1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of two TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX; 66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat); 67 68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 69 int push_one, gfp_t gfp); 70 71 /* Account for new data that has been sent to the network. */ 72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 73 { 74 struct inet_connection_sock *icsk = inet_csk(sk); 75 struct tcp_sock *tp = tcp_sk(sk); 76 unsigned int prior_packets = tp->packets_out; 77 78 tcp_advance_send_head(sk, skb); 79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 80 81 tp->packets_out += tcp_skb_pcount(skb); 82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 84 tcp_rearm_rto(sk); 85 } 86 87 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 88 tcp_skb_pcount(skb)); 89 } 90 91 /* SND.NXT, if window was not shrunk. 92 * If window has been shrunk, what should we make? It is not clear at all. 93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 95 * invalid. OK, let's make this for now: 96 */ 97 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 98 { 99 const struct tcp_sock *tp = tcp_sk(sk); 100 101 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. */ 141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 s32 delta = tcp_time_stamp - tp->lsndtime; 145 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 146 u32 cwnd = tp->snd_cwnd; 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tp->snd_cwnd = max(cwnd, restart_cwnd); 156 tp->snd_cwnd_stamp = tcp_time_stamp; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_time_stamp; 166 const struct dst_entry *dst = __sk_dst_get(sk); 167 168 if (sysctl_tcp_slow_start_after_idle && 169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 170 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 171 172 tp->lsndtime = now; 173 174 /* If it is a reply for ato after last received 175 * packet, enter pingpong mode. 176 */ 177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato && 178 (!dst || !dst_metric(dst, RTAX_QUICKACK))) 179 icsk->icsk_ack.pingpong = 1; 180 } 181 182 /* Account for an ACK we sent. */ 183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 184 { 185 tcp_dec_quickack_mode(sk, pkts); 186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 187 } 188 189 190 u32 tcp_default_init_rwnd(u32 mss) 191 { 192 /* Initial receive window should be twice of TCP_INIT_CWND to 193 * enable proper sending of new unsent data during fast recovery 194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 195 * limit when mss is larger than 1460. 196 */ 197 u32 init_rwnd = TCP_INIT_CWND * 2; 198 199 if (mss > 1460) 200 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 201 return init_rwnd; 202 } 203 204 /* Determine a window scaling and initial window to offer. 205 * Based on the assumption that the given amount of space 206 * will be offered. Store the results in the tp structure. 207 * NOTE: for smooth operation initial space offering should 208 * be a multiple of mss if possible. We assume here that mss >= 1. 209 * This MUST be enforced by all callers. 210 */ 211 void tcp_select_initial_window(int __space, __u32 mss, 212 __u32 *rcv_wnd, __u32 *window_clamp, 213 int wscale_ok, __u8 *rcv_wscale, 214 __u32 init_rcv_wnd) 215 { 216 unsigned int space = (__space < 0 ? 0 : __space); 217 218 /* If no clamp set the clamp to the max possible scaled window */ 219 if (*window_clamp == 0) 220 (*window_clamp) = (65535 << 14); 221 space = min(*window_clamp, space); 222 223 /* Quantize space offering to a multiple of mss if possible. */ 224 if (space > mss) 225 space = (space / mss) * mss; 226 227 /* NOTE: offering an initial window larger than 32767 228 * will break some buggy TCP stacks. If the admin tells us 229 * it is likely we could be speaking with such a buggy stack 230 * we will truncate our initial window offering to 32K-1 231 * unless the remote has sent us a window scaling option, 232 * which we interpret as a sign the remote TCP is not 233 * misinterpreting the window field as a signed quantity. 234 */ 235 if (sysctl_tcp_workaround_signed_windows) 236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 237 else 238 (*rcv_wnd) = space; 239 240 (*rcv_wscale) = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window 243 * See RFC1323 for an explanation of the limit to 14 244 */ 245 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 246 space = min_t(u32, space, *window_clamp); 247 while (space > 65535 && (*rcv_wscale) < 14) { 248 space >>= 1; 249 (*rcv_wscale)++; 250 } 251 } 252 253 if (mss > (1 << *rcv_wscale)) { 254 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 255 init_rcv_wnd = tcp_default_init_rwnd(mss); 256 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 257 } 258 259 /* Set the clamp no higher than max representable value */ 260 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 261 } 262 EXPORT_SYMBOL(tcp_select_initial_window); 263 264 /* Chose a new window to advertise, update state in tcp_sock for the 265 * socket, and return result with RFC1323 scaling applied. The return 266 * value can be stuffed directly into th->window for an outgoing 267 * frame. 268 */ 269 static u16 tcp_select_window(struct sock *sk) 270 { 271 struct tcp_sock *tp = tcp_sk(sk); 272 u32 old_win = tp->rcv_wnd; 273 u32 cur_win = tcp_receive_window(tp); 274 u32 new_win = __tcp_select_window(sk); 275 276 /* Never shrink the offered window */ 277 if (new_win < cur_win) { 278 /* Danger Will Robinson! 279 * Don't update rcv_wup/rcv_wnd here or else 280 * we will not be able to advertise a zero 281 * window in time. --DaveM 282 * 283 * Relax Will Robinson. 284 */ 285 if (new_win == 0) 286 NET_INC_STATS(sock_net(sk), 287 LINUX_MIB_TCPWANTZEROWINDOWADV); 288 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 289 } 290 tp->rcv_wnd = new_win; 291 tp->rcv_wup = tp->rcv_nxt; 292 293 /* Make sure we do not exceed the maximum possible 294 * scaled window. 295 */ 296 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 297 new_win = min(new_win, MAX_TCP_WINDOW); 298 else 299 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 300 301 /* RFC1323 scaling applied */ 302 new_win >>= tp->rx_opt.rcv_wscale; 303 304 /* If we advertise zero window, disable fast path. */ 305 if (new_win == 0) { 306 tp->pred_flags = 0; 307 if (old_win) 308 NET_INC_STATS(sock_net(sk), 309 LINUX_MIB_TCPTOZEROWINDOWADV); 310 } else if (old_win == 0) { 311 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 312 } 313 314 return new_win; 315 } 316 317 /* Packet ECN state for a SYN-ACK */ 318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 319 { 320 const struct tcp_sock *tp = tcp_sk(sk); 321 322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 323 if (!(tp->ecn_flags & TCP_ECN_OK)) 324 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 325 else if (tcp_ca_needs_ecn(sk)) 326 INET_ECN_xmit(sk); 327 } 328 329 /* Packet ECN state for a SYN. */ 330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 331 { 332 struct tcp_sock *tp = tcp_sk(sk); 333 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 334 tcp_ca_needs_ecn(sk); 335 336 if (!use_ecn) { 337 const struct dst_entry *dst = __sk_dst_get(sk); 338 339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 340 use_ecn = true; 341 } 342 343 tp->ecn_flags = 0; 344 345 if (use_ecn) { 346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 347 tp->ecn_flags = TCP_ECN_OK; 348 if (tcp_ca_needs_ecn(sk)) 349 INET_ECN_xmit(sk); 350 } 351 } 352 353 static void 354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th, 355 struct sock *sk) 356 { 357 if (inet_rsk(req)->ecn_ok) { 358 th->ece = 1; 359 if (tcp_ca_needs_ecn(sk)) 360 INET_ECN_xmit(sk); 361 } 362 } 363 364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 365 * be sent. 366 */ 367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 368 int tcp_header_len) 369 { 370 struct tcp_sock *tp = tcp_sk(sk); 371 372 if (tp->ecn_flags & TCP_ECN_OK) { 373 /* Not-retransmitted data segment: set ECT and inject CWR. */ 374 if (skb->len != tcp_header_len && 375 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 376 INET_ECN_xmit(sk); 377 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 378 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 379 tcp_hdr(skb)->cwr = 1; 380 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 381 } 382 } else if (!tcp_ca_needs_ecn(sk)) { 383 /* ACK or retransmitted segment: clear ECT|CE */ 384 INET_ECN_dontxmit(sk); 385 } 386 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 387 tcp_hdr(skb)->ece = 1; 388 } 389 } 390 391 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 392 * auto increment end seqno. 393 */ 394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 395 { 396 struct skb_shared_info *shinfo = skb_shinfo(skb); 397 398 skb->ip_summed = CHECKSUM_PARTIAL; 399 skb->csum = 0; 400 401 TCP_SKB_CB(skb)->tcp_flags = flags; 402 TCP_SKB_CB(skb)->sacked = 0; 403 404 tcp_skb_pcount_set(skb, 1); 405 shinfo->gso_size = 0; 406 shinfo->gso_type = 0; 407 408 TCP_SKB_CB(skb)->seq = seq; 409 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 410 seq++; 411 TCP_SKB_CB(skb)->end_seq = seq; 412 } 413 414 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 415 { 416 return tp->snd_una != tp->snd_up; 417 } 418 419 #define OPTION_SACK_ADVERTISE (1 << 0) 420 #define OPTION_TS (1 << 1) 421 #define OPTION_MD5 (1 << 2) 422 #define OPTION_WSCALE (1 << 3) 423 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 424 425 struct tcp_out_options { 426 u16 options; /* bit field of OPTION_* */ 427 u16 mss; /* 0 to disable */ 428 u8 ws; /* window scale, 0 to disable */ 429 u8 num_sack_blocks; /* number of SACK blocks to include */ 430 u8 hash_size; /* bytes in hash_location */ 431 __u8 *hash_location; /* temporary pointer, overloaded */ 432 __u32 tsval, tsecr; /* need to include OPTION_TS */ 433 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 434 }; 435 436 /* Write previously computed TCP options to the packet. 437 * 438 * Beware: Something in the Internet is very sensitive to the ordering of 439 * TCP options, we learned this through the hard way, so be careful here. 440 * Luckily we can at least blame others for their non-compliance but from 441 * inter-operability perspective it seems that we're somewhat stuck with 442 * the ordering which we have been using if we want to keep working with 443 * those broken things (not that it currently hurts anybody as there isn't 444 * particular reason why the ordering would need to be changed). 445 * 446 * At least SACK_PERM as the first option is known to lead to a disaster 447 * (but it may well be that other scenarios fail similarly). 448 */ 449 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 450 struct tcp_out_options *opts) 451 { 452 u16 options = opts->options; /* mungable copy */ 453 454 if (unlikely(OPTION_MD5 & options)) { 455 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 456 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 457 /* overload cookie hash location */ 458 opts->hash_location = (__u8 *)ptr; 459 ptr += 4; 460 } 461 462 if (unlikely(opts->mss)) { 463 *ptr++ = htonl((TCPOPT_MSS << 24) | 464 (TCPOLEN_MSS << 16) | 465 opts->mss); 466 } 467 468 if (likely(OPTION_TS & options)) { 469 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 470 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 471 (TCPOLEN_SACK_PERM << 16) | 472 (TCPOPT_TIMESTAMP << 8) | 473 TCPOLEN_TIMESTAMP); 474 options &= ~OPTION_SACK_ADVERTISE; 475 } else { 476 *ptr++ = htonl((TCPOPT_NOP << 24) | 477 (TCPOPT_NOP << 16) | 478 (TCPOPT_TIMESTAMP << 8) | 479 TCPOLEN_TIMESTAMP); 480 } 481 *ptr++ = htonl(opts->tsval); 482 *ptr++ = htonl(opts->tsecr); 483 } 484 485 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 486 *ptr++ = htonl((TCPOPT_NOP << 24) | 487 (TCPOPT_NOP << 16) | 488 (TCPOPT_SACK_PERM << 8) | 489 TCPOLEN_SACK_PERM); 490 } 491 492 if (unlikely(OPTION_WSCALE & options)) { 493 *ptr++ = htonl((TCPOPT_NOP << 24) | 494 (TCPOPT_WINDOW << 16) | 495 (TCPOLEN_WINDOW << 8) | 496 opts->ws); 497 } 498 499 if (unlikely(opts->num_sack_blocks)) { 500 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 501 tp->duplicate_sack : tp->selective_acks; 502 int this_sack; 503 504 *ptr++ = htonl((TCPOPT_NOP << 24) | 505 (TCPOPT_NOP << 16) | 506 (TCPOPT_SACK << 8) | 507 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 508 TCPOLEN_SACK_PERBLOCK))); 509 510 for (this_sack = 0; this_sack < opts->num_sack_blocks; 511 ++this_sack) { 512 *ptr++ = htonl(sp[this_sack].start_seq); 513 *ptr++ = htonl(sp[this_sack].end_seq); 514 } 515 516 tp->rx_opt.dsack = 0; 517 } 518 519 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 520 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 521 u8 *p = (u8 *)ptr; 522 u32 len; /* Fast Open option length */ 523 524 if (foc->exp) { 525 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 526 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 527 TCPOPT_FASTOPEN_MAGIC); 528 p += TCPOLEN_EXP_FASTOPEN_BASE; 529 } else { 530 len = TCPOLEN_FASTOPEN_BASE + foc->len; 531 *p++ = TCPOPT_FASTOPEN; 532 *p++ = len; 533 } 534 535 memcpy(p, foc->val, foc->len); 536 if ((len & 3) == 2) { 537 p[foc->len] = TCPOPT_NOP; 538 p[foc->len + 1] = TCPOPT_NOP; 539 } 540 ptr += (len + 3) >> 2; 541 } 542 } 543 544 /* Compute TCP options for SYN packets. This is not the final 545 * network wire format yet. 546 */ 547 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 548 struct tcp_out_options *opts, 549 struct tcp_md5sig_key **md5) 550 { 551 struct tcp_sock *tp = tcp_sk(sk); 552 unsigned int remaining = MAX_TCP_OPTION_SPACE; 553 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 554 555 #ifdef CONFIG_TCP_MD5SIG 556 *md5 = tp->af_specific->md5_lookup(sk, sk); 557 if (*md5) { 558 opts->options |= OPTION_MD5; 559 remaining -= TCPOLEN_MD5SIG_ALIGNED; 560 } 561 #else 562 *md5 = NULL; 563 #endif 564 565 /* We always get an MSS option. The option bytes which will be seen in 566 * normal data packets should timestamps be used, must be in the MSS 567 * advertised. But we subtract them from tp->mss_cache so that 568 * calculations in tcp_sendmsg are simpler etc. So account for this 569 * fact here if necessary. If we don't do this correctly, as a 570 * receiver we won't recognize data packets as being full sized when we 571 * should, and thus we won't abide by the delayed ACK rules correctly. 