xref: /openbmc/linux/net/ipv4/tcp_output.c (revision da090bf6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 
42 #include <linux/compiler.h>
43 #include <linux/gfp.h>
44 #include <linux/module.h>
45 #include <linux/static_key.h>
46 
47 #include <trace/events/tcp.h>
48 
49 /* Refresh clocks of a TCP socket,
50  * ensuring monotically increasing values.
51  */
52 void tcp_mstamp_refresh(struct tcp_sock *tp)
53 {
54 	u64 val = tcp_clock_ns();
55 
56 	tp->tcp_clock_cache = val;
57 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
58 }
59 
60 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
61 			   int push_one, gfp_t gfp);
62 
63 /* Account for new data that has been sent to the network. */
64 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
65 {
66 	struct inet_connection_sock *icsk = inet_csk(sk);
67 	struct tcp_sock *tp = tcp_sk(sk);
68 	unsigned int prior_packets = tp->packets_out;
69 
70 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
71 
72 	__skb_unlink(skb, &sk->sk_write_queue);
73 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
74 
75 	tp->packets_out += tcp_skb_pcount(skb);
76 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
77 		tcp_rearm_rto(sk);
78 
79 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
80 		      tcp_skb_pcount(skb));
81 }
82 
83 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
84  * window scaling factor due to loss of precision.
85  * If window has been shrunk, what should we make? It is not clear at all.
86  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
87  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
88  * invalid. OK, let's make this for now:
89  */
90 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
91 {
92 	const struct tcp_sock *tp = tcp_sk(sk);
93 
94 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
95 	    (tp->rx_opt.wscale_ok &&
96 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
97 		return tp->snd_nxt;
98 	else
99 		return tcp_wnd_end(tp);
100 }
101 
102 /* Calculate mss to advertise in SYN segment.
103  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
104  *
105  * 1. It is independent of path mtu.
106  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
107  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
108  *    attached devices, because some buggy hosts are confused by
109  *    large MSS.
110  * 4. We do not make 3, we advertise MSS, calculated from first
111  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
112  *    This may be overridden via information stored in routing table.
113  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
114  *    probably even Jumbo".
115  */
116 static __u16 tcp_advertise_mss(struct sock *sk)
117 {
118 	struct tcp_sock *tp = tcp_sk(sk);
119 	const struct dst_entry *dst = __sk_dst_get(sk);
120 	int mss = tp->advmss;
121 
122 	if (dst) {
123 		unsigned int metric = dst_metric_advmss(dst);
124 
125 		if (metric < mss) {
126 			mss = metric;
127 			tp->advmss = mss;
128 		}
129 	}
130 
131 	return (__u16)mss;
132 }
133 
134 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
135  * This is the first part of cwnd validation mechanism.
136  */
137 void tcp_cwnd_restart(struct sock *sk, s32 delta)
138 {
139 	struct tcp_sock *tp = tcp_sk(sk);
140 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
141 	u32 cwnd = tp->snd_cwnd;
142 
143 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
144 
145 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
146 	restart_cwnd = min(restart_cwnd, cwnd);
147 
148 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
149 		cwnd >>= 1;
150 	tp->snd_cwnd = max(cwnd, restart_cwnd);
151 	tp->snd_cwnd_stamp = tcp_jiffies32;
152 	tp->snd_cwnd_used = 0;
153 }
154 
155 /* Congestion state accounting after a packet has been sent. */
156 static void tcp_event_data_sent(struct tcp_sock *tp,
157 				struct sock *sk)
158 {
159 	struct inet_connection_sock *icsk = inet_csk(sk);
160 	const u32 now = tcp_jiffies32;
161 
162 	if (tcp_packets_in_flight(tp) == 0)
163 		tcp_ca_event(sk, CA_EVENT_TX_START);
164 
165 	/* If this is the first data packet sent in response to the
166 	 * previous received data,
167 	 * and it is a reply for ato after last received packet,
168 	 * increase pingpong count.
169 	 */
170 	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
171 	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
172 		inet_csk_inc_pingpong_cnt(sk);
173 
174 	tp->lsndtime = now;
175 }
176 
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
179 				      u32 rcv_nxt)
180 {
181 	struct tcp_sock *tp = tcp_sk(sk);
182 
183 	if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
184 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
185 			      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
186 		tp->compressed_ack = TCP_FASTRETRANS_THRESH;
187 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
188 			__sock_put(sk);
189 	}
190 
191 	if (unlikely(rcv_nxt != tp->rcv_nxt))
192 		return;  /* Special ACK sent by DCTCP to reflect ECN */
193 	tcp_dec_quickack_mode(sk, pkts);
194 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
195 }
196 
197 /* Determine a window scaling and initial window to offer.
198  * Based on the assumption that the given amount of space
199  * will be offered. Store the results in the tp structure.
200  * NOTE: for smooth operation initial space offering should
201  * be a multiple of mss if possible. We assume here that mss >= 1.
202  * This MUST be enforced by all callers.
203  */
204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
205 			       __u32 *rcv_wnd, __u32 *window_clamp,
206 			       int wscale_ok, __u8 *rcv_wscale,
207 			       __u32 init_rcv_wnd)
208 {
209 	unsigned int space = (__space < 0 ? 0 : __space);
210 
211 	/* If no clamp set the clamp to the max possible scaled window */
212 	if (*window_clamp == 0)
213 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
214 	space = min(*window_clamp, space);
215 
216 	/* Quantize space offering to a multiple of mss if possible. */
217 	if (space > mss)
218 		space = rounddown(space, mss);
219 
220 	/* NOTE: offering an initial window larger than 32767
221 	 * will break some buggy TCP stacks. If the admin tells us
222 	 * it is likely we could be speaking with such a buggy stack
223 	 * we will truncate our initial window offering to 32K-1
224 	 * unless the remote has sent us a window scaling option,
225 	 * which we interpret as a sign the remote TCP is not
226 	 * misinterpreting the window field as a signed quantity.
227 	 */
228 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
229 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
230 	else
231 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
232 
233 	if (init_rcv_wnd)
234 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
235 
236 	*rcv_wscale = 0;
237 	if (wscale_ok) {
238 		/* Set window scaling on max possible window */
239 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
240 		space = max_t(u32, space, sysctl_rmem_max);
241 		space = min_t(u32, space, *window_clamp);
242 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
243 				      0, TCP_MAX_WSCALE);
244 	}
245 	/* Set the clamp no higher than max representable value */
246 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
247 }
248 EXPORT_SYMBOL(tcp_select_initial_window);
249 
250 /* Chose a new window to advertise, update state in tcp_sock for the
251  * socket, and return result with RFC1323 scaling applied.  The return
252  * value can be stuffed directly into th->window for an outgoing
253  * frame.
254  */
255 static u16 tcp_select_window(struct sock *sk)
256 {
257 	struct tcp_sock *tp = tcp_sk(sk);
258 	u32 old_win = tp->rcv_wnd;
259 	u32 cur_win = tcp_receive_window(tp);
260 	u32 new_win = __tcp_select_window(sk);
261 
262 	/* Never shrink the offered window */
263 	if (new_win < cur_win) {
264 		/* Danger Will Robinson!
265 		 * Don't update rcv_wup/rcv_wnd here or else
266 		 * we will not be able to advertise a zero
267 		 * window in time.  --DaveM
268 		 *
269 		 * Relax Will Robinson.
270 		 */
271 		if (new_win == 0)
272 			NET_INC_STATS(sock_net(sk),
273 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
274 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
275 	}
276 	tp->rcv_wnd = new_win;
277 	tp->rcv_wup = tp->rcv_nxt;
278 
279 	/* Make sure we do not exceed the maximum possible
280 	 * scaled window.
281 	 */
282 	if (!tp->rx_opt.rcv_wscale &&
283 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
284 		new_win = min(new_win, MAX_TCP_WINDOW);
285 	else
286 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
287 
288 	/* RFC1323 scaling applied */
289 	new_win >>= tp->rx_opt.rcv_wscale;
290 
291 	/* If we advertise zero window, disable fast path. */
292 	if (new_win == 0) {
293 		tp->pred_flags = 0;
294 		if (old_win)
295 			NET_INC_STATS(sock_net(sk),
296 				      LINUX_MIB_TCPTOZEROWINDOWADV);
297 	} else if (old_win == 0) {
298 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
299 	}
300 
301 	return new_win;
302 }
303 
304 /* Packet ECN state for a SYN-ACK */
305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
306 {
307 	const struct tcp_sock *tp = tcp_sk(sk);
308 
309 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
310 	if (!(tp->ecn_flags & TCP_ECN_OK))
311 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
312 	else if (tcp_ca_needs_ecn(sk) ||
313 		 tcp_bpf_ca_needs_ecn(sk))
314 		INET_ECN_xmit(sk);
315 }
316 
317 /* Packet ECN state for a SYN.  */
318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
319 {
320 	struct tcp_sock *tp = tcp_sk(sk);
321 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
322 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
323 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
324 
325 	if (!use_ecn) {
326 		const struct dst_entry *dst = __sk_dst_get(sk);
327 
328 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
329 			use_ecn = true;
330 	}
331 
332 	tp->ecn_flags = 0;
333 
334 	if (use_ecn) {
335 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 		tp->ecn_flags = TCP_ECN_OK;
337 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
338 			INET_ECN_xmit(sk);
339 	}
340 }
341 
342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
343 {
344 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
345 		/* tp->ecn_flags are cleared at a later point in time when
346 		 * SYN ACK is ultimatively being received.
347 		 */
348 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
349 }
350 
351 static void
352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
353 {
354 	if (inet_rsk(req)->ecn_ok)
355 		th->ece = 1;
356 }
357 
358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
359  * be sent.
360  */
361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
362 			 struct tcphdr *th, int tcp_header_len)
363 {
364 	struct tcp_sock *tp = tcp_sk(sk);
365 
366 	if (tp->ecn_flags & TCP_ECN_OK) {
367 		/* Not-retransmitted data segment: set ECT and inject CWR. */
368 		if (skb->len != tcp_header_len &&
369 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
370 			INET_ECN_xmit(sk);
371 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
372 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
373 				th->cwr = 1;
374 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
375 			}
376 		} else if (!tcp_ca_needs_ecn(sk)) {
377 			/* ACK or retransmitted segment: clear ECT|CE */
378 			INET_ECN_dontxmit(sk);
379 		}
380 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
381 			th->ece = 1;
382 	}
383 }
384 
385 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
386  * auto increment end seqno.
387  */
388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
389 {
390 	skb->ip_summed = CHECKSUM_PARTIAL;
391 
392 	TCP_SKB_CB(skb)->tcp_flags = flags;
393 	TCP_SKB_CB(skb)->sacked = 0;
394 
395 	tcp_skb_pcount_set(skb, 1);
396 
397 	TCP_SKB_CB(skb)->seq = seq;
398 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
399 		seq++;
400 	TCP_SKB_CB(skb)->end_seq = seq;
401 }
402 
403 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
404 {
405 	return tp->snd_una != tp->snd_up;
406 }
407 
408 #define OPTION_SACK_ADVERTISE	(1 << 0)
409 #define OPTION_TS		(1 << 1)
410 #define OPTION_MD5		(1 << 2)
411 #define OPTION_WSCALE		(1 << 3)
412 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
413 #define OPTION_SMC		(1 << 9)
414 
415 static void smc_options_write(__be32 *ptr, u16 *options)
416 {
417 #if IS_ENABLED(CONFIG_SMC)
418 	if (static_branch_unlikely(&tcp_have_smc)) {
419 		if (unlikely(OPTION_SMC & *options)) {
420 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
421 				       (TCPOPT_NOP  << 16) |
422 				       (TCPOPT_EXP <<  8) |
423 				       (TCPOLEN_EXP_SMC_BASE));
424 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
425 		}
426 	}
427 #endif
428 }
429 
430 struct tcp_out_options {
431 	u16 options;		/* bit field of OPTION_* */
432 	u16 mss;		/* 0 to disable */
433 	u8 ws;			/* window scale, 0 to disable */
434 	u8 num_sack_blocks;	/* number of SACK blocks to include */
435 	u8 hash_size;		/* bytes in hash_location */
436 	__u8 *hash_location;	/* temporary pointer, overloaded */
437 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
438 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
439 };
440 
441 /* Write previously computed TCP options to the packet.
442  *
443  * Beware: Something in the Internet is very sensitive to the ordering of
444  * TCP options, we learned this through the hard way, so be careful here.
445  * Luckily we can at least blame others for their non-compliance but from
446  * inter-operability perspective it seems that we're somewhat stuck with
447  * the ordering which we have been using if we want to keep working with
448  * those broken things (not that it currently hurts anybody as there isn't
449  * particular reason why the ordering would need to be changed).
450  *
451  * At least SACK_PERM as the first option is known to lead to a disaster
452  * (but it may well be that other scenarios fail similarly).
453  */
454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
455 			      struct tcp_out_options *opts)
456 {
457 	u16 options = opts->options;	/* mungable copy */
458 
459 	if (unlikely(OPTION_MD5 & options)) {
460 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
461 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
462 		/* overload cookie hash location */
463 		opts->hash_location = (__u8 *)ptr;
464 		ptr += 4;
465 	}
466 
467 	if (unlikely(opts->mss)) {
468 		*ptr++ = htonl((TCPOPT_MSS << 24) |
469 			       (TCPOLEN_MSS << 16) |
470 			       opts->mss);
471 	}
472 
473 	if (likely(OPTION_TS & options)) {
474 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
475 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
476 				       (TCPOLEN_SACK_PERM << 16) |
477 				       (TCPOPT_TIMESTAMP << 8) |
478 				       TCPOLEN_TIMESTAMP);
479 			options &= ~OPTION_SACK_ADVERTISE;
480 		} else {
481 			*ptr++ = htonl((TCPOPT_NOP << 24) |
482 				       (TCPOPT_NOP << 16) |
483 				       (TCPOPT_TIMESTAMP << 8) |
484 				       TCPOLEN_TIMESTAMP);
485 		}
486 		*ptr++ = htonl(opts->tsval);
487 		*ptr++ = htonl(opts->tsecr);
488 	}
489 
490 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
491 		*ptr++ = htonl((TCPOPT_NOP << 24) |
492 			       (TCPOPT_NOP << 16) |
493 			       (TCPOPT_SACK_PERM << 8) |
494 			       TCPOLEN_SACK_PERM);
495 	}
496 
497 	if (unlikely(OPTION_WSCALE & options)) {
498 		*ptr++ = htonl((TCPOPT_NOP << 24) |
499 			       (TCPOPT_WINDOW << 16) |
500 			       (TCPOLEN_WINDOW << 8) |
501 			       opts->ws);
502 	}
503 
504 	if (unlikely(opts->num_sack_blocks)) {
505 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
506 			tp->duplicate_sack : tp->selective_acks;
507 		int this_sack;
508 
509 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
510 			       (TCPOPT_NOP  << 16) |
511 			       (TCPOPT_SACK <<  8) |
512 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
513 						     TCPOLEN_SACK_PERBLOCK)));
514 
515 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
516 		     ++this_sack) {
517 			*ptr++ = htonl(sp[this_sack].start_seq);
518 			*ptr++ = htonl(sp[this_sack].end_seq);
519 		}
520 
521 		tp->rx_opt.dsack = 0;
522 	}
523 
524 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
525 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
526 		u8 *p = (u8 *)ptr;
527 		u32 len; /* Fast Open option length */
528 
529 		if (foc->exp) {
530 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
531 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
532 				     TCPOPT_FASTOPEN_MAGIC);
533 			p += TCPOLEN_EXP_FASTOPEN_BASE;
534 		} else {
535 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
536 			*p++ = TCPOPT_FASTOPEN;
537 			*p++ = len;
538 		}
539 
540 		memcpy(p, foc->val, foc->len);
541 		if ((len & 3) == 2) {
542 			p[foc->len] = TCPOPT_NOP;
543 			p[foc->len + 1] = TCPOPT_NOP;
544 		}
545 		ptr += (len + 3) >> 2;
546 	}
547 
548 	smc_options_write(ptr, &options);
549 }
550 
551 static void smc_set_option(const struct tcp_sock *tp,
552 			   struct tcp_out_options *opts,
553 			   unsigned int *remaining)
554 {
555 #if IS_ENABLED(CONFIG_SMC)
556 	if (static_branch_unlikely(&tcp_have_smc)) {
557 		if (tp->syn_smc) {
558 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
559 				opts->options |= OPTION_SMC;
560 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
561 			}
562 		}
563 	}
564 #endif
565 }
566 
567 static void smc_set_option_cond(const struct tcp_sock *tp,
568 				const struct inet_request_sock *ireq,
569 				struct tcp_out_options *opts,
570 				unsigned int *remaining)
571 {
572 #if IS_ENABLED(CONFIG_SMC)
573 	if (static_branch_unlikely(&tcp_have_smc)) {
574 		if (tp->syn_smc && ireq->smc_ok) {
575 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
576 				opts->options |= OPTION_SMC;
577 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
578 			}
579 		}
580 	}
581 #endif
582 }
583 
584 /* Compute TCP options for SYN packets. This is not the final
585  * network wire format yet.
