xref: /openbmc/linux/net/ipv4/tcp_output.c (revision d31346494bd2b1185949dc64ab6467186b80fb05)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
67 
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 			   int push_one, gfp_t gfp);
70 
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 	struct inet_connection_sock *icsk = inet_csk(sk);
75 	struct tcp_sock *tp = tcp_sk(sk);
76 	unsigned int prior_packets = tp->packets_out;
77 
78 	tcp_advance_send_head(sk, skb);
79 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80 
81 	tp->packets_out += tcp_skb_pcount(skb);
82 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 		tcp_rearm_rto(sk);
85 	}
86 
87 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
88 		      tcp_skb_pcount(skb));
89 }
90 
91 /* SND.NXT, if window was not shrunk.
92  * If window has been shrunk, what should we make? It is not clear at all.
93  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95  * invalid. OK, let's make this for now:
96  */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 	const struct tcp_sock *tp = tcp_sk(sk);
100 
101 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism. */
141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
142 {
143 	struct tcp_sock *tp = tcp_sk(sk);
144 	s32 delta = tcp_time_stamp - tp->lsndtime;
145 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
146 	u32 cwnd = tp->snd_cwnd;
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tp->snd_cwnd = max(cwnd, restart_cwnd);
156 	tp->snd_cwnd_stamp = tcp_time_stamp;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_time_stamp;
166 	const struct dst_entry *dst = __sk_dst_get(sk);
167 
168 	if (sysctl_tcp_slow_start_after_idle &&
169 	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
171 
172 	tp->lsndtime = now;
173 
174 	/* If it is a reply for ato after last received
175 	 * packet, enter pingpong mode.
176 	 */
177 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
178 	    (!dst || !dst_metric(dst, RTAX_QUICKACK)))
179 			icsk->icsk_ack.pingpong = 1;
180 }
181 
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
184 {
185 	tcp_dec_quickack_mode(sk, pkts);
186 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
187 }
188 
189 
190 u32 tcp_default_init_rwnd(u32 mss)
191 {
192 	/* Initial receive window should be twice of TCP_INIT_CWND to
193 	 * enable proper sending of new unsent data during fast recovery
194 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 	 * limit when mss is larger than 1460.
196 	 */
197 	u32 init_rwnd = TCP_INIT_CWND * 2;
198 
199 	if (mss > 1460)
200 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201 	return init_rwnd;
202 }
203 
204 /* Determine a window scaling and initial window to offer.
205  * Based on the assumption that the given amount of space
206  * will be offered. Store the results in the tp structure.
207  * NOTE: for smooth operation initial space offering should
208  * be a multiple of mss if possible. We assume here that mss >= 1.
209  * This MUST be enforced by all callers.
210  */
211 void tcp_select_initial_window(int __space, __u32 mss,
212 			       __u32 *rcv_wnd, __u32 *window_clamp,
213 			       int wscale_ok, __u8 *rcv_wscale,
214 			       __u32 init_rcv_wnd)
215 {
216 	unsigned int space = (__space < 0 ? 0 : __space);
217 
218 	/* If no clamp set the clamp to the max possible scaled window */
219 	if (*window_clamp == 0)
220 		(*window_clamp) = (65535 << 14);
221 	space = min(*window_clamp, space);
222 
223 	/* Quantize space offering to a multiple of mss if possible. */
224 	if (space > mss)
225 		space = (space / mss) * mss;
226 
227 	/* NOTE: offering an initial window larger than 32767
228 	 * will break some buggy TCP stacks. If the admin tells us
229 	 * it is likely we could be speaking with such a buggy stack
230 	 * we will truncate our initial window offering to 32K-1
231 	 * unless the remote has sent us a window scaling option,
232 	 * which we interpret as a sign the remote TCP is not
233 	 * misinterpreting the window field as a signed quantity.
234 	 */
235 	if (sysctl_tcp_workaround_signed_windows)
236 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 	else
238 		(*rcv_wnd) = space;
239 
240 	(*rcv_wscale) = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window
243 		 * See RFC1323 for an explanation of the limit to 14
244 		 */
245 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
246 		space = min_t(u32, space, *window_clamp);
247 		while (space > 65535 && (*rcv_wscale) < 14) {
248 			space >>= 1;
249 			(*rcv_wscale)++;
250 		}
251 	}
252 
253 	if (mss > (1 << *rcv_wscale)) {
254 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
255 			init_rcv_wnd = tcp_default_init_rwnd(mss);
256 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
257 	}
258 
259 	/* Set the clamp no higher than max representable value */
260 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
261 }
262 EXPORT_SYMBOL(tcp_select_initial_window);
263 
264 /* Chose a new window to advertise, update state in tcp_sock for the
265  * socket, and return result with RFC1323 scaling applied.  The return
266  * value can be stuffed directly into th->window for an outgoing
267  * frame.
268  */
269 static u16 tcp_select_window(struct sock *sk)
270 {
271 	struct tcp_sock *tp = tcp_sk(sk);
272 	u32 old_win = tp->rcv_wnd;
273 	u32 cur_win = tcp_receive_window(tp);
274 	u32 new_win = __tcp_select_window(sk);
275 
276 	/* Never shrink the offered window */
277 	if (new_win < cur_win) {
278 		/* Danger Will Robinson!
279 		 * Don't update rcv_wup/rcv_wnd here or else
280 		 * we will not be able to advertise a zero
281 		 * window in time.  --DaveM
282 		 *
283 		 * Relax Will Robinson.
284 		 */
285 		if (new_win == 0)
286 			NET_INC_STATS(sock_net(sk),
287 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
288 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
289 	}
290 	tp->rcv_wnd = new_win;
291 	tp->rcv_wup = tp->rcv_nxt;
292 
293 	/* Make sure we do not exceed the maximum possible
294 	 * scaled window.
295 	 */
296 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
297 		new_win = min(new_win, MAX_TCP_WINDOW);
298 	else
299 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
300 
301 	/* RFC1323 scaling applied */
302 	new_win >>= tp->rx_opt.rcv_wscale;
303 
304 	/* If we advertise zero window, disable fast path. */
305 	if (new_win == 0) {
306 		tp->pred_flags = 0;
307 		if (old_win)
308 			NET_INC_STATS(sock_net(sk),
309 				      LINUX_MIB_TCPTOZEROWINDOWADV);
310 	} else if (old_win == 0) {
311 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
312 	}
313 
314 	return new_win;
315 }
316 
317 /* Packet ECN state for a SYN-ACK */
318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
319 {
320 	const struct tcp_sock *tp = tcp_sk(sk);
321 
322 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
323 	if (!(tp->ecn_flags & TCP_ECN_OK))
324 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
325 	else if (tcp_ca_needs_ecn(sk))
326 		INET_ECN_xmit(sk);
327 }
328 
329 /* Packet ECN state for a SYN.  */
330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
331 {
332 	struct tcp_sock *tp = tcp_sk(sk);
333 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
334 		       tcp_ca_needs_ecn(sk);
335 
336 	if (!use_ecn) {
337 		const struct dst_entry *dst = __sk_dst_get(sk);
338 
339 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340 			use_ecn = true;
341 	}
342 
343 	tp->ecn_flags = 0;
344 
345 	if (use_ecn) {
346 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347 		tp->ecn_flags = TCP_ECN_OK;
348 		if (tcp_ca_needs_ecn(sk))
349 			INET_ECN_xmit(sk);
350 	}
351 }
352 
353 static void
354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th,
355 		    struct sock *sk)
356 {
357 	if (inet_rsk(req)->ecn_ok) {
358 		th->ece = 1;
359 		if (tcp_ca_needs_ecn(sk))
360 			INET_ECN_xmit(sk);
361 	}
362 }
363 
364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365  * be sent.
366  */
367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
368 				int tcp_header_len)
369 {
370 	struct tcp_sock *tp = tcp_sk(sk);
371 
372 	if (tp->ecn_flags & TCP_ECN_OK) {
373 		/* Not-retransmitted data segment: set ECT and inject CWR. */
374 		if (skb->len != tcp_header_len &&
375 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
376 			INET_ECN_xmit(sk);
377 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
378 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
379 				tcp_hdr(skb)->cwr = 1;
380 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381 			}
382 		} else if (!tcp_ca_needs_ecn(sk)) {
383 			/* ACK or retransmitted segment: clear ECT|CE */
384 			INET_ECN_dontxmit(sk);
385 		}
386 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
387 			tcp_hdr(skb)->ece = 1;
388 	}
389 }
390 
391 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
392  * auto increment end seqno.
393  */
394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395 {
396 	struct skb_shared_info *shinfo = skb_shinfo(skb);
397 
398 	skb->ip_summed = CHECKSUM_PARTIAL;
399 	skb->csum = 0;
400 
401 	TCP_SKB_CB(skb)->tcp_flags = flags;
402 	TCP_SKB_CB(skb)->sacked = 0;
403 
404 	tcp_skb_pcount_set(skb, 1);
405 	shinfo->gso_size = 0;
406 	shinfo->gso_type = 0;
407 
408 	TCP_SKB_CB(skb)->seq = seq;
409 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
410 		seq++;
411 	TCP_SKB_CB(skb)->end_seq = seq;
412 }
413 
414 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
415 {
416 	return tp->snd_una != tp->snd_up;
417 }
418 
419 #define OPTION_SACK_ADVERTISE	(1 << 0)
420 #define OPTION_TS		(1 << 1)
421 #define OPTION_MD5		(1 << 2)
422 #define OPTION_WSCALE		(1 << 3)
423 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
424 
425 struct tcp_out_options {
426 	u16 options;		/* bit field of OPTION_* */
427 	u16 mss;		/* 0 to disable */
428 	u8 ws;			/* window scale, 0 to disable */
429 	u8 num_sack_blocks;	/* number of SACK blocks to include */
430 	u8 hash_size;		/* bytes in hash_location */
431 	__u8 *hash_location;	/* temporary pointer, overloaded */
432 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
433 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
434 };
435 
436 /* Write previously computed TCP options to the packet.
437  *
438  * Beware: Something in the Internet is very sensitive to the ordering of
439  * TCP options, we learned this through the hard way, so be careful here.
440  * Luckily we can at least blame others for their non-compliance but from
441  * inter-operability perspective it seems that we're somewhat stuck with
442  * the ordering which we have been using if we want to keep working with
443  * those broken things (not that it currently hurts anybody as there isn't
444  * particular reason why the ordering would need to be changed).
445  *
446  * At least SACK_PERM as the first option is known to lead to a disaster
447  * (but it may well be that other scenarios fail similarly).
448  */
449 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
450 			      struct tcp_out_options *opts)
451 {
452 	u16 options = opts->options;	/* mungable copy */
453 
454 	if (unlikely(OPTION_MD5 & options)) {
455 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
456 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
457 		/* overload cookie hash location */
458 		opts->hash_location = (__u8 *)ptr;
459 		ptr += 4;
460 	}
461 
462 	if (unlikely(opts->mss)) {
463 		*ptr++ = htonl((TCPOPT_MSS << 24) |
464 			       (TCPOLEN_MSS << 16) |
465 			       opts->mss);
466 	}
467 
468 	if (likely(OPTION_TS & options)) {
469 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
470 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
471 				       (TCPOLEN_SACK_PERM << 16) |
472 				       (TCPOPT_TIMESTAMP << 8) |
473 				       TCPOLEN_TIMESTAMP);
474 			options &= ~OPTION_SACK_ADVERTISE;
475 		} else {
476 			*ptr++ = htonl((TCPOPT_NOP << 24) |
477 				       (TCPOPT_NOP << 16) |
478 				       (TCPOPT_TIMESTAMP << 8) |
479 				       TCPOLEN_TIMESTAMP);
480 		}
481 		*ptr++ = htonl(opts->tsval);
482 		*ptr++ = htonl(opts->tsecr);
483 	}
484 
485 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
486 		*ptr++ = htonl((TCPOPT_NOP << 24) |
487 			       (TCPOPT_NOP << 16) |
488 			       (TCPOPT_SACK_PERM << 8) |
489 			       TCPOLEN_SACK_PERM);
490 	}
491 
492 	if (unlikely(OPTION_WSCALE & options)) {
493 		*ptr++ = htonl((TCPOPT_NOP << 24) |
494 			       (TCPOPT_WINDOW << 16) |
495 			       (TCPOLEN_WINDOW << 8) |
496 			       opts->ws);
497 	}
498 
499 	if (unlikely(opts->num_sack_blocks)) {
500 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
501 			tp->duplicate_sack : tp->selective_acks;
502 		int this_sack;
503 
504 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
505 			       (TCPOPT_NOP  << 16) |
506 			       (TCPOPT_SACK <<  8) |
507 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
508 						     TCPOLEN_SACK_PERBLOCK)));
509 
510 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
511 		     ++this_sack) {
512 			*ptr++ = htonl(sp[this_sack].start_seq);
513 			*ptr++ = htonl(sp[this_sack].end_seq);
514 		}
515 
516 		tp->rx_opt.dsack = 0;
517 	}
518 
519 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
520 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
521 
522 		*ptr++ = htonl((TCPOPT_EXP << 24) |
523 			       ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
524 			       TCPOPT_FASTOPEN_MAGIC);
525 
526 		memcpy(ptr, foc->val, foc->len);
527 		if ((foc->len & 3) == 2) {
528 			u8 *align = ((u8 *)ptr) + foc->len;
529 			align[0] = align[1] = TCPOPT_NOP;
530 		}
531 		ptr += (foc->len + 3) >> 2;
532 	}
533 }
534 
535 /* Compute TCP options for SYN packets. This is not the final
536  * network wire format yet.