572 * SACKs don't matter, we never delay an ACK when we have any of those 573 * going out. */ 574 opts->mss = tcp_advertise_mss(sk); 575 remaining -= TCPOLEN_MSS_ALIGNED; 576 577 if (likely(sysctl_tcp_timestamps && !*md5)) { 578 opts->options |= OPTION_TS; 579 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 580 opts->tsecr = tp->rx_opt.ts_recent; 581 remaining -= TCPOLEN_TSTAMP_ALIGNED; 582 } 583 if (likely(sysctl_tcp_window_scaling)) { 584 opts->ws = tp->rx_opt.rcv_wscale; 585 opts->options |= OPTION_WSCALE; 586 remaining -= TCPOLEN_WSCALE_ALIGNED; 587 } 588 if (likely(sysctl_tcp_sack)) { 589 opts->options |= OPTION_SACK_ADVERTISE; 590 if (unlikely(!(OPTION_TS & opts->options))) 591 remaining -= TCPOLEN_SACKPERM_ALIGNED; 592 } 593 594 if (fastopen && fastopen->cookie.len >= 0) { 595 u32 need = fastopen->cookie.len; 596 597 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 598 TCPOLEN_FASTOPEN_BASE; 599 need = (need + 3) & ~3U; /* Align to 32 bits */ 600 if (remaining >= need) { 601 opts->options |= OPTION_FAST_OPEN_COOKIE; 602 opts->fastopen_cookie = &fastopen->cookie; 603 remaining -= need; 604 tp->syn_fastopen = 1; 605 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 606 } 607 } 608 609 return MAX_TCP_OPTION_SPACE - remaining; 610 } 611 612 /* Set up TCP options for SYN-ACKs. */ 613 static unsigned int tcp_synack_options(struct sock *sk, 614 struct request_sock *req, 615 unsigned int mss, struct sk_buff *skb, 616 struct tcp_out_options *opts, 617 const struct tcp_md5sig_key *md5, 618 struct tcp_fastopen_cookie *foc) 619 { 620 struct inet_request_sock *ireq = inet_rsk(req); 621 unsigned int remaining = MAX_TCP_OPTION_SPACE; 622 623 #ifdef CONFIG_TCP_MD5SIG 624 if (md5) { 625 opts->options |= OPTION_MD5; 626 remaining -= TCPOLEN_MD5SIG_ALIGNED; 627 628 /* We can't fit any SACK blocks in a packet with MD5 + TS 629 * options. There was discussion about disabling SACK 630 * rather than TS in order to fit in better with old, 631 * buggy kernels, but that was deemed to be unnecessary. 632 */ 633 ireq->tstamp_ok &= !ireq->sack_ok; 634 } 635 #endif 636 637 /* We always send an MSS option. */ 638 opts->mss = mss; 639 remaining -= TCPOLEN_MSS_ALIGNED; 640 641 if (likely(ireq->wscale_ok)) { 642 opts->ws = ireq->rcv_wscale; 643 opts->options |= OPTION_WSCALE; 644 remaining -= TCPOLEN_WSCALE_ALIGNED; 645 } 646 if (likely(ireq->tstamp_ok)) { 647 opts->options |= OPTION_TS; 648 opts->tsval = tcp_skb_timestamp(skb); 649 opts->tsecr = req->ts_recent; 650 remaining -= TCPOLEN_TSTAMP_ALIGNED; 651 } 652 if (likely(ireq->sack_ok)) { 653 opts->options |= OPTION_SACK_ADVERTISE; 654 if (unlikely(!ireq->tstamp_ok)) 655 remaining -= TCPOLEN_SACKPERM_ALIGNED; 656 } 657 if (foc != NULL && foc->len >= 0) { 658 u32 need = foc->len; 659 660 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 661 TCPOLEN_FASTOPEN_BASE; 662 need = (need + 3) & ~3U; /* Align to 32 bits */ 663 if (remaining >= need) { 664 opts->options |= OPTION_FAST_OPEN_COOKIE; 665 opts->fastopen_cookie = foc; 666 remaining -= need; 667 } 668 } 669 670 return MAX_TCP_OPTION_SPACE - remaining; 671 } 672 673 /* Compute TCP options for ESTABLISHED sockets. This is not the 674 * final wire format yet. 675 */ 676 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 677 struct tcp_out_options *opts, 678 struct tcp_md5sig_key **md5) 679 { 680 struct tcp_sock *tp = tcp_sk(sk); 681 unsigned int size = 0; 682 unsigned int eff_sacks; 683 684 opts->options = 0; 685 686 #ifdef CONFIG_TCP_MD5SIG 687 *md5 = tp->af_specific->md5_lookup(sk, sk); 688 if (unlikely(*md5)) { 689 opts->options |= OPTION_MD5; 690 size += TCPOLEN_MD5SIG_ALIGNED; 691 } 692 #else 693 *md5 = NULL; 694 #endif 695 696 if (likely(tp->rx_opt.tstamp_ok)) { 697 opts->options |= OPTION_TS; 698 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 699 opts->tsecr = tp->rx_opt.ts_recent; 700 size += TCPOLEN_TSTAMP_ALIGNED; 701 } 702 703 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 704 if (unlikely(eff_sacks)) { 705 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 706 opts->num_sack_blocks = 707 min_t(unsigned int, eff_sacks, 708 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 709 TCPOLEN_SACK_PERBLOCK); 710 size += TCPOLEN_SACK_BASE_ALIGNED + 711 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 712 } 713 714 return size; 715 } 716 717 718 /* TCP SMALL QUEUES (TSQ) 719 * 720 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 721 * to reduce RTT and bufferbloat. 722 * We do this using a special skb destructor (tcp_wfree). 723 * 724 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 725 * needs to be reallocated in a driver. 726 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 727 * 728 * Since transmit from skb destructor is forbidden, we use a tasklet 729 * to process all sockets that eventually need to send more skbs. 730 * We use one tasklet per cpu, with its own queue of sockets. 731 */ 732 struct tsq_tasklet { 733 struct tasklet_struct tasklet; 734 struct list_head head; /* queue of tcp sockets */ 735 }; 736 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 737 738 static void tcp_tsq_handler(struct sock *sk) 739 { 740 if ((1 << sk->sk_state) & 741 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 742 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 743 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle, 744 0, GFP_ATOMIC); 745 } 746 /* 747 * One tasklet per cpu tries to send more skbs. 748 * We run in tasklet context but need to disable irqs when 749 * transferring tsq->head because tcp_wfree() might 750 * interrupt us (non NAPI drivers) 751 */ 752 static void tcp_tasklet_func(unsigned long data) 753 { 754 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 755 LIST_HEAD(list); 756 unsigned long flags; 757 struct list_head *q, *n; 758 struct tcp_sock *tp; 759 struct sock *sk; 760 761 local_irq_save(flags); 762 list_splice_init(&tsq->head, &list); 763 local_irq_restore(flags); 764 765 list_for_each_safe(q, n, &list) { 766 tp = list_entry(q, struct tcp_sock, tsq_node); 767 list_del(&tp->tsq_node); 768 769 sk = (struct sock *)tp; 770 bh_lock_sock(sk); 771 772 if (!sock_owned_by_user(sk)) { 773 tcp_tsq_handler(sk); 774 } else { 775 /* defer the work to tcp_release_cb() */ 776 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 777 } 778 bh_unlock_sock(sk); 779 780 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 781 sk_free(sk); 782 } 783 } 784 785 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 786 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 787 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 788 (1UL << TCP_MTU_REDUCED_DEFERRED)) 789 /** 790 * tcp_release_cb - tcp release_sock() callback 791 * @sk: socket 792 * 793 * called from release_sock() to perform protocol dependent 794 * actions before socket release. 795 */ 796 void tcp_release_cb(struct sock *sk) 797 { 798 struct tcp_sock *tp = tcp_sk(sk); 799 unsigned long flags, nflags; 800 801 /* perform an atomic operation only if at least one flag is set */ 802 do { 803 flags = tp->tsq_flags; 804 if (!(flags & TCP_DEFERRED_ALL)) 805 return; 806 nflags = flags & ~TCP_DEFERRED_ALL; 807 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 808 809 if (flags & (1UL << TCP_TSQ_DEFERRED)) 810 tcp_tsq_handler(sk); 811 812 /* Here begins the tricky part : 813 * We are called from release_sock() with : 814 * 1) BH disabled 815 * 2) sk_lock.slock spinlock held 816 * 3) socket owned by us (sk->sk_lock.owned == 1) 817 * 818 * But following code is meant to be called from BH handlers, 819 * so we should keep BH disabled, but early release socket ownership 820 */ 821 sock_release_ownership(sk); 822 823 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 824 tcp_write_timer_handler(sk); 825 __sock_put(sk); 826 } 827 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 828 tcp_delack_timer_handler(sk); 829 __sock_put(sk); 830 } 831 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 832 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 833 __sock_put(sk); 834 } 835 } 836 EXPORT_SYMBOL(tcp_release_cb); 837 838 void __init tcp_tasklet_init(void) 839 { 840 int i; 841 842 for_each_possible_cpu(i) { 843 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 844 845 INIT_LIST_HEAD(&tsq->head); 846 tasklet_init(&tsq->tasklet, 847 tcp_tasklet_func, 848 (unsigned long)tsq); 849 } 850 } 851 852 /* 853 * Write buffer destructor automatically called from kfree_skb. 854 * We can't xmit new skbs from this context, as we might already 855 * hold qdisc lock. 856 */ 857 void tcp_wfree(struct sk_buff *skb) 858 { 859 struct sock *sk = skb->sk; 860 struct tcp_sock *tp = tcp_sk(sk); 861 int wmem; 862 863 /* Keep one reference on sk_wmem_alloc. 864 * Will be released by sk_free() from here or tcp_tasklet_func() 865 */ 866 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 867 868 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 869 * Wait until our queues (qdisc + devices) are drained. 870 * This gives : 871 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 872 * - chance for incoming ACK (processed by another cpu maybe) 873 * to migrate this flow (skb->ooo_okay will be eventually set) 874 */ 875 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 876 goto out; 877 878 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 879 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 880 unsigned long flags; 881 struct tsq_tasklet *tsq; 882 883 /* queue this socket to tasklet queue */ 884 local_irq_save(flags); 885 tsq = this_cpu_ptr(&tsq_tasklet); 886 list_add(&tp->tsq_node, &tsq->head); 887 tasklet_schedule(&tsq->tasklet); 888 local_irq_restore(flags); 889 return; 890 } 891 out: 892 sk_free(sk); 893 } 894 895 /* This routine actually transmits TCP packets queued in by 896 * tcp_do_sendmsg(). This is used by both the initial 897 * transmission and possible later retransmissions. 898 * All SKB's seen here are completely headerless. It is our 899 * job to build the TCP header, and pass the packet down to 900 * IP so it can do the same plus pass the packet off to the 901 * device. 902 * 903 * We are working here with either a clone of the original 904 * SKB, or a fresh unique copy made by the retransmit engine. 905 */ 906 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 907 gfp_t gfp_mask) 908 { 909 const struct inet_connection_sock *icsk = inet_csk(sk); 910 struct inet_sock *inet; 911 struct tcp_sock *tp; 912 struct tcp_skb_cb *tcb; 913 struct tcp_out_options opts; 914 unsigned int tcp_options_size, tcp_header_size; 915 struct tcp_md5sig_key *md5; 916 struct tcphdr *th; 917 int err; 918 919 BUG_ON(!skb || !tcp_skb_pcount(skb)); 920 921 if (clone_it) { 922 skb_mstamp_get(&skb->skb_mstamp); 923 924 if (unlikely(skb_cloned(skb))) 925 skb = pskb_copy(skb, gfp_mask); 926 else 927 skb = skb_clone(skb, gfp_mask); 928 if (unlikely(!skb)) 929 return -ENOBUFS; 930 } 931 932 inet = inet_sk(sk); 933 tp = tcp_sk(sk); 934 tcb = TCP_SKB_CB(skb); 935 memset(&opts, 0, sizeof(opts)); 936 937 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 938 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 939 else 940 tcp_options_size = tcp_established_options(sk, skb, &opts, 941 &md5); 942 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 943 944 if (tcp_packets_in_flight(tp) == 0) 945 tcp_ca_event(sk, CA_EVENT_TX_START); 946 947 /* if no packet is in qdisc/device queue, then allow XPS to select 948 * another queue. We can be called from tcp_tsq_handler() 949 * which holds one reference to sk_wmem_alloc. 950 * 951 * TODO: Ideally, in-flight pure ACK packets should not matter here. 952 * One way to get this would be to set skb->truesize = 2 on them. 953 */ 954 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 955 956 skb_push(skb, tcp_header_size); 957 skb_reset_transport_header(skb); 958 959 skb_orphan(skb); 960 skb->sk = sk; 961 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree; 962 skb_set_hash_from_sk(skb, sk); 963 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 964 965 /* Build TCP header and checksum it. */ 966 th = tcp_hdr(skb); 967 th->source = inet->inet_sport; 968 th->dest = inet->inet_dport; 969 th->seq = htonl(tcb->seq); 970 th->ack_seq = htonl(tp->rcv_nxt); 971 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 972 tcb->tcp_flags); 973 974 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 975 /* RFC1323: The window in SYN & SYN/ACK segments 976 * is never scaled. 