xref: /openbmc/linux/net/ipv4/tcp_output.c (revision cfdfc14e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45 
46 #include <trace/events/tcp.h>
47 
48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
49 			   int push_one, gfp_t gfp);
50 
51 /* Account for new data that has been sent to the network. */
52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
53 {
54 	struct inet_connection_sock *icsk = inet_csk(sk);
55 	struct tcp_sock *tp = tcp_sk(sk);
56 	unsigned int prior_packets = tp->packets_out;
57 
58 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
59 
60 	__skb_unlink(skb, &sk->sk_write_queue);
61 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
62 
63 	tp->packets_out += tcp_skb_pcount(skb);
64 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
65 		tcp_rearm_rto(sk);
66 
67 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
68 		      tcp_skb_pcount(skb));
69 }
70 
71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
72  * window scaling factor due to loss of precision.
73  * If window has been shrunk, what should we make? It is not clear at all.
74  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
75  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
76  * invalid. OK, let's make this for now:
77  */
78 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
79 {
80 	const struct tcp_sock *tp = tcp_sk(sk);
81 
82 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
83 	    (tp->rx_opt.wscale_ok &&
84 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
85 		return tp->snd_nxt;
86 	else
87 		return tcp_wnd_end(tp);
88 }
89 
90 /* Calculate mss to advertise in SYN segment.
91  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
92  *
93  * 1. It is independent of path mtu.
94  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
95  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
96  *    attached devices, because some buggy hosts are confused by
97  *    large MSS.
98  * 4. We do not make 3, we advertise MSS, calculated from first
99  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
100  *    This may be overridden via information stored in routing table.
101  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
102  *    probably even Jumbo".
103  */
104 static __u16 tcp_advertise_mss(struct sock *sk)
105 {
106 	struct tcp_sock *tp = tcp_sk(sk);
107 	const struct dst_entry *dst = __sk_dst_get(sk);
108 	int mss = tp->advmss;
109 
110 	if (dst) {
111 		unsigned int metric = dst_metric_advmss(dst);
112 
113 		if (metric < mss) {
114 			mss = metric;
115 			tp->advmss = mss;
116 		}
117 	}
118 
119 	return (__u16)mss;
120 }
121 
122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
123  * This is the first part of cwnd validation mechanism.
124  */
125 void tcp_cwnd_restart(struct sock *sk, s32 delta)
126 {
127 	struct tcp_sock *tp = tcp_sk(sk);
128 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
129 	u32 cwnd = tp->snd_cwnd;
130 
131 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
132 
133 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
134 	restart_cwnd = min(restart_cwnd, cwnd);
135 
136 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
137 		cwnd >>= 1;
138 	tp->snd_cwnd = max(cwnd, restart_cwnd);
139 	tp->snd_cwnd_stamp = tcp_jiffies32;
140 	tp->snd_cwnd_used = 0;
141 }
142 
143 /* Congestion state accounting after a packet has been sent. */
144 static void tcp_event_data_sent(struct tcp_sock *tp,
145 				struct sock *sk)
146 {
147 	struct inet_connection_sock *icsk = inet_csk(sk);
148 	const u32 now = tcp_jiffies32;
149 
150 	if (tcp_packets_in_flight(tp) == 0)
151 		tcp_ca_event(sk, CA_EVENT_TX_START);
152 
153 	tp->lsndtime = now;
154 
155 	/* If it is a reply for ato after last received
156 	 * packet, enter pingpong mode.
157 	 */
158 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
159 		icsk->icsk_ack.pingpong = 1;
160 }
161 
162 /* Account for an ACK we sent. */
163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
164 {
165 	struct tcp_sock *tp = tcp_sk(sk);
166 
167 	if (unlikely(tp->compressed_ack)) {
168 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
169 			      tp->compressed_ack);
170 		tp->compressed_ack = 0;
171 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
172 			__sock_put(sk);
173 	}
174 	tcp_dec_quickack_mode(sk, pkts);
175 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
176 }
177 
178 
179 u32 tcp_default_init_rwnd(u32 mss)
180 {
181 	/* Initial receive window should be twice of TCP_INIT_CWND to
182 	 * enable proper sending of new unsent data during fast recovery
183 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
184 	 * limit when mss is larger than 1460.
185 	 */
186 	u32 init_rwnd = TCP_INIT_CWND * 2;
187 
188 	if (mss > 1460)
189 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
190 	return init_rwnd;
191 }
192 
193 /* Determine a window scaling and initial window to offer.
194  * Based on the assumption that the given amount of space
195  * will be offered. Store the results in the tp structure.
196  * NOTE: for smooth operation initial space offering should
197  * be a multiple of mss if possible. We assume here that mss >= 1.
198  * This MUST be enforced by all callers.
199  */
200 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
201 			       __u32 *rcv_wnd, __u32 *window_clamp,
202 			       int wscale_ok, __u8 *rcv_wscale,
203 			       __u32 init_rcv_wnd)
204 {
205 	unsigned int space = (__space < 0 ? 0 : __space);
206 
207 	/* If no clamp set the clamp to the max possible scaled window */
208 	if (*window_clamp == 0)
209 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
210 	space = min(*window_clamp, space);
211 
212 	/* Quantize space offering to a multiple of mss if possible. */
213 	if (space > mss)
214 		space = rounddown(space, mss);
215 
216 	/* NOTE: offering an initial window larger than 32767
217 	 * will break some buggy TCP stacks. If the admin tells us
218 	 * it is likely we could be speaking with such a buggy stack
219 	 * we will truncate our initial window offering to 32K-1
220 	 * unless the remote has sent us a window scaling option,
221 	 * which we interpret as a sign the remote TCP is not
222 	 * misinterpreting the window field as a signed quantity.
223 	 */
224 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
225 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
226 	else
227 		(*rcv_wnd) = space;
228 
229 	(*rcv_wscale) = 0;
230 	if (wscale_ok) {
231 		/* Set window scaling on max possible window */
232 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
233 		space = max_t(u32, space, sysctl_rmem_max);
234 		space = min_t(u32, space, *window_clamp);
235 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
236 			space >>= 1;
237 			(*rcv_wscale)++;
238 		}
239 	}
240 
241 	if (!init_rcv_wnd) /* Use default unless specified otherwise */
242 		init_rcv_wnd = tcp_default_init_rwnd(mss);
243 	*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
244 
245 	/* Set the clamp no higher than max representable value */
246 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
247 }
248 EXPORT_SYMBOL(tcp_select_initial_window);
249 
250 /* Chose a new window to advertise, update state in tcp_sock for the
251  * socket, and return result with RFC1323 scaling applied.  The return
252  * value can be stuffed directly into th->window for an outgoing
253  * frame.
254  */
255 static u16 tcp_select_window(struct sock *sk)
256 {
257 	struct tcp_sock *tp = tcp_sk(sk);
258 	u32 old_win = tp->rcv_wnd;
259 	u32 cur_win = tcp_receive_window(tp);
260 	u32 new_win = __tcp_select_window(sk);
261 
262 	/* Never shrink the offered window */
263 	if (new_win < cur_win) {
264 		/* Danger Will Robinson!
265 		 * Don't update rcv_wup/rcv_wnd here or else
266 		 * we will not be able to advertise a zero
267 		 * window in time.  --DaveM
268 		 *
269 		 * Relax Will Robinson.
270 		 */
271 		if (new_win == 0)
272 			NET_INC_STATS(sock_net(sk),
273 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
274 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
275 	}
276 	tp->rcv_wnd = new_win;
277 	tp->rcv_wup = tp->rcv_nxt;
278 
279 	/* Make sure we do not exceed the maximum possible
280 	 * scaled window.
281 	 */
282 	if (!tp->rx_opt.rcv_wscale &&
283 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
284 		new_win = min(new_win, MAX_TCP_WINDOW);
285 	else
286 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
287 
288 	/* RFC1323 scaling applied */
289 	new_win >>= tp->rx_opt.rcv_wscale;
290 
291 	/* If we advertise zero window, disable fast path. */
292 	if (new_win == 0) {
293 		tp->pred_flags = 0;
294 		if (old_win)
295 			NET_INC_STATS(sock_net(sk),
296 				      LINUX_MIB_TCPTOZEROWINDOWADV);
297 	} else if (old_win == 0) {
298 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
299 	}
300 
301 	return new_win;
302 }
303 
304 /* Packet ECN state for a SYN-ACK */
305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
306 {
307 	const struct tcp_sock *tp = tcp_sk(sk);
308 
309 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
310 	if (!(tp->ecn_flags & TCP_ECN_OK))
311 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
312 	else if (tcp_ca_needs_ecn(sk) ||
313 		 tcp_bpf_ca_needs_ecn(sk))
314 		INET_ECN_xmit(sk);
315 }
316 
317 /* Packet ECN state for a SYN.  */
318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
319 {
320 	struct tcp_sock *tp = tcp_sk(sk);
321 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
322 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
323 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
324 
325 	if (!use_ecn) {
326 		const struct dst_entry *dst = __sk_dst_get(sk);
327 
328 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
329 			use_ecn = true;
330 	}
331 
332 	tp->ecn_flags = 0;
333 
334 	if (use_ecn) {
335 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 		tp->ecn_flags = TCP_ECN_OK;
337 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
338 			INET_ECN_xmit(sk);
339 	}
340 }
341 
342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
343 {
344 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
345 		/* tp->ecn_flags are cleared at a later point in time when
346 		 * SYN ACK is ultimatively being received.
347 		 */
348 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
349 }
350 
351 static void
352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
353 {
354 	if (inet_rsk(req)->ecn_ok)
355 		th->ece = 1;
356 }
357 
358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
359  * be sent.
360  */
361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
362 			 struct tcphdr *th, int tcp_header_len)
363 {
364 	struct tcp_sock *tp = tcp_sk(sk);
365 
366 	if (tp->ecn_flags & TCP_ECN_OK) {
367 		/* Not-retransmitted data segment: set ECT and inject CWR. */
368 		if (skb->len != tcp_header_len &&
369 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
370 			INET_ECN_xmit(sk);
371 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
372 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
373 				th->cwr = 1;
374 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
375 			}
376 		} else if (!tcp_ca_needs_ecn(sk)) {
377 			/* ACK or retransmitted segment: clear ECT|CE */
378 			INET_ECN_dontxmit(sk);
379 		}
380 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
381 			th->ece = 1;
382 	}
383 }
384 
385 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
386  * auto increment end seqno.
387  */
388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
389 {
390 	skb->ip_summed = CHECKSUM_PARTIAL;
391 
392 	TCP_SKB_CB(skb)->tcp_flags = flags;
393 	TCP_SKB_CB(skb)->sacked = 0;
394 
395 	tcp_skb_pcount_set(skb, 1);
396 
397 	TCP_SKB_CB(skb)->seq = seq;
398 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
399 		seq++;
400 	TCP_SKB_CB(skb)->end_seq = seq;
401 }
402 
403 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
404 {
405 	return tp->snd_una != tp->snd_up;
406 }
407 
408 #define OPTION_SACK_ADVERTISE	(1 << 0)
409 #define OPTION_TS		(1 << 1)
410 #define OPTION_MD5		(1 << 2)
411 #define OPTION_WSCALE		(1 << 3)
412 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
413 #define OPTION_SMC		(1 << 9)
414 
415 static void smc_options_write(__be32 *ptr, u16 *options)
416 {
417 #if IS_ENABLED(CONFIG_SMC)
418 	if (static_branch_unlikely(&tcp_have_smc)) {
419 		if (unlikely(OPTION_SMC & *options)) {
420 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
421 				       (TCPOPT_NOP  << 16) |
422 				       (TCPOPT_EXP <<  8) |
423 				       (TCPOLEN_EXP_SMC_BASE));
424 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
425 		}
426 	}
427 #endif
428 }
429 
430 struct tcp_out_options {
431 	u16 options;		/* bit field of OPTION_* */
432 	u16 mss;		/* 0 to disable */
433 	u8 ws;			/* window scale, 0 to disable */
434 	u8 num_sack_blocks;	/* number of SACK blocks to include */
435 	u8 hash_size;		/* bytes in hash_location */
436 	__u8 *hash_location;	/* temporary pointer, overloaded */
437 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
438 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
439 };
440 
441 /* Write previously computed TCP options to the packet.
442  *
443  * Beware: Something in the Internet is very sensitive to the ordering of
444  * TCP options, we learned this through the hard way, so be careful here.
445  * Luckily we can at least blame others for their non-compliance but from
446  * inter-operability perspective it seems that we're somewhat stuck with
447  * the ordering which we have been using if we want to keep working with
448  * those broken things (not that it currently hurts anybody as there isn't
449  * particular reason why the ordering would need to be changed).
450  *
451  * At least SACK_PERM as the first option is known to lead to a disaster
452  * (but it may well be that other scenarios fail similarly).
