the ordering would need to be changed). 603 * 604 * At least SACK_PERM as the first option is known to lead to a disaster 605 * (but it may well be that other scenarios fail similarly). 606 */ 607 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 608 struct tcp_out_options *opts) 609 { 610 __be32 *ptr = (__be32 *)(th + 1); 611 u16 options = opts->options; /* mungable copy */ 612 613 if (unlikely(OPTION_MD5 & options)) { 614 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 615 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 616 /* overload cookie hash location */ 617 opts->hash_location = (__u8 *)ptr; 618 ptr += 4; 619 } 620 621 if (unlikely(opts->mss)) { 622 *ptr++ = htonl((TCPOPT_MSS << 24) | 623 (TCPOLEN_MSS << 16) | 624 opts->mss); 625 } 626 627 if (likely(OPTION_TS & options)) { 628 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 629 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 630 (TCPOLEN_SACK_PERM << 16) | 631 (TCPOPT_TIMESTAMP << 8) | 632 TCPOLEN_TIMESTAMP); 633 options &= ~OPTION_SACK_ADVERTISE; 634 } else { 635 *ptr++ = htonl((TCPOPT_NOP << 24) | 636 (TCPOPT_NOP << 16) | 637 (TCPOPT_TIMESTAMP << 8) | 638 TCPOLEN_TIMESTAMP); 639 } 640 *ptr++ = htonl(opts->tsval); 641 *ptr++ = htonl(opts->tsecr); 642 } 643 644 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 645 *ptr++ = htonl((TCPOPT_NOP << 24) | 646 (TCPOPT_NOP << 16) | 647 (TCPOPT_SACK_PERM << 8) | 648 TCPOLEN_SACK_PERM); 649 } 650 651 if (unlikely(OPTION_WSCALE & options)) { 652 *ptr++ = htonl((TCPOPT_NOP << 24) | 653 (TCPOPT_WINDOW << 16) | 654 (TCPOLEN_WINDOW << 8) | 655 opts->ws); 656 } 657 658 if (unlikely(opts->num_sack_blocks)) { 659 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 660 tp->duplicate_sack : tp->selective_acks; 661 int this_sack; 662 663 *ptr++ = htonl((TCPOPT_NOP << 24) | 664 (TCPOPT_NOP << 16) | 665 (TCPOPT_SACK << 8) | 666 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 667 TCPOLEN_SACK_PERBLOCK))); 668 669 for (this_sack = 0; this_sack < opts->num_sack_blocks; 670 ++this_sack) { 671 *ptr++ = htonl(sp[this_sack].start_seq); 672 *ptr++ = htonl(sp[this_sack].end_seq); 673 } 674 675 tp->rx_opt.dsack = 0; 676 } 677 678 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 679 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 680 u8 *p = (u8 *)ptr; 681 u32 len; /* Fast Open option length */ 682 683 if (foc->exp) { 684 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 685 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 686 TCPOPT_FASTOPEN_MAGIC); 687 p += TCPOLEN_EXP_FASTOPEN_BASE; 688 } else { 689 len = TCPOLEN_FASTOPEN_BASE + foc->len; 690 *p++ = TCPOPT_FASTOPEN; 691 *p++ = len; 692 } 693 694 memcpy(p, foc->val, foc->len); 695 if ((len & 3) == 2) { 696 p[foc->len] = TCPOPT_NOP; 697 p[foc->len + 1] = TCPOPT_NOP; 698 } 699 ptr += (len + 3) >> 2; 700 } 701 702 smc_options_write(ptr, &options); 703 704 mptcp_options_write(th, ptr, tp, opts); 705 } 706 707 static void smc_set_option(const struct tcp_sock *tp, 708 struct tcp_out_options *opts, 709 unsigned int *remaining) 710 { 711 #if IS_ENABLED(CONFIG_SMC) 712 if (static_branch_unlikely(&tcp_have_smc)) { 713 if (tp->syn_smc) { 714 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 715 opts->options |= OPTION_SMC; 716 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 717 } 718 } 719 } 720 #endif 721 } 722 723 static void smc_set_option_cond(const struct tcp_sock *tp, 724 const struct inet_request_sock *ireq, 725 struct tcp_out_options *opts, 726 unsigned int *remaining) 727 { 728 #if IS_ENABLED(CONFIG_SMC) 729 if (static_branch_unlikely(&tcp_have_smc)) { 730 if (tp->syn_smc && ireq->smc_ok) { 731 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 732 opts->options |= OPTION_SMC; 733 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 734 } 735 } 736 } 737 #endif 738 } 739 740 static void mptcp_set_option_cond(const struct request_sock *req, 741 struct tcp_out_options *opts, 742 unsigned int *remaining) 743 { 744 if (rsk_is_mptcp(req)) { 745 unsigned int size; 746 747 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 748 if (*remaining >= size) { 749 opts->options |= OPTION_MPTCP; 750 *remaining -= size; 751 } 752 } 753 } 754 } 755 756 /* Compute TCP options for SYN packets. This is not the final 757 * network wire format yet. 758 */ 759 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 760 struct tcp_out_options *opts, 761 struct tcp_md5sig_key **md5) 762 { 763 struct tcp_sock *tp = tcp_sk(sk); 764 unsigned int remaining = MAX_TCP_OPTION_SPACE; 765 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 766 767 *md5 = NULL; 768 #ifdef CONFIG_TCP_MD5SIG 769 if (static_branch_unlikely(&tcp_md5_needed.key) && 770 rcu_access_pointer(tp->md5sig_info)) { 771 *md5 = tp->af_specific->md5_lookup(sk, sk); 772 if (*md5) { 773 opts->options |= OPTION_MD5; 774 remaining -= TCPOLEN_MD5SIG_ALIGNED; 775 } 776 } 777 #endif 778 779 /* We always get an MSS option. The option bytes which will be seen in 780 * normal data packets should timestamps be used, must be in the MSS 781 * advertised. But we subtract them from tp->mss_cache so that 782 * calculations in tcp_sendmsg are simpler etc. So account for this 783 * fact here if necessary. If we don't do this correctly, as a 784 * receiver we won't recognize data packets as being full sized when we 785 * should, and thus we won't abide by the delayed ACK rules correctly. 786 * SACKs don't matter, we never delay an ACK when we have any of those 787 * going out. */ 788 opts->mss = tcp_advertise_mss(sk); 789 remaining -= TCPOLEN_MSS_ALIGNED; 790 791 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) { 792 opts->options |= OPTION_TS; 793 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 794 opts->tsecr = tp->rx_opt.ts_recent; 795 remaining -= TCPOLEN_TSTAMP_ALIGNED; 796 } 797 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 798 opts->ws = tp->rx_opt.rcv_wscale; 799 opts->options |= OPTION_WSCALE; 800 remaining -= TCPOLEN_WSCALE_ALIGNED; 801 } 802 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 803 opts->options |= OPTION_SACK_ADVERTISE; 804 if (unlikely(!(OPTION_TS & opts->options))) 805 remaining -= TCPOLEN_SACKPERM_ALIGNED; 806 } 807 808 if (fastopen && fastopen->cookie.len >= 0) { 809 u32 need = fastopen->cookie.len; 810 811 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 812 TCPOLEN_FASTOPEN_BASE; 813 need = (need + 3) & ~3U; /* Align to 32 bits */ 814 if (remaining >= need) { 815 opts->options |= OPTION_FAST_OPEN_COOKIE; 816 opts->fastopen_cookie = &fastopen->cookie; 817 remaining -= need; 818 tp->syn_fastopen = 1; 819 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 820 } 821 } 822 823 smc_set_option(tp, opts, &remaining); 824 825 if (sk_is_mptcp(sk)) { 826 unsigned int size; 827 828 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 829 opts->options |= OPTION_MPTCP; 830 remaining -= size; 831 } 832 } 833 834 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 835 836 return MAX_TCP_OPTION_SPACE - remaining; 837 } 838 839 /* Set up TCP options for SYN-ACKs. */ 840 static unsigned int tcp_synack_options(const struct sock *sk, 841 struct request_sock *req, 842 unsigned int mss, struct sk_buff *skb, 843 struct tcp_out_options *opts, 844 const struct tcp_md5sig_key *md5, 845 struct tcp_fastopen_cookie *foc, 846 enum tcp_synack_type synack_type, 847 struct sk_buff *syn_skb) 848 { 849 struct inet_request_sock *ireq = inet_rsk(req); 850 unsigned int remaining = MAX_TCP_OPTION_SPACE; 851 852 #ifdef CONFIG_TCP_MD5SIG 853 if (md5) { 854 opts->options |= OPTION_MD5; 855 remaining -= TCPOLEN_MD5SIG_ALIGNED; 856 857 /* We can't fit any SACK blocks in a packet with MD5 + TS 858 * options. There was discussion about disabling SACK 859 * rather than TS in order to fit in better with old, 860 * buggy kernels, but that was deemed to be unnecessary. 861 */ 862 if (synack_type != TCP_SYNACK_COOKIE) 863 ireq->tstamp_ok &= !ireq->sack_ok; 864 } 865 #endif 866 867 /* We always send an MSS option. */ 868 opts->mss = mss; 869 remaining -= TCPOLEN_MSS_ALIGNED; 870 871 if (likely(ireq->wscale_ok)) { 872 opts->ws = ireq->rcv_wscale; 873 opts->options |= OPTION_WSCALE; 874 remaining -= TCPOLEN_WSCALE_ALIGNED; 875 } 876 if (likely(ireq->tstamp_ok)) { 877 opts->options |= OPTION_TS; 878 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 879 opts->tsecr = req->ts_recent; 880 remaining -= TCPOLEN_TSTAMP_ALIGNED; 881 } 882 if (likely(ireq->sack_ok)) { 883 opts->options |= OPTION_SACK_ADVERTISE; 884 if (unlikely(!ireq->tstamp_ok)) 885 remaining -= TCPOLEN_SACKPERM_ALIGNED; 886 } 887 if (foc != NULL && foc->len >= 0) { 888 u32 need = foc->len; 889 890 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 891 TCPOLEN_FASTOPEN_BASE; 892 need = (need + 3) & ~3U; /* Align to 32 bits */ 893 if (remaining >= need) { 894 opts->options |= OPTION_FAST_OPEN_COOKIE; 895 opts->fastopen_cookie = foc; 896 remaining -= need; 897 } 898 } 899 900 mptcp_set_option_cond(req, opts, &remaining); 901 902 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 903 904 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 905 synack_type, opts, &remaining); 906 907 return MAX_TCP_OPTION_SPACE - remaining; 908 } 909 910 /* Compute TCP options for ESTABLISHED sockets. This is not the 911 * final wire format yet. 912 */ 913 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 914 struct tcp_out_options *opts, 915 struct tcp_md5sig_key **md5) 916 { 917 struct tcp_sock *tp = tcp_sk(sk); 918 unsigned int size = 0; 919 unsigned int eff_sacks; 920 921 opts->options = 0; 922 923 *md5 = NULL; 924 #ifdef CONFIG_TCP_MD5SIG 925 if (static_branch_unlikely(&tcp_md5_needed.key) && 926 rcu_access_pointer(tp->md5sig_info)) { 927 *md5 = tp->af_specific->md5_lookup(sk, sk); 928 if (*md5) { 929 opts->options |= OPTION_MD5; 930 size += TCPOLEN_MD5SIG_ALIGNED; 931 } 932 } 933 #endif 934 935 if (likely(tp->rx_opt.tstamp_ok)) { 936 opts->options |= OPTION_TS; 937 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 938 opts->tsecr = tp->rx_opt.ts_recent; 939 size += TCPOLEN_TSTAMP_ALIGNED; 940 } 941 942 /* MPTCP options have precedence over SACK for the limited TCP 943 * option space because a MPTCP connection would be forced to 944 * fall back to regular TCP if a required multipath option is 945 * missing. SACK still gets a chance to use whatever space is 946 * left. 947 */ 948 if (sk_is_mptcp(sk)) { 949 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 950 unsigned int opt_size = 0; 951 952 if (mptcp_established_options(sk, skb, &opt_size, remaining, 953 &opts->mptcp)) { 954 opts->options |= OPTION_MPTCP; 955 size += opt_size; 956 } 957 } 958 959 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 960 if (unlikely(eff_sacks)) { 961 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 962 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 963 TCPOLEN_SACK_PERBLOCK)) 964 return size; 965 966 opts->num_sack_blocks = 967 min_t(unsigned int, eff_sacks, 968 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 969 TCPOLEN_SACK_PERBLOCK); 970 971 size += TCPOLEN_SACK_BASE_ALIGNED + 972 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 973 } 974 975 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 976 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 977 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 978 979 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 980 981 size = MAX_TCP_OPTION_SPACE - remaining; 982 } 983 984 return size; 985 } 986 987 988 /* TCP SMALL QUEUES (TSQ) 989 * 990 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 991 * to reduce RTT and bufferbloat. 992 * We do this using a special skb destructor (tcp_wfree). 993 * 994 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 995 * needs to be reallocated in a driver. 996 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 997 * 998 * Since transmit from skb destructor is forbidden, we use a tasklet 999 * to process all sockets that eventually need to send more skbs. 1000 * We use one tasklet per cpu, with its own queue of sockets. 1001 */ 1002 struct tsq_tasklet { 1003 struct tasklet_struct tasklet; 1004 struct list_head head; /* queue of tcp sockets */ 1005 }; 1006 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1007 1008 static void tcp_tsq_write(struct sock *sk) 1009 { 1010 if ((1 << sk->sk_state) & 1011 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1012 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1013 struct tcp_sock *tp = tcp_sk(sk); 1014 1015 if (tp->lost_out > tp->retrans_out && 1016 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1017 tcp_mstamp_refresh(tp); 1018 tcp_xmit_retransmit_queue(sk); 1019 } 1020 1021 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1022 0, GFP_ATOMIC); 1023 } 1024 } 1025 1026 static void tcp_tsq_handler(struct sock *sk) 1027 { 1028 bh_lock_sock(sk); 1029 if (!sock_owned_by_user(sk)) 1030 tcp_tsq_write(sk); 1031 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1032 sock_hold(sk); 1033 bh_unlock_sock(sk); 1034 } 1035 /* 1036 * One tasklet per cpu tries to send more skbs. 1037 * We run in tasklet context but need to disable irqs when 1038 * transferring tsq->head because tcp_wfree() might 1039 * interrupt us (non NAPI drivers) 1040 */ 1041 static void tcp_tasklet_func(struct tasklet_struct *t) 1042 { 1043 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1044 LIST_HEAD(list); 1045 unsigned long flags; 1046 struct list_head *q, *n; 1047 struct tcp_sock *tp; 1048 struct sock *sk; 1049 1050 local_irq_save(flags); 1051 list_splice_init(&tsq->head, &list); 1052 local_irq_restore(flags); 1053 1054 list_for_each_safe(q, n, &list) { 1055 tp = list_entry(q, struct tcp_sock, tsq_node); 1056 list_del(&tp->tsq_node); 1057 1058 sk = (struct sock *)tp; 1059 smp_mb__before_atomic(); 1060 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1061 1062 tcp_tsq_handler(sk); 1063 sk_free(sk); 1064 } 1065 } 1066 1067 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1068 TCPF_WRITE_TIMER_DEFERRED | \ 1069 TCPF_DELACK_TIMER_DEFERRED | \ 1070 TCPF_MTU_REDUCED_DEFERRED) 1071 /** 1072 * tcp_release_cb - tcp release_sock() callback 1073 * @sk: socket 1074 * 1075 * called from release_sock() to perform protocol dependent 1076 * actions before socket release. 1077 */ 1078 void tcp_release_cb(struct sock *sk) 1079 { 1080 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1081 unsigned long nflags; 1082 1083 /* perform an atomic operation only if at least one flag is set */ 1084 do { 1085 if (!