586  */
587 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
588 				struct tcp_out_options *opts,
589 				struct tcp_md5sig_key **md5)
590 {
591 	struct tcp_sock *tp = tcp_sk(sk);
592 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
593 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
594 
595 	*md5 = NULL;
596 #ifdef CONFIG_TCP_MD5SIG
597 	if (static_branch_unlikely(&tcp_md5_needed) &&
598 	    rcu_access_pointer(tp->md5sig_info)) {
599 		*md5 = tp->af_specific->md5_lookup(sk, sk);
600 		if (*md5) {
601 			opts->options |= OPTION_MD5;
602 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
603 		}
604 	}
605 #endif
606 
607 	/* We always get an MSS option.  The option bytes which will be seen in
608 	 * normal data packets should timestamps be used, must be in the MSS
609 	 * advertised.  But we subtract them from tp->mss_cache so that
610 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
611 	 * fact here if necessary.  If we don't do this correctly, as a
612 	 * receiver we won't recognize data packets as being full sized when we
613 	 * should, and thus we won't abide by the delayed ACK rules correctly.
614 	 * SACKs don't matter, we never delay an ACK when we have any of those
615 	 * going out.  */
616 	opts->mss = tcp_advertise_mss(sk);
617 	remaining -= TCPOLEN_MSS_ALIGNED;
618 
619 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
620 		opts->options |= OPTION_TS;
621 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
622 		opts->tsecr = tp->rx_opt.ts_recent;
623 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
624 	}
625 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
626 		opts->ws = tp->rx_opt.rcv_wscale;
627 		opts->options |= OPTION_WSCALE;
628 		remaining -= TCPOLEN_WSCALE_ALIGNED;
629 	}
630 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
631 		opts->options |= OPTION_SACK_ADVERTISE;
632 		if (unlikely(!(OPTION_TS & opts->options)))
633 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
634 	}
635 
636 	if (fastopen && fastopen->cookie.len >= 0) {
637 		u32 need = fastopen->cookie.len;
638 
639 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
640 					       TCPOLEN_FASTOPEN_BASE;
641 		need = (need + 3) & ~3U;  /* Align to 32 bits */
642 		if (remaining >= need) {
643 			opts->options |= OPTION_FAST_OPEN_COOKIE;
644 			opts->fastopen_cookie = &fastopen->cookie;
645 			remaining -= need;
646 			tp->syn_fastopen = 1;
647 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
648 		}
649 	}
650 
651 	smc_set_option(tp, opts, &remaining);
652 
653 	return MAX_TCP_OPTION_SPACE - remaining;
654 }
655 
656 /* Set up TCP options for SYN-ACKs. */
657 static unsigned int tcp_synack_options(const struct sock *sk,
658 				       struct request_sock *req,
659 				       unsigned int mss, struct sk_buff *skb,
660 				       struct tcp_out_options *opts,
661 				       const struct tcp_md5sig_key *md5,
662 				       struct tcp_fastopen_cookie *foc)
663 {
664 	struct inet_request_sock *ireq = inet_rsk(req);
665 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
666 
667 #ifdef CONFIG_TCP_MD5SIG
668 	if (md5) {
669 		opts->options |= OPTION_MD5;
670 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
671 
672 		/* We can't fit any SACK blocks in a packet with MD5 + TS
673 		 * options. There was discussion about disabling SACK
674 		 * rather than TS in order to fit in better with old,
675 		 * buggy kernels, but that was deemed to be unnecessary.
676 		 */
677 		ireq->tstamp_ok &= !ireq->sack_ok;
678 	}
679 #endif
680 
681 	/* We always send an MSS option. */
682 	opts->mss = mss;
683 	remaining -= TCPOLEN_MSS_ALIGNED;
684 
685 	if (likely(ireq->wscale_ok)) {
686 		opts->ws = ireq->rcv_wscale;
687 		opts->options |= OPTION_WSCALE;
688 		remaining -= TCPOLEN_WSCALE_ALIGNED;
689 	}
690 	if (likely(ireq->tstamp_ok)) {
691 		opts->options |= OPTION_TS;
692 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
693 		opts->tsecr = req->ts_recent;
694 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
695 	}
696 	if (likely(ireq->sack_ok)) {
697 		opts->options |= OPTION_SACK_ADVERTISE;
698 		if (unlikely(!ireq->tstamp_ok))
699 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
700 	}
701 	if (foc != NULL && foc->len >= 0) {
702 		u32 need = foc->len;
703 
704 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
705 				   TCPOLEN_FASTOPEN_BASE;
706 		need = (need + 3) & ~3U;  /* Align to 32 bits */
707 		if (remaining >= need) {
708 			opts->options |= OPTION_FAST_OPEN_COOKIE;
709 			opts->fastopen_cookie = foc;
710 			remaining -= need;
711 		}
712 	}
713 
714 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
715 
716 	return MAX_TCP_OPTION_SPACE - remaining;
717 }
718 
719 /* Compute TCP options for ESTABLISHED sockets. This is not the
720  * final wire format yet.
721  */
722 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
723 					struct tcp_out_options *opts,
724 					struct tcp_md5sig_key **md5)
725 {
726 	struct tcp_sock *tp = tcp_sk(sk);
727 	unsigned int size = 0;
728 	unsigned int eff_sacks;
729 
730 	opts->options = 0;
731 
732 	*md5 = NULL;
733 #ifdef CONFIG_TCP_MD5SIG
734 	if (static_branch_unlikely(&tcp_md5_needed) &&
735 	    rcu_access_pointer(tp->md5sig_info)) {
736 		*md5 = tp->af_specific->md5_lookup(sk, sk);
737 		if (*md5) {
738 			opts->options |= OPTION_MD5;
739 			size += TCPOLEN_MD5SIG_ALIGNED;
740 		}
741 	}
742 #endif
743 
744 	if (likely(tp->rx_opt.tstamp_ok)) {
745 		opts->options |= OPTION_TS;
746 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
747 		opts->tsecr = tp->rx_opt.ts_recent;
748 		size += TCPOLEN_TSTAMP_ALIGNED;
749 	}
750 
751 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
752 	if (unlikely(eff_sacks)) {
753 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
754 		opts->num_sack_blocks =
755 			min_t(unsigned int, eff_sacks,
756 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
757 			      TCPOLEN_SACK_PERBLOCK);
758 		if (likely(opts->num_sack_blocks))
759 			size += TCPOLEN_SACK_BASE_ALIGNED +
760 				opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
761 	}
762 
763 	return size;
764 }
765 
766 
767 /* TCP SMALL QUEUES (TSQ)
768  *
769  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
770  * to reduce RTT and bufferbloat.
771  * We do this using a special skb destructor (tcp_wfree).
772  *
773  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
774  * needs to be reallocated in a driver.
775  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
776  *
777  * Since transmit from skb destructor is forbidden, we use a tasklet
778  * to process all sockets that eventually need to send more skbs.
779  * We use one tasklet per cpu, with its own queue of sockets.
780  */
781 struct tsq_tasklet {
782 	struct tasklet_struct	tasklet;
783 	struct list_head	head; /* queue of tcp sockets */
784 };
785 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
786 
787 static void tcp_tsq_write(struct sock *sk)
788 {
789 	if ((1 << sk->sk_state) &
790 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
791 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
792 		struct tcp_sock *tp = tcp_sk(sk);
793 
794 		if (tp->lost_out > tp->retrans_out &&
795 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
796 			tcp_mstamp_refresh(tp);
797 			tcp_xmit_retransmit_queue(sk);
798 		}
799 
800 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
801 			       0, GFP_ATOMIC);
802 	}
803 }
804 
805 static void tcp_tsq_handler(struct sock *sk)
806 {
807 	bh_lock_sock(sk);
808 	if (!sock_owned_by_user(sk))
809 		tcp_tsq_write(sk);
810 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
811 		sock_hold(sk);
812 	bh_unlock_sock(sk);
813 }
814 /*
815  * One tasklet per cpu tries to send more skbs.
816  * We run in tasklet context but need to disable irqs when
817  * transferring tsq->head because tcp_wfree() might
818  * interrupt us (non NAPI drivers)
819  */
820 static void tcp_tasklet_func(unsigned long data)
821 {
822 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
823 	LIST_HEAD(list);
824 	unsigned long flags;
825 	struct list_head *q, *n;
826 	struct tcp_sock *tp;
827 	struct sock *sk;
828 
829 	local_irq_save(flags);
830 	list_splice_init(&tsq->head, &list);
831 	local_irq_restore(flags);
832 
833 	list_for_each_safe(q, n, &list) {
834 		tp = list_entry(q, struct tcp_sock, tsq_node);
835 		list_del(&tp->tsq_node);
836 
837 		sk = (struct sock *)tp;
838 		smp_mb__before_atomic();
839 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
840 
841 		tcp_tsq_handler(sk);
842 		sk_free(sk);
843 	}
844 }
845 
846 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
847 			  TCPF_WRITE_TIMER_DEFERRED |	\
848 			  TCPF_DELACK_TIMER_DEFERRED |	\
849 			  TCPF_MTU_REDUCED_DEFERRED)
850 /**
851  * tcp_release_cb - tcp release_sock() callback
852  * @sk: socket
853  *
854  * called from release_sock() to perform protocol dependent
855  * actions before socket release.
856  */
857 void tcp_release_cb(struct sock *sk)
858 {
859 	unsigned long flags, nflags;
860 
861 	/* perform an atomic operation only if at least one flag is set */
862 	do {
863 		flags = sk->sk_tsq_flags;
864 		if (!(flags & TCP_DEFERRED_ALL))
865 			return;
866 		nflags = flags & ~TCP_DEFERRED_ALL;
867 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
868 
869 	if (flags & TCPF_TSQ_DEFERRED) {
870 		tcp_tsq_write(sk);
871 		__sock_put(sk);
872 	}
873 	/* Here begins the tricky part :
874 	 * We are called from release_sock() with :
875 	 * 1) BH disabled
876 	 * 2) sk_lock.slock spinlock held
877 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
878 	 *
879 	 * But following code is meant to be called from BH handlers,
880 	 * so we should keep BH disabled, but early release socket ownership
881 	 */
882 	sock_release_ownership(sk);
883 
884 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
885 		tcp_write_timer_handler(sk);
886 		__sock_put(sk);
887 	}
888 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
889 		tcp_delack_timer_handler(sk);
890 		__sock_put(sk);
891 	}
892 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
893 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
894 		__sock_put(sk);
895 	}
896 }
897 EXPORT_SYMBOL(tcp_release_cb);
898 
899 void __init tcp_tasklet_init(void)
900 {
901 	int i;
902 
903 	for_each_possible_cpu(i) {
904 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
905 
906 		INIT_LIST_HEAD(&tsq->head);
907 		tasklet_init(&tsq->tasklet,
908 			     tcp_tasklet_func,
909 			     (unsigned long)tsq);
910 	}
911 }
912 
913 /*
914  * Write buffer destructor automatically called from kfree_skb.
915  * We can't xmit new skbs from this context, as we might already
916  * hold qdisc lock.
917  */
918 void tcp_wfree(struct sk_buff *skb)
919 {
920 	struct sock *sk = skb->sk;
921 	struct tcp_sock *tp = tcp_sk(sk);
922 	unsigned long flags, nval, oval;
923 
924 	/* Keep one reference on sk_wmem_alloc.
925 	 * Will be released by sk_free() from here or tcp_tasklet_func()
926 	 */
927 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
928 
929 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
930 	 * Wait until our queues (qdisc + devices) are drained.
931 	 * This gives :
932 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
933 	 * - chance for incoming ACK (processed by another cpu maybe)
934 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
935 	 */
936 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
937 		goto out;
938 
939 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
940 		struct tsq_tasklet *tsq;
941 		bool empty;
942 
943 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
944 			goto out;
945 
946 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
947 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
948 		if (nval != oval)
949 			continue;
950 
951 		/* queue this socket to tasklet queue */
952 		local_irq_save(flags);
953 		tsq = this_cpu_ptr(&tsq_tasklet);
954 		empty = list_empty(&tsq->head);
955 		list_add(&tp->tsq_node, &tsq->head);
956 		if (empty)
957 			tasklet_schedule(&tsq->tasklet);
958 		local_irq_restore(flags);
959 		return;
960 	}
961 out:
962 	sk_free(sk);
963 }
964 
965 /* Note: Called under soft irq.
966  * We can call TCP stack right away, unless socket is owned by user.
967  */
968 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
969 {
970 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
971 	struct sock *sk = (struct sock *)tp;
972 
973 	tcp_tsq_handler(sk);
974 	sock_put(sk);
975 
976 	return HRTIMER_NORESTART;
977 }
978 
979 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
980 				      u64 prior_wstamp)
981 {
982 	struct tcp_sock *tp = tcp_sk(sk);
983 
984 	if (sk->sk_pacing_status != SK_PACING_NONE) {
985 		unsigned long rate = sk->sk_pacing_rate;
986 
987 		/* Original sch_fq does not pace first 10 MSS
988 		 * Note that tp->data_segs_out overflows after 2^32 packets,
989 		 * this is a minor annoyance.