453  */
454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
455 			      struct tcp_out_options *opts)
456 {
457 	u16 options = opts->options;	/* mungable copy */
458 
459 	if (unlikely(OPTION_MD5 & options)) {
460 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
461 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
462 		/* overload cookie hash location */
463 		opts->hash_location = (__u8 *)ptr;
464 		ptr += 4;
465 	}
466 
467 	if (unlikely(opts->mss)) {
468 		*ptr++ = htonl((TCPOPT_MSS << 24) |
469 			       (TCPOLEN_MSS << 16) |
470 			       opts->mss);
471 	}
472 
473 	if (likely(OPTION_TS & options)) {
474 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
475 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
476 				       (TCPOLEN_SACK_PERM << 16) |
477 				       (TCPOPT_TIMESTAMP << 8) |
478 				       TCPOLEN_TIMESTAMP);
479 			options &= ~OPTION_SACK_ADVERTISE;
480 		} else {
481 			*ptr++ = htonl((TCPOPT_NOP << 24) |
482 				       (TCPOPT_NOP << 16) |
483 				       (TCPOPT_TIMESTAMP << 8) |
484 				       TCPOLEN_TIMESTAMP);
485 		}
486 		*ptr++ = htonl(opts->tsval);
487 		*ptr++ = htonl(opts->tsecr);
488 	}
489 
490 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
491 		*ptr++ = htonl((TCPOPT_NOP << 24) |
492 			       (TCPOPT_NOP << 16) |
493 			       (TCPOPT_SACK_PERM << 8) |
494 			       TCPOLEN_SACK_PERM);
495 	}
496 
497 	if (unlikely(OPTION_WSCALE & options)) {
498 		*ptr++ = htonl((TCPOPT_NOP << 24) |
499 			       (TCPOPT_WINDOW << 16) |
500 			       (TCPOLEN_WINDOW << 8) |
501 			       opts->ws);
502 	}
503 
504 	if (unlikely(opts->num_sack_blocks)) {
505 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
506 			tp->duplicate_sack : tp->selective_acks;
507 		int this_sack;
508 
509 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
510 			       (TCPOPT_NOP  << 16) |
511 			       (TCPOPT_SACK <<  8) |
512 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
513 						     TCPOLEN_SACK_PERBLOCK)));
514 
515 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
516 		     ++this_sack) {
517 			*ptr++ = htonl(sp[this_sack].start_seq);
518 			*ptr++ = htonl(sp[this_sack].end_seq);
519 		}
520 
521 		tp->rx_opt.dsack = 0;
522 	}
523 
524 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
525 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
526 		u8 *p = (u8 *)ptr;
527 		u32 len; /* Fast Open option length */
528 
529 		if (foc->exp) {
530 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
531 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
532 				     TCPOPT_FASTOPEN_MAGIC);
533 			p += TCPOLEN_EXP_FASTOPEN_BASE;
534 		} else {
535 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
536 			*p++ = TCPOPT_FASTOPEN;
537 			*p++ = len;
538 		}
539 
540 		memcpy(p, foc->val, foc->len);
541 		if ((len & 3) == 2) {
542 			p[foc->len] = TCPOPT_NOP;
543 			p[foc->len + 1] = TCPOPT_NOP;
544 		}
545 		ptr += (len + 3) >> 2;
546 	}
547 
548 	smc_options_write(ptr, &options);
549 }
550 
551 static void smc_set_option(const struct tcp_sock *tp,
552 			   struct tcp_out_options *opts,
553 			   unsigned int *remaining)
554 {
555 #if IS_ENABLED(CONFIG_SMC)
556 	if (static_branch_unlikely(&tcp_have_smc)) {
557 		if (tp->syn_smc) {
558 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
559 				opts->options |= OPTION_SMC;
560 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
561 			}
562 		}
563 	}
564 #endif
565 }
566 
567 static void smc_set_option_cond(const struct tcp_sock *tp,
568 				const struct inet_request_sock *ireq,
569 				struct tcp_out_options *opts,
570 				unsigned int *remaining)
571 {
572 #if IS_ENABLED(CONFIG_SMC)
573 	if (static_branch_unlikely(&tcp_have_smc)) {
574 		if (tp->syn_smc && ireq->smc_ok) {
575 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
576 				opts->options |= OPTION_SMC;
577 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
578 			}
579 		}
580 	}
581 #endif
582 }
583 
584 /* Compute TCP options for SYN packets. This is not the final
585  * network wire format yet.
586  */
587 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
588 				struct tcp_out_options *opts,
589 				struct tcp_md5sig_key **md5)
590 {
591 	struct tcp_sock *tp = tcp_sk(sk);
592 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
593 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
594 
595 	*md5 = NULL;
596 #ifdef CONFIG_TCP_MD5SIG
597 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
598 		*md5 = tp->af_specific->md5_lookup(sk, sk);
599 		if (*md5) {
600 			opts->options |= OPTION_MD5;
601 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
602 		}
603 	}
604 #endif
605 
606 	/* We always get an MSS option.  The option bytes which will be seen in
607 	 * normal data packets should timestamps be used, must be in the MSS
608 	 * advertised.  But we subtract them from tp->mss_cache so that
609 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
610 	 * fact here if necessary.  If we don't do this correctly, as a
611 	 * receiver we won't recognize data packets as being full sized when we
612 	 * should, and thus we won't abide by the delayed ACK rules correctly.
613 	 * SACKs don't matter, we never delay an ACK when we have any of those
614 	 * going out.  */
615 	opts->mss = tcp_advertise_mss(sk);
616 	remaining -= TCPOLEN_MSS_ALIGNED;
617 
618 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
619 		opts->options |= OPTION_TS;
620 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
621 		opts->tsecr = tp->rx_opt.ts_recent;
622 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
623 	}
624 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
625 		opts->ws = tp->rx_opt.rcv_wscale;
626 		opts->options |= OPTION_WSCALE;
627 		remaining -= TCPOLEN_WSCALE_ALIGNED;
628 	}
629 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
630 		opts->options |= OPTION_SACK_ADVERTISE;
631 		if (unlikely(!(OPTION_TS & opts->options)))
632 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
633 	}
634 
635 	if (fastopen && fastopen->cookie.len >= 0) {
636 		u32 need = fastopen->cookie.len;
637 
638 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
639 					       TCPOLEN_FASTOPEN_BASE;
640 		need = (need + 3) & ~3U;  /* Align to 32 bits */
641 		if (remaining >= need) {
642 			opts->options |= OPTION_FAST_OPEN_COOKIE;
643 			opts->fastopen_cookie = &fastopen->cookie;
644 			remaining -= need;
645 			tp->syn_fastopen = 1;
646 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
647 		}
648 	}
649 
650 	smc_set_option(tp, opts, &remaining);
651 
652 	return MAX_TCP_OPTION_SPACE - remaining;
653 }
654 
655 /* Set up TCP options for SYN-ACKs. */
656 static unsigned int tcp_synack_options(const struct sock *sk,
657 				       struct request_sock *req,
658 				       unsigned int mss, struct sk_buff *skb,
659 				       struct tcp_out_options *opts,
660 				       const struct tcp_md5sig_key *md5,
661 				       struct tcp_fastopen_cookie *foc)
662 {
663 	struct inet_request_sock *ireq = inet_rsk(req);
664 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
665 
666 #ifdef CONFIG_TCP_MD5SIG
667 	if (md5) {
668 		opts->options |= OPTION_MD5;
669 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
670 
671 		/* We can't fit any SACK blocks in a packet with MD5 + TS
672 		 * options. There was discussion about disabling SACK
673 		 * rather than TS in order to fit in better with old,
674 		 * buggy kernels, but that was deemed to be unnecessary.
675 		 */
676 		ireq->tstamp_ok &= !ireq->sack_ok;
677 	}
678 #endif
679 
680 	/* We always send an MSS option. */
681 	opts->mss = mss;
682 	remaining -= TCPOLEN_MSS_ALIGNED;
683 
684 	if (likely(ireq->wscale_ok)) {
685 		opts->ws = ireq->rcv_wscale;
686 		opts->options |= OPTION_WSCALE;
687 		remaining -= TCPOLEN_WSCALE_ALIGNED;
688 	}
689 	if (likely(ireq->tstamp_ok)) {
690 		opts->options |= OPTION_TS;
691 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
692 		opts->tsecr = req->ts_recent;
693 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
694 	}
695 	if (likely(ireq->sack_ok)) {
696 		opts->options |= OPTION_SACK_ADVERTISE;
697 		if (unlikely(!ireq->tstamp_ok))
698 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
699 	}
700 	if (foc != NULL && foc->len >= 0) {
701 		u32 need = foc->len;
702 
703 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
704 				   TCPOLEN_FASTOPEN_BASE;
705 		need = (need + 3) & ~3U;  /* Align to 32 bits */
706 		if (remaining >= need) {
707 			opts->options |= OPTION_FAST_OPEN_COOKIE;
708 			opts->fastopen_cookie = foc;
709 			remaining -= need;
710 		}
711 	}
712 
713 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
714 
715 	return MAX_TCP_OPTION_SPACE - remaining;
716 }
717 
718 /* Compute TCP options for ESTABLISHED sockets. This is not the
719  * final wire format yet.
720  */
721 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
722 					struct tcp_out_options *opts,
723 					struct tcp_md5sig_key **md5)
724 {
725 	struct tcp_sock *tp = tcp_sk(sk);
726 	unsigned int size = 0;
727 	unsigned int eff_sacks;
728 
729 	opts->options = 0;
730 
731 	*md5 = NULL;
732 #ifdef CONFIG_TCP_MD5SIG
733 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
734 		*md5 = tp->af_specific->md5_lookup(sk, sk);
735 		if (*md5) {
736 			opts->options |= OPTION_MD5;
737 			size += TCPOLEN_MD5SIG_ALIGNED;
738 		}
739 	}
740 #endif
741 
742 	if (likely(tp->rx_opt.tstamp_ok)) {
743 		opts->options |= OPTION_TS;
744 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
745 		opts->tsecr = tp->rx_opt.ts_recent;
746 		size += TCPOLEN_TSTAMP_ALIGNED;
747 	}
748 
749 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
750 	if (unlikely(eff_sacks)) {
751 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
752 		opts->num_sack_blocks =
753 			min_t(unsigned int, eff_sacks,
754 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
755 			      TCPOLEN_SACK_PERBLOCK);
756 		size += TCPOLEN_SACK_BASE_ALIGNED +
757 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
758 	}
759 
760 	return size;
761 }
762 
763 
764 /* TCP SMALL QUEUES (TSQ)
765  *
766  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
767  * to reduce RTT and bufferbloat.
768  * We do this using a special skb destructor (tcp_wfree).
769  *
770  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
771  * needs to be reallocated in a driver.
772  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
773  *
774  * Since transmit from skb destructor is forbidden, we use a tasklet
775  * to process all sockets that eventually need to send more skbs.
776  * We use one tasklet per cpu, with its own queue of sockets.
777  */
778 struct tsq_tasklet {
779 	struct tasklet_struct	tasklet;
780 	struct list_head	head; /* queue of tcp sockets */
781 };
782 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
783 
784 static void tcp_tsq_write(struct sock *sk)
785 {
786 	if ((1 << sk->sk_state) &
787 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
788 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
789 		struct tcp_sock *tp = tcp_sk(sk);
790 
791 		if (tp->lost_out > tp->retrans_out &&
792 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
793 			tcp_mstamp_refresh(tp);
794 			tcp_xmit_retransmit_queue(sk);
795 		}
796 
797 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
798 			       0, GFP_ATOMIC);
799 	}
800 }
801 
802 static void tcp_tsq_handler(struct sock *sk)
803 {
804 	bh_lock_sock(sk);
805 	if (!sock_owned_by_user(sk))
806 		tcp_tsq_write(sk);
807 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
808 		sock_hold(sk);
809 	bh_unlock_sock(sk);
810 }
811 /*
812  * One tasklet per cpu tries to send more skbs.
813  * We run in tasklet context but need to disable irqs when
814  * transferring tsq->head because tcp_wfree() might
815  * interrupt us (non NAPI drivers)
816  */
817 static void tcp_tasklet_func(unsigned long data)
818 {
819 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
820 	LIST_HEAD(list);
821 	unsigned long flags;
822 	struct list_head *q, *n;
823 	struct tcp_sock *tp;
824 	struct sock *sk;
825 
826 	local_irq_save(flags);
827 	list_splice_init(&tsq->head, &list);
828 	local_irq_restore(flags);
829 
830 	list_for_each_safe(q, n, &list) {
831 		tp = list_entry(q, struct tcp_sock, tsq_node);
832 		list_del(&tp->tsq_node);
833 
834 		sk = (struct sock *)tp;
835 		smp_mb__before_atomic();
836 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
837 
838 		tcp_tsq_handler(sk);
839 		sk_free(sk);
840 	}
841 }
842 
843 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
844 			  TCPF_WRITE_TIMER_DEFERRED |	\
845 			  TCPF_DELACK_TIMER_DEFERRED |	\
846 			  TCPF_MTU_REDUCED_DEFERRED)
847 /**
848  * tcp_release_cb - tcp release_sock() callback
849  * @sk: socket
850  *
851  * called from release_sock() to perform protocol dependent
852  * actions before socket release.
853  */
854 void tcp_release_cb(struct sock *sk)
855 {
856 	unsigned long flags, nflags;
857 
858 	/* perform an atomic operation only if at least one flag is set */
859 	do {
860 		flags = sk->sk_tsq_flags;
861 		if (!(flags & TCP_DEFERRED_ALL))
862 			return;
863 		nflags = flags & ~TCP_DEFERRED_ALL;
864 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
865 
866 	if (flags & TCPF_TSQ_DEFERRED) {
867 		tcp_tsq_write(sk);
868 		__sock_put(sk);
869 	}
870 	/* Here begins the tricky part :
871 	 * We are called from release_sock() with :
872 	 * 1) BH disabled
873 	 * 2) sk_lock.slock spinlock held
874 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
875 	 *
876 	 * But following code is meant to be called from BH handlers,
877 	 * so we should keep BH disabled, but early release socket ownership
878 	 */
879 	sock_release_ownership(sk);
880 
881 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
882 		tcp_write_timer_handler(sk);
883 		__sock_put(sk);
884 	}
885 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
886 		tcp_delack_timer_handler(sk);
887 		__sock_put(sk);
888 	}
889 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
890 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
891 		__sock_put(sk);
892 	}
893 }
894 EXPORT_SYMBOL(tcp_release_cb);
895 
896 void __init tcp_tasklet_init(void)
897 {
898 	int i;
899 
900 	for_each_possible_cpu(i) {
901 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
902 
903 		INIT_LIST_HEAD(&tsq->head);
904 		tasklet_init(&tsq->tasklet,
905 			     tcp_tasklet_func,
906 			     (unsigned long)tsq);
907 	}
908 }
909 
910 /*
911  * Write buffer destructor automatically called from kfree_skb.
912  * We can't xmit new skbs from this context, as we might already
913  * hold qdisc lock.
914  */
915 void tcp_wfree(struct sk_buff *skb)
916 {
917 	struct sock *sk = skb->sk;
918 	struct tcp_sock *tp = tcp_sk(sk);
919 	unsigned long flags, nval, oval;
920 
921 	/* Keep one reference on sk_wmem_alloc.
922 	 * Will be released by sk_free() from here or tcp_tasklet_func()
923 	 */
924 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
925 
926 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
927 	 * Wait until our queues (qdisc + devices) are drained.
928 	 * This gives :
929 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
930 	 * - chance for incoming ACK (processed by another cpu maybe)
931 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
932 	 */
933 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
934 		goto out;
935 
936 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
937 		struct tsq_tasklet *tsq;
938 		bool empty;
939 
940 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
941 			goto out;
942 
943 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
944 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
945 		if (nval != oval)
946 			continue;
947 
948 		/* queue this socket to tasklet queue */
949 		local_irq_save(flags);
950 		tsq = this_cpu_ptr(&tsq_tasklet);
951 		empty = list_empty(&tsq->head);
952 		list_add(&tp->tsq_node, &tsq->head);
953 		if (empty)
954 			tasklet_schedule(&tsq->tasklet);
955 		local_irq_restore(flags);
956 		return;
957 	}
958 out:
959 	sk_free(sk);
960 }
961 
962 /* Note: Called under soft irq.
963  * We can call TCP stack right away, unless socket is owned by user.
964  */
965 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
966 {
967 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
968 	struct sock *sk = (struct sock *)tp;
969 
970 	tcp_tsq_handler(sk);
971 	sock_put(sk);
972 
973 	return HRTIMER_NORESTART;
974 }
975 
976 /* BBR congestion control needs pacing.
977  * Same remark for SO_MAX_PACING_RATE.
978  * sch_fq packet scheduler is efficiently handling pacing,
979  * but is not always installed/used.