(flags & TCP_DEFERRED_ALL)) 1086 return; 1087 nflags = flags & ~TCP_DEFERRED_ALL; 1088 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1089 1090 if (flags & TCPF_TSQ_DEFERRED) { 1091 tcp_tsq_write(sk); 1092 __sock_put(sk); 1093 } 1094 /* Here begins the tricky part : 1095 * We are called from release_sock() with : 1096 * 1) BH disabled 1097 * 2) sk_lock.slock spinlock held 1098 * 3) socket owned by us (sk->sk_lock.owned == 1) 1099 * 1100 * But following code is meant to be called from BH handlers, 1101 * so we should keep BH disabled, but early release socket ownership 1102 */ 1103 sock_release_ownership(sk); 1104 1105 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1106 tcp_write_timer_handler(sk); 1107 __sock_put(sk); 1108 } 1109 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1110 tcp_delack_timer_handler(sk); 1111 __sock_put(sk); 1112 } 1113 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1114 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1115 __sock_put(sk); 1116 } 1117 } 1118 EXPORT_SYMBOL(tcp_release_cb); 1119 1120 void __init tcp_tasklet_init(void) 1121 { 1122 int i; 1123 1124 for_each_possible_cpu(i) { 1125 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1126 1127 INIT_LIST_HEAD(&tsq->head); 1128 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1129 } 1130 } 1131 1132 /* 1133 * Write buffer destructor automatically called from kfree_skb. 1134 * We can't xmit new skbs from this context, as we might already 1135 * hold qdisc lock. 1136 */ 1137 void tcp_wfree(struct sk_buff *skb) 1138 { 1139 struct sock *sk = skb->sk; 1140 struct tcp_sock *tp = tcp_sk(sk); 1141 unsigned long flags, nval, oval; 1142 struct tsq_tasklet *tsq; 1143 bool empty; 1144 1145 /* Keep one reference on sk_wmem_alloc. 1146 * Will be released by sk_free() from here or tcp_tasklet_func() 1147 */ 1148 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1149 1150 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1151 * Wait until our queues (qdisc + devices) are drained. 1152 * This gives : 1153 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1154 * - chance for incoming ACK (processed by another cpu maybe) 1155 * to migrate this flow (skb->ooo_okay will be eventually set) 1156 */ 1157 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1158 goto out; 1159 1160 oval = smp_load_acquire(&sk->sk_tsq_flags); 1161 do { 1162 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1163 goto out; 1164 1165 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1166 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1167 1168 /* queue this socket to tasklet queue */ 1169 local_irq_save(flags); 1170 tsq = this_cpu_ptr(&tsq_tasklet); 1171 empty = list_empty(&tsq->head); 1172 list_add(&tp->tsq_node, &tsq->head); 1173 if (empty) 1174 tasklet_schedule(&tsq->tasklet); 1175 local_irq_restore(flags); 1176 return; 1177 out: 1178 sk_free(sk); 1179 } 1180 1181 /* Note: Called under soft irq. 1182 * We can call TCP stack right away, unless socket is owned by user. 1183 */ 1184 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1185 { 1186 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1187 struct sock *sk = (struct sock *)tp; 1188 1189 tcp_tsq_handler(sk); 1190 sock_put(sk); 1191 1192 return HRTIMER_NORESTART; 1193 } 1194 1195 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1196 u64 prior_wstamp) 1197 { 1198 struct tcp_sock *tp = tcp_sk(sk); 1199 1200 if (sk->sk_pacing_status != SK_PACING_NONE) { 1201 unsigned long rate = sk->sk_pacing_rate; 1202 1203 /* Original sch_fq does not pace first 10 MSS 1204 * Note that tp->data_segs_out overflows after 2^32 packets, 1205 * this is a minor annoyance. 1206 */ 1207 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1208 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1209 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1210 1211 /* take into account OS jitter */ 1212 len_ns -= min_t(u64, len_ns / 2, credit); 1213 tp->tcp_wstamp_ns += len_ns; 1214 } 1215 } 1216 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1217 } 1218 1219 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1220 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1221 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1222 1223 /* This routine actually transmits TCP packets queued in by 1224 * tcp_do_sendmsg(). This is used by both the initial 1225 * transmission and possible later retransmissions. 1226 * All SKB's seen here are completely headerless. It is our 1227 * job to build the TCP header, and pass the packet down to 1228 * IP so it can do the same plus pass the packet off to the 1229 * device. 1230 * 1231 * We are working here with either a clone of the original 1232 * SKB, or a fresh unique copy made by the retransmit engine. 1233 */ 1234 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1235 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1236 { 1237 const struct inet_connection_sock *icsk = inet_csk(sk); 1238 struct inet_sock *inet; 1239 struct tcp_sock *tp; 1240 struct tcp_skb_cb *tcb; 1241 struct tcp_out_options opts; 1242 unsigned int tcp_options_size, tcp_header_size; 1243 struct sk_buff *oskb = NULL; 1244 struct tcp_md5sig_key *md5; 1245 struct tcphdr *th; 1246 u64 prior_wstamp; 1247 int err; 1248 1249 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1250 tp = tcp_sk(sk); 1251 prior_wstamp = tp->tcp_wstamp_ns; 1252 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1253 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 1254 if (clone_it) { 1255 oskb = skb; 1256 1257 tcp_skb_tsorted_save(oskb) { 1258 if (unlikely(skb_cloned(oskb))) 1259 skb = pskb_copy(oskb, gfp_mask); 1260 else 1261 skb = skb_clone(oskb, gfp_mask); 1262 } tcp_skb_tsorted_restore(oskb); 1263 1264 if (unlikely(!skb)) 1265 return -ENOBUFS; 1266 /* retransmit skbs might have a non zero value in skb->dev 1267 * because skb->dev is aliased with skb->rbnode.rb_left 1268 */ 1269 skb->dev = NULL; 1270 } 1271 1272 inet = inet_sk(sk); 1273 tcb = TCP_SKB_CB(skb); 1274 memset(&opts, 0, sizeof(opts)); 1275 1276 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1277 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1278 } else { 1279 tcp_options_size = tcp_established_options(sk, skb, &opts, 1280 &md5); 1281 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1282 * at receiver : This slightly improve GRO performance. 1283 * Note that we do not force the PSH flag for non GSO packets, 1284 * because they might be sent under high congestion events, 1285 * and in this case it is better to delay the delivery of 1-MSS 1286 * packets and thus the corresponding ACK packet that would 1287 * release the following packet. 1288 */ 1289 if (tcp_skb_pcount(skb) > 1) 1290 tcb->tcp_flags |= TCPHDR_PSH; 1291 } 1292 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1293 1294 /* if no packet is in qdisc/device queue, then allow XPS to select 1295 * another queue. We can be called from tcp_tsq_handler() 1296 * which holds one reference to sk. 1297 * 1298 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1299 * One way to get this would be to set skb->truesize = 2 on them. 1300 */ 1301 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1302 1303 /* If we had to use memory reserve to allocate this skb, 1304 * this might cause drops if packet is looped back : 1305 * Other socket might not have SOCK_MEMALLOC. 1306 * Packets not looped back do not care about pfmemalloc. 1307 */ 1308 skb->pfmemalloc = 0; 1309 1310 skb_push(skb, tcp_header_size); 1311 skb_reset_transport_header(skb); 1312 1313 skb_orphan(skb); 1314 skb->sk = sk; 1315 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1316 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1317 1318 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1319 1320 /* Build TCP header and checksum it. */ 1321 th = (struct tcphdr *)skb->data; 1322 th->source = inet->inet_sport; 1323 th->dest = inet->inet_dport; 1324 th->seq = htonl(tcb->seq); 1325 th->ack_seq = htonl(rcv_nxt); 1326 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1327 tcb->tcp_flags); 1328 1329 th->check = 0; 1330 th->urg_ptr = 0; 1331 1332 /* The urg_mode check is necessary during a below snd_una win probe */ 1333 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1334 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1335 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1336 th->urg = 1; 1337 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1338 th->urg_ptr = htons(0xFFFF); 1339 th->urg = 1; 1340 } 1341 } 1342 1343 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1344 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1345 th->window = htons(tcp_select_window(sk)); 1346 tcp_ecn_send(sk, skb, th, tcp_header_size); 1347 } else { 1348 /* RFC1323: The window in SYN & SYN/ACK segments 1349 * is never scaled. 1350 */ 1351 th->window = htons(min(tp->rcv_wnd, 65535U)); 1352 } 1353 1354 tcp_options_write(th, tp, &opts); 1355 1356 #ifdef CONFIG_TCP_MD5SIG 1357 /* Calculate the MD5 hash, as we have all we need now */ 1358 if (md5) { 1359 sk_gso_disable(sk); 1360 tp->af_specific->calc_md5_hash(opts.hash_location, 1361 md5, sk, skb); 1362 } 1363 #endif 1364 1365 /* BPF prog is the last one writing header option */ 1366 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1367 1368 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1369 tcp_v6_send_check, tcp_v4_send_check, 1370 sk, skb); 1371 1372 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1373 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1374 1375 if (skb->len != tcp_header_size) { 1376 tcp_event_data_sent(tp, sk); 1377 tp->data_segs_out += tcp_skb_pcount(skb); 1378 tp->bytes_sent += skb->len - tcp_header_size; 1379 } 1380 1381 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1382 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1383 tcp_skb_pcount(skb)); 1384 1385 tp->segs_out += tcp_skb_pcount(skb); 1386 skb_set_hash_from_sk(skb, sk); 1387 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1388 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1389 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1390 1391 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1392 1393 /* Cleanup our debris for IP stacks */ 1394 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1395 sizeof(struct inet6_skb_parm))); 1396 1397 tcp_add_tx_delay(skb, tp); 1398 1399 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1400 inet6_csk_xmit, ip_queue_xmit, 1401 sk, skb, &inet->cork.fl); 1402 1403 if (unlikely(err > 0)) { 1404 tcp_enter_cwr(sk); 1405 err = net_xmit_eval(err); 1406 } 1407 if (!err && oskb) { 1408 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1409 tcp_rate_skb_sent(sk, oskb); 1410 } 1411 return err; 1412 } 1413 1414 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1415 gfp_t gfp_mask) 1416 { 1417 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1418 tcp_sk(sk)->rcv_nxt); 1419 } 1420 1421 /* This routine just queues the buffer for sending. 1422 * 1423 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1424 * otherwise socket can stall. 1425 */ 1426 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1427 { 1428 struct tcp_sock *tp = tcp_sk(sk); 1429 1430 /* Advance write_seq and place onto the write_queue. */ 1431 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1432 __skb_header_release(skb); 1433 tcp_add_write_queue_tail(sk, skb); 1434 sk_wmem_queued_add(sk, skb->truesize); 1435 sk_mem_charge(sk, skb->truesize); 1436 } 1437 1438 /* Initialize TSO segments for a packet. */ 1439 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1440 { 1441 if (skb->len <= mss_now) { 1442 /* Avoid the costly divide in the normal 1443 * non-TSO case. 1444 */ 1445 tcp_skb_pcount_set(skb, 1); 1446 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1447 } else { 1448 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1449 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1450 } 1451 } 1452 1453 /* Pcount in the middle of the write queue got changed, we need to do various 1454 * tweaks to fix counters 1455 */ 1456 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1457 { 1458 struct tcp_sock *tp = tcp_sk(sk); 1459 1460 tp->packets_out -= decr; 1461 1462 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1463 tp->sacked_out -= decr; 1464 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1465 tp->retrans_out -= decr; 1466 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1467 tp->lost_out -= decr; 1468 1469 /* Reno case is special. Sigh... */ 1470 if (tcp_is_reno(tp) && decr > 0) 1471 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1472 1473 if (tp->lost_skb_hint && 1474 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1475 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1476 tp->lost_cnt_hint -= decr; 1477 1478 tcp_verify_left_out(tp); 1479 } 1480 1481 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1482 { 1483 return TCP_SKB_CB(skb)->txstamp_ack || 1484 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1485 } 1486 1487 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1488 { 1489 struct skb_shared_info *shinfo = skb_shinfo(skb); 1490 1491 if (unlikely(tcp_has_tx_tstamp(skb)) && 1492 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1493 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1494 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1495 1496 shinfo->tx_flags &= ~tsflags; 1497 shinfo2->tx_flags |= tsflags; 1498 swap(shinfo->tskey, shinfo2->tskey); 1499 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1500 TCP_SKB_CB(skb)->txstamp_ack = 0; 1501 } 1502 } 1503 1504 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1505 { 1506 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1507 TCP_SKB_CB(skb)->eor = 0; 1508 } 1509 1510 /* Insert buff after skb on the write or rtx queue of sk. */ 1511 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1512 struct sk_buff *buff, 1513 struct sock *sk, 1514 enum tcp_queue tcp_queue) 1515 { 1516 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1517 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1518 else 1519 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1520 } 1521 1522 /* Function to create two new TCP segments. Shrinks the given segment 1523 * to the specified size and appends a new segment with the rest of the 1524 * packet to the list. This won't be called frequently, I hope. 1525 * Remember, these are still headerless SKBs at this point. 