977 */ 978 th->window = htons(min(tp->rcv_wnd, 65535U)); 979 } else { 980 th->window = htons(tcp_select_window(sk)); 981 } 982 th->check = 0; 983 th->urg_ptr = 0; 984 985 /* The urg_mode check is necessary during a below snd_una win probe */ 986 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 987 if (before(tp->snd_up, tcb->seq + 0x10000)) { 988 th->urg_ptr = htons(tp->snd_up - tcb->seq); 989 th->urg = 1; 990 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 991 th->urg_ptr = htons(0xFFFF); 992 th->urg = 1; 993 } 994 } 995 996 tcp_options_write((__be32 *)(th + 1), tp, &opts); 997 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 998 tcp_ecn_send(sk, skb, tcp_header_size); 999 1000 #ifdef CONFIG_TCP_MD5SIG 1001 /* Calculate the MD5 hash, as we have all we need now */ 1002 if (md5) { 1003 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1004 tp->af_specific->calc_md5_hash(opts.hash_location, 1005 md5, sk, skb); 1006 } 1007 #endif 1008 1009 icsk->icsk_af_ops->send_check(sk, skb); 1010 1011 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1012 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1013 1014 if (skb->len != tcp_header_size) 1015 tcp_event_data_sent(tp, sk); 1016 1017 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1018 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1019 tcp_skb_pcount(skb)); 1020 1021 /* OK, its time to fill skb_shinfo(skb)->gso_segs */ 1022 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1023 1024 /* Our usage of tstamp should remain private */ 1025 skb->tstamp.tv64 = 0; 1026 1027 /* Cleanup our debris for IP stacks */ 1028 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1029 sizeof(struct inet6_skb_parm))); 1030 1031 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1032 1033 if (likely(err <= 0)) 1034 return err; 1035 1036 tcp_enter_cwr(sk); 1037 1038 return net_xmit_eval(err); 1039 } 1040 1041 /* This routine just queues the buffer for sending. 1042 * 1043 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1044 * otherwise socket can stall. 1045 */ 1046 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1047 { 1048 struct tcp_sock *tp = tcp_sk(sk); 1049 1050 /* Advance write_seq and place onto the write_queue. */ 1051 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1052 __skb_header_release(skb); 1053 tcp_add_write_queue_tail(sk, skb); 1054 sk->sk_wmem_queued += skb->truesize; 1055 sk_mem_charge(sk, skb->truesize); 1056 } 1057 1058 /* Initialize TSO segments for a packet. */ 1059 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 1060 unsigned int mss_now) 1061 { 1062 struct skb_shared_info *shinfo = skb_shinfo(skb); 1063 1064 /* Make sure we own this skb before messing gso_size/gso_segs */ 1065 WARN_ON_ONCE(skb_cloned(skb)); 1066 1067 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1068 /* Avoid the costly divide in the normal 1069 * non-TSO case. 1070 */ 1071 tcp_skb_pcount_set(skb, 1); 1072 shinfo->gso_size = 0; 1073 shinfo->gso_type = 0; 1074 } else { 1075 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1076 shinfo->gso_size = mss_now; 1077 shinfo->gso_type = sk->sk_gso_type; 1078 } 1079 } 1080 1081 /* When a modification to fackets out becomes necessary, we need to check 1082 * skb is counted to fackets_out or not. 1083 */ 1084 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1085 int decr) 1086 { 1087 struct tcp_sock *tp = tcp_sk(sk); 1088 1089 if (!tp->sacked_out || tcp_is_reno(tp)) 1090 return; 1091 1092 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1093 tp->fackets_out -= decr; 1094 } 1095 1096 /* Pcount in the middle of the write queue got changed, we need to do various 1097 * tweaks to fix counters 1098 */ 1099 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1100 { 1101 struct tcp_sock *tp = tcp_sk(sk); 1102 1103 tp->packets_out -= decr; 1104 1105 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1106 tp->sacked_out -= decr; 1107 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1108 tp->retrans_out -= decr; 1109 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1110 tp->lost_out -= decr; 1111 1112 /* Reno case is special. Sigh... */ 1113 if (tcp_is_reno(tp) && decr > 0) 1114 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1115 1116 tcp_adjust_fackets_out(sk, skb, decr); 1117 1118 if (tp->lost_skb_hint && 1119 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1120 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1121 tp->lost_cnt_hint -= decr; 1122 1123 tcp_verify_left_out(tp); 1124 } 1125 1126 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1127 { 1128 struct skb_shared_info *shinfo = skb_shinfo(skb); 1129 1130 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) && 1131 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1132 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1133 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1134 1135 shinfo->tx_flags &= ~tsflags; 1136 shinfo2->tx_flags |= tsflags; 1137 swap(shinfo->tskey, shinfo2->tskey); 1138 } 1139 } 1140 1141 /* Function to create two new TCP segments. Shrinks the given segment 1142 * to the specified size and appends a new segment with the rest of the 1143 * packet to the list. This won't be called frequently, I hope. 1144 * Remember, these are still headerless SKBs at this point. 1145 */ 1146 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1147 unsigned int mss_now, gfp_t gfp) 1148 { 1149 struct tcp_sock *tp = tcp_sk(sk); 1150 struct sk_buff *buff; 1151 int nsize, old_factor; 1152 int nlen; 1153 u8 flags; 1154 1155 if (WARN_ON(len > skb->len)) 1156 return -EINVAL; 1157 1158 nsize = skb_headlen(skb) - len; 1159 if (nsize < 0) 1160 nsize = 0; 1161 1162 if (skb_unclone(skb, gfp)) 1163 return -ENOMEM; 1164 1165 /* Get a new skb... force flag on. */ 1166 buff = sk_stream_alloc_skb(sk, nsize, gfp); 1167 if (!buff) 1168 return -ENOMEM; /* We'll just try again later. */ 1169 1170 sk->sk_wmem_queued += buff->truesize; 1171 sk_mem_charge(sk, buff->truesize); 1172 nlen = skb->len - len - nsize; 1173 buff->truesize += nlen; 1174 skb->truesize -= nlen; 1175 1176 /* Correct the sequence numbers. */ 1177 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1178 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1179 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1180 1181 /* PSH and FIN should only be set in the second packet. */ 1182 flags = TCP_SKB_CB(skb)->tcp_flags; 1183 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1184 TCP_SKB_CB(buff)->tcp_flags = flags; 1185 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1186 1187 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1188 /* Copy and checksum data tail into the new buffer. */ 1189 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1190 skb_put(buff, nsize), 1191 nsize, 0); 1192 1193 skb_trim(skb, len); 1194 1195 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1196 } else { 1197 skb->ip_summed = CHECKSUM_PARTIAL; 1198 skb_split(skb, buff, len); 1199 } 1200 1201 buff->ip_summed = skb->ip_summed; 1202 1203 buff->tstamp = skb->tstamp; 1204 tcp_fragment_tstamp(skb, buff); 1205 1206 old_factor = tcp_skb_pcount(skb); 1207 1208 /* Fix up tso_factor for both original and new SKB. */ 1209 tcp_set_skb_tso_segs(sk, skb, mss_now); 1210 tcp_set_skb_tso_segs(sk, buff, mss_now); 1211 1212 /* If this packet has been sent out already, we must 1213 * adjust the various packet counters. 1214 */ 1215 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1216 int diff = old_factor - tcp_skb_pcount(skb) - 1217 tcp_skb_pcount(buff); 1218 1219 if (diff) 1220 tcp_adjust_pcount(sk, skb, diff); 1221 } 1222 1223 /* Link BUFF into the send queue. */ 1224 __skb_header_release(buff); 1225 tcp_insert_write_queue_after(skb, buff, sk); 1226 1227 return 0; 1228 } 1229 1230 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1231 * eventually). The difference is that pulled data not copied, but 1232 * immediately discarded. 1233 */ 1234 static void __pskb_trim_head(struct sk_buff *skb, int len) 1235 { 1236 struct skb_shared_info *shinfo; 1237 int i, k, eat; 1238 1239 eat = min_t(int, len, skb_headlen(skb)); 1240 if (eat) { 1241 __skb_pull(skb, eat); 1242 len -= eat; 1243 if (!len) 1244 return; 1245 } 1246 eat = len; 1247 k = 0; 1248 shinfo = skb_shinfo(skb); 1249 for (i = 0; i < shinfo->nr_frags; i++) { 1250 int size = skb_frag_size(&shinfo->frags[i]); 1251 1252 if (size <= eat) { 1253 skb_frag_unref(skb, i); 1254 eat -= size; 1255 } else { 1256 shinfo->frags[k] = shinfo->frags[i]; 1257 if (eat) { 1258 shinfo->frags[k].page_offset += eat; 1259 skb_frag_size_sub(&shinfo->frags[k], eat); 1260 eat = 0; 1261 } 1262 k++; 1263 } 1264 } 1265 shinfo->nr_frags = k; 1266 1267 skb_reset_tail_pointer(skb); 1268 skb->data_len -= len; 1269 skb->len = skb->data_len; 1270 } 1271 1272 /* Remove acked data from a packet in the transmit queue. */ 1273 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1274 { 1275 if (skb_unclone(skb, GFP_ATOMIC)) 1276 return -ENOMEM; 1277 1278 __pskb_trim_head(skb, len); 1279 1280 TCP_SKB_CB(skb)->seq += len; 1281 skb->ip_summed = CHECKSUM_PARTIAL; 1282 1283 skb->truesize -= len; 1284 sk->sk_wmem_queued -= len; 1285 sk_mem_uncharge(sk, len); 1286 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1287 1288 /* Any change of skb->len requires recalculation of tso factor. */ 1289 if (tcp_skb_pcount(skb) > 1) 1290 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1291 1292 return 0; 1293 } 1294 1295 /* Calculate MSS not accounting any TCP options. */ 1296 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1297 { 1298 const struct tcp_sock *tp = tcp_sk(sk); 1299 const struct inet_connection_sock *icsk = inet_csk(sk); 1300 int mss_now; 1301 1302 /* Calculate base mss without TCP options: 1303 It is MMS_S - sizeof(tcphdr) of rfc1122 1304 */ 1305 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1306 1307 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1308 if (icsk->icsk_af_ops->net_frag_header_len) { 1309 const struct dst_entry *dst = __sk_dst_get(sk); 1310 1311 if (dst && dst_allfrag(dst)) 1312 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1313 } 1314 1315 /* Clamp it (mss_clamp does not include tcp options) */ 1316 if (mss_now > tp->rx_opt.mss_clamp) 1317 mss_now = tp->rx_opt.mss_clamp; 1318 1319 /* Now subtract optional transport overhead */ 1320 mss_now -= icsk->icsk_ext_hdr_len; 1321 1322 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1323 if (mss_now < 48) 1324 mss_now = 48; 1325 return mss_now; 1326 } 1327 1328 /* Calculate MSS. Not accounting for SACKs here. */ 1329 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1330 { 1331 /* Subtract TCP options size, not including SACKs */ 1332 return __tcp_mtu_to_mss(sk, pmtu) - 1333 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1334 } 1335 1336 /* Inverse of above */ 1337 int tcp_mss_to_mtu(struct sock *sk, int mss) 1338 { 1339 const struct tcp_sock *tp = tcp_sk(sk); 1340 const struct inet_connection_sock *icsk = inet_csk(sk); 1341 int mtu; 1342 1343 mtu = mss + 1344 tp->tcp_header_len + 1345 icsk->icsk_ext_hdr_len + 1346 icsk->icsk_af_ops->net_header_len; 1347 1348 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1349 if (icsk->icsk_af_ops->net_frag_header_len) { 1350 const struct dst_entry *dst = __sk_dst_get(sk); 1351 1352 if (dst && dst_allfrag(dst)) 1353 mtu += icsk->icsk_af_ops->net_frag_header_len; 1354 } 1355 return mtu; 1356 } 1357 1358 /* MTU probing init per socket */ 1359 void tcp_mtup_init(struct sock *sk) 1360 { 1361 struct tcp_sock *tp = tcp_sk(sk); 1362 struct inet_connection_sock *icsk = inet_csk(sk); 1363 struct net *net = sock_net(sk); 1364 1365 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1366 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1367 icsk->icsk_af_ops->net_header_len; 1368 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1369 icsk->icsk_mtup.probe_size = 0; 1370 if (icsk->icsk_mtup.enabled) 1371 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1372 } 1373 EXPORT_SYMBOL(tcp_mtup_init); 1374 1375 /* This function synchronize snd mss to current pmtu/exthdr set. 1376 1377 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1378 for TCP options, but includes only bare TCP header. 1379 1380 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1381 It is minimum of user_mss and mss received with SYN. 1382 It also does not include TCP options. 1383 1384 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1385 1386 tp->mss_cache is current effective sending mss, including 1387 all tcp options except for SACKs. It is evaluated, 1388 taking into account current pmtu, but never exceeds 1389 tp->rx_opt.mss_clamp. 1390 1391 NOTE1. rfc1122 clearly states that advertised MSS 1392 DOES NOT include either tcp or ip options. 1393 1394 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1395 are READ ONLY outside this function. --ANK (980731) 1396 */ 1397 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1398 { 1399 struct tcp_sock *tp = tcp_sk(sk); 1400 struct inet_connection_sock *icsk = inet_csk(sk); 1401 int mss_now; 1402 1403 if (icsk->icsk_mtup.search_high > pmtu) 1404 icsk->icsk_mtup.search_high = pmtu; 1405 1406 mss_now = tcp_mtu_to_mss(sk, pmtu); 1407 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1408 1409 /* And store cached results */ 1410 icsk->icsk_pmtu_cookie = pmtu; 1411 if (icsk->icsk_mtup.enabled) 1412 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1413 tp->mss_cache = mss_now; 1414 1415 return mss_now; 1416 } 1417 EXPORT_SYMBOL(tcp_sync_mss); 1418 1419 /* Compute the current effective MSS, taking SACKs and IP options, 1420 * and even PMTU discovery events into account. 