1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of two TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX; 66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat); 67 68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 69 int push_one, gfp_t gfp); 70 71 /* Account for new data that has been sent to the network. */ 72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 73 { 74 struct inet_connection_sock *icsk = inet_csk(sk); 75 struct tcp_sock *tp = tcp_sk(sk); 76 unsigned int prior_packets = tp->packets_out; 77 78 tcp_advance_send_head(sk, skb); 79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 80 81 tp->packets_out += tcp_skb_pcount(skb); 82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 84 tcp_rearm_rto(sk); 85 } 86 87 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 88 tcp_skb_pcount(skb)); 89 } 90 91 /* SND.NXT, if window was not shrunk. 92 * If window has been shrunk, what should we make? It is not clear at all. 93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 95 * invalid. OK, let's make this for now: 96 */ 97 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 98 { 99 const struct tcp_sock *tp = tcp_sk(sk); 100 101 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. */ 141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 s32 delta = tcp_time_stamp - tp->lsndtime; 145 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 146 u32 cwnd = tp->snd_cwnd; 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tp->snd_cwnd = max(cwnd, restart_cwnd); 156 tp->snd_cwnd_stamp = tcp_time_stamp; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_time_stamp; 166 const struct dst_entry *dst = __sk_dst_get(sk); 167 168 if (sysctl_tcp_slow_start_after_idle && 169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 170 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 171 172 tp->lsndtime = now; 173 174 /* If it is a reply for ato after last received 175 * packet, enter pingpong mode. 176 */ 177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato && 178 (!dst || !dst_metric(dst, RTAX_QUICKACK))) 179 icsk->icsk_ack.pingpong = 1; 180 } 181 182 /* Account for an ACK we sent. */ 183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 184 { 185 tcp_dec_quickack_mode(sk, pkts); 186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 187 } 188 189 190 u32 tcp_default_init_rwnd(u32 mss) 191 { 192 /* Initial receive window should be twice of TCP_INIT_CWND to 193 * enable proper sending of new unsent data during fast recovery 194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 195 * limit when mss is larger than 1460. 196 */ 197 u32 init_rwnd = TCP_INIT_CWND * 2; 198 199 if (mss > 1460) 200 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 201 return init_rwnd; 202 } 203 204 /* Determine a window scaling and initial window to offer. 205 * Based on the assumption that the given amount of space 206 * will be offered. Store the results in the tp structure. 207 * NOTE: for smooth operation initial space offering should 208 * be a multiple of mss if possible. We assume here that mss >= 1. 209 * This MUST be enforced by all callers. 210 */ 211 void tcp_select_initial_window(int __space, __u32 mss, 212 __u32 *rcv_wnd, __u32 *window_clamp, 213 int wscale_ok, __u8 *rcv_wscale, 214 __u32 init_rcv_wnd) 215 { 216 unsigned int space = (__space < 0 ? 0 : __space); 217 218 /* If no clamp set the clamp to the max possible scaled window */ 219 if (*window_clamp == 0) 220 (*window_clamp) = (65535 << 14); 221 space = min(*window_clamp, space); 222 223 /* Quantize space offering to a multiple of mss if possible. */ 224 if (space > mss) 225 space = (space / mss) * mss; 226 227 /* NOTE: offering an initial window larger than 32767 228 * will break some buggy TCP stacks. If the admin tells us 229 * it is likely we could be speaking with such a buggy stack 230 * we will truncate our initial window offering to 32K-1 231 * unless the remote has sent us a window scaling option, 232 * which we interpret as a sign the remote TCP is not 233 * misinterpreting the window field as a signed quantity. 234 */ 235 if (sysctl_tcp_workaround_signed_windows) 236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 237 else 238 (*rcv_wnd) = space; 239 240 (*rcv_wscale) = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window 243 * See RFC1323 for an explanation of the limit to 14 244 */ 245 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 246 space = min_t(u32, space, *window_clamp); 247 while (space > 65535 && (*rcv_wscale) < 14) { 248 space >>= 1; 249 (*rcv_wscale)++; 250 } 251 } 252 253 if (mss > (1 << *rcv_wscale)) { 254 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 255 init_rcv_wnd = tcp_default_init_rwnd(mss); 256 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 257 } 258 259 /* Set the clamp no higher than max representable value */ 260 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 261 } 262 EXPORT_SYMBOL(tcp_select_initial_window); 263 264 /* Chose a new window to advertise, update state in tcp_sock for the 265 * socket, and return result with RFC1323 scaling applied. The return 266 * value can be stuffed directly into th->window for an outgoing 267 * frame. 268 */ 269 static u16 tcp_select_window(struct sock *sk) 270 { 271 struct tcp_sock *tp = tcp_sk(sk); 272 u32 old_win = tp->rcv_wnd; 273 u32 cur_win = tcp_receive_window(tp); 274 u32 new_win = __tcp_select_window(sk); 275 276 /* Never shrink the offered window */ 277 if (new_win < cur_win) { 278 /* Danger Will Robinson! 279 * Don't update rcv_wup/rcv_wnd here or else 280 * we will not be able to advertise a zero 281 * window in time. --DaveM 282 * 283 * Relax Will Robinson. 284 */ 285 if (new_win == 0) 286 NET_INC_STATS(sock_net(sk), 287 LINUX_MIB_TCPWANTZEROWINDOWADV); 288 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 289 } 290 tp->rcv_wnd = new_win; 291 tp->rcv_wup = tp->rcv_nxt; 292 293 /* Make sure we do not exceed the maximum possible 294 * scaled window. 295 */ 296 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 297 new_win = min(new_win, MAX_TCP_WINDOW); 298 else 299 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 300 301 /* RFC1323 scaling applied */ 302 new_win >>= tp->rx_opt.rcv_wscale; 303 304 /* If we advertise zero window, disable fast path. */ 305 if (new_win == 0) { 306 tp->pred_flags = 0; 307 if (old_win) 308 NET_INC_STATS(sock_net(sk), 309 LINUX_MIB_TCPTOZEROWINDOWADV); 310 } else if (old_win == 0) { 311 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 312 } 313 314 return new_win; 315 } 316 317 /* Packet ECN state for a SYN-ACK */ 318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 319 { 320 const struct tcp_sock *tp = tcp_sk(sk); 321 322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 323 if (!(tp->ecn_flags & TCP_ECN_OK)) 324 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 325 else if (tcp_ca_needs_ecn(sk)) 326 INET_ECN_xmit(sk); 327 } 328 329 /* Packet ECN state for a SYN. */ 330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 331 { 332 struct tcp_sock *tp = tcp_sk(sk); 333 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 334 tcp_ca_needs_ecn(sk); 335 336 if (!use_ecn) { 337 const struct dst_entry *dst = __sk_dst_get(sk); 338 339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 340 use_ecn = true; 341 } 342 343 tp->ecn_flags = 0; 344 345 if (use_ecn) { 346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 347 tp->ecn_flags = TCP_ECN_OK; 348 if (tcp_ca_needs_ecn(sk)) 349 INET_ECN_xmit(sk); 350 } 351 } 352 353 static void 354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th, 355 struct sock *sk) 356 { 357 if (inet_rsk(req)->ecn_ok) { 358 th->ece = 1; 359 if (tcp_ca_needs_ecn(sk)) 360 INET_ECN_xmit(sk); 361 } 362 } 363 364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 365 * be sent. 366 */ 367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 368 int tcp_header_len) 369 { 370 struct tcp_sock *tp = tcp_sk(sk); 371 372 if (tp->ecn_flags & TCP_ECN_OK) { 373 /* Not-retransmitted data segment: set ECT and inject CWR. */ 374 if (skb->len != tcp_header_len && 375 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 376 INET_ECN_xmit(sk); 377 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 378 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 379 tcp_hdr(skb)->cwr = 1; 380 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 381 } 382 } else if (!tcp_ca_needs_ecn(sk)) { 383 /* ACK or retransmitted segment: clear ECT|CE */ 384 INET_ECN_dontxmit(sk); 385 } 386 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 387 tcp_hdr(skb)->ece = 1; 388 } 389 } 390 391 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 392 * auto increment end seqno. 393 */ 394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 395 { 396 struct skb_shared_info *shinfo = skb_shinfo(skb); 397 398 skb->ip_summed = CHECKSUM_PARTIAL; 399 skb->csum = 0; 400 401 TCP_SKB_CB(skb)->tcp_flags = flags; 402 TCP_SKB_CB(skb)->sacked = 0; 403 404 tcp_skb_pcount_set(skb, 1); 405 shinfo->gso_size = 0; 406 shinfo->gso_type = 0; 407 408 TCP_SKB_CB(skb)->seq = seq; 409 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 410 seq++; 411 TCP_SKB_CB(skb)->end_seq = seq; 412 } 413 414 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 415 { 416 return tp->snd_una != tp->snd_up; 417 } 418 419 #define OPTION_SACK_ADVERTISE (1 << 0) 420 #define OPTION_TS (1 << 1) 421 #define OPTION_MD5 (1 << 2) 422 #define OPTION_WSCALE (1 << 3) 423 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 424 425 struct tcp_out_options { 426 u16 options; /* bit field of OPTION_* */ 427 u16 mss; /* 0 to disable */ 428 u8 ws; /* window scale, 0 to disable */ 429 u8 num_sack_blocks; /* number of SACK blocks to include */ 430 u8 hash_size; /* bytes in hash_location */ 431 __u8 *hash_location; /* temporary pointer, overloaded */ 432 __u32 tsval, tsecr; /* need to include OPTION_TS */ 433 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 434 }; 435 436 /* Write previously computed TCP options to the packet. 437 * 438 * Beware: Something in the Internet is very sensitive to the ordering of 439 * TCP options, we learned this through the hard way, so be careful here. 440 * Luckily we can at least blame others for their non-compliance but from 441 * inter-operability perspective it seems that we're somewhat stuck with 442 * the ordering which we have been using if we want to keep working with 443 * those broken things (not that it currently hurts anybody as there isn't 444 * particular reason why the ordering would need to be changed). 445 * 446 * At least SACK_PERM as the first option is known to lead to a disaster 447 * (but it may well be that other scenarios fail similarly). 448 */ 449 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 450 struct tcp_out_options *opts) 451 { 452 u16 options = opts->options; /* mungable copy */ 453 454 if (unlikely(OPTION_MD5 & options)) { 455 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 456 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 457 /* overload cookie hash location */ 458 opts->hash_location = (__u8 *)ptr; 459 ptr += 4; 460 } 461 462 if (unlikely(opts->mss)) { 463 *ptr++ = htonl((TCPOPT_MSS << 24) | 464 (TCPOLEN_MSS << 16) | 465 opts->mss); 466 } 467 468 if (likely(OPTION_TS & options)) { 469 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 470 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 471 (TCPOLEN_SACK_PERM << 16) | 472 (TCPOPT_TIMESTAMP << 8) | 473 TCPOLEN_TIMESTAMP); 474 options &= ~OPTION_SACK_ADVERTISE; 475 } else { 476 *ptr++ = htonl((TCPOPT_NOP << 24) | 477 (TCPOPT_NOP << 16) | 478 (TCPOPT_TIMESTAMP << 8) | 479 TCPOLEN_TIMESTAMP); 480 } 481 *ptr++ = htonl(opts->tsval); 482 *ptr++ = htonl(opts->tsecr); 483 } 484 485 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 486 *ptr++ = htonl((TCPOPT_NOP << 24) | 487 (TCPOPT_NOP << 16) | 488 (TCPOPT_SACK_PERM << 8) | 489 TCPOLEN_SACK_PERM); 490 } 491 492 if (unlikely(OPTION_WSCALE & options)) { 493 *ptr++ = htonl((TCPOPT_NOP << 24) | 494 (TCPOPT_WINDOW << 16) | 495 (TCPOLEN_WINDOW << 8) | 496 opts->ws); 497 } 498 499 if (unlikely(opts->num_sack_blocks)) { 500 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 501 tp->duplicate_sack : tp->selective_acks; 502 int this_sack; 503 504 *ptr++ = htonl((TCPOPT_NOP << 24) | 505 (TCPOPT_NOP << 16) | 506 (TCPOPT_SACK << 8) | 507 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 508 TCPOLEN_SACK_PERBLOCK))); 509 510 for (this_sack = 0; this_sack < opts->num_sack_blocks; 511 ++this_sack) { 512 *ptr++ = htonl(sp[this_sack].start_seq); 513 *ptr++ = htonl(sp[this_sack].end_seq); 514 } 515 516 tp->rx_opt.dsack = 0; 517 } 518 519 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 520 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 521 522 *ptr++ = htonl((TCPOPT_EXP << 24) | 523 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) | 524 TCPOPT_FASTOPEN_MAGIC); 525 526 memcpy(ptr, foc->val, foc->len); 527 if ((foc->len & 3) == 2) { 528 u8 *align = ((u8 *)ptr) + foc->len; 529 align[0] = align[1] = TCPOPT_NOP; 530 } 531 ptr += (foc->len + 3) >> 2; 532 } 533 } 534 535 /* Compute TCP options for SYN packets. This is not the final 536 * network wire format yet. 537 */ 538 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 539 struct tcp_out_options *opts, 540 struct tcp_md5sig_key **md5) 541 { 542 struct tcp_sock *tp = tcp_sk(sk); 543 unsigned int remaining = MAX_TCP_OPTION_SPACE; 544 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 545 546 #ifdef CONFIG_TCP_MD5SIG 547 *md5 = tp->af_specific->md5_lookup(sk, sk); 548 if (*md5) { 549 opts->options |= OPTION_MD5; 550 remaining -= TCPOLEN_MD5SIG_ALIGNED; 551 } 552 #else 553 *md5 = NULL; 554 #endif 555 556 /* We always get an MSS option. The option bytes which will be seen in 557 * normal data packets should timestamps be used, must be in the MSS 558 * advertised. But we subtract them from tp->mss_cache so that 559 * calculations in tcp_sendmsg are simpler etc. So account for this 560 * fact here if necessary. If we don't do this correctly, as a 561 * receiver we won't recognize data packets as being full sized when we 562 * should, and thus we won't abide by the delayed ACK rules correctly. 