990 		 */
991 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
992 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
993 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
994 
995 			/* take into account OS jitter */
996 			len_ns -= min_t(u64, len_ns / 2, credit);
997 			tp->tcp_wstamp_ns += len_ns;
998 		}
999 	}
1000 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1001 }
1002 
1003 /* This routine actually transmits TCP packets queued in by
1004  * tcp_do_sendmsg().  This is used by both the initial
1005  * transmission and possible later retransmissions.
1006  * All SKB's seen here are completely headerless.  It is our
1007  * job to build the TCP header, and pass the packet down to
1008  * IP so it can do the same plus pass the packet off to the
1009  * device.
1010  *
1011  * We are working here with either a clone of the original
1012  * SKB, or a fresh unique copy made by the retransmit engine.
1013  */
1014 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1015 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1016 {
1017 	const struct inet_connection_sock *icsk = inet_csk(sk);
1018 	struct inet_sock *inet;
1019 	struct tcp_sock *tp;
1020 	struct tcp_skb_cb *tcb;
1021 	struct tcp_out_options opts;
1022 	unsigned int tcp_options_size, tcp_header_size;
1023 	struct sk_buff *oskb = NULL;
1024 	struct tcp_md5sig_key *md5;
1025 	struct tcphdr *th;
1026 	u64 prior_wstamp;
1027 	int err;
1028 
1029 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1030 	tp = tcp_sk(sk);
1031 	prior_wstamp = tp->tcp_wstamp_ns;
1032 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1033 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1034 	if (clone_it) {
1035 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1036 			- tp->snd_una;
1037 		oskb = skb;
1038 
1039 		tcp_skb_tsorted_save(oskb) {
1040 			if (unlikely(skb_cloned(oskb)))
1041 				skb = pskb_copy(oskb, gfp_mask);
1042 			else
1043 				skb = skb_clone(oskb, gfp_mask);
1044 		} tcp_skb_tsorted_restore(oskb);
1045 
1046 		if (unlikely(!skb))
1047 			return -ENOBUFS;
1048 	}
1049 
1050 	inet = inet_sk(sk);
1051 	tcb = TCP_SKB_CB(skb);
1052 	memset(&opts, 0, sizeof(opts));
1053 
1054 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1055 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1056 	} else {
1057 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1058 							   &md5);
1059 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1060 		 * at receiver : This slightly improve GRO performance.
1061 		 * Note that we do not force the PSH flag for non GSO packets,
1062 		 * because they might be sent under high congestion events,
1063 		 * and in this case it is better to delay the delivery of 1-MSS
1064 		 * packets and thus the corresponding ACK packet that would
1065 		 * release the following packet.
1066 		 */
1067 		if (tcp_skb_pcount(skb) > 1)
1068 			tcb->tcp_flags |= TCPHDR_PSH;
1069 	}
1070 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1071 
1072 	/* if no packet is in qdisc/device queue, then allow XPS to select
1073 	 * another queue. We can be called from tcp_tsq_handler()
1074 	 * which holds one reference to sk.
1075 	 *
1076 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1077 	 * One way to get this would be to set skb->truesize = 2 on them.
1078 	 */
1079 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1080 
1081 	/* If we had to use memory reserve to allocate this skb,
1082 	 * this might cause drops if packet is looped back :
1083 	 * Other socket might not have SOCK_MEMALLOC.
1084 	 * Packets not looped back do not care about pfmemalloc.
1085 	 */
1086 	skb->pfmemalloc = 0;
1087 
1088 	skb_push(skb, tcp_header_size);
1089 	skb_reset_transport_header(skb);
1090 
1091 	skb_orphan(skb);
1092 	skb->sk = sk;
1093 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1094 	skb_set_hash_from_sk(skb, sk);
1095 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1096 
1097 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1098 
1099 	/* Build TCP header and checksum it. */
1100 	th = (struct tcphdr *)skb->data;
1101 	th->source		= inet->inet_sport;
1102 	th->dest		= inet->inet_dport;
1103 	th->seq			= htonl(tcb->seq);
1104 	th->ack_seq		= htonl(rcv_nxt);
1105 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1106 					tcb->tcp_flags);
1107 
1108 	th->check		= 0;
1109 	th->urg_ptr		= 0;
1110 
1111 	/* The urg_mode check is necessary during a below snd_una win probe */
1112 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1113 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1114 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1115 			th->urg = 1;
1116 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1117 			th->urg_ptr = htons(0xFFFF);
1118 			th->urg = 1;
1119 		}
1120 	}
1121 
1122 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1123 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1124 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1125 		th->window      = htons(tcp_select_window(sk));
1126 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1127 	} else {
1128 		/* RFC1323: The window in SYN & SYN/ACK segments
1129 		 * is never scaled.
1130 		 */
1131 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1132 	}
1133 #ifdef CONFIG_TCP_MD5SIG
1134 	/* Calculate the MD5 hash, as we have all we need now */
1135 	if (md5) {
1136 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1137 		tp->af_specific->calc_md5_hash(opts.hash_location,
1138 					       md5, sk, skb);
1139 	}
1140 #endif
1141 
1142 	icsk->icsk_af_ops->send_check(sk, skb);
1143 
1144 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1145 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1146 
1147 	if (skb->len != tcp_header_size) {
1148 		tcp_event_data_sent(tp, sk);
1149 		tp->data_segs_out += tcp_skb_pcount(skb);
1150 		tp->bytes_sent += skb->len - tcp_header_size;
1151 	}
1152 
1153 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1154 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1155 			      tcp_skb_pcount(skb));
1156 
1157 	tp->segs_out += tcp_skb_pcount(skb);
1158 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1159 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1160 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1161 
1162 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1163 
1164 	/* Cleanup our debris for IP stacks */
1165 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1166 			       sizeof(struct inet6_skb_parm)));
1167 
1168 	tcp_add_tx_delay(skb, tp);
1169 
1170 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1171 
1172 	if (unlikely(err > 0)) {
1173 		tcp_enter_cwr(sk);
1174 		err = net_xmit_eval(err);
1175 	}
1176 	if (!err && oskb) {
1177 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1178 		tcp_rate_skb_sent(sk, oskb);
1179 	}
1180 	return err;
1181 }
1182 
1183 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1184 			    gfp_t gfp_mask)
1185 {
1186 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1187 				  tcp_sk(sk)->rcv_nxt);
1188 }
1189 
1190 /* This routine just queues the buffer for sending.
1191  *
1192  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1193  * otherwise socket can stall.
1194  */
1195 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1196 {
1197 	struct tcp_sock *tp = tcp_sk(sk);
1198 
1199 	/* Advance write_seq and place onto the write_queue. */
1200 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1201 	__skb_header_release(skb);
1202 	tcp_add_write_queue_tail(sk, skb);
1203 	sk_wmem_queued_add(sk, skb->truesize);
1204 	sk_mem_charge(sk, skb->truesize);
1205 }
1206 
1207 /* Initialize TSO segments for a packet. */
1208 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1209 {
1210 	if (skb->len <= mss_now) {
1211 		/* Avoid the costly divide in the normal
1212 		 * non-TSO case.
1213 		 */
1214 		tcp_skb_pcount_set(skb, 1);
1215 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1216 	} else {
1217 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1218 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1219 	}
1220 }
1221 
1222 /* Pcount in the middle of the write queue got changed, we need to do various
1223  * tweaks to fix counters
1224  */
1225 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1226 {
1227 	struct tcp_sock *tp = tcp_sk(sk);
1228 
1229 	tp->packets_out -= decr;
1230 
1231 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1232 		tp->sacked_out -= decr;
1233 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1234 		tp->retrans_out -= decr;
1235 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1236 		tp->lost_out -= decr;
1237 
1238 	/* Reno case is special. Sigh... */
1239 	if (tcp_is_reno(tp) && decr > 0)
1240 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1241 
1242 	if (tp->lost_skb_hint &&
1243 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1244 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1245 		tp->lost_cnt_hint -= decr;
1246 
1247 	tcp_verify_left_out(tp);
1248 }
1249 
1250 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1251 {
1252 	return TCP_SKB_CB(skb)->txstamp_ack ||
1253 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1254 }
1255 
1256 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1257 {
1258 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1259 
1260 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1261 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1262 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1263 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1264 
1265 		shinfo->tx_flags &= ~tsflags;
1266 		shinfo2->tx_flags |= tsflags;
1267 		swap(shinfo->tskey, shinfo2->tskey);
1268 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1269 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1270 	}
1271 }
1272 
1273 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1274 {
1275 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1276 	TCP_SKB_CB(skb)->eor = 0;
1277 }
1278 
1279 /* Insert buff after skb on the write or rtx queue of sk.  */
1280 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1281 					 struct sk_buff *buff,
1282 					 struct sock *sk,
1283 					 enum tcp_queue tcp_queue)
1284 {
1285 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1286 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1287 	else
1288 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1289 }
1290 
1291 /* Function to create two new TCP segments.  Shrinks the given segment
1292  * to the specified size and appends a new segment with the rest of the
1293  * packet to the list.  This won't be called frequently, I hope.
1294  * Remember, these are still headerless SKBs at this point.
1295  */
1296 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1297 		 struct sk_buff *skb, u32 len,
1298 		 unsigned int mss_now, gfp_t gfp)
1299 {
1300 	struct tcp_sock *tp = tcp_sk(sk);
1301 	struct sk_buff *buff;
1302 	int nsize, old_factor;
1303 	long limit;
1304 	int nlen;
1305 	u8 flags;
1306 
1307 	if (WARN_ON(len > skb->len))
1308 		return -EINVAL;
1309 
1310 	nsize = skb_headlen(skb) - len;
1311 	if (nsize < 0)
1312 		nsize = 0;
1313 
1314 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1315 	 * We need some allowance to not penalize applications setting small
1316 	 * SO_SNDBUF values.
1317 	 * Also allow first and last skb in retransmit queue to be split.
1318 	 */
1319 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1320 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1321 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1322 		     skb != tcp_rtx_queue_head(sk) &&
1323 		     skb != tcp_rtx_queue_tail(sk))) {
1324 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1325 		return -ENOMEM;
1326 	}
1327 
1328 	if (skb_unclone(skb, gfp))
1329 		return -ENOMEM;
1330 
1331 	/* Get a new skb... force flag on. */
1332 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1333 	if (!buff)
1334 		return -ENOMEM; /* We'll just try again later. */
1335 	skb_copy_decrypted(buff, skb);
1336 
1337 	sk_wmem_queued_add(sk, buff->truesize);
1338 	sk_mem_charge(sk, buff->truesize);
1339 	nlen = skb->len - len - nsize;
1340 	buff->truesize += nlen;
1341 	skb->truesize -= nlen;
1342 
1343 	/* Correct the sequence numbers. */
1344 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1345 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1346 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1347 
1348 	/* PSH and FIN should only be set in the second packet. */
1349 	flags = TCP_SKB_CB(skb)->tcp_flags;
1350 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1351 	TCP_SKB_CB(buff)->tcp_flags = flags;
1352 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1353 	tcp_skb_fragment_eor(skb, buff);
1354 
1355 	skb_split(skb, buff, len);
1356 
1357 	buff->ip_summed = CHECKSUM_PARTIAL;
1358 
1359 	buff->tstamp = skb->tstamp;
1360 	tcp_fragment_tstamp(skb, buff);
1361 
1362 	old_factor = tcp_skb_pcount(skb);
1363 
1364 	/* Fix up tso_factor for both original and new SKB.  */
1365 	tcp_set_skb_tso_segs(skb, mss_now);
1366 	tcp_set_skb_tso_segs(buff, mss_now);
1367 
1368 	/* Update delivered info for the new segment */
1369 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1370 
1371 	/* If this packet has been sent out already, we must
1372 	 * adjust the various packet counters.
1373 	 */
1374 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1375 		int diff = old_factor - tcp_skb_pcount(skb) -
1376 			tcp_skb_pcount(buff);
1377 
1378 		if (diff)
1379 			tcp_adjust_pcount(sk, skb, diff);
1380 	}
1381 
1382 	/* Link BUFF into the send queue. */
1383 	__skb_header_release(buff);
1384 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1385 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1386 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1387 
1388 	return 0;
1389 }
1390 
1391 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1392  * data is not copied, but immediately discarded.
1393  */
1394 static int __pskb_trim_head(struct sk_buff *skb, int len)
1395 {
1396 	struct skb_shared_info *shinfo;
1397 	int i, k, eat;
1398 
1399 	eat = min_t(int, len, skb_headlen(skb));
1400 	if (eat) {
1401 		__skb_pull(skb, eat);
1402 		len -= eat;
1403 		if (!len)
1404 			return 0;
1405 	}
1406 	eat = len;
1407 	k = 0;
1408 	shinfo = skb_shinfo(skb);
1409 	for (i = 0; i < shinfo->nr_frags; i++) {
1410 		int size = skb_frag_size(&shinfo->frags[i]);
1411 
1412 		if (size <= eat) {
1413 			skb_frag_unref(skb, i);
1414 			eat -= size;
1415 		} else {
1416 			shinfo->frags[k] = shinfo->frags[i];
1417 			if (eat) {
1418 				skb_frag_off_add(&shinfo->frags[k], eat);
1419 				skb_frag_size_sub(&shinfo->frags[k], eat);
1420 				eat = 0;
1421 			}
1422 			k++;
1423 		}
1424 	}
1425 	shinfo->nr_frags = k;
1426 
1427 	skb->data_len -= len;
1428 	skb->len = skb->data_len;
1429 	return len;
1430 }
1431 
1432 /* Remove acked data from a packet in the transmit queue. */
1433 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1434 {
1435 	u32 delta_truesize;
1436 
1437 	if (skb_unclone(skb, GFP_ATOMIC))
1438 		return -ENOMEM;
1439 
1440 	delta_truesize = __pskb_trim_head(skb, len);
1441 
1442 	TCP_SKB_CB(skb)->seq += len;
1443 	skb->ip_summed = CHECKSUM_PARTIAL;
1444 
1445 	if (delta_truesize) {
1446 		skb->truesize	   -= delta_truesize;
1447 		sk_wmem_queued_add(sk, -delta_truesize);
1448 		sk_mem_uncharge(sk, delta_truesize);
1449 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1450 	}
1451 
1452 	/* Any change of skb->len requires recalculation of tso factor. */
1453 	if (tcp_skb_pcount(skb) > 1)
1454 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1455 
1456 	return 0;
1457 }
1458 
1459 /* Calculate MSS not accounting any TCP options.  */
1460 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1461 {
1462 	const struct tcp_sock *tp = tcp_sk(sk);
1463 	const struct inet_connection_sock *icsk = inet_csk(sk);
1464 	int mss_now;
1465 
1466 	/* Calculate base mss without TCP options:
1467 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1468 	 */
1469 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1470 
1471 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1472 	if (icsk->icsk_af_ops->net_frag_header_len) {
1473 		const struct dst_entry *dst = __sk_dst_get(sk);
1474 
1475 		if (dst && dst_allfrag(dst))
1476 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1477 	}
1478 
1479 	/* Clamp it (mss_clamp does not include tcp options) */
1480 	if (mss_now > tp->rx_opt.mss_clamp)
1481 		mss_now = tp->rx_opt.mss_clamp;
1482 
1483 	/* Now subtract optional transport overhead */
1484 	mss_now -= icsk->icsk_ext_hdr_len;
1485 
1486 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1487 	mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1488 	return mss_now;
1489 }
1490 
1491 /* Calculate MSS. Not accounting for SACKs here.  */
1492 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1493 {
1494 	/* Subtract TCP options size, not including SACKs */
1495 	return __tcp_mtu_to_mss(sk, pmtu) -
1496 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1497 }
1498 
1499 /* Inverse of above */
1500 int tcp_mss_to_mtu(struct sock *sk, int mss)
1501 {
1502 	const struct tcp_sock *tp = tcp_sk(sk);
1503 	const struct inet_connection_sock *icsk = inet_csk(sk);
1504 	int mtu;
1505 
1506 	mtu = mss +
1507 	      tp->tcp_header_len +
1508 	      icsk->icsk_ext_hdr_len +
1509 	      icsk->icsk_af_ops->net_header_len;
1510 
1511 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1512 	if (icsk->icsk_af_ops->net_frag_header_len) {
1513 		const struct dst_entry *dst = __sk_dst_get(sk);
1514 
1515 		if (dst && dst_allfrag(dst))
1516 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1517 	}
1518 	return mtu;
1519 }
1520 EXPORT_SYMBOL(tcp_mss_to_mtu);
1521 
1522 /* MTU probing init per socket */
1523 void tcp_mtup_init(struct sock *sk)
1524 {
1525 	struct tcp_sock *tp = tcp_sk(sk);
1526 	struct inet_connection_sock *icsk = inet_csk(sk);
1527 	struct net *net = sock_net(sk);
1528 
1529 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1530 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1531 			       icsk->icsk_af_ops->net_header_len;
1532 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1533 	icsk->icsk_mtup.probe_size = 0;
1534 	if (icsk->icsk_mtup.enabled)
1535 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1536 }
1537 EXPORT_SYMBOL(tcp_mtup_init);
1538 
1539 /* This function synchronize snd mss to current pmtu/exthdr set.