980  * Return true if TCP stack should pace packets itself.
981  */
982 static bool tcp_needs_internal_pacing(const struct sock *sk)
983 {
984 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
985 }
986 
987 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
988 {
989 	u64 len_ns;
990 	u32 rate;
991 
992 	if (!tcp_needs_internal_pacing(sk))
993 		return;
994 	rate = sk->sk_pacing_rate;
995 	if (!rate || rate == ~0U)
996 		return;
997 
998 	/* Should account for header sizes as sch_fq does,
999 	 * but lets make things simple.
1000 	 */
1001 	len_ns = (u64)skb->len * NSEC_PER_SEC;
1002 	do_div(len_ns, rate);
1003 	hrtimer_start(&tcp_sk(sk)->pacing_timer,
1004 		      ktime_add_ns(ktime_get(), len_ns),
1005 		      HRTIMER_MODE_ABS_PINNED_SOFT);
1006 	sock_hold(sk);
1007 }
1008 
1009 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
1010 {
1011 	skb->skb_mstamp = tp->tcp_mstamp;
1012 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1013 }
1014 
1015 /* This routine actually transmits TCP packets queued in by
1016  * tcp_do_sendmsg().  This is used by both the initial
1017  * transmission and possible later retransmissions.
1018  * All SKB's seen here are completely headerless.  It is our
1019  * job to build the TCP header, and pass the packet down to
1020  * IP so it can do the same plus pass the packet off to the
1021  * device.
1022  *
1023  * We are working here with either a clone of the original
1024  * SKB, or a fresh unique copy made by the retransmit engine.
1025  */
1026 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1027 			    gfp_t gfp_mask)
1028 {
1029 	const struct inet_connection_sock *icsk = inet_csk(sk);
1030 	struct inet_sock *inet;
1031 	struct tcp_sock *tp;
1032 	struct tcp_skb_cb *tcb;
1033 	struct tcp_out_options opts;
1034 	unsigned int tcp_options_size, tcp_header_size;
1035 	struct sk_buff *oskb = NULL;
1036 	struct tcp_md5sig_key *md5;
1037 	struct tcphdr *th;
1038 	int err;
1039 
1040 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1041 	tp = tcp_sk(sk);
1042 
1043 	if (clone_it) {
1044 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1045 			- tp->snd_una;
1046 		oskb = skb;
1047 
1048 		tcp_skb_tsorted_save(oskb) {
1049 			if (unlikely(skb_cloned(oskb)))
1050 				skb = pskb_copy(oskb, gfp_mask);
1051 			else
1052 				skb = skb_clone(oskb, gfp_mask);
1053 		} tcp_skb_tsorted_restore(oskb);
1054 
1055 		if (unlikely(!skb))
1056 			return -ENOBUFS;
1057 	}
1058 	skb->skb_mstamp = tp->tcp_mstamp;
1059 
1060 	inet = inet_sk(sk);
1061 	tcb = TCP_SKB_CB(skb);
1062 	memset(&opts, 0, sizeof(opts));
1063 
1064 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1065 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1066 	else
1067 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1068 							   &md5);
1069 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1070 
1071 	/* if no packet is in qdisc/device queue, then allow XPS to select
1072 	 * another queue. We can be called from tcp_tsq_handler()
1073 	 * which holds one reference to sk.
1074 	 *
1075 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1076 	 * One way to get this would be to set skb->truesize = 2 on them.
1077 	 */
1078 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1079 
1080 	/* If we had to use memory reserve to allocate this skb,
1081 	 * this might cause drops if packet is looped back :
1082 	 * Other socket might not have SOCK_MEMALLOC.
1083 	 * Packets not looped back do not care about pfmemalloc.
1084 	 */
1085 	skb->pfmemalloc = 0;
1086 
1087 	skb_push(skb, tcp_header_size);
1088 	skb_reset_transport_header(skb);
1089 
1090 	skb_orphan(skb);
1091 	skb->sk = sk;
1092 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1093 	skb_set_hash_from_sk(skb, sk);
1094 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1095 
1096 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1097 
1098 	/* Build TCP header and checksum it. */
1099 	th = (struct tcphdr *)skb->data;
1100 	th->source		= inet->inet_sport;
1101 	th->dest		= inet->inet_dport;
1102 	th->seq			= htonl(tcb->seq);
1103 	th->ack_seq		= htonl(tp->rcv_nxt);
1104 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1105 					tcb->tcp_flags);
1106 
1107 	th->check		= 0;
1108 	th->urg_ptr		= 0;
1109 
1110 	/* The urg_mode check is necessary during a below snd_una win probe */
1111 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1112 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1113 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1114 			th->urg = 1;
1115 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1116 			th->urg_ptr = htons(0xFFFF);
1117 			th->urg = 1;
1118 		}
1119 	}
1120 
1121 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1122 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1123 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1124 		th->window      = htons(tcp_select_window(sk));
1125 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1126 	} else {
1127 		/* RFC1323: The window in SYN & SYN/ACK segments
1128 		 * is never scaled.
1129 		 */
1130 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1131 	}
1132 #ifdef CONFIG_TCP_MD5SIG
1133 	/* Calculate the MD5 hash, as we have all we need now */
1134 	if (md5) {
1135 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1136 		tp->af_specific->calc_md5_hash(opts.hash_location,
1137 					       md5, sk, skb);
1138 	}
1139 #endif
1140 
1141 	icsk->icsk_af_ops->send_check(sk, skb);
1142 
1143 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1144 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1145 
1146 	if (skb->len != tcp_header_size) {
1147 		tcp_event_data_sent(tp, sk);
1148 		tp->data_segs_out += tcp_skb_pcount(skb);
1149 		tcp_internal_pacing(sk, skb);
1150 	}
1151 
1152 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1153 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1154 			      tcp_skb_pcount(skb));
1155 
1156 	tp->segs_out += tcp_skb_pcount(skb);
1157 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1158 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1159 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1160 
1161 	/* Our usage of tstamp should remain private */
1162 	skb->tstamp = 0;
1163 
1164 	/* Cleanup our debris for IP stacks */
1165 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1166 			       sizeof(struct inet6_skb_parm)));
1167 
1168 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1169 
1170 	if (unlikely(err > 0)) {
1171 		tcp_enter_cwr(sk);
1172 		err = net_xmit_eval(err);
1173 	}
1174 	if (!err && oskb) {
1175 		tcp_update_skb_after_send(tp, oskb);
1176 		tcp_rate_skb_sent(sk, oskb);
1177 	}
1178 	return err;
1179 }
1180 
1181 /* This routine just queues the buffer for sending.
1182  *
1183  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1184  * otherwise socket can stall.
1185  */
1186 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1187 {
1188 	struct tcp_sock *tp = tcp_sk(sk);
1189 
1190 	/* Advance write_seq and place onto the write_queue. */
1191 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1192 	__skb_header_release(skb);
1193 	tcp_add_write_queue_tail(sk, skb);
1194 	sk->sk_wmem_queued += skb->truesize;
1195 	sk_mem_charge(sk, skb->truesize);
1196 }
1197 
1198 /* Initialize TSO segments for a packet. */
1199 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1200 {
1201 	if (skb->len <= mss_now) {
1202 		/* Avoid the costly divide in the normal
1203 		 * non-TSO case.
1204 		 */
1205 		tcp_skb_pcount_set(skb, 1);
1206 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1207 	} else {
1208 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1209 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1210 	}
1211 }
1212 
1213 /* Pcount in the middle of the write queue got changed, we need to do various
1214  * tweaks to fix counters
1215  */
1216 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1217 {
1218 	struct tcp_sock *tp = tcp_sk(sk);
1219 
1220 	tp->packets_out -= decr;
1221 
1222 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1223 		tp->sacked_out -= decr;
1224 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1225 		tp->retrans_out -= decr;
1226 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1227 		tp->lost_out -= decr;
1228 
1229 	/* Reno case is special. Sigh... */
1230 	if (tcp_is_reno(tp) && decr > 0)
1231 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1232 
1233 	if (tp->lost_skb_hint &&
1234 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1235 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1236 		tp->lost_cnt_hint -= decr;
1237 
1238 	tcp_verify_left_out(tp);
1239 }
1240 
1241 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1242 {
1243 	return TCP_SKB_CB(skb)->txstamp_ack ||
1244 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1245 }
1246 
1247 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1248 {
1249 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1250 
1251 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1252 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1253 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1254 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1255 
1256 		shinfo->tx_flags &= ~tsflags;
1257 		shinfo2->tx_flags |= tsflags;
1258 		swap(shinfo->tskey, shinfo2->tskey);
1259 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1260 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1261 	}
1262 }
1263 
1264 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1265 {
1266 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1267 	TCP_SKB_CB(skb)->eor = 0;
1268 }
1269 
1270 /* Insert buff after skb on the write or rtx queue of sk.  */
1271 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1272 					 struct sk_buff *buff,
1273 					 struct sock *sk,
1274 					 enum tcp_queue tcp_queue)
1275 {
1276 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1277 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1278 	else
1279 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1280 }
1281 
1282 /* Function to create two new TCP segments.  Shrinks the given segment
1283  * to the specified size and appends a new segment with the rest of the
1284  * packet to the list.  This won't be called frequently, I hope.
1285  * Remember, these are still headerless SKBs at this point.
1286  */
1287 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1288 		 struct sk_buff *skb, u32 len,
1289 		 unsigned int mss_now, gfp_t gfp)
1290 {
1291 	struct tcp_sock *tp = tcp_sk(sk);
1292 	struct sk_buff *buff;
1293 	int nsize, old_factor;
1294 	int nlen;
1295 	u8 flags;
1296 
1297 	if (WARN_ON(len > skb->len))
1298 		return -EINVAL;
1299 
1300 	nsize = skb_headlen(skb) - len;
1301 	if (nsize < 0)
1302 		nsize = 0;
1303 
1304 	if (skb_unclone(skb, gfp))
1305 		return -ENOMEM;
1306 
1307 	/* Get a new skb... force flag on. */
1308 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1309 	if (!buff)
1310 		return -ENOMEM; /* We'll just try again later. */
1311 
1312 	sk->sk_wmem_queued += buff->truesize;
1313 	sk_mem_charge(sk, buff->truesize);
1314 	nlen = skb->len - len - nsize;
1315 	buff->truesize += nlen;
1316 	skb->truesize -= nlen;
1317 
1318 	/* Correct the sequence numbers. */
1319 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1320 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1321 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1322 
1323 	/* PSH and FIN should only be set in the second packet. */
1324 	flags = TCP_SKB_CB(skb)->tcp_flags;
1325 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1326 	TCP_SKB_CB(buff)->tcp_flags = flags;
1327 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1328 	tcp_skb_fragment_eor(skb, buff);
1329 
1330 	skb_split(skb, buff, len);
1331 
1332 	buff->ip_summed = CHECKSUM_PARTIAL;
1333 
1334 	buff->tstamp = skb->tstamp;
1335 	tcp_fragment_tstamp(skb, buff);
1336 
1337 	old_factor = tcp_skb_pcount(skb);
1338 
1339 	/* Fix up tso_factor for both original and new SKB.  */
1340 	tcp_set_skb_tso_segs(skb, mss_now);
1341 	tcp_set_skb_tso_segs(buff, mss_now);
1342 
1343 	/* Update delivered info for the new segment */
1344 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1345 
1346 	/* If this packet has been sent out already, we must
1347 	 * adjust the various packet counters.
1348 	 */
1349 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1350 		int diff = old_factor - tcp_skb_pcount(skb) -
1351 			tcp_skb_pcount(buff);
1352 
1353 		if (diff)
1354 			tcp_adjust_pcount(sk, skb, diff);
1355 	}
1356 
1357 	/* Link BUFF into the send queue. */
1358 	__skb_header_release(buff);
1359 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1360 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1361 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1362 
1363 	return 0;
1364 }
1365 
1366 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1367  * data is not copied, but immediately discarded.
1368  */
1369 static int __pskb_trim_head(struct sk_buff *skb, int len)
1370 {
1371 	struct skb_shared_info *shinfo;
1372 	int i, k, eat;
1373 
1374 	eat = min_t(int, len, skb_headlen(skb));
1375 	if (eat) {
1376 		__skb_pull(skb, eat);
1377 		len -= eat;
1378 		if (!len)
1379 			return 0;
1380 	}
1381 	eat = len;
1382 	k = 0;
1383 	shinfo = skb_shinfo(skb);
1384 	for (i = 0; i < shinfo->nr_frags; i++) {
1385 		int size = skb_frag_size(&shinfo->frags[i]);
1386 
1387 		if (size <= eat) {
1388 			skb_frag_unref(skb, i);
1389 			eat -= size;
1390 		} else {
1391 			shinfo->frags[k] = shinfo->frags[i];
1392 			if (eat) {
1393 				shinfo->frags[k].page_offset += eat;
1394 				skb_frag_size_sub(&shinfo->frags[k], eat);
1395 				eat = 0;
1396 			}
1397 			k++;
1398 		}
1399 	}
1400 	shinfo->nr_frags = k;
1401 
1402 	skb->data_len -= len;
1403 	skb->len = skb->data_len;
1404 	return len;
1405 }
1406 
1407 /* Remove acked data from a packet in the transmit queue. */
1408 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1409 {
1410 	u32 delta_truesize;
1411 
1412 	if (skb_unclone(skb, GFP_ATOMIC))
1413 		return -ENOMEM;
1414 
1415 	delta_truesize = __pskb_trim_head(skb, len);
1416 
1417 	TCP_SKB_CB(skb)->seq += len;
1418 	skb->ip_summed = CHECKSUM_PARTIAL;
1419 
1420 	if (delta_truesize) {
1421 		skb->truesize	   -= delta_truesize;
1422 		sk->sk_wmem_queued -= delta_truesize;
1423 		sk_mem_uncharge(sk, delta_truesize);
1424 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1425 	}
1426 
1427 	/* Any change of skb->len requires recalculation of tso factor. */
1428 	if (tcp_skb_pcount(skb) > 1)
1429 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1430 
1431 	return 0;
1432 }
1433 
1434 /* Calculate MSS not accounting any TCP options.  */
1435 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1436 {
1437 	const struct tcp_sock *tp = tcp_sk(sk);
1438 	const struct inet_connection_sock *icsk = inet_csk(sk);
1439 	int mss_now;
1440 
1441 	/* Calculate base mss without TCP options:
1442 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1443 	 */
1444 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1445 
1446 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1447 	if (icsk->icsk_af_ops->net_frag_header_len) {
1448 		const struct dst_entry *dst = __sk_dst_get(sk);
1449 
1450 		if (dst && dst_allfrag(dst))
1451 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1452 	}
1453 
1454 	/* Clamp it (mss_clamp does not include tcp options) */
1455 	if (mss_now > tp->rx_opt.mss_clamp)
1456 		mss_now = tp->rx_opt.mss_clamp;
1457 
1458 	/* Now subtract optional transport overhead */
1459 	mss_now -= icsk->icsk_ext_hdr_len;
1460 
1461 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1462 	if (mss_now < 48)
1463 		mss_now = 48;
1464 	return mss_now;
1465 }
1466 
1467 /* Calculate MSS. Not accounting for SACKs here.  */
1468 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1469 {
1470 	/* Subtract TCP options size, not including SACKs */
1471 	return __tcp_mtu_to_mss(sk, pmtu) -
1472 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1473 }
1474 
1475 /* Inverse of above */
1476 int tcp_mss_to_mtu(struct sock *sk, int mss)
1477 {
1478 	const struct tcp_sock *tp = tcp_sk(sk);
1479 	const struct inet_connection_sock *icsk = inet_csk(sk);
1480 	int mtu;
1481 
1482 	mtu = mss +
1483 	      tp->tcp_header_len +
1484 	      icsk->icsk_ext_hdr_len +
1485 	      icsk->icsk_af_ops->net_header_len;
1486 
1487 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1488 	if (icsk->icsk_af_ops->net_frag_header_len) {
1489 		const struct dst_entry *dst = __sk_dst_get(sk);
1490 
1491 		if (dst && dst_allfrag(dst))
1492 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1493 	}
1494 	return mtu;
1495 }
1496 EXPORT_SYMBOL(tcp_mss_to_mtu);
1497 
1498 /* MTU probing init per socket */
1499 void tcp_mtup_init(struct sock *sk)
1500 {
1501 	struct tcp_sock *tp = tcp_sk(sk);
1502 	struct inet_connection_sock *icsk = inet_csk(sk);
1503 	struct net *net = sock_net(sk);
1504 
1505 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1506 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1507 			       icsk->icsk_af_ops->net_header_len;
1508 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1509 	icsk->icsk_mtup.probe_size = 0;
1510 	if (icsk->icsk_mtup.enabled)
1511 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1512 }
1513 EXPORT_SYMBOL(tcp_mtup_init);
1514 
1515 /* This function synchronize snd mss to current pmtu/exthdr set.