563 * SACKs don't matter, we never delay an ACK when we have any of those 564 * going out. */ 565 opts->mss = tcp_advertise_mss(sk); 566 remaining -= TCPOLEN_MSS_ALIGNED; 567 568 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 569 opts->options |= OPTION_TS; 570 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 571 opts->tsecr = tp->rx_opt.ts_recent; 572 remaining -= TCPOLEN_TSTAMP_ALIGNED; 573 } 574 if (likely(sysctl_tcp_window_scaling)) { 575 opts->ws = tp->rx_opt.rcv_wscale; 576 opts->options |= OPTION_WSCALE; 577 remaining -= TCPOLEN_WSCALE_ALIGNED; 578 } 579 if (likely(sysctl_tcp_sack)) { 580 opts->options |= OPTION_SACK_ADVERTISE; 581 if (unlikely(!(OPTION_TS & opts->options))) 582 remaining -= TCPOLEN_SACKPERM_ALIGNED; 583 } 584 585 if (fastopen && fastopen->cookie.len >= 0) { 586 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len; 587 need = (need + 3) & ~3U; /* Align to 32 bits */ 588 if (remaining >= need) { 589 opts->options |= OPTION_FAST_OPEN_COOKIE; 590 opts->fastopen_cookie = &fastopen->cookie; 591 remaining -= need; 592 tp->syn_fastopen = 1; 593 } 594 } 595 596 return MAX_TCP_OPTION_SPACE - remaining; 597 } 598 599 /* Set up TCP options for SYN-ACKs. */ 600 static unsigned int tcp_synack_options(struct sock *sk, 601 struct request_sock *req, 602 unsigned int mss, struct sk_buff *skb, 603 struct tcp_out_options *opts, 604 const struct tcp_md5sig_key *md5, 605 struct tcp_fastopen_cookie *foc) 606 { 607 struct inet_request_sock *ireq = inet_rsk(req); 608 unsigned int remaining = MAX_TCP_OPTION_SPACE; 609 610 #ifdef CONFIG_TCP_MD5SIG 611 if (md5) { 612 opts->options |= OPTION_MD5; 613 remaining -= TCPOLEN_MD5SIG_ALIGNED; 614 615 /* We can't fit any SACK blocks in a packet with MD5 + TS 616 * options. There was discussion about disabling SACK 617 * rather than TS in order to fit in better with old, 618 * buggy kernels, but that was deemed to be unnecessary. 619 */ 620 ireq->tstamp_ok &= !ireq->sack_ok; 621 } 622 #endif 623 624 /* We always send an MSS option. */ 625 opts->mss = mss; 626 remaining -= TCPOLEN_MSS_ALIGNED; 627 628 if (likely(ireq->wscale_ok)) { 629 opts->ws = ireq->rcv_wscale; 630 opts->options |= OPTION_WSCALE; 631 remaining -= TCPOLEN_WSCALE_ALIGNED; 632 } 633 if (likely(ireq->tstamp_ok)) { 634 opts->options |= OPTION_TS; 635 opts->tsval = tcp_skb_timestamp(skb); 636 opts->tsecr = req->ts_recent; 637 remaining -= TCPOLEN_TSTAMP_ALIGNED; 638 } 639 if (likely(ireq->sack_ok)) { 640 opts->options |= OPTION_SACK_ADVERTISE; 641 if (unlikely(!ireq->tstamp_ok)) 642 remaining -= TCPOLEN_SACKPERM_ALIGNED; 643 } 644 if (foc != NULL && foc->len >= 0) { 645 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 646 need = (need + 3) & ~3U; /* Align to 32 bits */ 647 if (remaining >= need) { 648 opts->options |= OPTION_FAST_OPEN_COOKIE; 649 opts->fastopen_cookie = foc; 650 remaining -= need; 651 } 652 } 653 654 return MAX_TCP_OPTION_SPACE - remaining; 655 } 656 657 /* Compute TCP options for ESTABLISHED sockets. This is not the 658 * final wire format yet. 659 */ 660 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 661 struct tcp_out_options *opts, 662 struct tcp_md5sig_key **md5) 663 { 664 struct tcp_sock *tp = tcp_sk(sk); 665 unsigned int size = 0; 666 unsigned int eff_sacks; 667 668 opts->options = 0; 669 670 #ifdef CONFIG_TCP_MD5SIG 671 *md5 = tp->af_specific->md5_lookup(sk, sk); 672 if (unlikely(*md5)) { 673 opts->options |= OPTION_MD5; 674 size += TCPOLEN_MD5SIG_ALIGNED; 675 } 676 #else 677 *md5 = NULL; 678 #endif 679 680 if (likely(tp->rx_opt.tstamp_ok)) { 681 opts->options |= OPTION_TS; 682 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 683 opts->tsecr = tp->rx_opt.ts_recent; 684 size += TCPOLEN_TSTAMP_ALIGNED; 685 } 686 687 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 688 if (unlikely(eff_sacks)) { 689 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 690 opts->num_sack_blocks = 691 min_t(unsigned int, eff_sacks, 692 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 693 TCPOLEN_SACK_PERBLOCK); 694 size += TCPOLEN_SACK_BASE_ALIGNED + 695 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 696 } 697 698 return size; 699 } 700 701 702 /* TCP SMALL QUEUES (TSQ) 703 * 704 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 705 * to reduce RTT and bufferbloat. 706 * We do this using a special skb destructor (tcp_wfree). 707 * 708 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 709 * needs to be reallocated in a driver. 710 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 711 * 712 * Since transmit from skb destructor is forbidden, we use a tasklet 713 * to process all sockets that eventually need to send more skbs. 714 * We use one tasklet per cpu, with its own queue of sockets. 715 */ 716 struct tsq_tasklet { 717 struct tasklet_struct tasklet; 718 struct list_head head; /* queue of tcp sockets */ 719 }; 720 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 721 722 static void tcp_tsq_handler(struct sock *sk) 723 { 724 if ((1 << sk->sk_state) & 725 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 726 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 727 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle, 728 0, GFP_ATOMIC); 729 } 730 /* 731 * One tasklet per cpu tries to send more skbs. 732 * We run in tasklet context but need to disable irqs when 733 * transferring tsq->head because tcp_wfree() might 734 * interrupt us (non NAPI drivers) 735 */ 736 static void tcp_tasklet_func(unsigned long data) 737 { 738 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 739 LIST_HEAD(list); 740 unsigned long flags; 741 struct list_head *q, *n; 742 struct tcp_sock *tp; 743 struct sock *sk; 744 745 local_irq_save(flags); 746 list_splice_init(&tsq->head, &list); 747 local_irq_restore(flags); 748 749 list_for_each_safe(q, n, &list) { 750 tp = list_entry(q, struct tcp_sock, tsq_node); 751 list_del(&tp->tsq_node); 752 753 sk = (struct sock *)tp; 754 bh_lock_sock(sk); 755 756 if (!sock_owned_by_user(sk)) { 757 tcp_tsq_handler(sk); 758 } else { 759 /* defer the work to tcp_release_cb() */ 760 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 761 } 762 bh_unlock_sock(sk); 763 764 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 765 sk_free(sk); 766 } 767 } 768 769 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 770 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 771 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 772 (1UL << TCP_MTU_REDUCED_DEFERRED)) 773 /** 774 * tcp_release_cb - tcp release_sock() callback 775 * @sk: socket 776 * 777 * called from release_sock() to perform protocol dependent 778 * actions before socket release. 779 */ 780 void tcp_release_cb(struct sock *sk) 781 { 782 struct tcp_sock *tp = tcp_sk(sk); 783 unsigned long flags, nflags; 784 785 /* perform an atomic operation only if at least one flag is set */ 786 do { 787 flags = tp->tsq_flags; 788 if (!(flags & TCP_DEFERRED_ALL)) 789 return; 790 nflags = flags & ~TCP_DEFERRED_ALL; 791 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 792 793 if (flags & (1UL << TCP_TSQ_DEFERRED)) 794 tcp_tsq_handler(sk); 795 796 /* Here begins the tricky part : 797 * We are called from release_sock() with : 798 * 1) BH disabled 799 * 2) sk_lock.slock spinlock held 800 * 3) socket owned by us (sk->sk_lock.owned == 1) 801 * 802 * But following code is meant to be called from BH handlers, 803 * so we should keep BH disabled, but early release socket ownership 804 */ 805 sock_release_ownership(sk); 806 807 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 808 tcp_write_timer_handler(sk); 809 __sock_put(sk); 810 } 811 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 812 tcp_delack_timer_handler(sk); 813 __sock_put(sk); 814 } 815 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 816 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 817 __sock_put(sk); 818 } 819 } 820 EXPORT_SYMBOL(tcp_release_cb); 821 822 void __init tcp_tasklet_init(void) 823 { 824 int i; 825 826 for_each_possible_cpu(i) { 827 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 828 829 INIT_LIST_HEAD(&tsq->head); 830 tasklet_init(&tsq->tasklet, 831 tcp_tasklet_func, 832 (unsigned long)tsq); 833 } 834 } 835 836 /* 837 * Write buffer destructor automatically called from kfree_skb. 838 * We can't xmit new skbs from this context, as we might already 839 * hold qdisc lock. 840 */ 841 void tcp_wfree(struct sk_buff *skb) 842 { 843 struct sock *sk = skb->sk; 844 struct tcp_sock *tp = tcp_sk(sk); 845 int wmem; 846 847 /* Keep one reference on sk_wmem_alloc. 848 * Will be released by sk_free() from here or tcp_tasklet_func() 849 */ 850 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 851 852 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 853 * Wait until our queues (qdisc + devices) are drained. 854 * This gives : 855 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 856 * - chance for incoming ACK (processed by another cpu maybe) 857 * to migrate this flow (skb->ooo_okay will be eventually set) 858 */ 859 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 860 goto out; 861 862 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 863 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 864 unsigned long flags; 865 struct tsq_tasklet *tsq; 866 867 /* queue this socket to tasklet queue */ 868 local_irq_save(flags); 869 tsq = this_cpu_ptr(&tsq_tasklet); 870 list_add(&tp->tsq_node, &tsq->head); 871 tasklet_schedule(&tsq->tasklet); 872 local_irq_restore(flags); 873 return; 874 } 875 out: 876 sk_free(sk); 877 } 878 879 /* This routine actually transmits TCP packets queued in by 880 * tcp_do_sendmsg(). This is used by both the initial 881 * transmission and possible later retransmissions. 882 * All SKB's seen here are completely headerless. It is our 883 * job to build the TCP header, and pass the packet down to 884 * IP so it can do the same plus pass the packet off to the 885 * device. 886 * 887 * We are working here with either a clone of the original 888 * SKB, or a fresh unique copy made by the retransmit engine. 889 */ 890 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 891 gfp_t gfp_mask) 892 { 893 const struct inet_connection_sock *icsk = inet_csk(sk); 894 struct inet_sock *inet; 895 struct tcp_sock *tp; 896 struct tcp_skb_cb *tcb; 897 struct tcp_out_options opts; 898 unsigned int tcp_options_size, tcp_header_size; 899 struct tcp_md5sig_key *md5; 900 struct tcphdr *th; 901 int err; 902 903 BUG_ON(!skb || !tcp_skb_pcount(skb)); 904 905 if (clone_it) { 906 skb_mstamp_get(&skb->skb_mstamp); 907 908 if (unlikely(skb_cloned(skb))) 909 skb = pskb_copy(skb, gfp_mask); 910 else 911 skb = skb_clone(skb, gfp_mask); 912 if (unlikely(!skb)) 913 return -ENOBUFS; 914 } 915 916 inet = inet_sk(sk); 917 tp = tcp_sk(sk); 918 tcb = TCP_SKB_CB(skb); 919 memset(&opts, 0, sizeof(opts)); 920 921 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 922 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 923 else 924 tcp_options_size = tcp_established_options(sk, skb, &opts, 925 &md5); 926 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 927 928 if (tcp_packets_in_flight(tp) == 0) 929 tcp_ca_event(sk, CA_EVENT_TX_START); 930 931 /* if no packet is in qdisc/device queue, then allow XPS to select 932 * another queue. We can be called from tcp_tsq_handler() 933 * which holds one reference to sk_wmem_alloc. 934 * 935 * TODO: Ideally, in-flight pure ACK packets should not matter here. 936 * One way to get this would be to set skb->truesize = 2 on them. 937 */ 938 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 939 940 skb_push(skb, tcp_header_size); 941 skb_reset_transport_header(skb); 942 943 skb_orphan(skb); 944 skb->sk = sk; 945 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree; 946 skb_set_hash_from_sk(skb, sk); 947 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 948 949 /* Build TCP header and checksum it. */ 950 th = tcp_hdr(skb); 951 th->source = inet->inet_sport; 952 th->dest = inet->inet_dport; 953 th->seq = htonl(tcb->seq); 954 th->ack_seq = htonl(tp->rcv_nxt); 955 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 956 tcb->tcp_flags); 957 958 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 959 /* RFC1323: The window in SYN & SYN/ACK segments 960 * is never scaled. 