1540 
1541    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1542    for TCP options, but includes only bare TCP header.
1543 
1544    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1545    It is minimum of user_mss and mss received with SYN.
1546    It also does not include TCP options.
1547 
1548    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1549 
1550    tp->mss_cache is current effective sending mss, including
1551    all tcp options except for SACKs. It is evaluated,
1552    taking into account current pmtu, but never exceeds
1553    tp->rx_opt.mss_clamp.
1554 
1555    NOTE1. rfc1122 clearly states that advertised MSS
1556    DOES NOT include either tcp or ip options.
1557 
1558    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1559    are READ ONLY outside this function.		--ANK (980731)
1560  */
1561 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1562 {
1563 	struct tcp_sock *tp = tcp_sk(sk);
1564 	struct inet_connection_sock *icsk = inet_csk(sk);
1565 	int mss_now;
1566 
1567 	if (icsk->icsk_mtup.search_high > pmtu)
1568 		icsk->icsk_mtup.search_high = pmtu;
1569 
1570 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1571 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1572 
1573 	/* And store cached results */
1574 	icsk->icsk_pmtu_cookie = pmtu;
1575 	if (icsk->icsk_mtup.enabled)
1576 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1577 	tp->mss_cache = mss_now;
1578 
1579 	return mss_now;
1580 }
1581 EXPORT_SYMBOL(tcp_sync_mss);
1582 
1583 /* Compute the current effective MSS, taking SACKs and IP options,
1584  * and even PMTU discovery events into account.
1585  */
1586 unsigned int tcp_current_mss(struct sock *sk)
1587 {
1588 	const struct tcp_sock *tp = tcp_sk(sk);
1589 	const struct dst_entry *dst = __sk_dst_get(sk);
1590 	u32 mss_now;
1591 	unsigned int header_len;
1592 	struct tcp_out_options opts;
1593 	struct tcp_md5sig_key *md5;
1594 
1595 	mss_now = tp->mss_cache;
1596 
1597 	if (dst) {
1598 		u32 mtu = dst_mtu(dst);
1599 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1600 			mss_now = tcp_sync_mss(sk, mtu);
1601 	}
1602 
1603 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1604 		     sizeof(struct tcphdr);
1605 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1606 	 * some common options. If this is an odd packet (because we have SACK
1607 	 * blocks etc) then our calculated header_len will be different, and
1608 	 * we have to adjust mss_now correspondingly */
1609 	if (header_len != tp->tcp_header_len) {
1610 		int delta = (int) header_len - tp->tcp_header_len;
1611 		mss_now -= delta;
1612 	}
1613 
1614 	return mss_now;
1615 }
1616 
1617 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1618  * As additional protections, we do not touch cwnd in retransmission phases,
1619  * and if application hit its sndbuf limit recently.
1620  */
1621 static void tcp_cwnd_application_limited(struct sock *sk)
1622 {
1623 	struct tcp_sock *tp = tcp_sk(sk);
1624 
1625 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1626 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1627 		/* Limited by application or receiver window. */
1628 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1629 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1630 		if (win_used < tp->snd_cwnd) {
1631 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1632 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1633 		}
1634 		tp->snd_cwnd_used = 0;
1635 	}
1636 	tp->snd_cwnd_stamp = tcp_jiffies32;
1637 }
1638 
1639 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1640 {
1641 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1642 	struct tcp_sock *tp = tcp_sk(sk);
1643 
1644 	/* Track the maximum number of outstanding packets in each
1645 	 * window, and remember whether we were cwnd-limited then.
1646 	 */
1647 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1648 	    tp->packets_out > tp->max_packets_out) {
1649 		tp->max_packets_out = tp->packets_out;
1650 		tp->max_packets_seq = tp->snd_nxt;
1651 		tp->is_cwnd_limited = is_cwnd_limited;
1652 	}
1653 
1654 	if (tcp_is_cwnd_limited(sk)) {
1655 		/* Network is feed fully. */
1656 		tp->snd_cwnd_used = 0;
1657 		tp->snd_cwnd_stamp = tcp_jiffies32;
1658 	} else {
1659 		/* Network starves. */
1660 		if (tp->packets_out > tp->snd_cwnd_used)
1661 			tp->snd_cwnd_used = tp->packets_out;
1662 
1663 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1664 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1665 		    !ca_ops->cong_control)
1666 			tcp_cwnd_application_limited(sk);
1667 
1668 		/* The following conditions together indicate the starvation
1669 		 * is caused by insufficient sender buffer:
1670 		 * 1) just sent some data (see tcp_write_xmit)
1671 		 * 2) not cwnd limited (this else condition)
1672 		 * 3) no more data to send (tcp_write_queue_empty())
1673 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1674 		 */
1675 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1676 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1677 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1678 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1679 	}
1680 }
1681 
1682 /* Minshall's variant of the Nagle send check. */
1683 static bool tcp_minshall_check(const struct tcp_sock *tp)
1684 {
1685 	return after(tp->snd_sml, tp->snd_una) &&
1686 		!after(tp->snd_sml, tp->snd_nxt);
1687 }
1688 
1689 /* Update snd_sml if this skb is under mss
1690  * Note that a TSO packet might end with a sub-mss segment
1691  * The test is really :
1692  * if ((skb->len % mss) != 0)
1693  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1694  * But we can avoid doing the divide again given we already have
1695  *  skb_pcount = skb->len / mss_now
1696  */
1697 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1698 				const struct sk_buff *skb)
1699 {
1700 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1701 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1702 }
1703 
1704 /* Return false, if packet can be sent now without violation Nagle's rules:
1705  * 1. It is full sized. (provided by caller in %partial bool)
1706  * 2. Or it contains FIN. (already checked by caller)
1707  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1708  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1709  *    With Minshall's modification: all sent small packets are ACKed.
1710  */
1711 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1712 			    int nonagle)
1713 {
1714 	return partial &&
1715 		((nonagle & TCP_NAGLE_CORK) ||
1716 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1717 }
1718 
1719 /* Return how many segs we'd like on a TSO packet,
1720  * to send one TSO packet per ms
1721  */
1722 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1723 			    int min_tso_segs)
1724 {
1725 	u32 bytes, segs;
1726 
1727 	bytes = min_t(unsigned long,
1728 		      sk->sk_pacing_rate >> sk->sk_pacing_shift,
1729 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1730 
1731 	/* Goal is to send at least one packet per ms,
1732 	 * not one big TSO packet every 100 ms.
1733 	 * This preserves ACK clocking and is consistent
1734 	 * with tcp_tso_should_defer() heuristic.
1735 	 */
1736 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1737 
1738 	return segs;
1739 }
1740 
1741 /* Return the number of segments we want in the skb we are transmitting.
1742  * See if congestion control module wants to decide; otherwise, autosize.
1743  */
1744 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1745 {
1746 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1747 	u32 min_tso, tso_segs;
1748 
1749 	min_tso = ca_ops->min_tso_segs ?
1750 			ca_ops->min_tso_segs(sk) :
1751 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1752 
1753 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1754 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1755 }
1756 
1757 /* Returns the portion of skb which can be sent right away */
1758 static unsigned int tcp_mss_split_point(const struct sock *sk,
1759 					const struct sk_buff *skb,
1760 					unsigned int mss_now,
1761 					unsigned int max_segs,
1762 					int nonagle)
1763 {
1764 	const struct tcp_sock *tp = tcp_sk(sk);
1765 	u32 partial, needed, window, max_len;
1766 
1767 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1768 	max_len = mss_now * max_segs;
1769 
1770 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1771 		return max_len;
1772 
1773 	needed = min(skb->len, window);
1774 
1775 	if (max_len <= needed)
1776 		return max_len;
1777 
1778 	partial = needed % mss_now;
1779 	/* If last segment is not a full MSS, check if Nagle rules allow us
1780 	 * to include this last segment in this skb.
1781 	 * Otherwise, we'll split the skb at last MSS boundary
1782 	 */
1783 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1784 		return needed - partial;
1785 
1786 	return needed;
1787 }
1788 
1789 /* Can at least one segment of SKB be sent right now, according to the
1790  * congestion window rules?  If so, return how many segments are allowed.
1791  */
1792 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1793 					 const struct sk_buff *skb)
1794 {
1795 	u32 in_flight, cwnd, halfcwnd;
1796 
1797 	/* Don't be strict about the congestion window for the final FIN.  */
1798 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1799 	    tcp_skb_pcount(skb) == 1)
1800 		return 1;
1801 
1802 	in_flight = tcp_packets_in_flight(tp);
1803 	cwnd = tp->snd_cwnd;
1804 	if (in_flight >= cwnd)
1805 		return 0;
1806 
1807 	/* For better scheduling, ensure we have at least
1808 	 * 2 GSO packets in flight.
1809 	 */
1810 	halfcwnd = max(cwnd >> 1, 1U);
1811 	return min(halfcwnd, cwnd - in_flight);
1812 }
1813 
1814 /* Initialize TSO state of a skb.
1815  * This must be invoked the first time we consider transmitting
1816  * SKB onto the wire.
1817  */
1818 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1819 {
1820 	int tso_segs = tcp_skb_pcount(skb);
1821 
1822 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1823 		tcp_set_skb_tso_segs(skb, mss_now);
1824 		tso_segs = tcp_skb_pcount(skb);
1825 	}
1826 	return tso_segs;
1827 }
1828 
1829 
1830 /* Return true if the Nagle test allows this packet to be
1831  * sent now.
1832  */
1833 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1834 				  unsigned int cur_mss, int nonagle)
1835 {
1836 	/* Nagle rule does not apply to frames, which sit in the middle of the
1837 	 * write_queue (they have no chances to get new data).
1838 	 *
1839 	 * This is implemented in the callers, where they modify the 'nonagle'
1840 	 * argument based upon the location of SKB in the send queue.
1841 	 */
1842 	if (nonagle & TCP_NAGLE_PUSH)
1843 		return true;
1844 
1845 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1846 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1847 		return true;
1848 
1849 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1850 		return true;
1851 
1852 	return false;
1853 }
1854 
1855 /* Does at least the first segment of SKB fit into the send window? */
1856 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1857 			     const struct sk_buff *skb,
1858 			     unsigned int cur_mss)
1859 {
1860 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1861 
1862 	if (skb->len > cur_mss)
1863 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1864 
1865 	return !after(end_seq, tcp_wnd_end(tp));
1866 }
1867 
1868 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1869  * which is put after SKB on the list.  It is very much like
1870  * tcp_fragment() except that it may make several kinds of assumptions
1871  * in order to speed up the splitting operation.  In particular, we
1872  * know that all the data is in scatter-gather pages, and that the
1873  * packet has never been sent out before (and thus is not cloned).
1874  */
1875 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1876 			unsigned int mss_now, gfp_t gfp)
1877 {
1878 	int nlen = skb->len - len;
1879 	struct sk_buff *buff;
1880 	u8 flags;
1881 
1882 	/* All of a TSO frame must be composed of paged data.  */
1883 	if (skb->len != skb->data_len)
1884 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1885 				    skb, len, mss_now, gfp);
1886 
1887 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1888 	if (unlikely(!buff))
1889 		return -ENOMEM;
1890 	skb_copy_decrypted(buff, skb);
1891 
1892 	sk_wmem_queued_add(sk, buff->truesize);
1893 	sk_mem_charge(sk, buff->truesize);
1894 	buff->truesize += nlen;
1895 	skb->truesize -= nlen;
1896 
1897 	/* Correct the sequence numbers. */
1898 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1899 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1900 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1901 
1902 	/* PSH and FIN should only be set in the second packet. */
1903 	flags = TCP_SKB_CB(skb)->tcp_flags;
1904 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1905 	TCP_SKB_CB(buff)->tcp_flags = flags;
1906 
1907 	/* This packet was never sent out yet, so no SACK bits. */
1908 	TCP_SKB_CB(buff)->sacked = 0;
1909 
1910 	tcp_skb_fragment_eor(skb, buff);
1911 
1912 	buff->ip_summed = CHECKSUM_PARTIAL;
1913 	skb_split(skb, buff, len);
1914 	tcp_fragment_tstamp(skb, buff);
1915 
1916 	/* Fix up tso_factor for both original and new SKB.  */
1917 	tcp_set_skb_tso_segs(skb, mss_now);
1918 	tcp_set_skb_tso_segs(buff, mss_now);
1919 
1920 	/* Link BUFF into the send queue. */
1921 	__skb_header_release(buff);
1922 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
1923 
1924 	return 0;
1925 }
1926 
1927 /* Try to defer sending, if possible, in order to minimize the amount
1928  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1929  *
1930  * This algorithm is from John Heffner.