1421 */ 1422 unsigned int tcp_current_mss(struct sock *sk) 1423 { 1424 const struct tcp_sock *tp = tcp_sk(sk); 1425 const struct dst_entry *dst = __sk_dst_get(sk); 1426 u32 mss_now; 1427 unsigned int header_len; 1428 struct tcp_out_options opts; 1429 struct tcp_md5sig_key *md5; 1430 1431 mss_now = tp->mss_cache; 1432 1433 if (dst) { 1434 u32 mtu = dst_mtu(dst); 1435 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1436 mss_now = tcp_sync_mss(sk, mtu); 1437 } 1438 1439 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1440 sizeof(struct tcphdr); 1441 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1442 * some common options. If this is an odd packet (because we have SACK 1443 * blocks etc) then our calculated header_len will be different, and 1444 * we have to adjust mss_now correspondingly */ 1445 if (header_len != tp->tcp_header_len) { 1446 int delta = (int) header_len - tp->tcp_header_len; 1447 mss_now -= delta; 1448 } 1449 1450 return mss_now; 1451 } 1452 1453 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1454 * As additional protections, we do not touch cwnd in retransmission phases, 1455 * and if application hit its sndbuf limit recently. 1456 */ 1457 static void tcp_cwnd_application_limited(struct sock *sk) 1458 { 1459 struct tcp_sock *tp = tcp_sk(sk); 1460 1461 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1462 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1463 /* Limited by application or receiver window. */ 1464 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1465 u32 win_used = max(tp->snd_cwnd_used, init_win); 1466 if (win_used < tp->snd_cwnd) { 1467 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1468 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1469 } 1470 tp->snd_cwnd_used = 0; 1471 } 1472 tp->snd_cwnd_stamp = tcp_time_stamp; 1473 } 1474 1475 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1476 { 1477 struct tcp_sock *tp = tcp_sk(sk); 1478 1479 /* Track the maximum number of outstanding packets in each 1480 * window, and remember whether we were cwnd-limited then. 1481 */ 1482 if (!before(tp->snd_una, tp->max_packets_seq) || 1483 tp->packets_out > tp->max_packets_out) { 1484 tp->max_packets_out = tp->packets_out; 1485 tp->max_packets_seq = tp->snd_nxt; 1486 tp->is_cwnd_limited = is_cwnd_limited; 1487 } 1488 1489 if (tcp_is_cwnd_limited(sk)) { 1490 /* Network is feed fully. */ 1491 tp->snd_cwnd_used = 0; 1492 tp->snd_cwnd_stamp = tcp_time_stamp; 1493 } else { 1494 /* Network starves. */ 1495 if (tp->packets_out > tp->snd_cwnd_used) 1496 tp->snd_cwnd_used = tp->packets_out; 1497 1498 if (sysctl_tcp_slow_start_after_idle && 1499 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1500 tcp_cwnd_application_limited(sk); 1501 } 1502 } 1503 1504 /* Minshall's variant of the Nagle send check. */ 1505 static bool tcp_minshall_check(const struct tcp_sock *tp) 1506 { 1507 return after(tp->snd_sml, tp->snd_una) && 1508 !after(tp->snd_sml, tp->snd_nxt); 1509 } 1510 1511 /* Update snd_sml if this skb is under mss 1512 * Note that a TSO packet might end with a sub-mss segment 1513 * The test is really : 1514 * if ((skb->len % mss) != 0) 1515 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1516 * But we can avoid doing the divide again given we already have 1517 * skb_pcount = skb->len / mss_now 1518 */ 1519 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1520 const struct sk_buff *skb) 1521 { 1522 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1523 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1524 } 1525 1526 /* Return false, if packet can be sent now without violation Nagle's rules: 1527 * 1. It is full sized. (provided by caller in %partial bool) 1528 * 2. Or it contains FIN. (already checked by caller) 1529 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1530 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1531 * With Minshall's modification: all sent small packets are ACKed. 1532 */ 1533 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1534 int nonagle) 1535 { 1536 return partial && 1537 ((nonagle & TCP_NAGLE_CORK) || 1538 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1539 } 1540 1541 /* Return how many segs we'd like on a TSO packet, 1542 * to send one TSO packet per ms 1543 */ 1544 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now) 1545 { 1546 u32 bytes, segs; 1547 1548 bytes = min(sk->sk_pacing_rate >> 10, 1549 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1550 1551 /* Goal is to send at least one packet per ms, 1552 * not one big TSO packet every 100 ms. 1553 * This preserves ACK clocking and is consistent 1554 * with tcp_tso_should_defer() heuristic. 1555 */ 1556 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs); 1557 1558 return min_t(u32, segs, sk->sk_gso_max_segs); 1559 } 1560 1561 /* Returns the portion of skb which can be sent right away */ 1562 static unsigned int tcp_mss_split_point(const struct sock *sk, 1563 const struct sk_buff *skb, 1564 unsigned int mss_now, 1565 unsigned int max_segs, 1566 int nonagle) 1567 { 1568 const struct tcp_sock *tp = tcp_sk(sk); 1569 u32 partial, needed, window, max_len; 1570 1571 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1572 max_len = mss_now * max_segs; 1573 1574 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1575 return max_len; 1576 1577 needed = min(skb->len, window); 1578 1579 if (max_len <= needed) 1580 return max_len; 1581 1582 partial = needed % mss_now; 1583 /* If last segment is not a full MSS, check if Nagle rules allow us 1584 * to include this last segment in this skb. 1585 * Otherwise, we'll split the skb at last MSS boundary 1586 */ 1587 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1588 return needed - partial; 1589 1590 return needed; 1591 } 1592 1593 /* Can at least one segment of SKB be sent right now, according to the 1594 * congestion window rules? If so, return how many segments are allowed. 1595 */ 1596 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1597 const struct sk_buff *skb) 1598 { 1599 u32 in_flight, cwnd, halfcwnd; 1600 1601 /* Don't be strict about the congestion window for the final FIN. */ 1602 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1603 tcp_skb_pcount(skb) == 1) 1604 return 1; 1605 1606 in_flight = tcp_packets_in_flight(tp); 1607 cwnd = tp->snd_cwnd; 1608 if (in_flight >= cwnd) 1609 return 0; 1610 1611 /* For better scheduling, ensure we have at least 1612 * 2 GSO packets in flight. 1613 */ 1614 halfcwnd = max(cwnd >> 1, 1U); 1615 return min(halfcwnd, cwnd - in_flight); 1616 } 1617 1618 /* Initialize TSO state of a skb. 1619 * This must be invoked the first time we consider transmitting 1620 * SKB onto the wire. 1621 */ 1622 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1623 unsigned int mss_now) 1624 { 1625 int tso_segs = tcp_skb_pcount(skb); 1626 1627 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1628 tcp_set_skb_tso_segs(sk, skb, mss_now); 1629 tso_segs = tcp_skb_pcount(skb); 1630 } 1631 return tso_segs; 1632 } 1633 1634 1635 /* Return true if the Nagle test allows this packet to be 1636 * sent now. 1637 */ 1638 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1639 unsigned int cur_mss, int nonagle) 1640 { 1641 /* Nagle rule does not apply to frames, which sit in the middle of the 1642 * write_queue (they have no chances to get new data). 1643 * 1644 * This is implemented in the callers, where they modify the 'nonagle' 1645 * argument based upon the location of SKB in the send queue. 1646 */ 1647 if (nonagle & TCP_NAGLE_PUSH) 1648 return true; 1649 1650 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1651 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1652 return true; 1653 1654 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1655 return true; 1656 1657 return false; 1658 } 1659 1660 /* Does at least the first segment of SKB fit into the send window? */ 1661 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1662 const struct sk_buff *skb, 1663 unsigned int cur_mss) 1664 { 1665 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1666 1667 if (skb->len > cur_mss) 1668 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1669 1670 return !after(end_seq, tcp_wnd_end(tp)); 1671 } 1672 1673 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1674 * should be put on the wire right now. If so, it returns the number of 1675 * packets allowed by the congestion window. 1676 */ 1677 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1678 unsigned int cur_mss, int nonagle) 1679 { 1680 const struct tcp_sock *tp = tcp_sk(sk); 1681 unsigned int cwnd_quota; 1682 1683 tcp_init_tso_segs(sk, skb, cur_mss); 1684 1685 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1686 return 0; 1687 1688 cwnd_quota = tcp_cwnd_test(tp, skb); 1689 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1690 cwnd_quota = 0; 1691 1692 return cwnd_quota; 1693 } 1694 1695 /* Test if sending is allowed right now. */ 1696 bool tcp_may_send_now(struct sock *sk) 1697 { 1698 const struct tcp_sock *tp = tcp_sk(sk); 1699 struct sk_buff *skb = tcp_send_head(sk); 1700 1701 return skb && 1702 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1703 (tcp_skb_is_last(sk, skb) ? 1704 tp->nonagle : TCP_NAGLE_PUSH)); 1705 } 1706 1707 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1708 * which is put after SKB on the list. It is very much like 1709 * tcp_fragment() except that it may make several kinds of assumptions 1710 * in order to speed up the splitting operation. In particular, we 1711 * know that all the data is in scatter-gather pages, and that the 1712 * packet has never been sent out before (and thus is not cloned). 1713 */ 1714 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1715 unsigned int mss_now, gfp_t gfp) 1716 { 1717 struct sk_buff *buff; 1718 int nlen = skb->len - len; 1719 u8 flags; 1720 1721 /* All of a TSO frame must be composed of paged data. */ 1722 if (skb->len != skb->data_len) 1723 return tcp_fragment(sk, skb, len, mss_now, gfp); 1724 1725 buff = sk_stream_alloc_skb(sk, 0, gfp); 1726 if (unlikely(!buff)) 1727 return -ENOMEM; 1728 1729 sk->sk_wmem_queued += buff->truesize; 1730 sk_mem_charge(sk, buff->truesize); 1731 buff->truesize += nlen; 1732 skb->truesize -= nlen; 1733 1734 /* Correct the sequence numbers. */ 1735 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1736 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1737 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1738 1739 /* PSH and FIN should only be set in the second packet. */ 1740 flags = TCP_SKB_CB(skb)->tcp_flags; 1741 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1742 TCP_SKB_CB(buff)->tcp_flags = flags; 1743 1744 /* This packet was never sent out yet, so no SACK bits. */ 1745 TCP_SKB_CB(buff)->sacked = 0; 1746 1747 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1748 skb_split(skb, buff, len); 1749 tcp_fragment_tstamp(skb, buff); 1750 1751 /* Fix up tso_factor for both original and new SKB. */ 1752 tcp_set_skb_tso_segs(sk, skb, mss_now); 1753 tcp_set_skb_tso_segs(sk, buff, mss_now); 1754 1755 /* Link BUFF into the send queue. */ 1756 __skb_header_release(buff); 1757 tcp_insert_write_queue_after(skb, buff, sk); 1758 1759 return 0; 1760 } 1761 1762 /* Try to defer sending, if possible, in order to minimize the amount 1763 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1764 * 1765 * This algorithm is from John Heffner. 1766 */ 1767 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1768 bool *is_cwnd_limited, u32 max_segs) 1769 { 1770 const struct inet_connection_sock *icsk = inet_csk(sk); 1771 u32 age, send_win, cong_win, limit, in_flight; 1772 struct tcp_sock *tp = tcp_sk(sk); 1773 struct skb_mstamp now; 1774 struct sk_buff *head; 1775 int win_divisor; 1776 1777 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1778 goto send_now; 1779 1780 if (!((1 << icsk->icsk_ca_state) & (TCPF_CA_Open | TCPF_CA_CWR))) 1781 goto send_now; 1782 1783 /* Avoid bursty behavior by allowing defer 1784 * only if the last write was recent. 1785 */ 1786 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0) 1787 goto send_now; 1788 1789 in_flight = tcp_packets_in_flight(tp); 1790 1791 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1792 1793 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1794 1795 /* From in_flight test above, we know that cwnd > in_flight. */ 1796 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1797 1798 limit = min(send_win, cong_win); 1799 1800 /* If a full-sized TSO skb can be sent, do it. */ 1801 if (limit >= max_segs * tp->mss_cache) 1802 goto send_now; 1803 1804 /* Middle in queue won't get any more data, full sendable already? */ 1805 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1806 goto send_now; 1807 1808 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1809 if (win_divisor) { 1810 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1811 1812 /* If at least some fraction of a window is available, 1813 * just use it. 1814 */ 1815 chunk /= win_divisor; 1816 if (limit >= chunk) 1817 goto send_now; 1818 } else { 1819 /* Different approach, try not to defer past a single 1820 * ACK. Receiver should ACK every other full sized 1821 * frame, so if we have space for more than 3 frames 1822 * then send now. 1823 */ 1824 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1825 goto send_now; 1826 } 1827 1828 head = tcp_write_queue_head(sk); 1829 skb_mstamp_get(&now); 1830 age = skb_mstamp_us_delta(&now, &head->skb_mstamp); 1831 /* If next ACK is likely to come too late (half srtt), do not defer */ 1832 if (age < (tp->srtt_us >> 4)) 1833 goto send_now; 1834 1835 /* Ok, it looks like it is advisable to defer. */ 1836 1837 if (cong_win < send_win && cong_win < skb->len) 1838 *is_cwnd_limited = true; 1839 1840 return true; 1841 1842 send_now: 1843 return false; 1844 } 1845 1846 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1847 { 1848 struct inet_connection_sock *icsk = inet_csk(sk); 1849 struct tcp_sock *tp = tcp_sk(sk); 1850 struct net *net = sock_net(sk); 1851 u32 interval; 1852 s32 delta; 1853 1854 interval = net->ipv4.sysctl_tcp_probe_interval; 1855 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp; 1856 if (unlikely(delta >= interval * HZ)) { 1857 int mss = tcp_current_mss(sk); 1858 1859 /* Update current search range */ 1860 icsk->icsk_mtup.probe_size = 0; 1861 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1862 sizeof(struct tcphdr) + 1863 icsk->icsk_af_ops->net_header_len; 1864 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1865 1866 /* Update probe time stamp */ 1867 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1868 } 1869 } 1870 1871 /* Create a new MTU probe if we are ready. 