xref: /openbmc/linux/net/ipv4/tcp_output.c (revision dc3e0aa5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45 
46 #include <trace/events/tcp.h>
47 
48 /* Refresh clocks of a TCP socket,
49  * ensuring monotically increasing values.
50  */
51 void tcp_mstamp_refresh(struct tcp_sock *tp)
52 {
53 	u64 val = tcp_clock_ns();
54 
55 	tp->tcp_clock_cache = val;
56 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
57 }
58 
59 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
60 			   int push_one, gfp_t gfp);
61 
62 /* Account for new data that has been sent to the network. */
63 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
64 {
65 	struct inet_connection_sock *icsk = inet_csk(sk);
66 	struct tcp_sock *tp = tcp_sk(sk);
67 	unsigned int prior_packets = tp->packets_out;
68 
69 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
70 
71 	__skb_unlink(skb, &sk->sk_write_queue);
72 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
73 
74 	tp->packets_out += tcp_skb_pcount(skb);
75 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
76 		tcp_rearm_rto(sk);
77 
78 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
79 		      tcp_skb_pcount(skb));
80 }
81 
82 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
83  * window scaling factor due to loss of precision.
84  * If window has been shrunk, what should we make? It is not clear at all.
85  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
86  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
87  * invalid. OK, let's make this for now:
88  */
89 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
90 {
91 	const struct tcp_sock *tp = tcp_sk(sk);
92 
93 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
94 	    (tp->rx_opt.wscale_ok &&
95 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
96 		return tp->snd_nxt;
97 	else
98 		return tcp_wnd_end(tp);
99 }
100 
101 /* Calculate mss to advertise in SYN segment.
102  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
103  *
104  * 1. It is independent of path mtu.
105  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
106  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
107  *    attached devices, because some buggy hosts are confused by
108  *    large MSS.
109  * 4. We do not make 3, we advertise MSS, calculated from first
110  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
111  *    This may be overridden via information stored in routing table.
112  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
113  *    probably even Jumbo".
114  */
115 static __u16 tcp_advertise_mss(struct sock *sk)
116 {
117 	struct tcp_sock *tp = tcp_sk(sk);
118 	const struct dst_entry *dst = __sk_dst_get(sk);
119 	int mss = tp->advmss;
120 
121 	if (dst) {
122 		unsigned int metric = dst_metric_advmss(dst);
123 
124 		if (metric < mss) {
125 			mss = metric;
126 			tp->advmss = mss;
127 		}
128 	}
129 
130 	return (__u16)mss;
131 }
132 
133 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
134  * This is the first part of cwnd validation mechanism.
135  */
136 void tcp_cwnd_restart(struct sock *sk, s32 delta)
137 {
138 	struct tcp_sock *tp = tcp_sk(sk);
139 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
140 	u32 cwnd = tp->snd_cwnd;
141 
142 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
143 
144 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
145 	restart_cwnd = min(restart_cwnd, cwnd);
146 
147 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
148 		cwnd >>= 1;
149 	tp->snd_cwnd = max(cwnd, restart_cwnd);
150 	tp->snd_cwnd_stamp = tcp_jiffies32;
151 	tp->snd_cwnd_used = 0;
152 }
153 
154 /* Congestion state accounting after a packet has been sent. */
155 static void tcp_event_data_sent(struct tcp_sock *tp,
156 				struct sock *sk)
157 {
158 	struct inet_connection_sock *icsk = inet_csk(sk);
159 	const u32 now = tcp_jiffies32;
160 
161 	if (tcp_packets_in_flight(tp) == 0)
162 		tcp_ca_event(sk, CA_EVENT_TX_START);
163 
164 	/* If this is the first data packet sent in response to the
165 	 * previous received data,
166 	 * and it is a reply for ato after last received packet,
167 	 * increase pingpong count.
168 	 */
169 	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
170 	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
171 		inet_csk_inc_pingpong_cnt(sk);
172 
173 	tp->lsndtime = now;
174 }
175 
176 /* Account for an ACK we sent. */
177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
178 				      u32 rcv_nxt)
179 {
180 	struct tcp_sock *tp = tcp_sk(sk);
181 
182 	if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
183 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
184 			      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
185 		tp->compressed_ack = TCP_FASTRETRANS_THRESH;
186 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
187 			__sock_put(sk);
188 	}
189 
190 	if (unlikely(rcv_nxt != tp->rcv_nxt))
191 		return;  /* Special ACK sent by DCTCP to reflect ECN */
192 	tcp_dec_quickack_mode(sk, pkts);
193 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
194 }
195 
196 /* Determine a window scaling and initial window to offer.
197  * Based on the assumption that the given amount of space
198  * will be offered. Store the results in the tp structure.
199  * NOTE: for smooth operation initial space offering should
200  * be a multiple of mss if possible. We assume here that mss >= 1.
201  * This MUST be enforced by all callers.
202  */
203 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
204 			       __u32 *rcv_wnd, __u32 *window_clamp,
205 			       int wscale_ok, __u8 *rcv_wscale,
206 			       __u32 init_rcv_wnd)
207 {
208 	unsigned int space = (__space < 0 ? 0 : __space);
209 
210 	/* If no clamp set the clamp to the max possible scaled window */
211 	if (*window_clamp == 0)
212 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
213 	space = min(*window_clamp, space);
214 
215 	/* Quantize space offering to a multiple of mss if possible. */
216 	if (space > mss)
217 		space = rounddown(space, mss);
218 
219 	/* NOTE: offering an initial window larger than 32767
220 	 * will break some buggy TCP stacks. If the admin tells us
221 	 * it is likely we could be speaking with such a buggy stack
222 	 * we will truncate our initial window offering to 32K-1
223 	 * unless the remote has sent us a window scaling option,
224 	 * which we interpret as a sign the remote TCP is not
225 	 * misinterpreting the window field as a signed quantity.
226 	 */
227 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
228 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
229 	else
230 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
231 
232 	if (init_rcv_wnd)
233 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
234 
235 	*rcv_wscale = 0;
236 	if (wscale_ok) {
237 		/* Set window scaling on max possible window */
238 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
239 		space = max_t(u32, space, sysctl_rmem_max);
240 		space = min_t(u32, space, *window_clamp);
241 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
242 				      0, TCP_MAX_WSCALE);
243 	}
244 	/* Set the clamp no higher than max representable value */
245 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
246 }
247 EXPORT_SYMBOL(tcp_select_initial_window);
248 
249 /* Chose a new window to advertise, update state in tcp_sock for the
250  * socket, and return result with RFC1323 scaling applied.  The return
251  * value can be stuffed directly into th->window for an outgoing
252  * frame.
253  */
254 static u16 tcp_select_window(struct sock *sk)
255 {
256 	struct tcp_sock *tp = tcp_sk(sk);
257 	u32 old_win = tp->rcv_wnd;
258 	u32 cur_win = tcp_receive_window(tp);
259 	u32 new_win = __tcp_select_window(sk);
260 
261 	/* Never shrink the offered window */
262 	if (new_win < cur_win) {
263 		/* Danger Will Robinson!
264 		 * Don't update rcv_wup/rcv_wnd here or else
265 		 * we will not be able to advertise a zero
266 		 * window in time.  --DaveM
267 		 *
268 		 * Relax Will Robinson.
269 		 */
270 		if (new_win == 0)
271 			NET_INC_STATS(sock_net(sk),
272 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
273 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
274 	}
275 	tp->rcv_wnd = new_win;
276 	tp->rcv_wup = tp->rcv_nxt;
277 
278 	/* Make sure we do not exceed the maximum possible
279 	 * scaled window.
280 	 */
281 	if (!tp->rx_opt.rcv_wscale &&
282 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
283 		new_win = min(new_win, MAX_TCP_WINDOW);
284 	else
285 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
286 
287 	/* RFC1323 scaling applied */
288 	new_win >>= tp->rx_opt.rcv_wscale;
289 
290 	/* If we advertise zero window, disable fast path. */
291 	if (new_win == 0) {
292 		tp->pred_flags = 0;
293 		if (old_win)
294 			NET_INC_STATS(sock_net(sk),
295 				      LINUX_MIB_TCPTOZEROWINDOWADV);
296 	} else if (old_win == 0) {
297 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
298 	}
299 
300 	return new_win;
301 }
302 
303 /* Packet ECN state for a SYN-ACK */
304 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
305 {
306 	const struct tcp_sock *tp = tcp_sk(sk);
307 
308 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
309 	if (!(tp->ecn_flags & TCP_ECN_OK))
310 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
311 	else if (tcp_ca_needs_ecn(sk) ||
312 		 tcp_bpf_ca_needs_ecn(sk))
313 		INET_ECN_xmit(sk);
314 }
315 
316 /* Packet ECN state for a SYN.  */
317 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
318 {
319 	struct tcp_sock *tp = tcp_sk(sk);
320 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
321 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
322 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
323 
324 	if (!use_ecn) {
325 		const struct dst_entry *dst = __sk_dst_get(sk);
326 
327 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
328 			use_ecn = true;
329 	}
330 
331 	tp->ecn_flags = 0;
332 
333 	if (use_ecn) {
334 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
335 		tp->ecn_flags = TCP_ECN_OK;
336 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
337 			INET_ECN_xmit(sk);
338 	}
339 }
340 
341 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
342 {
343 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
344 		/* tp->ecn_flags are cleared at a later point in time when
345 		 * SYN ACK is ultimatively being received.
346 		 */
347 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
348 }
349 
350 static void
351 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
352 {
353 	if (inet_rsk(req)->ecn_ok)
354 		th->ece = 1;
355 }
356 
357 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
358  * be sent.
359  */
360 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
361 			 struct tcphdr *th, int tcp_header_len)
362 {
363 	struct tcp_sock *tp = tcp_sk(sk);
364 
365 	if (tp->ecn_flags & TCP_ECN_OK) {
366 		/* Not-retransmitted data segment: set ECT and inject CWR. */
367 		if (skb->len != tcp_header_len &&
368 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
369 			INET_ECN_xmit(sk);
370 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
371 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
372 				th->cwr = 1;
373 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
374 			}
375 		} else if (!tcp_ca_needs_ecn(sk)) {
376 			/* ACK or retransmitted segment: clear ECT|CE */
377 			INET_ECN_dontxmit(sk);
378 		}
379 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
380 			th->ece = 1;
381 	}
382 }
383 
384 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
385  * auto increment end seqno.
386  */
387 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
388 {
389 	skb->ip_summed = CHECKSUM_PARTIAL;
390 
391 	TCP_SKB_CB(skb)->tcp_flags = flags;
392 	TCP_SKB_CB(skb)->sacked = 0;
393 
394 	tcp_skb_pcount_set(skb, 1);
395 
396 	TCP_SKB_CB(skb)->seq = seq;
397 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
398 		seq++;
399 	TCP_SKB_CB(skb)->end_seq = seq;
400 }
401 
402 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
403 {
404 	return tp->snd_una != tp->snd_up;
405 }
406 
407 #define OPTION_SACK_ADVERTISE	(1 << 0)
408 #define OPTION_TS		(1 << 1)
409 #define OPTION_MD5		(1 << 2)
410 #define OPTION_WSCALE		(1 << 3)
411 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
412 #define OPTION_SMC		(1 << 9)
413 
414 static void smc_options_write(__be32 *ptr, u16 *options)
415 {
416 #if IS_ENABLED(CONFIG_SMC)
417 	if (static_branch_unlikely(&tcp_have_smc)) {
418 		if (unlikely(OPTION_SMC & *options)) {
419 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
420 				       (TCPOPT_NOP  << 16) |
421 				       (TCPOPT_EXP <<  8) |
422 				       (TCPOLEN_EXP_SMC_BASE));
423 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
424 		}
425 	}
426 #endif
427 }
428 
429 struct tcp_out_options {
430 	u16 options;		/* bit field of OPTION_* */
431 	u16 mss;		/* 0 to disable */
432 	u8 ws;			/* window scale, 0 to disable */
433 	u8 num_sack_blocks;	/* number of SACK blocks to include */
434 	u8 hash_size;		/* bytes in hash_location */
435 	__u8 *hash_location;	/* temporary pointer, overloaded */
436 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
437 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
438 };
439 
440 /* Write previously computed TCP options to the packet.
441  *
442  * Beware: Something in the Internet is very sensitive to the ordering of
443  * TCP options, we learned this through the hard way, so be careful here.
444  * Luckily we can at least blame others for their non-compliance but from
445  * inter-operability perspective it seems that we're somewhat stuck with
446  * the ordering which we have been using if we want to keep working with
447  * those broken things (not that it currently hurts anybody as there isn't
448  * particular reason why the ordering would need to be changed).
449  *
450  * At least SACK_PERM as the first option is known to lead to a disaster
451  * (but it may well be that other scenarios fail similarly).