1931  */
1932 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1933 				 bool *is_cwnd_limited,
1934 				 bool *is_rwnd_limited,
1935 				 u32 max_segs)
1936 {
1937 	const struct inet_connection_sock *icsk = inet_csk(sk);
1938 	u32 send_win, cong_win, limit, in_flight;
1939 	struct tcp_sock *tp = tcp_sk(sk);
1940 	struct sk_buff *head;
1941 	int win_divisor;
1942 	s64 delta;
1943 
1944 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1945 		goto send_now;
1946 
1947 	/* Avoid bursty behavior by allowing defer
1948 	 * only if the last write was recent (1 ms).
1949 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
1950 	 * packets waiting in a qdisc or device for EDT delivery.
1951 	 */
1952 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
1953 	if (delta > 0)
1954 		goto send_now;
1955 
1956 	in_flight = tcp_packets_in_flight(tp);
1957 
1958 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1959 	BUG_ON(tp->snd_cwnd <= in_flight);
1960 
1961 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1962 
1963 	/* From in_flight test above, we know that cwnd > in_flight.  */
1964 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1965 
1966 	limit = min(send_win, cong_win);
1967 
1968 	/* If a full-sized TSO skb can be sent, do it. */
1969 	if (limit >= max_segs * tp->mss_cache)
1970 		goto send_now;
1971 
1972 	/* Middle in queue won't get any more data, full sendable already? */
1973 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1974 		goto send_now;
1975 
1976 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1977 	if (win_divisor) {
1978 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1979 
1980 		/* If at least some fraction of a window is available,
1981 		 * just use it.
1982 		 */
1983 		chunk /= win_divisor;
1984 		if (limit >= chunk)
1985 			goto send_now;
1986 	} else {
1987 		/* Different approach, try not to defer past a single
1988 		 * ACK.  Receiver should ACK every other full sized
1989 		 * frame, so if we have space for more than 3 frames
1990 		 * then send now.
1991 		 */
1992 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1993 			goto send_now;
1994 	}
1995 
1996 	/* TODO : use tsorted_sent_queue ? */
1997 	head = tcp_rtx_queue_head(sk);
1998 	if (!head)
1999 		goto send_now;
2000 	delta = tp->tcp_clock_cache - head->tstamp;
2001 	/* If next ACK is likely to come too late (half srtt), do not defer */
2002 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2003 		goto send_now;
2004 
2005 	/* Ok, it looks like it is advisable to defer.
2006 	 * Three cases are tracked :
2007 	 * 1) We are cwnd-limited
2008 	 * 2) We are rwnd-limited
2009 	 * 3) We are application limited.
2010 	 */
2011 	if (cong_win < send_win) {
2012 		if (cong_win <= skb->len) {
2013 			*is_cwnd_limited = true;
2014 			return true;
2015 		}
2016 	} else {
2017 		if (send_win <= skb->len) {
2018 			*is_rwnd_limited = true;
2019 			return true;
2020 		}
2021 	}
2022 
2023 	/* If this packet won't get more data, do not wait. */
2024 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2025 	    TCP_SKB_CB(skb)->eor)
2026 		goto send_now;
2027 
2028 	return true;
2029 
2030 send_now:
2031 	return false;
2032 }
2033 
2034 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2035 {
2036 	struct inet_connection_sock *icsk = inet_csk(sk);
2037 	struct tcp_sock *tp = tcp_sk(sk);
2038 	struct net *net = sock_net(sk);
2039 	u32 interval;
2040 	s32 delta;
2041 
2042 	interval = net->ipv4.sysctl_tcp_probe_interval;
2043 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2044 	if (unlikely(delta >= interval * HZ)) {
2045 		int mss = tcp_current_mss(sk);
2046 
2047 		/* Update current search range */
2048 		icsk->icsk_mtup.probe_size = 0;
2049 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2050 			sizeof(struct tcphdr) +
2051 			icsk->icsk_af_ops->net_header_len;
2052 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2053 
2054 		/* Update probe time stamp */
2055 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2056 	}
2057 }
2058 
2059 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2060 {
2061 	struct sk_buff *skb, *next;
2062 
2063 	skb = tcp_send_head(sk);
2064 	tcp_for_write_queue_from_safe(skb, next, sk) {
2065 		if (len <= skb->len)
2066 			break;
2067 
2068 		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2069 			return false;
2070 
2071 		len -= skb->len;
2072 	}
2073 
2074 	return true;
2075 }
2076 
2077 /* Create a new MTU probe if we are ready.
2078  * MTU probe is regularly attempting to increase the path MTU by
2079  * deliberately sending larger packets.  This discovers routing
2080  * changes resulting in larger path MTUs.
2081  *
2082  * Returns 0 if we should wait to probe (no cwnd available),
2083  *         1 if a probe was sent,
2084  *         -1 otherwise
2085  */
2086 static int tcp_mtu_probe(struct sock *sk)
2087 {
2088 	struct inet_connection_sock *icsk = inet_csk(sk);
2089 	struct tcp_sock *tp = tcp_sk(sk);
2090 	struct sk_buff *skb, *nskb, *next;
2091 	struct net *net = sock_net(sk);
2092 	int probe_size;
2093 	int size_needed;
2094 	int copy, len;
2095 	int mss_now;
2096 	int interval;
2097 
2098 	/* Not currently probing/verifying,
2099 	 * not in recovery,
2100 	 * have enough cwnd, and
2101 	 * not SACKing (the variable headers throw things off)
2102 	 */
2103 	if (likely(!icsk->icsk_mtup.enabled ||
2104 		   icsk->icsk_mtup.probe_size ||
2105 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2106 		   tp->snd_cwnd < 11 ||
2107 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2108 		return -1;
2109 
2110 	/* Use binary search for probe_size between tcp_mss_base,
2111 	 * and current mss_clamp. if (search_high - search_low)
2112 	 * smaller than a threshold, backoff from probing.
2113 	 */
2114 	mss_now = tcp_current_mss(sk);
2115 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2116 				    icsk->icsk_mtup.search_low) >> 1);
2117 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2118 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2119 	/* When misfortune happens, we are reprobing actively,
2120 	 * and then reprobe timer has expired. We stick with current
2121 	 * probing process by not resetting search range to its orignal.
2122 	 */
2123 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2124 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2125 		/* Check whether enough time has elaplased for
2126 		 * another round of probing.
2127 		 */
2128 		tcp_mtu_check_reprobe(sk);
2129 		return -1;
2130 	}
2131 
2132 	/* Have enough data in the send queue to probe? */
2133 	if (tp->write_seq - tp->snd_nxt < size_needed)
2134 		return -1;
2135 
2136 	if (tp->snd_wnd < size_needed)
2137 		return -1;
2138 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2139 		return 0;
2140 
2141 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2142 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2143 		if (!tcp_packets_in_flight(tp))
2144 			return -1;
2145 		else
2146 			return 0;
2147 	}
2148 
2149 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2150 		return -1;
2151 
2152 	/* We're allowed to probe.  Build it now. */
2153 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2154 	if (!nskb)
2155 		return -1;
2156 	sk_wmem_queued_add(sk, nskb->truesize);
2157 	sk_mem_charge(sk, nskb->truesize);
2158 
2159 	skb = tcp_send_head(sk);
2160 	skb_copy_decrypted(nskb, skb);
2161 
2162 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2163 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2164 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2165 	TCP_SKB_CB(nskb)->sacked = 0;
2166 	nskb->csum = 0;
2167 	nskb->ip_summed = CHECKSUM_PARTIAL;
2168 
2169 	tcp_insert_write_queue_before(nskb, skb, sk);
2170 	tcp_highest_sack_replace(sk, skb, nskb);
2171 
2172 	len = 0;
2173 	tcp_for_write_queue_from_safe(skb, next, sk) {
2174 		copy = min_t(int, skb->len, probe_size - len);
2175 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2176 
2177 		if (skb->len <= copy) {
2178 			/* We've eaten all the data from this skb.
2179 			 * Throw it away. */
2180 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2181 			/* If this is the last SKB we copy and eor is set
2182 			 * we need to propagate it to the new skb.
2183 			 */
2184 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2185 			tcp_skb_collapse_tstamp(nskb, skb);
2186 			tcp_unlink_write_queue(skb, sk);
2187 			sk_wmem_free_skb(sk, skb);
2188 		} else {
2189 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2190 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2191 			if (!skb_shinfo(skb)->nr_frags) {
2192 				skb_pull(skb, copy);
2193 			} else {
2194 				__pskb_trim_head(skb, copy);
2195 				tcp_set_skb_tso_segs(skb, mss_now);
2196 			}
2197 			TCP_SKB_CB(skb)->seq += copy;
2198 		}
2199 
2200 		len += copy;
2201 
2202 		if (len >= probe_size)
2203 			break;
2204 	}
2205 	tcp_init_tso_segs(nskb, nskb->len);
2206 
2207 	/* We're ready to send.  If this fails, the probe will
2208 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2209 	 */
2210 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2211 		/* Decrement cwnd here because we are sending
2212 		 * effectively two packets. */
2213 		tp->snd_cwnd--;
2214 		tcp_event_new_data_sent(sk, nskb);
2215 
2216 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2217 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2218 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2219 
2220 		return 1;
2221 	}
2222 
2223 	return -1;
2224 }
2225 
2226 static bool tcp_pacing_check(struct sock *sk)
2227 {
2228 	struct tcp_sock *tp = tcp_sk(sk);
2229 
2230 	if (!tcp_needs_internal_pacing(sk))
2231 		return false;
2232 
2233 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2234 		return false;
2235 
2236 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2237 		hrtimer_start(&tp->pacing_timer,
2238 			      ns_to_ktime(tp->tcp_wstamp_ns),
2239 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2240 		sock_hold(sk);
2241 	}
2242 	return true;
2243 }
2244 
2245 /* TCP Small Queues :
2246  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2247  * (These limits are doubled for retransmits)
2248  * This allows for :
2249  *  - better RTT estimation and ACK scheduling
2250  *  - faster recovery
2251  *  - high rates
2252  * Alas, some drivers / subsystems require a fair amount
2253  * of queued bytes to ensure line rate.
2254  * One example is wifi aggregation (802.11 AMPDU)
2255  */
2256 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2257 				  unsigned int factor)
2258 {
2259 	unsigned long limit;
2260 
2261 	limit = max_t(unsigned long,
2262 		      2 * skb->truesize,
2263 		      sk->sk_pacing_rate >> sk->sk_pacing_shift);
2264 	if (sk->sk_pacing_status == SK_PACING_NONE)
2265 		limit = min_t(unsigned long, limit,
2266 			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2267 	limit <<= factor;
2268 
2269 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2270 	    tcp_sk(sk)->tcp_tx_delay) {
2271 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2272 
2273 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2274 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2275 		 * USEC_PER_SEC is approximated by 2^20.
2276 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2277 		 */
2278 		extra_bytes >>= (20 - 1);
2279 		limit += extra_bytes;
2280 	}
2281 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2282 		/* Always send skb if rtx queue is empty.
2283 		 * No need to wait for TX completion to call us back,
2284 		 * after softirq/tasklet schedule.
2285 		 * This helps when TX completions are delayed too much.
2286 		 */
2287 		if (tcp_rtx_queue_empty(sk))
2288 			return false;
2289 
2290 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2291 		/* It is possible TX completion already happened
2292 		 * before we set TSQ_THROTTLED, so we must
2293 		 * test again the condition.
2294 		 */
2295 		smp_mb__after_atomic();
2296 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2297 			return true;
2298 	}
2299 	return false;
2300 }
2301 
2302 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2303 {
2304 	const u32 now = tcp_jiffies32;
2305 	enum tcp_chrono old = tp->chrono_type;
2306 
2307 	if (old > TCP_CHRONO_UNSPEC)
2308 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2309 	tp->chrono_start = now;
2310 	tp->chrono_type = new;
2311 }
2312 
2313 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2314 {
2315 	struct tcp_sock *tp = tcp_sk(sk);
2316 
2317 	/* If there are multiple conditions worthy of tracking in a
2318 	 * chronograph then the highest priority enum takes precedence
2319 	 * over the other conditions. So that if something "more interesting"
2320 	 * starts happening, stop the previous chrono and start a new one.
2321 	 */
2322 	if (type > tp->chrono_type)
2323 		tcp_chrono_set(tp, type);
2324 }
2325 
2326 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2327 {
2328 	struct tcp_sock *tp = tcp_sk(sk);
2329 
2330 
2331 	/* There are multiple conditions worthy of tracking in a
2332 	 * chronograph, so that the highest priority enum takes
2333 	 * precedence over the other conditions (see tcp_chrono_start).
2334 	 * If a condition stops, we only stop chrono tracking if
2335 	 * it's the "most interesting" or current chrono we are
2336 	 * tracking and starts busy chrono if we have pending data.
2337 	 */
2338 	if (tcp_rtx_and_write_queues_empty(sk))
2339 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2340 	else if (type == tp->chrono_type)
2341 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2342 }
2343 
2344 /* This routine writes packets to the network.  It advances the
2345  * send_head.  This happens as incoming acks open up the remote
2346  * window for us.
2347  *
2348  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2349  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2350  * account rare use of URG, this is not a big flaw.
2351  *
2352  * Send at most one packet when push_one > 0. Temporarily ignore
2353  * cwnd limit to force at most one packet out when push_one == 2.
2354 
2355  * Returns true, if no segments are in flight and we have queued segments,
2356  * but cannot send anything now because of SWS or another problem.
2357  */
2358 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2359 			   int push_one, gfp_t gfp)
2360 {
2361 	struct tcp_sock *tp = tcp_sk(sk);
2362 	struct sk_buff *skb;
2363 	unsigned int tso_segs, sent_pkts;
2364 	int cwnd_quota;
2365 	int result;
2366 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2367 	u32 max_segs;
2368 
2369 	sent_pkts = 0;
2370 
2371 	tcp_mstamp_refresh(tp);
2372 	if (!push_one) {
2373 		/* Do MTU probing. */
2374 		result = tcp_mtu_probe(sk);
2375 		if (!result) {
2376 			return false;
2377 		} else if (result > 0) {
2378 			sent_pkts = 1;
2379 		}
2380 	}
2381 
2382 	max_segs = tcp_tso_segs(sk, mss_now);
2383 	while ((skb = tcp_send_head(sk))) {
2384 		unsigned int limit;
2385 
2386 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2387 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2388 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2389 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2390 			tcp_init_tso_segs(skb, mss_now);
2391 			goto repair; /* Skip network transmission */
2392 		}
2393 
2394 		if (tcp_pacing_check(sk))
2395 			break;
2396 
2397 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2398 		BUG_ON(!tso_segs);
2399 
2400 		cwnd_quota = tcp_cwnd_test(tp, skb);
2401 		if (!cwnd_quota) {
2402 			if (push_one == 2)
2403 				/* Force out a loss probe pkt. */
2404 				cwnd_quota = 1;
2405 			else
2406 				break;
2407 		}
2408 
2409 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2410 			is_rwnd_limited = true;
2411 			break;
2412 		}
2413 
2414 		if (tso_segs == 1) {
2415 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2416 						     (tcp_skb_is_last(sk, skb) ?