537  */
538 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
539 				struct tcp_out_options *opts,
540 				struct tcp_md5sig_key **md5)
541 {
542 	struct tcp_sock *tp = tcp_sk(sk);
543 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
544 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
545 
546 #ifdef CONFIG_TCP_MD5SIG
547 	*md5 = tp->af_specific->md5_lookup(sk, sk);
548 	if (*md5) {
549 		opts->options |= OPTION_MD5;
550 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
551 	}
552 #else
553 	*md5 = NULL;
554 #endif
555 
556 	/* We always get an MSS option.  The option bytes which will be seen in
557 	 * normal data packets should timestamps be used, must be in the MSS
558 	 * advertised.  But we subtract them from tp->mss_cache so that
559 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
560 	 * fact here if necessary.  If we don't do this correctly, as a
561 	 * receiver we won't recognize data packets as being full sized when we
562 	 * should, and thus we won't abide by the delayed ACK rules correctly.
563 	 * SACKs don't matter, we never delay an ACK when we have any of those
564 	 * going out.  */
565 	opts->mss = tcp_advertise_mss(sk);
566 	remaining -= TCPOLEN_MSS_ALIGNED;
567 
568 	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
569 		opts->options |= OPTION_TS;
570 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
571 		opts->tsecr = tp->rx_opt.ts_recent;
572 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
573 	}
574 	if (likely(sysctl_tcp_window_scaling)) {
575 		opts->ws = tp->rx_opt.rcv_wscale;
576 		opts->options |= OPTION_WSCALE;
577 		remaining -= TCPOLEN_WSCALE_ALIGNED;
578 	}
579 	if (likely(sysctl_tcp_sack)) {
580 		opts->options |= OPTION_SACK_ADVERTISE;
581 		if (unlikely(!(OPTION_TS & opts->options)))
582 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
583 	}
584 
585 	if (fastopen && fastopen->cookie.len >= 0) {
586 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
587 		need = (need + 3) & ~3U;  /* Align to 32 bits */
588 		if (remaining >= need) {
589 			opts->options |= OPTION_FAST_OPEN_COOKIE;
590 			opts->fastopen_cookie = &fastopen->cookie;
591 			remaining -= need;
592 			tp->syn_fastopen = 1;
593 		}
594 	}
595 
596 	return MAX_TCP_OPTION_SPACE - remaining;
597 }
598 
599 /* Set up TCP options for SYN-ACKs. */
600 static unsigned int tcp_synack_options(struct sock *sk,
601 				   struct request_sock *req,
602 				   unsigned int mss, struct sk_buff *skb,
603 				   struct tcp_out_options *opts,
604 				   const struct tcp_md5sig_key *md5,
605 				   struct tcp_fastopen_cookie *foc)
606 {
607 	struct inet_request_sock *ireq = inet_rsk(req);
608 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
609 
610 #ifdef CONFIG_TCP_MD5SIG
611 	if (md5) {
612 		opts->options |= OPTION_MD5;
613 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
614 
615 		/* We can't fit any SACK blocks in a packet with MD5 + TS
616 		 * options. There was discussion about disabling SACK
617 		 * rather than TS in order to fit in better with old,
618 		 * buggy kernels, but that was deemed to be unnecessary.
619 		 */
620 		ireq->tstamp_ok &= !ireq->sack_ok;
621 	}
622 #endif
623 
624 	/* We always send an MSS option. */
625 	opts->mss = mss;
626 	remaining -= TCPOLEN_MSS_ALIGNED;
627 
628 	if (likely(ireq->wscale_ok)) {
629 		opts->ws = ireq->rcv_wscale;
630 		opts->options |= OPTION_WSCALE;
631 		remaining -= TCPOLEN_WSCALE_ALIGNED;
632 	}
633 	if (likely(ireq->tstamp_ok)) {
634 		opts->options |= OPTION_TS;
635 		opts->tsval = tcp_skb_timestamp(skb);
636 		opts->tsecr = req->ts_recent;
637 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
638 	}
639 	if (likely(ireq->sack_ok)) {
640 		opts->options |= OPTION_SACK_ADVERTISE;
641 		if (unlikely(!ireq->tstamp_ok))
642 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
643 	}
644 	if (foc != NULL && foc->len >= 0) {
645 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
646 		need = (need + 3) & ~3U;  /* Align to 32 bits */
647 		if (remaining >= need) {
648 			opts->options |= OPTION_FAST_OPEN_COOKIE;
649 			opts->fastopen_cookie = foc;
650 			remaining -= need;
651 		}
652 	}
653 
654 	return MAX_TCP_OPTION_SPACE - remaining;
655 }
656 
657 /* Compute TCP options for ESTABLISHED sockets. This is not the
658  * final wire format yet.
659  */
660 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
661 					struct tcp_out_options *opts,
662 					struct tcp_md5sig_key **md5)
663 {
664 	struct tcp_sock *tp = tcp_sk(sk);
665 	unsigned int size = 0;
666 	unsigned int eff_sacks;
667 
668 	opts->options = 0;
669 
670 #ifdef CONFIG_TCP_MD5SIG
671 	*md5 = tp->af_specific->md5_lookup(sk, sk);
672 	if (unlikely(*md5)) {
673 		opts->options |= OPTION_MD5;
674 		size += TCPOLEN_MD5SIG_ALIGNED;
675 	}
676 #else
677 	*md5 = NULL;
678 #endif
679 
680 	if (likely(tp->rx_opt.tstamp_ok)) {
681 		opts->options |= OPTION_TS;
682 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
683 		opts->tsecr = tp->rx_opt.ts_recent;
684 		size += TCPOLEN_TSTAMP_ALIGNED;
685 	}
686 
687 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
688 	if (unlikely(eff_sacks)) {
689 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
690 		opts->num_sack_blocks =
691 			min_t(unsigned int, eff_sacks,
692 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
693 			      TCPOLEN_SACK_PERBLOCK);
694 		size += TCPOLEN_SACK_BASE_ALIGNED +
695 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
696 	}
697 
698 	return size;
699 }
700 
701 
702 /* TCP SMALL QUEUES (TSQ)
703  *
704  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
705  * to reduce RTT and bufferbloat.
706  * We do this using a special skb destructor (tcp_wfree).
707  *
708  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
709  * needs to be reallocated in a driver.
710  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
711  *
712  * Since transmit from skb destructor is forbidden, we use a tasklet
713  * to process all sockets that eventually need to send more skbs.
714  * We use one tasklet per cpu, with its own queue of sockets.
715  */
716 struct tsq_tasklet {
717 	struct tasklet_struct	tasklet;
718 	struct list_head	head; /* queue of tcp sockets */
719 };
720 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
721 
722 static void tcp_tsq_handler(struct sock *sk)
723 {
724 	if ((1 << sk->sk_state) &
725 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
726 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
727 		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
728 			       0, GFP_ATOMIC);
729 }
730 /*
731  * One tasklet per cpu tries to send more skbs.
732  * We run in tasklet context but need to disable irqs when
733  * transferring tsq->head because tcp_wfree() might
734  * interrupt us (non NAPI drivers)
735  */
736 static void tcp_tasklet_func(unsigned long data)
737 {
738 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
739 	LIST_HEAD(list);
740 	unsigned long flags;
741 	struct list_head *q, *n;
742 	struct tcp_sock *tp;
743 	struct sock *sk;
744 
745 	local_irq_save(flags);
746 	list_splice_init(&tsq->head, &list);
747 	local_irq_restore(flags);
748 
749 	list_for_each_safe(q, n, &list) {
750 		tp = list_entry(q, struct tcp_sock, tsq_node);
751 		list_del(&tp->tsq_node);
752 
753 		sk = (struct sock *)tp;
754 		bh_lock_sock(sk);
755 
756 		if (!sock_owned_by_user(sk)) {
757 			tcp_tsq_handler(sk);
758 		} else {
759 			/* defer the work to tcp_release_cb() */
760 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
761 		}
762 		bh_unlock_sock(sk);
763 
764 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
765 		sk_free(sk);
766 	}
767 }
768 
769 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
770 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
771 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
772 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
773 /**
774  * tcp_release_cb - tcp release_sock() callback
775  * @sk: socket
776  *
777  * called from release_sock() to perform protocol dependent
778  * actions before socket release.
779  */
780 void tcp_release_cb(struct sock *sk)
781 {
782 	struct tcp_sock *tp = tcp_sk(sk);
783 	unsigned long flags, nflags;
784 
785 	/* perform an atomic operation only if at least one flag is set */
786 	do {
787 		flags = tp->tsq_flags;
788 		if (!(flags & TCP_DEFERRED_ALL))
789 			return;
790 		nflags = flags & ~TCP_DEFERRED_ALL;
791 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
792 
793 	if (flags & (1UL << TCP_TSQ_DEFERRED))
794 		tcp_tsq_handler(sk);
795 
796 	/* Here begins the tricky part :
797 	 * We are called from release_sock() with :
798 	 * 1) BH disabled
799 	 * 2) sk_lock.slock spinlock held
800 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
801 	 *
802 	 * But following code is meant to be called from BH handlers,
803 	 * so we should keep BH disabled, but early release socket ownership
804 	 */
805 	sock_release_ownership(sk);
806 
807 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
808 		tcp_write_timer_handler(sk);
809 		__sock_put(sk);
810 	}
811 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
812 		tcp_delack_timer_handler(sk);
813 		__sock_put(sk);
814 	}
815 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
816 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
817 		__sock_put(sk);
818 	}
819 }
820 EXPORT_SYMBOL(tcp_release_cb);
821 
822 void __init tcp_tasklet_init(void)
823 {
824 	int i;
825 
826 	for_each_possible_cpu(i) {
827 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
828 
829 		INIT_LIST_HEAD(&tsq->head);
830 		tasklet_init(&tsq->tasklet,
831 			     tcp_tasklet_func,
832 			     (unsigned long)tsq);
833 	}
834 }
835 
836 /*
837  * Write buffer destructor automatically called from kfree_skb.
838  * We can't xmit new skbs from this context, as we might already
839  * hold qdisc lock.
840  */
841 void tcp_wfree(struct sk_buff *skb)
842 {
843 	struct sock *sk = skb->sk;
844 	struct tcp_sock *tp = tcp_sk(sk);
845 	int wmem;
846 
847 	/* Keep one reference on sk_wmem_alloc.
848 	 * Will be released by sk_free() from here or tcp_tasklet_func()
849 	 */
850 	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
851 
852 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
853 	 * Wait until our queues (qdisc + devices) are drained.
854 	 * This gives :
855 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
856 	 * - chance for incoming ACK (processed by another cpu maybe)
857 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
858 	 */
859 	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
860 		goto out;
861 
862 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
863 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
864 		unsigned long flags;
865 		struct tsq_tasklet *tsq;
866 
867 		/* queue this socket to tasklet queue */
868 		local_irq_save(flags);
869 		tsq = this_cpu_ptr(&tsq_tasklet);
870 		list_add(&tp->tsq_node, &tsq->head);
871 		tasklet_schedule(&tsq->tasklet);
872 		local_irq_restore(flags);
873 		return;
874 	}
875 out:
876 	sk_free(sk);
877 }
878 
879 /* This routine actually transmits TCP packets queued in by
880  * tcp_do_sendmsg().  This is used by both the initial
881  * transmission and possible later retransmissions.
882  * All SKB's seen here are completely headerless.  It is our
883  * job to build the TCP header, and pass the packet down to
884  * IP so it can do the same plus pass the packet off to the
885  * device.
886  *
887  * We are working here with either a clone of the original
888  * SKB, or a fresh unique copy made by the retransmit engine.
889  */
890 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
891 			    gfp_t gfp_mask)
892 {
893 	const struct inet_connection_sock *icsk = inet_csk(sk);
894 	struct inet_sock *inet;
895 	struct tcp_sock *tp;
896 	struct tcp_skb_cb *tcb;
897 	struct tcp_out_options opts;
898 	unsigned int tcp_options_size, tcp_header_size;
899 	struct tcp_md5sig_key *md5;
900 	struct tcphdr *th;
901 	int err;
902 
903 	BUG_ON(!skb || !tcp_skb_pcount(skb));
904 
905 	if (clone_it) {
906 		skb_mstamp_get(&skb->skb_mstamp);
907 
908 		if (unlikely(skb_cloned(skb)))
909 			skb = pskb_copy(skb, gfp_mask);
910 		else
911 			skb = skb_clone(skb, gfp_mask);
912 		if (unlikely(!skb))
913 			return -ENOBUFS;
914 	}
915 
916 	inet = inet_sk(sk);
917 	tp = tcp_sk(sk);
918 	tcb = TCP_SKB_CB(skb);
919 	memset(&opts, 0, sizeof(opts));
920 
921 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
922 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
923 	else
924 		tcp_options_size = tcp_established_options(sk, skb, &opts,
925 							   &md5);
926 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
927 
928 	if (tcp_packets_in_flight(tp) == 0)
929 		tcp_ca_event(sk, CA_EVENT_TX_START);
930 
931 	/* if no packet is in qdisc/device queue, then allow XPS to select
932 	 * another queue. We can be called from tcp_tsq_handler()
933 	 * which holds one reference to sk_wmem_alloc.
934 	 *
935 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
936 	 * One way to get this would be to set skb->truesize = 2 on them.