1872 * MTU probe is regularly attempting to increase the path MTU by 1873 * deliberately sending larger packets. This discovers routing 1874 * changes resulting in larger path MTUs. 1875 * 1876 * Returns 0 if we should wait to probe (no cwnd available), 1877 * 1 if a probe was sent, 1878 * -1 otherwise 1879 */ 1880 static int tcp_mtu_probe(struct sock *sk) 1881 { 1882 struct tcp_sock *tp = tcp_sk(sk); 1883 struct inet_connection_sock *icsk = inet_csk(sk); 1884 struct sk_buff *skb, *nskb, *next; 1885 struct net *net = sock_net(sk); 1886 int len; 1887 int probe_size; 1888 int size_needed; 1889 int copy; 1890 int mss_now; 1891 int interval; 1892 1893 /* Not currently probing/verifying, 1894 * not in recovery, 1895 * have enough cwnd, and 1896 * not SACKing (the variable headers throw things off) */ 1897 if (!icsk->icsk_mtup.enabled || 1898 icsk->icsk_mtup.probe_size || 1899 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1900 tp->snd_cwnd < 11 || 1901 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1902 return -1; 1903 1904 /* Use binary search for probe_size between tcp_mss_base, 1905 * and current mss_clamp. if (search_high - search_low) 1906 * smaller than a threshold, backoff from probing. 1907 */ 1908 mss_now = tcp_current_mss(sk); 1909 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 1910 icsk->icsk_mtup.search_low) >> 1); 1911 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1912 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 1913 /* When misfortune happens, we are reprobing actively, 1914 * and then reprobe timer has expired. We stick with current 1915 * probing process by not resetting search range to its orignal. 1916 */ 1917 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 1918 interval < net->ipv4.sysctl_tcp_probe_threshold) { 1919 /* Check whether enough time has elaplased for 1920 * another round of probing. 1921 */ 1922 tcp_mtu_check_reprobe(sk); 1923 return -1; 1924 } 1925 1926 /* Have enough data in the send queue to probe? */ 1927 if (tp->write_seq - tp->snd_nxt < size_needed) 1928 return -1; 1929 1930 if (tp->snd_wnd < size_needed) 1931 return -1; 1932 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1933 return 0; 1934 1935 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1936 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1937 if (!tcp_packets_in_flight(tp)) 1938 return -1; 1939 else 1940 return 0; 1941 } 1942 1943 /* We're allowed to probe. Build it now. */ 1944 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC); 1945 if (!nskb) 1946 return -1; 1947 sk->sk_wmem_queued += nskb->truesize; 1948 sk_mem_charge(sk, nskb->truesize); 1949 1950 skb = tcp_send_head(sk); 1951 1952 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1953 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1954 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1955 TCP_SKB_CB(nskb)->sacked = 0; 1956 nskb->csum = 0; 1957 nskb->ip_summed = skb->ip_summed; 1958 1959 tcp_insert_write_queue_before(nskb, skb, sk); 1960 1961 len = 0; 1962 tcp_for_write_queue_from_safe(skb, next, sk) { 1963 copy = min_t(int, skb->len, probe_size - len); 1964 if (nskb->ip_summed) 1965 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1966 else 1967 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1968 skb_put(nskb, copy), 1969 copy, nskb->csum); 1970 1971 if (skb->len <= copy) { 1972 /* We've eaten all the data from this skb. 1973 * Throw it away. */ 1974 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1975 tcp_unlink_write_queue(skb, sk); 1976 sk_wmem_free_skb(sk, skb); 1977 } else { 1978 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1979 ~(TCPHDR_FIN|TCPHDR_PSH); 1980 if (!skb_shinfo(skb)->nr_frags) { 1981 skb_pull(skb, copy); 1982 if (skb->ip_summed != CHECKSUM_PARTIAL) 1983 skb->csum = csum_partial(skb->data, 1984 skb->len, 0); 1985 } else { 1986 __pskb_trim_head(skb, copy); 1987 tcp_set_skb_tso_segs(sk, skb, mss_now); 1988 } 1989 TCP_SKB_CB(skb)->seq += copy; 1990 } 1991 1992 len += copy; 1993 1994 if (len >= probe_size) 1995 break; 1996 } 1997 tcp_init_tso_segs(sk, nskb, nskb->len); 1998 1999 /* We're ready to send. If this fails, the probe will 2000 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2001 */ 2002 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2003 /* Decrement cwnd here because we are sending 2004 * effectively two packets. */ 2005 tp->snd_cwnd--; 2006 tcp_event_new_data_sent(sk, nskb); 2007 2008 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2009 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2010 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2011 2012 return 1; 2013 } 2014 2015 return -1; 2016 } 2017 2018 /* This routine writes packets to the network. It advances the 2019 * send_head. This happens as incoming acks open up the remote 2020 * window for us. 2021 * 2022 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2023 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2024 * account rare use of URG, this is not a big flaw. 2025 * 2026 * Send at most one packet when push_one > 0. Temporarily ignore 2027 * cwnd limit to force at most one packet out when push_one == 2. 2028 2029 * Returns true, if no segments are in flight and we have queued segments, 2030 * but cannot send anything now because of SWS or another problem. 2031 */ 2032 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2033 int push_one, gfp_t gfp) 2034 { 2035 struct tcp_sock *tp = tcp_sk(sk); 2036 struct sk_buff *skb; 2037 unsigned int tso_segs, sent_pkts; 2038 int cwnd_quota; 2039 int result; 2040 bool is_cwnd_limited = false; 2041 u32 max_segs; 2042 2043 sent_pkts = 0; 2044 2045 if (!push_one) { 2046 /* Do MTU probing. */ 2047 result = tcp_mtu_probe(sk); 2048 if (!result) { 2049 return false; 2050 } else if (result > 0) { 2051 sent_pkts = 1; 2052 } 2053 } 2054 2055 max_segs = tcp_tso_autosize(sk, mss_now); 2056 while ((skb = tcp_send_head(sk))) { 2057 unsigned int limit; 2058 2059 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 2060 BUG_ON(!tso_segs); 2061 2062 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2063 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2064 skb_mstamp_get(&skb->skb_mstamp); 2065 goto repair; /* Skip network transmission */ 2066 } 2067 2068 cwnd_quota = tcp_cwnd_test(tp, skb); 2069 if (!cwnd_quota) { 2070 is_cwnd_limited = true; 2071 if (push_one == 2) 2072 /* Force out a loss probe pkt. */ 2073 cwnd_quota = 1; 2074 else 2075 break; 2076 } 2077 2078 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 2079 break; 2080 2081 if (tso_segs == 1 || !max_segs) { 2082 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2083 (tcp_skb_is_last(sk, skb) ? 2084 nonagle : TCP_NAGLE_PUSH)))) 2085 break; 2086 } else { 2087 if (!push_one && 2088 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2089 max_segs)) 2090 break; 2091 } 2092 2093 limit = mss_now; 2094 if (tso_segs > 1 && max_segs && !tcp_urg_mode(tp)) 2095 limit = tcp_mss_split_point(sk, skb, mss_now, 2096 min_t(unsigned int, 2097 cwnd_quota, 2098 max_segs), 2099 nonagle); 2100 2101 if (skb->len > limit && 2102 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2103 break; 2104 2105 /* TCP Small Queues : 2106 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2107 * This allows for : 2108 * - better RTT estimation and ACK scheduling 2109 * - faster recovery 2110 * - high rates 2111 * Alas, some drivers / subsystems require a fair amount 2112 * of queued bytes to ensure line rate. 2113 * One example is wifi aggregation (802.11 AMPDU) 2114 */ 2115 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2116 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2117 2118 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2119 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 2120 /* It is possible TX completion already happened 2121 * before we set TSQ_THROTTLED, so we must 2122 * test again the condition. 2123 */ 2124 smp_mb__after_atomic(); 2125 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2126 break; 2127 } 2128 2129 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2130 break; 2131 2132 repair: 2133 /* Advance the send_head. This one is sent out. 2134 * This call will increment packets_out. 2135 */ 2136 tcp_event_new_data_sent(sk, skb); 2137 2138 tcp_minshall_update(tp, mss_now, skb); 2139 sent_pkts += tcp_skb_pcount(skb); 2140 2141 if (push_one) 2142 break; 2143 } 2144 2145 if (likely(sent_pkts)) { 2146 if (tcp_in_cwnd_reduction(sk)) 2147 tp->prr_out += sent_pkts; 2148 2149 /* Send one loss probe per tail loss episode. */ 2150 if (push_one != 2) 2151 tcp_schedule_loss_probe(sk); 2152 tcp_cwnd_validate(sk, is_cwnd_limited); 2153 return false; 2154 } 2155 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk)); 2156 } 2157 2158 bool tcp_schedule_loss_probe(struct sock *sk) 2159 { 2160 struct inet_connection_sock *icsk = inet_csk(sk); 2161 struct tcp_sock *tp = tcp_sk(sk); 2162 u32 timeout, tlp_time_stamp, rto_time_stamp; 2163 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2164 2165 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 2166 return false; 2167 /* No consecutive loss probes. */ 2168 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2169 tcp_rearm_rto(sk); 2170 return false; 2171 } 2172 /* Don't do any loss probe on a Fast Open connection before 3WHS 2173 * finishes. 2174 */ 2175 if (sk->sk_state == TCP_SYN_RECV) 2176 return false; 2177 2178 /* TLP is only scheduled when next timer event is RTO. */ 2179 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2180 return false; 2181 2182 /* Schedule a loss probe in 2*RTT for SACK capable connections 2183 * in Open state, that are either limited by cwnd or application. 2184 */ 2185 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out || 2186 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2187 return false; 2188 2189 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2190 tcp_send_head(sk)) 2191 return false; 2192 2193 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2194 * for delayed ack when there's one outstanding packet. 2195 */ 2196 timeout = rtt << 1; 2197 if (tp->packets_out == 1) 2198 timeout = max_t(u32, timeout, 2199 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2200 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2201 2202 /* If RTO is shorter, just schedule TLP in its place. */ 2203 tlp_time_stamp = tcp_time_stamp + timeout; 2204 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2205 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2206 s32 delta = rto_time_stamp - tcp_time_stamp; 2207 if (delta > 0) 2208 timeout = delta; 2209 } 2210 2211 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2212 TCP_RTO_MAX); 2213 return true; 2214 } 2215 2216 /* Thanks to skb fast clones, we can detect if a prior transmit of 2217 * a packet is still in a qdisc or driver queue. 2218 * In this case, there is very little point doing a retransmit ! 2219 * Note: This is called from BH context only. 2220 */ 2221 static bool skb_still_in_host_queue(const struct sock *sk, 2222 const struct sk_buff *skb) 2223 { 2224 if (unlikely(skb_fclone_busy(sk, skb))) { 2225 NET_INC_STATS_BH(sock_net(sk), 2226 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2227 return true; 2228 } 2229 return false; 2230 } 2231 2232 /* When probe timeout (PTO) fires, send a new segment if one exists, else 2233 * retransmit the last segment. 2234 */ 2235 void tcp_send_loss_probe(struct sock *sk) 2236 { 2237 struct tcp_sock *tp = tcp_sk(sk); 2238 struct sk_buff *skb; 2239 int pcount; 2240 int mss = tcp_current_mss(sk); 2241 int err = -1; 2242 2243 if (tcp_send_head(sk)) { 2244 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2245 goto rearm_timer; 2246 } 2247 2248 /* At most one outstanding TLP retransmission. */ 2249 if (tp->tlp_high_seq) 2250 goto rearm_timer; 2251 2252 /* Retransmit last segment. */ 2253 skb = tcp_write_queue_tail(sk); 2254 if (WARN_ON(!skb)) 2255 goto rearm_timer; 2256 2257 if (skb_still_in_host_queue(sk, skb)) 2258 goto rearm_timer; 2259 2260 pcount = tcp_skb_pcount(skb); 2261 if (WARN_ON(!pcount)) 2262 goto rearm_timer; 2263 2264 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2265 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2266 GFP_ATOMIC))) 2267 goto rearm_timer; 2268 skb = tcp_write_queue_tail(sk); 2269 } 2270 2271 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2272 goto rearm_timer; 2273 2274 err = __tcp_retransmit_skb(sk, skb); 2275 2276 /* Record snd_nxt for loss detection. */ 2277 if (likely(!err)) 2278 tp->tlp_high_seq = tp->snd_nxt; 2279 2280 rearm_timer: 2281 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2282 inet_csk(sk)->icsk_rto, 2283 TCP_RTO_MAX); 2284 2285 if (likely(!err)) 2286 NET_INC_STATS_BH(sock_net(sk), 2287 LINUX_MIB_TCPLOSSPROBES); 2288 } 2289 2290 /* Push out any pending frames which were held back due to 2291 * TCP_CORK or attempt at coalescing tiny packets. 