2417 						      nonagle : TCP_NAGLE_PUSH))))
2418 				break;
2419 		} else {
2420 			if (!push_one &&
2421 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2422 						 &is_rwnd_limited, max_segs))
2423 				break;
2424 		}
2425 
2426 		limit = mss_now;
2427 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2428 			limit = tcp_mss_split_point(sk, skb, mss_now,
2429 						    min_t(unsigned int,
2430 							  cwnd_quota,
2431 							  max_segs),
2432 						    nonagle);
2433 
2434 		if (skb->len > limit &&
2435 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2436 			break;
2437 
2438 		if (tcp_small_queue_check(sk, skb, 0))
2439 			break;
2440 
2441 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2442 			break;
2443 
2444 repair:
2445 		/* Advance the send_head.  This one is sent out.
2446 		 * This call will increment packets_out.
2447 		 */
2448 		tcp_event_new_data_sent(sk, skb);
2449 
2450 		tcp_minshall_update(tp, mss_now, skb);
2451 		sent_pkts += tcp_skb_pcount(skb);
2452 
2453 		if (push_one)
2454 			break;
2455 	}
2456 
2457 	if (is_rwnd_limited)
2458 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2459 	else
2460 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2461 
2462 	if (likely(sent_pkts)) {
2463 		if (tcp_in_cwnd_reduction(sk))
2464 			tp->prr_out += sent_pkts;
2465 
2466 		/* Send one loss probe per tail loss episode. */
2467 		if (push_one != 2)
2468 			tcp_schedule_loss_probe(sk, false);
2469 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2470 		tcp_cwnd_validate(sk, is_cwnd_limited);
2471 		return false;
2472 	}
2473 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2474 }
2475 
2476 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2477 {
2478 	struct inet_connection_sock *icsk = inet_csk(sk);
2479 	struct tcp_sock *tp = tcp_sk(sk);
2480 	u32 timeout, rto_delta_us;
2481 	int early_retrans;
2482 
2483 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2484 	 * finishes.
2485 	 */
2486 	if (rcu_access_pointer(tp->fastopen_rsk))
2487 		return false;
2488 
2489 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2490 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2491 	 * not in loss recovery, that are either limited by cwnd or application.
2492 	 */
2493 	if ((early_retrans != 3 && early_retrans != 4) ||
2494 	    !tp->packets_out || !tcp_is_sack(tp) ||
2495 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2496 	     icsk->icsk_ca_state != TCP_CA_CWR))
2497 		return false;
2498 
2499 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2500 	 * for delayed ack when there's one outstanding packet. If no RTT
2501 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2502 	 */
2503 	if (tp->srtt_us) {
2504 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2505 		if (tp->packets_out == 1)
2506 			timeout += TCP_RTO_MIN;
2507 		else
2508 			timeout += TCP_TIMEOUT_MIN;
2509 	} else {
2510 		timeout = TCP_TIMEOUT_INIT;
2511 	}
2512 
2513 	/* If the RTO formula yields an earlier time, then use that time. */
2514 	rto_delta_us = advancing_rto ?
2515 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2516 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2517 	if (rto_delta_us > 0)
2518 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2519 
2520 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2521 			     TCP_RTO_MAX, NULL);
2522 	return true;
2523 }
2524 
2525 /* Thanks to skb fast clones, we can detect if a prior transmit of
2526  * a packet is still in a qdisc or driver queue.
2527  * In this case, there is very little point doing a retransmit !
2528  */
2529 static bool skb_still_in_host_queue(const struct sock *sk,
2530 				    const struct sk_buff *skb)
2531 {
2532 	if (unlikely(skb_fclone_busy(sk, skb))) {
2533 		NET_INC_STATS(sock_net(sk),
2534 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2535 		return true;
2536 	}
2537 	return false;
2538 }
2539 
2540 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2541  * retransmit the last segment.
2542  */
2543 void tcp_send_loss_probe(struct sock *sk)
2544 {
2545 	struct tcp_sock *tp = tcp_sk(sk);
2546 	struct sk_buff *skb;
2547 	int pcount;
2548 	int mss = tcp_current_mss(sk);
2549 
2550 	skb = tcp_send_head(sk);
2551 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2552 		pcount = tp->packets_out;
2553 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2554 		if (tp->packets_out > pcount)
2555 			goto probe_sent;
2556 		goto rearm_timer;
2557 	}
2558 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2559 	if (unlikely(!skb)) {
2560 		WARN_ONCE(tp->packets_out,
2561 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2562 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2563 		inet_csk(sk)->icsk_pending = 0;
2564 		return;
2565 	}
2566 
2567 	/* At most one outstanding TLP retransmission. */
2568 	if (tp->tlp_high_seq)
2569 		goto rearm_timer;
2570 
2571 	if (skb_still_in_host_queue(sk, skb))
2572 		goto rearm_timer;
2573 
2574 	pcount = tcp_skb_pcount(skb);
2575 	if (WARN_ON(!pcount))
2576 		goto rearm_timer;
2577 
2578 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2579 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2580 					  (pcount - 1) * mss, mss,
2581 					  GFP_ATOMIC)))
2582 			goto rearm_timer;
2583 		skb = skb_rb_next(skb);
2584 	}
2585 
2586 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2587 		goto rearm_timer;
2588 
2589 	if (__tcp_retransmit_skb(sk, skb, 1))
2590 		goto rearm_timer;
2591 
2592 	/* Record snd_nxt for loss detection. */
2593 	tp->tlp_high_seq = tp->snd_nxt;
2594 
2595 probe_sent:
2596 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2597 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2598 	inet_csk(sk)->icsk_pending = 0;
2599 rearm_timer:
2600 	tcp_rearm_rto(sk);
2601 }
2602 
2603 /* Push out any pending frames which were held back due to
2604  * TCP_CORK or attempt at coalescing tiny packets.
2605  * The socket must be locked by the caller.
2606  */
2607 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2608 			       int nonagle)
2609 {
2610 	/* If we are closed, the bytes will have to remain here.
2611 	 * In time closedown will finish, we empty the write queue and
2612 	 * all will be happy.
2613 	 */
2614 	if (unlikely(sk->sk_state == TCP_CLOSE))
2615 		return;
2616 
2617 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2618 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2619 		tcp_check_probe_timer(sk);
2620 }
2621 
2622 /* Send _single_ skb sitting at the send head. This function requires
2623  * true push pending frames to setup probe timer etc.
2624  */
2625 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2626 {
2627 	struct sk_buff *skb = tcp_send_head(sk);
2628 
2629 	BUG_ON(!skb || skb->len < mss_now);
2630 
2631 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2632 }
2633 
2634 /* This function returns the amount that we can raise the
2635  * usable window based on the following constraints
2636  *
2637  * 1. The window can never be shrunk once it is offered (RFC 793)
2638  * 2. We limit memory per socket
2639  *
2640  * RFC 1122:
2641  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2642  *  RECV.NEXT + RCV.WIN fixed until:
2643  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2644  *
2645  * i.e. don't raise the right edge of the window until you can raise
2646  * it at least MSS bytes.
2647  *
2648  * Unfortunately, the recommended algorithm breaks header prediction,
2649  * since header prediction assumes th->window stays fixed.
2650  *
2651  * Strictly speaking, keeping th->window fixed violates the receiver
2652  * side SWS prevention criteria. The problem is that under this rule
2653  * a stream of single byte packets will cause the right side of the
2654  * window to always advance by a single byte.
2655  *
2656  * Of course, if the sender implements sender side SWS prevention
2657  * then this will not be a problem.
2658  *
2659  * BSD seems to make the following compromise:
2660  *
2661  *	If the free space is less than the 1/4 of the maximum
2662  *	space available and the free space is less than 1/2 mss,
2663  *	then set the window to 0.
2664  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2665  *	Otherwise, just prevent the window from shrinking
2666  *	and from being larger than the largest representable value.
2667  *
2668  * This prevents incremental opening of the window in the regime
2669  * where TCP is limited by the speed of the reader side taking
2670  * data out of the TCP receive queue. It does nothing about
2671  * those cases where the window is constrained on the sender side
2672  * because the pipeline is full.
2673  *
2674  * BSD also seems to "accidentally" limit itself to windows that are a
2675  * multiple of MSS, at least until the free space gets quite small.
2676  * This would appear to be a side effect of the mbuf implementation.
2677  * Combining these two algorithms results in the observed behavior
2678  * of having a fixed window size at almost all times.
2679  *
2680  * Below we obtain similar behavior by forcing the offered window to
2681  * a multiple of the mss when it is feasible to do so.
2682  *
2683  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2684  * Regular options like TIMESTAMP are taken into account.
2685  */
2686 u32 __tcp_select_window(struct sock *sk)
2687 {
2688 	struct inet_connection_sock *icsk = inet_csk(sk);
2689 	struct tcp_sock *tp = tcp_sk(sk);
2690 	/* MSS for the peer's data.  Previous versions used mss_clamp
2691 	 * here.  I don't know if the value based on our guesses
2692 	 * of peer's MSS is better for the performance.  It's more correct
2693 	 * but may be worse for the performance because of rcv_mss
2694 	 * fluctuations.  --SAW  1998/11/1
2695 	 */
2696 	int mss = icsk->icsk_ack.rcv_mss;
2697 	int free_space = tcp_space(sk);
2698 	int allowed_space = tcp_full_space(sk);
2699 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2700 	int window;
2701 
2702 	if (unlikely(mss > full_space)) {
2703 		mss = full_space;
2704 		if (mss <= 0)
2705 			return 0;
2706 	}
2707 	if (free_space < (full_space >> 1)) {
2708 		icsk->icsk_ack.quick = 0;
2709 
2710 		if (tcp_under_memory_pressure(sk))
2711 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2712 					       4U * tp->advmss);
2713 
2714 		/* free_space might become our new window, make sure we don't
2715 		 * increase it due to wscale.
2716 		 */
2717 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2718 
2719 		/* if free space is less than mss estimate, or is below 1/16th
2720 		 * of the maximum allowed, try to move to zero-window, else
2721 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2722 		 * new incoming data is dropped due to memory limits.
2723 		 * With large window, mss test triggers way too late in order
2724 		 * to announce zero window in time before rmem limit kicks in.
2725 		 */
2726 		if (free_space < (allowed_space >> 4) || free_space < mss)
2727 			return 0;
2728 	}
2729 
2730 	if (free_space > tp->rcv_ssthresh)
2731 		free_space = tp->rcv_ssthresh;
2732 
2733 	/* Don't do rounding if we are using window scaling, since the
2734 	 * scaled window will not line up with the MSS boundary anyway.
2735 	 */
2736 	if (tp->rx_opt.rcv_wscale) {
2737 		window = free_space;
2738 
2739 		/* Advertise enough space so that it won't get scaled away.
2740 		 * Import case: prevent zero window announcement if
2741 		 * 1<<rcv_wscale > mss.
2742 		 */
2743 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2744 	} else {
2745 		window = tp->rcv_wnd;
2746 		/* Get the largest window that is a nice multiple of mss.
2747 		 * Window clamp already applied above.
2748 		 * If our current window offering is within 1 mss of the
2749 		 * free space we just keep it. This prevents the divide
2750 		 * and multiply from happening most of the time.
2751 		 * We also don't do any window rounding when the free space
2752 		 * is too small.
2753 		 */
2754 		if (window <= free_space - mss || window > free_space)
2755 			window = rounddown(free_space, mss);
2756 		else if (mss == full_space &&
2757 			 free_space > window + (full_space >> 1))
2758 			window = free_space;
2759 	}
2760 
2761 	return window;
2762 }
2763 
2764 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2765 			     const struct sk_buff *next_skb)
2766 {
2767 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2768 		const struct skb_shared_info *next_shinfo =
2769 			skb_shinfo(next_skb);
2770 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2771 
2772 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2773 		shinfo->tskey = next_shinfo->tskey;
2774 		TCP_SKB_CB(skb)->txstamp_ack |=
2775 			TCP_SKB_CB(next_skb)->txstamp_ack;
2776 	}
2777 }
2778 
2779 /* Collapses two adjacent SKB's during retransmission. */
2780 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2781 {
2782 	struct tcp_sock *tp = tcp_sk(sk);
2783 	struct sk_buff *next_skb = skb_rb_next(skb);
2784 	int next_skb_size;
2785 
2786 	next_skb_size = next_skb->len;
2787 
2788 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2789 
2790 	if (next_skb_size) {
2791 		if (next_skb_size <= skb_availroom(skb))
2792 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2793 				      next_skb_size);
2794 		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2795 			return false;
2796 	}
2797 	tcp_highest_sack_replace(sk, next_skb, skb);
2798 
2799 	/* Update sequence range on original skb. */
2800 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2801 
2802 	/* Merge over control information. This moves PSH/FIN etc. over */
2803 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2804 
2805 	/* All done, get rid of second SKB and account for it so
2806 	 * packet counting does not break.
2807 	 */
2808 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2809 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2810 
2811 	/* changed transmit queue under us so clear hints */
2812 	tcp_clear_retrans_hints_partial(tp);
2813 	if (next_skb == tp->retransmit_skb_hint)
2814 		tp->retransmit_skb_hint = skb;
2815 
2816 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2817 
2818 	tcp_skb_collapse_tstamp(skb, next_skb);
2819 
2820 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2821 	return true;
2822 }
2823 
2824 /* Check if coalescing SKBs is legal. */
2825 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2826 {
2827 	if (tcp_skb_pcount(skb) > 1)
2828 		return false;
2829 	if (skb_cloned(skb))
2830 		return false;
2831 	/* Some heuristics for collapsing over SACK'd could be invented */
2832 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2833 		return false;
2834 
2835 	return true;
2836 }
2837 
2838 /* Collapse packets in the retransmit queue to make to create
2839  * less packets on the wire. This is only done on retransmission.
2840  */
2841 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2842 				     int space)
2843 {
2844 	struct tcp_sock *tp = tcp_sk(sk);
2845 	struct sk_buff *skb = to, *tmp;
2846 	bool first = true;
2847 
2848 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2849 		return;
2850 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2851 		return;
2852 
2853 	skb_rbtree_walk_from_safe(skb, tmp) {
2854 		if (!tcp_can_collapse(sk, skb))
2855 			break;
2856 
2857 		if (!tcp_skb_can_collapse_to(to))
2858 			break;
2859 
2860 		space -= skb->len;
2861 
2862 		if (first) {
2863 			first = false;
2864 			continue;
2865 		}
2866 
2867 		if (space < 0)
2868 			break;
2869 
2870 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2871 			break;
2872 
2873 		if (!tcp_collapse_retrans(sk, to))
2874 			break;
2875 	}
2876 }
2877 
2878 /* This retransmits one SKB.  Policy decisions and retransmit queue
2879  * state updates are done by the caller.  Returns non-zero if an
2880  * error occurred which prevented the send.
2881  */
2882 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2883 {
2884 	struct inet_connection_sock *icsk = inet_csk(sk);
2885 	struct tcp_sock *tp = tcp_sk(sk);
2886 	unsigned int cur_mss;
2887 	int diff, len, err;
2888 
2889 
2890 	/* Inconclusive MTU probe */
2891 	if (icsk->icsk_mtup.probe_size)
2892 		icsk->icsk_mtup.probe_size = 0;
2893 
2894 	/* Do not sent more than we queued. 1/4 is reserved for possible
2895 	 * copying overhead: fragmentation, tunneling, mangling etc.