1526 */ 1527 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1528 struct sk_buff *skb, u32 len, 1529 unsigned int mss_now, gfp_t gfp) 1530 { 1531 struct tcp_sock *tp = tcp_sk(sk); 1532 struct sk_buff *buff; 1533 int nsize, old_factor; 1534 long limit; 1535 int nlen; 1536 u8 flags; 1537 1538 if (WARN_ON(len > skb->len)) 1539 return -EINVAL; 1540 1541 nsize = skb_headlen(skb) - len; 1542 if (nsize < 0) 1543 nsize = 0; 1544 1545 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1546 * We need some allowance to not penalize applications setting small 1547 * SO_SNDBUF values. 1548 * Also allow first and last skb in retransmit queue to be split. 1549 */ 1550 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1551 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1552 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1553 skb != tcp_rtx_queue_head(sk) && 1554 skb != tcp_rtx_queue_tail(sk))) { 1555 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1556 return -ENOMEM; 1557 } 1558 1559 if (skb_unclone_keeptruesize(skb, gfp)) 1560 return -ENOMEM; 1561 1562 /* Get a new skb... force flag on. */ 1563 buff = tcp_stream_alloc_skb(sk, nsize, gfp, true); 1564 if (!buff) 1565 return -ENOMEM; /* We'll just try again later. */ 1566 skb_copy_decrypted(buff, skb); 1567 mptcp_skb_ext_copy(buff, skb); 1568 1569 sk_wmem_queued_add(sk, buff->truesize); 1570 sk_mem_charge(sk, buff->truesize); 1571 nlen = skb->len - len - nsize; 1572 buff->truesize += nlen; 1573 skb->truesize -= nlen; 1574 1575 /* Correct the sequence numbers. */ 1576 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1577 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1578 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1579 1580 /* PSH and FIN should only be set in the second packet. */ 1581 flags = TCP_SKB_CB(skb)->tcp_flags; 1582 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1583 TCP_SKB_CB(buff)->tcp_flags = flags; 1584 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1585 tcp_skb_fragment_eor(skb, buff); 1586 1587 skb_split(skb, buff, len); 1588 1589 skb_set_delivery_time(buff, skb->tstamp, true); 1590 tcp_fragment_tstamp(skb, buff); 1591 1592 old_factor = tcp_skb_pcount(skb); 1593 1594 /* Fix up tso_factor for both original and new SKB. */ 1595 tcp_set_skb_tso_segs(skb, mss_now); 1596 tcp_set_skb_tso_segs(buff, mss_now); 1597 1598 /* Update delivered info for the new segment */ 1599 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1600 1601 /* If this packet has been sent out already, we must 1602 * adjust the various packet counters. 1603 */ 1604 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1605 int diff = old_factor - tcp_skb_pcount(skb) - 1606 tcp_skb_pcount(buff); 1607 1608 if (diff) 1609 tcp_adjust_pcount(sk, skb, diff); 1610 } 1611 1612 /* Link BUFF into the send queue. */ 1613 __skb_header_release(buff); 1614 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1615 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1616 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1617 1618 return 0; 1619 } 1620 1621 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1622 * data is not copied, but immediately discarded. 1623 */ 1624 static int __pskb_trim_head(struct sk_buff *skb, int len) 1625 { 1626 struct skb_shared_info *shinfo; 1627 int i, k, eat; 1628 1629 eat = min_t(int, len, skb_headlen(skb)); 1630 if (eat) { 1631 __skb_pull(skb, eat); 1632 len -= eat; 1633 if (!len) 1634 return 0; 1635 } 1636 eat = len; 1637 k = 0; 1638 shinfo = skb_shinfo(skb); 1639 for (i = 0; i < shinfo->nr_frags; i++) { 1640 int size = skb_frag_size(&shinfo->frags[i]); 1641 1642 if (size <= eat) { 1643 skb_frag_unref(skb, i); 1644 eat -= size; 1645 } else { 1646 shinfo->frags[k] = shinfo->frags[i]; 1647 if (eat) { 1648 skb_frag_off_add(&shinfo->frags[k], eat); 1649 skb_frag_size_sub(&shinfo->frags[k], eat); 1650 eat = 0; 1651 } 1652 k++; 1653 } 1654 } 1655 shinfo->nr_frags = k; 1656 1657 skb->data_len -= len; 1658 skb->len = skb->data_len; 1659 return len; 1660 } 1661 1662 /* Remove acked data from a packet in the transmit queue. */ 1663 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1664 { 1665 u32 delta_truesize; 1666 1667 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1668 return -ENOMEM; 1669 1670 delta_truesize = __pskb_trim_head(skb, len); 1671 1672 TCP_SKB_CB(skb)->seq += len; 1673 1674 if (delta_truesize) { 1675 skb->truesize -= delta_truesize; 1676 sk_wmem_queued_add(sk, -delta_truesize); 1677 if (!skb_zcopy_pure(skb)) 1678 sk_mem_uncharge(sk, delta_truesize); 1679 } 1680 1681 /* Any change of skb->len requires recalculation of tso factor. */ 1682 if (tcp_skb_pcount(skb) > 1) 1683 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1684 1685 return 0; 1686 } 1687 1688 /* Calculate MSS not accounting any TCP options. */ 1689 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1690 { 1691 const struct tcp_sock *tp = tcp_sk(sk); 1692 const struct inet_connection_sock *icsk = inet_csk(sk); 1693 int mss_now; 1694 1695 /* Calculate base mss without TCP options: 1696 It is MMS_S - sizeof(tcphdr) of rfc1122 1697 */ 1698 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1699 1700 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1701 if (icsk->icsk_af_ops->net_frag_header_len) { 1702 const struct dst_entry *dst = __sk_dst_get(sk); 1703 1704 if (dst && dst_allfrag(dst)) 1705 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1706 } 1707 1708 /* Clamp it (mss_clamp does not include tcp options) */ 1709 if (mss_now > tp->rx_opt.mss_clamp) 1710 mss_now = tp->rx_opt.mss_clamp; 1711 1712 /* Now subtract optional transport overhead */ 1713 mss_now -= icsk->icsk_ext_hdr_len; 1714 1715 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1716 mss_now = max(mss_now, 1717 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1718 return mss_now; 1719 } 1720 1721 /* Calculate MSS. Not accounting for SACKs here. */ 1722 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1723 { 1724 /* Subtract TCP options size, not including SACKs */ 1725 return __tcp_mtu_to_mss(sk, pmtu) - 1726 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1727 } 1728 EXPORT_SYMBOL(tcp_mtu_to_mss); 1729 1730 /* Inverse of above */ 1731 int tcp_mss_to_mtu(struct sock *sk, int mss) 1732 { 1733 const struct tcp_sock *tp = tcp_sk(sk); 1734 const struct inet_connection_sock *icsk = inet_csk(sk); 1735 int mtu; 1736 1737 mtu = mss + 1738 tp->tcp_header_len + 1739 icsk->icsk_ext_hdr_len + 1740 icsk->icsk_af_ops->net_header_len; 1741 1742 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1743 if (icsk->icsk_af_ops->net_frag_header_len) { 1744 const struct dst_entry *dst = __sk_dst_get(sk); 1745 1746 if (dst && dst_allfrag(dst)) 1747 mtu += icsk->icsk_af_ops->net_frag_header_len; 1748 } 1749 return mtu; 1750 } 1751 EXPORT_SYMBOL(tcp_mss_to_mtu); 1752 1753 /* MTU probing init per socket */ 1754 void tcp_mtup_init(struct sock *sk) 1755 { 1756 struct tcp_sock *tp = tcp_sk(sk); 1757 struct inet_connection_sock *icsk = inet_csk(sk); 1758 struct net *net = sock_net(sk); 1759 1760 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1761 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1762 icsk->icsk_af_ops->net_header_len; 1763 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1764 icsk->icsk_mtup.probe_size = 0; 1765 if (icsk->icsk_mtup.enabled) 1766 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1767 } 1768 EXPORT_SYMBOL(tcp_mtup_init); 1769 1770 /* This function synchronize snd mss to current pmtu/exthdr set. 1771 1772 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1773 for TCP options, but includes only bare TCP header. 1774 1775 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1776 It is minimum of user_mss and mss received with SYN. 1777 It also does not include TCP options. 1778 1779 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1780 1781 tp->mss_cache is current effective sending mss, including 1782 all tcp options except for SACKs. It is evaluated, 1783 taking into account current pmtu, but never exceeds 1784 tp->rx_opt.mss_clamp. 1785 1786 NOTE1. rfc1122 clearly states that advertised MSS 1787 DOES NOT include either tcp or ip options. 1788 1789 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1790 are READ ONLY outside this function. --ANK (980731) 1791 */ 1792 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1793 { 1794 struct tcp_sock *tp = tcp_sk(sk); 1795 struct inet_connection_sock *icsk = inet_csk(sk); 1796 int mss_now; 1797 1798 if (icsk->icsk_mtup.search_high > pmtu) 1799 icsk->icsk_mtup.search_high = pmtu; 1800 1801 mss_now = tcp_mtu_to_mss(sk, pmtu); 1802 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1803 1804 /* And store cached results */ 1805 icsk->icsk_pmtu_cookie = pmtu; 1806 if (icsk->icsk_mtup.enabled) 1807 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1808 tp->mss_cache = mss_now; 1809 1810 return mss_now; 1811 } 1812 EXPORT_SYMBOL(tcp_sync_mss); 1813 1814 /* Compute the current effective MSS, taking SACKs and IP options, 1815 * and even PMTU discovery events into account. 1816 */ 1817 unsigned int tcp_current_mss(struct sock *sk) 1818 { 1819 const struct tcp_sock *tp = tcp_sk(sk); 1820 const struct dst_entry *dst = __sk_dst_get(sk); 1821 u32 mss_now; 1822 unsigned int header_len; 1823 struct tcp_out_options opts; 1824 struct tcp_md5sig_key *md5; 1825 1826 mss_now = tp->mss_cache; 1827 1828 if (dst) { 1829 u32 mtu = dst_mtu(dst); 1830 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1831 mss_now = tcp_sync_mss(sk, mtu); 1832 } 1833 1834 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1835 sizeof(struct tcphdr); 1836 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1837 * some common options. If this is an odd packet (because we have SACK 1838 * blocks etc) then our calculated header_len will be different, and 1839 * we have to adjust mss_now correspondingly */ 1840 if (header_len != tp->tcp_header_len) { 1841 int delta = (int) header_len - tp->tcp_header_len; 1842 mss_now -= delta; 1843 } 1844 1845 return mss_now; 1846 } 1847 1848 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1849 * As additional protections, we do not touch cwnd in retransmission phases, 1850 * and if application hit its sndbuf limit recently. 1851 */ 1852 static void tcp_cwnd_application_limited(struct sock *sk) 1853 { 1854 struct tcp_sock *tp = tcp_sk(sk); 1855 1856 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1857 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1858 /* Limited by application or receiver window. */ 1859 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1860 u32 win_used = max(tp->snd_cwnd_used, init_win); 1861 if (win_used < tcp_snd_cwnd(tp)) { 1862 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1863 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1864 } 1865 tp->snd_cwnd_used = 0; 1866 } 1867 tp->snd_cwnd_stamp = tcp_jiffies32; 1868 } 1869 1870 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1871 { 1872 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1873 struct tcp_sock *tp = tcp_sk(sk); 1874 1875 /* Track the strongest available signal of the degree to which the cwnd 1876 * is fully utilized. If cwnd-limited then remember that fact for the 1877 * current window. If not cwnd-limited then track the maximum number of 1878 * outstanding packets in the current window. (If cwnd-limited then we 1879 * chose to not update tp->max_packets_out to avoid an extra else 1880 * clause with no functional impact.) 1881 */ 1882 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1883 is_cwnd_limited || 1884 (!tp->is_cwnd_limited && 1885 tp->packets_out > tp->max_packets_out)) { 1886 tp->is_cwnd_limited = is_cwnd_limited; 1887 tp->max_packets_out = tp->packets_out; 1888 tp->cwnd_usage_seq = tp->snd_nxt; 1889 } 1890 1891 if (tcp_is_cwnd_limited(sk)) { 1892 /* Network is feed fully. */ 1893 tp->snd_cwnd_used = 0; 1894 tp->snd_cwnd_stamp = tcp_jiffies32; 1895 } else { 1896 /* Network starves. */ 1897 if (tp->packets_out > tp->snd_cwnd_used) 1898 tp->snd_cwnd_used = tp->packets_out; 1899 1900 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1901 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1902 !ca_ops->cong_control) 1903 tcp_cwnd_application_limited(sk); 1904 1905 /* The following conditions together indicate the starvation 1906 * is caused by insufficient sender buffer: 1907 * 1) just sent some data (see tcp_write_xmit) 1908 * 2) not cwnd limited (this else condition) 1909 * 3) no more data to send (tcp_write_queue_empty()) 1910 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1911 */ 1912 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1913 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1914 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1915 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1916 } 1917 } 1918 1919 /* Minshall's variant of the Nagle send check. */ 1920 static bool tcp_minshall_check(const struct tcp_sock *tp) 1921 { 1922 return after(tp->snd_sml, tp->snd_una) && 1923 !after(tp->snd_sml, tp->snd_nxt); 1924 } 1925 1926 /* Update snd_sml if this skb is under mss 1927 * Note that a TSO packet might end with a sub-mss segment 1928 * The test is really : 1929 * if ((skb->len % mss) != 0) 1930 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1931 * But we can avoid doing the divide again given we already have 1932 * skb_pcount = skb->len / mss_now 1933 */ 1934 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1935 const struct sk_buff *skb) 1936 { 1937 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1938 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1939 } 1940 1941 /* Return false, if packet can be sent now without violation Nagle's rules: 1942 * 1. It is full sized. (provided by caller in %partial bool) 1943 * 2. Or it contains FIN. (already checked by caller) 1944 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1945 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1946 * With Minshall's modification: all sent small packets are ACKed. 