961 */ 962 th->window = htons(min(tp->rcv_wnd, 65535U)); 963 } else { 964 th->window = htons(tcp_select_window(sk)); 965 } 966 th->check = 0; 967 th->urg_ptr = 0; 968 969 /* The urg_mode check is necessary during a below snd_una win probe */ 970 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 971 if (before(tp->snd_up, tcb->seq + 0x10000)) { 972 th->urg_ptr = htons(tp->snd_up - tcb->seq); 973 th->urg = 1; 974 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 975 th->urg_ptr = htons(0xFFFF); 976 th->urg = 1; 977 } 978 } 979 980 tcp_options_write((__be32 *)(th + 1), tp, &opts); 981 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 982 tcp_ecn_send(sk, skb, tcp_header_size); 983 984 #ifdef CONFIG_TCP_MD5SIG 985 /* Calculate the MD5 hash, as we have all we need now */ 986 if (md5) { 987 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 988 tp->af_specific->calc_md5_hash(opts.hash_location, 989 md5, sk, skb); 990 } 991 #endif 992 993 icsk->icsk_af_ops->send_check(sk, skb); 994 995 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 996 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 997 998 if (skb->len != tcp_header_size) 999 tcp_event_data_sent(tp, sk); 1000 1001 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1002 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1003 tcp_skb_pcount(skb)); 1004 1005 /* OK, its time to fill skb_shinfo(skb)->gso_segs */ 1006 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1007 1008 /* Our usage of tstamp should remain private */ 1009 skb->tstamp.tv64 = 0; 1010 1011 /* Cleanup our debris for IP stacks */ 1012 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1013 sizeof(struct inet6_skb_parm))); 1014 1015 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1016 1017 if (likely(err <= 0)) 1018 return err; 1019 1020 tcp_enter_cwr(sk); 1021 1022 return net_xmit_eval(err); 1023 } 1024 1025 /* This routine just queues the buffer for sending. 1026 * 1027 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1028 * otherwise socket can stall. 1029 */ 1030 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1031 { 1032 struct tcp_sock *tp = tcp_sk(sk); 1033 1034 /* Advance write_seq and place onto the write_queue. */ 1035 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1036 __skb_header_release(skb); 1037 tcp_add_write_queue_tail(sk, skb); 1038 sk->sk_wmem_queued += skb->truesize; 1039 sk_mem_charge(sk, skb->truesize); 1040 } 1041 1042 /* Initialize TSO segments for a packet. */ 1043 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 1044 unsigned int mss_now) 1045 { 1046 struct skb_shared_info *shinfo = skb_shinfo(skb); 1047 1048 /* Make sure we own this skb before messing gso_size/gso_segs */ 1049 WARN_ON_ONCE(skb_cloned(skb)); 1050 1051 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1052 /* Avoid the costly divide in the normal 1053 * non-TSO case. 1054 */ 1055 tcp_skb_pcount_set(skb, 1); 1056 shinfo->gso_size = 0; 1057 shinfo->gso_type = 0; 1058 } else { 1059 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1060 shinfo->gso_size = mss_now; 1061 shinfo->gso_type = sk->sk_gso_type; 1062 } 1063 } 1064 1065 /* When a modification to fackets out becomes necessary, we need to check 1066 * skb is counted to fackets_out or not. 1067 */ 1068 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1069 int decr) 1070 { 1071 struct tcp_sock *tp = tcp_sk(sk); 1072 1073 if (!tp->sacked_out || tcp_is_reno(tp)) 1074 return; 1075 1076 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1077 tp->fackets_out -= decr; 1078 } 1079 1080 /* Pcount in the middle of the write queue got changed, we need to do various 1081 * tweaks to fix counters 1082 */ 1083 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1084 { 1085 struct tcp_sock *tp = tcp_sk(sk); 1086 1087 tp->packets_out -= decr; 1088 1089 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1090 tp->sacked_out -= decr; 1091 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1092 tp->retrans_out -= decr; 1093 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1094 tp->lost_out -= decr; 1095 1096 /* Reno case is special. Sigh... */ 1097 if (tcp_is_reno(tp) && decr > 0) 1098 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1099 1100 tcp_adjust_fackets_out(sk, skb, decr); 1101 1102 if (tp->lost_skb_hint && 1103 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1104 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1105 tp->lost_cnt_hint -= decr; 1106 1107 tcp_verify_left_out(tp); 1108 } 1109 1110 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1111 { 1112 struct skb_shared_info *shinfo = skb_shinfo(skb); 1113 1114 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) && 1115 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1116 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1117 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1118 1119 shinfo->tx_flags &= ~tsflags; 1120 shinfo2->tx_flags |= tsflags; 1121 swap(shinfo->tskey, shinfo2->tskey); 1122 } 1123 } 1124 1125 /* Function to create two new TCP segments. Shrinks the given segment 1126 * to the specified size and appends a new segment with the rest of the 1127 * packet to the list. This won't be called frequently, I hope. 1128 * Remember, these are still headerless SKBs at this point. 1129 */ 1130 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1131 unsigned int mss_now, gfp_t gfp) 1132 { 1133 struct tcp_sock *tp = tcp_sk(sk); 1134 struct sk_buff *buff; 1135 int nsize, old_factor; 1136 int nlen; 1137 u8 flags; 1138 1139 if (WARN_ON(len > skb->len)) 1140 return -EINVAL; 1141 1142 nsize = skb_headlen(skb) - len; 1143 if (nsize < 0) 1144 nsize = 0; 1145 1146 if (skb_unclone(skb, gfp)) 1147 return -ENOMEM; 1148 1149 /* Get a new skb... force flag on. */ 1150 buff = sk_stream_alloc_skb(sk, nsize, gfp); 1151 if (buff == NULL) 1152 return -ENOMEM; /* We'll just try again later. */ 1153 1154 sk->sk_wmem_queued += buff->truesize; 1155 sk_mem_charge(sk, buff->truesize); 1156 nlen = skb->len - len - nsize; 1157 buff->truesize += nlen; 1158 skb->truesize -= nlen; 1159 1160 /* Correct the sequence numbers. */ 1161 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1162 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1163 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1164 1165 /* PSH and FIN should only be set in the second packet. */ 1166 flags = TCP_SKB_CB(skb)->tcp_flags; 1167 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1168 TCP_SKB_CB(buff)->tcp_flags = flags; 1169 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1170 1171 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1172 /* Copy and checksum data tail into the new buffer. */ 1173 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1174 skb_put(buff, nsize), 1175 nsize, 0); 1176 1177 skb_trim(skb, len); 1178 1179 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1180 } else { 1181 skb->ip_summed = CHECKSUM_PARTIAL; 1182 skb_split(skb, buff, len); 1183 } 1184 1185 buff->ip_summed = skb->ip_summed; 1186 1187 buff->tstamp = skb->tstamp; 1188 tcp_fragment_tstamp(skb, buff); 1189 1190 old_factor = tcp_skb_pcount(skb); 1191 1192 /* Fix up tso_factor for both original and new SKB. */ 1193 tcp_set_skb_tso_segs(sk, skb, mss_now); 1194 tcp_set_skb_tso_segs(sk, buff, mss_now); 1195 1196 /* If this packet has been sent out already, we must 1197 * adjust the various packet counters. 1198 */ 1199 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1200 int diff = old_factor - tcp_skb_pcount(skb) - 1201 tcp_skb_pcount(buff); 1202 1203 if (diff) 1204 tcp_adjust_pcount(sk, skb, diff); 1205 } 1206 1207 /* Link BUFF into the send queue. */ 1208 __skb_header_release(buff); 1209 tcp_insert_write_queue_after(skb, buff, sk); 1210 1211 return 0; 1212 } 1213 1214 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1215 * eventually). The difference is that pulled data not copied, but 1216 * immediately discarded. 1217 */ 1218 static void __pskb_trim_head(struct sk_buff *skb, int len) 1219 { 1220 struct skb_shared_info *shinfo; 1221 int i, k, eat; 1222 1223 eat = min_t(int, len, skb_headlen(skb)); 1224 if (eat) { 1225 __skb_pull(skb, eat); 1226 len -= eat; 1227 if (!len) 1228 return; 1229 } 1230 eat = len; 1231 k = 0; 1232 shinfo = skb_shinfo(skb); 1233 for (i = 0; i < shinfo->nr_frags; i++) { 1234 int size = skb_frag_size(&shinfo->frags[i]); 1235 1236 if (size <= eat) { 1237 skb_frag_unref(skb, i); 1238 eat -= size; 1239 } else { 1240 shinfo->frags[k] = shinfo->frags[i]; 1241 if (eat) { 1242 shinfo->frags[k].page_offset += eat; 1243 skb_frag_size_sub(&shinfo->frags[k], eat); 1244 eat = 0; 1245 } 1246 k++; 1247 } 1248 } 1249 shinfo->nr_frags = k; 1250 1251 skb_reset_tail_pointer(skb); 1252 skb->data_len -= len; 1253 skb->len = skb->data_len; 1254 } 1255 1256 /* Remove acked data from a packet in the transmit queue. */ 1257 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1258 { 1259 if (skb_unclone(skb, GFP_ATOMIC)) 1260 return -ENOMEM; 1261 1262 __pskb_trim_head(skb, len); 1263 1264 TCP_SKB_CB(skb)->seq += len; 1265 skb->ip_summed = CHECKSUM_PARTIAL; 1266 1267 skb->truesize -= len; 1268 sk->sk_wmem_queued -= len; 1269 sk_mem_uncharge(sk, len); 1270 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1271 1272 /* Any change of skb->len requires recalculation of tso factor. */ 1273 if (tcp_skb_pcount(skb) > 1) 1274 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1275 1276 return 0; 1277 } 1278 1279 /* Calculate MSS not accounting any TCP options. */ 1280 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1281 { 1282 const struct tcp_sock *tp = tcp_sk(sk); 1283 const struct inet_connection_sock *icsk = inet_csk(sk); 1284 int mss_now; 1285 1286 /* Calculate base mss without TCP options: 1287 It is MMS_S - sizeof(tcphdr) of rfc1122 1288 */ 1289 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1290 1291 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1292 if (icsk->icsk_af_ops->net_frag_header_len) { 1293 const struct dst_entry *dst = __sk_dst_get(sk); 1294 1295 if (dst && dst_allfrag(dst)) 1296 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1297 } 1298 1299 /* Clamp it (mss_clamp does not include tcp options) */ 1300 if (mss_now > tp->rx_opt.mss_clamp) 1301 mss_now = tp->rx_opt.mss_clamp; 1302 1303 /* Now subtract optional transport overhead */ 1304 mss_now -= icsk->icsk_ext_hdr_len; 1305 1306 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1307 if (mss_now < 48) 1308 mss_now = 48; 1309 return mss_now; 1310 } 1311 1312 /* Calculate MSS. Not accounting for SACKs here. */ 1313 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1314 { 1315 /* Subtract TCP options size, not including SACKs */ 1316 return __tcp_mtu_to_mss(sk, pmtu) - 1317 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1318 } 1319 1320 /* Inverse of above */ 1321 int tcp_mss_to_mtu(struct sock *sk, int mss) 1322 { 1323 const struct tcp_sock *tp = tcp_sk(sk); 1324 const struct inet_connection_sock *icsk = inet_csk(sk); 1325 int mtu; 1326 1327 mtu = mss + 1328 tp->tcp_header_len + 1329 icsk->icsk_ext_hdr_len + 1330 icsk->icsk_af_ops->net_header_len; 1331 1332 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1333 if (icsk->icsk_af_ops->net_frag_header_len) { 1334 const struct dst_entry *dst = __sk_dst_get(sk); 1335 1336 if (dst && dst_allfrag(dst)) 1337 mtu += icsk->icsk_af_ops->net_frag_header_len; 1338 } 1339 return mtu; 1340 } 1341 1342 /* MTU probing init per socket */ 1343 void tcp_mtup_init(struct sock *sk) 1344 { 1345 struct tcp_sock *tp = tcp_sk(sk); 1346 struct inet_connection_sock *icsk = inet_csk(sk); 1347 struct net *net = sock_net(sk); 1348 1349 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1350 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1351 icsk->icsk_af_ops->net_header_len; 1352 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1353 icsk->icsk_mtup.probe_size = 0; 1354 if (icsk->icsk_mtup.enabled) 1355 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1356 } 1357 EXPORT_SYMBOL(tcp_mtup_init); 1358 1359 /* This function synchronize snd mss to current pmtu/exthdr set. 1360 1361 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1362 for TCP options, but includes only bare TCP header. 1363 1364 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1365 It is minimum of user_mss and mss received with SYN. 1366 It also does not include TCP options. 1367 1368 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1369 1370 tp->mss_cache is current effective sending mss, including 1371 all tcp options except for SACKs. It is evaluated, 1372 taking into account current pmtu, but never exceeds 1373 tp->rx_opt.mss_clamp. 1374 1375 NOTE1. rfc1122 clearly states that advertised MSS 1376 DOES NOT include either tcp or ip options. 1377 1378 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1379 are READ ONLY outside this function. --ANK (980731) 1380 */ 1381 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1382 { 1383 struct tcp_sock *tp = tcp_sk(sk); 1384 struct inet_connection_sock *icsk = inet_csk(sk); 1385 int mss_now; 1386 1387 if (icsk->icsk_mtup.search_high > pmtu) 1388 icsk->icsk_mtup.search_high = pmtu; 1389 1390 mss_now = tcp_mtu_to_mss(sk, pmtu); 1391 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1392 1393 /* And store cached results */ 1394 icsk->icsk_pmtu_cookie = pmtu; 1395 if (icsk->icsk_mtup.enabled) 1396 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1397 tp->mss_cache = mss_now; 1398 1399 return mss_now; 1400 } 1401 EXPORT_SYMBOL(tcp_sync_mss); 1402 1403 /* Compute the current effective MSS, taking SACKs and IP options, 1404 * and even PMTU discovery events into account. 