452  */
453 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
454 			      struct tcp_out_options *opts)
455 {
456 	u16 options = opts->options;	/* mungable copy */
457 
458 	if (unlikely(OPTION_MD5 & options)) {
459 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
460 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
461 		/* overload cookie hash location */
462 		opts->hash_location = (__u8 *)ptr;
463 		ptr += 4;
464 	}
465 
466 	if (unlikely(opts->mss)) {
467 		*ptr++ = htonl((TCPOPT_MSS << 24) |
468 			       (TCPOLEN_MSS << 16) |
469 			       opts->mss);
470 	}
471 
472 	if (likely(OPTION_TS & options)) {
473 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
474 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
475 				       (TCPOLEN_SACK_PERM << 16) |
476 				       (TCPOPT_TIMESTAMP << 8) |
477 				       TCPOLEN_TIMESTAMP);
478 			options &= ~OPTION_SACK_ADVERTISE;
479 		} else {
480 			*ptr++ = htonl((TCPOPT_NOP << 24) |
481 				       (TCPOPT_NOP << 16) |
482 				       (TCPOPT_TIMESTAMP << 8) |
483 				       TCPOLEN_TIMESTAMP);
484 		}
485 		*ptr++ = htonl(opts->tsval);
486 		*ptr++ = htonl(opts->tsecr);
487 	}
488 
489 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
490 		*ptr++ = htonl((TCPOPT_NOP << 24) |
491 			       (TCPOPT_NOP << 16) |
492 			       (TCPOPT_SACK_PERM << 8) |
493 			       TCPOLEN_SACK_PERM);
494 	}
495 
496 	if (unlikely(OPTION_WSCALE & options)) {
497 		*ptr++ = htonl((TCPOPT_NOP << 24) |
498 			       (TCPOPT_WINDOW << 16) |
499 			       (TCPOLEN_WINDOW << 8) |
500 			       opts->ws);
501 	}
502 
503 	if (unlikely(opts->num_sack_blocks)) {
504 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
505 			tp->duplicate_sack : tp->selective_acks;
506 		int this_sack;
507 
508 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
509 			       (TCPOPT_NOP  << 16) |
510 			       (TCPOPT_SACK <<  8) |
511 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
512 						     TCPOLEN_SACK_PERBLOCK)));
513 
514 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
515 		     ++this_sack) {
516 			*ptr++ = htonl(sp[this_sack].start_seq);
517 			*ptr++ = htonl(sp[this_sack].end_seq);
518 		}
519 
520 		tp->rx_opt.dsack = 0;
521 	}
522 
523 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
524 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
525 		u8 *p = (u8 *)ptr;
526 		u32 len; /* Fast Open option length */
527 
528 		if (foc->exp) {
529 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
530 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
531 				     TCPOPT_FASTOPEN_MAGIC);
532 			p += TCPOLEN_EXP_FASTOPEN_BASE;
533 		} else {
534 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
535 			*p++ = TCPOPT_FASTOPEN;
536 			*p++ = len;
537 		}
538 
539 		memcpy(p, foc->val, foc->len);
540 		if ((len & 3) == 2) {
541 			p[foc->len] = TCPOPT_NOP;
542 			p[foc->len + 1] = TCPOPT_NOP;
543 		}
544 		ptr += (len + 3) >> 2;
545 	}
546 
547 	smc_options_write(ptr, &options);
548 }
549 
550 static void smc_set_option(const struct tcp_sock *tp,
551 			   struct tcp_out_options *opts,
552 			   unsigned int *remaining)
553 {
554 #if IS_ENABLED(CONFIG_SMC)
555 	if (static_branch_unlikely(&tcp_have_smc)) {
556 		if (tp->syn_smc) {
557 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
558 				opts->options |= OPTION_SMC;
559 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
560 			}
561 		}
562 	}
563 #endif
564 }
565 
566 static void smc_set_option_cond(const struct tcp_sock *tp,
567 				const struct inet_request_sock *ireq,
568 				struct tcp_out_options *opts,
569 				unsigned int *remaining)
570 {
571 #if IS_ENABLED(CONFIG_SMC)
572 	if (static_branch_unlikely(&tcp_have_smc)) {
573 		if (tp->syn_smc && ireq->smc_ok) {
574 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
575 				opts->options |= OPTION_SMC;
576 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
577 			}
578 		}
579 	}
580 #endif
581 }
582 
583 /* Compute TCP options for SYN packets. This is not the final
584  * network wire format yet.
585  */
586 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
587 				struct tcp_out_options *opts,
588 				struct tcp_md5sig_key **md5)
589 {
590 	struct tcp_sock *tp = tcp_sk(sk);
591 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
592 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
593 
594 	*md5 = NULL;
595 #ifdef CONFIG_TCP_MD5SIG
596 	if (static_branch_unlikely(&tcp_md5_needed) &&
597 	    rcu_access_pointer(tp->md5sig_info)) {
598 		*md5 = tp->af_specific->md5_lookup(sk, sk);
599 		if (*md5) {
600 			opts->options |= OPTION_MD5;
601 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
602 		}
603 	}
604 #endif
605 
606 	/* We always get an MSS option.  The option bytes which will be seen in
607 	 * normal data packets should timestamps be used, must be in the MSS
608 	 * advertised.  But we subtract them from tp->mss_cache so that
609 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
610 	 * fact here if necessary.  If we don't do this correctly, as a
611 	 * receiver we won't recognize data packets as being full sized when we
612 	 * should, and thus we won't abide by the delayed ACK rules correctly.
613 	 * SACKs don't matter, we never delay an ACK when we have any of those
614 	 * going out.  */
615 	opts->mss = tcp_advertise_mss(sk);
616 	remaining -= TCPOLEN_MSS_ALIGNED;
617 
618 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
619 		opts->options |= OPTION_TS;
620 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
621 		opts->tsecr = tp->rx_opt.ts_recent;
622 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
623 	}
624 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
625 		opts->ws = tp->rx_opt.rcv_wscale;
626 		opts->options |= OPTION_WSCALE;
627 		remaining -= TCPOLEN_WSCALE_ALIGNED;
628 	}
629 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
630 		opts->options |= OPTION_SACK_ADVERTISE;
631 		if (unlikely(!(OPTION_TS & opts->options)))
632 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
633 	}
634 
635 	if (fastopen && fastopen->cookie.len >= 0) {
636 		u32 need = fastopen->cookie.len;
637 
638 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
639 					       TCPOLEN_FASTOPEN_BASE;
640 		need = (need + 3) & ~3U;  /* Align to 32 bits */
641 		if (remaining >= need) {
642 			opts->options |= OPTION_FAST_OPEN_COOKIE;
643 			opts->fastopen_cookie = &fastopen->cookie;
644 			remaining -= need;
645 			tp->syn_fastopen = 1;
646 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
647 		}
648 	}
649 
650 	smc_set_option(tp, opts, &remaining);
651 
652 	return MAX_TCP_OPTION_SPACE - remaining;
653 }
654 
655 /* Set up TCP options for SYN-ACKs. */
656 static unsigned int tcp_synack_options(const struct sock *sk,
657 				       struct request_sock *req,
658 				       unsigned int mss, struct sk_buff *skb,
659 				       struct tcp_out_options *opts,
660 				       const struct tcp_md5sig_key *md5,
661 				       struct tcp_fastopen_cookie *foc)
662 {
663 	struct inet_request_sock *ireq = inet_rsk(req);
664 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
665 
666 #ifdef CONFIG_TCP_MD5SIG
667 	if (md5) {
668 		opts->options |= OPTION_MD5;
669 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
670 
671 		/* We can't fit any SACK blocks in a packet with MD5 + TS
672 		 * options. There was discussion about disabling SACK
673 		 * rather than TS in order to fit in better with old,
674 		 * buggy kernels, but that was deemed to be unnecessary.
675 		 */
676 		ireq->tstamp_ok &= !ireq->sack_ok;
677 	}
678 #endif
679 
680 	/* We always send an MSS option. */
681 	opts->mss = mss;
682 	remaining -= TCPOLEN_MSS_ALIGNED;
683 
684 	if (likely(ireq->wscale_ok)) {
685 		opts->ws = ireq->rcv_wscale;
686 		opts->options |= OPTION_WSCALE;
687 		remaining -= TCPOLEN_WSCALE_ALIGNED;
688 	}
689 	if (likely(ireq->tstamp_ok)) {
690 		opts->options |= OPTION_TS;
691 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
692 		opts->tsecr = req->ts_recent;
693 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
694 	}
695 	if (likely(ireq->sack_ok)) {
696 		opts->options |= OPTION_SACK_ADVERTISE;
697 		if (unlikely(!ireq->tstamp_ok))
698 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
699 	}
700 	if (foc != NULL && foc->len >= 0) {
701 		u32 need = foc->len;
702 
703 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
704 				   TCPOLEN_FASTOPEN_BASE;
705 		need = (need + 3) & ~3U;  /* Align to 32 bits */
706 		if (remaining >= need) {
707 			opts->options |= OPTION_FAST_OPEN_COOKIE;
708 			opts->fastopen_cookie = foc;
709 			remaining -= need;
710 		}
711 	}
712 
713 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
714 
715 	return MAX_TCP_OPTION_SPACE - remaining;
716 }
717 
718 /* Compute TCP options for ESTABLISHED sockets. This is not the
719  * final wire format yet.
720  */
721 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
722 					struct tcp_out_options *opts,
723 					struct tcp_md5sig_key **md5)
724 {
725 	struct tcp_sock *tp = tcp_sk(sk);
726 	unsigned int size = 0;
727 	unsigned int eff_sacks;
728 
729 	opts->options = 0;
730 
731 	*md5 = NULL;
732 #ifdef CONFIG_TCP_MD5SIG
733 	if (static_branch_unlikely(&tcp_md5_needed) &&
734 	    rcu_access_pointer(tp->md5sig_info)) {
735 		*md5 = tp->af_specific->md5_lookup(sk, sk);
736 		if (*md5) {
737 			opts->options |= OPTION_MD5;
738 			size += TCPOLEN_MD5SIG_ALIGNED;
739 		}
740 	}
741 #endif
742 
743 	if (likely(tp->rx_opt.tstamp_ok)) {
744 		opts->options |= OPTION_TS;
745 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
746 		opts->tsecr = tp->rx_opt.ts_recent;
747 		size += TCPOLEN_TSTAMP_ALIGNED;
748 	}
749 
750 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
751 	if (unlikely(eff_sacks)) {
752 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
753 		opts->num_sack_blocks =
754 			min_t(unsigned int, eff_sacks,
755 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
756 			      TCPOLEN_SACK_PERBLOCK);
757 		size += TCPOLEN_SACK_BASE_ALIGNED +
758 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
759 	}
760 
761 	return size;
762 }
763 
764 
765 /* TCP SMALL QUEUES (TSQ)
766  *
767  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
768  * to reduce RTT and bufferbloat.
769  * We do this using a special skb destructor (tcp_wfree).
770  *
771  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
772  * needs to be reallocated in a driver.
773  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
774  *
775  * Since transmit from skb destructor is forbidden, we use a tasklet
776  * to process all sockets that eventually need to send more skbs.
777  * We use one tasklet per cpu, with its own queue of sockets.
778  */
779 struct tsq_tasklet {
780 	struct tasklet_struct	tasklet;
781 	struct list_head	head; /* queue of tcp sockets */
782 };
783 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
784 
785 static void tcp_tsq_write(struct sock *sk)
786 {
787 	if ((1 << sk->sk_state) &
788 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
789 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
790 		struct tcp_sock *tp = tcp_sk(sk);
791 
792 		if (tp->lost_out > tp->retrans_out &&
793 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
794 			tcp_mstamp_refresh(tp);
795 			tcp_xmit_retransmit_queue(sk);
796 		}
797 
798 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
799 			       0, GFP_ATOMIC);
800 	}
801 }
802 
803 static void tcp_tsq_handler(struct sock *sk)
804 {
805 	bh_lock_sock(sk);
806 	if (!sock_owned_by_user(sk))
807 		tcp_tsq_write(sk);
808 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
809 		sock_hold(sk);
810 	bh_unlock_sock(sk);
811 }
812 /*
813  * One tasklet per cpu tries to send more skbs.
814  * We run in tasklet context but need to disable irqs when
815  * transferring tsq->head because tcp_wfree() might
816  * interrupt us (non NAPI drivers)
817  */
818 static void tcp_tasklet_func(unsigned long data)
819 {
820 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
821 	LIST_HEAD(list);
822 	unsigned long flags;
823 	struct list_head *q, *n;
824 	struct tcp_sock *tp;
825 	struct sock *sk;
826 
827 	local_irq_save(flags);
828 	list_splice_init(&tsq->head, &list);
829 	local_irq_restore(flags);
830 
831 	list_for_each_safe(q, n, &list) {
832 		tp = list_entry(q, struct tcp_sock, tsq_node);
833 		list_del(&tp->tsq_node);
834 
835 		sk = (struct sock *)tp;
836 		smp_mb__before_atomic();
837 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
838 
839 		tcp_tsq_handler(sk);
840 		sk_free(sk);
841 	}
842 }
843 
844 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
845 			  TCPF_WRITE_TIMER_DEFERRED |	\
846 			  TCPF_DELACK_TIMER_DEFERRED |	\
847 			  TCPF_MTU_REDUCED_DEFERRED)
848 /**
849  * tcp_release_cb - tcp release_sock() callback
850  * @sk: socket
851  *
852  * called from release_sock() to perform protocol dependent
853  * actions before socket release.
854  */
855 void tcp_release_cb(struct sock *sk)
856 {
857 	unsigned long flags, nflags;
858 
859 	/* perform an atomic operation only if at least one flag is set */
860 	do {
861 		flags = sk->sk_tsq_flags;
862 		if (!(flags & TCP_DEFERRED_ALL))
863 			return;
864 		nflags = flags & ~TCP_DEFERRED_ALL;
865 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
866 
867 	if (flags & TCPF_TSQ_DEFERRED) {
868 		tcp_tsq_write(sk);
869 		__sock_put(sk);
870 	}
871 	/* Here begins the tricky part :
872 	 * We are called from release_sock() with :
873 	 * 1) BH disabled
874 	 * 2) sk_lock.slock spinlock held
875 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
876 	 *
877 	 * But following code is meant to be called from BH handlers,
878 	 * so we should keep BH disabled, but early release socket ownership
879 	 */
880 	sock_release_ownership(sk);
881 
882 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
883 		tcp_write_timer_handler(sk);
884 		__sock_put(sk);
885 	}
886 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
887 		tcp_delack_timer_handler(sk);
888 		__sock_put(sk);
889 	}
890 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
891 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
892 		__sock_put(sk);
893 	}
894 }
895 EXPORT_SYMBOL(tcp_release_cb);
896 
897 void __init tcp_tasklet_init(void)
898 {
899 	int i;
900 
901 	for_each_possible_cpu(i) {
902 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
903 
904 		INIT_LIST_HEAD(&tsq->head);
905 		tasklet_init(&tsq->tasklet,
906 			     tcp_tasklet_func,
907 			     (unsigned long)tsq);
908 	}
909 }
910 
911 /*
912  * Write buffer destructor automatically called from kfree_skb.
913  * We can't xmit new skbs from this context, as we might already
914  * hold qdisc lock.
915  */
916 void tcp_wfree(struct sk_buff *skb)
917 {
918 	struct sock *sk = skb->sk;
919 	struct tcp_sock *tp = tcp_sk(sk);
920 	unsigned long flags, nval, oval;
921 
922 	/* Keep one reference on sk_wmem_alloc.
923 	 * Will be released by sk_free() from here or tcp_tasklet_func()
924 	 */
925 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
926 
927 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
928 	 * Wait until our queues (qdisc + devices) are drained.
929 	 * This gives :
930 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
931 	 * - chance for incoming ACK (processed by another cpu maybe)
932 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
933 	 */
934 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
935 		goto out;
936 
937 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
938 		struct tsq_tasklet *tsq;
939 		bool empty;
940 
941 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
942 			goto out;
943 
944 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
945 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
946 		if (nval != oval)
947 			continue;
948 
949 		/* queue this socket to tasklet queue */
950 		local_irq_save(flags);
951 		tsq = this_cpu_ptr(&tsq_tasklet);
952 		empty = list_empty(&tsq->head);
953 		list_add(&tp->tsq_node, &tsq->head);
954 		if (empty)
955 			tasklet_schedule(&tsq->tasklet);
956 		local_irq_restore(flags);
957 		return;
958 	}
959 out:
960 	sk_free(sk);
961 }
962 
963 /* Note: Called under soft irq.
964  * We can call TCP stack right away, unless socket is owned by user.
965  */
966 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
967 {
968 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
969 	struct sock *sk = (struct sock *)tp;
970 
971 	tcp_tsq_handler(sk);
972 	sock_put(sk);
973 
974 	return HRTIMER_NORESTART;
975 }
976 
977 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
978 				      u64 prior_wstamp)
979 {
980 	struct tcp_sock *tp = tcp_sk(sk);
981 
982 	if (sk->sk_pacing_status != SK_PACING_NONE) {
983 		unsigned long rate = sk->sk_pacing_rate;
984 
985 		/* Original sch_fq does not pace first 10 MSS
986 		 * Note that tp->data_segs_out overflows after 2^32 packets,
987 		 * this is a minor annoyance.