1947 */ 1948 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1949 int nonagle) 1950 { 1951 return partial && 1952 ((nonagle & TCP_NAGLE_CORK) || 1953 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1954 } 1955 1956 /* Return how many segs we'd like on a TSO packet, 1957 * depending on current pacing rate, and how close the peer is. 1958 * 1959 * Rationale is: 1960 * - For close peers, we rather send bigger packets to reduce 1961 * cpu costs, because occasional losses will be repaired fast. 1962 * - For long distance/rtt flows, we would like to get ACK clocking 1963 * with 1 ACK per ms. 1964 * 1965 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 1966 * in bigger TSO bursts. We we cut the RTT-based allowance in half 1967 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 1968 * is below 1500 bytes after 6 * ~500 usec = 3ms. 1969 */ 1970 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1971 int min_tso_segs) 1972 { 1973 unsigned long bytes; 1974 u32 r; 1975 1976 bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift); 1977 1978 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 1979 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 1980 bytes += sk->sk_gso_max_size >> r; 1981 1982 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 1983 1984 return max_t(u32, bytes / mss_now, min_tso_segs); 1985 } 1986 1987 /* Return the number of segments we want in the skb we are transmitting. 1988 * See if congestion control module wants to decide; otherwise, autosize. 1989 */ 1990 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1991 { 1992 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1993 u32 min_tso, tso_segs; 1994 1995 min_tso = ca_ops->min_tso_segs ? 1996 ca_ops->min_tso_segs(sk) : 1997 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 1998 1999 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2000 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2001 } 2002 2003 /* Returns the portion of skb which can be sent right away */ 2004 static unsigned int tcp_mss_split_point(const struct sock *sk, 2005 const struct sk_buff *skb, 2006 unsigned int mss_now, 2007 unsigned int max_segs, 2008 int nonagle) 2009 { 2010 const struct tcp_sock *tp = tcp_sk(sk); 2011 u32 partial, needed, window, max_len; 2012 2013 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2014 max_len = mss_now * max_segs; 2015 2016 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2017 return max_len; 2018 2019 needed = min(skb->len, window); 2020 2021 if (max_len <= needed) 2022 return max_len; 2023 2024 partial = needed % mss_now; 2025 /* If last segment is not a full MSS, check if Nagle rules allow us 2026 * to include this last segment in this skb. 2027 * Otherwise, we'll split the skb at last MSS boundary 2028 */ 2029 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2030 return needed - partial; 2031 2032 return needed; 2033 } 2034 2035 /* Can at least one segment of SKB be sent right now, according to the 2036 * congestion window rules? If so, return how many segments are allowed. 2037 */ 2038 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 2039 const struct sk_buff *skb) 2040 { 2041 u32 in_flight, cwnd, halfcwnd; 2042 2043 /* Don't be strict about the congestion window for the final FIN. */ 2044 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2045 tcp_skb_pcount(skb) == 1) 2046 return 1; 2047 2048 in_flight = tcp_packets_in_flight(tp); 2049 cwnd = tcp_snd_cwnd(tp); 2050 if (in_flight >= cwnd) 2051 return 0; 2052 2053 /* For better scheduling, ensure we have at least 2054 * 2 GSO packets in flight. 2055 */ 2056 halfcwnd = max(cwnd >> 1, 1U); 2057 return min(halfcwnd, cwnd - in_flight); 2058 } 2059 2060 /* Initialize TSO state of a skb. 2061 * This must be invoked the first time we consider transmitting 2062 * SKB onto the wire. 2063 */ 2064 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2065 { 2066 int tso_segs = tcp_skb_pcount(skb); 2067 2068 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 2069 tcp_set_skb_tso_segs(skb, mss_now); 2070 tso_segs = tcp_skb_pcount(skb); 2071 } 2072 return tso_segs; 2073 } 2074 2075 2076 /* Return true if the Nagle test allows this packet to be 2077 * sent now. 2078 */ 2079 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2080 unsigned int cur_mss, int nonagle) 2081 { 2082 /* Nagle rule does not apply to frames, which sit in the middle of the 2083 * write_queue (they have no chances to get new data). 2084 * 2085 * This is implemented in the callers, where they modify the 'nonagle' 2086 * argument based upon the location of SKB in the send queue. 2087 */ 2088 if (nonagle & TCP_NAGLE_PUSH) 2089 return true; 2090 2091 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2092 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2093 return true; 2094 2095 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2096 return true; 2097 2098 return false; 2099 } 2100 2101 /* Does at least the first segment of SKB fit into the send window? */ 2102 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2103 const struct sk_buff *skb, 2104 unsigned int cur_mss) 2105 { 2106 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2107 2108 if (skb->len > cur_mss) 2109 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2110 2111 return !after(end_seq, tcp_wnd_end(tp)); 2112 } 2113 2114 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2115 * which is put after SKB on the list. It is very much like 2116 * tcp_fragment() except that it may make several kinds of assumptions 2117 * in order to speed up the splitting operation. In particular, we 2118 * know that all the data is in scatter-gather pages, and that the 2119 * packet has never been sent out before (and thus is not cloned). 2120 */ 2121 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2122 unsigned int mss_now, gfp_t gfp) 2123 { 2124 int nlen = skb->len - len; 2125 struct sk_buff *buff; 2126 u8 flags; 2127 2128 /* All of a TSO frame must be composed of paged data. */ 2129 if (skb->len != skb->data_len) 2130 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2131 skb, len, mss_now, gfp); 2132 2133 buff = tcp_stream_alloc_skb(sk, 0, gfp, true); 2134 if (unlikely(!buff)) 2135 return -ENOMEM; 2136 skb_copy_decrypted(buff, skb); 2137 mptcp_skb_ext_copy(buff, skb); 2138 2139 sk_wmem_queued_add(sk, buff->truesize); 2140 sk_mem_charge(sk, buff->truesize); 2141 buff->truesize += nlen; 2142 skb->truesize -= nlen; 2143 2144 /* Correct the sequence numbers. */ 2145 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2146 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2147 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2148 2149 /* PSH and FIN should only be set in the second packet. */ 2150 flags = TCP_SKB_CB(skb)->tcp_flags; 2151 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2152 TCP_SKB_CB(buff)->tcp_flags = flags; 2153 2154 tcp_skb_fragment_eor(skb, buff); 2155 2156 skb_split(skb, buff, len); 2157 tcp_fragment_tstamp(skb, buff); 2158 2159 /* Fix up tso_factor for both original and new SKB. */ 2160 tcp_set_skb_tso_segs(skb, mss_now); 2161 tcp_set_skb_tso_segs(buff, mss_now); 2162 2163 /* Link BUFF into the send queue. */ 2164 __skb_header_release(buff); 2165 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2166 2167 return 0; 2168 } 2169 2170 /* Try to defer sending, if possible, in order to minimize the amount 2171 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2172 * 2173 * This algorithm is from John Heffner. 2174 */ 2175 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2176 bool *is_cwnd_limited, 2177 bool *is_rwnd_limited, 2178 u32 max_segs) 2179 { 2180 const struct inet_connection_sock *icsk = inet_csk(sk); 2181 u32 send_win, cong_win, limit, in_flight; 2182 struct tcp_sock *tp = tcp_sk(sk); 2183 struct sk_buff *head; 2184 int win_divisor; 2185 s64 delta; 2186 2187 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2188 goto send_now; 2189 2190 /* Avoid bursty behavior by allowing defer 2191 * only if the last write was recent (1 ms). 2192 * Note that tp->tcp_wstamp_ns can be in the future if we have 2193 * packets waiting in a qdisc or device for EDT delivery. 2194 */ 2195 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2196 if (delta > 0) 2197 goto send_now; 2198 2199 in_flight = tcp_packets_in_flight(tp); 2200 2201 BUG_ON(tcp_skb_pcount(skb) <= 1); 2202 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2203 2204 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2205 2206 /* From in_flight test above, we know that cwnd > in_flight. */ 2207 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2208 2209 limit = min(send_win, cong_win); 2210 2211 /* If a full-sized TSO skb can be sent, do it. */ 2212 if (limit >= max_segs * tp->mss_cache) 2213 goto send_now; 2214 2215 /* Middle in queue won't get any more data, full sendable already? */ 2216 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2217 goto send_now; 2218 2219 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2220 if (win_divisor) { 2221 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2222 2223 /* If at least some fraction of a window is available, 2224 * just use it. 2225 */ 2226 chunk /= win_divisor; 2227 if (limit >= chunk) 2228 goto send_now; 2229 } else { 2230 /* Different approach, try not to defer past a single 2231 * ACK. Receiver should ACK every other full sized 2232 * frame, so if we have space for more than 3 frames 2233 * then send now. 2234 */ 2235 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2236 goto send_now; 2237 } 2238 2239 /* TODO : use tsorted_sent_queue ? */ 2240 head = tcp_rtx_queue_head(sk); 2241 if (!head) 2242 goto send_now; 2243 delta = tp->tcp_clock_cache - head->tstamp; 2244 /* If next ACK is likely to come too late (half srtt), do not defer */ 2245 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2246 goto send_now; 2247 2248 /* Ok, it looks like it is advisable to defer. 2249 * Three cases are tracked : 2250 * 1) We are cwnd-limited 2251 * 2) We are rwnd-limited 2252 * 3) We are application limited. 2253 */ 2254 if (cong_win < send_win) { 2255 if (cong_win <= skb->len) { 2256 *is_cwnd_limited = true; 2257 return true; 2258 } 2259 } else { 2260 if (send_win <= skb->len) { 2261 *is_rwnd_limited = true; 2262 return true; 2263 } 2264 } 2265 2266 /* If this packet won't get more data, do not wait. */ 2267 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2268 TCP_SKB_CB(skb)->eor) 2269 goto send_now; 2270 2271 return true; 2272 2273 send_now: 2274 return false; 2275 } 2276 2277 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2278 { 2279 struct inet_connection_sock *icsk = inet_csk(sk); 2280 struct tcp_sock *tp = tcp_sk(sk); 2281 struct net *net = sock_net(sk); 2282 u32 interval; 2283 s32 delta; 2284 2285 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2286 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2287 if (unlikely(delta >= interval * HZ)) { 2288 int mss = tcp_current_mss(sk); 2289 2290 /* Update current search range */ 2291 icsk->icsk_mtup.probe_size = 0; 2292 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2293 sizeof(struct tcphdr) + 2294 icsk->icsk_af_ops->net_header_len; 2295 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2296 2297 /* Update probe time stamp */ 2298 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2299 } 2300 } 2301 2302 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2303 { 2304 struct sk_buff *skb, *next; 2305 2306 skb = tcp_send_head(sk); 2307 tcp_for_write_queue_from_safe(skb, next, sk) { 2308 if (len <= skb->len) 2309 break; 2310 2311 if (unlikely(TCP_SKB_CB(skb)->eor) || 2312 tcp_has_tx_tstamp(skb) || 2313 !skb_pure_zcopy_same(skb, next)) 2314 return false; 2315 2316 len -= skb->len; 2317 } 2318 2319 return true; 2320 } 2321 2322 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2323 int probe_size) 2324 { 2325 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2326 int i, todo, len = 0, nr_frags = 0; 2327 const struct sk_buff *skb; 2328 2329 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2330 return -ENOMEM; 2331 2332 skb_queue_walk(&sk->sk_write_queue, skb) { 2333 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2334 2335 if (skb_headlen(skb)) 2336 return -EINVAL; 2337 2338 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2339 if (len >= probe_size) 2340 goto commit; 2341 todo = min_t(int, skb_frag_size(fragfrom), 2342 probe_size - len); 2343 len += todo; 2344 if (lastfrag && 2345 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2346 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2347 skb_frag_size(lastfrag)) { 2348 skb_frag_size_add(lastfrag, todo); 2349 continue; 2350 } 2351 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2352 return -E2BIG; 2353 skb_frag_page_copy(fragto, fragfrom); 2354 skb_frag_off_copy(fragto, fragfrom); 2355 skb_frag_size_set(fragto, todo); 2356 nr_frags++; 2357 lastfrag = fragto++; 2358 } 2359 } 2360 commit: 2361 WARN_ON_ONCE(len != probe_size); 2362 for (i = 0; i < nr_frags; i++) 2363 skb_frag_ref(to, i); 2364 2365 skb_shinfo(to)->nr_frags = nr_frags; 2366 to->truesize += probe_size; 2367 to->len += probe_size; 2368 to->data_len += probe_size; 2369 __skb_header_release(to); 2370 return 0; 2371 } 2372 2373 /* Create a new MTU probe if we are ready. 2374 * MTU probe is regularly attempting to increase the path MTU by 2375 * deliberately sending larger packets. This discovers routing 2376 * changes resulting in larger path MTUs. 2377 * 2378 * Returns 0 if we should wait to probe (no cwnd available), 2379 * 1 if a probe was sent, 2380 * -1 otherwise 2381 */ 2382 static int tcp_mtu_probe(struct sock *sk) 2383 { 2384 struct inet_connection_sock *icsk = inet_csk(sk); 2385 struct tcp_sock *tp = tcp_sk(sk); 2386 struct sk_buff *skb, *nskb, *next; 2387 struct net *net = sock_net(sk); 2388 int probe_size; 2389 int size_needed; 2390 int copy, len; 2391 int mss_now; 2392 int interval; 2393 2394 /* Not currently probing/verifying, 2395 * not in recovery, 2396 * have enough cwnd, and 2397 * not SACKing (the variable headers throw things off) 2398 */ 2399 if (likely(!icsk->icsk_mtup.enabled || 2400 icsk->icsk_mtup.probe_size || 2401 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2402 tcp_snd_cwnd(tp) < 11 || 2403 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2404 return -1; 2405 2406 /* Use binary search for probe_size between tcp_mss_base, 2407 * and current mss_clamp. if (search_high - search_low) 2408 * smaller than a threshold, backoff from probing. 2409 */ 2410 mss_now = tcp_current_mss(sk); 2411 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2412 icsk->icsk_mtup.search_low) >> 1); 2413 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2414 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2415 /* When misfortune happens, we are reprobing actively, 2416 * and then reprobe timer has expired. We stick with current 2417 * probing process by not resetting search range to its orignal. 