937 	 */
938 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
939 
940 	skb_push(skb, tcp_header_size);
941 	skb_reset_transport_header(skb);
942 
943 	skb_orphan(skb);
944 	skb->sk = sk;
945 	skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
946 	skb_set_hash_from_sk(skb, sk);
947 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
948 
949 	/* Build TCP header and checksum it. */
950 	th = tcp_hdr(skb);
951 	th->source		= inet->inet_sport;
952 	th->dest		= inet->inet_dport;
953 	th->seq			= htonl(tcb->seq);
954 	th->ack_seq		= htonl(tp->rcv_nxt);
955 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
956 					tcb->tcp_flags);
957 
958 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
959 		/* RFC1323: The window in SYN & SYN/ACK segments
960 		 * is never scaled.
961 		 */
962 		th->window	= htons(min(tp->rcv_wnd, 65535U));
963 	} else {
964 		th->window	= htons(tcp_select_window(sk));
965 	}
966 	th->check		= 0;
967 	th->urg_ptr		= 0;
968 
969 	/* The urg_mode check is necessary during a below snd_una win probe */
970 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
971 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
972 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
973 			th->urg = 1;
974 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
975 			th->urg_ptr = htons(0xFFFF);
976 			th->urg = 1;
977 		}
978 	}
979 
980 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
981 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
982 		tcp_ecn_send(sk, skb, tcp_header_size);
983 
984 #ifdef CONFIG_TCP_MD5SIG
985 	/* Calculate the MD5 hash, as we have all we need now */
986 	if (md5) {
987 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
988 		tp->af_specific->calc_md5_hash(opts.hash_location,
989 					       md5, sk, skb);
990 	}
991 #endif
992 
993 	icsk->icsk_af_ops->send_check(sk, skb);
994 
995 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
996 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
997 
998 	if (skb->len != tcp_header_size)
999 		tcp_event_data_sent(tp, sk);
1000 
1001 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1002 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1003 			      tcp_skb_pcount(skb));
1004 
1005 	/* OK, its time to fill skb_shinfo(skb)->gso_segs */
1006 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1007 
1008 	/* Our usage of tstamp should remain private */
1009 	skb->tstamp.tv64 = 0;
1010 
1011 	/* Cleanup our debris for IP stacks */
1012 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1013 			       sizeof(struct inet6_skb_parm)));
1014 
1015 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1016 
1017 	if (likely(err <= 0))
1018 		return err;
1019 
1020 	tcp_enter_cwr(sk);
1021 
1022 	return net_xmit_eval(err);
1023 }
1024 
1025 /* This routine just queues the buffer for sending.
1026  *
1027  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1028  * otherwise socket can stall.
1029  */
1030 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1031 {
1032 	struct tcp_sock *tp = tcp_sk(sk);
1033 
1034 	/* Advance write_seq and place onto the write_queue. */
1035 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1036 	__skb_header_release(skb);
1037 	tcp_add_write_queue_tail(sk, skb);
1038 	sk->sk_wmem_queued += skb->truesize;
1039 	sk_mem_charge(sk, skb->truesize);
1040 }
1041 
1042 /* Initialize TSO segments for a packet. */
1043 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1044 				 unsigned int mss_now)
1045 {
1046 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1047 
1048 	/* Make sure we own this skb before messing gso_size/gso_segs */
1049 	WARN_ON_ONCE(skb_cloned(skb));
1050 
1051 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1052 		/* Avoid the costly divide in the normal
1053 		 * non-TSO case.
1054 		 */
1055 		tcp_skb_pcount_set(skb, 1);
1056 		shinfo->gso_size = 0;
1057 		shinfo->gso_type = 0;
1058 	} else {
1059 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1060 		shinfo->gso_size = mss_now;
1061 		shinfo->gso_type = sk->sk_gso_type;
1062 	}
1063 }
1064 
1065 /* When a modification to fackets out becomes necessary, we need to check
1066  * skb is counted to fackets_out or not.
1067  */
1068 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1069 				   int decr)
1070 {
1071 	struct tcp_sock *tp = tcp_sk(sk);
1072 
1073 	if (!tp->sacked_out || tcp_is_reno(tp))
1074 		return;
1075 
1076 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1077 		tp->fackets_out -= decr;
1078 }
1079 
1080 /* Pcount in the middle of the write queue got changed, we need to do various
1081  * tweaks to fix counters
1082  */
1083 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1084 {
1085 	struct tcp_sock *tp = tcp_sk(sk);
1086 
1087 	tp->packets_out -= decr;
1088 
1089 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1090 		tp->sacked_out -= decr;
1091 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1092 		tp->retrans_out -= decr;
1093 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1094 		tp->lost_out -= decr;
1095 
1096 	/* Reno case is special. Sigh... */
1097 	if (tcp_is_reno(tp) && decr > 0)
1098 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1099 
1100 	tcp_adjust_fackets_out(sk, skb, decr);
1101 
1102 	if (tp->lost_skb_hint &&
1103 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1104 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1105 		tp->lost_cnt_hint -= decr;
1106 
1107 	tcp_verify_left_out(tp);
1108 }
1109 
1110 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1111 {
1112 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1113 
1114 	if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1115 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1116 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1117 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1118 
1119 		shinfo->tx_flags &= ~tsflags;
1120 		shinfo2->tx_flags |= tsflags;
1121 		swap(shinfo->tskey, shinfo2->tskey);
1122 	}
1123 }
1124 
1125 /* Function to create two new TCP segments.  Shrinks the given segment
1126  * to the specified size and appends a new segment with the rest of the
1127  * packet to the list.  This won't be called frequently, I hope.
1128  * Remember, these are still headerless SKBs at this point.
1129  */
1130 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1131 		 unsigned int mss_now, gfp_t gfp)
1132 {
1133 	struct tcp_sock *tp = tcp_sk(sk);
1134 	struct sk_buff *buff;
1135 	int nsize, old_factor;
1136 	int nlen;
1137 	u8 flags;
1138 
1139 	if (WARN_ON(len > skb->len))
1140 		return -EINVAL;
1141 
1142 	nsize = skb_headlen(skb) - len;
1143 	if (nsize < 0)
1144 		nsize = 0;
1145 
1146 	if (skb_unclone(skb, gfp))
1147 		return -ENOMEM;
1148 
1149 	/* Get a new skb... force flag on. */
1150 	buff = sk_stream_alloc_skb(sk, nsize, gfp);
1151 	if (buff == NULL)
1152 		return -ENOMEM; /* We'll just try again later. */
1153 
1154 	sk->sk_wmem_queued += buff->truesize;
1155 	sk_mem_charge(sk, buff->truesize);
1156 	nlen = skb->len - len - nsize;
1157 	buff->truesize += nlen;
1158 	skb->truesize -= nlen;
1159 
1160 	/* Correct the sequence numbers. */
1161 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1162 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1163 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1164 
1165 	/* PSH and FIN should only be set in the second packet. */
1166 	flags = TCP_SKB_CB(skb)->tcp_flags;
1167 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1168 	TCP_SKB_CB(buff)->tcp_flags = flags;
1169 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1170 
1171 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1172 		/* Copy and checksum data tail into the new buffer. */
1173 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1174 						       skb_put(buff, nsize),
1175 						       nsize, 0);
1176 
1177 		skb_trim(skb, len);
1178 
1179 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1180 	} else {
1181 		skb->ip_summed = CHECKSUM_PARTIAL;
1182 		skb_split(skb, buff, len);
1183 	}
1184 
1185 	buff->ip_summed = skb->ip_summed;
1186 
1187 	buff->tstamp = skb->tstamp;
1188 	tcp_fragment_tstamp(skb, buff);
1189 
1190 	old_factor = tcp_skb_pcount(skb);
1191 
1192 	/* Fix up tso_factor for both original and new SKB.  */
1193 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1194 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1195 
1196 	/* If this packet has been sent out already, we must
1197 	 * adjust the various packet counters.
1198 	 */
1199 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1200 		int diff = old_factor - tcp_skb_pcount(skb) -
1201 			tcp_skb_pcount(buff);
1202 
1203 		if (diff)
1204 			tcp_adjust_pcount(sk, skb, diff);
1205 	}
1206 
1207 	/* Link BUFF into the send queue. */
1208 	__skb_header_release(buff);
1209 	tcp_insert_write_queue_after(skb, buff, sk);
1210 
1211 	return 0;
1212 }
1213 
1214 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1215  * eventually). The difference is that pulled data not copied, but
1216  * immediately discarded.
1217  */
1218 static void __pskb_trim_head(struct sk_buff *skb, int len)
1219 {
1220 	struct skb_shared_info *shinfo;
1221 	int i, k, eat;
1222 
1223 	eat = min_t(int, len, skb_headlen(skb));
1224 	if (eat) {
1225 		__skb_pull(skb, eat);
1226 		len -= eat;
1227 		if (!len)
1228 			return;
1229 	}
1230 	eat = len;
1231 	k = 0;
1232 	shinfo = skb_shinfo(skb);
1233 	for (i = 0; i < shinfo->nr_frags; i++) {
1234 		int size = skb_frag_size(&shinfo->frags[i]);
1235 
1236 		if (size <= eat) {
1237 			skb_frag_unref(skb, i);
1238 			eat -= size;
1239 		} else {
1240 			shinfo->frags[k] = shinfo->frags[i];
1241 			if (eat) {
1242 				shinfo->frags[k].page_offset += eat;
1243 				skb_frag_size_sub(&shinfo->frags[k], eat);
1244 				eat = 0;
1245 			}
1246 			k++;
1247 		}
1248 	}
1249 	shinfo->nr_frags = k;
1250 
1251 	skb_reset_tail_pointer(skb);
1252 	skb->data_len -= len;
1253 	skb->len = skb->data_len;
1254 }
1255 
1256 /* Remove acked data from a packet in the transmit queue. */
1257 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1258 {
1259 	if (skb_unclone(skb, GFP_ATOMIC))
1260 		return -ENOMEM;
1261 
1262 	__pskb_trim_head(skb, len);
1263 
1264 	TCP_SKB_CB(skb)->seq += len;
1265 	skb->ip_summed = CHECKSUM_PARTIAL;
1266 
1267 	skb->truesize	     -= len;
1268 	sk->sk_wmem_queued   -= len;
1269 	sk_mem_uncharge(sk, len);
1270 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1271 
1272 	/* Any change of skb->len requires recalculation of tso factor. */
1273 	if (tcp_skb_pcount(skb) > 1)
1274 		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1275 
1276 	return 0;
1277 }
1278 
1279 /* Calculate MSS not accounting any TCP options.  */
1280 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1281 {
1282 	const struct tcp_sock *tp = tcp_sk(sk);
1283 	const struct inet_connection_sock *icsk = inet_csk(sk);
1284 	int mss_now;
1285 
1286 	/* Calculate base mss without TCP options:
1287 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1288 	 */
1289 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1290 
1291 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1292 	if (icsk->icsk_af_ops->net_frag_header_len) {
1293 		const struct dst_entry *dst = __sk_dst_get(sk);
1294 
1295 		if (dst && dst_allfrag(dst))
1296 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1297 	}
1298 
1299 	/* Clamp it (mss_clamp does not include tcp options) */
1300 	if (mss_now > tp->rx_opt.mss_clamp)
1301 		mss_now = tp->rx_opt.mss_clamp;
1302 
1303 	/* Now subtract optional transport overhead */
1304 	mss_now -= icsk->icsk_ext_hdr_len;
1305 
1306 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1307 	if (mss_now < 48)
1308 		mss_now = 48;
1309 	return mss_now;
1310 }
1311 
1312 /* Calculate MSS. Not accounting for SACKs here.  */
1313 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1314 {
1315 	/* Subtract TCP options size, not including SACKs */
1316 	return __tcp_mtu_to_mss(sk, pmtu) -
1317 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1318 }
1319 
1320 /* Inverse of above */
1321 int tcp_mss_to_mtu(struct sock *sk, int mss)
1322 {
1323 	const struct tcp_sock *tp = tcp_sk(sk);
1324 	const struct inet_connection_sock *icsk = inet_csk(sk);
1325 	int mtu;
1326 
1327 	mtu = mss +
1328 	      tp->tcp_header_len +
1329 	      icsk->icsk_ext_hdr_len +
1330 	      icsk->icsk_af_ops->net_header_len;
1331 
1332 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1333 	if (icsk->icsk_af_ops->net_frag_header_len) {
1334 		const struct dst_entry *dst = __sk_dst_get(sk);
1335 
1336 		if (dst && dst_allfrag(dst))
1337 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1338 	}
1339 	return mtu;
1340 }
1341 
1342 /* MTU probing init per socket */
1343 void tcp_mtup_init(struct sock *sk)
1344 {
1345 	struct tcp_sock *tp = tcp_sk(sk);
1346 	struct inet_connection_sock *icsk = inet_csk(sk);
1347 	struct net *net = sock_net(sk);
1348 
1349 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1350 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1351 			       icsk->icsk_af_ops->net_header_len;
1352 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1353 	icsk->icsk_mtup.probe_size = 0;
1354 	if (icsk->icsk_mtup.enabled)
1355 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1356 }
1357 EXPORT_SYMBOL(tcp_mtup_init);
1358 
1359 /* This function synchronize snd mss to current pmtu/exthdr set.
1360 
1361    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1362    for TCP options, but includes only bare TCP header.
1363 
1364    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1365    It is minimum of user_mss and mss received with SYN.
1366    It also does not include TCP options.
1367 
1368    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1369 
1370    tp->mss_cache is current effective sending mss, including
1371    all tcp options except for SACKs. It is evaluated,
1372    taking into account current pmtu, but never exceeds
1373    tp->rx_opt.mss_clamp.