2292 * The socket must be locked by the caller. 2293 */ 2294 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2295 int nonagle) 2296 { 2297 /* If we are closed, the bytes will have to remain here. 2298 * In time closedown will finish, we empty the write queue and 2299 * all will be happy. 2300 */ 2301 if (unlikely(sk->sk_state == TCP_CLOSE)) 2302 return; 2303 2304 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2305 sk_gfp_atomic(sk, GFP_ATOMIC))) 2306 tcp_check_probe_timer(sk); 2307 } 2308 2309 /* Send _single_ skb sitting at the send head. This function requires 2310 * true push pending frames to setup probe timer etc. 2311 */ 2312 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2313 { 2314 struct sk_buff *skb = tcp_send_head(sk); 2315 2316 BUG_ON(!skb || skb->len < mss_now); 2317 2318 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2319 } 2320 2321 /* This function returns the amount that we can raise the 2322 * usable window based on the following constraints 2323 * 2324 * 1. The window can never be shrunk once it is offered (RFC 793) 2325 * 2. We limit memory per socket 2326 * 2327 * RFC 1122: 2328 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2329 * RECV.NEXT + RCV.WIN fixed until: 2330 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2331 * 2332 * i.e. don't raise the right edge of the window until you can raise 2333 * it at least MSS bytes. 2334 * 2335 * Unfortunately, the recommended algorithm breaks header prediction, 2336 * since header prediction assumes th->window stays fixed. 2337 * 2338 * Strictly speaking, keeping th->window fixed violates the receiver 2339 * side SWS prevention criteria. The problem is that under this rule 2340 * a stream of single byte packets will cause the right side of the 2341 * window to always advance by a single byte. 2342 * 2343 * Of course, if the sender implements sender side SWS prevention 2344 * then this will not be a problem. 2345 * 2346 * BSD seems to make the following compromise: 2347 * 2348 * If the free space is less than the 1/4 of the maximum 2349 * space available and the free space is less than 1/2 mss, 2350 * then set the window to 0. 2351 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2352 * Otherwise, just prevent the window from shrinking 2353 * and from being larger than the largest representable value. 2354 * 2355 * This prevents incremental opening of the window in the regime 2356 * where TCP is limited by the speed of the reader side taking 2357 * data out of the TCP receive queue. It does nothing about 2358 * those cases where the window is constrained on the sender side 2359 * because the pipeline is full. 2360 * 2361 * BSD also seems to "accidentally" limit itself to windows that are a 2362 * multiple of MSS, at least until the free space gets quite small. 2363 * This would appear to be a side effect of the mbuf implementation. 2364 * Combining these two algorithms results in the observed behavior 2365 * of having a fixed window size at almost all times. 2366 * 2367 * Below we obtain similar behavior by forcing the offered window to 2368 * a multiple of the mss when it is feasible to do so. 2369 * 2370 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2371 * Regular options like TIMESTAMP are taken into account. 2372 */ 2373 u32 __tcp_select_window(struct sock *sk) 2374 { 2375 struct inet_connection_sock *icsk = inet_csk(sk); 2376 struct tcp_sock *tp = tcp_sk(sk); 2377 /* MSS for the peer's data. Previous versions used mss_clamp 2378 * here. I don't know if the value based on our guesses 2379 * of peer's MSS is better for the performance. It's more correct 2380 * but may be worse for the performance because of rcv_mss 2381 * fluctuations. --SAW 1998/11/1 2382 */ 2383 int mss = icsk->icsk_ack.rcv_mss; 2384 int free_space = tcp_space(sk); 2385 int allowed_space = tcp_full_space(sk); 2386 int full_space = min_t(int, tp->window_clamp, allowed_space); 2387 int window; 2388 2389 if (mss > full_space) 2390 mss = full_space; 2391 2392 if (free_space < (full_space >> 1)) { 2393 icsk->icsk_ack.quick = 0; 2394 2395 if (sk_under_memory_pressure(sk)) 2396 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2397 4U * tp->advmss); 2398 2399 /* free_space might become our new window, make sure we don't 2400 * increase it due to wscale. 2401 */ 2402 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2403 2404 /* if free space is less than mss estimate, or is below 1/16th 2405 * of the maximum allowed, try to move to zero-window, else 2406 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2407 * new incoming data is dropped due to memory limits. 2408 * With large window, mss test triggers way too late in order 2409 * to announce zero window in time before rmem limit kicks in. 2410 */ 2411 if (free_space < (allowed_space >> 4) || free_space < mss) 2412 return 0; 2413 } 2414 2415 if (free_space > tp->rcv_ssthresh) 2416 free_space = tp->rcv_ssthresh; 2417 2418 /* Don't do rounding if we are using window scaling, since the 2419 * scaled window will not line up with the MSS boundary anyway. 2420 */ 2421 window = tp->rcv_wnd; 2422 if (tp->rx_opt.rcv_wscale) { 2423 window = free_space; 2424 2425 /* Advertise enough space so that it won't get scaled away. 2426 * Import case: prevent zero window announcement if 2427 * 1<<rcv_wscale > mss. 2428 */ 2429 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2430 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2431 << tp->rx_opt.rcv_wscale); 2432 } else { 2433 /* Get the largest window that is a nice multiple of mss. 2434 * Window clamp already applied above. 2435 * If our current window offering is within 1 mss of the 2436 * free space we just keep it. This prevents the divide 2437 * and multiply from happening most of the time. 2438 * We also don't do any window rounding when the free space 2439 * is too small. 2440 */ 2441 if (window <= free_space - mss || window > free_space) 2442 window = (free_space / mss) * mss; 2443 else if (mss == full_space && 2444 free_space > window + (full_space >> 1)) 2445 window = free_space; 2446 } 2447 2448 return window; 2449 } 2450 2451 /* Collapses two adjacent SKB's during retransmission. */ 2452 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2453 { 2454 struct tcp_sock *tp = tcp_sk(sk); 2455 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2456 int skb_size, next_skb_size; 2457 2458 skb_size = skb->len; 2459 next_skb_size = next_skb->len; 2460 2461 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2462 2463 tcp_highest_sack_combine(sk, next_skb, skb); 2464 2465 tcp_unlink_write_queue(next_skb, sk); 2466 2467 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2468 next_skb_size); 2469 2470 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2471 skb->ip_summed = CHECKSUM_PARTIAL; 2472 2473 if (skb->ip_summed != CHECKSUM_PARTIAL) 2474 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2475 2476 /* Update sequence range on original skb. */ 2477 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2478 2479 /* Merge over control information. This moves PSH/FIN etc. over */ 2480 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2481 2482 /* All done, get rid of second SKB and account for it so 2483 * packet counting does not break. 2484 */ 2485 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2486 2487 /* changed transmit queue under us so clear hints */ 2488 tcp_clear_retrans_hints_partial(tp); 2489 if (next_skb == tp->retransmit_skb_hint) 2490 tp->retransmit_skb_hint = skb; 2491 2492 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2493 2494 sk_wmem_free_skb(sk, next_skb); 2495 } 2496 2497 /* Check if coalescing SKBs is legal. */ 2498 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2499 { 2500 if (tcp_skb_pcount(skb) > 1) 2501 return false; 2502 /* TODO: SACK collapsing could be used to remove this condition */ 2503 if (skb_shinfo(skb)->nr_frags != 0) 2504 return false; 2505 if (skb_cloned(skb)) 2506 return false; 2507 if (skb == tcp_send_head(sk)) 2508 return false; 2509 /* Some heurestics for collapsing over SACK'd could be invented */ 2510 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2511 return false; 2512 2513 return true; 2514 } 2515 2516 /* Collapse packets in the retransmit queue to make to create 2517 * less packets on the wire. This is only done on retransmission. 2518 */ 2519 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2520 int space) 2521 { 2522 struct tcp_sock *tp = tcp_sk(sk); 2523 struct sk_buff *skb = to, *tmp; 2524 bool first = true; 2525 2526 if (!sysctl_tcp_retrans_collapse) 2527 return; 2528 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2529 return; 2530 2531 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2532 if (!tcp_can_collapse(sk, skb)) 2533 break; 2534 2535 space -= skb->len; 2536 2537 if (first) { 2538 first = false; 2539 continue; 2540 } 2541 2542 if (space < 0) 2543 break; 2544 /* Punt if not enough space exists in the first SKB for 2545 * the data in the second 2546 */ 2547 if (skb->len > skb_availroom(to)) 2548 break; 2549 2550 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2551 break; 2552 2553 tcp_collapse_retrans(sk, to); 2554 } 2555 } 2556 2557 /* This retransmits one SKB. Policy decisions and retransmit queue 2558 * state updates are done by the caller. Returns non-zero if an 2559 * error occurred which prevented the send. 2560 */ 2561 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2562 { 2563 struct tcp_sock *tp = tcp_sk(sk); 2564 struct inet_connection_sock *icsk = inet_csk(sk); 2565 unsigned int cur_mss; 2566 int err; 2567 2568 /* Inconslusive MTU probe */ 2569 if (icsk->icsk_mtup.probe_size) { 2570 icsk->icsk_mtup.probe_size = 0; 2571 } 2572 2573 /* Do not sent more than we queued. 1/4 is reserved for possible 2574 * copying overhead: fragmentation, tunneling, mangling etc. 2575 */ 2576 if (atomic_read(&sk->sk_wmem_alloc) > 2577 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2578 return -EAGAIN; 2579 2580 if (skb_still_in_host_queue(sk, skb)) 2581 return -EBUSY; 2582 2583 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2584 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2585 BUG(); 2586 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2587 return -ENOMEM; 2588 } 2589 2590 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2591 return -EHOSTUNREACH; /* Routing failure or similar. */ 2592 2593 cur_mss = tcp_current_mss(sk); 2594 2595 /* If receiver has shrunk his window, and skb is out of 2596 * new window, do not retransmit it. The exception is the 2597 * case, when window is shrunk to zero. In this case 2598 * our retransmit serves as a zero window probe. 2599 */ 2600 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2601 TCP_SKB_CB(skb)->seq != tp->snd_una) 2602 return -EAGAIN; 2603 2604 if (skb->len > cur_mss) { 2605 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC)) 2606 return -ENOMEM; /* We'll try again later. */ 2607 } else { 2608 int oldpcount = tcp_skb_pcount(skb); 2609 2610 if (unlikely(oldpcount > 1)) { 2611 if (skb_unclone(skb, GFP_ATOMIC)) 2612 return -ENOMEM; 2613 tcp_init_tso_segs(sk, skb, cur_mss); 2614 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2615 } 2616 } 2617 2618 tcp_retrans_try_collapse(sk, skb, cur_mss); 2619 2620 /* Make a copy, if the first transmission SKB clone we made 2621 * is still in somebody's hands, else make a clone. 2622 */ 2623 2624 /* make sure skb->data is aligned on arches that require it 2625 * and check if ack-trimming & collapsing extended the headroom 2626 * beyond what csum_start can cover. 2627 */ 2628 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2629 skb_headroom(skb) >= 0xFFFF)) { 2630 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2631 GFP_ATOMIC); 2632 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2633 -ENOBUFS; 2634 } else { 2635 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2636 } 2637 2638 if (likely(!err)) { 2639 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2640 /* Update global TCP statistics. */ 2641 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2642 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2643 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2644 tp->total_retrans++; 2645 } 2646 return err; 2647 } 2648 2649 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2650 { 2651 struct tcp_sock *tp = tcp_sk(sk); 2652 int err = __tcp_retransmit_skb(sk, skb); 2653 2654 if (err == 0) { 2655 #if FASTRETRANS_DEBUG > 0 2656 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2657 net_dbg_ratelimited("retrans_out leaked\n"); 2658 } 2659 #endif 2660 if (!tp->retrans_out) 2661 tp->lost_retrans_low = tp->snd_nxt; 2662 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2663 tp->retrans_out += tcp_skb_pcount(skb); 2664 2665 /* Save stamp of the first retransmit. */ 2666 if (!tp->retrans_stamp) 2667 tp->retrans_stamp = tcp_skb_timestamp(skb); 2668 2669 /* snd_nxt is stored to detect loss of retransmitted segment, 2670 * see tcp_input.c tcp_sacktag_write_queue(). 