1516 
1517    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1518    for TCP options, but includes only bare TCP header.
1519 
1520    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1521    It is minimum of user_mss and mss received with SYN.
1522    It also does not include TCP options.
1523 
1524    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1525 
1526    tp->mss_cache is current effective sending mss, including
1527    all tcp options except for SACKs. It is evaluated,
1528    taking into account current pmtu, but never exceeds
1529    tp->rx_opt.mss_clamp.
1530 
1531    NOTE1. rfc1122 clearly states that advertised MSS
1532    DOES NOT include either tcp or ip options.
1533 
1534    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1535    are READ ONLY outside this function.		--ANK (980731)
1536  */
1537 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1538 {
1539 	struct tcp_sock *tp = tcp_sk(sk);
1540 	struct inet_connection_sock *icsk = inet_csk(sk);
1541 	int mss_now;
1542 
1543 	if (icsk->icsk_mtup.search_high > pmtu)
1544 		icsk->icsk_mtup.search_high = pmtu;
1545 
1546 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1547 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1548 
1549 	/* And store cached results */
1550 	icsk->icsk_pmtu_cookie = pmtu;
1551 	if (icsk->icsk_mtup.enabled)
1552 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1553 	tp->mss_cache = mss_now;
1554 
1555 	return mss_now;
1556 }
1557 EXPORT_SYMBOL(tcp_sync_mss);
1558 
1559 /* Compute the current effective MSS, taking SACKs and IP options,
1560  * and even PMTU discovery events into account.
1561  */
1562 unsigned int tcp_current_mss(struct sock *sk)
1563 {
1564 	const struct tcp_sock *tp = tcp_sk(sk);
1565 	const struct dst_entry *dst = __sk_dst_get(sk);
1566 	u32 mss_now;
1567 	unsigned int header_len;
1568 	struct tcp_out_options opts;
1569 	struct tcp_md5sig_key *md5;
1570 
1571 	mss_now = tp->mss_cache;
1572 
1573 	if (dst) {
1574 		u32 mtu = dst_mtu(dst);
1575 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1576 			mss_now = tcp_sync_mss(sk, mtu);
1577 	}
1578 
1579 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1580 		     sizeof(struct tcphdr);
1581 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1582 	 * some common options. If this is an odd packet (because we have SACK
1583 	 * blocks etc) then our calculated header_len will be different, and
1584 	 * we have to adjust mss_now correspondingly */
1585 	if (header_len != tp->tcp_header_len) {
1586 		int delta = (int) header_len - tp->tcp_header_len;
1587 		mss_now -= delta;
1588 	}
1589 
1590 	return mss_now;
1591 }
1592 
1593 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1594  * As additional protections, we do not touch cwnd in retransmission phases,
1595  * and if application hit its sndbuf limit recently.
1596  */
1597 static void tcp_cwnd_application_limited(struct sock *sk)
1598 {
1599 	struct tcp_sock *tp = tcp_sk(sk);
1600 
1601 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1602 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1603 		/* Limited by application or receiver window. */
1604 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1605 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1606 		if (win_used < tp->snd_cwnd) {
1607 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1608 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1609 		}
1610 		tp->snd_cwnd_used = 0;
1611 	}
1612 	tp->snd_cwnd_stamp = tcp_jiffies32;
1613 }
1614 
1615 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1616 {
1617 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1618 	struct tcp_sock *tp = tcp_sk(sk);
1619 
1620 	/* Track the maximum number of outstanding packets in each
1621 	 * window, and remember whether we were cwnd-limited then.
1622 	 */
1623 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1624 	    tp->packets_out > tp->max_packets_out) {
1625 		tp->max_packets_out = tp->packets_out;
1626 		tp->max_packets_seq = tp->snd_nxt;
1627 		tp->is_cwnd_limited = is_cwnd_limited;
1628 	}
1629 
1630 	if (tcp_is_cwnd_limited(sk)) {
1631 		/* Network is feed fully. */
1632 		tp->snd_cwnd_used = 0;
1633 		tp->snd_cwnd_stamp = tcp_jiffies32;
1634 	} else {
1635 		/* Network starves. */
1636 		if (tp->packets_out > tp->snd_cwnd_used)
1637 			tp->snd_cwnd_used = tp->packets_out;
1638 
1639 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1640 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1641 		    !ca_ops->cong_control)
1642 			tcp_cwnd_application_limited(sk);
1643 
1644 		/* The following conditions together indicate the starvation
1645 		 * is caused by insufficient sender buffer:
1646 		 * 1) just sent some data (see tcp_write_xmit)
1647 		 * 2) not cwnd limited (this else condition)
1648 		 * 3) no more data to send (tcp_write_queue_empty())
1649 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1650 		 */
1651 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1652 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1653 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1654 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1655 	}
1656 }
1657 
1658 /* Minshall's variant of the Nagle send check. */
1659 static bool tcp_minshall_check(const struct tcp_sock *tp)
1660 {
1661 	return after(tp->snd_sml, tp->snd_una) &&
1662 		!after(tp->snd_sml, tp->snd_nxt);
1663 }
1664 
1665 /* Update snd_sml if this skb is under mss
1666  * Note that a TSO packet might end with a sub-mss segment
1667  * The test is really :
1668  * if ((skb->len % mss) != 0)
1669  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1670  * But we can avoid doing the divide again given we already have
1671  *  skb_pcount = skb->len / mss_now
1672  */
1673 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1674 				const struct sk_buff *skb)
1675 {
1676 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1677 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1678 }
1679 
1680 /* Return false, if packet can be sent now without violation Nagle's rules:
1681  * 1. It is full sized. (provided by caller in %partial bool)
1682  * 2. Or it contains FIN. (already checked by caller)
1683  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1684  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1685  *    With Minshall's modification: all sent small packets are ACKed.
1686  */
1687 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1688 			    int nonagle)
1689 {
1690 	return partial &&
1691 		((nonagle & TCP_NAGLE_CORK) ||
1692 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1693 }
1694 
1695 /* Return how many segs we'd like on a TSO packet,
1696  * to send one TSO packet per ms
1697  */
1698 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1699 			    int min_tso_segs)
1700 {
1701 	u32 bytes, segs;
1702 
1703 	bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
1704 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1705 
1706 	/* Goal is to send at least one packet per ms,
1707 	 * not one big TSO packet every 100 ms.
1708 	 * This preserves ACK clocking and is consistent
1709 	 * with tcp_tso_should_defer() heuristic.
1710 	 */
1711 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1712 
1713 	return segs;
1714 }
1715 
1716 /* Return the number of segments we want in the skb we are transmitting.
1717  * See if congestion control module wants to decide; otherwise, autosize.
1718  */
1719 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1720 {
1721 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1722 	u32 min_tso, tso_segs;
1723 
1724 	min_tso = ca_ops->min_tso_segs ?
1725 			ca_ops->min_tso_segs(sk) :
1726 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1727 
1728 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1729 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1730 }
1731 
1732 /* Returns the portion of skb which can be sent right away */
1733 static unsigned int tcp_mss_split_point(const struct sock *sk,
1734 					const struct sk_buff *skb,
1735 					unsigned int mss_now,
1736 					unsigned int max_segs,
1737 					int nonagle)
1738 {
1739 	const struct tcp_sock *tp = tcp_sk(sk);
1740 	u32 partial, needed, window, max_len;
1741 
1742 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1743 	max_len = mss_now * max_segs;
1744 
1745 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1746 		return max_len;
1747 
1748 	needed = min(skb->len, window);
1749 
1750 	if (max_len <= needed)
1751 		return max_len;
1752 
1753 	partial = needed % mss_now;
1754 	/* If last segment is not a full MSS, check if Nagle rules allow us
1755 	 * to include this last segment in this skb.
1756 	 * Otherwise, we'll split the skb at last MSS boundary
1757 	 */
1758 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1759 		return needed - partial;
1760 
1761 	return needed;
1762 }
1763 
1764 /* Can at least one segment of SKB be sent right now, according to the
1765  * congestion window rules?  If so, return how many segments are allowed.
1766  */
1767 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1768 					 const struct sk_buff *skb)
1769 {
1770 	u32 in_flight, cwnd, halfcwnd;
1771 
1772 	/* Don't be strict about the congestion window for the final FIN.  */
1773 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1774 	    tcp_skb_pcount(skb) == 1)
1775 		return 1;
1776 
1777 	in_flight = tcp_packets_in_flight(tp);
1778 	cwnd = tp->snd_cwnd;
1779 	if (in_flight >= cwnd)
1780 		return 0;
1781 
1782 	/* For better scheduling, ensure we have at least
1783 	 * 2 GSO packets in flight.
1784 	 */
1785 	halfcwnd = max(cwnd >> 1, 1U);
1786 	return min(halfcwnd, cwnd - in_flight);
1787 }
1788 
1789 /* Initialize TSO state of a skb.
1790  * This must be invoked the first time we consider transmitting
1791  * SKB onto the wire.
1792  */
1793 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1794 {
1795 	int tso_segs = tcp_skb_pcount(skb);
1796 
1797 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1798 		tcp_set_skb_tso_segs(skb, mss_now);
1799 		tso_segs = tcp_skb_pcount(skb);
1800 	}
1801 	return tso_segs;
1802 }
1803 
1804 
1805 /* Return true if the Nagle test allows this packet to be
1806  * sent now.
1807  */
1808 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1809 				  unsigned int cur_mss, int nonagle)
1810 {
1811 	/* Nagle rule does not apply to frames, which sit in the middle of the
1812 	 * write_queue (they have no chances to get new data).
1813 	 *
1814 	 * This is implemented in the callers, where they modify the 'nonagle'
1815 	 * argument based upon the location of SKB in the send queue.
1816 	 */
1817 	if (nonagle & TCP_NAGLE_PUSH)
1818 		return true;
1819 
1820 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1821 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1822 		return true;
1823 
1824 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1825 		return true;
1826 
1827 	return false;
1828 }
1829 
1830 /* Does at least the first segment of SKB fit into the send window? */
1831 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1832 			     const struct sk_buff *skb,
1833 			     unsigned int cur_mss)
1834 {
1835 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1836 
1837 	if (skb->len > cur_mss)
1838 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1839 
1840 	return !after(end_seq, tcp_wnd_end(tp));
1841 }
1842 
1843 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1844  * which is put after SKB on the list.  It is very much like
1845  * tcp_fragment() except that it may make several kinds of assumptions
1846  * in order to speed up the splitting operation.  In particular, we
1847  * know that all the data is in scatter-gather pages, and that the
1848  * packet has never been sent out before (and thus is not cloned).
1849  */
1850 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1851 			struct sk_buff *skb, unsigned int len,
1852 			unsigned int mss_now, gfp_t gfp)
1853 {
1854 	struct sk_buff *buff;
1855 	int nlen = skb->len - len;
1856 	u8 flags;
1857 
1858 	/* All of a TSO frame must be composed of paged data.  */
1859 	if (skb->len != skb->data_len)
1860 		return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1861 
1862 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1863 	if (unlikely(!buff))
1864 		return -ENOMEM;
1865 
1866 	sk->sk_wmem_queued += buff->truesize;
1867 	sk_mem_charge(sk, buff->truesize);
1868 	buff->truesize += nlen;
1869 	skb->truesize -= nlen;
1870 
1871 	/* Correct the sequence numbers. */
1872 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1873 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1874 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1875 
1876 	/* PSH and FIN should only be set in the second packet. */
1877 	flags = TCP_SKB_CB(skb)->tcp_flags;
1878 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1879 	TCP_SKB_CB(buff)->tcp_flags = flags;
1880 
1881 	/* This packet was never sent out yet, so no SACK bits. */
1882 	TCP_SKB_CB(buff)->sacked = 0;
1883 
1884 	tcp_skb_fragment_eor(skb, buff);
1885 
1886 	buff->ip_summed = CHECKSUM_PARTIAL;
1887 	skb_split(skb, buff, len);
1888 	tcp_fragment_tstamp(skb, buff);
1889 
1890 	/* Fix up tso_factor for both original and new SKB.  */
1891 	tcp_set_skb_tso_segs(skb, mss_now);
1892 	tcp_set_skb_tso_segs(buff, mss_now);
1893 
1894 	/* Link BUFF into the send queue. */
1895 	__skb_header_release(buff);
1896 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1897 
1898 	return 0;
1899 }
1900 
1901 /* Try to defer sending, if possible, in order to minimize the amount
1902  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1903  *
1904  * This algorithm is from John Heffner.