1405 */ 1406 unsigned int tcp_current_mss(struct sock *sk) 1407 { 1408 const struct tcp_sock *tp = tcp_sk(sk); 1409 const struct dst_entry *dst = __sk_dst_get(sk); 1410 u32 mss_now; 1411 unsigned int header_len; 1412 struct tcp_out_options opts; 1413 struct tcp_md5sig_key *md5; 1414 1415 mss_now = tp->mss_cache; 1416 1417 if (dst) { 1418 u32 mtu = dst_mtu(dst); 1419 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1420 mss_now = tcp_sync_mss(sk, mtu); 1421 } 1422 1423 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1424 sizeof(struct tcphdr); 1425 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1426 * some common options. If this is an odd packet (because we have SACK 1427 * blocks etc) then our calculated header_len will be different, and 1428 * we have to adjust mss_now correspondingly */ 1429 if (header_len != tp->tcp_header_len) { 1430 int delta = (int) header_len - tp->tcp_header_len; 1431 mss_now -= delta; 1432 } 1433 1434 return mss_now; 1435 } 1436 1437 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1438 * As additional protections, we do not touch cwnd in retransmission phases, 1439 * and if application hit its sndbuf limit recently. 1440 */ 1441 static void tcp_cwnd_application_limited(struct sock *sk) 1442 { 1443 struct tcp_sock *tp = tcp_sk(sk); 1444 1445 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1446 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1447 /* Limited by application or receiver window. */ 1448 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1449 u32 win_used = max(tp->snd_cwnd_used, init_win); 1450 if (win_used < tp->snd_cwnd) { 1451 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1452 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1453 } 1454 tp->snd_cwnd_used = 0; 1455 } 1456 tp->snd_cwnd_stamp = tcp_time_stamp; 1457 } 1458 1459 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1460 { 1461 struct tcp_sock *tp = tcp_sk(sk); 1462 1463 /* Track the maximum number of outstanding packets in each 1464 * window, and remember whether we were cwnd-limited then. 1465 */ 1466 if (!before(tp->snd_una, tp->max_packets_seq) || 1467 tp->packets_out > tp->max_packets_out) { 1468 tp->max_packets_out = tp->packets_out; 1469 tp->max_packets_seq = tp->snd_nxt; 1470 tp->is_cwnd_limited = is_cwnd_limited; 1471 } 1472 1473 if (tcp_is_cwnd_limited(sk)) { 1474 /* Network is feed fully. */ 1475 tp->snd_cwnd_used = 0; 1476 tp->snd_cwnd_stamp = tcp_time_stamp; 1477 } else { 1478 /* Network starves. */ 1479 if (tp->packets_out > tp->snd_cwnd_used) 1480 tp->snd_cwnd_used = tp->packets_out; 1481 1482 if (sysctl_tcp_slow_start_after_idle && 1483 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1484 tcp_cwnd_application_limited(sk); 1485 } 1486 } 1487 1488 /* Minshall's variant of the Nagle send check. */ 1489 static bool tcp_minshall_check(const struct tcp_sock *tp) 1490 { 1491 return after(tp->snd_sml, tp->snd_una) && 1492 !after(tp->snd_sml, tp->snd_nxt); 1493 } 1494 1495 /* Update snd_sml if this skb is under mss 1496 * Note that a TSO packet might end with a sub-mss segment 1497 * The test is really : 1498 * if ((skb->len % mss) != 0) 1499 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1500 * But we can avoid doing the divide again given we already have 1501 * skb_pcount = skb->len / mss_now 1502 */ 1503 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1504 const struct sk_buff *skb) 1505 { 1506 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1507 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1508 } 1509 1510 /* Return false, if packet can be sent now without violation Nagle's rules: 1511 * 1. It is full sized. (provided by caller in %partial bool) 1512 * 2. Or it contains FIN. (already checked by caller) 1513 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1514 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1515 * With Minshall's modification: all sent small packets are ACKed. 1516 */ 1517 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1518 int nonagle) 1519 { 1520 return partial && 1521 ((nonagle & TCP_NAGLE_CORK) || 1522 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1523 } 1524 1525 /* Return how many segs we'd like on a TSO packet, 1526 * to send one TSO packet per ms 1527 */ 1528 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now) 1529 { 1530 u32 bytes, segs; 1531 1532 bytes = min(sk->sk_pacing_rate >> 10, 1533 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1534 1535 /* Goal is to send at least one packet per ms, 1536 * not one big TSO packet every 100 ms. 1537 * This preserves ACK clocking and is consistent 1538 * with tcp_tso_should_defer() heuristic. 1539 */ 1540 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs); 1541 1542 return min_t(u32, segs, sk->sk_gso_max_segs); 1543 } 1544 1545 /* Returns the portion of skb which can be sent right away */ 1546 static unsigned int tcp_mss_split_point(const struct sock *sk, 1547 const struct sk_buff *skb, 1548 unsigned int mss_now, 1549 unsigned int max_segs, 1550 int nonagle) 1551 { 1552 const struct tcp_sock *tp = tcp_sk(sk); 1553 u32 partial, needed, window, max_len; 1554 1555 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1556 max_len = mss_now * max_segs; 1557 1558 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1559 return max_len; 1560 1561 needed = min(skb->len, window); 1562 1563 if (max_len <= needed) 1564 return max_len; 1565 1566 partial = needed % mss_now; 1567 /* If last segment is not a full MSS, check if Nagle rules allow us 1568 * to include this last segment in this skb. 1569 * Otherwise, we'll split the skb at last MSS boundary 1570 */ 1571 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1572 return needed - partial; 1573 1574 return needed; 1575 } 1576 1577 /* Can at least one segment of SKB be sent right now, according to the 1578 * congestion window rules? If so, return how many segments are allowed. 1579 */ 1580 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1581 const struct sk_buff *skb) 1582 { 1583 u32 in_flight, cwnd, halfcwnd; 1584 1585 /* Don't be strict about the congestion window for the final FIN. */ 1586 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1587 tcp_skb_pcount(skb) == 1) 1588 return 1; 1589 1590 in_flight = tcp_packets_in_flight(tp); 1591 cwnd = tp->snd_cwnd; 1592 if (in_flight >= cwnd) 1593 return 0; 1594 1595 /* For better scheduling, ensure we have at least 1596 * 2 GSO packets in flight. 1597 */ 1598 halfcwnd = max(cwnd >> 1, 1U); 1599 return min(halfcwnd, cwnd - in_flight); 1600 } 1601 1602 /* Initialize TSO state of a skb. 1603 * This must be invoked the first time we consider transmitting 1604 * SKB onto the wire. 1605 */ 1606 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1607 unsigned int mss_now) 1608 { 1609 int tso_segs = tcp_skb_pcount(skb); 1610 1611 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1612 tcp_set_skb_tso_segs(sk, skb, mss_now); 1613 tso_segs = tcp_skb_pcount(skb); 1614 } 1615 return tso_segs; 1616 } 1617 1618 1619 /* Return true if the Nagle test allows this packet to be 1620 * sent now. 1621 */ 1622 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1623 unsigned int cur_mss, int nonagle) 1624 { 1625 /* Nagle rule does not apply to frames, which sit in the middle of the 1626 * write_queue (they have no chances to get new data). 1627 * 1628 * This is implemented in the callers, where they modify the 'nonagle' 1629 * argument based upon the location of SKB in the send queue. 1630 */ 1631 if (nonagle & TCP_NAGLE_PUSH) 1632 return true; 1633 1634 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1635 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1636 return true; 1637 1638 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1639 return true; 1640 1641 return false; 1642 } 1643 1644 /* Does at least the first segment of SKB fit into the send window? */ 1645 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1646 const struct sk_buff *skb, 1647 unsigned int cur_mss) 1648 { 1649 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1650 1651 if (skb->len > cur_mss) 1652 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1653 1654 return !after(end_seq, tcp_wnd_end(tp)); 1655 } 1656 1657 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1658 * should be put on the wire right now. If so, it returns the number of 1659 * packets allowed by the congestion window. 1660 */ 1661 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1662 unsigned int cur_mss, int nonagle) 1663 { 1664 const struct tcp_sock *tp = tcp_sk(sk); 1665 unsigned int cwnd_quota; 1666 1667 tcp_init_tso_segs(sk, skb, cur_mss); 1668 1669 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1670 return 0; 1671 1672 cwnd_quota = tcp_cwnd_test(tp, skb); 1673 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1674 cwnd_quota = 0; 1675 1676 return cwnd_quota; 1677 } 1678 1679 /* Test if sending is allowed right now. */ 1680 bool tcp_may_send_now(struct sock *sk) 1681 { 1682 const struct tcp_sock *tp = tcp_sk(sk); 1683 struct sk_buff *skb = tcp_send_head(sk); 1684 1685 return skb && 1686 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1687 (tcp_skb_is_last(sk, skb) ? 1688 tp->nonagle : TCP_NAGLE_PUSH)); 1689 } 1690 1691 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1692 * which is put after SKB on the list. It is very much like 1693 * tcp_fragment() except that it may make several kinds of assumptions 1694 * in order to speed up the splitting operation. In particular, we 1695 * know that all the data is in scatter-gather pages, and that the 1696 * packet has never been sent out before (and thus is not cloned). 1697 */ 1698 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1699 unsigned int mss_now, gfp_t gfp) 1700 { 1701 struct sk_buff *buff; 1702 int nlen = skb->len - len; 1703 u8 flags; 1704 1705 /* All of a TSO frame must be composed of paged data. */ 1706 if (skb->len != skb->data_len) 1707 return tcp_fragment(sk, skb, len, mss_now, gfp); 1708 1709 buff = sk_stream_alloc_skb(sk, 0, gfp); 1710 if (unlikely(buff == NULL)) 1711 return -ENOMEM; 1712 1713 sk->sk_wmem_queued += buff->truesize; 1714 sk_mem_charge(sk, buff->truesize); 1715 buff->truesize += nlen; 1716 skb->truesize -= nlen; 1717 1718 /* Correct the sequence numbers. */ 1719 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1720 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1721 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1722 1723 /* PSH and FIN should only be set in the second packet. */ 1724 flags = TCP_SKB_CB(skb)->tcp_flags; 1725 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1726 TCP_SKB_CB(buff)->tcp_flags = flags; 1727 1728 /* This packet was never sent out yet, so no SACK bits. */ 1729 TCP_SKB_CB(buff)->sacked = 0; 1730 1731 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1732 skb_split(skb, buff, len); 1733 tcp_fragment_tstamp(skb, buff); 1734 1735 /* Fix up tso_factor for both original and new SKB. */ 1736 tcp_set_skb_tso_segs(sk, skb, mss_now); 1737 tcp_set_skb_tso_segs(sk, buff, mss_now); 1738 1739 /* Link BUFF into the send queue. */ 1740 __skb_header_release(buff); 1741 tcp_insert_write_queue_after(skb, buff, sk); 1742 1743 return 0; 1744 } 1745 1746 /* Try to defer sending, if possible, in order to minimize the amount 1747 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1748 * 1749 * This algorithm is from John Heffner. 1750 */ 1751 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1752 bool *is_cwnd_limited, u32 max_segs) 1753 { 1754 const struct inet_connection_sock *icsk = inet_csk(sk); 1755 u32 age, send_win, cong_win, limit, in_flight; 1756 struct tcp_sock *tp = tcp_sk(sk); 1757 struct skb_mstamp now; 1758 struct sk_buff *head; 1759 int win_divisor; 1760 1761 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1762 goto send_now; 1763 1764 if (!((1 << icsk->icsk_ca_state) & (TCPF_CA_Open | TCPF_CA_CWR))) 1765 goto send_now; 1766 1767 /* Avoid bursty behavior by allowing defer 1768 * only if the last write was recent. 