988 		 */
989 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
990 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
991 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
992 
993 			/* take into account OS jitter */
994 			len_ns -= min_t(u64, len_ns / 2, credit);
995 			tp->tcp_wstamp_ns += len_ns;
996 		}
997 	}
998 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
999 }
1000 
1001 /* This routine actually transmits TCP packets queued in by
1002  * tcp_do_sendmsg().  This is used by both the initial
1003  * transmission and possible later retransmissions.
1004  * All SKB's seen here are completely headerless.  It is our
1005  * job to build the TCP header, and pass the packet down to
1006  * IP so it can do the same plus pass the packet off to the
1007  * device.
1008  *
1009  * We are working here with either a clone of the original
1010  * SKB, or a fresh unique copy made by the retransmit engine.
1011  */
1012 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1013 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1014 {
1015 	const struct inet_connection_sock *icsk = inet_csk(sk);
1016 	struct inet_sock *inet;
1017 	struct tcp_sock *tp;
1018 	struct tcp_skb_cb *tcb;
1019 	struct tcp_out_options opts;
1020 	unsigned int tcp_options_size, tcp_header_size;
1021 	struct sk_buff *oskb = NULL;
1022 	struct tcp_md5sig_key *md5;
1023 	struct tcphdr *th;
1024 	u64 prior_wstamp;
1025 	int err;
1026 
1027 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1028 	tp = tcp_sk(sk);
1029 	prior_wstamp = tp->tcp_wstamp_ns;
1030 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1031 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1032 	if (clone_it) {
1033 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1034 			- tp->snd_una;
1035 		oskb = skb;
1036 
1037 		tcp_skb_tsorted_save(oskb) {
1038 			if (unlikely(skb_cloned(oskb)))
1039 				skb = pskb_copy(oskb, gfp_mask);
1040 			else
1041 				skb = skb_clone(oskb, gfp_mask);
1042 		} tcp_skb_tsorted_restore(oskb);
1043 
1044 		if (unlikely(!skb))
1045 			return -ENOBUFS;
1046 	}
1047 
1048 	inet = inet_sk(sk);
1049 	tcb = TCP_SKB_CB(skb);
1050 	memset(&opts, 0, sizeof(opts));
1051 
1052 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1053 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1054 	else
1055 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1056 							   &md5);
1057 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1058 
1059 	/* if no packet is in qdisc/device queue, then allow XPS to select
1060 	 * another queue. We can be called from tcp_tsq_handler()
1061 	 * which holds one reference to sk.
1062 	 *
1063 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1064 	 * One way to get this would be to set skb->truesize = 2 on them.
1065 	 */
1066 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1067 
1068 	/* If we had to use memory reserve to allocate this skb,
1069 	 * this might cause drops if packet is looped back :
1070 	 * Other socket might not have SOCK_MEMALLOC.
1071 	 * Packets not looped back do not care about pfmemalloc.
1072 	 */
1073 	skb->pfmemalloc = 0;
1074 
1075 	skb_push(skb, tcp_header_size);
1076 	skb_reset_transport_header(skb);
1077 
1078 	skb_orphan(skb);
1079 	skb->sk = sk;
1080 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1081 	skb_set_hash_from_sk(skb, sk);
1082 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1083 
1084 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1085 
1086 	/* Build TCP header and checksum it. */
1087 	th = (struct tcphdr *)skb->data;
1088 	th->source		= inet->inet_sport;
1089 	th->dest		= inet->inet_dport;
1090 	th->seq			= htonl(tcb->seq);
1091 	th->ack_seq		= htonl(rcv_nxt);
1092 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1093 					tcb->tcp_flags);
1094 
1095 	th->check		= 0;
1096 	th->urg_ptr		= 0;
1097 
1098 	/* The urg_mode check is necessary during a below snd_una win probe */
1099 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1100 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1101 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1102 			th->urg = 1;
1103 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1104 			th->urg_ptr = htons(0xFFFF);
1105 			th->urg = 1;
1106 		}
1107 	}
1108 
1109 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1110 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1111 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1112 		th->window      = htons(tcp_select_window(sk));
1113 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1114 	} else {
1115 		/* RFC1323: The window in SYN & SYN/ACK segments
1116 		 * is never scaled.
1117 		 */
1118 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1119 	}
1120 #ifdef CONFIG_TCP_MD5SIG
1121 	/* Calculate the MD5 hash, as we have all we need now */
1122 	if (md5) {
1123 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1124 		tp->af_specific->calc_md5_hash(opts.hash_location,
1125 					       md5, sk, skb);
1126 	}
1127 #endif
1128 
1129 	icsk->icsk_af_ops->send_check(sk, skb);
1130 
1131 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1132 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1133 
1134 	if (skb->len != tcp_header_size) {
1135 		tcp_event_data_sent(tp, sk);
1136 		tp->data_segs_out += tcp_skb_pcount(skb);
1137 		tp->bytes_sent += skb->len - tcp_header_size;
1138 	}
1139 
1140 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1141 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1142 			      tcp_skb_pcount(skb));
1143 
1144 	tp->segs_out += tcp_skb_pcount(skb);
1145 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1146 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1147 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1148 
1149 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1150 
1151 	/* Cleanup our debris for IP stacks */
1152 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1153 			       sizeof(struct inet6_skb_parm)));
1154 
1155 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1156 
1157 	if (unlikely(err > 0)) {
1158 		tcp_enter_cwr(sk);
1159 		err = net_xmit_eval(err);
1160 	}
1161 	if (!err && oskb) {
1162 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1163 		tcp_rate_skb_sent(sk, oskb);
1164 	}
1165 	return err;
1166 }
1167 
1168 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1169 			    gfp_t gfp_mask)
1170 {
1171 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1172 				  tcp_sk(sk)->rcv_nxt);
1173 }
1174 
1175 /* This routine just queues the buffer for sending.
1176  *
1177  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1178  * otherwise socket can stall.
1179  */
1180 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1181 {
1182 	struct tcp_sock *tp = tcp_sk(sk);
1183 
1184 	/* Advance write_seq and place onto the write_queue. */
1185 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1186 	__skb_header_release(skb);
1187 	tcp_add_write_queue_tail(sk, skb);
1188 	sk->sk_wmem_queued += skb->truesize;
1189 	sk_mem_charge(sk, skb->truesize);
1190 }
1191 
1192 /* Initialize TSO segments for a packet. */
1193 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1194 {
1195 	if (skb->len <= mss_now) {
1196 		/* Avoid the costly divide in the normal
1197 		 * non-TSO case.
1198 		 */
1199 		tcp_skb_pcount_set(skb, 1);
1200 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1201 	} else {
1202 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1203 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1204 	}
1205 }
1206 
1207 /* Pcount in the middle of the write queue got changed, we need to do various
1208  * tweaks to fix counters
1209  */
1210 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1211 {
1212 	struct tcp_sock *tp = tcp_sk(sk);
1213 
1214 	tp->packets_out -= decr;
1215 
1216 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1217 		tp->sacked_out -= decr;
1218 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1219 		tp->retrans_out -= decr;
1220 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1221 		tp->lost_out -= decr;
1222 
1223 	/* Reno case is special. Sigh... */
1224 	if (tcp_is_reno(tp) && decr > 0)
1225 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1226 
1227 	if (tp->lost_skb_hint &&
1228 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1229 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1230 		tp->lost_cnt_hint -= decr;
1231 
1232 	tcp_verify_left_out(tp);
1233 }
1234 
1235 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1236 {
1237 	return TCP_SKB_CB(skb)->txstamp_ack ||
1238 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1239 }
1240 
1241 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1242 {
1243 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1244 
1245 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1246 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1247 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1248 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1249 
1250 		shinfo->tx_flags &= ~tsflags;
1251 		shinfo2->tx_flags |= tsflags;
1252 		swap(shinfo->tskey, shinfo2->tskey);
1253 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1254 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1255 	}
1256 }
1257 
1258 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1259 {
1260 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1261 	TCP_SKB_CB(skb)->eor = 0;
1262 }
1263 
1264 /* Insert buff after skb on the write or rtx queue of sk.  */
1265 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1266 					 struct sk_buff *buff,
1267 					 struct sock *sk,
1268 					 enum tcp_queue tcp_queue)
1269 {
1270 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1271 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1272 	else
1273 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1274 }
1275 
1276 /* Function to create two new TCP segments.  Shrinks the given segment
1277  * to the specified size and appends a new segment with the rest of the
1278  * packet to the list.  This won't be called frequently, I hope.
1279  * Remember, these are still headerless SKBs at this point.
1280  */
1281 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1282 		 struct sk_buff *skb, u32 len,
1283 		 unsigned int mss_now, gfp_t gfp)
1284 {
1285 	struct tcp_sock *tp = tcp_sk(sk);
1286 	struct sk_buff *buff;
1287 	int nsize, old_factor;
1288 	int nlen;
1289 	u8 flags;
1290 
1291 	if (WARN_ON(len > skb->len))
1292 		return -EINVAL;
1293 
1294 	nsize = skb_headlen(skb) - len;
1295 	if (nsize < 0)
1296 		nsize = 0;
1297 
1298 	if (skb_unclone(skb, gfp))
1299 		return -ENOMEM;
1300 
1301 	/* Get a new skb... force flag on. */
1302 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1303 	if (!buff)
1304 		return -ENOMEM; /* We'll just try again later. */
1305 
1306 	sk->sk_wmem_queued += buff->truesize;
1307 	sk_mem_charge(sk, buff->truesize);
1308 	nlen = skb->len - len - nsize;
1309 	buff->truesize += nlen;
1310 	skb->truesize -= nlen;
1311 
1312 	/* Correct the sequence numbers. */
1313 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1314 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1315 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1316 
1317 	/* PSH and FIN should only be set in the second packet. */
1318 	flags = TCP_SKB_CB(skb)->tcp_flags;
1319 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1320 	TCP_SKB_CB(buff)->tcp_flags = flags;
1321 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1322 	tcp_skb_fragment_eor(skb, buff);
1323 
1324 	skb_split(skb, buff, len);
1325 
1326 	buff->ip_summed = CHECKSUM_PARTIAL;
1327 
1328 	buff->tstamp = skb->tstamp;
1329 	tcp_fragment_tstamp(skb, buff);
1330 
1331 	old_factor = tcp_skb_pcount(skb);
1332 
1333 	/* Fix up tso_factor for both original and new SKB.  */
1334 	tcp_set_skb_tso_segs(skb, mss_now);
1335 	tcp_set_skb_tso_segs(buff, mss_now);
1336 
1337 	/* Update delivered info for the new segment */
1338 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1339 
1340 	/* If this packet has been sent out already, we must
1341 	 * adjust the various packet counters.
1342 	 */
1343 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1344 		int diff = old_factor - tcp_skb_pcount(skb) -
1345 			tcp_skb_pcount(buff);
1346 
1347 		if (diff)
1348 			tcp_adjust_pcount(sk, skb, diff);
1349 	}
1350 
1351 	/* Link BUFF into the send queue. */
1352 	__skb_header_release(buff);
1353 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1354 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1355 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1356 
1357 	return 0;
1358 }
1359 
1360 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1361  * data is not copied, but immediately discarded.
1362  */
1363 static int __pskb_trim_head(struct sk_buff *skb, int len)
1364 {
1365 	struct skb_shared_info *shinfo;
1366 	int i, k, eat;
1367 
1368 	eat = min_t(int, len, skb_headlen(skb));
1369 	if (eat) {
1370 		__skb_pull(skb, eat);
1371 		len -= eat;
1372 		if (!len)
1373 			return 0;
1374 	}
1375 	eat = len;
1376 	k = 0;
1377 	shinfo = skb_shinfo(skb);
1378 	for (i = 0; i < shinfo->nr_frags; i++) {
1379 		int size = skb_frag_size(&shinfo->frags[i]);
1380 
1381 		if (size <= eat) {
1382 			skb_frag_unref(skb, i);
1383 			eat -= size;
1384 		} else {
1385 			shinfo->frags[k] = shinfo->frags[i];
1386 			if (eat) {
1387 				shinfo->frags[k].page_offset += eat;
1388 				skb_frag_size_sub(&shinfo->frags[k], eat);
1389 				eat = 0;
1390 			}
1391 			k++;
1392 		}
1393 	}
1394 	shinfo->nr_frags = k;
1395 
1396 	skb->data_len -= len;
1397 	skb->len = skb->data_len;
1398 	return len;
1399 }
1400 
1401 /* Remove acked data from a packet in the transmit queue. */
1402 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1403 {
1404 	u32 delta_truesize;
1405 
1406 	if (skb_unclone(skb, GFP_ATOMIC))
1407 		return -ENOMEM;
1408 
1409 	delta_truesize = __pskb_trim_head(skb, len);
1410 
1411 	TCP_SKB_CB(skb)->seq += len;
1412 	skb->ip_summed = CHECKSUM_PARTIAL;
1413 
1414 	if (delta_truesize) {
1415 		skb->truesize	   -= delta_truesize;
1416 		sk->sk_wmem_queued -= delta_truesize;
1417 		sk_mem_uncharge(sk, delta_truesize);
1418 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1419 	}
1420 
1421 	/* Any change of skb->len requires recalculation of tso factor. */
1422 	if (tcp_skb_pcount(skb) > 1)
1423 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1424 
1425 	return 0;
1426 }
1427 
1428 /* Calculate MSS not accounting any TCP options.  */
1429 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1430 {
1431 	const struct tcp_sock *tp = tcp_sk(sk);
1432 	const struct inet_connection_sock *icsk = inet_csk(sk);
1433 	int mss_now;
1434 
1435 	/* Calculate base mss without TCP options:
1436 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1437 	 */
1438 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1439 
1440 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1441 	if (icsk->icsk_af_ops->net_frag_header_len) {
1442 		const struct dst_entry *dst = __sk_dst_get(sk);
1443 
1444 		if (dst && dst_allfrag(dst))
1445 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1446 	}
1447 
1448 	/* Clamp it (mss_clamp does not include tcp options) */
1449 	if (mss_now > tp->rx_opt.mss_clamp)
1450 		mss_now = tp->rx_opt.mss_clamp;
1451 
1452 	/* Now subtract optional transport overhead */
1453 	mss_now -= icsk->icsk_ext_hdr_len;
1454 
1455 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1456 	if (mss_now < 48)
1457 		mss_now = 48;
1458 	return mss_now;
1459 }
1460 
1461 /* Calculate MSS. Not accounting for SACKs here.  */
1462 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1463 {
1464 	/* Subtract TCP options size, not including SACKs */
1465 	return __tcp_mtu_to_mss(sk, pmtu) -
1466 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1467 }
1468 
1469 /* Inverse of above */
1470 int tcp_mss_to_mtu(struct sock *sk, int mss)
1471 {
1472 	const struct tcp_sock *tp = tcp_sk(sk);
1473 	const struct inet_connection_sock *icsk = inet_csk(sk);
1474 	int mtu;
1475 
1476 	mtu = mss +
1477 	      tp->tcp_header_len +
1478 	      icsk->icsk_ext_hdr_len +
1479 	      icsk->icsk_af_ops->net_header_len;
1480 
1481 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1482 	if (icsk->icsk_af_ops->net_frag_header_len) {
1483 		const struct dst_entry *dst = __sk_dst_get(sk);
1484 
1485 		if (dst && dst_allfrag(dst))
1486 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1487 	}
1488 	return mtu;
1489 }
1490 EXPORT_SYMBOL(tcp_mss_to_mtu);
1491 
1492 /* MTU probing init per socket */
1493 void tcp_mtup_init(struct sock *sk)
1494 {
1495 	struct tcp_sock *tp = tcp_sk(sk);
1496 	struct inet_connection_sock *icsk = inet_csk(sk);
1497 	struct net *net = sock_net(sk);
1498 
1499 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1500 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1501 			       icsk->icsk_af_ops->net_header_len;
1502 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1503 	icsk->icsk_mtup.probe_size = 0;
1504 	if (icsk->icsk_mtup.enabled)
1505 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1506 }
1507 EXPORT_SYMBOL(tcp_mtup_init);
1508 
1509 /* This function synchronize snd mss to current pmtu/exthdr set.