1374 
1375    NOTE1. rfc1122 clearly states that advertised MSS
1376    DOES NOT include either tcp or ip options.
1377 
1378    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1379    are READ ONLY outside this function.		--ANK (980731)
1380  */
1381 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1382 {
1383 	struct tcp_sock *tp = tcp_sk(sk);
1384 	struct inet_connection_sock *icsk = inet_csk(sk);
1385 	int mss_now;
1386 
1387 	if (icsk->icsk_mtup.search_high > pmtu)
1388 		icsk->icsk_mtup.search_high = pmtu;
1389 
1390 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1391 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1392 
1393 	/* And store cached results */
1394 	icsk->icsk_pmtu_cookie = pmtu;
1395 	if (icsk->icsk_mtup.enabled)
1396 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1397 	tp->mss_cache = mss_now;
1398 
1399 	return mss_now;
1400 }
1401 EXPORT_SYMBOL(tcp_sync_mss);
1402 
1403 /* Compute the current effective MSS, taking SACKs and IP options,
1404  * and even PMTU discovery events into account.
1405  */
1406 unsigned int tcp_current_mss(struct sock *sk)
1407 {
1408 	const struct tcp_sock *tp = tcp_sk(sk);
1409 	const struct dst_entry *dst = __sk_dst_get(sk);
1410 	u32 mss_now;
1411 	unsigned int header_len;
1412 	struct tcp_out_options opts;
1413 	struct tcp_md5sig_key *md5;
1414 
1415 	mss_now = tp->mss_cache;
1416 
1417 	if (dst) {
1418 		u32 mtu = dst_mtu(dst);
1419 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1420 			mss_now = tcp_sync_mss(sk, mtu);
1421 	}
1422 
1423 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1424 		     sizeof(struct tcphdr);
1425 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1426 	 * some common options. If this is an odd packet (because we have SACK
1427 	 * blocks etc) then our calculated header_len will be different, and
1428 	 * we have to adjust mss_now correspondingly */
1429 	if (header_len != tp->tcp_header_len) {
1430 		int delta = (int) header_len - tp->tcp_header_len;
1431 		mss_now -= delta;
1432 	}
1433 
1434 	return mss_now;
1435 }
1436 
1437 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1438  * As additional protections, we do not touch cwnd in retransmission phases,
1439  * and if application hit its sndbuf limit recently.
1440  */
1441 static void tcp_cwnd_application_limited(struct sock *sk)
1442 {
1443 	struct tcp_sock *tp = tcp_sk(sk);
1444 
1445 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1446 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1447 		/* Limited by application or receiver window. */
1448 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1449 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1450 		if (win_used < tp->snd_cwnd) {
1451 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1452 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1453 		}
1454 		tp->snd_cwnd_used = 0;
1455 	}
1456 	tp->snd_cwnd_stamp = tcp_time_stamp;
1457 }
1458 
1459 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1460 {
1461 	struct tcp_sock *tp = tcp_sk(sk);
1462 
1463 	/* Track the maximum number of outstanding packets in each
1464 	 * window, and remember whether we were cwnd-limited then.
1465 	 */
1466 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1467 	    tp->packets_out > tp->max_packets_out) {
1468 		tp->max_packets_out = tp->packets_out;
1469 		tp->max_packets_seq = tp->snd_nxt;
1470 		tp->is_cwnd_limited = is_cwnd_limited;
1471 	}
1472 
1473 	if (tcp_is_cwnd_limited(sk)) {
1474 		/* Network is feed fully. */
1475 		tp->snd_cwnd_used = 0;
1476 		tp->snd_cwnd_stamp = tcp_time_stamp;
1477 	} else {
1478 		/* Network starves. */
1479 		if (tp->packets_out > tp->snd_cwnd_used)
1480 			tp->snd_cwnd_used = tp->packets_out;
1481 
1482 		if (sysctl_tcp_slow_start_after_idle &&
1483 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1484 			tcp_cwnd_application_limited(sk);
1485 	}
1486 }
1487 
1488 /* Minshall's variant of the Nagle send check. */
1489 static bool tcp_minshall_check(const struct tcp_sock *tp)
1490 {
1491 	return after(tp->snd_sml, tp->snd_una) &&
1492 		!after(tp->snd_sml, tp->snd_nxt);
1493 }
1494 
1495 /* Update snd_sml if this skb is under mss
1496  * Note that a TSO packet might end with a sub-mss segment
1497  * The test is really :
1498  * if ((skb->len % mss) != 0)
1499  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1500  * But we can avoid doing the divide again given we already have
1501  *  skb_pcount = skb->len / mss_now
1502  */
1503 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1504 				const struct sk_buff *skb)
1505 {
1506 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1507 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1508 }
1509 
1510 /* Return false, if packet can be sent now without violation Nagle's rules:
1511  * 1. It is full sized. (provided by caller in %partial bool)
1512  * 2. Or it contains FIN. (already checked by caller)
1513  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1514  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1515  *    With Minshall's modification: all sent small packets are ACKed.
1516  */
1517 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1518 			    int nonagle)
1519 {
1520 	return partial &&
1521 		((nonagle & TCP_NAGLE_CORK) ||
1522 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1523 }
1524 
1525 /* Return how many segs we'd like on a TSO packet,
1526  * to send one TSO packet per ms
1527  */
1528 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1529 {
1530 	u32 bytes, segs;
1531 
1532 	bytes = min(sk->sk_pacing_rate >> 10,
1533 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1534 
1535 	/* Goal is to send at least one packet per ms,
1536 	 * not one big TSO packet every 100 ms.
1537 	 * This preserves ACK clocking and is consistent
1538 	 * with tcp_tso_should_defer() heuristic.
1539 	 */
1540 	segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1541 
1542 	return min_t(u32, segs, sk->sk_gso_max_segs);
1543 }
1544 
1545 /* Returns the portion of skb which can be sent right away */
1546 static unsigned int tcp_mss_split_point(const struct sock *sk,
1547 					const struct sk_buff *skb,
1548 					unsigned int mss_now,
1549 					unsigned int max_segs,
1550 					int nonagle)
1551 {
1552 	const struct tcp_sock *tp = tcp_sk(sk);
1553 	u32 partial, needed, window, max_len;
1554 
1555 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1556 	max_len = mss_now * max_segs;
1557 
1558 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1559 		return max_len;
1560 
1561 	needed = min(skb->len, window);
1562 
1563 	if (max_len <= needed)
1564 		return max_len;
1565 
1566 	partial = needed % mss_now;
1567 	/* If last segment is not a full MSS, check if Nagle rules allow us
1568 	 * to include this last segment in this skb.
1569 	 * Otherwise, we'll split the skb at last MSS boundary
1570 	 */
1571 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1572 		return needed - partial;
1573 
1574 	return needed;
1575 }
1576 
1577 /* Can at least one segment of SKB be sent right now, according to the
1578  * congestion window rules?  If so, return how many segments are allowed.
1579  */
1580 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1581 					 const struct sk_buff *skb)
1582 {
1583 	u32 in_flight, cwnd, halfcwnd;
1584 
1585 	/* Don't be strict about the congestion window for the final FIN.  */
1586 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1587 	    tcp_skb_pcount(skb) == 1)
1588 		return 1;
1589 
1590 	in_flight = tcp_packets_in_flight(tp);
1591 	cwnd = tp->snd_cwnd;
1592 	if (in_flight >= cwnd)
1593 		return 0;
1594 
1595 	/* For better scheduling, ensure we have at least
1596 	 * 2 GSO packets in flight.
1597 	 */
1598 	halfcwnd = max(cwnd >> 1, 1U);
1599 	return min(halfcwnd, cwnd - in_flight);
1600 }
1601 
1602 /* Initialize TSO state of a skb.
1603  * This must be invoked the first time we consider transmitting
1604  * SKB onto the wire.
1605  */
1606 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1607 			     unsigned int mss_now)
1608 {
1609 	int tso_segs = tcp_skb_pcount(skb);
1610 
1611 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1612 		tcp_set_skb_tso_segs(sk, skb, mss_now);
1613 		tso_segs = tcp_skb_pcount(skb);
1614 	}
1615 	return tso_segs;
1616 }
1617 
1618 
1619 /* Return true if the Nagle test allows this packet to be
1620  * sent now.
1621  */
1622 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1623 				  unsigned int cur_mss, int nonagle)
1624 {
1625 	/* Nagle rule does not apply to frames, which sit in the middle of the
1626 	 * write_queue (they have no chances to get new data).
1627 	 *
1628 	 * This is implemented in the callers, where they modify the 'nonagle'
1629 	 * argument based upon the location of SKB in the send queue.
1630 	 */
1631 	if (nonagle & TCP_NAGLE_PUSH)
1632 		return true;
1633 
1634 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1635 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1636 		return true;
1637 
1638 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1639 		return true;
1640 
1641 	return false;
1642 }
1643 
1644 /* Does at least the first segment of SKB fit into the send window? */
1645 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1646 			     const struct sk_buff *skb,
1647 			     unsigned int cur_mss)
1648 {
1649 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1650 
1651 	if (skb->len > cur_mss)
1652 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1653 
1654 	return !after(end_seq, tcp_wnd_end(tp));
1655 }
1656 
1657 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1658  * should be put on the wire right now.  If so, it returns the number of
1659  * packets allowed by the congestion window.
1660  */
1661 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1662 				 unsigned int cur_mss, int nonagle)
1663 {
1664 	const struct tcp_sock *tp = tcp_sk(sk);
1665 	unsigned int cwnd_quota;
1666 
1667 	tcp_init_tso_segs(sk, skb, cur_mss);
1668 
1669 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1670 		return 0;
1671 
1672 	cwnd_quota = tcp_cwnd_test(tp, skb);
1673 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1674 		cwnd_quota = 0;
1675 
1676 	return cwnd_quota;
1677 }
1678 
1679 /* Test if sending is allowed right now. */
1680 bool tcp_may_send_now(struct sock *sk)
1681 {
1682 	const struct tcp_sock *tp = tcp_sk(sk);
1683 	struct sk_buff *skb = tcp_send_head(sk);
1684 
1685 	return skb &&
1686 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1687 			     (tcp_skb_is_last(sk, skb) ?
1688 			      tp->nonagle : TCP_NAGLE_PUSH));
1689 }
1690 
1691 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1692  * which is put after SKB on the list.  It is very much like
1693  * tcp_fragment() except that it may make several kinds of assumptions
1694  * in order to speed up the splitting operation.  In particular, we
1695  * know that all the data is in scatter-gather pages, and that the
1696  * packet has never been sent out before (and thus is not cloned).
1697  */
1698 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1699 			unsigned int mss_now, gfp_t gfp)
1700 {
1701 	struct sk_buff *buff;
1702 	int nlen = skb->len - len;
1703 	u8 flags;
1704 
1705 	/* All of a TSO frame must be composed of paged data.  */
1706 	if (skb->len != skb->data_len)
1707 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1708 
1709 	buff = sk_stream_alloc_skb(sk, 0, gfp);
1710 	if (unlikely(buff == NULL))
1711 		return -ENOMEM;
1712 
1713 	sk->sk_wmem_queued += buff->truesize;
1714 	sk_mem_charge(sk, buff->truesize);
1715 	buff->truesize += nlen;
1716 	skb->truesize -= nlen;
1717 
1718 	/* Correct the sequence numbers. */
1719 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1720 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1721 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1722 
1723 	/* PSH and FIN should only be set in the second packet. */
1724 	flags = TCP_SKB_CB(skb)->tcp_flags;
1725 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1726 	TCP_SKB_CB(buff)->tcp_flags = flags;
1727 
1728 	/* This packet was never sent out yet, so no SACK bits. */
1729 	TCP_SKB_CB(buff)->sacked = 0;
1730 
1731 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1732 	skb_split(skb, buff, len);
1733 	tcp_fragment_tstamp(skb, buff);
1734 
1735 	/* Fix up tso_factor for both original and new SKB.  */
1736 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1737 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1738 
1739 	/* Link BUFF into the send queue. */
1740 	__skb_header_release(buff);
1741 	tcp_insert_write_queue_after(skb, buff, sk);
1742 
1743 	return 0;
1744 }
1745 
1746 /* Try to defer sending, if possible, in order to minimize the amount
1747  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1748  *
1749  * This algorithm is from John Heffner.
1750  */
1751 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1752 				 bool *is_cwnd_limited, u32 max_segs)
1753 {
1754 	const struct inet_connection_sock *icsk = inet_csk(sk);
1755 	u32 age, send_win, cong_win, limit, in_flight;
1756 	struct tcp_sock *tp = tcp_sk(sk);
1757 	struct skb_mstamp now;
1758 	struct sk_buff *head;
1759 	int win_divisor;
1760 
1761 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1762 		goto send_now;
1763 
1764 	if (!((1 << icsk->icsk_ca_state) & (TCPF_CA_Open | TCPF_CA_CWR)))
1765 		goto send_now;
1766 
1767 	/* Avoid bursty behavior by allowing defer
1768 	 * only if the last write was recent.
1769 	 */
1770 	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1771 		goto send_now;
1772 
1773 	in_flight = tcp_packets_in_flight(tp);
1774 
1775 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1776 
1777 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1778 
1779 	/* From in_flight test above, we know that cwnd > in_flight.  */
1780 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1781 
1782 	limit = min(send_win, cong_win);
1783 
1784 	/* If a full-sized TSO skb can be sent, do it. */
1785 	if (limit >= max_segs * tp->mss_cache)
1786 		goto send_now;
1787 
1788 	/* Middle in queue won't get any more data, full sendable already? */
1789 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1790 		goto send_now;
1791 
1792 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1793 	if (win_divisor) {
1794 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1795 
1796 		/* If at least some fraction of a window is available,
1797 		 * just use it.