1769 */ 1770 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0) 1771 goto send_now; 1772 1773 in_flight = tcp_packets_in_flight(tp); 1774 1775 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1776 1777 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1778 1779 /* From in_flight test above, we know that cwnd > in_flight. */ 1780 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1781 1782 limit = min(send_win, cong_win); 1783 1784 /* If a full-sized TSO skb can be sent, do it. */ 1785 if (limit >= max_segs * tp->mss_cache) 1786 goto send_now; 1787 1788 /* Middle in queue won't get any more data, full sendable already? */ 1789 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1790 goto send_now; 1791 1792 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1793 if (win_divisor) { 1794 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1795 1796 /* If at least some fraction of a window is available, 1797 * just use it. 1798 */ 1799 chunk /= win_divisor; 1800 if (limit >= chunk) 1801 goto send_now; 1802 } else { 1803 /* Different approach, try not to defer past a single 1804 * ACK. Receiver should ACK every other full sized 1805 * frame, so if we have space for more than 3 frames 1806 * then send now. 1807 */ 1808 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1809 goto send_now; 1810 } 1811 1812 head = tcp_write_queue_head(sk); 1813 skb_mstamp_get(&now); 1814 age = skb_mstamp_us_delta(&now, &head->skb_mstamp); 1815 /* If next ACK is likely to come too late (half srtt), do not defer */ 1816 if (age < (tp->srtt_us >> 4)) 1817 goto send_now; 1818 1819 /* Ok, it looks like it is advisable to defer. */ 1820 1821 if (cong_win < send_win && cong_win < skb->len) 1822 *is_cwnd_limited = true; 1823 1824 return true; 1825 1826 send_now: 1827 return false; 1828 } 1829 1830 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1831 { 1832 struct inet_connection_sock *icsk = inet_csk(sk); 1833 struct tcp_sock *tp = tcp_sk(sk); 1834 struct net *net = sock_net(sk); 1835 u32 interval; 1836 s32 delta; 1837 1838 interval = net->ipv4.sysctl_tcp_probe_interval; 1839 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp; 1840 if (unlikely(delta >= interval * HZ)) { 1841 int mss = tcp_current_mss(sk); 1842 1843 /* Update current search range */ 1844 icsk->icsk_mtup.probe_size = 0; 1845 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1846 sizeof(struct tcphdr) + 1847 icsk->icsk_af_ops->net_header_len; 1848 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1849 1850 /* Update probe time stamp */ 1851 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1852 } 1853 } 1854 1855 /* Create a new MTU probe if we are ready. 1856 * MTU probe is regularly attempting to increase the path MTU by 1857 * deliberately sending larger packets. This discovers routing 1858 * changes resulting in larger path MTUs. 1859 * 1860 * Returns 0 if we should wait to probe (no cwnd available), 1861 * 1 if a probe was sent, 1862 * -1 otherwise 1863 */ 1864 static int tcp_mtu_probe(struct sock *sk) 1865 { 1866 struct tcp_sock *tp = tcp_sk(sk); 1867 struct inet_connection_sock *icsk = inet_csk(sk); 1868 struct sk_buff *skb, *nskb, *next; 1869 struct net *net = sock_net(sk); 1870 int len; 1871 int probe_size; 1872 int size_needed; 1873 int copy; 1874 int mss_now; 1875 int interval; 1876 1877 /* Not currently probing/verifying, 1878 * not in recovery, 1879 * have enough cwnd, and 1880 * not SACKing (the variable headers throw things off) */ 1881 if (!icsk->icsk_mtup.enabled || 1882 icsk->icsk_mtup.probe_size || 1883 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1884 tp->snd_cwnd < 11 || 1885 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1886 return -1; 1887 1888 /* Use binary search for probe_size between tcp_mss_base, 1889 * and current mss_clamp. if (search_high - search_low) 1890 * smaller than a threshold, backoff from probing. 1891 */ 1892 mss_now = tcp_current_mss(sk); 1893 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 1894 icsk->icsk_mtup.search_low) >> 1); 1895 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1896 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 1897 /* When misfortune happens, we are reprobing actively, 1898 * and then reprobe timer has expired. We stick with current 1899 * probing process by not resetting search range to its orignal. 1900 */ 1901 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 1902 interval < net->ipv4.sysctl_tcp_probe_threshold) { 1903 /* Check whether enough time has elaplased for 1904 * another round of probing. 1905 */ 1906 tcp_mtu_check_reprobe(sk); 1907 return -1; 1908 } 1909 1910 /* Have enough data in the send queue to probe? */ 1911 if (tp->write_seq - tp->snd_nxt < size_needed) 1912 return -1; 1913 1914 if (tp->snd_wnd < size_needed) 1915 return -1; 1916 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1917 return 0; 1918 1919 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1920 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1921 if (!tcp_packets_in_flight(tp)) 1922 return -1; 1923 else 1924 return 0; 1925 } 1926 1927 /* We're allowed to probe. Build it now. */ 1928 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1929 return -1; 1930 sk->sk_wmem_queued += nskb->truesize; 1931 sk_mem_charge(sk, nskb->truesize); 1932 1933 skb = tcp_send_head(sk); 1934 1935 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1936 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1937 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1938 TCP_SKB_CB(nskb)->sacked = 0; 1939 nskb->csum = 0; 1940 nskb->ip_summed = skb->ip_summed; 1941 1942 tcp_insert_write_queue_before(nskb, skb, sk); 1943 1944 len = 0; 1945 tcp_for_write_queue_from_safe(skb, next, sk) { 1946 copy = min_t(int, skb->len, probe_size - len); 1947 if (nskb->ip_summed) 1948 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1949 else 1950 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1951 skb_put(nskb, copy), 1952 copy, nskb->csum); 1953 1954 if (skb->len <= copy) { 1955 /* We've eaten all the data from this skb. 1956 * Throw it away. */ 1957 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1958 tcp_unlink_write_queue(skb, sk); 1959 sk_wmem_free_skb(sk, skb); 1960 } else { 1961 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1962 ~(TCPHDR_FIN|TCPHDR_PSH); 1963 if (!skb_shinfo(skb)->nr_frags) { 1964 skb_pull(skb, copy); 1965 if (skb->ip_summed != CHECKSUM_PARTIAL) 1966 skb->csum = csum_partial(skb->data, 1967 skb->len, 0); 1968 } else { 1969 __pskb_trim_head(skb, copy); 1970 tcp_set_skb_tso_segs(sk, skb, mss_now); 1971 } 1972 TCP_SKB_CB(skb)->seq += copy; 1973 } 1974 1975 len += copy; 1976 1977 if (len >= probe_size) 1978 break; 1979 } 1980 tcp_init_tso_segs(sk, nskb, nskb->len); 1981 1982 /* We're ready to send. If this fails, the probe will 1983 * be resegmented into mss-sized pieces by tcp_write_xmit(). 1984 */ 1985 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1986 /* Decrement cwnd here because we are sending 1987 * effectively two packets. */ 1988 tp->snd_cwnd--; 1989 tcp_event_new_data_sent(sk, nskb); 1990 1991 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1992 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1993 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1994 1995 return 1; 1996 } 1997 1998 return -1; 1999 } 2000 2001 /* This routine writes packets to the network. It advances the 2002 * send_head. This happens as incoming acks open up the remote 2003 * window for us. 2004 * 2005 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2006 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2007 * account rare use of URG, this is not a big flaw. 2008 * 2009 * Send at most one packet when push_one > 0. Temporarily ignore 2010 * cwnd limit to force at most one packet out when push_one == 2. 2011 2012 * Returns true, if no segments are in flight and we have queued segments, 2013 * but cannot send anything now because of SWS or another problem. 2014 */ 2015 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2016 int push_one, gfp_t gfp) 2017 { 2018 struct tcp_sock *tp = tcp_sk(sk); 2019 struct sk_buff *skb; 2020 unsigned int tso_segs, sent_pkts; 2021 int cwnd_quota; 2022 int result; 2023 bool is_cwnd_limited = false; 2024 u32 max_segs; 2025 2026 sent_pkts = 0; 2027 2028 if (!push_one) { 2029 /* Do MTU probing. */ 2030 result = tcp_mtu_probe(sk); 2031 if (!result) { 2032 return false; 2033 } else if (result > 0) { 2034 sent_pkts = 1; 2035 } 2036 } 2037 2038 max_segs = tcp_tso_autosize(sk, mss_now); 2039 while ((skb = tcp_send_head(sk))) { 2040 unsigned int limit; 2041 2042 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 2043 BUG_ON(!tso_segs); 2044 2045 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2046 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2047 skb_mstamp_get(&skb->skb_mstamp); 2048 goto repair; /* Skip network transmission */ 2049 } 2050 2051 cwnd_quota = tcp_cwnd_test(tp, skb); 2052 if (!cwnd_quota) { 2053 is_cwnd_limited = true; 2054 if (push_one == 2) 2055 /* Force out a loss probe pkt. */ 2056 cwnd_quota = 1; 2057 else 2058 break; 2059 } 2060 2061 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 2062 break; 2063 2064 if (tso_segs == 1 || !max_segs) { 2065 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2066 (tcp_skb_is_last(sk, skb) ? 2067 nonagle : TCP_NAGLE_PUSH)))) 2068 break; 2069 } else { 2070 if (!push_one && 2071 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2072 max_segs)) 2073 break; 2074 } 2075 2076 limit = mss_now; 2077 if (tso_segs > 1 && max_segs && !tcp_urg_mode(tp)) 2078 limit = tcp_mss_split_point(sk, skb, mss_now, 2079 min_t(unsigned int, 2080 cwnd_quota, 2081 max_segs), 2082 nonagle); 2083 2084 if (skb->len > limit && 2085 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2086 break; 2087 2088 /* TCP Small Queues : 2089 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2090 * This allows for : 2091 * - better RTT estimation and ACK scheduling 2092 * - faster recovery 2093 * - high rates 2094 * Alas, some drivers / subsystems require a fair amount 2095 * of queued bytes to ensure line rate. 2096 * One example is wifi aggregation (802.11 AMPDU) 2097 */ 2098 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2099 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2100 2101 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2102 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 2103 /* It is possible TX completion already happened 2104 * before we set TSQ_THROTTLED, so we must 2105 * test again the condition. 2106 */ 2107 smp_mb__after_atomic(); 2108 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2109 break; 2110 } 2111 2112 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2113 break; 2114 2115 repair: 2116 /* Advance the send_head. This one is sent out. 2117 * This call will increment packets_out. 2118 */ 2119 tcp_event_new_data_sent(sk, skb); 2120 2121 tcp_minshall_update(tp, mss_now, skb); 2122 sent_pkts += tcp_skb_pcount(skb); 2123 2124 if (push_one) 2125 break; 2126 } 2127 2128 if (likely(sent_pkts)) { 2129 if (tcp_in_cwnd_reduction(sk)) 2130 tp->prr_out += sent_pkts; 2131 2132 /* Send one loss probe per tail loss episode. */ 2133 if (push_one != 2) 2134 tcp_schedule_loss_probe(sk); 2135 tcp_cwnd_validate(sk, is_cwnd_limited); 2136 return false; 2137 } 2138 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk)); 2139 } 2140 2141 bool tcp_schedule_loss_probe(struct sock *sk) 2142 { 2143 struct inet_connection_sock *icsk = inet_csk(sk); 2144 struct tcp_sock *tp = tcp_sk(sk); 2145 u32 timeout, tlp_time_stamp, rto_time_stamp; 2146 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2147 2148 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 2149 return false; 2150 /* No consecutive loss probes. */ 2151 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2152 tcp_rearm_rto(sk); 2153 return false; 2154 } 2155 /* Don't do any loss probe on a Fast Open connection before 3WHS 2156 * finishes. 2157 */ 2158 if (sk->sk_state == TCP_SYN_RECV) 2159 return false; 2160 2161 /* TLP is only scheduled when next timer event is RTO. */ 2162 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2163 return false; 2164 2165 /* Schedule a loss probe in 2*RTT for SACK capable connections 2166 * in Open state, that are either limited by cwnd or application. 2167 */ 2168 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out || 2169 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2170 return false; 2171 2172 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2173 tcp_send_head(sk)) 2174 return false; 2175 2176 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2177 * for delayed ack when there's one outstanding packet. 2178 */ 2179 timeout = rtt << 1; 2180 if (tp->packets_out == 1) 2181 timeout = max_t(u32, timeout, 2182 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2183 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2184 2185 /* If RTO is shorter, just schedule TLP in its place. */ 2186 tlp_time_stamp = tcp_time_stamp + timeout; 2187 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2188 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2189 s32 delta = rto_time_stamp - tcp_time_stamp; 2190 if (delta > 0) 2191 timeout = delta; 2192 } 2193 2194 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2195 TCP_RTO_MAX); 2196 return true; 2197 } 2198 2199 /* Thanks to skb fast clones, we can detect if a prior transmit of 2200 * a packet is still in a qdisc or driver queue. 2201 * In this case, there is very little point doing a retransmit ! 2202 * Note: This is called from BH context only. 2203 */ 2204 static bool skb_still_in_host_queue(const struct sock *sk, 2205 const struct sk_buff *skb) 2206 { 2207 if (unlikely(skb_fclone_busy(sk, skb))) { 2208 NET_INC_STATS_BH(sock_net(sk), 2209 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2210 return true; 2211 } 2212 return false; 2213 } 2214 2215 /* When probe timeout (PTO) fires, send a new segment if one exists, else 2216 * retransmit the last segment. 