1510 
1511    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1512    for TCP options, but includes only bare TCP header.
1513 
1514    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1515    It is minimum of user_mss and mss received with SYN.
1516    It also does not include TCP options.
1517 
1518    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1519 
1520    tp->mss_cache is current effective sending mss, including
1521    all tcp options except for SACKs. It is evaluated,
1522    taking into account current pmtu, but never exceeds
1523    tp->rx_opt.mss_clamp.
1524 
1525    NOTE1. rfc1122 clearly states that advertised MSS
1526    DOES NOT include either tcp or ip options.
1527 
1528    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1529    are READ ONLY outside this function.		--ANK (980731)
1530  */
1531 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1532 {
1533 	struct tcp_sock *tp = tcp_sk(sk);
1534 	struct inet_connection_sock *icsk = inet_csk(sk);
1535 	int mss_now;
1536 
1537 	if (icsk->icsk_mtup.search_high > pmtu)
1538 		icsk->icsk_mtup.search_high = pmtu;
1539 
1540 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1541 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1542 
1543 	/* And store cached results */
1544 	icsk->icsk_pmtu_cookie = pmtu;
1545 	if (icsk->icsk_mtup.enabled)
1546 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1547 	tp->mss_cache = mss_now;
1548 
1549 	return mss_now;
1550 }
1551 EXPORT_SYMBOL(tcp_sync_mss);
1552 
1553 /* Compute the current effective MSS, taking SACKs and IP options,
1554  * and even PMTU discovery events into account.
1555  */
1556 unsigned int tcp_current_mss(struct sock *sk)
1557 {
1558 	const struct tcp_sock *tp = tcp_sk(sk);
1559 	const struct dst_entry *dst = __sk_dst_get(sk);
1560 	u32 mss_now;
1561 	unsigned int header_len;
1562 	struct tcp_out_options opts;
1563 	struct tcp_md5sig_key *md5;
1564 
1565 	mss_now = tp->mss_cache;
1566 
1567 	if (dst) {
1568 		u32 mtu = dst_mtu(dst);
1569 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1570 			mss_now = tcp_sync_mss(sk, mtu);
1571 	}
1572 
1573 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1574 		     sizeof(struct tcphdr);
1575 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1576 	 * some common options. If this is an odd packet (because we have SACK
1577 	 * blocks etc) then our calculated header_len will be different, and
1578 	 * we have to adjust mss_now correspondingly */
1579 	if (header_len != tp->tcp_header_len) {
1580 		int delta = (int) header_len - tp->tcp_header_len;
1581 		mss_now -= delta;
1582 	}
1583 
1584 	return mss_now;
1585 }
1586 
1587 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1588  * As additional protections, we do not touch cwnd in retransmission phases,
1589  * and if application hit its sndbuf limit recently.
1590  */
1591 static void tcp_cwnd_application_limited(struct sock *sk)
1592 {
1593 	struct tcp_sock *tp = tcp_sk(sk);
1594 
1595 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1596 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1597 		/* Limited by application or receiver window. */
1598 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1599 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1600 		if (win_used < tp->snd_cwnd) {
1601 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1602 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1603 		}
1604 		tp->snd_cwnd_used = 0;
1605 	}
1606 	tp->snd_cwnd_stamp = tcp_jiffies32;
1607 }
1608 
1609 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1610 {
1611 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1612 	struct tcp_sock *tp = tcp_sk(sk);
1613 
1614 	/* Track the maximum number of outstanding packets in each
1615 	 * window, and remember whether we were cwnd-limited then.
1616 	 */
1617 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1618 	    tp->packets_out > tp->max_packets_out) {
1619 		tp->max_packets_out = tp->packets_out;
1620 		tp->max_packets_seq = tp->snd_nxt;
1621 		tp->is_cwnd_limited = is_cwnd_limited;
1622 	}
1623 
1624 	if (tcp_is_cwnd_limited(sk)) {
1625 		/* Network is feed fully. */
1626 		tp->snd_cwnd_used = 0;
1627 		tp->snd_cwnd_stamp = tcp_jiffies32;
1628 	} else {
1629 		/* Network starves. */
1630 		if (tp->packets_out > tp->snd_cwnd_used)
1631 			tp->snd_cwnd_used = tp->packets_out;
1632 
1633 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1634 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1635 		    !ca_ops->cong_control)
1636 			tcp_cwnd_application_limited(sk);
1637 
1638 		/* The following conditions together indicate the starvation
1639 		 * is caused by insufficient sender buffer:
1640 		 * 1) just sent some data (see tcp_write_xmit)
1641 		 * 2) not cwnd limited (this else condition)
1642 		 * 3) no more data to send (tcp_write_queue_empty())
1643 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1644 		 */
1645 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1646 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1647 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1648 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1649 	}
1650 }
1651 
1652 /* Minshall's variant of the Nagle send check. */
1653 static bool tcp_minshall_check(const struct tcp_sock *tp)
1654 {
1655 	return after(tp->snd_sml, tp->snd_una) &&
1656 		!after(tp->snd_sml, tp->snd_nxt);
1657 }
1658 
1659 /* Update snd_sml if this skb is under mss
1660  * Note that a TSO packet might end with a sub-mss segment
1661  * The test is really :
1662  * if ((skb->len % mss) != 0)
1663  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1664  * But we can avoid doing the divide again given we already have
1665  *  skb_pcount = skb->len / mss_now
1666  */
1667 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1668 				const struct sk_buff *skb)
1669 {
1670 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1671 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1672 }
1673 
1674 /* Return false, if packet can be sent now without violation Nagle's rules:
1675  * 1. It is full sized. (provided by caller in %partial bool)
1676  * 2. Or it contains FIN. (already checked by caller)
1677  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1678  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1679  *    With Minshall's modification: all sent small packets are ACKed.
1680  */
1681 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1682 			    int nonagle)
1683 {
1684 	return partial &&
1685 		((nonagle & TCP_NAGLE_CORK) ||
1686 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1687 }
1688 
1689 /* Return how many segs we'd like on a TSO packet,
1690  * to send one TSO packet per ms
1691  */
1692 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1693 			    int min_tso_segs)
1694 {
1695 	u32 bytes, segs;
1696 
1697 	bytes = min_t(unsigned long,
1698 		      sk->sk_pacing_rate >> sk->sk_pacing_shift,
1699 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1700 
1701 	/* Goal is to send at least one packet per ms,
1702 	 * not one big TSO packet every 100 ms.
1703 	 * This preserves ACK clocking and is consistent
1704 	 * with tcp_tso_should_defer() heuristic.
1705 	 */
1706 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1707 
1708 	return segs;
1709 }
1710 
1711 /* Return the number of segments we want in the skb we are transmitting.
1712  * See if congestion control module wants to decide; otherwise, autosize.
1713  */
1714 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1715 {
1716 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1717 	u32 min_tso, tso_segs;
1718 
1719 	min_tso = ca_ops->min_tso_segs ?
1720 			ca_ops->min_tso_segs(sk) :
1721 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1722 
1723 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1724 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1725 }
1726 
1727 /* Returns the portion of skb which can be sent right away */
1728 static unsigned int tcp_mss_split_point(const struct sock *sk,
1729 					const struct sk_buff *skb,
1730 					unsigned int mss_now,
1731 					unsigned int max_segs,
1732 					int nonagle)
1733 {
1734 	const struct tcp_sock *tp = tcp_sk(sk);
1735 	u32 partial, needed, window, max_len;
1736 
1737 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1738 	max_len = mss_now * max_segs;
1739 
1740 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1741 		return max_len;
1742 
1743 	needed = min(skb->len, window);
1744 
1745 	if (max_len <= needed)
1746 		return max_len;
1747 
1748 	partial = needed % mss_now;
1749 	/* If last segment is not a full MSS, check if Nagle rules allow us
1750 	 * to include this last segment in this skb.
1751 	 * Otherwise, we'll split the skb at last MSS boundary
1752 	 */
1753 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1754 		return needed - partial;
1755 
1756 	return needed;
1757 }
1758 
1759 /* Can at least one segment of SKB be sent right now, according to the
1760  * congestion window rules?  If so, return how many segments are allowed.
1761  */
1762 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1763 					 const struct sk_buff *skb)
1764 {
1765 	u32 in_flight, cwnd, halfcwnd;
1766 
1767 	/* Don't be strict about the congestion window for the final FIN.  */
1768 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1769 	    tcp_skb_pcount(skb) == 1)
1770 		return 1;
1771 
1772 	in_flight = tcp_packets_in_flight(tp);
1773 	cwnd = tp->snd_cwnd;
1774 	if (in_flight >= cwnd)
1775 		return 0;
1776 
1777 	/* For better scheduling, ensure we have at least
1778 	 * 2 GSO packets in flight.
1779 	 */
1780 	halfcwnd = max(cwnd >> 1, 1U);
1781 	return min(halfcwnd, cwnd - in_flight);
1782 }
1783 
1784 /* Initialize TSO state of a skb.
1785  * This must be invoked the first time we consider transmitting
1786  * SKB onto the wire.
1787  */
1788 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1789 {
1790 	int tso_segs = tcp_skb_pcount(skb);
1791 
1792 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1793 		tcp_set_skb_tso_segs(skb, mss_now);
1794 		tso_segs = tcp_skb_pcount(skb);
1795 	}
1796 	return tso_segs;
1797 }
1798 
1799 
1800 /* Return true if the Nagle test allows this packet to be
1801  * sent now.
1802  */
1803 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1804 				  unsigned int cur_mss, int nonagle)
1805 {
1806 	/* Nagle rule does not apply to frames, which sit in the middle of the
1807 	 * write_queue (they have no chances to get new data).
1808 	 *
1809 	 * This is implemented in the callers, where they modify the 'nonagle'
1810 	 * argument based upon the location of SKB in the send queue.
1811 	 */
1812 	if (nonagle & TCP_NAGLE_PUSH)
1813 		return true;
1814 
1815 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1816 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1817 		return true;
1818 
1819 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1820 		return true;
1821 
1822 	return false;
1823 }
1824 
1825 /* Does at least the first segment of SKB fit into the send window? */
1826 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1827 			     const struct sk_buff *skb,
1828 			     unsigned int cur_mss)
1829 {
1830 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1831 
1832 	if (skb->len > cur_mss)
1833 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1834 
1835 	return !after(end_seq, tcp_wnd_end(tp));
1836 }
1837 
1838 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1839  * which is put after SKB on the list.  It is very much like
1840  * tcp_fragment() except that it may make several kinds of assumptions
1841  * in order to speed up the splitting operation.  In particular, we
1842  * know that all the data is in scatter-gather pages, and that the
1843  * packet has never been sent out before (and thus is not cloned).
1844  */
1845 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1846 			unsigned int mss_now, gfp_t gfp)
1847 {
1848 	int nlen = skb->len - len;
1849 	struct sk_buff *buff;
1850 	u8 flags;
1851 
1852 	/* All of a TSO frame must be composed of paged data.  */
1853 	if (skb->len != skb->data_len)
1854 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1855 				    skb, len, mss_now, gfp);
1856 
1857 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1858 	if (unlikely(!buff))
1859 		return -ENOMEM;
1860 
1861 	sk->sk_wmem_queued += buff->truesize;
1862 	sk_mem_charge(sk, buff->truesize);
1863 	buff->truesize += nlen;
1864 	skb->truesize -= nlen;
1865 
1866 	/* Correct the sequence numbers. */
1867 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1868 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1869 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1870 
1871 	/* PSH and FIN should only be set in the second packet. */
1872 	flags = TCP_SKB_CB(skb)->tcp_flags;
1873 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1874 	TCP_SKB_CB(buff)->tcp_flags = flags;
1875 
1876 	/* This packet was never sent out yet, so no SACK bits. */
1877 	TCP_SKB_CB(buff)->sacked = 0;
1878 
1879 	tcp_skb_fragment_eor(skb, buff);
1880 
1881 	buff->ip_summed = CHECKSUM_PARTIAL;
1882 	skb_split(skb, buff, len);
1883 	tcp_fragment_tstamp(skb, buff);
1884 
1885 	/* Fix up tso_factor for both original and new SKB.  */
1886 	tcp_set_skb_tso_segs(skb, mss_now);
1887 	tcp_set_skb_tso_segs(buff, mss_now);
1888 
1889 	/* Link BUFF into the send queue. */
1890 	__skb_header_release(buff);
1891 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
1892 
1893 	return 0;
1894 }
1895 
1896 /* Try to defer sending, if possible, in order to minimize the amount
1897  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1898  *
1899  * This algorithm is from John Heffner.
1900  */
1901 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1902 				 bool *is_cwnd_limited,
1903 				 bool *is_rwnd_limited,
1904 				 u32 max_segs)
1905 {
1906 	const struct inet_connection_sock *icsk = inet_csk(sk);
1907 	u32 send_win, cong_win, limit, in_flight;
1908 	struct tcp_sock *tp = tcp_sk(sk);
1909 	struct sk_buff *head;
1910 	int win_divisor;
1911 	s64 delta;
1912 
1913 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1914 		goto send_now;
1915 
1916 	/* Avoid bursty behavior by allowing defer
1917 	 * only if the last write was recent (1 ms).
1918 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
1919 	 * packets waiting in a qdisc or device for EDT delivery.