1798 		 */
1799 		chunk /= win_divisor;
1800 		if (limit >= chunk)
1801 			goto send_now;
1802 	} else {
1803 		/* Different approach, try not to defer past a single
1804 		 * ACK.  Receiver should ACK every other full sized
1805 		 * frame, so if we have space for more than 3 frames
1806 		 * then send now.
1807 		 */
1808 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1809 			goto send_now;
1810 	}
1811 
1812 	head = tcp_write_queue_head(sk);
1813 	skb_mstamp_get(&now);
1814 	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1815 	/* If next ACK is likely to come too late (half srtt), do not defer */
1816 	if (age < (tp->srtt_us >> 4))
1817 		goto send_now;
1818 
1819 	/* Ok, it looks like it is advisable to defer. */
1820 
1821 	if (cong_win < send_win && cong_win < skb->len)
1822 		*is_cwnd_limited = true;
1823 
1824 	return true;
1825 
1826 send_now:
1827 	return false;
1828 }
1829 
1830 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1831 {
1832 	struct inet_connection_sock *icsk = inet_csk(sk);
1833 	struct tcp_sock *tp = tcp_sk(sk);
1834 	struct net *net = sock_net(sk);
1835 	u32 interval;
1836 	s32 delta;
1837 
1838 	interval = net->ipv4.sysctl_tcp_probe_interval;
1839 	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1840 	if (unlikely(delta >= interval * HZ)) {
1841 		int mss = tcp_current_mss(sk);
1842 
1843 		/* Update current search range */
1844 		icsk->icsk_mtup.probe_size = 0;
1845 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1846 			sizeof(struct tcphdr) +
1847 			icsk->icsk_af_ops->net_header_len;
1848 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1849 
1850 		/* Update probe time stamp */
1851 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1852 	}
1853 }
1854 
1855 /* Create a new MTU probe if we are ready.
1856  * MTU probe is regularly attempting to increase the path MTU by
1857  * deliberately sending larger packets.  This discovers routing
1858  * changes resulting in larger path MTUs.
1859  *
1860  * Returns 0 if we should wait to probe (no cwnd available),
1861  *         1 if a probe was sent,
1862  *         -1 otherwise
1863  */
1864 static int tcp_mtu_probe(struct sock *sk)
1865 {
1866 	struct tcp_sock *tp = tcp_sk(sk);
1867 	struct inet_connection_sock *icsk = inet_csk(sk);
1868 	struct sk_buff *skb, *nskb, *next;
1869 	struct net *net = sock_net(sk);
1870 	int len;
1871 	int probe_size;
1872 	int size_needed;
1873 	int copy;
1874 	int mss_now;
1875 	int interval;
1876 
1877 	/* Not currently probing/verifying,
1878 	 * not in recovery,
1879 	 * have enough cwnd, and
1880 	 * not SACKing (the variable headers throw things off) */
1881 	if (!icsk->icsk_mtup.enabled ||
1882 	    icsk->icsk_mtup.probe_size ||
1883 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1884 	    tp->snd_cwnd < 11 ||
1885 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1886 		return -1;
1887 
1888 	/* Use binary search for probe_size between tcp_mss_base,
1889 	 * and current mss_clamp. if (search_high - search_low)
1890 	 * smaller than a threshold, backoff from probing.
1891 	 */
1892 	mss_now = tcp_current_mss(sk);
1893 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1894 				    icsk->icsk_mtup.search_low) >> 1);
1895 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1896 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1897 	/* When misfortune happens, we are reprobing actively,
1898 	 * and then reprobe timer has expired. We stick with current
1899 	 * probing process by not resetting search range to its orignal.
1900 	 */
1901 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1902 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1903 		/* Check whether enough time has elaplased for
1904 		 * another round of probing.
1905 		 */
1906 		tcp_mtu_check_reprobe(sk);
1907 		return -1;
1908 	}
1909 
1910 	/* Have enough data in the send queue to probe? */
1911 	if (tp->write_seq - tp->snd_nxt < size_needed)
1912 		return -1;
1913 
1914 	if (tp->snd_wnd < size_needed)
1915 		return -1;
1916 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1917 		return 0;
1918 
1919 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1920 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1921 		if (!tcp_packets_in_flight(tp))
1922 			return -1;
1923 		else
1924 			return 0;
1925 	}
1926 
1927 	/* We're allowed to probe.  Build it now. */
1928 	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1929 		return -1;
1930 	sk->sk_wmem_queued += nskb->truesize;
1931 	sk_mem_charge(sk, nskb->truesize);
1932 
1933 	skb = tcp_send_head(sk);
1934 
1935 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1936 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1937 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1938 	TCP_SKB_CB(nskb)->sacked = 0;
1939 	nskb->csum = 0;
1940 	nskb->ip_summed = skb->ip_summed;
1941 
1942 	tcp_insert_write_queue_before(nskb, skb, sk);
1943 
1944 	len = 0;
1945 	tcp_for_write_queue_from_safe(skb, next, sk) {
1946 		copy = min_t(int, skb->len, probe_size - len);
1947 		if (nskb->ip_summed)
1948 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1949 		else
1950 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1951 							    skb_put(nskb, copy),
1952 							    copy, nskb->csum);
1953 
1954 		if (skb->len <= copy) {
1955 			/* We've eaten all the data from this skb.
1956 			 * Throw it away. */
1957 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1958 			tcp_unlink_write_queue(skb, sk);
1959 			sk_wmem_free_skb(sk, skb);
1960 		} else {
1961 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1962 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1963 			if (!skb_shinfo(skb)->nr_frags) {
1964 				skb_pull(skb, copy);
1965 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1966 					skb->csum = csum_partial(skb->data,
1967 								 skb->len, 0);
1968 			} else {
1969 				__pskb_trim_head(skb, copy);
1970 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1971 			}
1972 			TCP_SKB_CB(skb)->seq += copy;
1973 		}
1974 
1975 		len += copy;
1976 
1977 		if (len >= probe_size)
1978 			break;
1979 	}
1980 	tcp_init_tso_segs(sk, nskb, nskb->len);
1981 
1982 	/* We're ready to send.  If this fails, the probe will
1983 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
1984 	 */
1985 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1986 		/* Decrement cwnd here because we are sending
1987 		 * effectively two packets. */
1988 		tp->snd_cwnd--;
1989 		tcp_event_new_data_sent(sk, nskb);
1990 
1991 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1992 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1993 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1994 
1995 		return 1;
1996 	}
1997 
1998 	return -1;
1999 }
2000 
2001 /* This routine writes packets to the network.  It advances the
2002  * send_head.  This happens as incoming acks open up the remote
2003  * window for us.
2004  *
2005  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2006  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2007  * account rare use of URG, this is not a big flaw.
2008  *
2009  * Send at most one packet when push_one > 0. Temporarily ignore
2010  * cwnd limit to force at most one packet out when push_one == 2.
2011 
2012  * Returns true, if no segments are in flight and we have queued segments,
2013  * but cannot send anything now because of SWS or another problem.
2014  */
2015 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2016 			   int push_one, gfp_t gfp)
2017 {
2018 	struct tcp_sock *tp = tcp_sk(sk);
2019 	struct sk_buff *skb;
2020 	unsigned int tso_segs, sent_pkts;
2021 	int cwnd_quota;
2022 	int result;
2023 	bool is_cwnd_limited = false;
2024 	u32 max_segs;
2025 
2026 	sent_pkts = 0;
2027 
2028 	if (!push_one) {
2029 		/* Do MTU probing. */
2030 		result = tcp_mtu_probe(sk);
2031 		if (!result) {
2032 			return false;
2033 		} else if (result > 0) {
2034 			sent_pkts = 1;
2035 		}
2036 	}
2037 
2038 	max_segs = tcp_tso_autosize(sk, mss_now);
2039 	while ((skb = tcp_send_head(sk))) {
2040 		unsigned int limit;
2041 
2042 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
2043 		BUG_ON(!tso_segs);
2044 
2045 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2046 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2047 			skb_mstamp_get(&skb->skb_mstamp);
2048 			goto repair; /* Skip network transmission */
2049 		}
2050 
2051 		cwnd_quota = tcp_cwnd_test(tp, skb);
2052 		if (!cwnd_quota) {
2053 			is_cwnd_limited = true;
2054 			if (push_one == 2)
2055 				/* Force out a loss probe pkt. */
2056 				cwnd_quota = 1;
2057 			else
2058 				break;
2059 		}
2060 
2061 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2062 			break;
2063 
2064 		if (tso_segs == 1 || !max_segs) {
2065 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2066 						     (tcp_skb_is_last(sk, skb) ?
2067 						      nonagle : TCP_NAGLE_PUSH))))
2068 				break;
2069 		} else {
2070 			if (!push_one &&
2071 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2072 						 max_segs))
2073 				break;
2074 		}
2075 
2076 		limit = mss_now;
2077 		if (tso_segs > 1 && max_segs && !tcp_urg_mode(tp))
2078 			limit = tcp_mss_split_point(sk, skb, mss_now,
2079 						    min_t(unsigned int,
2080 							  cwnd_quota,
2081 							  max_segs),
2082 						    nonagle);
2083 
2084 		if (skb->len > limit &&
2085 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2086 			break;
2087 
2088 		/* TCP Small Queues :
2089 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2090 		 * This allows for :
2091 		 *  - better RTT estimation and ACK scheduling
2092 		 *  - faster recovery
2093 		 *  - high rates
2094 		 * Alas, some drivers / subsystems require a fair amount
2095 		 * of queued bytes to ensure line rate.
2096 		 * One example is wifi aggregation (802.11 AMPDU)
2097 		 */
2098 		limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2099 		limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2100 
2101 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2102 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2103 			/* It is possible TX completion already happened
2104 			 * before we set TSQ_THROTTLED, so we must
2105 			 * test again the condition.
2106 			 */
2107 			smp_mb__after_atomic();
2108 			if (atomic_read(&sk->sk_wmem_alloc) > limit)
2109 				break;
2110 		}
2111 
2112 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2113 			break;
2114 
2115 repair:
2116 		/* Advance the send_head.  This one is sent out.
2117 		 * This call will increment packets_out.
2118 		 */
2119 		tcp_event_new_data_sent(sk, skb);
2120 
2121 		tcp_minshall_update(tp, mss_now, skb);
2122 		sent_pkts += tcp_skb_pcount(skb);
2123 
2124 		if (push_one)
2125 			break;
2126 	}
2127 
2128 	if (likely(sent_pkts)) {
2129 		if (tcp_in_cwnd_reduction(sk))
2130 			tp->prr_out += sent_pkts;
2131 
2132 		/* Send one loss probe per tail loss episode. */
2133 		if (push_one != 2)
2134 			tcp_schedule_loss_probe(sk);
2135 		tcp_cwnd_validate(sk, is_cwnd_limited);
2136 		return false;
2137 	}
2138 	return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2139 }
2140 
2141 bool tcp_schedule_loss_probe(struct sock *sk)
2142 {
2143 	struct inet_connection_sock *icsk = inet_csk(sk);
2144 	struct tcp_sock *tp = tcp_sk(sk);
2145 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2146 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2147 
2148 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2149 		return false;
2150 	/* No consecutive loss probes. */
2151 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2152 		tcp_rearm_rto(sk);
2153 		return false;
2154 	}
2155 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2156 	 * finishes.
2157 	 */
2158 	if (sk->sk_state == TCP_SYN_RECV)
2159 		return false;
2160 
2161 	/* TLP is only scheduled when next timer event is RTO. */
2162 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2163 		return false;
2164 
2165 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2166 	 * in Open state, that are either limited by cwnd or application.
2167 	 */
2168 	if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2169 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2170 		return false;
2171 
2172 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2173 	     tcp_send_head(sk))
2174 		return false;
2175 
2176 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2177 	 * for delayed ack when there's one outstanding packet.
2178 	 */
2179 	timeout = rtt << 1;
2180 	if (tp->packets_out == 1)
2181 		timeout = max_t(u32, timeout,
2182 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2183 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2184 
2185 	/* If RTO is shorter, just schedule TLP in its place. */
2186 	tlp_time_stamp = tcp_time_stamp + timeout;
2187 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2188 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2189 		s32 delta = rto_time_stamp - tcp_time_stamp;
2190 		if (delta > 0)
2191 			timeout = delta;
2192 	}
2193 
2194 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2195 				  TCP_RTO_MAX);
2196 	return true;
2197 }
2198 
2199 /* Thanks to skb fast clones, we can detect if a prior transmit of
2200  * a packet is still in a qdisc or driver queue.
2201  * In this case, there is very little point doing a retransmit !
2202  * Note: This is called from BH context only.
2203  */
2204 static bool skb_still_in_host_queue(const struct sock *sk,
2205 				    const struct sk_buff *skb)
2206 {
2207 	if (unlikely(skb_fclone_busy(sk, skb))) {
2208 		NET_INC_STATS_BH(sock_net(sk),
2209 				 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2210 		return true;
2211 	}
2212 	return false;
2213 }
2214 
2215 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2216  * retransmit the last segment.