2217 */ 2218 void tcp_send_loss_probe(struct sock *sk) 2219 { 2220 struct tcp_sock *tp = tcp_sk(sk); 2221 struct sk_buff *skb; 2222 int pcount; 2223 int mss = tcp_current_mss(sk); 2224 int err = -1; 2225 2226 if (tcp_send_head(sk) != NULL) { 2227 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2228 goto rearm_timer; 2229 } 2230 2231 /* At most one outstanding TLP retransmission. */ 2232 if (tp->tlp_high_seq) 2233 goto rearm_timer; 2234 2235 /* Retransmit last segment. */ 2236 skb = tcp_write_queue_tail(sk); 2237 if (WARN_ON(!skb)) 2238 goto rearm_timer; 2239 2240 if (skb_still_in_host_queue(sk, skb)) 2241 goto rearm_timer; 2242 2243 pcount = tcp_skb_pcount(skb); 2244 if (WARN_ON(!pcount)) 2245 goto rearm_timer; 2246 2247 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2248 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2249 GFP_ATOMIC))) 2250 goto rearm_timer; 2251 skb = tcp_write_queue_tail(sk); 2252 } 2253 2254 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2255 goto rearm_timer; 2256 2257 err = __tcp_retransmit_skb(sk, skb); 2258 2259 /* Record snd_nxt for loss detection. */ 2260 if (likely(!err)) 2261 tp->tlp_high_seq = tp->snd_nxt; 2262 2263 rearm_timer: 2264 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2265 inet_csk(sk)->icsk_rto, 2266 TCP_RTO_MAX); 2267 2268 if (likely(!err)) 2269 NET_INC_STATS_BH(sock_net(sk), 2270 LINUX_MIB_TCPLOSSPROBES); 2271 } 2272 2273 /* Push out any pending frames which were held back due to 2274 * TCP_CORK or attempt at coalescing tiny packets. 2275 * The socket must be locked by the caller. 2276 */ 2277 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2278 int nonagle) 2279 { 2280 /* If we are closed, the bytes will have to remain here. 2281 * In time closedown will finish, we empty the write queue and 2282 * all will be happy. 2283 */ 2284 if (unlikely(sk->sk_state == TCP_CLOSE)) 2285 return; 2286 2287 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2288 sk_gfp_atomic(sk, GFP_ATOMIC))) 2289 tcp_check_probe_timer(sk); 2290 } 2291 2292 /* Send _single_ skb sitting at the send head. This function requires 2293 * true push pending frames to setup probe timer etc. 2294 */ 2295 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2296 { 2297 struct sk_buff *skb = tcp_send_head(sk); 2298 2299 BUG_ON(!skb || skb->len < mss_now); 2300 2301 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2302 } 2303 2304 /* This function returns the amount that we can raise the 2305 * usable window based on the following constraints 2306 * 2307 * 1. The window can never be shrunk once it is offered (RFC 793) 2308 * 2. We limit memory per socket 2309 * 2310 * RFC 1122: 2311 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2312 * RECV.NEXT + RCV.WIN fixed until: 2313 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2314 * 2315 * i.e. don't raise the right edge of the window until you can raise 2316 * it at least MSS bytes. 2317 * 2318 * Unfortunately, the recommended algorithm breaks header prediction, 2319 * since header prediction assumes th->window stays fixed. 2320 * 2321 * Strictly speaking, keeping th->window fixed violates the receiver 2322 * side SWS prevention criteria. The problem is that under this rule 2323 * a stream of single byte packets will cause the right side of the 2324 * window to always advance by a single byte. 2325 * 2326 * Of course, if the sender implements sender side SWS prevention 2327 * then this will not be a problem. 2328 * 2329 * BSD seems to make the following compromise: 2330 * 2331 * If the free space is less than the 1/4 of the maximum 2332 * space available and the free space is less than 1/2 mss, 2333 * then set the window to 0. 2334 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2335 * Otherwise, just prevent the window from shrinking 2336 * and from being larger than the largest representable value. 2337 * 2338 * This prevents incremental opening of the window in the regime 2339 * where TCP is limited by the speed of the reader side taking 2340 * data out of the TCP receive queue. It does nothing about 2341 * those cases where the window is constrained on the sender side 2342 * because the pipeline is full. 2343 * 2344 * BSD also seems to "accidentally" limit itself to windows that are a 2345 * multiple of MSS, at least until the free space gets quite small. 2346 * This would appear to be a side effect of the mbuf implementation. 2347 * Combining these two algorithms results in the observed behavior 2348 * of having a fixed window size at almost all times. 2349 * 2350 * Below we obtain similar behavior by forcing the offered window to 2351 * a multiple of the mss when it is feasible to do so. 2352 * 2353 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2354 * Regular options like TIMESTAMP are taken into account. 2355 */ 2356 u32 __tcp_select_window(struct sock *sk) 2357 { 2358 struct inet_connection_sock *icsk = inet_csk(sk); 2359 struct tcp_sock *tp = tcp_sk(sk); 2360 /* MSS for the peer's data. Previous versions used mss_clamp 2361 * here. I don't know if the value based on our guesses 2362 * of peer's MSS is better for the performance. It's more correct 2363 * but may be worse for the performance because of rcv_mss 2364 * fluctuations. --SAW 1998/11/1 2365 */ 2366 int mss = icsk->icsk_ack.rcv_mss; 2367 int free_space = tcp_space(sk); 2368 int allowed_space = tcp_full_space(sk); 2369 int full_space = min_t(int, tp->window_clamp, allowed_space); 2370 int window; 2371 2372 if (mss > full_space) 2373 mss = full_space; 2374 2375 if (free_space < (full_space >> 1)) { 2376 icsk->icsk_ack.quick = 0; 2377 2378 if (sk_under_memory_pressure(sk)) 2379 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2380 4U * tp->advmss); 2381 2382 /* free_space might become our new window, make sure we don't 2383 * increase it due to wscale. 2384 */ 2385 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2386 2387 /* if free space is less than mss estimate, or is below 1/16th 2388 * of the maximum allowed, try to move to zero-window, else 2389 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2390 * new incoming data is dropped due to memory limits. 2391 * With large window, mss test triggers way too late in order 2392 * to announce zero window in time before rmem limit kicks in. 2393 */ 2394 if (free_space < (allowed_space >> 4) || free_space < mss) 2395 return 0; 2396 } 2397 2398 if (free_space > tp->rcv_ssthresh) 2399 free_space = tp->rcv_ssthresh; 2400 2401 /* Don't do rounding if we are using window scaling, since the 2402 * scaled window will not line up with the MSS boundary anyway. 2403 */ 2404 window = tp->rcv_wnd; 2405 if (tp->rx_opt.rcv_wscale) { 2406 window = free_space; 2407 2408 /* Advertise enough space so that it won't get scaled away. 2409 * Import case: prevent zero window announcement if 2410 * 1<<rcv_wscale > mss. 2411 */ 2412 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2413 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2414 << tp->rx_opt.rcv_wscale); 2415 } else { 2416 /* Get the largest window that is a nice multiple of mss. 2417 * Window clamp already applied above. 2418 * If our current window offering is within 1 mss of the 2419 * free space we just keep it. This prevents the divide 2420 * and multiply from happening most of the time. 2421 * We also don't do any window rounding when the free space 2422 * is too small. 2423 */ 2424 if (window <= free_space - mss || window > free_space) 2425 window = (free_space / mss) * mss; 2426 else if (mss == full_space && 2427 free_space > window + (full_space >> 1)) 2428 window = free_space; 2429 } 2430 2431 return window; 2432 } 2433 2434 /* Collapses two adjacent SKB's during retransmission. */ 2435 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2436 { 2437 struct tcp_sock *tp = tcp_sk(sk); 2438 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2439 int skb_size, next_skb_size; 2440 2441 skb_size = skb->len; 2442 next_skb_size = next_skb->len; 2443 2444 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2445 2446 tcp_highest_sack_combine(sk, next_skb, skb); 2447 2448 tcp_unlink_write_queue(next_skb, sk); 2449 2450 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2451 next_skb_size); 2452 2453 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2454 skb->ip_summed = CHECKSUM_PARTIAL; 2455 2456 if (skb->ip_summed != CHECKSUM_PARTIAL) 2457 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2458 2459 /* Update sequence range on original skb. */ 2460 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2461 2462 /* Merge over control information. This moves PSH/FIN etc. over */ 2463 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2464 2465 /* All done, get rid of second SKB and account for it so 2466 * packet counting does not break. 2467 */ 2468 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2469 2470 /* changed transmit queue under us so clear hints */ 2471 tcp_clear_retrans_hints_partial(tp); 2472 if (next_skb == tp->retransmit_skb_hint) 2473 tp->retransmit_skb_hint = skb; 2474 2475 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2476 2477 sk_wmem_free_skb(sk, next_skb); 2478 } 2479 2480 /* Check if coalescing SKBs is legal. */ 2481 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2482 { 2483 if (tcp_skb_pcount(skb) > 1) 2484 return false; 2485 /* TODO: SACK collapsing could be used to remove this condition */ 2486 if (skb_shinfo(skb)->nr_frags != 0) 2487 return false; 2488 if (skb_cloned(skb)) 2489 return false; 2490 if (skb == tcp_send_head(sk)) 2491 return false; 2492 /* Some heurestics for collapsing over SACK'd could be invented */ 2493 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2494 return false; 2495 2496 return true; 2497 } 2498 2499 /* Collapse packets in the retransmit queue to make to create 2500 * less packets on the wire. This is only done on retransmission. 2501 */ 2502 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2503 int space) 2504 { 2505 struct tcp_sock *tp = tcp_sk(sk); 2506 struct sk_buff *skb = to, *tmp; 2507 bool first = true; 2508 2509 if (!sysctl_tcp_retrans_collapse) 2510 return; 2511 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2512 return; 2513 2514 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2515 if (!tcp_can_collapse(sk, skb)) 2516 break; 2517 2518 space -= skb->len; 2519 2520 if (first) { 2521 first = false; 2522 continue; 2523 } 2524 2525 if (space < 0) 2526 break; 2527 /* Punt if not enough space exists in the first SKB for 2528 * the data in the second 2529 */ 2530 if (skb->len > skb_availroom(to)) 2531 break; 2532 2533 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2534 break; 2535 2536 tcp_collapse_retrans(sk, to); 2537 } 2538 } 2539 2540 /* This retransmits one SKB. Policy decisions and retransmit queue 2541 * state updates are done by the caller. Returns non-zero if an 2542 * error occurred which prevented the send. 2543 */ 2544 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2545 { 2546 struct tcp_sock *tp = tcp_sk(sk); 2547 struct inet_connection_sock *icsk = inet_csk(sk); 2548 unsigned int cur_mss; 2549 int err; 2550 2551 /* Inconslusive MTU probe */ 2552 if (icsk->icsk_mtup.probe_size) { 2553 icsk->icsk_mtup.probe_size = 0; 2554 } 2555 2556 /* Do not sent more than we queued. 1/4 is reserved for possible 2557 * copying overhead: fragmentation, tunneling, mangling etc. 2558 */ 2559 if (atomic_read(&sk->sk_wmem_alloc) > 2560 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2561 return -EAGAIN; 2562 2563 if (skb_still_in_host_queue(sk, skb)) 2564 return -EBUSY; 2565 2566 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2567 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2568 BUG(); 2569 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2570 return -ENOMEM; 2571 } 2572 2573 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2574 return -EHOSTUNREACH; /* Routing failure or similar. */ 2575 2576 cur_mss = tcp_current_mss(sk); 2577 2578 /* If receiver has shrunk his window, and skb is out of 2579 * new window, do not retransmit it. The exception is the 2580 * case, when window is shrunk to zero. In this case 2581 * our retransmit serves as a zero window probe. 2582 */ 2583 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2584 TCP_SKB_CB(skb)->seq != tp->snd_una) 2585 return -EAGAIN; 2586 2587 if (skb->len > cur_mss) { 2588 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC)) 2589 return -ENOMEM; /* We'll try again later. */ 2590 } else { 2591 int oldpcount = tcp_skb_pcount(skb); 2592 2593 if (unlikely(oldpcount > 1)) { 2594 if (skb_unclone(skb, GFP_ATOMIC)) 2595 return -ENOMEM; 2596 tcp_init_tso_segs(sk, skb, cur_mss); 2597 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2598 } 2599 } 2600 2601 tcp_retrans_try_collapse(sk, skb, cur_mss); 2602 2603 /* Make a copy, if the first transmission SKB clone we made 2604 * is still in somebody's hands, else make a clone. 2605 */ 2606 2607 /* make sure skb->data is aligned on arches that require it 2608 * and check if ack-trimming & collapsing extended the headroom 2609 * beyond what csum_start can cover. 2610 */ 2611 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2612 skb_headroom(skb) >= 0xFFFF)) { 2613 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2614 GFP_ATOMIC); 2615 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2616 -ENOBUFS; 2617 } else { 2618 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2619 } 2620 2621 if (likely(!err)) { 2622 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2623 /* Update global TCP statistics. */ 2624 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2625 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2626 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2627 tp->total_retrans++; 2628 } 2629 return err; 2630 } 2631 2632 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2633 { 2634 struct tcp_sock *tp = tcp_sk(sk); 2635 int err = __tcp_retransmit_skb(sk, skb); 2636 2637 if (err == 0) { 2638 #if FASTRETRANS_DEBUG > 0 2639 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2640 net_dbg_ratelimited("retrans_out leaked\n"); 2641 } 2642 #endif 2643 if (!tp->retrans_out) 2644 tp->lost_retrans_low = tp->snd_nxt; 2645 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2646 tp->retrans_out += tcp_skb_pcount(skb); 2647 2648 /* Save stamp of the first retransmit. */ 2649 if (!tp->retrans_stamp) 2650 tp->retrans_stamp = tcp_skb_timestamp(skb); 2651 2652 /* snd_nxt is stored to detect loss of retransmitted segment, 2653 * see tcp_input.c tcp_sacktag_write_queue(). 