2418 */ 2419 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2420 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2421 /* Check whether enough time has elaplased for 2422 * another round of probing. 2423 */ 2424 tcp_mtu_check_reprobe(sk); 2425 return -1; 2426 } 2427 2428 /* Have enough data in the send queue to probe? */ 2429 if (tp->write_seq - tp->snd_nxt < size_needed) 2430 return -1; 2431 2432 if (tp->snd_wnd < size_needed) 2433 return -1; 2434 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2435 return 0; 2436 2437 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2438 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2439 if (!tcp_packets_in_flight(tp)) 2440 return -1; 2441 else 2442 return 0; 2443 } 2444 2445 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2446 return -1; 2447 2448 /* We're allowed to probe. Build it now. */ 2449 nskb = tcp_stream_alloc_skb(sk, 0, GFP_ATOMIC, false); 2450 if (!nskb) 2451 return -1; 2452 2453 /* build the payload, and be prepared to abort if this fails. */ 2454 if (tcp_clone_payload(sk, nskb, probe_size)) { 2455 consume_skb(nskb); 2456 return -1; 2457 } 2458 sk_wmem_queued_add(sk, nskb->truesize); 2459 sk_mem_charge(sk, nskb->truesize); 2460 2461 skb = tcp_send_head(sk); 2462 skb_copy_decrypted(nskb, skb); 2463 mptcp_skb_ext_copy(nskb, skb); 2464 2465 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2466 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2467 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2468 2469 tcp_insert_write_queue_before(nskb, skb, sk); 2470 tcp_highest_sack_replace(sk, skb, nskb); 2471 2472 len = 0; 2473 tcp_for_write_queue_from_safe(skb, next, sk) { 2474 copy = min_t(int, skb->len, probe_size - len); 2475 2476 if (skb->len <= copy) { 2477 /* We've eaten all the data from this skb. 2478 * Throw it away. */ 2479 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2480 /* If this is the last SKB we copy and eor is set 2481 * we need to propagate it to the new skb. 2482 */ 2483 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2484 tcp_skb_collapse_tstamp(nskb, skb); 2485 tcp_unlink_write_queue(skb, sk); 2486 tcp_wmem_free_skb(sk, skb); 2487 } else { 2488 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2489 ~(TCPHDR_FIN|TCPHDR_PSH); 2490 if (!skb_shinfo(skb)->nr_frags) { 2491 skb_pull(skb, copy); 2492 } else { 2493 __pskb_trim_head(skb, copy); 2494 tcp_set_skb_tso_segs(skb, mss_now); 2495 } 2496 TCP_SKB_CB(skb)->seq += copy; 2497 } 2498 2499 len += copy; 2500 2501 if (len >= probe_size) 2502 break; 2503 } 2504 tcp_init_tso_segs(nskb, nskb->len); 2505 2506 /* We're ready to send. If this fails, the probe will 2507 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2508 */ 2509 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2510 /* Decrement cwnd here because we are sending 2511 * effectively two packets. */ 2512 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2513 tcp_event_new_data_sent(sk, nskb); 2514 2515 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2516 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2517 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2518 2519 return 1; 2520 } 2521 2522 return -1; 2523 } 2524 2525 static bool tcp_pacing_check(struct sock *sk) 2526 { 2527 struct tcp_sock *tp = tcp_sk(sk); 2528 2529 if (!tcp_needs_internal_pacing(sk)) 2530 return false; 2531 2532 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2533 return false; 2534 2535 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2536 hrtimer_start(&tp->pacing_timer, 2537 ns_to_ktime(tp->tcp_wstamp_ns), 2538 HRTIMER_MODE_ABS_PINNED_SOFT); 2539 sock_hold(sk); 2540 } 2541 return true; 2542 } 2543 2544 /* TCP Small Queues : 2545 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2546 * (These limits are doubled for retransmits) 2547 * This allows for : 2548 * - better RTT estimation and ACK scheduling 2549 * - faster recovery 2550 * - high rates 2551 * Alas, some drivers / subsystems require a fair amount 2552 * of queued bytes to ensure line rate. 2553 * One example is wifi aggregation (802.11 AMPDU) 2554 */ 2555 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2556 unsigned int factor) 2557 { 2558 unsigned long limit; 2559 2560 limit = max_t(unsigned long, 2561 2 * skb->truesize, 2562 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift)); 2563 if (sk->sk_pacing_status == SK_PACING_NONE) 2564 limit = min_t(unsigned long, limit, 2565 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2566 limit <<= factor; 2567 2568 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2569 tcp_sk(sk)->tcp_tx_delay) { 2570 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2571 2572 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2573 * approximate our needs assuming an ~100% skb->truesize overhead. 2574 * USEC_PER_SEC is approximated by 2^20. 2575 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2576 */ 2577 extra_bytes >>= (20 - 1); 2578 limit += extra_bytes; 2579 } 2580 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2581 /* Always send skb if rtx queue is empty. 2582 * No need to wait for TX completion to call us back, 2583 * after softirq/tasklet schedule. 2584 * This helps when TX completions are delayed too much. 2585 */ 2586 if (tcp_rtx_queue_empty(sk)) 2587 return false; 2588 2589 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2590 /* It is possible TX completion already happened 2591 * before we set TSQ_THROTTLED, so we must 2592 * test again the condition. 2593 */ 2594 smp_mb__after_atomic(); 2595 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2596 return true; 2597 } 2598 return false; 2599 } 2600 2601 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2602 { 2603 const u32 now = tcp_jiffies32; 2604 enum tcp_chrono old = tp->chrono_type; 2605 2606 if (old > TCP_CHRONO_UNSPEC) 2607 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2608 tp->chrono_start = now; 2609 tp->chrono_type = new; 2610 } 2611 2612 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2613 { 2614 struct tcp_sock *tp = tcp_sk(sk); 2615 2616 /* If there are multiple conditions worthy of tracking in a 2617 * chronograph then the highest priority enum takes precedence 2618 * over the other conditions. So that if something "more interesting" 2619 * starts happening, stop the previous chrono and start a new one. 2620 */ 2621 if (type > tp->chrono_type) 2622 tcp_chrono_set(tp, type); 2623 } 2624 2625 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2626 { 2627 struct tcp_sock *tp = tcp_sk(sk); 2628 2629 2630 /* There are multiple conditions worthy of tracking in a 2631 * chronograph, so that the highest priority enum takes 2632 * precedence over the other conditions (see tcp_chrono_start). 2633 * If a condition stops, we only stop chrono tracking if 2634 * it's the "most interesting" or current chrono we are 2635 * tracking and starts busy chrono if we have pending data. 2636 */ 2637 if (tcp_rtx_and_write_queues_empty(sk)) 2638 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2639 else if (type == tp->chrono_type) 2640 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2641 } 2642 2643 /* This routine writes packets to the network. It advances the 2644 * send_head. This happens as incoming acks open up the remote 2645 * window for us. 2646 * 2647 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2648 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2649 * account rare use of URG, this is not a big flaw. 2650 * 2651 * Send at most one packet when push_one > 0. Temporarily ignore 2652 * cwnd limit to force at most one packet out when push_one == 2. 2653 2654 * Returns true, if no segments are in flight and we have queued segments, 2655 * but cannot send anything now because of SWS or another problem. 2656 */ 2657 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2658 int push_one, gfp_t gfp) 2659 { 2660 struct tcp_sock *tp = tcp_sk(sk); 2661 struct sk_buff *skb; 2662 unsigned int tso_segs, sent_pkts; 2663 int cwnd_quota; 2664 int result; 2665 bool is_cwnd_limited = false, is_rwnd_limited = false; 2666 u32 max_segs; 2667 2668 sent_pkts = 0; 2669 2670 tcp_mstamp_refresh(tp); 2671 if (!push_one) { 2672 /* Do MTU probing. */ 2673 result = tcp_mtu_probe(sk); 2674 if (!result) { 2675 return false; 2676 } else if (result > 0) { 2677 sent_pkts = 1; 2678 } 2679 } 2680 2681 max_segs = tcp_tso_segs(sk, mss_now); 2682 while ((skb = tcp_send_head(sk))) { 2683 unsigned int limit; 2684 2685 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2686 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2687 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2688 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 2689 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2690 tcp_init_tso_segs(skb, mss_now); 2691 goto repair; /* Skip network transmission */ 2692 } 2693 2694 if (tcp_pacing_check(sk)) 2695 break; 2696 2697 tso_segs = tcp_init_tso_segs(skb, mss_now); 2698 BUG_ON(!tso_segs); 2699 2700 cwnd_quota = tcp_cwnd_test(tp, skb); 2701 if (!cwnd_quota) { 2702 if (push_one == 2) 2703 /* Force out a loss probe pkt. */ 2704 cwnd_quota = 1; 2705 else 2706 break; 2707 } 2708 2709 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2710 is_rwnd_limited = true; 2711 break; 2712 } 2713 2714 if (tso_segs == 1) { 2715 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2716 (tcp_skb_is_last(sk, skb) ? 2717 nonagle : TCP_NAGLE_PUSH)))) 2718 break; 2719 } else { 2720 if (!push_one && 2721 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2722 &is_rwnd_limited, max_segs)) 2723 break; 2724 } 2725 2726 limit = mss_now; 2727 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2728 limit = tcp_mss_split_point(sk, skb, mss_now, 2729 min_t(unsigned int, 2730 cwnd_quota, 2731 max_segs), 2732 nonagle); 2733 2734 if (skb->len > limit && 2735 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2736 break; 2737 2738 if (tcp_small_queue_check(sk, skb, 0)) 2739 break; 2740 2741 /* Argh, we hit an empty skb(), presumably a thread 2742 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2743 * We do not want to send a pure-ack packet and have 2744 * a strange looking rtx queue with empty packet(s). 2745 */ 2746 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2747 break; 2748 2749 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2750 break; 2751 2752 repair: 2753 /* Advance the send_head. This one is sent out. 2754 * This call will increment packets_out. 2755 */ 2756 tcp_event_new_data_sent(sk, skb); 2757 2758 tcp_minshall_update(tp, mss_now, skb); 2759 sent_pkts += tcp_skb_pcount(skb); 2760 2761 if (push_one) 2762 break; 2763 } 2764 2765 if (is_rwnd_limited) 2766 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2767 else 2768 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2769 2770 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2771 if (likely(sent_pkts || is_cwnd_limited)) 2772 tcp_cwnd_validate(sk, is_cwnd_limited); 2773 2774 if (likely(sent_pkts)) { 2775 if (tcp_in_cwnd_reduction(sk)) 2776 tp->prr_out += sent_pkts; 2777 2778 /* Send one loss probe per tail loss episode. */ 2779 if (push_one != 2) 2780 tcp_schedule_loss_probe(sk, false); 2781 return false; 2782 } 2783 return !tp->packets_out && !tcp_write_queue_empty(sk); 2784 } 2785 2786 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2787 { 2788 struct inet_connection_sock *icsk = inet_csk(sk); 2789 struct tcp_sock *tp = tcp_sk(sk); 2790 u32 timeout, rto_delta_us; 2791 int early_retrans; 2792 2793 /* Don't do any loss probe on a Fast Open connection before 3WHS 2794 * finishes. 2795 */ 2796 if (rcu_access_pointer(tp->fastopen_rsk)) 2797 return false; 2798 2799 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2800 /* Schedule a loss probe in 2*RTT for SACK capable connections 2801 * not in loss recovery, that are either limited by cwnd or application. 2802 */ 2803 if ((early_retrans != 3 && early_retrans != 4) || 2804 !tp->packets_out || !tcp_is_sack(tp) || 2805 (icsk->icsk_ca_state != TCP_CA_Open && 2806 icsk->icsk_ca_state != TCP_CA_CWR)) 2807 return false; 2808 2809 /* Probe timeout is 2*rtt. Add minimum RTO to account 2810 * for delayed ack when there's one outstanding packet. If no RTT 2811 * sample is available then probe after TCP_TIMEOUT_INIT. 2812 */ 2813 if (tp->srtt_us) { 2814 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2815 if (tp->packets_out == 1) 2816 timeout += TCP_RTO_MIN; 2817 else 2818 timeout += TCP_TIMEOUT_MIN; 2819 } else { 2820 timeout = TCP_TIMEOUT_INIT; 2821 } 2822 2823 /* If the RTO formula yields an earlier time, then use that time. */ 2824 rto_delta_us = advancing_rto ? 2825 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2826 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2827 if (rto_delta_us > 0) 2828 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2829 2830 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2831 return true; 2832 } 2833 2834 /* Thanks to skb fast clones, we can detect if a prior transmit of 2835 * a packet is still in a qdisc or driver queue. 2836 * In this case, there is very little point doing a retransmit ! 2837 */ 2838 static bool skb_still_in_host_queue(struct sock *sk, 2839 const struct sk_buff *skb) 2840 { 2841 if (unlikely(skb_fclone_busy(sk, skb))) { 2842 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2843 smp_mb__after_atomic(); 2844 if (skb_fclone_busy(sk, skb)) { 2845 NET_INC_STATS(sock_net(sk), 2846 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2847 return true; 2848 } 2849 } 2850 return false; 2851 } 2852 2853 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2854 * retransmit the last segment. 