2217  */
2218 void tcp_send_loss_probe(struct sock *sk)
2219 {
2220 	struct tcp_sock *tp = tcp_sk(sk);
2221 	struct sk_buff *skb;
2222 	int pcount;
2223 	int mss = tcp_current_mss(sk);
2224 	int err = -1;
2225 
2226 	if (tcp_send_head(sk) != NULL) {
2227 		err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2228 		goto rearm_timer;
2229 	}
2230 
2231 	/* At most one outstanding TLP retransmission. */
2232 	if (tp->tlp_high_seq)
2233 		goto rearm_timer;
2234 
2235 	/* Retransmit last segment. */
2236 	skb = tcp_write_queue_tail(sk);
2237 	if (WARN_ON(!skb))
2238 		goto rearm_timer;
2239 
2240 	if (skb_still_in_host_queue(sk, skb))
2241 		goto rearm_timer;
2242 
2243 	pcount = tcp_skb_pcount(skb);
2244 	if (WARN_ON(!pcount))
2245 		goto rearm_timer;
2246 
2247 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2248 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2249 					  GFP_ATOMIC)))
2250 			goto rearm_timer;
2251 		skb = tcp_write_queue_tail(sk);
2252 	}
2253 
2254 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2255 		goto rearm_timer;
2256 
2257 	err = __tcp_retransmit_skb(sk, skb);
2258 
2259 	/* Record snd_nxt for loss detection. */
2260 	if (likely(!err))
2261 		tp->tlp_high_seq = tp->snd_nxt;
2262 
2263 rearm_timer:
2264 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2265 				  inet_csk(sk)->icsk_rto,
2266 				  TCP_RTO_MAX);
2267 
2268 	if (likely(!err))
2269 		NET_INC_STATS_BH(sock_net(sk),
2270 				 LINUX_MIB_TCPLOSSPROBES);
2271 }
2272 
2273 /* Push out any pending frames which were held back due to
2274  * TCP_CORK or attempt at coalescing tiny packets.
2275  * The socket must be locked by the caller.
2276  */
2277 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2278 			       int nonagle)
2279 {
2280 	/* If we are closed, the bytes will have to remain here.
2281 	 * In time closedown will finish, we empty the write queue and
2282 	 * all will be happy.
2283 	 */
2284 	if (unlikely(sk->sk_state == TCP_CLOSE))
2285 		return;
2286 
2287 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2288 			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2289 		tcp_check_probe_timer(sk);
2290 }
2291 
2292 /* Send _single_ skb sitting at the send head. This function requires
2293  * true push pending frames to setup probe timer etc.
2294  */
2295 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2296 {
2297 	struct sk_buff *skb = tcp_send_head(sk);
2298 
2299 	BUG_ON(!skb || skb->len < mss_now);
2300 
2301 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2302 }
2303 
2304 /* This function returns the amount that we can raise the
2305  * usable window based on the following constraints
2306  *
2307  * 1. The window can never be shrunk once it is offered (RFC 793)
2308  * 2. We limit memory per socket
2309  *
2310  * RFC 1122:
2311  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2312  *  RECV.NEXT + RCV.WIN fixed until:
2313  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2314  *
2315  * i.e. don't raise the right edge of the window until you can raise
2316  * it at least MSS bytes.
2317  *
2318  * Unfortunately, the recommended algorithm breaks header prediction,
2319  * since header prediction assumes th->window stays fixed.
2320  *
2321  * Strictly speaking, keeping th->window fixed violates the receiver
2322  * side SWS prevention criteria. The problem is that under this rule
2323  * a stream of single byte packets will cause the right side of the
2324  * window to always advance by a single byte.
2325  *
2326  * Of course, if the sender implements sender side SWS prevention
2327  * then this will not be a problem.
2328  *
2329  * BSD seems to make the following compromise:
2330  *
2331  *	If the free space is less than the 1/4 of the maximum
2332  *	space available and the free space is less than 1/2 mss,
2333  *	then set the window to 0.
2334  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2335  *	Otherwise, just prevent the window from shrinking
2336  *	and from being larger than the largest representable value.
2337  *
2338  * This prevents incremental opening of the window in the regime
2339  * where TCP is limited by the speed of the reader side taking
2340  * data out of the TCP receive queue. It does nothing about
2341  * those cases where the window is constrained on the sender side
2342  * because the pipeline is full.
2343  *
2344  * BSD also seems to "accidentally" limit itself to windows that are a
2345  * multiple of MSS, at least until the free space gets quite small.
2346  * This would appear to be a side effect of the mbuf implementation.
2347  * Combining these two algorithms results in the observed behavior
2348  * of having a fixed window size at almost all times.
2349  *
2350  * Below we obtain similar behavior by forcing the offered window to
2351  * a multiple of the mss when it is feasible to do so.
2352  *
2353  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2354  * Regular options like TIMESTAMP are taken into account.
2355  */
2356 u32 __tcp_select_window(struct sock *sk)
2357 {
2358 	struct inet_connection_sock *icsk = inet_csk(sk);
2359 	struct tcp_sock *tp = tcp_sk(sk);
2360 	/* MSS for the peer's data.  Previous versions used mss_clamp
2361 	 * here.  I don't know if the value based on our guesses
2362 	 * of peer's MSS is better for the performance.  It's more correct
2363 	 * but may be worse for the performance because of rcv_mss
2364 	 * fluctuations.  --SAW  1998/11/1
2365 	 */
2366 	int mss = icsk->icsk_ack.rcv_mss;
2367 	int free_space = tcp_space(sk);
2368 	int allowed_space = tcp_full_space(sk);
2369 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2370 	int window;
2371 
2372 	if (mss > full_space)
2373 		mss = full_space;
2374 
2375 	if (free_space < (full_space >> 1)) {
2376 		icsk->icsk_ack.quick = 0;
2377 
2378 		if (sk_under_memory_pressure(sk))
2379 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2380 					       4U * tp->advmss);
2381 
2382 		/* free_space might become our new window, make sure we don't
2383 		 * increase it due to wscale.
2384 		 */
2385 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2386 
2387 		/* if free space is less than mss estimate, or is below 1/16th
2388 		 * of the maximum allowed, try to move to zero-window, else
2389 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2390 		 * new incoming data is dropped due to memory limits.
2391 		 * With large window, mss test triggers way too late in order
2392 		 * to announce zero window in time before rmem limit kicks in.
2393 		 */
2394 		if (free_space < (allowed_space >> 4) || free_space < mss)
2395 			return 0;
2396 	}
2397 
2398 	if (free_space > tp->rcv_ssthresh)
2399 		free_space = tp->rcv_ssthresh;
2400 
2401 	/* Don't do rounding if we are using window scaling, since the
2402 	 * scaled window will not line up with the MSS boundary anyway.
2403 	 */
2404 	window = tp->rcv_wnd;
2405 	if (tp->rx_opt.rcv_wscale) {
2406 		window = free_space;
2407 
2408 		/* Advertise enough space so that it won't get scaled away.
2409 		 * Import case: prevent zero window announcement if
2410 		 * 1<<rcv_wscale > mss.
2411 		 */
2412 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2413 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2414 				  << tp->rx_opt.rcv_wscale);
2415 	} else {
2416 		/* Get the largest window that is a nice multiple of mss.
2417 		 * Window clamp already applied above.
2418 		 * If our current window offering is within 1 mss of the
2419 		 * free space we just keep it. This prevents the divide
2420 		 * and multiply from happening most of the time.
2421 		 * We also don't do any window rounding when the free space
2422 		 * is too small.
2423 		 */
2424 		if (window <= free_space - mss || window > free_space)
2425 			window = (free_space / mss) * mss;
2426 		else if (mss == full_space &&
2427 			 free_space > window + (full_space >> 1))
2428 			window = free_space;
2429 	}
2430 
2431 	return window;
2432 }
2433 
2434 /* Collapses two adjacent SKB's during retransmission. */
2435 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2436 {
2437 	struct tcp_sock *tp = tcp_sk(sk);
2438 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2439 	int skb_size, next_skb_size;
2440 
2441 	skb_size = skb->len;
2442 	next_skb_size = next_skb->len;
2443 
2444 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2445 
2446 	tcp_highest_sack_combine(sk, next_skb, skb);
2447 
2448 	tcp_unlink_write_queue(next_skb, sk);
2449 
2450 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2451 				  next_skb_size);
2452 
2453 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2454 		skb->ip_summed = CHECKSUM_PARTIAL;
2455 
2456 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2457 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2458 
2459 	/* Update sequence range on original skb. */
2460 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2461 
2462 	/* Merge over control information. This moves PSH/FIN etc. over */
2463 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2464 
2465 	/* All done, get rid of second SKB and account for it so
2466 	 * packet counting does not break.
2467 	 */
2468 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2469 
2470 	/* changed transmit queue under us so clear hints */
2471 	tcp_clear_retrans_hints_partial(tp);
2472 	if (next_skb == tp->retransmit_skb_hint)
2473 		tp->retransmit_skb_hint = skb;
2474 
2475 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2476 
2477 	sk_wmem_free_skb(sk, next_skb);
2478 }
2479 
2480 /* Check if coalescing SKBs is legal. */
2481 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2482 {
2483 	if (tcp_skb_pcount(skb) > 1)
2484 		return false;
2485 	/* TODO: SACK collapsing could be used to remove this condition */
2486 	if (skb_shinfo(skb)->nr_frags != 0)
2487 		return false;
2488 	if (skb_cloned(skb))
2489 		return false;
2490 	if (skb == tcp_send_head(sk))
2491 		return false;
2492 	/* Some heurestics for collapsing over SACK'd could be invented */
2493 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2494 		return false;
2495 
2496 	return true;
2497 }
2498 
2499 /* Collapse packets in the retransmit queue to make to create
2500  * less packets on the wire. This is only done on retransmission.
2501  */
2502 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2503 				     int space)
2504 {
2505 	struct tcp_sock *tp = tcp_sk(sk);
2506 	struct sk_buff *skb = to, *tmp;
2507 	bool first = true;
2508 
2509 	if (!sysctl_tcp_retrans_collapse)
2510 		return;
2511 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2512 		return;
2513 
2514 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2515 		if (!tcp_can_collapse(sk, skb))
2516 			break;
2517 
2518 		space -= skb->len;
2519 
2520 		if (first) {
2521 			first = false;
2522 			continue;
2523 		}
2524 
2525 		if (space < 0)
2526 			break;
2527 		/* Punt if not enough space exists in the first SKB for
2528 		 * the data in the second
2529 		 */
2530 		if (skb->len > skb_availroom(to))
2531 			break;
2532 
2533 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2534 			break;
2535 
2536 		tcp_collapse_retrans(sk, to);
2537 	}
2538 }
2539 
2540 /* This retransmits one SKB.  Policy decisions and retransmit queue
2541  * state updates are done by the caller.  Returns non-zero if an
2542  * error occurred which prevented the send.
2543  */
2544 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2545 {
2546 	struct tcp_sock *tp = tcp_sk(sk);
2547 	struct inet_connection_sock *icsk = inet_csk(sk);
2548 	unsigned int cur_mss;
2549 	int err;
2550 
2551 	/* Inconslusive MTU probe */
2552 	if (icsk->icsk_mtup.probe_size) {
2553 		icsk->icsk_mtup.probe_size = 0;
2554 	}
2555 
2556 	/* Do not sent more than we queued. 1/4 is reserved for possible
2557 	 * copying overhead: fragmentation, tunneling, mangling etc.
2558 	 */
2559 	if (atomic_read(&sk->sk_wmem_alloc) >
2560 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2561 		return -EAGAIN;
2562 
2563 	if (skb_still_in_host_queue(sk, skb))
2564 		return -EBUSY;
2565 
2566 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2567 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2568 			BUG();
2569 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2570 			return -ENOMEM;
2571 	}
2572 
2573 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2574 		return -EHOSTUNREACH; /* Routing failure or similar. */
2575 
2576 	cur_mss = tcp_current_mss(sk);
2577 
2578 	/* If receiver has shrunk his window, and skb is out of
2579 	 * new window, do not retransmit it. The exception is the
2580 	 * case, when window is shrunk to zero. In this case
2581 	 * our retransmit serves as a zero window probe.
2582 	 */
2583 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2584 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2585 		return -EAGAIN;
2586 
2587 	if (skb->len > cur_mss) {
2588 		if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2589 			return -ENOMEM; /* We'll try again later. */
2590 	} else {
2591 		int oldpcount = tcp_skb_pcount(skb);
2592 
2593 		if (unlikely(oldpcount > 1)) {
2594 			if (skb_unclone(skb, GFP_ATOMIC))
2595 				return -ENOMEM;
2596 			tcp_init_tso_segs(sk, skb, cur_mss);
2597 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2598 		}
2599 	}
2600 
2601 	tcp_retrans_try_collapse(sk, skb, cur_mss);
2602 
2603 	/* Make a copy, if the first transmission SKB clone we made
2604 	 * is still in somebody's hands, else make a clone.
2605 	 */
2606 
2607 	/* make sure skb->data is aligned on arches that require it
2608 	 * and check if ack-trimming & collapsing extended the headroom
2609 	 * beyond what csum_start can cover.
2610 	 */
2611 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2612 		     skb_headroom(skb) >= 0xFFFF)) {
2613 		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2614 						   GFP_ATOMIC);
2615 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2616 			     -ENOBUFS;
2617 	} else {
2618 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2619 	}
2620 
2621 	if (likely(!err)) {
2622 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2623 		/* Update global TCP statistics. */
2624 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2625 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2626 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2627 		tp->total_retrans++;
2628 	}
2629 	return err;
2630 }
2631 
2632 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2633 {
2634 	struct tcp_sock *tp = tcp_sk(sk);
2635 	int err = __tcp_retransmit_skb(sk, skb);
2636 
2637 	if (err == 0) {
2638 #if FASTRETRANS_DEBUG > 0
2639 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2640 			net_dbg_ratelimited("retrans_out leaked\n");
2641 		}
2642 #endif
2643 		if (!tp->retrans_out)
2644 			tp->lost_retrans_low = tp->snd_nxt;
2645 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2646 		tp->retrans_out += tcp_skb_pcount(skb);
2647 
2648 		/* Save stamp of the first retransmit. */
2649 		if (!tp->retrans_stamp)
2650 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2651 
2652 		/* snd_nxt is stored to detect loss of retransmitted segment,
2653 		 * see tcp_input.c tcp_sacktag_write_queue().