1920 	 */
1921 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
1922 	if (delta > 0)
1923 		goto send_now;
1924 
1925 	in_flight = tcp_packets_in_flight(tp);
1926 
1927 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1928 	BUG_ON(tp->snd_cwnd <= in_flight);
1929 
1930 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1931 
1932 	/* From in_flight test above, we know that cwnd > in_flight.  */
1933 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1934 
1935 	limit = min(send_win, cong_win);
1936 
1937 	/* If a full-sized TSO skb can be sent, do it. */
1938 	if (limit >= max_segs * tp->mss_cache)
1939 		goto send_now;
1940 
1941 	/* Middle in queue won't get any more data, full sendable already? */
1942 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1943 		goto send_now;
1944 
1945 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1946 	if (win_divisor) {
1947 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1948 
1949 		/* If at least some fraction of a window is available,
1950 		 * just use it.
1951 		 */
1952 		chunk /= win_divisor;
1953 		if (limit >= chunk)
1954 			goto send_now;
1955 	} else {
1956 		/* Different approach, try not to defer past a single
1957 		 * ACK.  Receiver should ACK every other full sized
1958 		 * frame, so if we have space for more than 3 frames
1959 		 * then send now.
1960 		 */
1961 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1962 			goto send_now;
1963 	}
1964 
1965 	/* TODO : use tsorted_sent_queue ? */
1966 	head = tcp_rtx_queue_head(sk);
1967 	if (!head)
1968 		goto send_now;
1969 	delta = tp->tcp_clock_cache - head->tstamp;
1970 	/* If next ACK is likely to come too late (half srtt), do not defer */
1971 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
1972 		goto send_now;
1973 
1974 	/* Ok, it looks like it is advisable to defer.
1975 	 * Three cases are tracked :
1976 	 * 1) We are cwnd-limited
1977 	 * 2) We are rwnd-limited
1978 	 * 3) We are application limited.
1979 	 */
1980 	if (cong_win < send_win) {
1981 		if (cong_win <= skb->len) {
1982 			*is_cwnd_limited = true;
1983 			return true;
1984 		}
1985 	} else {
1986 		if (send_win <= skb->len) {
1987 			*is_rwnd_limited = true;
1988 			return true;
1989 		}
1990 	}
1991 
1992 	/* If this packet won't get more data, do not wait. */
1993 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
1994 	    TCP_SKB_CB(skb)->eor)
1995 		goto send_now;
1996 
1997 	return true;
1998 
1999 send_now:
2000 	return false;
2001 }
2002 
2003 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2004 {
2005 	struct inet_connection_sock *icsk = inet_csk(sk);
2006 	struct tcp_sock *tp = tcp_sk(sk);
2007 	struct net *net = sock_net(sk);
2008 	u32 interval;
2009 	s32 delta;
2010 
2011 	interval = net->ipv4.sysctl_tcp_probe_interval;
2012 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2013 	if (unlikely(delta >= interval * HZ)) {
2014 		int mss = tcp_current_mss(sk);
2015 
2016 		/* Update current search range */
2017 		icsk->icsk_mtup.probe_size = 0;
2018 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2019 			sizeof(struct tcphdr) +
2020 			icsk->icsk_af_ops->net_header_len;
2021 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2022 
2023 		/* Update probe time stamp */
2024 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2025 	}
2026 }
2027 
2028 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2029 {
2030 	struct sk_buff *skb, *next;
2031 
2032 	skb = tcp_send_head(sk);
2033 	tcp_for_write_queue_from_safe(skb, next, sk) {
2034 		if (len <= skb->len)
2035 			break;
2036 
2037 		if (unlikely(TCP_SKB_CB(skb)->eor))
2038 			return false;
2039 
2040 		len -= skb->len;
2041 	}
2042 
2043 	return true;
2044 }
2045 
2046 /* Create a new MTU probe if we are ready.
2047  * MTU probe is regularly attempting to increase the path MTU by
2048  * deliberately sending larger packets.  This discovers routing
2049  * changes resulting in larger path MTUs.
2050  *
2051  * Returns 0 if we should wait to probe (no cwnd available),
2052  *         1 if a probe was sent,
2053  *         -1 otherwise
2054  */
2055 static int tcp_mtu_probe(struct sock *sk)
2056 {
2057 	struct inet_connection_sock *icsk = inet_csk(sk);
2058 	struct tcp_sock *tp = tcp_sk(sk);
2059 	struct sk_buff *skb, *nskb, *next;
2060 	struct net *net = sock_net(sk);
2061 	int probe_size;
2062 	int size_needed;
2063 	int copy, len;
2064 	int mss_now;
2065 	int interval;
2066 
2067 	/* Not currently probing/verifying,
2068 	 * not in recovery,
2069 	 * have enough cwnd, and
2070 	 * not SACKing (the variable headers throw things off)
2071 	 */
2072 	if (likely(!icsk->icsk_mtup.enabled ||
2073 		   icsk->icsk_mtup.probe_size ||
2074 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2075 		   tp->snd_cwnd < 11 ||
2076 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2077 		return -1;
2078 
2079 	/* Use binary search for probe_size between tcp_mss_base,
2080 	 * and current mss_clamp. if (search_high - search_low)
2081 	 * smaller than a threshold, backoff from probing.
2082 	 */
2083 	mss_now = tcp_current_mss(sk);
2084 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2085 				    icsk->icsk_mtup.search_low) >> 1);
2086 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2087 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2088 	/* When misfortune happens, we are reprobing actively,
2089 	 * and then reprobe timer has expired. We stick with current
2090 	 * probing process by not resetting search range to its orignal.
2091 	 */
2092 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2093 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2094 		/* Check whether enough time has elaplased for
2095 		 * another round of probing.
2096 		 */
2097 		tcp_mtu_check_reprobe(sk);
2098 		return -1;
2099 	}
2100 
2101 	/* Have enough data in the send queue to probe? */
2102 	if (tp->write_seq - tp->snd_nxt < size_needed)
2103 		return -1;
2104 
2105 	if (tp->snd_wnd < size_needed)
2106 		return -1;
2107 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2108 		return 0;
2109 
2110 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2111 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2112 		if (!tcp_packets_in_flight(tp))
2113 			return -1;
2114 		else
2115 			return 0;
2116 	}
2117 
2118 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2119 		return -1;
2120 
2121 	/* We're allowed to probe.  Build it now. */
2122 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2123 	if (!nskb)
2124 		return -1;
2125 	sk->sk_wmem_queued += nskb->truesize;
2126 	sk_mem_charge(sk, nskb->truesize);
2127 
2128 	skb = tcp_send_head(sk);
2129 
2130 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2131 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2132 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2133 	TCP_SKB_CB(nskb)->sacked = 0;
2134 	nskb->csum = 0;
2135 	nskb->ip_summed = CHECKSUM_PARTIAL;
2136 
2137 	tcp_insert_write_queue_before(nskb, skb, sk);
2138 	tcp_highest_sack_replace(sk, skb, nskb);
2139 
2140 	len = 0;
2141 	tcp_for_write_queue_from_safe(skb, next, sk) {
2142 		copy = min_t(int, skb->len, probe_size - len);
2143 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2144 
2145 		if (skb->len <= copy) {
2146 			/* We've eaten all the data from this skb.
2147 			 * Throw it away. */
2148 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2149 			/* If this is the last SKB we copy and eor is set
2150 			 * we need to propagate it to the new skb.
2151 			 */
2152 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2153 			tcp_unlink_write_queue(skb, sk);
2154 			sk_wmem_free_skb(sk, skb);
2155 		} else {
2156 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2157 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2158 			if (!skb_shinfo(skb)->nr_frags) {
2159 				skb_pull(skb, copy);
2160 			} else {
2161 				__pskb_trim_head(skb, copy);
2162 				tcp_set_skb_tso_segs(skb, mss_now);
2163 			}
2164 			TCP_SKB_CB(skb)->seq += copy;
2165 		}
2166 
2167 		len += copy;
2168 
2169 		if (len >= probe_size)
2170 			break;
2171 	}
2172 	tcp_init_tso_segs(nskb, nskb->len);
2173 
2174 	/* We're ready to send.  If this fails, the probe will
2175 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2176 	 */
2177 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2178 		/* Decrement cwnd here because we are sending
2179 		 * effectively two packets. */
2180 		tp->snd_cwnd--;
2181 		tcp_event_new_data_sent(sk, nskb);
2182 
2183 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2184 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2185 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2186 
2187 		return 1;
2188 	}
2189 
2190 	return -1;
2191 }
2192 
2193 static bool tcp_pacing_check(struct sock *sk)
2194 {
2195 	struct tcp_sock *tp = tcp_sk(sk);
2196 
2197 	if (!tcp_needs_internal_pacing(sk))
2198 		return false;
2199 
2200 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2201 		return false;
2202 
2203 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2204 		hrtimer_start(&tp->pacing_timer,
2205 			      ns_to_ktime(tp->tcp_wstamp_ns),
2206 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2207 		sock_hold(sk);
2208 	}
2209 	return true;
2210 }
2211 
2212 /* TCP Small Queues :
2213  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2214  * (These limits are doubled for retransmits)
2215  * This allows for :
2216  *  - better RTT estimation and ACK scheduling
2217  *  - faster recovery
2218  *  - high rates
2219  * Alas, some drivers / subsystems require a fair amount
2220  * of queued bytes to ensure line rate.
2221  * One example is wifi aggregation (802.11 AMPDU)
2222  */
2223 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2224 				  unsigned int factor)
2225 {
2226 	unsigned long limit;
2227 
2228 	limit = max_t(unsigned long,
2229 		      2 * skb->truesize,
2230 		      sk->sk_pacing_rate >> sk->sk_pacing_shift);
2231 	if (sk->sk_pacing_status == SK_PACING_NONE)
2232 		limit = min_t(unsigned long, limit,
2233 			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2234 	limit <<= factor;
2235 
2236 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2237 		/* Always send skb if rtx queue is empty.
2238 		 * No need to wait for TX completion to call us back,
2239 		 * after softirq/tasklet schedule.
2240 		 * This helps when TX completions are delayed too much.
2241 		 */
2242 		if (tcp_rtx_queue_empty(sk))
2243 			return false;
2244 
2245 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2246 		/* It is possible TX completion already happened
2247 		 * before we set TSQ_THROTTLED, so we must
2248 		 * test again the condition.
2249 		 */
2250 		smp_mb__after_atomic();
2251 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2252 			return true;
2253 	}
2254 	return false;
2255 }
2256 
2257 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2258 {
2259 	const u32 now = tcp_jiffies32;
2260 	enum tcp_chrono old = tp->chrono_type;
2261 
2262 	if (old > TCP_CHRONO_UNSPEC)
2263 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2264 	tp->chrono_start = now;
2265 	tp->chrono_type = new;
2266 }
2267 
2268 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2269 {
2270 	struct tcp_sock *tp = tcp_sk(sk);
2271 
2272 	/* If there are multiple conditions worthy of tracking in a
2273 	 * chronograph then the highest priority enum takes precedence
2274 	 * over the other conditions. So that if something "more interesting"
2275 	 * starts happening, stop the previous chrono and start a new one.
2276 	 */
2277 	if (type > tp->chrono_type)
2278 		tcp_chrono_set(tp, type);
2279 }
2280 
2281 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2282 {
2283 	struct tcp_sock *tp = tcp_sk(sk);
2284 
2285 
2286 	/* There are multiple conditions worthy of tracking in a
2287 	 * chronograph, so that the highest priority enum takes
2288 	 * precedence over the other conditions (see tcp_chrono_start).
2289 	 * If a condition stops, we only stop chrono tracking if
2290 	 * it's the "most interesting" or current chrono we are
2291 	 * tracking and starts busy chrono if we have pending data.
2292 	 */
2293 	if (tcp_rtx_and_write_queues_empty(sk))
2294 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2295 	else if (type == tp->chrono_type)
2296 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2297 }
2298 
2299 /* This routine writes packets to the network.  It advances the
2300  * send_head.  This happens as incoming acks open up the remote
2301  * window for us.
2302  *
2303  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2304  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2305  * account rare use of URG, this is not a big flaw.
2306  *
2307  * Send at most one packet when push_one > 0. Temporarily ignore
2308  * cwnd limit to force at most one packet out when push_one == 2.
2309 
2310  * Returns true, if no segments are in flight and we have queued segments,
2311  * but cannot send anything now because of SWS or another problem.
2312  */
2313 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2314 			   int push_one, gfp_t gfp)
2315 {
2316 	struct tcp_sock *tp = tcp_sk(sk);
2317 	struct sk_buff *skb;
2318 	unsigned int tso_segs, sent_pkts;
2319 	int cwnd_quota;
2320 	int result;
2321 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2322 	u32 max_segs;
2323 
2324 	sent_pkts = 0;
2325 
2326 	tcp_mstamp_refresh(tp);
2327 	if (!push_one) {
2328 		/* Do MTU probing. */
2329 		result = tcp_mtu_probe(sk);
2330 		if (!result) {
2331 			return false;
2332 		} else if (result > 0) {
2333 			sent_pkts = 1;
2334 		}
2335 	}
2336 
2337 	max_segs = tcp_tso_segs(sk, mss_now);
2338 	while ((skb = tcp_send_head(sk))) {
2339 		unsigned int limit;
2340 
2341 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2342 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2343 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2344 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2345 			tcp_init_tso_segs(skb, mss_now);
2346 			goto repair; /* Skip network transmission */
2347 		}
2348 
2349 		if (tcp_pacing_check(sk))
2350 			break;
2351 
2352 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2353 		BUG_ON(!tso_segs);
2354 
2355 		cwnd_quota = tcp_cwnd_test(tp, skb);
2356 		if (!cwnd_quota) {
2357 			if (push_one == 2)
2358 				/* Force out a loss probe pkt. */
2359 				cwnd_quota = 1;
2360 			else
2361 				break;
2362 		}
2363 
2364 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2365 			is_rwnd_limited = true;
2366 			break;
2367 		}
2368 
2369 		if (tso_segs == 1) {
2370 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2371 						     (tcp_skb_is_last(sk, skb) ?
2372 						      nonagle : TCP_NAGLE_PUSH))))
2373 				break;
2374 		} else {
2375 			if (!push_one &&
2376 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2377 						 &is_rwnd_limited, max_segs))
2378 				break;
2379 		}
2380 
2381 		limit = mss_now;
2382 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2383 			limit = tcp_mss_split_point(sk, skb, mss_now,
2384 						    min_t(unsigned int,
2385 							  cwnd_quota,
2386 							  max_segs),
2387 						    nonagle);
2388 
2389 		if (skb->len > limit &&
2390 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2391 			break;
2392 
2393 		if (tcp_small_queue_check(sk, skb, 0))
2394 			break;
2395 
2396 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2397 			break;
2398 
2399 repair:
2400 		/* Advance the send_head.  This one is sent out.
2401 		 * This call will increment packets_out.