2896 	 */
2897 	if (refcount_read(&sk->sk_wmem_alloc) >
2898 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2899 		  sk->sk_sndbuf))
2900 		return -EAGAIN;
2901 
2902 	if (skb_still_in_host_queue(sk, skb))
2903 		return -EBUSY;
2904 
2905 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2906 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2907 			WARN_ON_ONCE(1);
2908 			return -EINVAL;
2909 		}
2910 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2911 			return -ENOMEM;
2912 	}
2913 
2914 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2915 		return -EHOSTUNREACH; /* Routing failure or similar. */
2916 
2917 	cur_mss = tcp_current_mss(sk);
2918 
2919 	/* If receiver has shrunk his window, and skb is out of
2920 	 * new window, do not retransmit it. The exception is the
2921 	 * case, when window is shrunk to zero. In this case
2922 	 * our retransmit serves as a zero window probe.
2923 	 */
2924 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2925 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2926 		return -EAGAIN;
2927 
2928 	len = cur_mss * segs;
2929 	if (skb->len > len) {
2930 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2931 				 cur_mss, GFP_ATOMIC))
2932 			return -ENOMEM; /* We'll try again later. */
2933 	} else {
2934 		if (skb_unclone(skb, GFP_ATOMIC))
2935 			return -ENOMEM;
2936 
2937 		diff = tcp_skb_pcount(skb);
2938 		tcp_set_skb_tso_segs(skb, cur_mss);
2939 		diff -= tcp_skb_pcount(skb);
2940 		if (diff)
2941 			tcp_adjust_pcount(sk, skb, diff);
2942 		if (skb->len < cur_mss)
2943 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2944 	}
2945 
2946 	/* RFC3168, section 6.1.1.1. ECN fallback */
2947 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2948 		tcp_ecn_clear_syn(sk, skb);
2949 
2950 	/* Update global and local TCP statistics. */
2951 	segs = tcp_skb_pcount(skb);
2952 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2953 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2954 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2955 	tp->total_retrans += segs;
2956 	tp->bytes_retrans += skb->len;
2957 
2958 	/* make sure skb->data is aligned on arches that require it
2959 	 * and check if ack-trimming & collapsing extended the headroom
2960 	 * beyond what csum_start can cover.
2961 	 */
2962 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2963 		     skb_headroom(skb) >= 0xFFFF)) {
2964 		struct sk_buff *nskb;
2965 
2966 		tcp_skb_tsorted_save(skb) {
2967 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2968 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2969 				     -ENOBUFS;
2970 		} tcp_skb_tsorted_restore(skb);
2971 
2972 		if (!err) {
2973 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
2974 			tcp_rate_skb_sent(sk, skb);
2975 		}
2976 	} else {
2977 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2978 	}
2979 
2980 	/* To avoid taking spuriously low RTT samples based on a timestamp
2981 	 * for a transmit that never happened, always mark EVER_RETRANS
2982 	 */
2983 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2984 
2985 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2986 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2987 				  TCP_SKB_CB(skb)->seq, segs, err);
2988 
2989 	if (likely(!err)) {
2990 		trace_tcp_retransmit_skb(sk, skb);
2991 	} else if (err != -EBUSY) {
2992 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
2993 	}
2994 	return err;
2995 }
2996 
2997 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2998 {
2999 	struct tcp_sock *tp = tcp_sk(sk);
3000 	int err = __tcp_retransmit_skb(sk, skb, segs);
3001 
3002 	if (err == 0) {
3003 #if FASTRETRANS_DEBUG > 0
3004 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3005 			net_dbg_ratelimited("retrans_out leaked\n");
3006 		}
3007 #endif
3008 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3009 		tp->retrans_out += tcp_skb_pcount(skb);
3010 	}
3011 
3012 	/* Save stamp of the first (attempted) retransmit. */
3013 	if (!tp->retrans_stamp)
3014 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3015 
3016 	if (tp->undo_retrans < 0)
3017 		tp->undo_retrans = 0;
3018 	tp->undo_retrans += tcp_skb_pcount(skb);
3019 	return err;
3020 }
3021 
3022 /* This gets called after a retransmit timeout, and the initially
3023  * retransmitted data is acknowledged.  It tries to continue
3024  * resending the rest of the retransmit queue, until either
3025  * we've sent it all or the congestion window limit is reached.
3026  */
3027 void tcp_xmit_retransmit_queue(struct sock *sk)
3028 {
3029 	const struct inet_connection_sock *icsk = inet_csk(sk);
3030 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3031 	struct tcp_sock *tp = tcp_sk(sk);
3032 	u32 max_segs;
3033 	int mib_idx;
3034 
3035 	if (!tp->packets_out)
3036 		return;
3037 
3038 	rtx_head = tcp_rtx_queue_head(sk);
3039 	skb = tp->retransmit_skb_hint ?: rtx_head;
3040 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3041 	skb_rbtree_walk_from(skb) {
3042 		__u8 sacked;
3043 		int segs;
3044 
3045 		if (tcp_pacing_check(sk))
3046 			break;
3047 
3048 		/* we could do better than to assign each time */
3049 		if (!hole)
3050 			tp->retransmit_skb_hint = skb;
3051 
3052 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3053 		if (segs <= 0)
3054 			return;
3055 		sacked = TCP_SKB_CB(skb)->sacked;
3056 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3057 		 * we need to make sure not sending too bigs TSO packets
3058 		 */
3059 		segs = min_t(int, segs, max_segs);
3060 
3061 		if (tp->retrans_out >= tp->lost_out) {
3062 			break;
3063 		} else if (!(sacked & TCPCB_LOST)) {
3064 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3065 				hole = skb;
3066 			continue;
3067 
3068 		} else {
3069 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3070 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3071 			else
3072 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3073 		}
3074 
3075 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3076 			continue;
3077 
3078 		if (tcp_small_queue_check(sk, skb, 1))
3079 			return;
3080 
3081 		if (tcp_retransmit_skb(sk, skb, segs))
3082 			return;
3083 
3084 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3085 
3086 		if (tcp_in_cwnd_reduction(sk))
3087 			tp->prr_out += tcp_skb_pcount(skb);
3088 
3089 		if (skb == rtx_head &&
3090 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3091 			tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3092 					     inet_csk(sk)->icsk_rto,
3093 					     TCP_RTO_MAX,
3094 					     skb);
3095 	}
3096 }
3097 
3098 /* We allow to exceed memory limits for FIN packets to expedite
3099  * connection tear down and (memory) recovery.
3100  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3101  * or even be forced to close flow without any FIN.
3102  * In general, we want to allow one skb per socket to avoid hangs
3103  * with edge trigger epoll()
3104  */
3105 void sk_forced_mem_schedule(struct sock *sk, int size)
3106 {
3107 	int amt;
3108 
3109 	if (size <= sk->sk_forward_alloc)
3110 		return;
3111 	amt = sk_mem_pages(size);
3112 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3113 	sk_memory_allocated_add(sk, amt);
3114 
3115 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3116 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3117 }
3118 
3119 /* Send a FIN. The caller locks the socket for us.
3120  * We should try to send a FIN packet really hard, but eventually give up.
3121  */
3122 void tcp_send_fin(struct sock *sk)
3123 {
3124 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3125 	struct tcp_sock *tp = tcp_sk(sk);
3126 
3127 	/* Optimization, tack on the FIN if we have one skb in write queue and
3128 	 * this skb was not yet sent, or we are under memory pressure.
3129 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3130 	 * as TCP stack thinks it has already been transmitted.
3131 	 */
3132 	if (!tskb && tcp_under_memory_pressure(sk))
3133 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3134 
3135 	if (tskb) {
3136 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3137 		TCP_SKB_CB(tskb)->end_seq++;
3138 		tp->write_seq++;
3139 		if (tcp_write_queue_empty(sk)) {
3140 			/* This means tskb was already sent.
3141 			 * Pretend we included the FIN on previous transmit.
3142 			 * We need to set tp->snd_nxt to the value it would have
3143 			 * if FIN had been sent. This is because retransmit path
3144 			 * does not change tp->snd_nxt.
3145 			 */
3146 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3147 			return;
3148 		}
3149 	} else {
3150 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3151 		if (unlikely(!skb))
3152 			return;
3153 
3154 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3155 		skb_reserve(skb, MAX_TCP_HEADER);
3156 		sk_forced_mem_schedule(sk, skb->truesize);
3157 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3158 		tcp_init_nondata_skb(skb, tp->write_seq,
3159 				     TCPHDR_ACK | TCPHDR_FIN);
3160 		tcp_queue_skb(sk, skb);
3161 	}
3162 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3163 }
3164 
3165 /* We get here when a process closes a file descriptor (either due to
3166  * an explicit close() or as a byproduct of exit()'ing) and there
3167  * was unread data in the receive queue.  This behavior is recommended
3168  * by RFC 2525, section 2.17.  -DaveM
3169  */
3170 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3171 {
3172 	struct sk_buff *skb;
3173 
3174 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3175 
3176 	/* NOTE: No TCP options attached and we never retransmit this. */
3177 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3178 	if (!skb) {
3179 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3180 		return;
3181 	}
3182 
3183 	/* Reserve space for headers and prepare control bits. */
3184 	skb_reserve(skb, MAX_TCP_HEADER);
3185 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3186 			     TCPHDR_ACK | TCPHDR_RST);
3187 	tcp_mstamp_refresh(tcp_sk(sk));
3188 	/* Send it off. */
3189 	if (tcp_transmit_skb(sk, skb, 0, priority))
3190 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3191 
3192 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3193 	 * skb here is different to the troublesome skb, so use NULL
3194 	 */
3195 	trace_tcp_send_reset(sk, NULL);
3196 }
3197 
3198 /* Send a crossed SYN-ACK during socket establishment.
3199  * WARNING: This routine must only be called when we have already sent
3200  * a SYN packet that crossed the incoming SYN that caused this routine
3201  * to get called. If this assumption fails then the initial rcv_wnd
3202  * and rcv_wscale values will not be correct.
3203  */
3204 int tcp_send_synack(struct sock *sk)
3205 {
3206 	struct sk_buff *skb;
3207 
3208 	skb = tcp_rtx_queue_head(sk);
3209 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3210 		pr_err("%s: wrong queue state\n", __func__);
3211 		return -EFAULT;
3212 	}
3213 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3214 		if (skb_cloned(skb)) {
3215 			struct sk_buff *nskb;
3216 
3217 			tcp_skb_tsorted_save(skb) {
3218 				nskb = skb_copy(skb, GFP_ATOMIC);
3219 			} tcp_skb_tsorted_restore(skb);
3220 			if (!nskb)
3221 				return -ENOMEM;
3222 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3223 			tcp_rtx_queue_unlink_and_free(skb, sk);
3224 			__skb_header_release(nskb);
3225 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3226 			sk_wmem_queued_add(sk, nskb->truesize);
3227 			sk_mem_charge(sk, nskb->truesize);
3228 			skb = nskb;
3229 		}
3230 
3231 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3232 		tcp_ecn_send_synack(sk, skb);
3233 	}
3234 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3235 }
3236 
3237 /**
3238  * tcp_make_synack - Prepare a SYN-ACK.
3239  * sk: listener socket
3240  * dst: dst entry attached to the SYNACK
3241  * req: request_sock pointer
3242  *
3243  * Allocate one skb and build a SYNACK packet.
3244  * @dst is consumed : Caller should not use it again.
3245  */
3246 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3247 				struct request_sock *req,
3248 				struct tcp_fastopen_cookie *foc,
3249 				enum tcp_synack_type synack_type)
3250 {
3251 	struct inet_request_sock *ireq = inet_rsk(req);
3252 	const struct tcp_sock *tp = tcp_sk(sk);
3253 	struct tcp_md5sig_key *md5 = NULL;
3254 	struct tcp_out_options opts;
3255 	struct sk_buff *skb;
3256 	int tcp_header_size;
3257 	struct tcphdr *th;
3258 	int mss;
3259 	u64 now;
3260 
3261 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3262 	if (unlikely(!skb)) {
3263 		dst_release(dst);
3264 		return NULL;
3265 	}
3266 	/* Reserve space for headers. */
3267 	skb_reserve(skb, MAX_TCP_HEADER);
3268 
3269 	switch (synack_type) {
3270 	case TCP_SYNACK_NORMAL:
3271 		skb_set_owner_w(skb, req_to_sk(req));
3272 		break;
3273 	case TCP_SYNACK_COOKIE:
3274 		/* Under synflood, we do not attach skb to a socket,
3275 		 * to avoid false sharing.
3276 		 */
3277 		break;
3278 	case TCP_SYNACK_FASTOPEN:
3279 		/* sk is a const pointer, because we want to express multiple
3280 		 * cpu might call us concurrently.
3281 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3282 		 */
3283 		skb_set_owner_w(skb, (struct sock *)sk);
3284 		break;
3285 	}
3286 	skb_dst_set(skb, dst);
3287 
3288 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3289 
3290 	memset(&opts, 0, sizeof(opts));
3291 	now = tcp_clock_ns();
3292 #ifdef CONFIG_SYN_COOKIES
3293 	if (unlikely(req->cookie_ts))
3294 		skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3295 	else
3296 #endif
3297 	{
3298 		skb->skb_mstamp_ns = now;
3299 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3300 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3301 	}
3302 
3303 #ifdef CONFIG_TCP_MD5SIG
3304 	rcu_read_lock();
3305 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3306 #endif
3307 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3308 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3309 					     foc) + sizeof(*th);
3310 
3311 	skb_push(skb, tcp_header_size);
3312 	skb_reset_transport_header(skb);
3313 
3314 	th = (struct tcphdr *)skb->data;
3315 	memset(th, 0, sizeof(struct tcphdr));
3316 	th->syn = 1;
3317 	th->ack = 1;
3318 	tcp_ecn_make_synack(req, th);
3319 	th->source = htons(ireq->ir_num);
3320 	th->dest = ireq->ir_rmt_port;
3321 	skb->mark = ireq->ir_mark;
3322 	skb->ip_summed = CHECKSUM_PARTIAL;
3323 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3324 	/* XXX data is queued and acked as is. No buffer/window check */
3325 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3326 
3327 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3328 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3329 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3330 	th->doff = (tcp_header_size >> 2);
3331 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3332 
3333 #ifdef CONFIG_TCP_MD5SIG
3334 	/* Okay, we have all we need - do the md5 hash if needed */
3335 	if (md5)
3336 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3337 					       md5, req_to_sk(req), skb);
3338 	rcu_read_unlock();
3339 #endif
3340 
3341 	skb->skb_mstamp_ns = now;
3342 	tcp_add_tx_delay(skb, tp);
3343 
3344 	return skb;
3345 }
3346 EXPORT_SYMBOL(tcp_make_synack);
3347 
3348 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3349 {
3350 	struct inet_connection_sock *icsk = inet_csk(sk);
3351 	const struct tcp_congestion_ops *ca;
3352 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3353 
3354 	if (ca_key == TCP_CA_UNSPEC)
3355 		return;
3356 
3357 	rcu_read_lock();
3358 	ca = tcp_ca_find_key(ca_key);
3359 	if (likely(ca && try_module_get(ca->owner))) {
3360 		module_put(icsk->icsk_ca_ops->owner);
3361 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3362 		icsk->icsk_ca_ops = ca;
3363 	}
3364 	rcu_read_unlock();
3365 }
3366 
3367 /* Do all connect socket setups that can be done AF independent. */
3368 static void tcp_connect_init(struct sock *sk)
3369 {
3370 	const struct dst_entry *dst = __sk_dst_get(sk);
3371 	struct tcp_sock *tp = tcp_sk(sk);
3372 	__u8 rcv_wscale;
3373 	u32 rcv_wnd;
3374 
3375 	/* We'll fix this up when we get a response from the other end.