2654 		 */
2655 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2656 	} else if (err != -EBUSY) {
2657 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2658 	}
2659 
2660 	if (tp->undo_retrans < 0)
2661 		tp->undo_retrans = 0;
2662 	tp->undo_retrans += tcp_skb_pcount(skb);
2663 	return err;
2664 }
2665 
2666 /* Check if we forward retransmits are possible in the current
2667  * window/congestion state.
2668  */
2669 static bool tcp_can_forward_retransmit(struct sock *sk)
2670 {
2671 	const struct inet_connection_sock *icsk = inet_csk(sk);
2672 	const struct tcp_sock *tp = tcp_sk(sk);
2673 
2674 	/* Forward retransmissions are possible only during Recovery. */
2675 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2676 		return false;
2677 
2678 	/* No forward retransmissions in Reno are possible. */
2679 	if (tcp_is_reno(tp))
2680 		return false;
2681 
2682 	/* Yeah, we have to make difficult choice between forward transmission
2683 	 * and retransmission... Both ways have their merits...
2684 	 *
2685 	 * For now we do not retransmit anything, while we have some new
2686 	 * segments to send. In the other cases, follow rule 3 for
2687 	 * NextSeg() specified in RFC3517.
2688 	 */
2689 
2690 	if (tcp_may_send_now(sk))
2691 		return false;
2692 
2693 	return true;
2694 }
2695 
2696 /* This gets called after a retransmit timeout, and the initially
2697  * retransmitted data is acknowledged.  It tries to continue
2698  * resending the rest of the retransmit queue, until either
2699  * we've sent it all or the congestion window limit is reached.
2700  * If doing SACK, the first ACK which comes back for a timeout
2701  * based retransmit packet might feed us FACK information again.
2702  * If so, we use it to avoid unnecessarily retransmissions.
2703  */
2704 void tcp_xmit_retransmit_queue(struct sock *sk)
2705 {
2706 	const struct inet_connection_sock *icsk = inet_csk(sk);
2707 	struct tcp_sock *tp = tcp_sk(sk);
2708 	struct sk_buff *skb;
2709 	struct sk_buff *hole = NULL;
2710 	u32 last_lost;
2711 	int mib_idx;
2712 	int fwd_rexmitting = 0;
2713 
2714 	if (!tp->packets_out)
2715 		return;
2716 
2717 	if (!tp->lost_out)
2718 		tp->retransmit_high = tp->snd_una;
2719 
2720 	if (tp->retransmit_skb_hint) {
2721 		skb = tp->retransmit_skb_hint;
2722 		last_lost = TCP_SKB_CB(skb)->end_seq;
2723 		if (after(last_lost, tp->retransmit_high))
2724 			last_lost = tp->retransmit_high;
2725 	} else {
2726 		skb = tcp_write_queue_head(sk);
2727 		last_lost = tp->snd_una;
2728 	}
2729 
2730 	tcp_for_write_queue_from(skb, sk) {
2731 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2732 
2733 		if (skb == tcp_send_head(sk))
2734 			break;
2735 		/* we could do better than to assign each time */
2736 		if (hole == NULL)
2737 			tp->retransmit_skb_hint = skb;
2738 
2739 		/* Assume this retransmit will generate
2740 		 * only one packet for congestion window
2741 		 * calculation purposes.  This works because
2742 		 * tcp_retransmit_skb() will chop up the
2743 		 * packet to be MSS sized and all the
2744 		 * packet counting works out.
2745 		 */
2746 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2747 			return;
2748 
2749 		if (fwd_rexmitting) {
2750 begin_fwd:
2751 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2752 				break;
2753 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2754 
2755 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2756 			tp->retransmit_high = last_lost;
2757 			if (!tcp_can_forward_retransmit(sk))
2758 				break;
2759 			/* Backtrack if necessary to non-L'ed skb */
2760 			if (hole != NULL) {
2761 				skb = hole;
2762 				hole = NULL;
2763 			}
2764 			fwd_rexmitting = 1;
2765 			goto begin_fwd;
2766 
2767 		} else if (!(sacked & TCPCB_LOST)) {
2768 			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2769 				hole = skb;
2770 			continue;
2771 
2772 		} else {
2773 			last_lost = TCP_SKB_CB(skb)->end_seq;
2774 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2775 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2776 			else
2777 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2778 		}
2779 
2780 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2781 			continue;
2782 
2783 		if (tcp_retransmit_skb(sk, skb))
2784 			return;
2785 
2786 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2787 
2788 		if (tcp_in_cwnd_reduction(sk))
2789 			tp->prr_out += tcp_skb_pcount(skb);
2790 
2791 		if (skb == tcp_write_queue_head(sk))
2792 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2793 						  inet_csk(sk)->icsk_rto,
2794 						  TCP_RTO_MAX);
2795 	}
2796 }
2797 
2798 /* Send a fin.  The caller locks the socket for us.  This cannot be
2799  * allowed to fail queueing a FIN frame under any circumstances.
2800  */
2801 void tcp_send_fin(struct sock *sk)
2802 {
2803 	struct tcp_sock *tp = tcp_sk(sk);
2804 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2805 	int mss_now;
2806 
2807 	/* Optimization, tack on the FIN if we have a queue of
2808 	 * unsent frames.  But be careful about outgoing SACKS
2809 	 * and IP options.
2810 	 */
2811 	mss_now = tcp_current_mss(sk);
2812 
2813 	if (tcp_send_head(sk) != NULL) {
2814 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2815 		TCP_SKB_CB(skb)->end_seq++;
2816 		tp->write_seq++;
2817 	} else {
2818 		/* Socket is locked, keep trying until memory is available. */
2819 		for (;;) {
2820 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
2821 			if (skb)
2822 				break;
2823 			yield();
2824 		}
2825 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2826 		tcp_init_nondata_skb(skb, tp->write_seq,
2827 				     TCPHDR_ACK | TCPHDR_FIN);
2828 		tcp_queue_skb(sk, skb);
2829 	}
2830 	__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2831 }
2832 
2833 /* We get here when a process closes a file descriptor (either due to
2834  * an explicit close() or as a byproduct of exit()'ing) and there
2835  * was unread data in the receive queue.  This behavior is recommended
2836  * by RFC 2525, section 2.17.  -DaveM
2837  */
2838 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2839 {
2840 	struct sk_buff *skb;
2841 
2842 	/* NOTE: No TCP options attached and we never retransmit this. */
2843 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2844 	if (!skb) {
2845 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2846 		return;
2847 	}
2848 
2849 	/* Reserve space for headers and prepare control bits. */
2850 	skb_reserve(skb, MAX_TCP_HEADER);
2851 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2852 			     TCPHDR_ACK | TCPHDR_RST);
2853 	/* Send it off. */
2854 	if (tcp_transmit_skb(sk, skb, 0, priority))
2855 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2856 
2857 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2858 }
2859 
2860 /* Send a crossed SYN-ACK during socket establishment.
2861  * WARNING: This routine must only be called when we have already sent
2862  * a SYN packet that crossed the incoming SYN that caused this routine
2863  * to get called. If this assumption fails then the initial rcv_wnd
2864  * and rcv_wscale values will not be correct.
2865  */
2866 int tcp_send_synack(struct sock *sk)
2867 {
2868 	struct sk_buff *skb;
2869 
2870 	skb = tcp_write_queue_head(sk);
2871 	if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2872 		pr_debug("%s: wrong queue state\n", __func__);
2873 		return -EFAULT;
2874 	}
2875 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2876 		if (skb_cloned(skb)) {
2877 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2878 			if (nskb == NULL)
2879 				return -ENOMEM;
2880 			tcp_unlink_write_queue(skb, sk);
2881 			__skb_header_release(nskb);
2882 			__tcp_add_write_queue_head(sk, nskb);
2883 			sk_wmem_free_skb(sk, skb);
2884 			sk->sk_wmem_queued += nskb->truesize;
2885 			sk_mem_charge(sk, nskb->truesize);
2886 			skb = nskb;
2887 		}
2888 
2889 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2890 		tcp_ecn_send_synack(sk, skb);
2891 	}
2892 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2893 }
2894 
2895 /**
2896  * tcp_make_synack - Prepare a SYN-ACK.
2897  * sk: listener socket
2898  * dst: dst entry attached to the SYNACK
2899  * req: request_sock pointer
2900  *
2901  * Allocate one skb and build a SYNACK packet.
2902  * @dst is consumed : Caller should not use it again.
2903  */
2904 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2905 				struct request_sock *req,
2906 				struct tcp_fastopen_cookie *foc)
2907 {
2908 	struct tcp_out_options opts;
2909 	struct inet_request_sock *ireq = inet_rsk(req);
2910 	struct tcp_sock *tp = tcp_sk(sk);
2911 	struct tcphdr *th;
2912 	struct sk_buff *skb;
2913 	struct tcp_md5sig_key *md5 = NULL;
2914 	int tcp_header_size;
2915 	int mss;
2916 
2917 	skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2918 	if (unlikely(!skb)) {
2919 		dst_release(dst);
2920 		return NULL;
2921 	}
2922 	/* Reserve space for headers. */
2923 	skb_reserve(skb, MAX_TCP_HEADER);
2924 
2925 	skb_dst_set(skb, dst);
2926 
2927 	mss = dst_metric_advmss(dst);
2928 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2929 		mss = tp->rx_opt.user_mss;
2930 
2931 	memset(&opts, 0, sizeof(opts));
2932 #ifdef CONFIG_SYN_COOKIES
2933 	if (unlikely(req->cookie_ts))
2934 		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2935 	else
2936 #endif
2937 	skb_mstamp_get(&skb->skb_mstamp);
2938 
2939 #ifdef CONFIG_TCP_MD5SIG
2940 	rcu_read_lock();
2941 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
2942 #endif
2943 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
2944 					     foc) + sizeof(*th);
2945 
2946 	skb_push(skb, tcp_header_size);
2947 	skb_reset_transport_header(skb);
2948 
2949 	th = tcp_hdr(skb);
2950 	memset(th, 0, sizeof(struct tcphdr));
2951 	th->syn = 1;
2952 	th->ack = 1;
2953 	tcp_ecn_make_synack(req, th, sk);
2954 	th->source = htons(ireq->ir_num);
2955 	th->dest = ireq->ir_rmt_port;
2956 	/* Setting of flags are superfluous here for callers (and ECE is
2957 	 * not even correctly set)
2958 	 */
2959 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2960 			     TCPHDR_SYN | TCPHDR_ACK);
2961 
2962 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2963 	/* XXX data is queued and acked as is. No buffer/window check */
2964 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2965 
2966 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2967 	th->window = htons(min(req->rcv_wnd, 65535U));
2968 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
2969 	th->doff = (tcp_header_size >> 2);
2970 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2971 
2972 #ifdef CONFIG_TCP_MD5SIG
2973 	/* Okay, we have all we need - do the md5 hash if needed */
2974 	if (md5)
2975 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2976 					       md5, req_to_sk(req), skb);
2977 	rcu_read_unlock();
2978 #endif
2979 
2980 	return skb;
2981 }
2982 EXPORT_SYMBOL(tcp_make_synack);
2983 
2984 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
2985 {
2986 	struct inet_connection_sock *icsk = inet_csk(sk);
2987 	const struct tcp_congestion_ops *ca;
2988 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
2989 
2990 	if (ca_key == TCP_CA_UNSPEC)
2991 		return;
2992 
2993 	rcu_read_lock();
2994 	ca = tcp_ca_find_key(ca_key);
2995 	if (likely(ca && try_module_get(ca->owner))) {
2996 		module_put(icsk->icsk_ca_ops->owner);
2997 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
2998 		icsk->icsk_ca_ops = ca;
2999 	}
3000 	rcu_read_unlock();
3001 }
3002 
3003 /* Do all connect socket setups that can be done AF independent. */
3004 static void tcp_connect_init(struct sock *sk)
3005 {
3006 	const struct dst_entry *dst = __sk_dst_get(sk);
3007 	struct tcp_sock *tp = tcp_sk(sk);
3008 	__u8 rcv_wscale;
3009 
3010 	/* We'll fix this up when we get a response from the other end.