2402 		 */
2403 		tcp_event_new_data_sent(sk, skb);
2404 
2405 		tcp_minshall_update(tp, mss_now, skb);
2406 		sent_pkts += tcp_skb_pcount(skb);
2407 
2408 		if (push_one)
2409 			break;
2410 	}
2411 
2412 	if (is_rwnd_limited)
2413 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2414 	else
2415 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2416 
2417 	if (likely(sent_pkts)) {
2418 		if (tcp_in_cwnd_reduction(sk))
2419 			tp->prr_out += sent_pkts;
2420 
2421 		/* Send one loss probe per tail loss episode. */
2422 		if (push_one != 2)
2423 			tcp_schedule_loss_probe(sk, false);
2424 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2425 		tcp_cwnd_validate(sk, is_cwnd_limited);
2426 		return false;
2427 	}
2428 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2429 }
2430 
2431 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2432 {
2433 	struct inet_connection_sock *icsk = inet_csk(sk);
2434 	struct tcp_sock *tp = tcp_sk(sk);
2435 	u32 timeout, rto_delta_us;
2436 	int early_retrans;
2437 
2438 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2439 	 * finishes.
2440 	 */
2441 	if (tp->fastopen_rsk)
2442 		return false;
2443 
2444 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2445 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2446 	 * not in loss recovery, that are either limited by cwnd or application.
2447 	 */
2448 	if ((early_retrans != 3 && early_retrans != 4) ||
2449 	    !tp->packets_out || !tcp_is_sack(tp) ||
2450 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2451 	     icsk->icsk_ca_state != TCP_CA_CWR))
2452 		return false;
2453 
2454 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2455 	 * for delayed ack when there's one outstanding packet. If no RTT
2456 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2457 	 */
2458 	if (tp->srtt_us) {
2459 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2460 		if (tp->packets_out == 1)
2461 			timeout += TCP_RTO_MIN;
2462 		else
2463 			timeout += TCP_TIMEOUT_MIN;
2464 	} else {
2465 		timeout = TCP_TIMEOUT_INIT;
2466 	}
2467 
2468 	/* If the RTO formula yields an earlier time, then use that time. */
2469 	rto_delta_us = advancing_rto ?
2470 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2471 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2472 	if (rto_delta_us > 0)
2473 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2474 
2475 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2476 			     TCP_RTO_MAX, NULL);
2477 	return true;
2478 }
2479 
2480 /* Thanks to skb fast clones, we can detect if a prior transmit of
2481  * a packet is still in a qdisc or driver queue.
2482  * In this case, there is very little point doing a retransmit !
2483  */
2484 static bool skb_still_in_host_queue(const struct sock *sk,
2485 				    const struct sk_buff *skb)
2486 {
2487 	if (unlikely(skb_fclone_busy(sk, skb))) {
2488 		NET_INC_STATS(sock_net(sk),
2489 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2490 		return true;
2491 	}
2492 	return false;
2493 }
2494 
2495 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2496  * retransmit the last segment.
2497  */
2498 void tcp_send_loss_probe(struct sock *sk)
2499 {
2500 	struct tcp_sock *tp = tcp_sk(sk);
2501 	struct sk_buff *skb;
2502 	int pcount;
2503 	int mss = tcp_current_mss(sk);
2504 
2505 	skb = tcp_send_head(sk);
2506 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2507 		pcount = tp->packets_out;
2508 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2509 		if (tp->packets_out > pcount)
2510 			goto probe_sent;
2511 		goto rearm_timer;
2512 	}
2513 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2514 	if (unlikely(!skb)) {
2515 		WARN_ONCE(tp->packets_out,
2516 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2517 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2518 		inet_csk(sk)->icsk_pending = 0;
2519 		return;
2520 	}
2521 
2522 	/* At most one outstanding TLP retransmission. */
2523 	if (tp->tlp_high_seq)
2524 		goto rearm_timer;
2525 
2526 	if (skb_still_in_host_queue(sk, skb))
2527 		goto rearm_timer;
2528 
2529 	pcount = tcp_skb_pcount(skb);
2530 	if (WARN_ON(!pcount))
2531 		goto rearm_timer;
2532 
2533 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2534 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2535 					  (pcount - 1) * mss, mss,
2536 					  GFP_ATOMIC)))
2537 			goto rearm_timer;
2538 		skb = skb_rb_next(skb);
2539 	}
2540 
2541 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2542 		goto rearm_timer;
2543 
2544 	if (__tcp_retransmit_skb(sk, skb, 1))
2545 		goto rearm_timer;
2546 
2547 	/* Record snd_nxt for loss detection. */
2548 	tp->tlp_high_seq = tp->snd_nxt;
2549 
2550 probe_sent:
2551 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2552 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2553 	inet_csk(sk)->icsk_pending = 0;
2554 rearm_timer:
2555 	tcp_rearm_rto(sk);
2556 }
2557 
2558 /* Push out any pending frames which were held back due to
2559  * TCP_CORK or attempt at coalescing tiny packets.
2560  * The socket must be locked by the caller.
2561  */
2562 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2563 			       int nonagle)
2564 {
2565 	/* If we are closed, the bytes will have to remain here.
2566 	 * In time closedown will finish, we empty the write queue and
2567 	 * all will be happy.
2568 	 */
2569 	if (unlikely(sk->sk_state == TCP_CLOSE))
2570 		return;
2571 
2572 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2573 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2574 		tcp_check_probe_timer(sk);
2575 }
2576 
2577 /* Send _single_ skb sitting at the send head. This function requires
2578  * true push pending frames to setup probe timer etc.
2579  */
2580 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2581 {
2582 	struct sk_buff *skb = tcp_send_head(sk);
2583 
2584 	BUG_ON(!skb || skb->len < mss_now);
2585 
2586 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2587 }
2588 
2589 /* This function returns the amount that we can raise the
2590  * usable window based on the following constraints
2591  *
2592  * 1. The window can never be shrunk once it is offered (RFC 793)
2593  * 2. We limit memory per socket
2594  *
2595  * RFC 1122:
2596  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2597  *  RECV.NEXT + RCV.WIN fixed until:
2598  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2599  *
2600  * i.e. don't raise the right edge of the window until you can raise
2601  * it at least MSS bytes.
2602  *
2603  * Unfortunately, the recommended algorithm breaks header prediction,
2604  * since header prediction assumes th->window stays fixed.
2605  *
2606  * Strictly speaking, keeping th->window fixed violates the receiver
2607  * side SWS prevention criteria. The problem is that under this rule
2608  * a stream of single byte packets will cause the right side of the
2609  * window to always advance by a single byte.
2610  *
2611  * Of course, if the sender implements sender side SWS prevention
2612  * then this will not be a problem.
2613  *
2614  * BSD seems to make the following compromise:
2615  *
2616  *	If the free space is less than the 1/4 of the maximum
2617  *	space available and the free space is less than 1/2 mss,
2618  *	then set the window to 0.
2619  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2620  *	Otherwise, just prevent the window from shrinking
2621  *	and from being larger than the largest representable value.
2622  *
2623  * This prevents incremental opening of the window in the regime
2624  * where TCP is limited by the speed of the reader side taking
2625  * data out of the TCP receive queue. It does nothing about
2626  * those cases where the window is constrained on the sender side
2627  * because the pipeline is full.
2628  *
2629  * BSD also seems to "accidentally" limit itself to windows that are a
2630  * multiple of MSS, at least until the free space gets quite small.
2631  * This would appear to be a side effect of the mbuf implementation.
2632  * Combining these two algorithms results in the observed behavior
2633  * of having a fixed window size at almost all times.
2634  *
2635  * Below we obtain similar behavior by forcing the offered window to
2636  * a multiple of the mss when it is feasible to do so.
2637  *
2638  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2639  * Regular options like TIMESTAMP are taken into account.
2640  */
2641 u32 __tcp_select_window(struct sock *sk)
2642 {
2643 	struct inet_connection_sock *icsk = inet_csk(sk);
2644 	struct tcp_sock *tp = tcp_sk(sk);
2645 	/* MSS for the peer's data.  Previous versions used mss_clamp
2646 	 * here.  I don't know if the value based on our guesses
2647 	 * of peer's MSS is better for the performance.  It's more correct
2648 	 * but may be worse for the performance because of rcv_mss
2649 	 * fluctuations.  --SAW  1998/11/1
2650 	 */
2651 	int mss = icsk->icsk_ack.rcv_mss;
2652 	int free_space = tcp_space(sk);
2653 	int allowed_space = tcp_full_space(sk);
2654 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2655 	int window;
2656 
2657 	if (unlikely(mss > full_space)) {
2658 		mss = full_space;
2659 		if (mss <= 0)
2660 			return 0;
2661 	}
2662 	if (free_space < (full_space >> 1)) {
2663 		icsk->icsk_ack.quick = 0;
2664 
2665 		if (tcp_under_memory_pressure(sk))
2666 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2667 					       4U * tp->advmss);
2668 
2669 		/* free_space might become our new window, make sure we don't
2670 		 * increase it due to wscale.
2671 		 */
2672 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2673 
2674 		/* if free space is less than mss estimate, or is below 1/16th
2675 		 * of the maximum allowed, try to move to zero-window, else
2676 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2677 		 * new incoming data is dropped due to memory limits.
2678 		 * With large window, mss test triggers way too late in order
2679 		 * to announce zero window in time before rmem limit kicks in.
2680 		 */
2681 		if (free_space < (allowed_space >> 4) || free_space < mss)
2682 			return 0;
2683 	}
2684 
2685 	if (free_space > tp->rcv_ssthresh)
2686 		free_space = tp->rcv_ssthresh;
2687 
2688 	/* Don't do rounding if we are using window scaling, since the
2689 	 * scaled window will not line up with the MSS boundary anyway.
2690 	 */
2691 	if (tp->rx_opt.rcv_wscale) {
2692 		window = free_space;
2693 
2694 		/* Advertise enough space so that it won't get scaled away.
2695 		 * Import case: prevent zero window announcement if
2696 		 * 1<<rcv_wscale > mss.
2697 		 */
2698 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2699 	} else {
2700 		window = tp->rcv_wnd;
2701 		/* Get the largest window that is a nice multiple of mss.
2702 		 * Window clamp already applied above.
2703 		 * If our current window offering is within 1 mss of the
2704 		 * free space we just keep it. This prevents the divide
2705 		 * and multiply from happening most of the time.
2706 		 * We also don't do any window rounding when the free space
2707 		 * is too small.
2708 		 */
2709 		if (window <= free_space - mss || window > free_space)
2710 			window = rounddown(free_space, mss);
2711 		else if (mss == full_space &&
2712 			 free_space > window + (full_space >> 1))
2713 			window = free_space;
2714 	}
2715 
2716 	return window;
2717 }
2718 
2719 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2720 			     const struct sk_buff *next_skb)
2721 {
2722 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2723 		const struct skb_shared_info *next_shinfo =
2724 			skb_shinfo(next_skb);
2725 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2726 
2727 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2728 		shinfo->tskey = next_shinfo->tskey;
2729 		TCP_SKB_CB(skb)->txstamp_ack |=
2730 			TCP_SKB_CB(next_skb)->txstamp_ack;
2731 	}
2732 }
2733 
2734 /* Collapses two adjacent SKB's during retransmission. */
2735 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2736 {
2737 	struct tcp_sock *tp = tcp_sk(sk);
2738 	struct sk_buff *next_skb = skb_rb_next(skb);
2739 	int next_skb_size;
2740 
2741 	next_skb_size = next_skb->len;
2742 
2743 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2744 
2745 	if (next_skb_size) {
2746 		if (next_skb_size <= skb_availroom(skb))
2747 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2748 				      next_skb_size);
2749 		else if (!skb_shift(skb, next_skb, next_skb_size))
2750 			return false;
2751 	}
2752 	tcp_highest_sack_replace(sk, next_skb, skb);
2753 
2754 	/* Update sequence range on original skb. */
2755 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2756 
2757 	/* Merge over control information. This moves PSH/FIN etc. over */
2758 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2759 
2760 	/* All done, get rid of second SKB and account for it so
2761 	 * packet counting does not break.
2762 	 */
2763 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2764 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2765 
2766 	/* changed transmit queue under us so clear hints */
2767 	tcp_clear_retrans_hints_partial(tp);
2768 	if (next_skb == tp->retransmit_skb_hint)
2769 		tp->retransmit_skb_hint = skb;
2770 
2771 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2772 
2773 	tcp_skb_collapse_tstamp(skb, next_skb);
2774 
2775 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2776 	return true;
2777 }
2778 
2779 /* Check if coalescing SKBs is legal. */
2780 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2781 {
2782 	if (tcp_skb_pcount(skb) > 1)
2783 		return false;
2784 	if (skb_cloned(skb))
2785 		return false;
2786 	/* Some heuristics for collapsing over SACK'd could be invented */
2787 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2788 		return false;
2789 
2790 	return true;
2791 }
2792 
2793 /* Collapse packets in the retransmit queue to make to create
2794  * less packets on the wire. This is only done on retransmission.
2795  */
2796 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2797 				     int space)
2798 {
2799 	struct tcp_sock *tp = tcp_sk(sk);
2800 	struct sk_buff *skb = to, *tmp;
2801 	bool first = true;
2802 
2803 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2804 		return;
2805 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2806 		return;
2807 
2808 	skb_rbtree_walk_from_safe(skb, tmp) {
2809 		if (!tcp_can_collapse(sk, skb))
2810 			break;
2811 
2812 		if (!tcp_skb_can_collapse_to(to))
2813 			break;
2814 
2815 		space -= skb->len;
2816 
2817 		if (first) {
2818 			first = false;
2819 			continue;
2820 		}
2821 
2822 		if (space < 0)
2823 			break;
2824 
2825 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2826 			break;
2827 
2828 		if (!tcp_collapse_retrans(sk, to))
2829 			break;
2830 	}
2831 }
2832 
2833 /* This retransmits one SKB.  Policy decisions and retransmit queue
2834  * state updates are done by the caller.  Returns non-zero if an
2835  * error occurred which prevented the send.
2836  */
2837 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2838 {
2839 	struct inet_connection_sock *icsk = inet_csk(sk);
2840 	struct tcp_sock *tp = tcp_sk(sk);
2841 	unsigned int cur_mss;
2842 	int diff, len, err;
2843 
2844 
2845 	/* Inconclusive MTU probe */
2846 	if (icsk->icsk_mtup.probe_size)
2847 		icsk->icsk_mtup.probe_size = 0;
2848 
2849 	/* Do not sent more than we queued. 1/4 is reserved for possible
2850 	 * copying overhead: fragmentation, tunneling, mangling etc.
2851 	 */
2852 	if (refcount_read(&sk->sk_wmem_alloc) >
2853 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2854 		  sk->sk_sndbuf))
2855 		return -EAGAIN;
2856 
2857 	if (skb_still_in_host_queue(sk, skb))
2858 		return -EBUSY;
2859 
2860 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2861 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2862 			WARN_ON_ONCE(1);
2863 			return -EINVAL;
2864 		}
2865 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2866 			return -ENOMEM;
2867 	}
2868 
2869 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2870 		return -EHOSTUNREACH; /* Routing failure or similar. */
2871 
2872 	cur_mss = tcp_current_mss(sk);
2873 
2874 	/* If receiver has shrunk his window, and skb is out of
2875 	 * new window, do not retransmit it. The exception is the
2876 	 * case, when window is shrunk to zero. In this case
2877 	 * our retransmit serves as a zero window probe.