2654 */ 2655 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2656 } else if (err != -EBUSY) { 2657 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2658 } 2659 2660 if (tp->undo_retrans < 0) 2661 tp->undo_retrans = 0; 2662 tp->undo_retrans += tcp_skb_pcount(skb); 2663 return err; 2664 } 2665 2666 /* Check if we forward retransmits are possible in the current 2667 * window/congestion state. 2668 */ 2669 static bool tcp_can_forward_retransmit(struct sock *sk) 2670 { 2671 const struct inet_connection_sock *icsk = inet_csk(sk); 2672 const struct tcp_sock *tp = tcp_sk(sk); 2673 2674 /* Forward retransmissions are possible only during Recovery. */ 2675 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2676 return false; 2677 2678 /* No forward retransmissions in Reno are possible. */ 2679 if (tcp_is_reno(tp)) 2680 return false; 2681 2682 /* Yeah, we have to make difficult choice between forward transmission 2683 * and retransmission... Both ways have their merits... 2684 * 2685 * For now we do not retransmit anything, while we have some new 2686 * segments to send. In the other cases, follow rule 3 for 2687 * NextSeg() specified in RFC3517. 2688 */ 2689 2690 if (tcp_may_send_now(sk)) 2691 return false; 2692 2693 return true; 2694 } 2695 2696 /* This gets called after a retransmit timeout, and the initially 2697 * retransmitted data is acknowledged. It tries to continue 2698 * resending the rest of the retransmit queue, until either 2699 * we've sent it all or the congestion window limit is reached. 2700 * If doing SACK, the first ACK which comes back for a timeout 2701 * based retransmit packet might feed us FACK information again. 2702 * If so, we use it to avoid unnecessarily retransmissions. 2703 */ 2704 void tcp_xmit_retransmit_queue(struct sock *sk) 2705 { 2706 const struct inet_connection_sock *icsk = inet_csk(sk); 2707 struct tcp_sock *tp = tcp_sk(sk); 2708 struct sk_buff *skb; 2709 struct sk_buff *hole = NULL; 2710 u32 last_lost; 2711 int mib_idx; 2712 int fwd_rexmitting = 0; 2713 2714 if (!tp->packets_out) 2715 return; 2716 2717 if (!tp->lost_out) 2718 tp->retransmit_high = tp->snd_una; 2719 2720 if (tp->retransmit_skb_hint) { 2721 skb = tp->retransmit_skb_hint; 2722 last_lost = TCP_SKB_CB(skb)->end_seq; 2723 if (after(last_lost, tp->retransmit_high)) 2724 last_lost = tp->retransmit_high; 2725 } else { 2726 skb = tcp_write_queue_head(sk); 2727 last_lost = tp->snd_una; 2728 } 2729 2730 tcp_for_write_queue_from(skb, sk) { 2731 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2732 2733 if (skb == tcp_send_head(sk)) 2734 break; 2735 /* we could do better than to assign each time */ 2736 if (hole == NULL) 2737 tp->retransmit_skb_hint = skb; 2738 2739 /* Assume this retransmit will generate 2740 * only one packet for congestion window 2741 * calculation purposes. This works because 2742 * tcp_retransmit_skb() will chop up the 2743 * packet to be MSS sized and all the 2744 * packet counting works out. 2745 */ 2746 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2747 return; 2748 2749 if (fwd_rexmitting) { 2750 begin_fwd: 2751 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2752 break; 2753 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2754 2755 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2756 tp->retransmit_high = last_lost; 2757 if (!tcp_can_forward_retransmit(sk)) 2758 break; 2759 /* Backtrack if necessary to non-L'ed skb */ 2760 if (hole != NULL) { 2761 skb = hole; 2762 hole = NULL; 2763 } 2764 fwd_rexmitting = 1; 2765 goto begin_fwd; 2766 2767 } else if (!(sacked & TCPCB_LOST)) { 2768 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2769 hole = skb; 2770 continue; 2771 2772 } else { 2773 last_lost = TCP_SKB_CB(skb)->end_seq; 2774 if (icsk->icsk_ca_state != TCP_CA_Loss) 2775 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2776 else 2777 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2778 } 2779 2780 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2781 continue; 2782 2783 if (tcp_retransmit_skb(sk, skb)) 2784 return; 2785 2786 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2787 2788 if (tcp_in_cwnd_reduction(sk)) 2789 tp->prr_out += tcp_skb_pcount(skb); 2790 2791 if (skb == tcp_write_queue_head(sk)) 2792 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2793 inet_csk(sk)->icsk_rto, 2794 TCP_RTO_MAX); 2795 } 2796 } 2797 2798 /* Send a fin. The caller locks the socket for us. This cannot be 2799 * allowed to fail queueing a FIN frame under any circumstances. 2800 */ 2801 void tcp_send_fin(struct sock *sk) 2802 { 2803 struct tcp_sock *tp = tcp_sk(sk); 2804 struct sk_buff *skb = tcp_write_queue_tail(sk); 2805 int mss_now; 2806 2807 /* Optimization, tack on the FIN if we have a queue of 2808 * unsent frames. But be careful about outgoing SACKS 2809 * and IP options. 2810 */ 2811 mss_now = tcp_current_mss(sk); 2812 2813 if (tcp_send_head(sk) != NULL) { 2814 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN; 2815 TCP_SKB_CB(skb)->end_seq++; 2816 tp->write_seq++; 2817 } else { 2818 /* Socket is locked, keep trying until memory is available. */ 2819 for (;;) { 2820 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 2821 if (skb) 2822 break; 2823 yield(); 2824 } 2825 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2826 tcp_init_nondata_skb(skb, tp->write_seq, 2827 TCPHDR_ACK | TCPHDR_FIN); 2828 tcp_queue_skb(sk, skb); 2829 } 2830 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2831 } 2832 2833 /* We get here when a process closes a file descriptor (either due to 2834 * an explicit close() or as a byproduct of exit()'ing) and there 2835 * was unread data in the receive queue. This behavior is recommended 2836 * by RFC 2525, section 2.17. -DaveM 2837 */ 2838 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2839 { 2840 struct sk_buff *skb; 2841 2842 /* NOTE: No TCP options attached and we never retransmit this. */ 2843 skb = alloc_skb(MAX_TCP_HEADER, priority); 2844 if (!skb) { 2845 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2846 return; 2847 } 2848 2849 /* Reserve space for headers and prepare control bits. */ 2850 skb_reserve(skb, MAX_TCP_HEADER); 2851 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2852 TCPHDR_ACK | TCPHDR_RST); 2853 /* Send it off. */ 2854 if (tcp_transmit_skb(sk, skb, 0, priority)) 2855 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2856 2857 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2858 } 2859 2860 /* Send a crossed SYN-ACK during socket establishment. 2861 * WARNING: This routine must only be called when we have already sent 2862 * a SYN packet that crossed the incoming SYN that caused this routine 2863 * to get called. If this assumption fails then the initial rcv_wnd 2864 * and rcv_wscale values will not be correct. 2865 */ 2866 int tcp_send_synack(struct sock *sk) 2867 { 2868 struct sk_buff *skb; 2869 2870 skb = tcp_write_queue_head(sk); 2871 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2872 pr_debug("%s: wrong queue state\n", __func__); 2873 return -EFAULT; 2874 } 2875 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2876 if (skb_cloned(skb)) { 2877 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2878 if (nskb == NULL) 2879 return -ENOMEM; 2880 tcp_unlink_write_queue(skb, sk); 2881 __skb_header_release(nskb); 2882 __tcp_add_write_queue_head(sk, nskb); 2883 sk_wmem_free_skb(sk, skb); 2884 sk->sk_wmem_queued += nskb->truesize; 2885 sk_mem_charge(sk, nskb->truesize); 2886 skb = nskb; 2887 } 2888 2889 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2890 tcp_ecn_send_synack(sk, skb); 2891 } 2892 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2893 } 2894 2895 /** 2896 * tcp_make_synack - Prepare a SYN-ACK. 2897 * sk: listener socket 2898 * dst: dst entry attached to the SYNACK 2899 * req: request_sock pointer 2900 * 2901 * Allocate one skb and build a SYNACK packet. 2902 * @dst is consumed : Caller should not use it again. 2903 */ 2904 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2905 struct request_sock *req, 2906 struct tcp_fastopen_cookie *foc) 2907 { 2908 struct tcp_out_options opts; 2909 struct inet_request_sock *ireq = inet_rsk(req); 2910 struct tcp_sock *tp = tcp_sk(sk); 2911 struct tcphdr *th; 2912 struct sk_buff *skb; 2913 struct tcp_md5sig_key *md5 = NULL; 2914 int tcp_header_size; 2915 int mss; 2916 2917 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC); 2918 if (unlikely(!skb)) { 2919 dst_release(dst); 2920 return NULL; 2921 } 2922 /* Reserve space for headers. */ 2923 skb_reserve(skb, MAX_TCP_HEADER); 2924 2925 skb_dst_set(skb, dst); 2926 2927 mss = dst_metric_advmss(dst); 2928 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2929 mss = tp->rx_opt.user_mss; 2930 2931 memset(&opts, 0, sizeof(opts)); 2932 #ifdef CONFIG_SYN_COOKIES 2933 if (unlikely(req->cookie_ts)) 2934 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 2935 else 2936 #endif 2937 skb_mstamp_get(&skb->skb_mstamp); 2938 2939 #ifdef CONFIG_TCP_MD5SIG 2940 rcu_read_lock(); 2941 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 2942 #endif 2943 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 2944 foc) + sizeof(*th); 2945 2946 skb_push(skb, tcp_header_size); 2947 skb_reset_transport_header(skb); 2948 2949 th = tcp_hdr(skb); 2950 memset(th, 0, sizeof(struct tcphdr)); 2951 th->syn = 1; 2952 th->ack = 1; 2953 tcp_ecn_make_synack(req, th, sk); 2954 th->source = htons(ireq->ir_num); 2955 th->dest = ireq->ir_rmt_port; 2956 /* Setting of flags are superfluous here for callers (and ECE is 2957 * not even correctly set) 2958 */ 2959 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2960 TCPHDR_SYN | TCPHDR_ACK); 2961 2962 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2963 /* XXX data is queued and acked as is. No buffer/window check */ 2964 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 2965 2966 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2967 th->window = htons(min(req->rcv_wnd, 65535U)); 2968 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2969 th->doff = (tcp_header_size >> 2); 2970 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS); 2971 2972 #ifdef CONFIG_TCP_MD5SIG 2973 /* Okay, we have all we need - do the md5 hash if needed */ 2974 if (md5) 2975 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2976 md5, req_to_sk(req), skb); 2977 rcu_read_unlock(); 2978 #endif 2979 2980 return skb; 2981 } 2982 EXPORT_SYMBOL(tcp_make_synack); 2983 2984 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 2985 { 2986 struct inet_connection_sock *icsk = inet_csk(sk); 2987 const struct tcp_congestion_ops *ca; 2988 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 2989 2990 if (ca_key == TCP_CA_UNSPEC) 2991 return; 2992 2993 rcu_read_lock(); 2994 ca = tcp_ca_find_key(ca_key); 2995 if (likely(ca && try_module_get(ca->owner))) { 2996 module_put(icsk->icsk_ca_ops->owner); 2997 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 2998 icsk->icsk_ca_ops = ca; 2999 } 3000 rcu_read_unlock(); 3001 } 3002 3003 /* Do all connect socket setups that can be done AF independent. */ 3004 static void tcp_connect_init(struct sock *sk) 3005 { 3006 const struct dst_entry *dst = __sk_dst_get(sk); 3007 struct tcp_sock *tp = tcp_sk(sk); 3008 __u8 rcv_wscale; 3009 3010 /* We'll fix this up when we get a response from the other end. 3011 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3012 */ 3013 tp->tcp_header_len = sizeof(struct tcphdr) + 3014 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 3015 3016 #ifdef CONFIG_TCP_MD5SIG 3017 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 3018 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3019 #endif 3020 3021 /* If user gave his TCP_MAXSEG, record it to clamp */ 3022 if (tp->rx_opt.user_mss) 3023 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3024 tp->max_window = 0; 3025 tcp_mtup_init(sk); 3026 tcp_sync_mss(sk, dst_mtu(dst)); 3027 3028 tcp_ca_dst_init(sk, dst); 3029 3030 if (!tp->window_clamp) 3031 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3032 tp->advmss = dst_metric_advmss(dst); 3033 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 3034 tp->advmss = tp->rx_opt.user_mss; 3035 3036 tcp_initialize_rcv_mss(sk); 3037 3038 /* limit the window selection if the user enforce a smaller rx buffer */ 3039 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3040 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3041 tp->window_clamp = tcp_full_space(sk); 3042 3043 tcp_select_initial_window(tcp_full_space(sk), 3044 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3045 &tp->rcv_wnd, 3046 &tp->window_clamp, 3047 sysctl_tcp_window_scaling, 3048 &rcv_wscale, 3049 dst_metric(dst, RTAX_INITRWND)); 3050 3051 tp->rx_opt.rcv_wscale = rcv_wscale; 3052 tp->rcv_ssthresh = tp->rcv_wnd; 3053 3054 sk->sk_err = 0; 3055 sock_reset_flag(sk, SOCK_DONE); 3056 tp->snd_wnd = 0; 3057 tcp_init_wl(tp, 0); 3058 tp->snd_una = tp->write_seq; 3059 tp->snd_sml = tp->write_seq; 3060 tp->snd_up = tp->write_seq; 3061 tp->snd_nxt = tp->write_seq; 3062 3063 if (likely(!tp->repair)) 3064 tp->rcv_nxt = 0; 3065 else 3066 tp->rcv_tstamp = tcp_time_stamp; 3067 tp->rcv_wup = tp->rcv_nxt; 3068 tp->copied_seq = tp->rcv_nxt; 3069 3070 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3071 inet_csk(sk)->icsk_retransmits = 0; 3072 tcp_clear_retrans(tp); 3073 } 3074 3075 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3076 { 3077 struct tcp_sock *tp = tcp_sk(sk); 3078 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3079 3080 tcb->end_seq += skb->len; 3081 __skb_header_release(skb); 3082 __tcp_add_write_queue_tail(sk, skb); 3083 sk->sk_wmem_queued += skb->truesize; 3084 sk_mem_charge(sk, skb->truesize); 3085 tp->write_seq = tcb->end_seq; 3086 tp->packets_out += tcp_skb_pcount(skb); 3087 } 3088 3089 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3090 * queue a data-only packet after the regular SYN, such that regular SYNs 3091 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3092 * only the SYN sequence, the data are retransmitted in the first ACK. 3093 * If cookie is not cached or other error occurs, falls back to send a 3094 * regular SYN with Fast Open cookie request option. 