2855 */ 2856 void tcp_send_loss_probe(struct sock *sk) 2857 { 2858 struct tcp_sock *tp = tcp_sk(sk); 2859 struct sk_buff *skb; 2860 int pcount; 2861 int mss = tcp_current_mss(sk); 2862 2863 /* At most one outstanding TLP */ 2864 if (tp->tlp_high_seq) 2865 goto rearm_timer; 2866 2867 tp->tlp_retrans = 0; 2868 skb = tcp_send_head(sk); 2869 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2870 pcount = tp->packets_out; 2871 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2872 if (tp->packets_out > pcount) 2873 goto probe_sent; 2874 goto rearm_timer; 2875 } 2876 skb = skb_rb_last(&sk->tcp_rtx_queue); 2877 if (unlikely(!skb)) { 2878 WARN_ONCE(tp->packets_out, 2879 "invalid inflight: %u state %u cwnd %u mss %d\n", 2880 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss); 2881 inet_csk(sk)->icsk_pending = 0; 2882 return; 2883 } 2884 2885 if (skb_still_in_host_queue(sk, skb)) 2886 goto rearm_timer; 2887 2888 pcount = tcp_skb_pcount(skb); 2889 if (WARN_ON(!pcount)) 2890 goto rearm_timer; 2891 2892 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2893 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2894 (pcount - 1) * mss, mss, 2895 GFP_ATOMIC))) 2896 goto rearm_timer; 2897 skb = skb_rb_next(skb); 2898 } 2899 2900 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2901 goto rearm_timer; 2902 2903 if (__tcp_retransmit_skb(sk, skb, 1)) 2904 goto rearm_timer; 2905 2906 tp->tlp_retrans = 1; 2907 2908 probe_sent: 2909 /* Record snd_nxt for loss detection. */ 2910 tp->tlp_high_seq = tp->snd_nxt; 2911 2912 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2913 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2914 inet_csk(sk)->icsk_pending = 0; 2915 rearm_timer: 2916 tcp_rearm_rto(sk); 2917 } 2918 2919 /* Push out any pending frames which were held back due to 2920 * TCP_CORK or attempt at coalescing tiny packets. 2921 * The socket must be locked by the caller. 2922 */ 2923 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2924 int nonagle) 2925 { 2926 /* If we are closed, the bytes will have to remain here. 2927 * In time closedown will finish, we empty the write queue and 2928 * all will be happy. 2929 */ 2930 if (unlikely(sk->sk_state == TCP_CLOSE)) 2931 return; 2932 2933 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2934 sk_gfp_mask(sk, GFP_ATOMIC))) 2935 tcp_check_probe_timer(sk); 2936 } 2937 2938 /* Send _single_ skb sitting at the send head. This function requires 2939 * true push pending frames to setup probe timer etc. 2940 */ 2941 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2942 { 2943 struct sk_buff *skb = tcp_send_head(sk); 2944 2945 BUG_ON(!skb || skb->len < mss_now); 2946 2947 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2948 } 2949 2950 /* This function returns the amount that we can raise the 2951 * usable window based on the following constraints 2952 * 2953 * 1. The window can never be shrunk once it is offered (RFC 793) 2954 * 2. We limit memory per socket 2955 * 2956 * RFC 1122: 2957 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2958 * RECV.NEXT + RCV.WIN fixed until: 2959 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2960 * 2961 * i.e. don't raise the right edge of the window until you can raise 2962 * it at least MSS bytes. 2963 * 2964 * Unfortunately, the recommended algorithm breaks header prediction, 2965 * since header prediction assumes th->window stays fixed. 2966 * 2967 * Strictly speaking, keeping th->window fixed violates the receiver 2968 * side SWS prevention criteria. The problem is that under this rule 2969 * a stream of single byte packets will cause the right side of the 2970 * window to always advance by a single byte. 2971 * 2972 * Of course, if the sender implements sender side SWS prevention 2973 * then this will not be a problem. 2974 * 2975 * BSD seems to make the following compromise: 2976 * 2977 * If the free space is less than the 1/4 of the maximum 2978 * space available and the free space is less than 1/2 mss, 2979 * then set the window to 0. 2980 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2981 * Otherwise, just prevent the window from shrinking 2982 * and from being larger than the largest representable value. 2983 * 2984 * This prevents incremental opening of the window in the regime 2985 * where TCP is limited by the speed of the reader side taking 2986 * data out of the TCP receive queue. It does nothing about 2987 * those cases where the window is constrained on the sender side 2988 * because the pipeline is full. 2989 * 2990 * BSD also seems to "accidentally" limit itself to windows that are a 2991 * multiple of MSS, at least until the free space gets quite small. 2992 * This would appear to be a side effect of the mbuf implementation. 2993 * Combining these two algorithms results in the observed behavior 2994 * of having a fixed window size at almost all times. 2995 * 2996 * Below we obtain similar behavior by forcing the offered window to 2997 * a multiple of the mss when it is feasible to do so. 2998 * 2999 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3000 * Regular options like TIMESTAMP are taken into account. 3001 */ 3002 u32 __tcp_select_window(struct sock *sk) 3003 { 3004 struct inet_connection_sock *icsk = inet_csk(sk); 3005 struct tcp_sock *tp = tcp_sk(sk); 3006 /* MSS for the peer's data. Previous versions used mss_clamp 3007 * here. I don't know if the value based on our guesses 3008 * of peer's MSS is better for the performance. It's more correct 3009 * but may be worse for the performance because of rcv_mss 3010 * fluctuations. --SAW 1998/11/1 3011 */ 3012 int mss = icsk->icsk_ack.rcv_mss; 3013 int free_space = tcp_space(sk); 3014 int allowed_space = tcp_full_space(sk); 3015 int full_space, window; 3016 3017 if (sk_is_mptcp(sk)) 3018 mptcp_space(sk, &free_space, &allowed_space); 3019 3020 full_space = min_t(int, tp->window_clamp, allowed_space); 3021 3022 if (unlikely(mss > full_space)) { 3023 mss = full_space; 3024 if (mss <= 0) 3025 return 0; 3026 } 3027 if (free_space < (full_space >> 1)) { 3028 icsk->icsk_ack.quick = 0; 3029 3030 if (tcp_under_memory_pressure(sk)) 3031 tcp_adjust_rcv_ssthresh(sk); 3032 3033 /* free_space might become our new window, make sure we don't 3034 * increase it due to wscale. 3035 */ 3036 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3037 3038 /* if free space is less than mss estimate, or is below 1/16th 3039 * of the maximum allowed, try to move to zero-window, else 3040 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3041 * new incoming data is dropped due to memory limits. 3042 * With large window, mss test triggers way too late in order 3043 * to announce zero window in time before rmem limit kicks in. 3044 */ 3045 if (free_space < (allowed_space >> 4) || free_space < mss) 3046 return 0; 3047 } 3048 3049 if (free_space > tp->rcv_ssthresh) 3050 free_space = tp->rcv_ssthresh; 3051 3052 /* Don't do rounding if we are using window scaling, since the 3053 * scaled window will not line up with the MSS boundary anyway. 3054 */ 3055 if (tp->rx_opt.rcv_wscale) { 3056 window = free_space; 3057 3058 /* Advertise enough space so that it won't get scaled away. 3059 * Import case: prevent zero window announcement if 3060 * 1<<rcv_wscale > mss. 3061 */ 3062 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3063 } else { 3064 window = tp->rcv_wnd; 3065 /* Get the largest window that is a nice multiple of mss. 3066 * Window clamp already applied above. 3067 * If our current window offering is within 1 mss of the 3068 * free space we just keep it. This prevents the divide 3069 * and multiply from happening most of the time. 3070 * We also don't do any window rounding when the free space 3071 * is too small. 3072 */ 3073 if (window <= free_space - mss || window > free_space) 3074 window = rounddown(free_space, mss); 3075 else if (mss == full_space && 3076 free_space > window + (full_space >> 1)) 3077 window = free_space; 3078 } 3079 3080 return window; 3081 } 3082 3083 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3084 const struct sk_buff *next_skb) 3085 { 3086 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3087 const struct skb_shared_info *next_shinfo = 3088 skb_shinfo(next_skb); 3089 struct skb_shared_info *shinfo = skb_shinfo(skb); 3090 3091 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3092 shinfo->tskey = next_shinfo->tskey; 3093 TCP_SKB_CB(skb)->txstamp_ack |= 3094 TCP_SKB_CB(next_skb)->txstamp_ack; 3095 } 3096 } 3097 3098 /* Collapses two adjacent SKB's during retransmission. */ 3099 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3100 { 3101 struct tcp_sock *tp = tcp_sk(sk); 3102 struct sk_buff *next_skb = skb_rb_next(skb); 3103 int next_skb_size; 3104 3105 next_skb_size = next_skb->len; 3106 3107 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3108 3109 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3110 return false; 3111 3112 tcp_highest_sack_replace(sk, next_skb, skb); 3113 3114 /* Update sequence range on original skb. */ 3115 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3116 3117 /* Merge over control information. This moves PSH/FIN etc. over */ 3118 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3119 3120 /* All done, get rid of second SKB and account for it so 3121 * packet counting does not break. 3122 */ 3123 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3124 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3125 3126 /* changed transmit queue under us so clear hints */ 3127 tcp_clear_retrans_hints_partial(tp); 3128 if (next_skb == tp->retransmit_skb_hint) 3129 tp->retransmit_skb_hint = skb; 3130 3131 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3132 3133 tcp_skb_collapse_tstamp(skb, next_skb); 3134 3135 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3136 return true; 3137 } 3138 3139 /* Check if coalescing SKBs is legal. */ 3140 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3141 { 3142 if (tcp_skb_pcount(skb) > 1) 3143 return false; 3144 if (skb_cloned(skb)) 3145 return false; 3146 /* Some heuristics for collapsing over SACK'd could be invented */ 3147 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3148 return false; 3149 3150 return true; 3151 } 3152 3153 /* Collapse packets in the retransmit queue to make to create 3154 * less packets on the wire. This is only done on retransmission. 3155 */ 3156 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3157 int space) 3158 { 3159 struct tcp_sock *tp = tcp_sk(sk); 3160 struct sk_buff *skb = to, *tmp; 3161 bool first = true; 3162 3163 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3164 return; 3165 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3166 return; 3167 3168 skb_rbtree_walk_from_safe(skb, tmp) { 3169 if (!tcp_can_collapse(sk, skb)) 3170 break; 3171 3172 if (!tcp_skb_can_collapse(to, skb)) 3173 break; 3174 3175 space -= skb->len; 3176 3177 if (first) { 3178 first = false; 3179 continue; 3180 } 3181 3182 if (space < 0) 3183 break; 3184 3185 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3186 break; 3187 3188 if (!tcp_collapse_retrans(sk, to)) 3189 break; 3190 } 3191 } 3192 3193 /* This retransmits one SKB. Policy decisions and retransmit queue 3194 * state updates are done by the caller. Returns non-zero if an 3195 * error occurred which prevented the send. 3196 */ 3197 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3198 { 3199 struct inet_connection_sock *icsk = inet_csk(sk); 3200 struct tcp_sock *tp = tcp_sk(sk); 3201 unsigned int cur_mss; 3202 int diff, len, err; 3203 int avail_wnd; 3204 3205 /* Inconclusive MTU probe */ 3206 if (icsk->icsk_mtup.probe_size) 3207 icsk->icsk_mtup.probe_size = 0; 3208 3209 if (skb_still_in_host_queue(sk, skb)) 3210 return -EBUSY; 3211 3212 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3213 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3214 WARN_ON_ONCE(1); 3215 return -EINVAL; 3216 } 3217 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3218 return -ENOMEM; 3219 } 3220 3221 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3222 return -EHOSTUNREACH; /* Routing failure or similar. */ 3223 3224 cur_mss = tcp_current_mss(sk); 3225 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3226 3227 /* If receiver has shrunk his window, and skb is out of 3228 * new window, do not retransmit it. The exception is the 3229 * case, when window is shrunk to zero. In this case 3230 * our retransmit of one segment serves as a zero window probe. 3231 */ 3232 if (avail_wnd <= 0) { 3233 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3234 return -EAGAIN; 3235 avail_wnd = cur_mss; 3236 } 3237 3238 len = cur_mss * segs; 3239 if (len > avail_wnd) { 3240 len = rounddown(avail_wnd, cur_mss); 3241 if (!len) 3242 len = avail_wnd; 3243 } 3244 if (skb->len > len) { 3245 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3246 cur_mss, GFP_ATOMIC)) 3247 return -ENOMEM; /* We'll try again later. */ 3248 } else { 3249 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3250 return -ENOMEM; 3251 3252 diff = tcp_skb_pcount(skb); 3253 tcp_set_skb_tso_segs(skb, cur_mss); 3254 diff -= tcp_skb_pcount(skb); 3255 if (diff) 3256 tcp_adjust_pcount(sk, skb, diff); 3257 avail_wnd = min_t(int, avail_wnd, cur_mss); 3258 if (skb->len < avail_wnd) 3259 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3260 } 3261 3262 /* RFC3168, section 6.1.1.1. ECN fallback */ 3263 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3264 tcp_ecn_clear_syn(sk, skb); 3265 3266 /* Update global and local TCP statistics. */ 3267 segs = tcp_skb_pcount(skb); 3268 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3269 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3270 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3271 tp->total_retrans += segs; 3272 tp->bytes_retrans += skb->len; 3273 3274 /* make sure skb->data is aligned on arches that require it 3275 * and check if ack-trimming & collapsing extended the headroom 3276 * beyond what csum_start can cover. 3277 */ 3278 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3279 skb_headroom(skb) >= 0xFFFF)) { 3280 struct sk_buff *nskb; 3281 3282 tcp_skb_tsorted_save(skb) { 3283 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3284 if (nskb) { 3285 nskb->dev = NULL; 3286 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3287 } else { 3288 err = -ENOBUFS; 3289 } 3290 } tcp_skb_tsorted_restore(skb); 3291 3292 if (!err) { 3293 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3294 tcp_rate_skb_sent(sk, skb); 3295 } 3296 } else { 3297 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3298 } 3299 3300 /* To avoid taking spuriously low RTT samples based on a timestamp 3301 * for a transmit that never happened, always mark EVER_RETRANS 3302 */ 3303 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3304 3305 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3306 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3307 TCP_SKB_CB(skb)->seq, segs, err); 3308 3309 if (likely(!err)) { 3310 trace_tcp_retransmit_skb(sk, skb); 3311 } else if (err != -EBUSY) { 3312 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3313 } 3314 return err; 3315 } 3316 3317 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3318 { 3319 struct tcp_sock *tp = tcp_sk(sk); 3320 int err = __tcp_retransmit_skb(sk, skb, segs); 3321 3322 if (err == 0) { 3323 #if FASTRETRANS_DEBUG > 0 3324 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3325 net_dbg_ratelimited("retrans_out leaked\n"); 3326 } 3327 #endif 3328 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3329 tp->retrans_out += tcp_skb_pcount(skb); 3330 } 3331 3332 /* Save stamp of the first (attempted) retransmit. */ 3333 if (!tp->retrans_stamp) 3334 tp->retrans_stamp = tcp_skb_timestamp(skb); 3335 3336 if (tp->undo_retrans < 0) 3337 tp->undo_retrans = 0; 3338 tp->undo_retrans += tcp_skb_pcount(skb); 3339 return err; 3340 } 3341 3342 /* This gets called after a retransmit timeout, and the initially 3343 * retransmitted data is acknowledged. It tries to continue 3344 * resending the rest of the retransmit queue, until either 3345 * we've sent it all or the congestion window limit is reached. 