2878 	 */
2879 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2880 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2881 		return -EAGAIN;
2882 
2883 	len = cur_mss * segs;
2884 	if (skb->len > len) {
2885 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2886 				 cur_mss, GFP_ATOMIC))
2887 			return -ENOMEM; /* We'll try again later. */
2888 	} else {
2889 		if (skb_unclone(skb, GFP_ATOMIC))
2890 			return -ENOMEM;
2891 
2892 		diff = tcp_skb_pcount(skb);
2893 		tcp_set_skb_tso_segs(skb, cur_mss);
2894 		diff -= tcp_skb_pcount(skb);
2895 		if (diff)
2896 			tcp_adjust_pcount(sk, skb, diff);
2897 		if (skb->len < cur_mss)
2898 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2899 	}
2900 
2901 	/* RFC3168, section 6.1.1.1. ECN fallback */
2902 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2903 		tcp_ecn_clear_syn(sk, skb);
2904 
2905 	/* Update global and local TCP statistics. */
2906 	segs = tcp_skb_pcount(skb);
2907 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2908 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2909 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2910 	tp->total_retrans += segs;
2911 	tp->bytes_retrans += skb->len;
2912 
2913 	/* make sure skb->data is aligned on arches that require it
2914 	 * and check if ack-trimming & collapsing extended the headroom
2915 	 * beyond what csum_start can cover.
2916 	 */
2917 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2918 		     skb_headroom(skb) >= 0xFFFF)) {
2919 		struct sk_buff *nskb;
2920 
2921 		tcp_skb_tsorted_save(skb) {
2922 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2923 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2924 				     -ENOBUFS;
2925 		} tcp_skb_tsorted_restore(skb);
2926 
2927 		if (!err) {
2928 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
2929 			tcp_rate_skb_sent(sk, skb);
2930 		}
2931 	} else {
2932 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2933 	}
2934 
2935 	/* To avoid taking spuriously low RTT samples based on a timestamp
2936 	 * for a transmit that never happened, always mark EVER_RETRANS
2937 	 */
2938 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2939 
2940 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2941 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2942 				  TCP_SKB_CB(skb)->seq, segs, err);
2943 
2944 	if (likely(!err)) {
2945 		trace_tcp_retransmit_skb(sk, skb);
2946 	} else if (err != -EBUSY) {
2947 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
2948 	}
2949 	return err;
2950 }
2951 
2952 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2953 {
2954 	struct tcp_sock *tp = tcp_sk(sk);
2955 	int err = __tcp_retransmit_skb(sk, skb, segs);
2956 
2957 	if (err == 0) {
2958 #if FASTRETRANS_DEBUG > 0
2959 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2960 			net_dbg_ratelimited("retrans_out leaked\n");
2961 		}
2962 #endif
2963 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2964 		tp->retrans_out += tcp_skb_pcount(skb);
2965 	}
2966 
2967 	/* Save stamp of the first (attempted) retransmit. */
2968 	if (!tp->retrans_stamp)
2969 		tp->retrans_stamp = tcp_skb_timestamp(skb);
2970 
2971 	if (tp->undo_retrans < 0)
2972 		tp->undo_retrans = 0;
2973 	tp->undo_retrans += tcp_skb_pcount(skb);
2974 	return err;
2975 }
2976 
2977 /* This gets called after a retransmit timeout, and the initially
2978  * retransmitted data is acknowledged.  It tries to continue
2979  * resending the rest of the retransmit queue, until either
2980  * we've sent it all or the congestion window limit is reached.
2981  */
2982 void tcp_xmit_retransmit_queue(struct sock *sk)
2983 {
2984 	const struct inet_connection_sock *icsk = inet_csk(sk);
2985 	struct sk_buff *skb, *rtx_head, *hole = NULL;
2986 	struct tcp_sock *tp = tcp_sk(sk);
2987 	u32 max_segs;
2988 	int mib_idx;
2989 
2990 	if (!tp->packets_out)
2991 		return;
2992 
2993 	rtx_head = tcp_rtx_queue_head(sk);
2994 	skb = tp->retransmit_skb_hint ?: rtx_head;
2995 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2996 	skb_rbtree_walk_from(skb) {
2997 		__u8 sacked;
2998 		int segs;
2999 
3000 		if (tcp_pacing_check(sk))
3001 			break;
3002 
3003 		/* we could do better than to assign each time */
3004 		if (!hole)
3005 			tp->retransmit_skb_hint = skb;
3006 
3007 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3008 		if (segs <= 0)
3009 			return;
3010 		sacked = TCP_SKB_CB(skb)->sacked;
3011 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3012 		 * we need to make sure not sending too bigs TSO packets
3013 		 */
3014 		segs = min_t(int, segs, max_segs);
3015 
3016 		if (tp->retrans_out >= tp->lost_out) {
3017 			break;
3018 		} else if (!(sacked & TCPCB_LOST)) {
3019 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3020 				hole = skb;
3021 			continue;
3022 
3023 		} else {
3024 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3025 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3026 			else
3027 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3028 		}
3029 
3030 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3031 			continue;
3032 
3033 		if (tcp_small_queue_check(sk, skb, 1))
3034 			return;
3035 
3036 		if (tcp_retransmit_skb(sk, skb, segs))
3037 			return;
3038 
3039 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3040 
3041 		if (tcp_in_cwnd_reduction(sk))
3042 			tp->prr_out += tcp_skb_pcount(skb);
3043 
3044 		if (skb == rtx_head &&
3045 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3046 			tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3047 					     inet_csk(sk)->icsk_rto,
3048 					     TCP_RTO_MAX,
3049 					     skb);
3050 	}
3051 }
3052 
3053 /* We allow to exceed memory limits for FIN packets to expedite
3054  * connection tear down and (memory) recovery.
3055  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3056  * or even be forced to close flow without any FIN.
3057  * In general, we want to allow one skb per socket to avoid hangs
3058  * with edge trigger epoll()
3059  */
3060 void sk_forced_mem_schedule(struct sock *sk, int size)
3061 {
3062 	int amt;
3063 
3064 	if (size <= sk->sk_forward_alloc)
3065 		return;
3066 	amt = sk_mem_pages(size);
3067 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3068 	sk_memory_allocated_add(sk, amt);
3069 
3070 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3071 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3072 }
3073 
3074 /* Send a FIN. The caller locks the socket for us.
3075  * We should try to send a FIN packet really hard, but eventually give up.
3076  */
3077 void tcp_send_fin(struct sock *sk)
3078 {
3079 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3080 	struct tcp_sock *tp = tcp_sk(sk);
3081 
3082 	/* Optimization, tack on the FIN if we have one skb in write queue and
3083 	 * this skb was not yet sent, or we are under memory pressure.
3084 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3085 	 * as TCP stack thinks it has already been transmitted.
3086 	 */
3087 	if (!tskb && tcp_under_memory_pressure(sk))
3088 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3089 
3090 	if (tskb) {
3091 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3092 		TCP_SKB_CB(tskb)->end_seq++;
3093 		tp->write_seq++;
3094 		if (tcp_write_queue_empty(sk)) {
3095 			/* This means tskb was already sent.
3096 			 * Pretend we included the FIN on previous transmit.
3097 			 * We need to set tp->snd_nxt to the value it would have
3098 			 * if FIN had been sent. This is because retransmit path
3099 			 * does not change tp->snd_nxt.
3100 			 */
3101 			tp->snd_nxt++;
3102 			return;
3103 		}
3104 	} else {
3105 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3106 		if (unlikely(!skb))
3107 			return;
3108 
3109 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3110 		skb_reserve(skb, MAX_TCP_HEADER);
3111 		sk_forced_mem_schedule(sk, skb->truesize);
3112 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3113 		tcp_init_nondata_skb(skb, tp->write_seq,
3114 				     TCPHDR_ACK | TCPHDR_FIN);
3115 		tcp_queue_skb(sk, skb);
3116 	}
3117 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3118 }
3119 
3120 /* We get here when a process closes a file descriptor (either due to
3121  * an explicit close() or as a byproduct of exit()'ing) and there
3122  * was unread data in the receive queue.  This behavior is recommended
3123  * by RFC 2525, section 2.17.  -DaveM
3124  */
3125 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3126 {
3127 	struct sk_buff *skb;
3128 
3129 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3130 
3131 	/* NOTE: No TCP options attached and we never retransmit this. */
3132 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3133 	if (!skb) {
3134 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3135 		return;
3136 	}
3137 
3138 	/* Reserve space for headers and prepare control bits. */
3139 	skb_reserve(skb, MAX_TCP_HEADER);
3140 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3141 			     TCPHDR_ACK | TCPHDR_RST);
3142 	tcp_mstamp_refresh(tcp_sk(sk));
3143 	/* Send it off. */
3144 	if (tcp_transmit_skb(sk, skb, 0, priority))
3145 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3146 
3147 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3148 	 * skb here is different to the troublesome skb, so use NULL
3149 	 */
3150 	trace_tcp_send_reset(sk, NULL);
3151 }
3152 
3153 /* Send a crossed SYN-ACK during socket establishment.
3154  * WARNING: This routine must only be called when we have already sent
3155  * a SYN packet that crossed the incoming SYN that caused this routine
3156  * to get called. If this assumption fails then the initial rcv_wnd
3157  * and rcv_wscale values will not be correct.
3158  */
3159 int tcp_send_synack(struct sock *sk)
3160 {
3161 	struct sk_buff *skb;
3162 
3163 	skb = tcp_rtx_queue_head(sk);
3164 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3165 		pr_err("%s: wrong queue state\n", __func__);
3166 		return -EFAULT;
3167 	}
3168 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3169 		if (skb_cloned(skb)) {
3170 			struct sk_buff *nskb;
3171 
3172 			tcp_skb_tsorted_save(skb) {
3173 				nskb = skb_copy(skb, GFP_ATOMIC);
3174 			} tcp_skb_tsorted_restore(skb);
3175 			if (!nskb)
3176 				return -ENOMEM;
3177 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3178 			tcp_rtx_queue_unlink_and_free(skb, sk);
3179 			__skb_header_release(nskb);
3180 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3181 			sk->sk_wmem_queued += nskb->truesize;
3182 			sk_mem_charge(sk, nskb->truesize);
3183 			skb = nskb;
3184 		}
3185 
3186 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3187 		tcp_ecn_send_synack(sk, skb);
3188 	}
3189 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3190 }
3191 
3192 /**
3193  * tcp_make_synack - Prepare a SYN-ACK.
3194  * sk: listener socket
3195  * dst: dst entry attached to the SYNACK
3196  * req: request_sock pointer
3197  *
3198  * Allocate one skb and build a SYNACK packet.
3199  * @dst is consumed : Caller should not use it again.
3200  */
3201 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3202 				struct request_sock *req,
3203 				struct tcp_fastopen_cookie *foc,
3204 				enum tcp_synack_type synack_type)
3205 {
3206 	struct inet_request_sock *ireq = inet_rsk(req);
3207 	const struct tcp_sock *tp = tcp_sk(sk);
3208 	struct tcp_md5sig_key *md5 = NULL;
3209 	struct tcp_out_options opts;
3210 	struct sk_buff *skb;
3211 	int tcp_header_size;
3212 	struct tcphdr *th;
3213 	int mss;
3214 
3215 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3216 	if (unlikely(!skb)) {
3217 		dst_release(dst);
3218 		return NULL;
3219 	}
3220 	/* Reserve space for headers. */
3221 	skb_reserve(skb, MAX_TCP_HEADER);
3222 
3223 	switch (synack_type) {
3224 	case TCP_SYNACK_NORMAL:
3225 		skb_set_owner_w(skb, req_to_sk(req));
3226 		break;
3227 	case TCP_SYNACK_COOKIE:
3228 		/* Under synflood, we do not attach skb to a socket,
3229 		 * to avoid false sharing.
3230 		 */
3231 		break;
3232 	case TCP_SYNACK_FASTOPEN:
3233 		/* sk is a const pointer, because we want to express multiple
3234 		 * cpu might call us concurrently.
3235 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3236 		 */
3237 		skb_set_owner_w(skb, (struct sock *)sk);
3238 		break;
3239 	}
3240 	skb_dst_set(skb, dst);
3241 
3242 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3243 
3244 	memset(&opts, 0, sizeof(opts));
3245 #ifdef CONFIG_SYN_COOKIES
3246 	if (unlikely(req->cookie_ts))
3247 		skb->skb_mstamp_ns = cookie_init_timestamp(req);
3248 	else
3249 #endif
3250 	{
3251 		skb->skb_mstamp_ns = tcp_clock_ns();
3252 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3253 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3254 	}
3255 
3256 #ifdef CONFIG_TCP_MD5SIG
3257 	rcu_read_lock();
3258 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3259 #endif
3260 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3261 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3262 					     foc) + sizeof(*th);
3263 
3264 	skb_push(skb, tcp_header_size);
3265 	skb_reset_transport_header(skb);
3266 
3267 	th = (struct tcphdr *)skb->data;
3268 	memset(th, 0, sizeof(struct tcphdr));
3269 	th->syn = 1;
3270 	th->ack = 1;
3271 	tcp_ecn_make_synack(req, th);
3272 	th->source = htons(ireq->ir_num);
3273 	th->dest = ireq->ir_rmt_port;
3274 	skb->mark = ireq->ir_mark;
3275 	skb->ip_summed = CHECKSUM_PARTIAL;
3276 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3277 	/* XXX data is queued and acked as is. No buffer/window check */
3278 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3279 
3280 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3281 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3282 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3283 	th->doff = (tcp_header_size >> 2);
3284 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3285 
3286 #ifdef CONFIG_TCP_MD5SIG
3287 	/* Okay, we have all we need - do the md5 hash if needed */
3288 	if (md5)
3289 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3290 					       md5, req_to_sk(req), skb);
3291 	rcu_read_unlock();
3292 #endif
3293 
3294 	/* Do not fool tcpdump (if any), clean our debris */
3295 	skb->tstamp = 0;
3296 	return skb;
3297 }
3298 EXPORT_SYMBOL(tcp_make_synack);
3299 
3300 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3301 {
3302 	struct inet_connection_sock *icsk = inet_csk(sk);
3303 	const struct tcp_congestion_ops *ca;
3304 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3305 
3306 	if (ca_key == TCP_CA_UNSPEC)
3307 		return;
3308 
3309 	rcu_read_lock();
3310 	ca = tcp_ca_find_key(ca_key);
3311 	if (likely(ca && try_module_get(ca->owner))) {
3312 		module_put(icsk->icsk_ca_ops->owner);
3313 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3314 		icsk->icsk_ca_ops = ca;
3315 	}
3316 	rcu_read_unlock();
3317 }
3318 
3319 /* Do all connect socket setups that can be done AF independent. */
3320 static void tcp_connect_init(struct sock *sk)
3321 {
3322 	const struct dst_entry *dst = __sk_dst_get(sk);
3323 	struct tcp_sock *tp = tcp_sk(sk);
3324 	__u8 rcv_wscale;
3325 	u32 rcv_wnd;
3326 
3327 	/* We'll fix this up when we get a response from the other end.