2671 */ 2672 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2673 } else if (err != -EBUSY) { 2674 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2675 } 2676 2677 if (tp->undo_retrans < 0) 2678 tp->undo_retrans = 0; 2679 tp->undo_retrans += tcp_skb_pcount(skb); 2680 return err; 2681 } 2682 2683 /* Check if we forward retransmits are possible in the current 2684 * window/congestion state. 2685 */ 2686 static bool tcp_can_forward_retransmit(struct sock *sk) 2687 { 2688 const struct inet_connection_sock *icsk = inet_csk(sk); 2689 const struct tcp_sock *tp = tcp_sk(sk); 2690 2691 /* Forward retransmissions are possible only during Recovery. */ 2692 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2693 return false; 2694 2695 /* No forward retransmissions in Reno are possible. */ 2696 if (tcp_is_reno(tp)) 2697 return false; 2698 2699 /* Yeah, we have to make difficult choice between forward transmission 2700 * and retransmission... Both ways have their merits... 2701 * 2702 * For now we do not retransmit anything, while we have some new 2703 * segments to send. In the other cases, follow rule 3 for 2704 * NextSeg() specified in RFC3517. 2705 */ 2706 2707 if (tcp_may_send_now(sk)) 2708 return false; 2709 2710 return true; 2711 } 2712 2713 /* This gets called after a retransmit timeout, and the initially 2714 * retransmitted data is acknowledged. It tries to continue 2715 * resending the rest of the retransmit queue, until either 2716 * we've sent it all or the congestion window limit is reached. 2717 * If doing SACK, the first ACK which comes back for a timeout 2718 * based retransmit packet might feed us FACK information again. 2719 * If so, we use it to avoid unnecessarily retransmissions. 2720 */ 2721 void tcp_xmit_retransmit_queue(struct sock *sk) 2722 { 2723 const struct inet_connection_sock *icsk = inet_csk(sk); 2724 struct tcp_sock *tp = tcp_sk(sk); 2725 struct sk_buff *skb; 2726 struct sk_buff *hole = NULL; 2727 u32 last_lost; 2728 int mib_idx; 2729 int fwd_rexmitting = 0; 2730 2731 if (!tp->packets_out) 2732 return; 2733 2734 if (!tp->lost_out) 2735 tp->retransmit_high = tp->snd_una; 2736 2737 if (tp->retransmit_skb_hint) { 2738 skb = tp->retransmit_skb_hint; 2739 last_lost = TCP_SKB_CB(skb)->end_seq; 2740 if (after(last_lost, tp->retransmit_high)) 2741 last_lost = tp->retransmit_high; 2742 } else { 2743 skb = tcp_write_queue_head(sk); 2744 last_lost = tp->snd_una; 2745 } 2746 2747 tcp_for_write_queue_from(skb, sk) { 2748 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2749 2750 if (skb == tcp_send_head(sk)) 2751 break; 2752 /* we could do better than to assign each time */ 2753 if (!hole) 2754 tp->retransmit_skb_hint = skb; 2755 2756 /* Assume this retransmit will generate 2757 * only one packet for congestion window 2758 * calculation purposes. This works because 2759 * tcp_retransmit_skb() will chop up the 2760 * packet to be MSS sized and all the 2761 * packet counting works out. 2762 */ 2763 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2764 return; 2765 2766 if (fwd_rexmitting) { 2767 begin_fwd: 2768 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2769 break; 2770 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2771 2772 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2773 tp->retransmit_high = last_lost; 2774 if (!tcp_can_forward_retransmit(sk)) 2775 break; 2776 /* Backtrack if necessary to non-L'ed skb */ 2777 if (hole) { 2778 skb = hole; 2779 hole = NULL; 2780 } 2781 fwd_rexmitting = 1; 2782 goto begin_fwd; 2783 2784 } else if (!(sacked & TCPCB_LOST)) { 2785 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2786 hole = skb; 2787 continue; 2788 2789 } else { 2790 last_lost = TCP_SKB_CB(skb)->end_seq; 2791 if (icsk->icsk_ca_state != TCP_CA_Loss) 2792 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2793 else 2794 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2795 } 2796 2797 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2798 continue; 2799 2800 if (tcp_retransmit_skb(sk, skb)) 2801 return; 2802 2803 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2804 2805 if (tcp_in_cwnd_reduction(sk)) 2806 tp->prr_out += tcp_skb_pcount(skb); 2807 2808 if (skb == tcp_write_queue_head(sk)) 2809 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2810 inet_csk(sk)->icsk_rto, 2811 TCP_RTO_MAX); 2812 } 2813 } 2814 2815 /* We allow to exceed memory limits for FIN packets to expedite 2816 * connection tear down and (memory) recovery. 2817 * Otherwise tcp_send_fin() could be tempted to either delay FIN 2818 * or even be forced to close flow without any FIN. 2819 */ 2820 static void sk_forced_wmem_schedule(struct sock *sk, int size) 2821 { 2822 int amt, status; 2823 2824 if (size <= sk->sk_forward_alloc) 2825 return; 2826 amt = sk_mem_pages(size); 2827 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2828 sk_memory_allocated_add(sk, amt, &status); 2829 } 2830 2831 /* Send a FIN. The caller locks the socket for us. 2832 * We should try to send a FIN packet really hard, but eventually give up. 2833 */ 2834 void tcp_send_fin(struct sock *sk) 2835 { 2836 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 2837 struct tcp_sock *tp = tcp_sk(sk); 2838 2839 /* Optimization, tack on the FIN if we have one skb in write queue and 2840 * this skb was not yet sent, or we are under memory pressure. 2841 * Note: in the latter case, FIN packet will be sent after a timeout, 2842 * as TCP stack thinks it has already been transmitted. 2843 */ 2844 if (tskb && (tcp_send_head(sk) || sk_under_memory_pressure(sk))) { 2845 coalesce: 2846 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 2847 TCP_SKB_CB(tskb)->end_seq++; 2848 tp->write_seq++; 2849 if (!tcp_send_head(sk)) { 2850 /* This means tskb was already sent. 2851 * Pretend we included the FIN on previous transmit. 2852 * We need to set tp->snd_nxt to the value it would have 2853 * if FIN had been sent. This is because retransmit path 2854 * does not change tp->snd_nxt. 2855 */ 2856 tp->snd_nxt++; 2857 return; 2858 } 2859 } else { 2860 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 2861 if (unlikely(!skb)) { 2862 if (tskb) 2863 goto coalesce; 2864 return; 2865 } 2866 skb_reserve(skb, MAX_TCP_HEADER); 2867 sk_forced_wmem_schedule(sk, skb->truesize); 2868 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2869 tcp_init_nondata_skb(skb, tp->write_seq, 2870 TCPHDR_ACK | TCPHDR_FIN); 2871 tcp_queue_skb(sk, skb); 2872 } 2873 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 2874 } 2875 2876 /* We get here when a process closes a file descriptor (either due to 2877 * an explicit close() or as a byproduct of exit()'ing) and there 2878 * was unread data in the receive queue. This behavior is recommended 2879 * by RFC 2525, section 2.17. -DaveM 2880 */ 2881 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2882 { 2883 struct sk_buff *skb; 2884 2885 /* NOTE: No TCP options attached and we never retransmit this. */ 2886 skb = alloc_skb(MAX_TCP_HEADER, priority); 2887 if (!skb) { 2888 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2889 return; 2890 } 2891 2892 /* Reserve space for headers and prepare control bits. */ 2893 skb_reserve(skb, MAX_TCP_HEADER); 2894 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2895 TCPHDR_ACK | TCPHDR_RST); 2896 /* Send it off. */ 2897 if (tcp_transmit_skb(sk, skb, 0, priority)) 2898 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2899 2900 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2901 } 2902 2903 /* Send a crossed SYN-ACK during socket establishment. 2904 * WARNING: This routine must only be called when we have already sent 2905 * a SYN packet that crossed the incoming SYN that caused this routine 2906 * to get called. If this assumption fails then the initial rcv_wnd 2907 * and rcv_wscale values will not be correct. 2908 */ 2909 int tcp_send_synack(struct sock *sk) 2910 { 2911 struct sk_buff *skb; 2912 2913 skb = tcp_write_queue_head(sk); 2914 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2915 pr_debug("%s: wrong queue state\n", __func__); 2916 return -EFAULT; 2917 } 2918 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2919 if (skb_cloned(skb)) { 2920 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2921 if (!nskb) 2922 return -ENOMEM; 2923 tcp_unlink_write_queue(skb, sk); 2924 __skb_header_release(nskb); 2925 __tcp_add_write_queue_head(sk, nskb); 2926 sk_wmem_free_skb(sk, skb); 2927 sk->sk_wmem_queued += nskb->truesize; 2928 sk_mem_charge(sk, nskb->truesize); 2929 skb = nskb; 2930 } 2931 2932 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2933 tcp_ecn_send_synack(sk, skb); 2934 } 2935 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2936 } 2937 2938 /** 2939 * tcp_make_synack - Prepare a SYN-ACK. 2940 * sk: listener socket 2941 * dst: dst entry attached to the SYNACK 2942 * req: request_sock pointer 2943 * 2944 * Allocate one skb and build a SYNACK packet. 2945 * @dst is consumed : Caller should not use it again. 2946 */ 2947 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2948 struct request_sock *req, 2949 struct tcp_fastopen_cookie *foc) 2950 { 2951 struct tcp_out_options opts; 2952 struct inet_request_sock *ireq = inet_rsk(req); 2953 struct tcp_sock *tp = tcp_sk(sk); 2954 struct tcphdr *th; 2955 struct sk_buff *skb; 2956 struct tcp_md5sig_key *md5 = NULL; 2957 int tcp_header_size; 2958 int mss; 2959 2960 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC); 2961 if (unlikely(!skb)) { 2962 dst_release(dst); 2963 return NULL; 2964 } 2965 /* Reserve space for headers. */ 2966 skb_reserve(skb, MAX_TCP_HEADER); 2967 2968 skb_dst_set(skb, dst); 2969 2970 mss = dst_metric_advmss(dst); 2971 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2972 mss = tp->rx_opt.user_mss; 2973 2974 memset(&opts, 0, sizeof(opts)); 2975 #ifdef CONFIG_SYN_COOKIES 2976 if (unlikely(req->cookie_ts)) 2977 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 2978 else 2979 #endif 2980 skb_mstamp_get(&skb->skb_mstamp); 2981 2982 #ifdef CONFIG_TCP_MD5SIG 2983 rcu_read_lock(); 2984 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 2985 #endif 2986 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 2987 foc) + sizeof(*th); 2988 2989 skb_push(skb, tcp_header_size); 2990 skb_reset_transport_header(skb); 2991 2992 th = tcp_hdr(skb); 2993 memset(th, 0, sizeof(struct tcphdr)); 2994 th->syn = 1; 2995 th->ack = 1; 2996 tcp_ecn_make_synack(req, th, sk); 2997 th->source = htons(ireq->ir_num); 2998 th->dest = ireq->ir_rmt_port; 2999 /* Setting of flags are superfluous here for callers (and ECE is 3000 * not even correctly set) 3001 */ 3002 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3003 TCPHDR_SYN | TCPHDR_ACK); 3004 3005 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3006 /* XXX data is queued and acked as is. No buffer/window check */ 3007 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3008 3009 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3010 th->window = htons(min(req->rcv_wnd, 65535U)); 3011 tcp_options_write((__be32 *)(th + 1), tp, &opts); 3012 th->doff = (tcp_header_size >> 2); 3013 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS); 3014 3015 #ifdef CONFIG_TCP_MD5SIG 3016 /* Okay, we have all we need - do the md5 hash if needed */ 3017 if (md5) 3018 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3019 md5, req_to_sk(req), skb); 3020 rcu_read_unlock(); 3021 #endif 3022 3023 /* Do not fool tcpdump (if any), clean our debris */ 3024 skb->tstamp.tv64 = 0; 3025 return skb; 3026 } 3027 EXPORT_SYMBOL(tcp_make_synack); 3028 3029 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3030 { 3031 struct inet_connection_sock *icsk = inet_csk(sk); 3032 const struct tcp_congestion_ops *ca; 3033 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3034 3035 if (ca_key == TCP_CA_UNSPEC) 3036 return; 3037 3038 rcu_read_lock(); 3039 ca = tcp_ca_find_key(ca_key); 3040 if (likely(ca && try_module_get(ca->owner))) { 3041 module_put(icsk->icsk_ca_ops->owner); 3042 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3043 icsk->icsk_ca_ops = ca; 3044 } 3045 rcu_read_unlock(); 3046 } 3047 3048 /* Do all connect socket setups that can be done AF independent. */ 3049 static void tcp_connect_init(struct sock *sk) 3050 { 3051 const struct dst_entry *dst = __sk_dst_get(sk); 3052 struct tcp_sock *tp = tcp_sk(sk); 3053 __u8 rcv_wscale; 3054 3055 /* We'll fix this up when we get a response from the other end. 3056 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3057 */ 3058 tp->tcp_header_len = sizeof(struct tcphdr) + 3059 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 3060 3061 #ifdef CONFIG_TCP_MD5SIG 3062 if (tp->af_specific->md5_lookup(sk, sk)) 3063 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3064 #endif 3065 3066 /* If user gave his TCP_MAXSEG, record it to clamp */ 3067 if (tp->rx_opt.user_mss) 3068 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3069 tp->max_window = 0; 3070 tcp_mtup_init(sk); 3071 tcp_sync_mss(sk, dst_mtu(dst)); 3072 3073 tcp_ca_dst_init(sk, dst); 3074 3075 if (!tp->window_clamp) 3076 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3077 tp->advmss = dst_metric_advmss(dst); 3078 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 3079 tp->advmss = tp->rx_opt.user_mss; 3080 3081 tcp_initialize_rcv_mss(sk); 3082 3083 /* limit the window selection if the user enforce a smaller rx buffer */ 3084 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3085 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3086 tp->window_clamp = tcp_full_space(sk); 3087 3088 tcp_select_initial_window(tcp_full_space(sk), 3089 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3090 &tp->rcv_wnd, 3091 &tp->window_clamp, 3092 sysctl_tcp_window_scaling, 3093 &rcv_wscale, 3094 dst_metric(dst, RTAX_INITRWND)); 3095 3096 tp->rx_opt.rcv_wscale = rcv_wscale; 3097 tp->rcv_ssthresh = tp->rcv_wnd; 3098 3099 sk->sk_err = 0; 3100 sock_reset_flag(sk, SOCK_DONE); 3101 tp->snd_wnd = 0; 3102 tcp_init_wl(tp, 0); 3103 tp->snd_una = tp->write_seq; 3104 tp->snd_sml = tp->write_seq; 3105 tp->snd_up = tp->write_seq; 3106 tp->snd_nxt = tp->write_seq; 3107 3108 if (likely(!tp->repair)) 3109 tp->rcv_nxt = 0; 3110 else 3111 tp->rcv_tstamp = tcp_time_stamp; 3112 tp->rcv_wup = tp->rcv_nxt; 3113 tp->copied_seq = tp->rcv_nxt; 3114 3115 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3116 inet_csk(sk)->icsk_retransmits = 0; 3117 tcp_clear_retrans(tp); 3118 } 3119 3120 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3121 { 3122 struct tcp_sock *tp = tcp_sk(sk); 3123 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3124 3125 tcb->end_seq += skb->len; 3126 __skb_header_release(skb); 3127 __tcp_add_write_queue_tail(sk, skb); 3128 sk->sk_wmem_queued += skb->truesize; 3129 sk_mem_charge(sk, skb->truesize); 3130 tp->write_seq = tcb->end_seq; 3131 tp->packets_out += tcp_skb_pcount(skb); 3132 } 3133 3134 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3135 * queue a data-only packet after the regular SYN, such that regular SYNs 3136 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3137 * only the SYN sequence, the data are retransmitted in the first ACK. 3138 * If cookie is not cached or other error occurs, falls back to send a 3139 * regular SYN with Fast Open cookie request option. 