3095 */ 3096 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3097 { 3098 struct tcp_sock *tp = tcp_sk(sk); 3099 struct tcp_fastopen_request *fo = tp->fastopen_req; 3100 int syn_loss = 0, space, err = 0, copied; 3101 unsigned long last_syn_loss = 0; 3102 struct sk_buff *syn_data; 3103 3104 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3105 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 3106 &syn_loss, &last_syn_loss); 3107 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 3108 if (syn_loss > 1 && 3109 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 3110 fo->cookie.len = -1; 3111 goto fallback; 3112 } 3113 3114 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 3115 fo->cookie.len = -1; 3116 else if (fo->cookie.len <= 0) 3117 goto fallback; 3118 3119 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3120 * user-MSS. Reserve maximum option space for middleboxes that add 3121 * private TCP options. The cost is reduced data space in SYN :( 3122 */ 3123 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 3124 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3125 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3126 MAX_TCP_OPTION_SPACE; 3127 3128 space = min_t(size_t, space, fo->size); 3129 3130 /* limit to order-0 allocations */ 3131 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3132 3133 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation); 3134 if (!syn_data) 3135 goto fallback; 3136 syn_data->ip_summed = CHECKSUM_PARTIAL; 3137 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3138 copied = copy_from_iter(skb_put(syn_data, space), space, 3139 &fo->data->msg_iter); 3140 if (unlikely(!copied)) { 3141 kfree_skb(syn_data); 3142 goto fallback; 3143 } 3144 if (copied != space) { 3145 skb_trim(syn_data, copied); 3146 space = copied; 3147 } 3148 3149 /* No more data pending in inet_wait_for_connect() */ 3150 if (space == fo->size) 3151 fo->data = NULL; 3152 fo->copied = space; 3153 3154 tcp_connect_queue_skb(sk, syn_data); 3155 3156 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3157 3158 syn->skb_mstamp = syn_data->skb_mstamp; 3159 3160 /* Now full SYN+DATA was cloned and sent (or not), 3161 * remove the SYN from the original skb (syn_data) 3162 * we keep in write queue in case of a retransmit, as we 3163 * also have the SYN packet (with no data) in the same queue. 3164 */ 3165 TCP_SKB_CB(syn_data)->seq++; 3166 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3167 if (!err) { 3168 tp->syn_data = (fo->copied > 0); 3169 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3170 goto done; 3171 } 3172 3173 fallback: 3174 /* Send a regular SYN with Fast Open cookie request option */ 3175 if (fo->cookie.len > 0) 3176 fo->cookie.len = 0; 3177 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3178 if (err) 3179 tp->syn_fastopen = 0; 3180 done: 3181 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3182 return err; 3183 } 3184 3185 /* Build a SYN and send it off. */ 3186 int tcp_connect(struct sock *sk) 3187 { 3188 struct tcp_sock *tp = tcp_sk(sk); 3189 struct sk_buff *buff; 3190 int err; 3191 3192 tcp_connect_init(sk); 3193 3194 if (unlikely(tp->repair)) { 3195 tcp_finish_connect(sk, NULL); 3196 return 0; 3197 } 3198 3199 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 3200 if (unlikely(!buff)) 3201 return -ENOBUFS; 3202 3203 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3204 tp->retrans_stamp = tcp_time_stamp; 3205 tcp_connect_queue_skb(sk, buff); 3206 tcp_ecn_send_syn(sk, buff); 3207 3208 /* Send off SYN; include data in Fast Open. */ 3209 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3210 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3211 if (err == -ECONNREFUSED) 3212 return err; 3213 3214 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3215 * in order to make this packet get counted in tcpOutSegs. 3216 */ 3217 tp->snd_nxt = tp->write_seq; 3218 tp->pushed_seq = tp->write_seq; 3219 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3220 3221 /* Timer for repeating the SYN until an answer. */ 3222 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3223 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3224 return 0; 3225 } 3226 EXPORT_SYMBOL(tcp_connect); 3227 3228 /* Send out a delayed ack, the caller does the policy checking 3229 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3230 * for details. 3231 */ 3232 void tcp_send_delayed_ack(struct sock *sk) 3233 { 3234 struct inet_connection_sock *icsk = inet_csk(sk); 3235 int ato = icsk->icsk_ack.ato; 3236 unsigned long timeout; 3237 3238 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3239 3240 if (ato > TCP_DELACK_MIN) { 3241 const struct tcp_sock *tp = tcp_sk(sk); 3242 int max_ato = HZ / 2; 3243 3244 if (icsk->icsk_ack.pingpong || 3245 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3246 max_ato = TCP_DELACK_MAX; 3247 3248 /* Slow path, intersegment interval is "high". */ 3249 3250 /* If some rtt estimate is known, use it to bound delayed ack. 3251 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3252 * directly. 3253 */ 3254 if (tp->srtt_us) { 3255 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3256 TCP_DELACK_MIN); 3257 3258 if (rtt < max_ato) 3259 max_ato = rtt; 3260 } 3261 3262 ato = min(ato, max_ato); 3263 } 3264 3265 /* Stay within the limit we were given */ 3266 timeout = jiffies + ato; 3267 3268 /* Use new timeout only if there wasn't a older one earlier. */ 3269 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3270 /* If delack timer was blocked or is about to expire, 3271 * send ACK now. 3272 */ 3273 if (icsk->icsk_ack.blocked || 3274 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3275 tcp_send_ack(sk); 3276 return; 3277 } 3278 3279 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3280 timeout = icsk->icsk_ack.timeout; 3281 } 3282 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3283 icsk->icsk_ack.timeout = timeout; 3284 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3285 } 3286 3287 /* This routine sends an ack and also updates the window. */ 3288 void tcp_send_ack(struct sock *sk) 3289 { 3290 struct sk_buff *buff; 3291 3292 /* If we have been reset, we may not send again. */ 3293 if (sk->sk_state == TCP_CLOSE) 3294 return; 3295 3296 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3297 3298 /* We are not putting this on the write queue, so 3299 * tcp_transmit_skb() will set the ownership to this 3300 * sock. 3301 */ 3302 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3303 if (buff == NULL) { 3304 inet_csk_schedule_ack(sk); 3305 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3306 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3307 TCP_DELACK_MAX, TCP_RTO_MAX); 3308 return; 3309 } 3310 3311 /* Reserve space for headers and prepare control bits. */ 3312 skb_reserve(buff, MAX_TCP_HEADER); 3313 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3314 3315 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3316 * too much. 3317 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3318 * We also avoid tcp_wfree() overhead (cache line miss accessing 3319 * tp->tsq_flags) by using regular sock_wfree() 3320 */ 3321 skb_set_tcp_pure_ack(buff); 3322 3323 /* Send it off, this clears delayed acks for us. */ 3324 skb_mstamp_get(&buff->skb_mstamp); 3325 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC)); 3326 } 3327 EXPORT_SYMBOL_GPL(tcp_send_ack); 3328 3329 /* This routine sends a packet with an out of date sequence 3330 * number. It assumes the other end will try to ack it. 3331 * 3332 * Question: what should we make while urgent mode? 3333 * 4.4BSD forces sending single byte of data. We cannot send 3334 * out of window data, because we have SND.NXT==SND.MAX... 3335 * 3336 * Current solution: to send TWO zero-length segments in urgent mode: 3337 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3338 * out-of-date with SND.UNA-1 to probe window. 3339 */ 3340 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 3341 { 3342 struct tcp_sock *tp = tcp_sk(sk); 3343 struct sk_buff *skb; 3344 3345 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3346 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3347 if (skb == NULL) 3348 return -1; 3349 3350 /* Reserve space for headers and set control bits. */ 3351 skb_reserve(skb, MAX_TCP_HEADER); 3352 /* Use a previous sequence. This should cause the other 3353 * end to send an ack. Don't queue or clone SKB, just 3354 * send it. 3355 */ 3356 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3357 skb_mstamp_get(&skb->skb_mstamp); 3358 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3359 } 3360 3361 void tcp_send_window_probe(struct sock *sk) 3362 { 3363 if (sk->sk_state == TCP_ESTABLISHED) { 3364 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3365 tcp_xmit_probe_skb(sk, 0); 3366 } 3367 } 3368 3369 /* Initiate keepalive or window probe from timer. */ 3370 int tcp_write_wakeup(struct sock *sk) 3371 { 3372 struct tcp_sock *tp = tcp_sk(sk); 3373 struct sk_buff *skb; 3374 3375 if (sk->sk_state == TCP_CLOSE) 3376 return -1; 3377 3378 if ((skb = tcp_send_head(sk)) != NULL && 3379 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3380 int err; 3381 unsigned int mss = tcp_current_mss(sk); 3382 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3383 3384 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3385 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3386 3387 /* We are probing the opening of a window 3388 * but the window size is != 0 3389 * must have been a result SWS avoidance ( sender ) 3390 */ 3391 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3392 skb->len > mss) { 3393 seg_size = min(seg_size, mss); 3394 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3395 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3396 return -1; 3397 } else if (!tcp_skb_pcount(skb)) 3398 tcp_set_skb_tso_segs(sk, skb, mss); 3399 3400 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3401 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3402 if (!err) 3403 tcp_event_new_data_sent(sk, skb); 3404 return err; 3405 } else { 3406 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3407 tcp_xmit_probe_skb(sk, 1); 3408 return tcp_xmit_probe_skb(sk, 0); 3409 } 3410 } 3411 3412 /* A window probe timeout has occurred. If window is not closed send 3413 * a partial packet else a zero probe. 3414 */ 3415 void tcp_send_probe0(struct sock *sk) 3416 { 3417 struct inet_connection_sock *icsk = inet_csk(sk); 3418 struct tcp_sock *tp = tcp_sk(sk); 3419 unsigned long probe_max; 3420 int err; 3421 3422 err = tcp_write_wakeup(sk); 3423 3424 if (tp->packets_out || !tcp_send_head(sk)) { 3425 /* Cancel probe timer, if it is not required. */ 3426 icsk->icsk_probes_out = 0; 3427 icsk->icsk_backoff = 0; 3428 return; 3429 } 3430 3431 if (err <= 0) { 3432 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3433 icsk->icsk_backoff++; 3434 icsk->icsk_probes_out++; 3435 probe_max = TCP_RTO_MAX; 3436 } else { 3437 /* If packet was not sent due to local congestion, 3438 * do not backoff and do not remember icsk_probes_out. 3439 * Let local senders to fight for local resources. 3440 * 3441 * Use accumulated backoff yet. 3442 */ 3443 if (!icsk->icsk_probes_out) 3444 icsk->icsk_probes_out = 1; 3445 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3446 } 3447 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3448 inet_csk_rto_backoff(icsk, probe_max), 3449 TCP_RTO_MAX); 3450 } 3451 3452 int tcp_rtx_synack(struct sock *sk, struct request_sock *req) 3453 { 3454 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3455 struct flowi fl; 3456 int res; 3457 3458 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL); 3459 if (!res) { 3460 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS); 3461 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3462 } 3463 return res; 3464 } 3465 EXPORT_SYMBOL(tcp_rtx_synack); 3466