3328 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3329 	 */
3330 	tp->tcp_header_len = sizeof(struct tcphdr);
3331 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3332 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3333 
3334 #ifdef CONFIG_TCP_MD5SIG
3335 	if (tp->af_specific->md5_lookup(sk, sk))
3336 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3337 #endif
3338 
3339 	/* If user gave his TCP_MAXSEG, record it to clamp */
3340 	if (tp->rx_opt.user_mss)
3341 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3342 	tp->max_window = 0;
3343 	tcp_mtup_init(sk);
3344 	tcp_sync_mss(sk, dst_mtu(dst));
3345 
3346 	tcp_ca_dst_init(sk, dst);
3347 
3348 	if (!tp->window_clamp)
3349 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3350 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3351 
3352 	tcp_initialize_rcv_mss(sk);
3353 
3354 	/* limit the window selection if the user enforce a smaller rx buffer */
3355 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3356 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3357 		tp->window_clamp = tcp_full_space(sk);
3358 
3359 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3360 	if (rcv_wnd == 0)
3361 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3362 
3363 	tcp_select_initial_window(sk, tcp_full_space(sk),
3364 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3365 				  &tp->rcv_wnd,
3366 				  &tp->window_clamp,
3367 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3368 				  &rcv_wscale,
3369 				  rcv_wnd);
3370 
3371 	tp->rx_opt.rcv_wscale = rcv_wscale;
3372 	tp->rcv_ssthresh = tp->rcv_wnd;
3373 
3374 	sk->sk_err = 0;
3375 	sock_reset_flag(sk, SOCK_DONE);
3376 	tp->snd_wnd = 0;
3377 	tcp_init_wl(tp, 0);
3378 	tcp_write_queue_purge(sk);
3379 	tp->snd_una = tp->write_seq;
3380 	tp->snd_sml = tp->write_seq;
3381 	tp->snd_up = tp->write_seq;
3382 	tp->snd_nxt = tp->write_seq;
3383 
3384 	if (likely(!tp->repair))
3385 		tp->rcv_nxt = 0;
3386 	else
3387 		tp->rcv_tstamp = tcp_jiffies32;
3388 	tp->rcv_wup = tp->rcv_nxt;
3389 	tp->copied_seq = tp->rcv_nxt;
3390 
3391 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3392 	inet_csk(sk)->icsk_retransmits = 0;
3393 	tcp_clear_retrans(tp);
3394 }
3395 
3396 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3397 {
3398 	struct tcp_sock *tp = tcp_sk(sk);
3399 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3400 
3401 	tcb->end_seq += skb->len;
3402 	__skb_header_release(skb);
3403 	sk->sk_wmem_queued += skb->truesize;
3404 	sk_mem_charge(sk, skb->truesize);
3405 	tp->write_seq = tcb->end_seq;
3406 	tp->packets_out += tcp_skb_pcount(skb);
3407 }
3408 
3409 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3410  * queue a data-only packet after the regular SYN, such that regular SYNs
3411  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3412  * only the SYN sequence, the data are retransmitted in the first ACK.
3413  * If cookie is not cached or other error occurs, falls back to send a
3414  * regular SYN with Fast Open cookie request option.
3415  */
3416 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3417 {
3418 	struct tcp_sock *tp = tcp_sk(sk);
3419 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3420 	int space, err = 0;
3421 	struct sk_buff *syn_data;
3422 
3423 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3424 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3425 		goto fallback;
3426 
3427 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3428 	 * user-MSS. Reserve maximum option space for middleboxes that add
3429 	 * private TCP options. The cost is reduced data space in SYN :(
3430 	 */
3431 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3432 
3433 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3434 		MAX_TCP_OPTION_SPACE;
3435 
3436 	space = min_t(size_t, space, fo->size);
3437 
3438 	/* limit to order-0 allocations */
3439 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3440 
3441 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3442 	if (!syn_data)
3443 		goto fallback;
3444 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3445 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3446 	if (space) {
3447 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3448 					    &fo->data->msg_iter);
3449 		if (unlikely(!copied)) {
3450 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3451 			kfree_skb(syn_data);
3452 			goto fallback;
3453 		}
3454 		if (copied != space) {
3455 			skb_trim(syn_data, copied);
3456 			space = copied;
3457 		}
3458 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3459 	}
3460 	/* No more data pending in inet_wait_for_connect() */
3461 	if (space == fo->size)
3462 		fo->data = NULL;
3463 	fo->copied = space;
3464 
3465 	tcp_connect_queue_skb(sk, syn_data);
3466 	if (syn_data->len)
3467 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3468 
3469 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3470 
3471 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3472 
3473 	/* Now full SYN+DATA was cloned and sent (or not),
3474 	 * remove the SYN from the original skb (syn_data)
3475 	 * we keep in write queue in case of a retransmit, as we
3476 	 * also have the SYN packet (with no data) in the same queue.
3477 	 */
3478 	TCP_SKB_CB(syn_data)->seq++;
3479 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3480 	if (!err) {
3481 		tp->syn_data = (fo->copied > 0);
3482 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3483 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3484 		goto done;
3485 	}
3486 
3487 	/* data was not sent, put it in write_queue */
3488 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3489 	tp->packets_out -= tcp_skb_pcount(syn_data);
3490 
3491 fallback:
3492 	/* Send a regular SYN with Fast Open cookie request option */
3493 	if (fo->cookie.len > 0)
3494 		fo->cookie.len = 0;
3495 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3496 	if (err)
3497 		tp->syn_fastopen = 0;
3498 done:
3499 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3500 	return err;
3501 }
3502 
3503 /* Build a SYN and send it off. */
3504 int tcp_connect(struct sock *sk)
3505 {
3506 	struct tcp_sock *tp = tcp_sk(sk);
3507 	struct sk_buff *buff;
3508 	int err;
3509 
3510 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3511 
3512 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3513 		return -EHOSTUNREACH; /* Routing failure or similar. */
3514 
3515 	tcp_connect_init(sk);
3516 
3517 	if (unlikely(tp->repair)) {
3518 		tcp_finish_connect(sk, NULL);
3519 		return 0;
3520 	}
3521 
3522 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3523 	if (unlikely(!buff))
3524 		return -ENOBUFS;
3525 
3526 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3527 	tcp_mstamp_refresh(tp);
3528 	tp->retrans_stamp = tcp_time_stamp(tp);
3529 	tcp_connect_queue_skb(sk, buff);
3530 	tcp_ecn_send_syn(sk, buff);
3531 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3532 
3533 	/* Send off SYN; include data in Fast Open. */
3534 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3535 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3536 	if (err == -ECONNREFUSED)
3537 		return err;
3538 
3539 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3540 	 * in order to make this packet get counted in tcpOutSegs.
3541 	 */
3542 	tp->snd_nxt = tp->write_seq;
3543 	tp->pushed_seq = tp->write_seq;
3544 	buff = tcp_send_head(sk);
3545 	if (unlikely(buff)) {
3546 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3547 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3548 	}
3549 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3550 
3551 	/* Timer for repeating the SYN until an answer. */
3552 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3553 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3554 	return 0;
3555 }
3556 EXPORT_SYMBOL(tcp_connect);
3557 
3558 /* Send out a delayed ack, the caller does the policy checking
3559  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3560  * for details.
3561  */
3562 void tcp_send_delayed_ack(struct sock *sk)
3563 {
3564 	struct inet_connection_sock *icsk = inet_csk(sk);
3565 	int ato = icsk->icsk_ack.ato;
3566 	unsigned long timeout;
3567 
3568 	if (ato > TCP_DELACK_MIN) {
3569 		const struct tcp_sock *tp = tcp_sk(sk);
3570 		int max_ato = HZ / 2;
3571 
3572 		if (inet_csk_in_pingpong_mode(sk) ||
3573 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3574 			max_ato = TCP_DELACK_MAX;
3575 
3576 		/* Slow path, intersegment interval is "high". */
3577 
3578 		/* If some rtt estimate is known, use it to bound delayed ack.
3579 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3580 		 * directly.
3581 		 */
3582 		if (tp->srtt_us) {
3583 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3584 					TCP_DELACK_MIN);
3585 
3586 			if (rtt < max_ato)
3587 				max_ato = rtt;
3588 		}
3589 
3590 		ato = min(ato, max_ato);
3591 	}
3592 
3593 	/* Stay within the limit we were given */
3594 	timeout = jiffies + ato;
3595 
3596 	/* Use new timeout only if there wasn't a older one earlier. */
3597 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3598 		/* If delack timer was blocked or is about to expire,
3599 		 * send ACK now.
3600 		 */
3601 		if (icsk->icsk_ack.blocked ||
3602 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3603 			tcp_send_ack(sk);
3604 			return;
3605 		}
3606 
3607 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3608 			timeout = icsk->icsk_ack.timeout;
3609 	}
3610 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3611 	icsk->icsk_ack.timeout = timeout;
3612 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3613 }
3614 
3615 /* This routine sends an ack and also updates the window. */
3616 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3617 {
3618 	struct sk_buff *buff;
3619 
3620 	/* If we have been reset, we may not send again. */
3621 	if (sk->sk_state == TCP_CLOSE)
3622 		return;
3623 
3624 	/* We are not putting this on the write queue, so
3625 	 * tcp_transmit_skb() will set the ownership to this
3626 	 * sock.
3627 	 */
3628 	buff = alloc_skb(MAX_TCP_HEADER,
3629 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3630 	if (unlikely(!buff)) {
3631 		inet_csk_schedule_ack(sk);
3632 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3633 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3634 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3635 		return;
3636 	}
3637 
3638 	/* Reserve space for headers and prepare control bits. */
3639 	skb_reserve(buff, MAX_TCP_HEADER);
3640 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3641 
3642 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3643 	 * too much.
3644 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3645 	 */
3646 	skb_set_tcp_pure_ack(buff);
3647 
3648 	/* Send it off, this clears delayed acks for us. */
3649 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3650 }
3651 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3652 
3653 void tcp_send_ack(struct sock *sk)
3654 {
3655 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3656 }
3657 
3658 /* This routine sends a packet with an out of date sequence
3659  * number. It assumes the other end will try to ack it.
3660  *
3661  * Question: what should we make while urgent mode?
3662  * 4.4BSD forces sending single byte of data. We cannot send
3663  * out of window data, because we have SND.NXT==SND.MAX...
3664  *
3665  * Current solution: to send TWO zero-length segments in urgent mode:
3666  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3667  * out-of-date with SND.UNA-1 to probe window.
3668  */
3669 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3670 {
3671 	struct tcp_sock *tp = tcp_sk(sk);
3672 	struct sk_buff *skb;
3673 
3674 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3675 	skb = alloc_skb(MAX_TCP_HEADER,
3676 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3677 	if (!skb)
3678 		return -1;
3679 
3680 	/* Reserve space for headers and set control bits. */
3681 	skb_reserve(skb, MAX_TCP_HEADER);
3682 	/* Use a previous sequence.  This should cause the other
3683 	 * end to send an ack.  Don't queue or clone SKB, just
3684 	 * send it.
3685 	 */
3686 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3687 	NET_INC_STATS(sock_net(sk), mib);
3688 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3689 }
3690 
3691 /* Called from setsockopt( ... TCP_REPAIR ) */
3692 void tcp_send_window_probe(struct sock *sk)
3693 {
3694 	if (sk->sk_state == TCP_ESTABLISHED) {
3695 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3696 		tcp_mstamp_refresh(tcp_sk(sk));
3697 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3698 	}
3699 }
3700 
3701 /* Initiate keepalive or window probe from timer. */
3702 int tcp_write_wakeup(struct sock *sk, int mib)
3703 {
3704 	struct tcp_sock *tp = tcp_sk(sk);
3705 	struct sk_buff *skb;
3706 
3707 	if (sk->sk_state == TCP_CLOSE)
3708 		return -1;
3709 
3710 	skb = tcp_send_head(sk);
3711 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3712 		int err;
3713 		unsigned int mss = tcp_current_mss(sk);
3714 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3715 
3716 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3717 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3718 
3719 		/* We are probing the opening of a window
3720 		 * but the window size is != 0
3721 		 * must have been a result SWS avoidance ( sender )
3722 		 */
3723 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3724 		    skb->len > mss) {
3725 			seg_size = min(seg_size, mss);
3726 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3727 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3728 					 skb, seg_size, mss, GFP_ATOMIC))
3729 				return -1;
3730 		} else if (!tcp_skb_pcount(skb))
3731 			tcp_set_skb_tso_segs(skb, mss);
3732 
3733 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3734 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3735 		if (!err)
3736 			tcp_event_new_data_sent(sk, skb);
3737 		return err;
3738 	} else {
3739 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3740 			tcp_xmit_probe_skb(sk, 1, mib);
3741 		return tcp_xmit_probe_skb(sk, 0, mib);
3742 	}
3743 }
3744 
3745 /* A window probe timeout has occurred.  If window is not closed send
3746  * a partial packet else a zero probe.
3747  */
3748 void tcp_send_probe0(struct sock *sk)
3749 {
3750 	struct inet_connection_sock *icsk = inet_csk(sk);
3751 	struct tcp_sock *tp = tcp_sk(sk);
3752 	struct net *net = sock_net(sk);
3753 	unsigned long timeout;
3754 	int err;
3755 
3756 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3757 
3758 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3759 		/* Cancel probe timer, if it is not required. */
3760 		icsk->icsk_probes_out = 0;
3761 		icsk->icsk_backoff = 0;
3762 		return;
3763 	}
3764 
3765 	icsk->icsk_probes_out++;
3766 	if (err <= 0) {
3767 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3768 			icsk->icsk_backoff++;
3769 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3770 	} else {
3771 		/* If packet was not sent due to local congestion,
3772 		 * Let senders fight for local resources conservatively.
3773 		 */
3774 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
3775 	}
3776 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL);
3777 }
3778 
3779 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3780 {
3781 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3782 	struct flowi fl;
3783 	int res;
3784 
3785 	tcp_rsk(req)->txhash = net_tx_rndhash();
3786 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3787 	if (!res) {
3788 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3789 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3790 		if (unlikely(tcp_passive_fastopen(sk)))
3791 			tcp_sk(sk)->total_retrans++;
3792 		trace_tcp_retransmit_synack(sk, req);
3793 	}
3794 	return res;
3795 }
3796 EXPORT_SYMBOL(tcp_rtx_synack);
3797