1905  */
1906 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1907 				 bool *is_cwnd_limited, u32 max_segs)
1908 {
1909 	const struct inet_connection_sock *icsk = inet_csk(sk);
1910 	u32 age, send_win, cong_win, limit, in_flight;
1911 	struct tcp_sock *tp = tcp_sk(sk);
1912 	struct sk_buff *head;
1913 	int win_divisor;
1914 
1915 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1916 		goto send_now;
1917 
1918 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1919 		goto send_now;
1920 
1921 	/* Avoid bursty behavior by allowing defer
1922 	 * only if the last write was recent.
1923 	 */
1924 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1925 		goto send_now;
1926 
1927 	in_flight = tcp_packets_in_flight(tp);
1928 
1929 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1930 	BUG_ON(tp->snd_cwnd <= in_flight);
1931 
1932 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1933 
1934 	/* From in_flight test above, we know that cwnd > in_flight.  */
1935 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1936 
1937 	limit = min(send_win, cong_win);
1938 
1939 	/* If a full-sized TSO skb can be sent, do it. */
1940 	if (limit >= max_segs * tp->mss_cache)
1941 		goto send_now;
1942 
1943 	/* Middle in queue won't get any more data, full sendable already? */
1944 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1945 		goto send_now;
1946 
1947 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1948 	if (win_divisor) {
1949 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1950 
1951 		/* If at least some fraction of a window is available,
1952 		 * just use it.
1953 		 */
1954 		chunk /= win_divisor;
1955 		if (limit >= chunk)
1956 			goto send_now;
1957 	} else {
1958 		/* Different approach, try not to defer past a single
1959 		 * ACK.  Receiver should ACK every other full sized
1960 		 * frame, so if we have space for more than 3 frames
1961 		 * then send now.
1962 		 */
1963 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1964 			goto send_now;
1965 	}
1966 
1967 	/* TODO : use tsorted_sent_queue ? */
1968 	head = tcp_rtx_queue_head(sk);
1969 	if (!head)
1970 		goto send_now;
1971 	age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1972 	/* If next ACK is likely to come too late (half srtt), do not defer */
1973 	if (age < (tp->srtt_us >> 4))
1974 		goto send_now;
1975 
1976 	/* Ok, it looks like it is advisable to defer. */
1977 
1978 	if (cong_win < send_win && cong_win <= skb->len)
1979 		*is_cwnd_limited = true;
1980 
1981 	return true;
1982 
1983 send_now:
1984 	return false;
1985 }
1986 
1987 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1988 {
1989 	struct inet_connection_sock *icsk = inet_csk(sk);
1990 	struct tcp_sock *tp = tcp_sk(sk);
1991 	struct net *net = sock_net(sk);
1992 	u32 interval;
1993 	s32 delta;
1994 
1995 	interval = net->ipv4.sysctl_tcp_probe_interval;
1996 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
1997 	if (unlikely(delta >= interval * HZ)) {
1998 		int mss = tcp_current_mss(sk);
1999 
2000 		/* Update current search range */
2001 		icsk->icsk_mtup.probe_size = 0;
2002 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2003 			sizeof(struct tcphdr) +
2004 			icsk->icsk_af_ops->net_header_len;
2005 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2006 
2007 		/* Update probe time stamp */
2008 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2009 	}
2010 }
2011 
2012 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2013 {
2014 	struct sk_buff *skb, *next;
2015 
2016 	skb = tcp_send_head(sk);
2017 	tcp_for_write_queue_from_safe(skb, next, sk) {
2018 		if (len <= skb->len)
2019 			break;
2020 
2021 		if (unlikely(TCP_SKB_CB(skb)->eor))
2022 			return false;
2023 
2024 		len -= skb->len;
2025 	}
2026 
2027 	return true;
2028 }
2029 
2030 /* Create a new MTU probe if we are ready.
2031  * MTU probe is regularly attempting to increase the path MTU by
2032  * deliberately sending larger packets.  This discovers routing
2033  * changes resulting in larger path MTUs.
2034  *
2035  * Returns 0 if we should wait to probe (no cwnd available),
2036  *         1 if a probe was sent,
2037  *         -1 otherwise
2038  */
2039 static int tcp_mtu_probe(struct sock *sk)
2040 {
2041 	struct inet_connection_sock *icsk = inet_csk(sk);
2042 	struct tcp_sock *tp = tcp_sk(sk);
2043 	struct sk_buff *skb, *nskb, *next;
2044 	struct net *net = sock_net(sk);
2045 	int probe_size;
2046 	int size_needed;
2047 	int copy, len;
2048 	int mss_now;
2049 	int interval;
2050 
2051 	/* Not currently probing/verifying,
2052 	 * not in recovery,
2053 	 * have enough cwnd, and
2054 	 * not SACKing (the variable headers throw things off)
2055 	 */
2056 	if (likely(!icsk->icsk_mtup.enabled ||
2057 		   icsk->icsk_mtup.probe_size ||
2058 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2059 		   tp->snd_cwnd < 11 ||
2060 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2061 		return -1;
2062 
2063 	/* Use binary search for probe_size between tcp_mss_base,
2064 	 * and current mss_clamp. if (search_high - search_low)
2065 	 * smaller than a threshold, backoff from probing.
2066 	 */
2067 	mss_now = tcp_current_mss(sk);
2068 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2069 				    icsk->icsk_mtup.search_low) >> 1);
2070 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2071 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2072 	/* When misfortune happens, we are reprobing actively,
2073 	 * and then reprobe timer has expired. We stick with current
2074 	 * probing process by not resetting search range to its orignal.
2075 	 */
2076 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2077 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2078 		/* Check whether enough time has elaplased for
2079 		 * another round of probing.
2080 		 */
2081 		tcp_mtu_check_reprobe(sk);
2082 		return -1;
2083 	}
2084 
2085 	/* Have enough data in the send queue to probe? */
2086 	if (tp->write_seq - tp->snd_nxt < size_needed)
2087 		return -1;
2088 
2089 	if (tp->snd_wnd < size_needed)
2090 		return -1;
2091 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2092 		return 0;
2093 
2094 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2095 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2096 		if (!tcp_packets_in_flight(tp))
2097 			return -1;
2098 		else
2099 			return 0;
2100 	}
2101 
2102 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2103 		return -1;
2104 
2105 	/* We're allowed to probe.  Build it now. */
2106 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2107 	if (!nskb)
2108 		return -1;
2109 	sk->sk_wmem_queued += nskb->truesize;
2110 	sk_mem_charge(sk, nskb->truesize);
2111 
2112 	skb = tcp_send_head(sk);
2113 
2114 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2115 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2116 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2117 	TCP_SKB_CB(nskb)->sacked = 0;
2118 	nskb->csum = 0;
2119 	nskb->ip_summed = CHECKSUM_PARTIAL;
2120 
2121 	tcp_insert_write_queue_before(nskb, skb, sk);
2122 	tcp_highest_sack_replace(sk, skb, nskb);
2123 
2124 	len = 0;
2125 	tcp_for_write_queue_from_safe(skb, next, sk) {
2126 		copy = min_t(int, skb->len, probe_size - len);
2127 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2128 
2129 		if (skb->len <= copy) {
2130 			/* We've eaten all the data from this skb.
2131 			 * Throw it away. */
2132 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2133 			/* If this is the last SKB we copy and eor is set
2134 			 * we need to propagate it to the new skb.
2135 			 */
2136 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2137 			tcp_unlink_write_queue(skb, sk);
2138 			sk_wmem_free_skb(sk, skb);
2139 		} else {
2140 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2141 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2142 			if (!skb_shinfo(skb)->nr_frags) {
2143 				skb_pull(skb, copy);
2144 			} else {
2145 				__pskb_trim_head(skb, copy);
2146 				tcp_set_skb_tso_segs(skb, mss_now);
2147 			}
2148 			TCP_SKB_CB(skb)->seq += copy;
2149 		}
2150 
2151 		len += copy;
2152 
2153 		if (len >= probe_size)
2154 			break;
2155 	}
2156 	tcp_init_tso_segs(nskb, nskb->len);
2157 
2158 	/* We're ready to send.  If this fails, the probe will
2159 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2160 	 */
2161 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2162 		/* Decrement cwnd here because we are sending
2163 		 * effectively two packets. */
2164 		tp->snd_cwnd--;
2165 		tcp_event_new_data_sent(sk, nskb);
2166 
2167 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2168 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2169 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2170 
2171 		return 1;
2172 	}
2173 
2174 	return -1;
2175 }
2176 
2177 static bool tcp_pacing_check(const struct sock *sk)
2178 {
2179 	return tcp_needs_internal_pacing(sk) &&
2180 	       hrtimer_is_queued(&tcp_sk(sk)->pacing_timer);
2181 }
2182 
2183 /* TCP Small Queues :
2184  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2185  * (These limits are doubled for retransmits)
2186  * This allows for :
2187  *  - better RTT estimation and ACK scheduling
2188  *  - faster recovery
2189  *  - high rates
2190  * Alas, some drivers / subsystems require a fair amount
2191  * of queued bytes to ensure line rate.
2192  * One example is wifi aggregation (802.11 AMPDU)
2193  */
2194 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2195 				  unsigned int factor)
2196 {
2197 	unsigned int limit;
2198 
2199 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
2200 	limit = min_t(u32, limit,
2201 		      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2202 	limit <<= factor;
2203 
2204 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2205 		/* Always send skb if rtx queue is empty.
2206 		 * No need to wait for TX completion to call us back,
2207 		 * after softirq/tasklet schedule.
2208 		 * This helps when TX completions are delayed too much.
2209 		 */
2210 		if (tcp_rtx_queue_empty(sk))
2211 			return false;
2212 
2213 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2214 		/* It is possible TX completion already happened
2215 		 * before we set TSQ_THROTTLED, so we must
2216 		 * test again the condition.
2217 		 */
2218 		smp_mb__after_atomic();
2219 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2220 			return true;
2221 	}
2222 	return false;
2223 }
2224 
2225 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2226 {
2227 	const u32 now = tcp_jiffies32;
2228 	enum tcp_chrono old = tp->chrono_type;
2229 
2230 	if (old > TCP_CHRONO_UNSPEC)
2231 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2232 	tp->chrono_start = now;
2233 	tp->chrono_type = new;
2234 }
2235 
2236 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2237 {
2238 	struct tcp_sock *tp = tcp_sk(sk);
2239 
2240 	/* If there are multiple conditions worthy of tracking in a
2241 	 * chronograph then the highest priority enum takes precedence
2242 	 * over the other conditions. So that if something "more interesting"
2243 	 * starts happening, stop the previous chrono and start a new one.
2244 	 */
2245 	if (type > tp->chrono_type)
2246 		tcp_chrono_set(tp, type);
2247 }
2248 
2249 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2250 {
2251 	struct tcp_sock *tp = tcp_sk(sk);
2252 
2253 
2254 	/* There are multiple conditions worthy of tracking in a
2255 	 * chronograph, so that the highest priority enum takes
2256 	 * precedence over the other conditions (see tcp_chrono_start).
2257 	 * If a condition stops, we only stop chrono tracking if
2258 	 * it's the "most interesting" or current chrono we are
2259 	 * tracking and starts busy chrono if we have pending data.
2260 	 */
2261 	if (tcp_rtx_and_write_queues_empty(sk))
2262 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2263 	else if (type == tp->chrono_type)
2264 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2265 }
2266 
2267 /* This routine writes packets to the network.  It advances the
2268  * send_head.  This happens as incoming acks open up the remote
2269  * window for us.
2270  *
2271  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2272  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2273  * account rare use of URG, this is not a big flaw.
2274  *
2275  * Send at most one packet when push_one > 0. Temporarily ignore
2276  * cwnd limit to force at most one packet out when push_one == 2.
2277 
2278  * Returns true, if no segments are in flight and we have queued segments,
2279  * but cannot send anything now because of SWS or another problem.
2280  */
2281 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2282 			   int push_one, gfp_t gfp)
2283 {
2284 	struct tcp_sock *tp = tcp_sk(sk);
2285 	struct sk_buff *skb;
2286 	unsigned int tso_segs, sent_pkts;
2287 	int cwnd_quota;
2288 	int result;
2289 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2290 	u32 max_segs;
2291 
2292 	sent_pkts = 0;
2293 
2294 	tcp_mstamp_refresh(tp);
2295 	if (!push_one) {
2296 		/* Do MTU probing. */
2297 		result = tcp_mtu_probe(sk);
2298 		if (!result) {
2299 			return false;
2300 		} else if (result > 0) {
2301 			sent_pkts = 1;
2302 		}
2303 	}
2304 
2305 	max_segs = tcp_tso_segs(sk, mss_now);
2306 	while ((skb = tcp_send_head(sk))) {
2307 		unsigned int limit;
2308 
2309 		if (tcp_pacing_check(sk))
2310 			break;
2311 
2312 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2313 		BUG_ON(!tso_segs);
2314 
2315 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2316 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2317 			tcp_update_skb_after_send(tp, skb);
2318 			goto repair; /* Skip network transmission */
2319 		}
2320 
2321 		cwnd_quota = tcp_cwnd_test(tp, skb);
2322 		if (!cwnd_quota) {
2323 			if (push_one == 2)
2324 				/* Force out a loss probe pkt. */
2325 				cwnd_quota = 1;
2326 			else
2327 				break;
2328 		}
2329 
2330 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2331 			is_rwnd_limited = true;
2332 			break;
2333 		}
2334 
2335 		if (tso_segs == 1) {
2336 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2337 						     (tcp_skb_is_last(sk, skb) ?
2338 						      nonagle : TCP_NAGLE_PUSH))))
2339 				break;
2340 		} else {
2341 			if (!push_one &&
2342 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2343 						 max_segs))
2344 				break;
2345 		}
2346 
2347 		limit = mss_now;
2348 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2349 			limit = tcp_mss_split_point(sk, skb, mss_now,
2350 						    min_t(unsigned int,
2351 							  cwnd_quota,
2352 							  max_segs),
2353 						    nonagle);
2354 
2355 		if (skb->len > limit &&
2356 		    unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2357 					  skb, limit, mss_now, gfp)))
2358 			break;
2359 
2360 		if (tcp_small_queue_check(sk, skb, 0))
2361 			break;
2362 
2363 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2364 			break;
2365 
2366 repair:
2367 		/* Advance the send_head.  This one is sent out.
2368 		 * This call will increment packets_out.
2369 		 */
2370 		tcp_event_new_data_sent(sk, skb);
2371 
2372 		tcp_minshall_update(tp, mss_now, skb);
2373 		sent_pkts += tcp_skb_pcount(skb);
2374 
2375 		if (push_one)
2376 			break;
2377 	}
2378 
2379 	if (is_rwnd_limited)
2380 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2381 	else
2382 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2383 
2384 	if (likely(sent_pkts)) {
2385 		if (tcp_in_cwnd_reduction(sk))
2386 			tp->prr_out += sent_pkts;
2387 
2388 		/* Send one loss probe per tail loss episode. */
2389 		if (push_one != 2)
2390 			tcp_schedule_loss_probe(sk, false);
2391 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2392 		tcp_cwnd_validate(sk, is_cwnd_limited);
2393 		return false;
2394 	}
2395 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2396 }
2397 
2398 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2399 {
2400 	struct inet_connection_sock *icsk = inet_csk(sk);
2401 	struct tcp_sock *tp = tcp_sk(sk);
2402 	u32 timeout, rto_delta_us;
2403 	int early_retrans;
2404 
2405 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2406 	 * finishes.