3140 */ 3141 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3142 { 3143 struct tcp_sock *tp = tcp_sk(sk); 3144 struct tcp_fastopen_request *fo = tp->fastopen_req; 3145 int syn_loss = 0, space, err = 0, copied; 3146 unsigned long last_syn_loss = 0; 3147 struct sk_buff *syn_data; 3148 3149 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3150 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 3151 &syn_loss, &last_syn_loss); 3152 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 3153 if (syn_loss > 1 && 3154 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 3155 fo->cookie.len = -1; 3156 goto fallback; 3157 } 3158 3159 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 3160 fo->cookie.len = -1; 3161 else if (fo->cookie.len <= 0) 3162 goto fallback; 3163 3164 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3165 * user-MSS. Reserve maximum option space for middleboxes that add 3166 * private TCP options. The cost is reduced data space in SYN :( 3167 */ 3168 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 3169 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3170 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3171 MAX_TCP_OPTION_SPACE; 3172 3173 space = min_t(size_t, space, fo->size); 3174 3175 /* limit to order-0 allocations */ 3176 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3177 3178 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation); 3179 if (!syn_data) 3180 goto fallback; 3181 syn_data->ip_summed = CHECKSUM_PARTIAL; 3182 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3183 copied = copy_from_iter(skb_put(syn_data, space), space, 3184 &fo->data->msg_iter); 3185 if (unlikely(!copied)) { 3186 kfree_skb(syn_data); 3187 goto fallback; 3188 } 3189 if (copied != space) { 3190 skb_trim(syn_data, copied); 3191 space = copied; 3192 } 3193 3194 /* No more data pending in inet_wait_for_connect() */ 3195 if (space == fo->size) 3196 fo->data = NULL; 3197 fo->copied = space; 3198 3199 tcp_connect_queue_skb(sk, syn_data); 3200 3201 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3202 3203 syn->skb_mstamp = syn_data->skb_mstamp; 3204 3205 /* Now full SYN+DATA was cloned and sent (or not), 3206 * remove the SYN from the original skb (syn_data) 3207 * we keep in write queue in case of a retransmit, as we 3208 * also have the SYN packet (with no data) in the same queue. 3209 */ 3210 TCP_SKB_CB(syn_data)->seq++; 3211 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3212 if (!err) { 3213 tp->syn_data = (fo->copied > 0); 3214 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3215 goto done; 3216 } 3217 3218 fallback: 3219 /* Send a regular SYN with Fast Open cookie request option */ 3220 if (fo->cookie.len > 0) 3221 fo->cookie.len = 0; 3222 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3223 if (err) 3224 tp->syn_fastopen = 0; 3225 done: 3226 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3227 return err; 3228 } 3229 3230 /* Build a SYN and send it off. */ 3231 int tcp_connect(struct sock *sk) 3232 { 3233 struct tcp_sock *tp = tcp_sk(sk); 3234 struct sk_buff *buff; 3235 int err; 3236 3237 tcp_connect_init(sk); 3238 3239 if (unlikely(tp->repair)) { 3240 tcp_finish_connect(sk, NULL); 3241 return 0; 3242 } 3243 3244 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 3245 if (unlikely(!buff)) 3246 return -ENOBUFS; 3247 3248 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3249 tp->retrans_stamp = tcp_time_stamp; 3250 tcp_connect_queue_skb(sk, buff); 3251 tcp_ecn_send_syn(sk, buff); 3252 3253 /* Send off SYN; include data in Fast Open. */ 3254 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3255 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3256 if (err == -ECONNREFUSED) 3257 return err; 3258 3259 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3260 * in order to make this packet get counted in tcpOutSegs. 3261 */ 3262 tp->snd_nxt = tp->write_seq; 3263 tp->pushed_seq = tp->write_seq; 3264 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3265 3266 /* Timer for repeating the SYN until an answer. */ 3267 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3268 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3269 return 0; 3270 } 3271 EXPORT_SYMBOL(tcp_connect); 3272 3273 /* Send out a delayed ack, the caller does the policy checking 3274 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3275 * for details. 3276 */ 3277 void tcp_send_delayed_ack(struct sock *sk) 3278 { 3279 struct inet_connection_sock *icsk = inet_csk(sk); 3280 int ato = icsk->icsk_ack.ato; 3281 unsigned long timeout; 3282 3283 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3284 3285 if (ato > TCP_DELACK_MIN) { 3286 const struct tcp_sock *tp = tcp_sk(sk); 3287 int max_ato = HZ / 2; 3288 3289 if (icsk->icsk_ack.pingpong || 3290 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3291 max_ato = TCP_DELACK_MAX; 3292 3293 /* Slow path, intersegment interval is "high". */ 3294 3295 /* If some rtt estimate is known, use it to bound delayed ack. 3296 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3297 * directly. 3298 */ 3299 if (tp->srtt_us) { 3300 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3301 TCP_DELACK_MIN); 3302 3303 if (rtt < max_ato) 3304 max_ato = rtt; 3305 } 3306 3307 ato = min(ato, max_ato); 3308 } 3309 3310 /* Stay within the limit we were given */ 3311 timeout = jiffies + ato; 3312 3313 /* Use new timeout only if there wasn't a older one earlier. */ 3314 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3315 /* If delack timer was blocked or is about to expire, 3316 * send ACK now. 3317 */ 3318 if (icsk->icsk_ack.blocked || 3319 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3320 tcp_send_ack(sk); 3321 return; 3322 } 3323 3324 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3325 timeout = icsk->icsk_ack.timeout; 3326 } 3327 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3328 icsk->icsk_ack.timeout = timeout; 3329 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3330 } 3331 3332 /* This routine sends an ack and also updates the window. */ 3333 void tcp_send_ack(struct sock *sk) 3334 { 3335 struct sk_buff *buff; 3336 3337 /* If we have been reset, we may not send again. */ 3338 if (sk->sk_state == TCP_CLOSE) 3339 return; 3340 3341 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3342 3343 /* We are not putting this on the write queue, so 3344 * tcp_transmit_skb() will set the ownership to this 3345 * sock. 3346 */ 3347 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3348 if (!buff) { 3349 inet_csk_schedule_ack(sk); 3350 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3351 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3352 TCP_DELACK_MAX, TCP_RTO_MAX); 3353 return; 3354 } 3355 3356 /* Reserve space for headers and prepare control bits. */ 3357 skb_reserve(buff, MAX_TCP_HEADER); 3358 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3359 3360 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3361 * too much. 3362 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3363 * We also avoid tcp_wfree() overhead (cache line miss accessing 3364 * tp->tsq_flags) by using regular sock_wfree() 3365 */ 3366 skb_set_tcp_pure_ack(buff); 3367 3368 /* Send it off, this clears delayed acks for us. */ 3369 skb_mstamp_get(&buff->skb_mstamp); 3370 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC)); 3371 } 3372 EXPORT_SYMBOL_GPL(tcp_send_ack); 3373 3374 /* This routine sends a packet with an out of date sequence 3375 * number. It assumes the other end will try to ack it. 3376 * 3377 * Question: what should we make while urgent mode? 3378 * 4.4BSD forces sending single byte of data. We cannot send 3379 * out of window data, because we have SND.NXT==SND.MAX... 3380 * 3381 * Current solution: to send TWO zero-length segments in urgent mode: 3382 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3383 * out-of-date with SND.UNA-1 to probe window. 3384 */ 3385 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 3386 { 3387 struct tcp_sock *tp = tcp_sk(sk); 3388 struct sk_buff *skb; 3389 3390 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3391 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3392 if (!skb) 3393 return -1; 3394 3395 /* Reserve space for headers and set control bits. */ 3396 skb_reserve(skb, MAX_TCP_HEADER); 3397 /* Use a previous sequence. This should cause the other 3398 * end to send an ack. Don't queue or clone SKB, just 3399 * send it. 3400 */ 3401 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3402 skb_mstamp_get(&skb->skb_mstamp); 3403 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3404 } 3405 3406 void tcp_send_window_probe(struct sock *sk) 3407 { 3408 if (sk->sk_state == TCP_ESTABLISHED) { 3409 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3410 tcp_xmit_probe_skb(sk, 0); 3411 } 3412 } 3413 3414 /* Initiate keepalive or window probe from timer. */ 3415 int tcp_write_wakeup(struct sock *sk) 3416 { 3417 struct tcp_sock *tp = tcp_sk(sk); 3418 struct sk_buff *skb; 3419 3420 if (sk->sk_state == TCP_CLOSE) 3421 return -1; 3422 3423 skb = tcp_send_head(sk); 3424 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3425 int err; 3426 unsigned int mss = tcp_current_mss(sk); 3427 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3428 3429 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3430 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3431 3432 /* We are probing the opening of a window 3433 * but the window size is != 0 3434 * must have been a result SWS avoidance ( sender ) 3435 */ 3436 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3437 skb->len > mss) { 3438 seg_size = min(seg_size, mss); 3439 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3440 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3441 return -1; 3442 } else if (!tcp_skb_pcount(skb)) 3443 tcp_set_skb_tso_segs(sk, skb, mss); 3444 3445 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3446 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3447 if (!err) 3448 tcp_event_new_data_sent(sk, skb); 3449 return err; 3450 } else { 3451 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3452 tcp_xmit_probe_skb(sk, 1); 3453 return tcp_xmit_probe_skb(sk, 0); 3454 } 3455 } 3456 3457 /* A window probe timeout has occurred. If window is not closed send 3458 * a partial packet else a zero probe. 3459 */ 3460 void tcp_send_probe0(struct sock *sk) 3461 { 3462 struct inet_connection_sock *icsk = inet_csk(sk); 3463 struct tcp_sock *tp = tcp_sk(sk); 3464 unsigned long probe_max; 3465 int err; 3466 3467 err = tcp_write_wakeup(sk); 3468 3469 if (tp->packets_out || !tcp_send_head(sk)) { 3470 /* Cancel probe timer, if it is not required. */ 3471 icsk->icsk_probes_out = 0; 3472 icsk->icsk_backoff = 0; 3473 return; 3474 } 3475 3476 if (err <= 0) { 3477 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3478 icsk->icsk_backoff++; 3479 icsk->icsk_probes_out++; 3480 probe_max = TCP_RTO_MAX; 3481 } else { 3482 /* If packet was not sent due to local congestion, 3483 * do not backoff and do not remember icsk_probes_out. 3484 * Let local senders to fight for local resources. 3485 * 3486 * Use accumulated backoff yet. 3487 */ 3488 if (!icsk->icsk_probes_out) 3489 icsk->icsk_probes_out = 1; 3490 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3491 } 3492 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3493 inet_csk_rto_backoff(icsk, probe_max), 3494 TCP_RTO_MAX); 3495 } 3496 3497 int tcp_rtx_synack(struct sock *sk, struct request_sock *req) 3498 { 3499 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3500 struct flowi fl; 3501 int res; 3502 3503 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL); 3504 if (!res) { 3505 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS); 3506 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3507 } 3508 return res; 3509 } 3510 EXPORT_SYMBOL(tcp_rtx_synack); 3511