3011 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3012 	 */
3013 	tp->tcp_header_len = sizeof(struct tcphdr) +
3014 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3015 
3016 #ifdef CONFIG_TCP_MD5SIG
3017 	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
3018 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3019 #endif
3020 
3021 	/* If user gave his TCP_MAXSEG, record it to clamp */
3022 	if (tp->rx_opt.user_mss)
3023 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3024 	tp->max_window = 0;
3025 	tcp_mtup_init(sk);
3026 	tcp_sync_mss(sk, dst_mtu(dst));
3027 
3028 	tcp_ca_dst_init(sk, dst);
3029 
3030 	if (!tp->window_clamp)
3031 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3032 	tp->advmss = dst_metric_advmss(dst);
3033 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3034 		tp->advmss = tp->rx_opt.user_mss;
3035 
3036 	tcp_initialize_rcv_mss(sk);
3037 
3038 	/* limit the window selection if the user enforce a smaller rx buffer */
3039 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3040 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3041 		tp->window_clamp = tcp_full_space(sk);
3042 
3043 	tcp_select_initial_window(tcp_full_space(sk),
3044 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3045 				  &tp->rcv_wnd,
3046 				  &tp->window_clamp,
3047 				  sysctl_tcp_window_scaling,
3048 				  &rcv_wscale,
3049 				  dst_metric(dst, RTAX_INITRWND));
3050 
3051 	tp->rx_opt.rcv_wscale = rcv_wscale;
3052 	tp->rcv_ssthresh = tp->rcv_wnd;
3053 
3054 	sk->sk_err = 0;
3055 	sock_reset_flag(sk, SOCK_DONE);
3056 	tp->snd_wnd = 0;
3057 	tcp_init_wl(tp, 0);
3058 	tp->snd_una = tp->write_seq;
3059 	tp->snd_sml = tp->write_seq;
3060 	tp->snd_up = tp->write_seq;
3061 	tp->snd_nxt = tp->write_seq;
3062 
3063 	if (likely(!tp->repair))
3064 		tp->rcv_nxt = 0;
3065 	else
3066 		tp->rcv_tstamp = tcp_time_stamp;
3067 	tp->rcv_wup = tp->rcv_nxt;
3068 	tp->copied_seq = tp->rcv_nxt;
3069 
3070 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3071 	inet_csk(sk)->icsk_retransmits = 0;
3072 	tcp_clear_retrans(tp);
3073 }
3074 
3075 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3076 {
3077 	struct tcp_sock *tp = tcp_sk(sk);
3078 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3079 
3080 	tcb->end_seq += skb->len;
3081 	__skb_header_release(skb);
3082 	__tcp_add_write_queue_tail(sk, skb);
3083 	sk->sk_wmem_queued += skb->truesize;
3084 	sk_mem_charge(sk, skb->truesize);
3085 	tp->write_seq = tcb->end_seq;
3086 	tp->packets_out += tcp_skb_pcount(skb);
3087 }
3088 
3089 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3090  * queue a data-only packet after the regular SYN, such that regular SYNs
3091  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3092  * only the SYN sequence, the data are retransmitted in the first ACK.
3093  * If cookie is not cached or other error occurs, falls back to send a
3094  * regular SYN with Fast Open cookie request option.
3095  */
3096 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3097 {
3098 	struct tcp_sock *tp = tcp_sk(sk);
3099 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3100 	int syn_loss = 0, space, err = 0, copied;
3101 	unsigned long last_syn_loss = 0;
3102 	struct sk_buff *syn_data;
3103 
3104 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3105 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3106 			       &syn_loss, &last_syn_loss);
3107 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
3108 	if (syn_loss > 1 &&
3109 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3110 		fo->cookie.len = -1;
3111 		goto fallback;
3112 	}
3113 
3114 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3115 		fo->cookie.len = -1;
3116 	else if (fo->cookie.len <= 0)
3117 		goto fallback;
3118 
3119 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3120 	 * user-MSS. Reserve maximum option space for middleboxes that add
3121 	 * private TCP options. The cost is reduced data space in SYN :(
3122 	 */
3123 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3124 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3125 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3126 		MAX_TCP_OPTION_SPACE;
3127 
3128 	space = min_t(size_t, space, fo->size);
3129 
3130 	/* limit to order-0 allocations */
3131 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3132 
3133 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation);
3134 	if (!syn_data)
3135 		goto fallback;
3136 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3137 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3138 	copied = copy_from_iter(skb_put(syn_data, space), space,
3139 				&fo->data->msg_iter);
3140 	if (unlikely(!copied)) {
3141 		kfree_skb(syn_data);
3142 		goto fallback;
3143 	}
3144 	if (copied != space) {
3145 		skb_trim(syn_data, copied);
3146 		space = copied;
3147 	}
3148 
3149 	/* No more data pending in inet_wait_for_connect() */
3150 	if (space == fo->size)
3151 		fo->data = NULL;
3152 	fo->copied = space;
3153 
3154 	tcp_connect_queue_skb(sk, syn_data);
3155 
3156 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3157 
3158 	syn->skb_mstamp = syn_data->skb_mstamp;
3159 
3160 	/* Now full SYN+DATA was cloned and sent (or not),
3161 	 * remove the SYN from the original skb (syn_data)
3162 	 * we keep in write queue in case of a retransmit, as we
3163 	 * also have the SYN packet (with no data) in the same queue.
3164 	 */
3165 	TCP_SKB_CB(syn_data)->seq++;
3166 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3167 	if (!err) {
3168 		tp->syn_data = (fo->copied > 0);
3169 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3170 		goto done;
3171 	}
3172 
3173 fallback:
3174 	/* Send a regular SYN with Fast Open cookie request option */
3175 	if (fo->cookie.len > 0)
3176 		fo->cookie.len = 0;
3177 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3178 	if (err)
3179 		tp->syn_fastopen = 0;
3180 done:
3181 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3182 	return err;
3183 }
3184 
3185 /* Build a SYN and send it off. */
3186 int tcp_connect(struct sock *sk)
3187 {
3188 	struct tcp_sock *tp = tcp_sk(sk);
3189 	struct sk_buff *buff;
3190 	int err;
3191 
3192 	tcp_connect_init(sk);
3193 
3194 	if (unlikely(tp->repair)) {
3195 		tcp_finish_connect(sk, NULL);
3196 		return 0;
3197 	}
3198 
3199 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
3200 	if (unlikely(!buff))
3201 		return -ENOBUFS;
3202 
3203 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3204 	tp->retrans_stamp = tcp_time_stamp;
3205 	tcp_connect_queue_skb(sk, buff);
3206 	tcp_ecn_send_syn(sk, buff);
3207 
3208 	/* Send off SYN; include data in Fast Open. */
3209 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3210 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3211 	if (err == -ECONNREFUSED)
3212 		return err;
3213 
3214 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3215 	 * in order to make this packet get counted in tcpOutSegs.
3216 	 */
3217 	tp->snd_nxt = tp->write_seq;
3218 	tp->pushed_seq = tp->write_seq;
3219 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3220 
3221 	/* Timer for repeating the SYN until an answer. */
3222 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3223 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3224 	return 0;
3225 }
3226 EXPORT_SYMBOL(tcp_connect);
3227 
3228 /* Send out a delayed ack, the caller does the policy checking
3229  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3230  * for details.
3231  */
3232 void tcp_send_delayed_ack(struct sock *sk)
3233 {
3234 	struct inet_connection_sock *icsk = inet_csk(sk);
3235 	int ato = icsk->icsk_ack.ato;
3236 	unsigned long timeout;
3237 
3238 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3239 
3240 	if (ato > TCP_DELACK_MIN) {
3241 		const struct tcp_sock *tp = tcp_sk(sk);
3242 		int max_ato = HZ / 2;
3243 
3244 		if (icsk->icsk_ack.pingpong ||
3245 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3246 			max_ato = TCP_DELACK_MAX;
3247 
3248 		/* Slow path, intersegment interval is "high". */
3249 
3250 		/* If some rtt estimate is known, use it to bound delayed ack.
3251 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3252 		 * directly.
3253 		 */
3254 		if (tp->srtt_us) {
3255 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3256 					TCP_DELACK_MIN);
3257 
3258 			if (rtt < max_ato)
3259 				max_ato = rtt;
3260 		}
3261 
3262 		ato = min(ato, max_ato);
3263 	}
3264 
3265 	/* Stay within the limit we were given */
3266 	timeout = jiffies + ato;
3267 
3268 	/* Use new timeout only if there wasn't a older one earlier. */
3269 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3270 		/* If delack timer was blocked or is about to expire,
3271 		 * send ACK now.
3272 		 */
3273 		if (icsk->icsk_ack.blocked ||
3274 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3275 			tcp_send_ack(sk);
3276 			return;
3277 		}
3278 
3279 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3280 			timeout = icsk->icsk_ack.timeout;
3281 	}
3282 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3283 	icsk->icsk_ack.timeout = timeout;
3284 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3285 }
3286 
3287 /* This routine sends an ack and also updates the window. */
3288 void tcp_send_ack(struct sock *sk)
3289 {
3290 	struct sk_buff *buff;
3291 
3292 	/* If we have been reset, we may not send again. */
3293 	if (sk->sk_state == TCP_CLOSE)
3294 		return;
3295 
3296 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3297 
3298 	/* We are not putting this on the write queue, so
3299 	 * tcp_transmit_skb() will set the ownership to this
3300 	 * sock.
3301 	 */
3302 	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3303 	if (buff == NULL) {
3304 		inet_csk_schedule_ack(sk);
3305 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3306 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3307 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3308 		return;
3309 	}
3310 
3311 	/* Reserve space for headers and prepare control bits. */
3312 	skb_reserve(buff, MAX_TCP_HEADER);
3313 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3314 
3315 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3316 	 * too much.
3317 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3318 	 * We also avoid tcp_wfree() overhead (cache line miss accessing
3319 	 * tp->tsq_flags) by using regular sock_wfree()
3320 	 */
3321 	skb_set_tcp_pure_ack(buff);
3322 
3323 	/* Send it off, this clears delayed acks for us. */
3324 	skb_mstamp_get(&buff->skb_mstamp);
3325 	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3326 }
3327 EXPORT_SYMBOL_GPL(tcp_send_ack);
3328 
3329 /* This routine sends a packet with an out of date sequence
3330  * number. It assumes the other end will try to ack it.
3331  *
3332  * Question: what should we make while urgent mode?
3333  * 4.4BSD forces sending single byte of data. We cannot send
3334  * out of window data, because we have SND.NXT==SND.MAX...
3335  *
3336  * Current solution: to send TWO zero-length segments in urgent mode:
3337  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3338  * out-of-date with SND.UNA-1 to probe window.
3339  */
3340 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3341 {
3342 	struct tcp_sock *tp = tcp_sk(sk);
3343 	struct sk_buff *skb;
3344 
3345 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3346 	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3347 	if (skb == NULL)
3348 		return -1;
3349 
3350 	/* Reserve space for headers and set control bits. */
3351 	skb_reserve(skb, MAX_TCP_HEADER);
3352 	/* Use a previous sequence.  This should cause the other
3353 	 * end to send an ack.  Don't queue or clone SKB, just
3354 	 * send it.
3355 	 */
3356 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3357 	skb_mstamp_get(&skb->skb_mstamp);
3358 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3359 }
3360 
3361 void tcp_send_window_probe(struct sock *sk)
3362 {
3363 	if (sk->sk_state == TCP_ESTABLISHED) {
3364 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3365 		tcp_xmit_probe_skb(sk, 0);
3366 	}
3367 }
3368 
3369 /* Initiate keepalive or window probe from timer. */
3370 int tcp_write_wakeup(struct sock *sk)
3371 {
3372 	struct tcp_sock *tp = tcp_sk(sk);
3373 	struct sk_buff *skb;
3374 
3375 	if (sk->sk_state == TCP_CLOSE)
3376 		return -1;
3377 
3378 	if ((skb = tcp_send_head(sk)) != NULL &&
3379 	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3380 		int err;
3381 		unsigned int mss = tcp_current_mss(sk);
3382 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3383 
3384 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3385 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3386 
3387 		/* We are probing the opening of a window
3388 		 * but the window size is != 0
3389 		 * must have been a result SWS avoidance ( sender )
3390 		 */
3391 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3392 		    skb->len > mss) {
3393 			seg_size = min(seg_size, mss);
3394 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3395 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3396 				return -1;
3397 		} else if (!tcp_skb_pcount(skb))
3398 			tcp_set_skb_tso_segs(sk, skb, mss);
3399 
3400 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3401 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3402 		if (!err)
3403 			tcp_event_new_data_sent(sk, skb);
3404 		return err;
3405 	} else {
3406 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3407 			tcp_xmit_probe_skb(sk, 1);
3408 		return tcp_xmit_probe_skb(sk, 0);
3409 	}
3410 }
3411 
3412 /* A window probe timeout has occurred.  If window is not closed send
3413  * a partial packet else a zero probe.
3414  */
3415 void tcp_send_probe0(struct sock *sk)
3416 {
3417 	struct inet_connection_sock *icsk = inet_csk(sk);
3418 	struct tcp_sock *tp = tcp_sk(sk);
3419 	unsigned long probe_max;
3420 	int err;
3421 
3422 	err = tcp_write_wakeup(sk);
3423 
3424 	if (tp->packets_out || !tcp_send_head(sk)) {
3425 		/* Cancel probe timer, if it is not required. */
3426 		icsk->icsk_probes_out = 0;
3427 		icsk->icsk_backoff = 0;
3428 		return;
3429 	}
3430 
3431 	if (err <= 0) {
3432 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3433 			icsk->icsk_backoff++;
3434 		icsk->icsk_probes_out++;
3435 		probe_max = TCP_RTO_MAX;
3436 	} else {
3437 		/* If packet was not sent due to local congestion,
3438 		 * do not backoff and do not remember icsk_probes_out.
3439 		 * Let local senders to fight for local resources.
3440 		 *
3441 		 * Use accumulated backoff yet.
3442 		 */
3443 		if (!icsk->icsk_probes_out)
3444 			icsk->icsk_probes_out = 1;
3445 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3446 	}
3447 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3448 				  inet_csk_rto_backoff(icsk, probe_max),
3449 				  TCP_RTO_MAX);
3450 }
3451 
3452 int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3453 {
3454 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3455 	struct flowi fl;
3456 	int res;
3457 
3458 	res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3459 	if (!res) {
3460 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3461 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3462 	}
3463 	return res;
3464 }
3465 EXPORT_SYMBOL(tcp_rtx_synack);
3466