2407 	 */
2408 	if (tp->fastopen_rsk)
2409 		return false;
2410 
2411 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2412 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2413 	 * not in loss recovery, that are either limited by cwnd or application.
2414 	 */
2415 	if ((early_retrans != 3 && early_retrans != 4) ||
2416 	    !tp->packets_out || !tcp_is_sack(tp) ||
2417 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2418 	     icsk->icsk_ca_state != TCP_CA_CWR))
2419 		return false;
2420 
2421 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2422 	 * for delayed ack when there's one outstanding packet. If no RTT
2423 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2424 	 */
2425 	if (tp->srtt_us) {
2426 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2427 		if (tp->packets_out == 1)
2428 			timeout += TCP_RTO_MIN;
2429 		else
2430 			timeout += TCP_TIMEOUT_MIN;
2431 	} else {
2432 		timeout = TCP_TIMEOUT_INIT;
2433 	}
2434 
2435 	/* If the RTO formula yields an earlier time, then use that time. */
2436 	rto_delta_us = advancing_rto ?
2437 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2438 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2439 	if (rto_delta_us > 0)
2440 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2441 
2442 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2443 				  TCP_RTO_MAX);
2444 	return true;
2445 }
2446 
2447 /* Thanks to skb fast clones, we can detect if a prior transmit of
2448  * a packet is still in a qdisc or driver queue.
2449  * In this case, there is very little point doing a retransmit !
2450  */
2451 static bool skb_still_in_host_queue(const struct sock *sk,
2452 				    const struct sk_buff *skb)
2453 {
2454 	if (unlikely(skb_fclone_busy(sk, skb))) {
2455 		NET_INC_STATS(sock_net(sk),
2456 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2457 		return true;
2458 	}
2459 	return false;
2460 }
2461 
2462 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2463  * retransmit the last segment.
2464  */
2465 void tcp_send_loss_probe(struct sock *sk)
2466 {
2467 	struct tcp_sock *tp = tcp_sk(sk);
2468 	struct sk_buff *skb;
2469 	int pcount;
2470 	int mss = tcp_current_mss(sk);
2471 
2472 	skb = tcp_send_head(sk);
2473 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2474 		pcount = tp->packets_out;
2475 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2476 		if (tp->packets_out > pcount)
2477 			goto probe_sent;
2478 		goto rearm_timer;
2479 	}
2480 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2481 
2482 	/* At most one outstanding TLP retransmission. */
2483 	if (tp->tlp_high_seq)
2484 		goto rearm_timer;
2485 
2486 	/* Retransmit last segment. */
2487 	if (WARN_ON(!skb))
2488 		goto rearm_timer;
2489 
2490 	if (skb_still_in_host_queue(sk, skb))
2491 		goto rearm_timer;
2492 
2493 	pcount = tcp_skb_pcount(skb);
2494 	if (WARN_ON(!pcount))
2495 		goto rearm_timer;
2496 
2497 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2498 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2499 					  (pcount - 1) * mss, mss,
2500 					  GFP_ATOMIC)))
2501 			goto rearm_timer;
2502 		skb = skb_rb_next(skb);
2503 	}
2504 
2505 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2506 		goto rearm_timer;
2507 
2508 	if (__tcp_retransmit_skb(sk, skb, 1))
2509 		goto rearm_timer;
2510 
2511 	/* Record snd_nxt for loss detection. */
2512 	tp->tlp_high_seq = tp->snd_nxt;
2513 
2514 probe_sent:
2515 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2516 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2517 	inet_csk(sk)->icsk_pending = 0;
2518 rearm_timer:
2519 	tcp_rearm_rto(sk);
2520 }
2521 
2522 /* Push out any pending frames which were held back due to
2523  * TCP_CORK or attempt at coalescing tiny packets.
2524  * The socket must be locked by the caller.
2525  */
2526 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2527 			       int nonagle)
2528 {
2529 	/* If we are closed, the bytes will have to remain here.
2530 	 * In time closedown will finish, we empty the write queue and
2531 	 * all will be happy.
2532 	 */
2533 	if (unlikely(sk->sk_state == TCP_CLOSE))
2534 		return;
2535 
2536 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2537 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2538 		tcp_check_probe_timer(sk);
2539 }
2540 
2541 /* Send _single_ skb sitting at the send head. This function requires
2542  * true push pending frames to setup probe timer etc.
2543  */
2544 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2545 {
2546 	struct sk_buff *skb = tcp_send_head(sk);
2547 
2548 	BUG_ON(!skb || skb->len < mss_now);
2549 
2550 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2551 }
2552 
2553 /* This function returns the amount that we can raise the
2554  * usable window based on the following constraints
2555  *
2556  * 1. The window can never be shrunk once it is offered (RFC 793)
2557  * 2. We limit memory per socket
2558  *
2559  * RFC 1122:
2560  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2561  *  RECV.NEXT + RCV.WIN fixed until:
2562  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2563  *
2564  * i.e. don't raise the right edge of the window until you can raise
2565  * it at least MSS bytes.
2566  *
2567  * Unfortunately, the recommended algorithm breaks header prediction,
2568  * since header prediction assumes th->window stays fixed.
2569  *
2570  * Strictly speaking, keeping th->window fixed violates the receiver
2571  * side SWS prevention criteria. The problem is that under this rule
2572  * a stream of single byte packets will cause the right side of the
2573  * window to always advance by a single byte.
2574  *
2575  * Of course, if the sender implements sender side SWS prevention
2576  * then this will not be a problem.
2577  *
2578  * BSD seems to make the following compromise:
2579  *
2580  *	If the free space is less than the 1/4 of the maximum
2581  *	space available and the free space is less than 1/2 mss,
2582  *	then set the window to 0.
2583  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2584  *	Otherwise, just prevent the window from shrinking
2585  *	and from being larger than the largest representable value.
2586  *
2587  * This prevents incremental opening of the window in the regime
2588  * where TCP is limited by the speed of the reader side taking
2589  * data out of the TCP receive queue. It does nothing about
2590  * those cases where the window is constrained on the sender side
2591  * because the pipeline is full.
2592  *
2593  * BSD also seems to "accidentally" limit itself to windows that are a
2594  * multiple of MSS, at least until the free space gets quite small.
2595  * This would appear to be a side effect of the mbuf implementation.
2596  * Combining these two algorithms results in the observed behavior
2597  * of having a fixed window size at almost all times.
2598  *
2599  * Below we obtain similar behavior by forcing the offered window to
2600  * a multiple of the mss when it is feasible to do so.
2601  *
2602  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2603  * Regular options like TIMESTAMP are taken into account.
2604  */
2605 u32 __tcp_select_window(struct sock *sk)
2606 {
2607 	struct inet_connection_sock *icsk = inet_csk(sk);
2608 	struct tcp_sock *tp = tcp_sk(sk);
2609 	/* MSS for the peer's data.  Previous versions used mss_clamp
2610 	 * here.  I don't know if the value based on our guesses
2611 	 * of peer's MSS is better for the performance.  It's more correct
2612 	 * but may be worse for the performance because of rcv_mss
2613 	 * fluctuations.  --SAW  1998/11/1
2614 	 */
2615 	int mss = icsk->icsk_ack.rcv_mss;
2616 	int free_space = tcp_space(sk);
2617 	int allowed_space = tcp_full_space(sk);
2618 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2619 	int window;
2620 
2621 	if (unlikely(mss > full_space)) {
2622 		mss = full_space;
2623 		if (mss <= 0)
2624 			return 0;
2625 	}
2626 	if (free_space < (full_space >> 1)) {
2627 		icsk->icsk_ack.quick = 0;
2628 
2629 		if (tcp_under_memory_pressure(sk))
2630 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2631 					       4U * tp->advmss);
2632 
2633 		/* free_space might become our new window, make sure we don't
2634 		 * increase it due to wscale.
2635 		 */
2636 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2637 
2638 		/* if free space is less than mss estimate, or is below 1/16th
2639 		 * of the maximum allowed, try to move to zero-window, else
2640 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2641 		 * new incoming data is dropped due to memory limits.
2642 		 * With large window, mss test triggers way too late in order
2643 		 * to announce zero window in time before rmem limit kicks in.
2644 		 */
2645 		if (free_space < (allowed_space >> 4) || free_space < mss)
2646 			return 0;
2647 	}
2648 
2649 	if (free_space > tp->rcv_ssthresh)
2650 		free_space = tp->rcv_ssthresh;
2651 
2652 	/* Don't do rounding if we are using window scaling, since the
2653 	 * scaled window will not line up with the MSS boundary anyway.
2654 	 */
2655 	if (tp->rx_opt.rcv_wscale) {
2656 		window = free_space;
2657 
2658 		/* Advertise enough space so that it won't get scaled away.
2659 		 * Import case: prevent zero window announcement if
2660 		 * 1<<rcv_wscale > mss.
2661 		 */
2662 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2663 	} else {
2664 		window = tp->rcv_wnd;
2665 		/* Get the largest window that is a nice multiple of mss.
2666 		 * Window clamp already applied above.
2667 		 * If our current window offering is within 1 mss of the
2668 		 * free space we just keep it. This prevents the divide
2669 		 * and multiply from happening most of the time.
2670 		 * We also don't do any window rounding when the free space
2671 		 * is too small.
2672 		 */
2673 		if (window <= free_space - mss || window > free_space)
2674 			window = rounddown(free_space, mss);
2675 		else if (mss == full_space &&
2676 			 free_space > window + (full_space >> 1))
2677 			window = free_space;
2678 	}
2679 
2680 	return window;
2681 }
2682 
2683 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2684 			     const struct sk_buff *next_skb)
2685 {
2686 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2687 		const struct skb_shared_info *next_shinfo =
2688 			skb_shinfo(next_skb);
2689 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2690 
2691 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2692 		shinfo->tskey = next_shinfo->tskey;
2693 		TCP_SKB_CB(skb)->txstamp_ack |=
2694 			TCP_SKB_CB(next_skb)->txstamp_ack;
2695 	}
2696 }
2697 
2698 /* Collapses two adjacent SKB's during retransmission. */
2699 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2700 {
2701 	struct tcp_sock *tp = tcp_sk(sk);
2702 	struct sk_buff *next_skb = skb_rb_next(skb);
2703 	int skb_size, next_skb_size;
2704 
2705 	skb_size = skb->len;
2706 	next_skb_size = next_skb->len;
2707 
2708 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2709 
2710 	if (next_skb_size) {
2711 		if (next_skb_size <= skb_availroom(skb))
2712 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2713 				      next_skb_size);
2714 		else if (!skb_shift(skb, next_skb, next_skb_size))
2715 			return false;
2716 	}
2717 	tcp_highest_sack_replace(sk, next_skb, skb);
2718 
2719 	/* Update sequence range on original skb. */
2720 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2721 
2722 	/* Merge over control information. This moves PSH/FIN etc. over */
2723 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2724 
2725 	/* All done, get rid of second SKB and account for it so
2726 	 * packet counting does not break.
2727 	 */
2728 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2729 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2730 
2731 	/* changed transmit queue under us so clear hints */
2732 	tcp_clear_retrans_hints_partial(tp);
2733 	if (next_skb == tp->retransmit_skb_hint)
2734 		tp->retransmit_skb_hint = skb;
2735 
2736 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2737 
2738 	tcp_skb_collapse_tstamp(skb, next_skb);
2739 
2740 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2741 	return true;
2742 }
2743 
2744 /* Check if coalescing SKBs is legal. */
2745 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2746 {
2747 	if (tcp_skb_pcount(skb) > 1)
2748 		return false;
2749 	if (skb_cloned(skb))
2750 		return false;
2751 	/* Some heuristics for collapsing over SACK'd could be invented */
2752 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2753 		return false;
2754 
2755 	return true;
2756 }
2757 
2758 /* Collapse packets in the retransmit queue to make to create
2759  * less packets on the wire. This is only done on retransmission.
2760  */
2761 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2762 				     int space)
2763 {
2764 	struct tcp_sock *tp = tcp_sk(sk);
2765 	struct sk_buff *skb = to, *tmp;
2766 	bool first = true;
2767 
2768 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2769 		return;
2770 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2771 		return;
2772 
2773 	skb_rbtree_walk_from_safe(skb, tmp) {
2774 		if (!tcp_can_collapse(sk, skb))
2775 			break;
2776 
2777 		if (!tcp_skb_can_collapse_to(to))
2778 			break;
2779 
2780 		space -= skb->len;
2781 
2782 		if (first) {
2783 			first = false;
2784 			continue;
2785 		}
2786 
2787 		if (space < 0)
2788 			break;
2789 
2790 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2791 			break;
2792 
2793 		if (!tcp_collapse_retrans(sk, to))
2794 			break;
2795 	}
2796 }
2797 
2798 /* This retransmits one SKB.  Policy decisions and retransmit queue
2799  * state updates are done by the caller.  Returns non-zero if an
2800  * error occurred which prevented the send.
2801  */
2802 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2803 {
2804 	struct inet_connection_sock *icsk = inet_csk(sk);
2805 	struct tcp_sock *tp = tcp_sk(sk);
2806 	unsigned int cur_mss;
2807 	int diff, len, err;
2808 
2809 
2810 	/* Inconclusive MTU probe */
2811 	if (icsk->icsk_mtup.probe_size)
2812 		icsk->icsk_mtup.probe_size = 0;
2813 
2814 	/* Do not sent more than we queued. 1/4 is reserved for possible
2815 	 * copying overhead: fragmentation, tunneling, mangling etc.
2816 	 */
2817 	if (refcount_read(&sk->sk_wmem_alloc) >
2818 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2819 		  sk->sk_sndbuf))
2820 		return -EAGAIN;
2821 
2822 	if (skb_still_in_host_queue(sk, skb))
2823 		return -EBUSY;
2824 
2825 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2826 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2827 			WARN_ON_ONCE(1);
2828 			return -EINVAL;
2829 		}
2830 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2831 			return -ENOMEM;
2832 	}
2833 
2834 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2835 		return -EHOSTUNREACH; /* Routing failure or similar. */
2836 
2837 	cur_mss = tcp_current_mss(sk);
2838 
2839 	/* If receiver has shrunk his window, and skb is out of
2840 	 * new window, do not retransmit it. The exception is the
2841 	 * case, when window is shrunk to zero. In this case
2842 	 * our retransmit serves as a zero window probe.