3346 */ 3347 void tcp_xmit_retransmit_queue(struct sock *sk) 3348 { 3349 const struct inet_connection_sock *icsk = inet_csk(sk); 3350 struct sk_buff *skb, *rtx_head, *hole = NULL; 3351 struct tcp_sock *tp = tcp_sk(sk); 3352 bool rearm_timer = false; 3353 u32 max_segs; 3354 int mib_idx; 3355 3356 if (!tp->packets_out) 3357 return; 3358 3359 rtx_head = tcp_rtx_queue_head(sk); 3360 skb = tp->retransmit_skb_hint ?: rtx_head; 3361 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3362 skb_rbtree_walk_from(skb) { 3363 __u8 sacked; 3364 int segs; 3365 3366 if (tcp_pacing_check(sk)) 3367 break; 3368 3369 /* we could do better than to assign each time */ 3370 if (!hole) 3371 tp->retransmit_skb_hint = skb; 3372 3373 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3374 if (segs <= 0) 3375 break; 3376 sacked = TCP_SKB_CB(skb)->sacked; 3377 /* In case tcp_shift_skb_data() have aggregated large skbs, 3378 * we need to make sure not sending too bigs TSO packets 3379 */ 3380 segs = min_t(int, segs, max_segs); 3381 3382 if (tp->retrans_out >= tp->lost_out) { 3383 break; 3384 } else if (!(sacked & TCPCB_LOST)) { 3385 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3386 hole = skb; 3387 continue; 3388 3389 } else { 3390 if (icsk->icsk_ca_state != TCP_CA_Loss) 3391 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3392 else 3393 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3394 } 3395 3396 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3397 continue; 3398 3399 if (tcp_small_queue_check(sk, skb, 1)) 3400 break; 3401 3402 if (tcp_retransmit_skb(sk, skb, segs)) 3403 break; 3404 3405 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3406 3407 if (tcp_in_cwnd_reduction(sk)) 3408 tp->prr_out += tcp_skb_pcount(skb); 3409 3410 if (skb == rtx_head && 3411 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3412 rearm_timer = true; 3413 3414 } 3415 if (rearm_timer) 3416 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3417 inet_csk(sk)->icsk_rto, 3418 TCP_RTO_MAX); 3419 } 3420 3421 /* We allow to exceed memory limits for FIN packets to expedite 3422 * connection tear down and (memory) recovery. 3423 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3424 * or even be forced to close flow without any FIN. 3425 * In general, we want to allow one skb per socket to avoid hangs 3426 * with edge trigger epoll() 3427 */ 3428 void sk_forced_mem_schedule(struct sock *sk, int size) 3429 { 3430 int delta, amt; 3431 3432 delta = size - sk->sk_forward_alloc; 3433 if (delta <= 0) 3434 return; 3435 amt = sk_mem_pages(delta); 3436 sk->sk_forward_alloc += amt << PAGE_SHIFT; 3437 sk_memory_allocated_add(sk, amt); 3438 3439 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3440 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3441 gfp_memcg_charge() | __GFP_NOFAIL); 3442 } 3443 3444 /* Send a FIN. The caller locks the socket for us. 3445 * We should try to send a FIN packet really hard, but eventually give up. 3446 */ 3447 void tcp_send_fin(struct sock *sk) 3448 { 3449 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3450 struct tcp_sock *tp = tcp_sk(sk); 3451 3452 /* Optimization, tack on the FIN if we have one skb in write queue and 3453 * this skb was not yet sent, or we are under memory pressure. 3454 * Note: in the latter case, FIN packet will be sent after a timeout, 3455 * as TCP stack thinks it has already been transmitted. 3456 */ 3457 tskb = tail; 3458 if (!tskb && tcp_under_memory_pressure(sk)) 3459 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3460 3461 if (tskb) { 3462 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3463 TCP_SKB_CB(tskb)->end_seq++; 3464 tp->write_seq++; 3465 if (!tail) { 3466 /* This means tskb was already sent. 3467 * Pretend we included the FIN on previous transmit. 3468 * We need to set tp->snd_nxt to the value it would have 3469 * if FIN had been sent. This is because retransmit path 3470 * does not change tp->snd_nxt. 3471 */ 3472 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3473 return; 3474 } 3475 } else { 3476 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3477 if (unlikely(!skb)) 3478 return; 3479 3480 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3481 skb_reserve(skb, MAX_TCP_HEADER); 3482 sk_forced_mem_schedule(sk, skb->truesize); 3483 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3484 tcp_init_nondata_skb(skb, tp->write_seq, 3485 TCPHDR_ACK | TCPHDR_FIN); 3486 tcp_queue_skb(sk, skb); 3487 } 3488 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3489 } 3490 3491 /* We get here when a process closes a file descriptor (either due to 3492 * an explicit close() or as a byproduct of exit()'ing) and there 3493 * was unread data in the receive queue. This behavior is recommended 3494 * by RFC 2525, section 2.17. -DaveM 3495 */ 3496 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3497 { 3498 struct sk_buff *skb; 3499 3500 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3501 3502 /* NOTE: No TCP options attached and we never retransmit this. */ 3503 skb = alloc_skb(MAX_TCP_HEADER, priority); 3504 if (!skb) { 3505 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3506 return; 3507 } 3508 3509 /* Reserve space for headers and prepare control bits. */ 3510 skb_reserve(skb, MAX_TCP_HEADER); 3511 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3512 TCPHDR_ACK | TCPHDR_RST); 3513 tcp_mstamp_refresh(tcp_sk(sk)); 3514 /* Send it off. */ 3515 if (tcp_transmit_skb(sk, skb, 0, priority)) 3516 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3517 3518 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3519 * skb here is different to the troublesome skb, so use NULL 3520 */ 3521 trace_tcp_send_reset(sk, NULL); 3522 } 3523 3524 /* Send a crossed SYN-ACK during socket establishment. 3525 * WARNING: This routine must only be called when we have already sent 3526 * a SYN packet that crossed the incoming SYN that caused this routine 3527 * to get called. If this assumption fails then the initial rcv_wnd 3528 * and rcv_wscale values will not be correct. 3529 */ 3530 int tcp_send_synack(struct sock *sk) 3531 { 3532 struct sk_buff *skb; 3533 3534 skb = tcp_rtx_queue_head(sk); 3535 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3536 pr_err("%s: wrong queue state\n", __func__); 3537 return -EFAULT; 3538 } 3539 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3540 if (skb_cloned(skb)) { 3541 struct sk_buff *nskb; 3542 3543 tcp_skb_tsorted_save(skb) { 3544 nskb = skb_copy(skb, GFP_ATOMIC); 3545 } tcp_skb_tsorted_restore(skb); 3546 if (!nskb) 3547 return -ENOMEM; 3548 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3549 tcp_highest_sack_replace(sk, skb, nskb); 3550 tcp_rtx_queue_unlink_and_free(skb, sk); 3551 __skb_header_release(nskb); 3552 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3553 sk_wmem_queued_add(sk, nskb->truesize); 3554 sk_mem_charge(sk, nskb->truesize); 3555 skb = nskb; 3556 } 3557 3558 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3559 tcp_ecn_send_synack(sk, skb); 3560 } 3561 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3562 } 3563 3564 /** 3565 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3566 * @sk: listener socket 3567 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3568 * should not use it again. 3569 * @req: request_sock pointer 3570 * @foc: cookie for tcp fast open 3571 * @synack_type: Type of synack to prepare 3572 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3573 */ 3574 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3575 struct request_sock *req, 3576 struct tcp_fastopen_cookie *foc, 3577 enum tcp_synack_type synack_type, 3578 struct sk_buff *syn_skb) 3579 { 3580 struct inet_request_sock *ireq = inet_rsk(req); 3581 const struct tcp_sock *tp = tcp_sk(sk); 3582 struct tcp_md5sig_key *md5 = NULL; 3583 struct tcp_out_options opts; 3584 struct sk_buff *skb; 3585 int tcp_header_size; 3586 struct tcphdr *th; 3587 int mss; 3588 u64 now; 3589 3590 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3591 if (unlikely(!skb)) { 3592 dst_release(dst); 3593 return NULL; 3594 } 3595 /* Reserve space for headers. */ 3596 skb_reserve(skb, MAX_TCP_HEADER); 3597 3598 switch (synack_type) { 3599 case TCP_SYNACK_NORMAL: 3600 skb_set_owner_w(skb, req_to_sk(req)); 3601 break; 3602 case TCP_SYNACK_COOKIE: 3603 /* Under synflood, we do not attach skb to a socket, 3604 * to avoid false sharing. 3605 */ 3606 break; 3607 case TCP_SYNACK_FASTOPEN: 3608 /* sk is a const pointer, because we want to express multiple 3609 * cpu might call us concurrently. 3610 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3611 */ 3612 skb_set_owner_w(skb, (struct sock *)sk); 3613 break; 3614 } 3615 skb_dst_set(skb, dst); 3616 3617 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3618 3619 memset(&opts, 0, sizeof(opts)); 3620 now = tcp_clock_ns(); 3621 #ifdef CONFIG_SYN_COOKIES 3622 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3623 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3624 true); 3625 else 3626 #endif 3627 { 3628 skb_set_delivery_time(skb, now, true); 3629 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3630 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3631 } 3632 3633 #ifdef CONFIG_TCP_MD5SIG 3634 rcu_read_lock(); 3635 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3636 #endif 3637 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3638 /* bpf program will be interested in the tcp_flags */ 3639 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3640 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3641 foc, synack_type, 3642 syn_skb) + sizeof(*th); 3643 3644 skb_push(skb, tcp_header_size); 3645 skb_reset_transport_header(skb); 3646 3647 th = (struct tcphdr *)skb->data; 3648 memset(th, 0, sizeof(struct tcphdr)); 3649 th->syn = 1; 3650 th->ack = 1; 3651 tcp_ecn_make_synack(req, th); 3652 th->source = htons(ireq->ir_num); 3653 th->dest = ireq->ir_rmt_port; 3654 skb->mark = ireq->ir_mark; 3655 skb->ip_summed = CHECKSUM_PARTIAL; 3656 th->seq = htonl(tcp_rsk(req)->snt_isn); 3657 /* XXX data is queued and acked as is. No buffer/window check */ 3658 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3659 3660 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3661 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3662 tcp_options_write(th, NULL, &opts); 3663 th->doff = (tcp_header_size >> 2); 3664 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3665 3666 #ifdef CONFIG_TCP_MD5SIG 3667 /* Okay, we have all we need - do the md5 hash if needed */ 3668 if (md5) 3669 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3670 md5, req_to_sk(req), skb); 3671 rcu_read_unlock(); 3672 #endif 3673 3674 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3675 synack_type, &opts); 3676 3677 skb_set_delivery_time(skb, now, true); 3678 tcp_add_tx_delay(skb, tp); 3679 3680 return skb; 3681 } 3682 EXPORT_SYMBOL(tcp_make_synack); 3683 3684 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3685 { 3686 struct inet_connection_sock *icsk = inet_csk(sk); 3687 const struct tcp_congestion_ops *ca; 3688 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3689 3690 if (ca_key == TCP_CA_UNSPEC) 3691 return; 3692 3693 rcu_read_lock(); 3694 ca = tcp_ca_find_key(ca_key); 3695 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3696 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3697 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3698 icsk->icsk_ca_ops = ca; 3699 } 3700 rcu_read_unlock(); 3701 } 3702 3703 /* Do all connect socket setups that can be done AF independent. */ 3704 static void tcp_connect_init(struct sock *sk) 3705 { 3706 const struct dst_entry *dst = __sk_dst_get(sk); 3707 struct tcp_sock *tp = tcp_sk(sk); 3708 __u8 rcv_wscale; 3709 u32 rcv_wnd; 3710 3711 /* We'll fix this up when we get a response from the other end. 3712 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3713 */ 3714 tp->tcp_header_len = sizeof(struct tcphdr); 3715 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3716 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3717 3718 #ifdef CONFIG_TCP_MD5SIG 3719 if (tp->af_specific->md5_lookup(sk, sk)) 3720 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3721 #endif 3722 3723 /* If user gave his TCP_MAXSEG, record it to clamp */ 3724 if (tp->rx_opt.user_mss) 3725 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3726 tp->max_window = 0; 3727 tcp_mtup_init(sk); 3728 tcp_sync_mss(sk, dst_mtu(dst)); 3729 3730 tcp_ca_dst_init(sk, dst); 3731 3732 if (!tp->window_clamp) 3733 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3734 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3735 3736 tcp_initialize_rcv_mss(sk); 3737 3738 /* limit the window selection if the user enforce a smaller rx buffer */ 3739 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3740 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3741 tp->window_clamp = tcp_full_space(sk); 3742 3743 rcv_wnd = tcp_rwnd_init_bpf(sk); 3744 if (rcv_wnd == 0) 3745 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3746 3747 tcp_select_initial_window(sk, tcp_full_space(sk), 3748 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3749 &tp->rcv_wnd, 3750 &tp->window_clamp, 3751 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3752 &rcv_wscale, 3753 rcv_wnd); 3754 3755 tp->rx_opt.rcv_wscale = rcv_wscale; 3756 tp->rcv_ssthresh = tp->rcv_wnd; 3757 3758 WRITE_ONCE(sk->sk_err, 0); 3759 sock_reset_flag(sk, SOCK_DONE); 3760 tp->snd_wnd = 0; 3761 tcp_init_wl(tp, 0); 3762 tcp_write_queue_purge(sk); 3763 tp->snd_una = tp->write_seq; 3764 tp->snd_sml = tp->write_seq; 3765 tp->snd_up = tp->write_seq; 3766 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3767 3768 if (likely(!tp->repair)) 3769 tp->rcv_nxt = 0; 3770 else 3771 tp->rcv_tstamp = tcp_jiffies32; 3772 tp->rcv_wup = tp->rcv_nxt; 3773 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3774 3775 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3776 inet_csk(sk)->icsk_retransmits = 0; 3777 tcp_clear_retrans(tp); 3778 } 3779 3780 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3781 { 3782 struct tcp_sock *tp = tcp_sk(sk); 3783 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3784 3785 tcb->end_seq += skb->len; 3786 __skb_header_release(skb); 3787 sk_wmem_queued_add(sk, skb->truesize); 3788 sk_mem_charge(sk, skb->truesize); 3789 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3790 tp->packets_out += tcp_skb_pcount(skb); 3791 } 3792 3793 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3794 * queue a data-only packet after the regular SYN, such that regular SYNs 3795 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3796 * only the SYN sequence, the data are retransmitted in the first ACK. 3797 * If cookie is not cached or other error occurs, falls back to send a 3798 * regular SYN with Fast Open cookie request option. 