3376 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3377 	 */
3378 	tp->tcp_header_len = sizeof(struct tcphdr);
3379 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3380 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3381 
3382 #ifdef CONFIG_TCP_MD5SIG
3383 	if (tp->af_specific->md5_lookup(sk, sk))
3384 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3385 #endif
3386 
3387 	/* If user gave his TCP_MAXSEG, record it to clamp */
3388 	if (tp->rx_opt.user_mss)
3389 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3390 	tp->max_window = 0;
3391 	tcp_mtup_init(sk);
3392 	tcp_sync_mss(sk, dst_mtu(dst));
3393 
3394 	tcp_ca_dst_init(sk, dst);
3395 
3396 	if (!tp->window_clamp)
3397 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3398 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3399 
3400 	tcp_initialize_rcv_mss(sk);
3401 
3402 	/* limit the window selection if the user enforce a smaller rx buffer */
3403 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3404 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3405 		tp->window_clamp = tcp_full_space(sk);
3406 
3407 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3408 	if (rcv_wnd == 0)
3409 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3410 
3411 	tcp_select_initial_window(sk, tcp_full_space(sk),
3412 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3413 				  &tp->rcv_wnd,
3414 				  &tp->window_clamp,
3415 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3416 				  &rcv_wscale,
3417 				  rcv_wnd);
3418 
3419 	tp->rx_opt.rcv_wscale = rcv_wscale;
3420 	tp->rcv_ssthresh = tp->rcv_wnd;
3421 
3422 	sk->sk_err = 0;
3423 	sock_reset_flag(sk, SOCK_DONE);
3424 	tp->snd_wnd = 0;
3425 	tcp_init_wl(tp, 0);
3426 	tcp_write_queue_purge(sk);
3427 	tp->snd_una = tp->write_seq;
3428 	tp->snd_sml = tp->write_seq;
3429 	tp->snd_up = tp->write_seq;
3430 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3431 
3432 	if (likely(!tp->repair))
3433 		tp->rcv_nxt = 0;
3434 	else
3435 		tp->rcv_tstamp = tcp_jiffies32;
3436 	tp->rcv_wup = tp->rcv_nxt;
3437 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3438 
3439 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3440 	inet_csk(sk)->icsk_retransmits = 0;
3441 	tcp_clear_retrans(tp);
3442 }
3443 
3444 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3445 {
3446 	struct tcp_sock *tp = tcp_sk(sk);
3447 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3448 
3449 	tcb->end_seq += skb->len;
3450 	__skb_header_release(skb);
3451 	sk_wmem_queued_add(sk, skb->truesize);
3452 	sk_mem_charge(sk, skb->truesize);
3453 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3454 	tp->packets_out += tcp_skb_pcount(skb);
3455 }
3456 
3457 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3458  * queue a data-only packet after the regular SYN, such that regular SYNs
3459  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3460  * only the SYN sequence, the data are retransmitted in the first ACK.
3461  * If cookie is not cached or other error occurs, falls back to send a
3462  * regular SYN with Fast Open cookie request option.
3463  */
3464 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3465 {
3466 	struct tcp_sock *tp = tcp_sk(sk);
3467 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3468 	int space, err = 0;
3469 	struct sk_buff *syn_data;
3470 
3471 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3472 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3473 		goto fallback;
3474 
3475 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3476 	 * user-MSS. Reserve maximum option space for middleboxes that add
3477 	 * private TCP options. The cost is reduced data space in SYN :(
3478 	 */
3479 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3480 
3481 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3482 		MAX_TCP_OPTION_SPACE;
3483 
3484 	space = min_t(size_t, space, fo->size);
3485 
3486 	/* limit to order-0 allocations */
3487 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3488 
3489 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3490 	if (!syn_data)
3491 		goto fallback;
3492 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3493 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3494 	if (space) {
3495 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3496 					    &fo->data->msg_iter);
3497 		if (unlikely(!copied)) {
3498 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3499 			kfree_skb(syn_data);
3500 			goto fallback;
3501 		}
3502 		if (copied != space) {
3503 			skb_trim(syn_data, copied);
3504 			space = copied;
3505 		}
3506 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3507 	}
3508 	/* No more data pending in inet_wait_for_connect() */
3509 	if (space == fo->size)
3510 		fo->data = NULL;
3511 	fo->copied = space;
3512 
3513 	tcp_connect_queue_skb(sk, syn_data);
3514 	if (syn_data->len)
3515 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3516 
3517 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3518 
3519 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3520 
3521 	/* Now full SYN+DATA was cloned and sent (or not),
3522 	 * remove the SYN from the original skb (syn_data)
3523 	 * we keep in write queue in case of a retransmit, as we
3524 	 * also have the SYN packet (with no data) in the same queue.
3525 	 */
3526 	TCP_SKB_CB(syn_data)->seq++;
3527 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3528 	if (!err) {
3529 		tp->syn_data = (fo->copied > 0);
3530 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3531 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3532 		goto done;
3533 	}
3534 
3535 	/* data was not sent, put it in write_queue */
3536 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3537 	tp->packets_out -= tcp_skb_pcount(syn_data);
3538 
3539 fallback:
3540 	/* Send a regular SYN with Fast Open cookie request option */
3541 	if (fo->cookie.len > 0)
3542 		fo->cookie.len = 0;
3543 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3544 	if (err)
3545 		tp->syn_fastopen = 0;
3546 done:
3547 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3548 	return err;
3549 }
3550 
3551 /* Build a SYN and send it off. */
3552 int tcp_connect(struct sock *sk)
3553 {
3554 	struct tcp_sock *tp = tcp_sk(sk);
3555 	struct sk_buff *buff;
3556 	int err;
3557 
3558 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3559 
3560 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3561 		return -EHOSTUNREACH; /* Routing failure or similar. */
3562 
3563 	tcp_connect_init(sk);
3564 
3565 	if (unlikely(tp->repair)) {
3566 		tcp_finish_connect(sk, NULL);
3567 		return 0;
3568 	}
3569 
3570 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3571 	if (unlikely(!buff))
3572 		return -ENOBUFS;
3573 
3574 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3575 	tcp_mstamp_refresh(tp);
3576 	tp->retrans_stamp = tcp_time_stamp(tp);
3577 	tcp_connect_queue_skb(sk, buff);
3578 	tcp_ecn_send_syn(sk, buff);
3579 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3580 
3581 	/* Send off SYN; include data in Fast Open. */
3582 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3583 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3584 	if (err == -ECONNREFUSED)
3585 		return err;
3586 
3587 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3588 	 * in order to make this packet get counted in tcpOutSegs.
3589 	 */
3590 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3591 	tp->pushed_seq = tp->write_seq;
3592 	buff = tcp_send_head(sk);
3593 	if (unlikely(buff)) {
3594 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3595 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3596 	}
3597 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3598 
3599 	/* Timer for repeating the SYN until an answer. */
3600 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3601 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3602 	return 0;
3603 }
3604 EXPORT_SYMBOL(tcp_connect);
3605 
3606 /* Send out a delayed ack, the caller does the policy checking
3607  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3608  * for details.
3609  */
3610 void tcp_send_delayed_ack(struct sock *sk)
3611 {
3612 	struct inet_connection_sock *icsk = inet_csk(sk);
3613 	int ato = icsk->icsk_ack.ato;
3614 	unsigned long timeout;
3615 
3616 	if (ato > TCP_DELACK_MIN) {
3617 		const struct tcp_sock *tp = tcp_sk(sk);
3618 		int max_ato = HZ / 2;
3619 
3620 		if (inet_csk_in_pingpong_mode(sk) ||
3621 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3622 			max_ato = TCP_DELACK_MAX;
3623 
3624 		/* Slow path, intersegment interval is "high". */
3625 
3626 		/* If some rtt estimate is known, use it to bound delayed ack.
3627 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3628 		 * directly.
3629 		 */
3630 		if (tp->srtt_us) {
3631 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3632 					TCP_DELACK_MIN);
3633 
3634 			if (rtt < max_ato)
3635 				max_ato = rtt;
3636 		}
3637 
3638 		ato = min(ato, max_ato);
3639 	}
3640 
3641 	/* Stay within the limit we were given */
3642 	timeout = jiffies + ato;
3643 
3644 	/* Use new timeout only if there wasn't a older one earlier. */
3645 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3646 		/* If delack timer was blocked or is about to expire,
3647 		 * send ACK now.
3648 		 */
3649 		if (icsk->icsk_ack.blocked ||
3650 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3651 			tcp_send_ack(sk);
3652 			return;
3653 		}
3654 
3655 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3656 			timeout = icsk->icsk_ack.timeout;
3657 	}
3658 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3659 	icsk->icsk_ack.timeout = timeout;
3660 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3661 }
3662 
3663 /* This routine sends an ack and also updates the window. */
3664 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3665 {
3666 	struct sk_buff *buff;
3667 
3668 	/* If we have been reset, we may not send again. */
3669 	if (sk->sk_state == TCP_CLOSE)
3670 		return;
3671 
3672 	/* We are not putting this on the write queue, so
3673 	 * tcp_transmit_skb() will set the ownership to this
3674 	 * sock.
3675 	 */
3676 	buff = alloc_skb(MAX_TCP_HEADER,
3677 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3678 	if (unlikely(!buff)) {
3679 		inet_csk_schedule_ack(sk);
3680 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3681 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3682 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3683 		return;
3684 	}
3685 
3686 	/* Reserve space for headers and prepare control bits. */
3687 	skb_reserve(buff, MAX_TCP_HEADER);
3688 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3689 
3690 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3691 	 * too much.
3692 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3693 	 */
3694 	skb_set_tcp_pure_ack(buff);
3695 
3696 	/* Send it off, this clears delayed acks for us. */
3697 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3698 }
3699 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3700 
3701 void tcp_send_ack(struct sock *sk)
3702 {
3703 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3704 }
3705 
3706 /* This routine sends a packet with an out of date sequence
3707  * number. It assumes the other end will try to ack it.
3708  *
3709  * Question: what should we make while urgent mode?
3710  * 4.4BSD forces sending single byte of data. We cannot send
3711  * out of window data, because we have SND.NXT==SND.MAX...
3712  *
3713  * Current solution: to send TWO zero-length segments in urgent mode:
3714  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3715  * out-of-date with SND.UNA-1 to probe window.
3716  */
3717 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3718 {
3719 	struct tcp_sock *tp = tcp_sk(sk);
3720 	struct sk_buff *skb;
3721 
3722 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3723 	skb = alloc_skb(MAX_TCP_HEADER,
3724 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3725 	if (!skb)
3726 		return -1;
3727 
3728 	/* Reserve space for headers and set control bits. */
3729 	skb_reserve(skb, MAX_TCP_HEADER);
3730 	/* Use a previous sequence.  This should cause the other
3731 	 * end to send an ack.  Don't queue or clone SKB, just
3732 	 * send it.
3733 	 */
3734 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3735 	NET_INC_STATS(sock_net(sk), mib);
3736 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3737 }
3738 
3739 /* Called from setsockopt( ... TCP_REPAIR ) */
3740 void tcp_send_window_probe(struct sock *sk)
3741 {
3742 	if (sk->sk_state == TCP_ESTABLISHED) {
3743 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3744 		tcp_mstamp_refresh(tcp_sk(sk));
3745 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3746 	}
3747 }
3748 
3749 /* Initiate keepalive or window probe from timer. */
3750 int tcp_write_wakeup(struct sock *sk, int mib)
3751 {
3752 	struct tcp_sock *tp = tcp_sk(sk);
3753 	struct sk_buff *skb;
3754 
3755 	if (sk->sk_state == TCP_CLOSE)
3756 		return -1;
3757 
3758 	skb = tcp_send_head(sk);
3759 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3760 		int err;
3761 		unsigned int mss = tcp_current_mss(sk);
3762 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3763 
3764 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3765 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3766 
3767 		/* We are probing the opening of a window
3768 		 * but the window size is != 0
3769 		 * must have been a result SWS avoidance ( sender )
3770 		 */
3771 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3772 		    skb->len > mss) {
3773 			seg_size = min(seg_size, mss);
3774 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3775 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3776 					 skb, seg_size, mss, GFP_ATOMIC))
3777 				return -1;
3778 		} else if (!tcp_skb_pcount(skb))
3779 			tcp_set_skb_tso_segs(skb, mss);
3780 
3781 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3782 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3783 		if (!err)
3784 			tcp_event_new_data_sent(sk, skb);
3785 		return err;
3786 	} else {
3787 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3788 			tcp_xmit_probe_skb(sk, 1, mib);
3789 		return tcp_xmit_probe_skb(sk, 0, mib);
3790 	}
3791 }
3792 
3793 /* A window probe timeout has occurred.  If window is not closed send
3794  * a partial packet else a zero probe.
3795  */
3796 void tcp_send_probe0(struct sock *sk)
3797 {
3798 	struct inet_connection_sock *icsk = inet_csk(sk);
3799 	struct tcp_sock *tp = tcp_sk(sk);
3800 	struct net *net = sock_net(sk);
3801 	unsigned long timeout;
3802 	int err;
3803 
3804 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3805 
3806 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3807 		/* Cancel probe timer, if it is not required. */
3808 		icsk->icsk_probes_out = 0;
3809 		icsk->icsk_backoff = 0;
3810 		return;
3811 	}
3812 
3813 	icsk->icsk_probes_out++;
3814 	if (err <= 0) {
3815 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3816 			icsk->icsk_backoff++;
3817 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3818 	} else {
3819 		/* If packet was not sent due to local congestion,
3820 		 * Let senders fight for local resources conservatively.
3821 		 */
3822 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
3823 	}
3824 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL);
3825 }
3826 
3827 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3828 {
3829 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3830 	struct flowi fl;
3831 	int res;
3832 
3833 	tcp_rsk(req)->txhash = net_tx_rndhash();
3834 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3835 	if (!res) {
3836 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3837 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3838 		if (unlikely(tcp_passive_fastopen(sk)))
3839 			tcp_sk(sk)->total_retrans++;
3840 		trace_tcp_retransmit_synack(sk, req);
3841 	}
3842 	return res;
3843 }
3844 EXPORT_SYMBOL(tcp_rtx_synack);
3845