2843 	 */
2844 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2845 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2846 		return -EAGAIN;
2847 
2848 	len = cur_mss * segs;
2849 	if (skb->len > len) {
2850 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2851 				 cur_mss, GFP_ATOMIC))
2852 			return -ENOMEM; /* We'll try again later. */
2853 	} else {
2854 		if (skb_unclone(skb, GFP_ATOMIC))
2855 			return -ENOMEM;
2856 
2857 		diff = tcp_skb_pcount(skb);
2858 		tcp_set_skb_tso_segs(skb, cur_mss);
2859 		diff -= tcp_skb_pcount(skb);
2860 		if (diff)
2861 			tcp_adjust_pcount(sk, skb, diff);
2862 		if (skb->len < cur_mss)
2863 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2864 	}
2865 
2866 	/* RFC3168, section 6.1.1.1. ECN fallback */
2867 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2868 		tcp_ecn_clear_syn(sk, skb);
2869 
2870 	/* Update global and local TCP statistics. */
2871 	segs = tcp_skb_pcount(skb);
2872 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2873 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2874 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2875 	tp->total_retrans += segs;
2876 
2877 	/* make sure skb->data is aligned on arches that require it
2878 	 * and check if ack-trimming & collapsing extended the headroom
2879 	 * beyond what csum_start can cover.
2880 	 */
2881 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2882 		     skb_headroom(skb) >= 0xFFFF)) {
2883 		struct sk_buff *nskb;
2884 
2885 		tcp_skb_tsorted_save(skb) {
2886 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2887 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2888 				     -ENOBUFS;
2889 		} tcp_skb_tsorted_restore(skb);
2890 
2891 		if (!err) {
2892 			tcp_update_skb_after_send(tp, skb);
2893 			tcp_rate_skb_sent(sk, skb);
2894 		}
2895 	} else {
2896 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2897 	}
2898 
2899 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2900 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2901 				  TCP_SKB_CB(skb)->seq, segs, err);
2902 
2903 	if (likely(!err)) {
2904 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2905 		trace_tcp_retransmit_skb(sk, skb);
2906 	} else if (err != -EBUSY) {
2907 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2908 	}
2909 	return err;
2910 }
2911 
2912 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2913 {
2914 	struct tcp_sock *tp = tcp_sk(sk);
2915 	int err = __tcp_retransmit_skb(sk, skb, segs);
2916 
2917 	if (err == 0) {
2918 #if FASTRETRANS_DEBUG > 0
2919 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2920 			net_dbg_ratelimited("retrans_out leaked\n");
2921 		}
2922 #endif
2923 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2924 		tp->retrans_out += tcp_skb_pcount(skb);
2925 
2926 		/* Save stamp of the first retransmit. */
2927 		if (!tp->retrans_stamp)
2928 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2929 
2930 	}
2931 
2932 	if (tp->undo_retrans < 0)
2933 		tp->undo_retrans = 0;
2934 	tp->undo_retrans += tcp_skb_pcount(skb);
2935 	return err;
2936 }
2937 
2938 /* This gets called after a retransmit timeout, and the initially
2939  * retransmitted data is acknowledged.  It tries to continue
2940  * resending the rest of the retransmit queue, until either
2941  * we've sent it all or the congestion window limit is reached.
2942  */
2943 void tcp_xmit_retransmit_queue(struct sock *sk)
2944 {
2945 	const struct inet_connection_sock *icsk = inet_csk(sk);
2946 	struct sk_buff *skb, *rtx_head, *hole = NULL;
2947 	struct tcp_sock *tp = tcp_sk(sk);
2948 	u32 max_segs;
2949 	int mib_idx;
2950 
2951 	if (!tp->packets_out)
2952 		return;
2953 
2954 	rtx_head = tcp_rtx_queue_head(sk);
2955 	skb = tp->retransmit_skb_hint ?: rtx_head;
2956 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2957 	skb_rbtree_walk_from(skb) {
2958 		__u8 sacked;
2959 		int segs;
2960 
2961 		if (tcp_pacing_check(sk))
2962 			break;
2963 
2964 		/* we could do better than to assign each time */
2965 		if (!hole)
2966 			tp->retransmit_skb_hint = skb;
2967 
2968 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2969 		if (segs <= 0)
2970 			return;
2971 		sacked = TCP_SKB_CB(skb)->sacked;
2972 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2973 		 * we need to make sure not sending too bigs TSO packets
2974 		 */
2975 		segs = min_t(int, segs, max_segs);
2976 
2977 		if (tp->retrans_out >= tp->lost_out) {
2978 			break;
2979 		} else if (!(sacked & TCPCB_LOST)) {
2980 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2981 				hole = skb;
2982 			continue;
2983 
2984 		} else {
2985 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2986 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2987 			else
2988 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2989 		}
2990 
2991 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2992 			continue;
2993 
2994 		if (tcp_small_queue_check(sk, skb, 1))
2995 			return;
2996 
2997 		if (tcp_retransmit_skb(sk, skb, segs))
2998 			return;
2999 
3000 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3001 
3002 		if (tcp_in_cwnd_reduction(sk))
3003 			tp->prr_out += tcp_skb_pcount(skb);
3004 
3005 		if (skb == rtx_head &&
3006 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3007 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3008 						  inet_csk(sk)->icsk_rto,
3009 						  TCP_RTO_MAX);
3010 	}
3011 }
3012 
3013 /* We allow to exceed memory limits for FIN packets to expedite
3014  * connection tear down and (memory) recovery.
3015  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3016  * or even be forced to close flow without any FIN.
3017  * In general, we want to allow one skb per socket to avoid hangs
3018  * with edge trigger epoll()
3019  */
3020 void sk_forced_mem_schedule(struct sock *sk, int size)
3021 {
3022 	int amt;
3023 
3024 	if (size <= sk->sk_forward_alloc)
3025 		return;
3026 	amt = sk_mem_pages(size);
3027 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3028 	sk_memory_allocated_add(sk, amt);
3029 
3030 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3031 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3032 }
3033 
3034 /* Send a FIN. The caller locks the socket for us.
3035  * We should try to send a FIN packet really hard, but eventually give up.
3036  */
3037 void tcp_send_fin(struct sock *sk)
3038 {
3039 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3040 	struct tcp_sock *tp = tcp_sk(sk);
3041 
3042 	/* Optimization, tack on the FIN if we have one skb in write queue and
3043 	 * this skb was not yet sent, or we are under memory pressure.
3044 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3045 	 * as TCP stack thinks it has already been transmitted.
3046 	 */
3047 	if (!tskb && tcp_under_memory_pressure(sk))
3048 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3049 
3050 	if (tskb) {
3051 coalesce:
3052 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3053 		TCP_SKB_CB(tskb)->end_seq++;
3054 		tp->write_seq++;
3055 		if (tcp_write_queue_empty(sk)) {
3056 			/* This means tskb was already sent.
3057 			 * Pretend we included the FIN on previous transmit.
3058 			 * We need to set tp->snd_nxt to the value it would have
3059 			 * if FIN had been sent. This is because retransmit path
3060 			 * does not change tp->snd_nxt.
3061 			 */
3062 			tp->snd_nxt++;
3063 			return;
3064 		}
3065 	} else {
3066 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3067 		if (unlikely(!skb)) {
3068 			if (tskb)
3069 				goto coalesce;
3070 			return;
3071 		}
3072 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3073 		skb_reserve(skb, MAX_TCP_HEADER);
3074 		sk_forced_mem_schedule(sk, skb->truesize);
3075 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3076 		tcp_init_nondata_skb(skb, tp->write_seq,
3077 				     TCPHDR_ACK | TCPHDR_FIN);
3078 		tcp_queue_skb(sk, skb);
3079 	}
3080 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3081 }
3082 
3083 /* We get here when a process closes a file descriptor (either due to
3084  * an explicit close() or as a byproduct of exit()'ing) and there
3085  * was unread data in the receive queue.  This behavior is recommended
3086  * by RFC 2525, section 2.17.  -DaveM
3087  */
3088 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3089 {
3090 	struct sk_buff *skb;
3091 
3092 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3093 
3094 	/* NOTE: No TCP options attached and we never retransmit this. */
3095 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3096 	if (!skb) {
3097 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3098 		return;
3099 	}
3100 
3101 	/* Reserve space for headers and prepare control bits. */
3102 	skb_reserve(skb, MAX_TCP_HEADER);
3103 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3104 			     TCPHDR_ACK | TCPHDR_RST);
3105 	tcp_mstamp_refresh(tcp_sk(sk));
3106 	/* Send it off. */
3107 	if (tcp_transmit_skb(sk, skb, 0, priority))
3108 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3109 
3110 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3111 	 * skb here is different to the troublesome skb, so use NULL
3112 	 */
3113 	trace_tcp_send_reset(sk, NULL);
3114 }
3115 
3116 /* Send a crossed SYN-ACK during socket establishment.
3117  * WARNING: This routine must only be called when we have already sent
3118  * a SYN packet that crossed the incoming SYN that caused this routine
3119  * to get called. If this assumption fails then the initial rcv_wnd
3120  * and rcv_wscale values will not be correct.
3121  */
3122 int tcp_send_synack(struct sock *sk)
3123 {
3124 	struct sk_buff *skb;
3125 
3126 	skb = tcp_rtx_queue_head(sk);
3127 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3128 		pr_err("%s: wrong queue state\n", __func__);
3129 		return -EFAULT;
3130 	}
3131 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3132 		if (skb_cloned(skb)) {
3133 			struct sk_buff *nskb;
3134 
3135 			tcp_skb_tsorted_save(skb) {
3136 				nskb = skb_copy(skb, GFP_ATOMIC);
3137 			} tcp_skb_tsorted_restore(skb);
3138 			if (!nskb)
3139 				return -ENOMEM;
3140 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3141 			tcp_rtx_queue_unlink_and_free(skb, sk);
3142 			__skb_header_release(nskb);
3143 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3144 			sk->sk_wmem_queued += nskb->truesize;
3145 			sk_mem_charge(sk, nskb->truesize);
3146 			skb = nskb;
3147 		}
3148 
3149 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3150 		tcp_ecn_send_synack(sk, skb);
3151 	}
3152 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3153 }
3154 
3155 /**
3156  * tcp_make_synack - Prepare a SYN-ACK.
3157  * sk: listener socket
3158  * dst: dst entry attached to the SYNACK
3159  * req: request_sock pointer
3160  *
3161  * Allocate one skb and build a SYNACK packet.
3162  * @dst is consumed : Caller should not use it again.
3163  */
3164 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3165 				struct request_sock *req,
3166 				struct tcp_fastopen_cookie *foc,
3167 				enum tcp_synack_type synack_type)
3168 {
3169 	struct inet_request_sock *ireq = inet_rsk(req);
3170 	const struct tcp_sock *tp = tcp_sk(sk);
3171 	struct tcp_md5sig_key *md5 = NULL;
3172 	struct tcp_out_options opts;
3173 	struct sk_buff *skb;
3174 	int tcp_header_size;
3175 	struct tcphdr *th;
3176 	int mss;
3177 
3178 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3179 	if (unlikely(!skb)) {
3180 		dst_release(dst);
3181 		return NULL;
3182 	}
3183 	/* Reserve space for headers. */
3184 	skb_reserve(skb, MAX_TCP_HEADER);
3185 
3186 	switch (synack_type) {
3187 	case TCP_SYNACK_NORMAL:
3188 		skb_set_owner_w(skb, req_to_sk(req));
3189 		break;
3190 	case TCP_SYNACK_COOKIE:
3191 		/* Under synflood, we do not attach skb to a socket,
3192 		 * to avoid false sharing.
3193 		 */
3194 		break;
3195 	case TCP_SYNACK_FASTOPEN:
3196 		/* sk is a const pointer, because we want to express multiple
3197 		 * cpu might call us concurrently.
3198 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3199 		 */
3200 		skb_set_owner_w(skb, (struct sock *)sk);
3201 		break;
3202 	}
3203 	skb_dst_set(skb, dst);
3204 
3205 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3206 
3207 	memset(&opts, 0, sizeof(opts));
3208 #ifdef CONFIG_SYN_COOKIES
3209 	if (unlikely(req->cookie_ts))
3210 		skb->skb_mstamp = cookie_init_timestamp(req);
3211 	else
3212 #endif
3213 		skb->skb_mstamp = tcp_clock_us();
3214 
3215 #ifdef CONFIG_TCP_MD5SIG
3216 	rcu_read_lock();
3217 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3218 #endif
3219 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3220 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3221 					     foc) + sizeof(*th);
3222 
3223 	skb_push(skb, tcp_header_size);
3224 	skb_reset_transport_header(skb);
3225 
3226 	th = (struct tcphdr *)skb->data;
3227 	memset(th, 0, sizeof(struct tcphdr));
3228 	th->syn = 1;
3229 	th->ack = 1;
3230 	tcp_ecn_make_synack(req, th);
3231 	th->source = htons(ireq->ir_num);
3232 	th->dest = ireq->ir_rmt_port;
3233 	skb->mark = ireq->ir_mark;
3234 	skb->ip_summed = CHECKSUM_PARTIAL;
3235 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3236 	/* XXX data is queued and acked as is. No buffer/window check */
3237 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3238 
3239 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3240 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3241 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3242 	th->doff = (tcp_header_size >> 2);
3243 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3244 
3245 #ifdef CONFIG_TCP_MD5SIG
3246 	/* Okay, we have all we need - do the md5 hash if needed */
3247 	if (md5)
3248 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3249 					       md5, req_to_sk(req), skb);
3250 	rcu_read_unlock();
3251 #endif
3252 
3253 	/* Do not fool tcpdump (if any), clean our debris */
3254 	skb->tstamp = 0;
3255 	return skb;
3256 }
3257 EXPORT_SYMBOL(tcp_make_synack);
3258 
3259 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3260 {
3261 	struct inet_connection_sock *icsk = inet_csk(sk);
3262 	const struct tcp_congestion_ops *ca;
3263 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3264 
3265 	if (ca_key == TCP_CA_UNSPEC)
3266 		return;
3267 
3268 	rcu_read_lock();
3269 	ca = tcp_ca_find_key(ca_key);
3270 	if (likely(ca && try_module_get(ca->owner))) {
3271 		module_put(icsk->icsk_ca_ops->owner);
3272 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3273 		icsk->icsk_ca_ops = ca;
3274 	}
3275 	rcu_read_unlock();
3276 }
3277 
3278 /* Do all connect socket setups that can be done AF independent. */
3279 static void tcp_connect_init(struct sock *sk)
3280 {
3281 	const struct dst_entry *dst = __sk_dst_get(sk);
3282 	struct tcp_sock *tp = tcp_sk(sk);
3283 	__u8 rcv_wscale;
3284 	u32 rcv_wnd;
3285 
3286 	/* We'll fix this up when we get a response from the other end.