3799 */ 3800 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3801 { 3802 struct inet_connection_sock *icsk = inet_csk(sk); 3803 struct tcp_sock *tp = tcp_sk(sk); 3804 struct tcp_fastopen_request *fo = tp->fastopen_req; 3805 int space, err = 0; 3806 struct sk_buff *syn_data; 3807 3808 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3809 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3810 goto fallback; 3811 3812 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3813 * user-MSS. Reserve maximum option space for middleboxes that add 3814 * private TCP options. The cost is reduced data space in SYN :( 3815 */ 3816 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3817 /* Sync mss_cache after updating the mss_clamp */ 3818 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3819 3820 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3821 MAX_TCP_OPTION_SPACE; 3822 3823 space = min_t(size_t, space, fo->size); 3824 3825 /* limit to order-0 allocations */ 3826 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3827 3828 syn_data = tcp_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3829 if (!syn_data) 3830 goto fallback; 3831 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3832 if (space) { 3833 int copied = copy_from_iter(skb_put(syn_data, space), space, 3834 &fo->data->msg_iter); 3835 if (unlikely(!copied)) { 3836 tcp_skb_tsorted_anchor_cleanup(syn_data); 3837 kfree_skb(syn_data); 3838 goto fallback; 3839 } 3840 if (copied != space) { 3841 skb_trim(syn_data, copied); 3842 space = copied; 3843 } 3844 skb_zcopy_set(syn_data, fo->uarg, NULL); 3845 } 3846 /* No more data pending in inet_wait_for_connect() */ 3847 if (space == fo->size) 3848 fo->data = NULL; 3849 fo->copied = space; 3850 3851 tcp_connect_queue_skb(sk, syn_data); 3852 if (syn_data->len) 3853 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3854 3855 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3856 3857 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true); 3858 3859 /* Now full SYN+DATA was cloned and sent (or not), 3860 * remove the SYN from the original skb (syn_data) 3861 * we keep in write queue in case of a retransmit, as we 3862 * also have the SYN packet (with no data) in the same queue. 3863 */ 3864 TCP_SKB_CB(syn_data)->seq++; 3865 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3866 if (!err) { 3867 tp->syn_data = (fo->copied > 0); 3868 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3869 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3870 goto done; 3871 } 3872 3873 /* data was not sent, put it in write_queue */ 3874 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3875 tp->packets_out -= tcp_skb_pcount(syn_data); 3876 3877 fallback: 3878 /* Send a regular SYN with Fast Open cookie request option */ 3879 if (fo->cookie.len > 0) 3880 fo->cookie.len = 0; 3881 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3882 if (err) 3883 tp->syn_fastopen = 0; 3884 done: 3885 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3886 return err; 3887 } 3888 3889 /* Build a SYN and send it off. */ 3890 int tcp_connect(struct sock *sk) 3891 { 3892 struct tcp_sock *tp = tcp_sk(sk); 3893 struct sk_buff *buff; 3894 int err; 3895 3896 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3897 3898 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3899 return -EHOSTUNREACH; /* Routing failure or similar. */ 3900 3901 tcp_connect_init(sk); 3902 3903 if (unlikely(tp->repair)) { 3904 tcp_finish_connect(sk, NULL); 3905 return 0; 3906 } 3907 3908 buff = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3909 if (unlikely(!buff)) 3910 return -ENOBUFS; 3911 3912 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3913 tcp_mstamp_refresh(tp); 3914 tp->retrans_stamp = tcp_time_stamp(tp); 3915 tcp_connect_queue_skb(sk, buff); 3916 tcp_ecn_send_syn(sk, buff); 3917 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3918 3919 /* Send off SYN; include data in Fast Open. */ 3920 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3921 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3922 if (err == -ECONNREFUSED) 3923 return err; 3924 3925 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3926 * in order to make this packet get counted in tcpOutSegs. 3927 */ 3928 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3929 tp->pushed_seq = tp->write_seq; 3930 buff = tcp_send_head(sk); 3931 if (unlikely(buff)) { 3932 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3933 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3934 } 3935 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3936 3937 /* Timer for repeating the SYN until an answer. */ 3938 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3939 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3940 return 0; 3941 } 3942 EXPORT_SYMBOL(tcp_connect); 3943 3944 /* Send out a delayed ack, the caller does the policy checking 3945 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3946 * for details. 3947 */ 3948 void tcp_send_delayed_ack(struct sock *sk) 3949 { 3950 struct inet_connection_sock *icsk = inet_csk(sk); 3951 int ato = icsk->icsk_ack.ato; 3952 unsigned long timeout; 3953 3954 if (ato > TCP_DELACK_MIN) { 3955 const struct tcp_sock *tp = tcp_sk(sk); 3956 int max_ato = HZ / 2; 3957 3958 if (inet_csk_in_pingpong_mode(sk) || 3959 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3960 max_ato = TCP_DELACK_MAX; 3961 3962 /* Slow path, intersegment interval is "high". */ 3963 3964 /* If some rtt estimate is known, use it to bound delayed ack. 3965 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3966 * directly. 3967 */ 3968 if (tp->srtt_us) { 3969 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3970 TCP_DELACK_MIN); 3971 3972 if (rtt < max_ato) 3973 max_ato = rtt; 3974 } 3975 3976 ato = min(ato, max_ato); 3977 } 3978 3979 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max); 3980 3981 /* Stay within the limit we were given */ 3982 timeout = jiffies + ato; 3983 3984 /* Use new timeout only if there wasn't a older one earlier. */ 3985 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3986 /* If delack timer is about to expire, send ACK now. */ 3987 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3988 tcp_send_ack(sk); 3989 return; 3990 } 3991 3992 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3993 timeout = icsk->icsk_ack.timeout; 3994 } 3995 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3996 icsk->icsk_ack.timeout = timeout; 3997 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3998 } 3999 4000 /* This routine sends an ack and also updates the window. */ 4001 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 4002 { 4003 struct sk_buff *buff; 4004 4005 /* If we have been reset, we may not send again. */ 4006 if (sk->sk_state == TCP_CLOSE) 4007 return; 4008 4009 /* We are not putting this on the write queue, so 4010 * tcp_transmit_skb() will set the ownership to this 4011 * sock. 4012 */ 4013 buff = alloc_skb(MAX_TCP_HEADER, 4014 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4015 if (unlikely(!buff)) { 4016 struct inet_connection_sock *icsk = inet_csk(sk); 4017 unsigned long delay; 4018 4019 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4020 if (delay < TCP_RTO_MAX) 4021 icsk->icsk_ack.retry++; 4022 inet_csk_schedule_ack(sk); 4023 icsk->icsk_ack.ato = TCP_ATO_MIN; 4024 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 4025 return; 4026 } 4027 4028 /* Reserve space for headers and prepare control bits. */ 4029 skb_reserve(buff, MAX_TCP_HEADER); 4030 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 4031 4032 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4033 * too much. 4034 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4035 */ 4036 skb_set_tcp_pure_ack(buff); 4037 4038 /* Send it off, this clears delayed acks for us. */ 4039 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4040 } 4041 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4042 4043 void tcp_send_ack(struct sock *sk) 4044 { 4045 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 4046 } 4047 4048 /* This routine sends a packet with an out of date sequence 4049 * number. It assumes the other end will try to ack it. 4050 * 4051 * Question: what should we make while urgent mode? 4052 * 4.4BSD forces sending single byte of data. We cannot send 4053 * out of window data, because we have SND.NXT==SND.MAX... 4054 * 4055 * Current solution: to send TWO zero-length segments in urgent mode: 4056 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4057 * out-of-date with SND.UNA-1 to probe window. 4058 */ 4059 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4060 { 4061 struct tcp_sock *tp = tcp_sk(sk); 4062 struct sk_buff *skb; 4063 4064 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4065 skb = alloc_skb(MAX_TCP_HEADER, 4066 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4067 if (!skb) 4068 return -1; 4069 4070 /* Reserve space for headers and set control bits. */ 4071 skb_reserve(skb, MAX_TCP_HEADER); 4072 /* Use a previous sequence. This should cause the other 4073 * end to send an ack. Don't queue or clone SKB, just 4074 * send it. 4075 */ 4076 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4077 NET_INC_STATS(sock_net(sk), mib); 4078 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4079 } 4080 4081 /* Called from setsockopt( ... TCP_REPAIR ) */ 4082 void tcp_send_window_probe(struct sock *sk) 4083 { 4084 if (sk->sk_state == TCP_ESTABLISHED) { 4085 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4086 tcp_mstamp_refresh(tcp_sk(sk)); 4087 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4088 } 4089 } 4090 4091 /* Initiate keepalive or window probe from timer. */ 4092 int tcp_write_wakeup(struct sock *sk, int mib) 4093 { 4094 struct tcp_sock *tp = tcp_sk(sk); 4095 struct sk_buff *skb; 4096 4097 if (sk->sk_state == TCP_CLOSE) 4098 return -1; 4099 4100 skb = tcp_send_head(sk); 4101 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4102 int err; 4103 unsigned int mss = tcp_current_mss(sk); 4104 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4105 4106 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4107 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4108 4109 /* We are probing the opening of a window 4110 * but the window size is != 0 4111 * must have been a result SWS avoidance ( sender ) 4112 */ 4113 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4114 skb->len > mss) { 4115 seg_size = min(seg_size, mss); 4116 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4117 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4118 skb, seg_size, mss, GFP_ATOMIC)) 4119 return -1; 4120 } else if (!tcp_skb_pcount(skb)) 4121 tcp_set_skb_tso_segs(skb, mss); 4122 4123 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4124 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4125 if (!err) 4126 tcp_event_new_data_sent(sk, skb); 4127 return err; 4128 } else { 4129 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4130 tcp_xmit_probe_skb(sk, 1, mib); 4131 return tcp_xmit_probe_skb(sk, 0, mib); 4132 } 4133 } 4134 4135 /* A window probe timeout has occurred. If window is not closed send 4136 * a partial packet else a zero probe. 4137 */ 4138 void tcp_send_probe0(struct sock *sk) 4139 { 4140 struct inet_connection_sock *icsk = inet_csk(sk); 4141 struct tcp_sock *tp = tcp_sk(sk); 4142 struct net *net = sock_net(sk); 4143 unsigned long timeout; 4144 int err; 4145 4146 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4147 4148 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4149 /* Cancel probe timer, if it is not required. */ 4150 icsk->icsk_probes_out = 0; 4151 icsk->icsk_backoff = 0; 4152 icsk->icsk_probes_tstamp = 0; 4153 return; 4154 } 4155 4156 icsk->icsk_probes_out++; 4157 if (err <= 0) { 4158 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4159 icsk->icsk_backoff++; 4160 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4161 } else { 4162 /* If packet was not sent due to local congestion, 4163 * Let senders fight for local resources conservatively. 4164 */ 4165 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4166 } 4167 4168 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4169 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4170 } 4171 4172 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4173 { 4174 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4175 struct flowi fl; 4176 int res; 4177 4178 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4179 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4180 tcp_rsk(req)->txhash = net_tx_rndhash(); 4181 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4182 NULL); 4183 if (!res) { 4184 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4185 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4186 if (unlikely(tcp_passive_fastopen(sk))) { 4187 /* sk has const attribute because listeners are lockless. 4188 * However in this case, we are dealing with a passive fastopen 4189 * socket thus we can change total_retrans value. 4190 */ 4191 tcp_sk_rw(sk)->total_retrans++; 4192 } 4193 trace_tcp_retransmit_synack(sk, req); 4194 } 4195 return res; 4196 } 4197 EXPORT_SYMBOL(tcp_rtx_synack); 4198