3287 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3288 	 */
3289 	tp->tcp_header_len = sizeof(struct tcphdr);
3290 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3291 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3292 
3293 #ifdef CONFIG_TCP_MD5SIG
3294 	if (tp->af_specific->md5_lookup(sk, sk))
3295 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3296 #endif
3297 
3298 	/* If user gave his TCP_MAXSEG, record it to clamp */
3299 	if (tp->rx_opt.user_mss)
3300 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3301 	tp->max_window = 0;
3302 	tcp_mtup_init(sk);
3303 	tcp_sync_mss(sk, dst_mtu(dst));
3304 
3305 	tcp_ca_dst_init(sk, dst);
3306 
3307 	if (!tp->window_clamp)
3308 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3309 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3310 
3311 	tcp_initialize_rcv_mss(sk);
3312 
3313 	/* limit the window selection if the user enforce a smaller rx buffer */
3314 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3315 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3316 		tp->window_clamp = tcp_full_space(sk);
3317 
3318 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3319 	if (rcv_wnd == 0)
3320 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3321 
3322 	tcp_select_initial_window(sk, tcp_full_space(sk),
3323 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3324 				  &tp->rcv_wnd,
3325 				  &tp->window_clamp,
3326 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3327 				  &rcv_wscale,
3328 				  rcv_wnd);
3329 
3330 	tp->rx_opt.rcv_wscale = rcv_wscale;
3331 	tp->rcv_ssthresh = tp->rcv_wnd;
3332 
3333 	sk->sk_err = 0;
3334 	sock_reset_flag(sk, SOCK_DONE);
3335 	tp->snd_wnd = 0;
3336 	tcp_init_wl(tp, 0);
3337 	tcp_write_queue_purge(sk);
3338 	tp->snd_una = tp->write_seq;
3339 	tp->snd_sml = tp->write_seq;
3340 	tp->snd_up = tp->write_seq;
3341 	tp->snd_nxt = tp->write_seq;
3342 
3343 	if (likely(!tp->repair))
3344 		tp->rcv_nxt = 0;
3345 	else
3346 		tp->rcv_tstamp = tcp_jiffies32;
3347 	tp->rcv_wup = tp->rcv_nxt;
3348 	tp->copied_seq = tp->rcv_nxt;
3349 
3350 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3351 	inet_csk(sk)->icsk_retransmits = 0;
3352 	tcp_clear_retrans(tp);
3353 }
3354 
3355 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3356 {
3357 	struct tcp_sock *tp = tcp_sk(sk);
3358 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3359 
3360 	tcb->end_seq += skb->len;
3361 	__skb_header_release(skb);
3362 	sk->sk_wmem_queued += skb->truesize;
3363 	sk_mem_charge(sk, skb->truesize);
3364 	tp->write_seq = tcb->end_seq;
3365 	tp->packets_out += tcp_skb_pcount(skb);
3366 }
3367 
3368 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3369  * queue a data-only packet after the regular SYN, such that regular SYNs
3370  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3371  * only the SYN sequence, the data are retransmitted in the first ACK.
3372  * If cookie is not cached or other error occurs, falls back to send a
3373  * regular SYN with Fast Open cookie request option.
3374  */
3375 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3376 {
3377 	struct tcp_sock *tp = tcp_sk(sk);
3378 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3379 	int space, err = 0;
3380 	struct sk_buff *syn_data;
3381 
3382 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3383 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3384 		goto fallback;
3385 
3386 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3387 	 * user-MSS. Reserve maximum option space for middleboxes that add
3388 	 * private TCP options. The cost is reduced data space in SYN :(
3389 	 */
3390 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3391 
3392 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3393 		MAX_TCP_OPTION_SPACE;
3394 
3395 	space = min_t(size_t, space, fo->size);
3396 
3397 	/* limit to order-0 allocations */
3398 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3399 
3400 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3401 	if (!syn_data)
3402 		goto fallback;
3403 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3404 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3405 	if (space) {
3406 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3407 					    &fo->data->msg_iter);
3408 		if (unlikely(!copied)) {
3409 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3410 			kfree_skb(syn_data);
3411 			goto fallback;
3412 		}
3413 		if (copied != space) {
3414 			skb_trim(syn_data, copied);
3415 			space = copied;
3416 		}
3417 	}
3418 	/* No more data pending in inet_wait_for_connect() */
3419 	if (space == fo->size)
3420 		fo->data = NULL;
3421 	fo->copied = space;
3422 
3423 	tcp_connect_queue_skb(sk, syn_data);
3424 	if (syn_data->len)
3425 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3426 
3427 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3428 
3429 	syn->skb_mstamp = syn_data->skb_mstamp;
3430 
3431 	/* Now full SYN+DATA was cloned and sent (or not),
3432 	 * remove the SYN from the original skb (syn_data)
3433 	 * we keep in write queue in case of a retransmit, as we
3434 	 * also have the SYN packet (with no data) in the same queue.
3435 	 */
3436 	TCP_SKB_CB(syn_data)->seq++;
3437 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3438 	if (!err) {
3439 		tp->syn_data = (fo->copied > 0);
3440 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3441 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3442 		goto done;
3443 	}
3444 
3445 	/* data was not sent, put it in write_queue */
3446 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3447 	tp->packets_out -= tcp_skb_pcount(syn_data);
3448 
3449 fallback:
3450 	/* Send a regular SYN with Fast Open cookie request option */
3451 	if (fo->cookie.len > 0)
3452 		fo->cookie.len = 0;
3453 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3454 	if (err)
3455 		tp->syn_fastopen = 0;
3456 done:
3457 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3458 	return err;
3459 }
3460 
3461 /* Build a SYN and send it off. */
3462 int tcp_connect(struct sock *sk)
3463 {
3464 	struct tcp_sock *tp = tcp_sk(sk);
3465 	struct sk_buff *buff;
3466 	int err;
3467 
3468 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3469 
3470 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3471 		return -EHOSTUNREACH; /* Routing failure or similar. */
3472 
3473 	tcp_connect_init(sk);
3474 
3475 	if (unlikely(tp->repair)) {
3476 		tcp_finish_connect(sk, NULL);
3477 		return 0;
3478 	}
3479 
3480 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3481 	if (unlikely(!buff))
3482 		return -ENOBUFS;
3483 
3484 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3485 	tcp_mstamp_refresh(tp);
3486 	tp->retrans_stamp = tcp_time_stamp(tp);
3487 	tcp_connect_queue_skb(sk, buff);
3488 	tcp_ecn_send_syn(sk, buff);
3489 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3490 
3491 	/* Send off SYN; include data in Fast Open. */
3492 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3493 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3494 	if (err == -ECONNREFUSED)
3495 		return err;
3496 
3497 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3498 	 * in order to make this packet get counted in tcpOutSegs.
3499 	 */
3500 	tp->snd_nxt = tp->write_seq;
3501 	tp->pushed_seq = tp->write_seq;
3502 	buff = tcp_send_head(sk);
3503 	if (unlikely(buff)) {
3504 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3505 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3506 	}
3507 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3508 
3509 	/* Timer for repeating the SYN until an answer. */
3510 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3511 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3512 	return 0;
3513 }
3514 EXPORT_SYMBOL(tcp_connect);
3515 
3516 /* Send out a delayed ack, the caller does the policy checking
3517  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3518  * for details.
3519  */
3520 void tcp_send_delayed_ack(struct sock *sk)
3521 {
3522 	struct inet_connection_sock *icsk = inet_csk(sk);
3523 	int ato = icsk->icsk_ack.ato;
3524 	unsigned long timeout;
3525 
3526 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3527 
3528 	if (ato > TCP_DELACK_MIN) {
3529 		const struct tcp_sock *tp = tcp_sk(sk);
3530 		int max_ato = HZ / 2;
3531 
3532 		if (icsk->icsk_ack.pingpong ||
3533 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3534 			max_ato = TCP_DELACK_MAX;
3535 
3536 		/* Slow path, intersegment interval is "high". */
3537 
3538 		/* If some rtt estimate is known, use it to bound delayed ack.
3539 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3540 		 * directly.
3541 		 */
3542 		if (tp->srtt_us) {
3543 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3544 					TCP_DELACK_MIN);
3545 
3546 			if (rtt < max_ato)
3547 				max_ato = rtt;
3548 		}
3549 
3550 		ato = min(ato, max_ato);
3551 	}
3552 
3553 	/* Stay within the limit we were given */
3554 	timeout = jiffies + ato;
3555 
3556 	/* Use new timeout only if there wasn't a older one earlier. */
3557 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3558 		/* If delack timer was blocked or is about to expire,
3559 		 * send ACK now.
3560 		 */
3561 		if (icsk->icsk_ack.blocked ||
3562 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3563 			tcp_send_ack(sk);
3564 			return;
3565 		}
3566 
3567 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3568 			timeout = icsk->icsk_ack.timeout;
3569 	}
3570 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3571 	icsk->icsk_ack.timeout = timeout;
3572 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3573 }
3574 
3575 /* This routine sends an ack and also updates the window. */
3576 void tcp_send_ack(struct sock *sk)
3577 {
3578 	struct sk_buff *buff;
3579 
3580 	/* If we have been reset, we may not send again. */
3581 	if (sk->sk_state == TCP_CLOSE)
3582 		return;
3583 
3584 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3585 
3586 	/* We are not putting this on the write queue, so
3587 	 * tcp_transmit_skb() will set the ownership to this
3588 	 * sock.
3589 	 */
3590 	buff = alloc_skb(MAX_TCP_HEADER,
3591 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3592 	if (unlikely(!buff)) {
3593 		inet_csk_schedule_ack(sk);
3594 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3595 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3596 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3597 		return;
3598 	}
3599 
3600 	/* Reserve space for headers and prepare control bits. */
3601 	skb_reserve(buff, MAX_TCP_HEADER);
3602 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3603 
3604 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3605 	 * too much.
3606 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3607 	 */
3608 	skb_set_tcp_pure_ack(buff);
3609 
3610 	/* Send it off, this clears delayed acks for us. */
3611 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3612 }
3613 EXPORT_SYMBOL_GPL(tcp_send_ack);
3614 
3615 /* This routine sends a packet with an out of date sequence
3616  * number. It assumes the other end will try to ack it.
3617  *
3618  * Question: what should we make while urgent mode?
3619  * 4.4BSD forces sending single byte of data. We cannot send
3620  * out of window data, because we have SND.NXT==SND.MAX...
3621  *
3622  * Current solution: to send TWO zero-length segments in urgent mode:
3623  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3624  * out-of-date with SND.UNA-1 to probe window.
3625  */
3626 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3627 {
3628 	struct tcp_sock *tp = tcp_sk(sk);
3629 	struct sk_buff *skb;
3630 
3631 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3632 	skb = alloc_skb(MAX_TCP_HEADER,
3633 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3634 	if (!skb)
3635 		return -1;
3636 
3637 	/* Reserve space for headers and set control bits. */
3638 	skb_reserve(skb, MAX_TCP_HEADER);
3639 	/* Use a previous sequence.  This should cause the other
3640 	 * end to send an ack.  Don't queue or clone SKB, just
3641 	 * send it.
3642 	 */
3643 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3644 	NET_INC_STATS(sock_net(sk), mib);
3645 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3646 }
3647 
3648 /* Called from setsockopt( ... TCP_REPAIR ) */
3649 void tcp_send_window_probe(struct sock *sk)
3650 {
3651 	if (sk->sk_state == TCP_ESTABLISHED) {
3652 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3653 		tcp_mstamp_refresh(tcp_sk(sk));
3654 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3655 	}
3656 }
3657 
3658 /* Initiate keepalive or window probe from timer. */
3659 int tcp_write_wakeup(struct sock *sk, int mib)
3660 {
3661 	struct tcp_sock *tp = tcp_sk(sk);
3662 	struct sk_buff *skb;
3663 
3664 	if (sk->sk_state == TCP_CLOSE)
3665 		return -1;
3666 
3667 	skb = tcp_send_head(sk);
3668 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3669 		int err;
3670 		unsigned int mss = tcp_current_mss(sk);
3671 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3672 
3673 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3674 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3675 
3676 		/* We are probing the opening of a window
3677 		 * but the window size is != 0
3678 		 * must have been a result SWS avoidance ( sender )
3679 		 */
3680 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3681 		    skb->len > mss) {
3682 			seg_size = min(seg_size, mss);
3683 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3684 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3685 					 skb, seg_size, mss, GFP_ATOMIC))
3686 				return -1;
3687 		} else if (!tcp_skb_pcount(skb))
3688 			tcp_set_skb_tso_segs(skb, mss);
3689 
3690 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3691 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3692 		if (!err)
3693 			tcp_event_new_data_sent(sk, skb);
3694 		return err;
3695 	} else {
3696 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3697 			tcp_xmit_probe_skb(sk, 1, mib);
3698 		return tcp_xmit_probe_skb(sk, 0, mib);
3699 	}
3700 }
3701 
3702 /* A window probe timeout has occurred.  If window is not closed send
3703  * a partial packet else a zero probe.
3704  */
3705 void tcp_send_probe0(struct sock *sk)
3706 {
3707 	struct inet_connection_sock *icsk = inet_csk(sk);
3708 	struct tcp_sock *tp = tcp_sk(sk);
3709 	struct net *net = sock_net(sk);
3710 	unsigned long probe_max;
3711 	int err;
3712 
3713 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3714 
3715 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3716 		/* Cancel probe timer, if it is not required. */
3717 		icsk->icsk_probes_out = 0;
3718 		icsk->icsk_backoff = 0;
3719 		return;
3720 	}
3721 
3722 	if (err <= 0) {
3723 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3724 			icsk->icsk_backoff++;
3725 		icsk->icsk_probes_out++;
3726 		probe_max = TCP_RTO_MAX;
3727 	} else {
3728 		/* If packet was not sent due to local congestion,
3729 		 * do not backoff and do not remember icsk_probes_out.
3730 		 * Let local senders to fight for local resources.
3731 		 *
3732 		 * Use accumulated backoff yet.
3733 		 */
3734 		if (!icsk->icsk_probes_out)
3735 			icsk->icsk_probes_out = 1;
3736 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3737 	}
3738 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3739 				  tcp_probe0_when(sk, probe_max),
3740 				  TCP_RTO_MAX);
3741 }
3742 
3743 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3744 {
3745 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3746 	struct flowi fl;
3747 	int res;
3748 
3749 	tcp_rsk(req)->txhash = net_tx_rndhash();
3750 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3751 	if (!res) {
3752 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3753 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3754 		if (unlikely(tcp_passive_fastopen(sk)))
3755 			tcp_sk(sk)->total_retrans++;
3756 		trace_tcp_retransmit_synack(sk, req);
3757 	}
3758 	return res;
3759 }
3760 EXPORT_SYMBOL(tcp_rtx_synack);
3761