xref: /openbmc/linux/net/ipv4/tcp_output.c (revision cf9441ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 
42 #include <linux/compiler.h>
43 #include <linux/gfp.h>
44 #include <linux/module.h>
45 #include <linux/static_key.h>
46 
47 #include <trace/events/tcp.h>
48 
49 /* Refresh clocks of a TCP socket,
50  * ensuring monotically increasing values.
51  */
52 void tcp_mstamp_refresh(struct tcp_sock *tp)
53 {
54 	u64 val = tcp_clock_ns();
55 
56 	tp->tcp_clock_cache = val;
57 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
58 }
59 
60 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
61 			   int push_one, gfp_t gfp);
62 
63 /* Account for new data that has been sent to the network. */
64 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
65 {
66 	struct inet_connection_sock *icsk = inet_csk(sk);
67 	struct tcp_sock *tp = tcp_sk(sk);
68 	unsigned int prior_packets = tp->packets_out;
69 
70 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
71 
72 	__skb_unlink(skb, &sk->sk_write_queue);
73 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
74 
75 	tp->packets_out += tcp_skb_pcount(skb);
76 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
77 		tcp_rearm_rto(sk);
78 
79 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
80 		      tcp_skb_pcount(skb));
81 }
82 
83 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
84  * window scaling factor due to loss of precision.
85  * If window has been shrunk, what should we make? It is not clear at all.
86  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
87  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
88  * invalid. OK, let's make this for now:
89  */
90 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
91 {
92 	const struct tcp_sock *tp = tcp_sk(sk);
93 
94 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
95 	    (tp->rx_opt.wscale_ok &&
96 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
97 		return tp->snd_nxt;
98 	else
99 		return tcp_wnd_end(tp);
100 }
101 
102 /* Calculate mss to advertise in SYN segment.
103  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
104  *
105  * 1. It is independent of path mtu.
106  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
107  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
108  *    attached devices, because some buggy hosts are confused by
109  *    large MSS.
110  * 4. We do not make 3, we advertise MSS, calculated from first
111  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
112  *    This may be overridden via information stored in routing table.
113  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
114  *    probably even Jumbo".
115  */
116 static __u16 tcp_advertise_mss(struct sock *sk)
117 {
118 	struct tcp_sock *tp = tcp_sk(sk);
119 	const struct dst_entry *dst = __sk_dst_get(sk);
120 	int mss = tp->advmss;
121 
122 	if (dst) {
123 		unsigned int metric = dst_metric_advmss(dst);
124 
125 		if (metric < mss) {
126 			mss = metric;
127 			tp->advmss = mss;
128 		}
129 	}
130 
131 	return (__u16)mss;
132 }
133 
134 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
135  * This is the first part of cwnd validation mechanism.
136  */
137 void tcp_cwnd_restart(struct sock *sk, s32 delta)
138 {
139 	struct tcp_sock *tp = tcp_sk(sk);
140 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
141 	u32 cwnd = tp->snd_cwnd;
142 
143 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
144 
145 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
146 	restart_cwnd = min(restart_cwnd, cwnd);
147 
148 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
149 		cwnd >>= 1;
150 	tp->snd_cwnd = max(cwnd, restart_cwnd);
151 	tp->snd_cwnd_stamp = tcp_jiffies32;
152 	tp->snd_cwnd_used = 0;
153 }
154 
155 /* Congestion state accounting after a packet has been sent. */
156 static void tcp_event_data_sent(struct tcp_sock *tp,
157 				struct sock *sk)
158 {
159 	struct inet_connection_sock *icsk = inet_csk(sk);
160 	const u32 now = tcp_jiffies32;
161 
162 	if (tcp_packets_in_flight(tp) == 0)
163 		tcp_ca_event(sk, CA_EVENT_TX_START);
164 
165 	/* If this is the first data packet sent in response to the
166 	 * previous received data,
167 	 * and it is a reply for ato after last received packet,
168 	 * increase pingpong count.
169 	 */
170 	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
171 	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
172 		inet_csk_inc_pingpong_cnt(sk);
173 
174 	tp->lsndtime = now;
175 }
176 
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
179 				      u32 rcv_nxt)
180 {
181 	struct tcp_sock *tp = tcp_sk(sk);
182 
183 	if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
184 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
185 			      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
186 		tp->compressed_ack = TCP_FASTRETRANS_THRESH;
187 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
188 			__sock_put(sk);
189 	}
190 
191 	if (unlikely(rcv_nxt != tp->rcv_nxt))
192 		return;  /* Special ACK sent by DCTCP to reflect ECN */
193 	tcp_dec_quickack_mode(sk, pkts);
194 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
195 }
196 
197 /* Determine a window scaling and initial window to offer.
198  * Based on the assumption that the given amount of space
199  * will be offered. Store the results in the tp structure.
200  * NOTE: for smooth operation initial space offering should
201  * be a multiple of mss if possible. We assume here that mss >= 1.
202  * This MUST be enforced by all callers.
203  */
204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
205 			       __u32 *rcv_wnd, __u32 *window_clamp,
206 			       int wscale_ok, __u8 *rcv_wscale,
207 			       __u32 init_rcv_wnd)
208 {
209 	unsigned int space = (__space < 0 ? 0 : __space);
210 
211 	/* If no clamp set the clamp to the max possible scaled window */
212 	if (*window_clamp == 0)
213 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
214 	space = min(*window_clamp, space);
215 
216 	/* Quantize space offering to a multiple of mss if possible. */
217 	if (space > mss)
218 		space = rounddown(space, mss);
219 
220 	/* NOTE: offering an initial window larger than 32767
221 	 * will break some buggy TCP stacks. If the admin tells us
222 	 * it is likely we could be speaking with such a buggy stack
223 	 * we will truncate our initial window offering to 32K-1
224 	 * unless the remote has sent us a window scaling option,
225 	 * which we interpret as a sign the remote TCP is not
226 	 * misinterpreting the window field as a signed quantity.
227 	 */
228 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
229 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
230 	else
231 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
232 
233 	if (init_rcv_wnd)
234 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
235 
236 	*rcv_wscale = 0;
237 	if (wscale_ok) {
238 		/* Set window scaling on max possible window */
239 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
240 		space = max_t(u32, space, sysctl_rmem_max);
241 		space = min_t(u32, space, *window_clamp);
242 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
243 				      0, TCP_MAX_WSCALE);
244 	}
245 	/* Set the clamp no higher than max representable value */
246 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
247 }
248 EXPORT_SYMBOL(tcp_select_initial_window);
249 
250 /* Chose a new window to advertise, update state in tcp_sock for the
251  * socket, and return result with RFC1323 scaling applied.  The return
252  * value can be stuffed directly into th->window for an outgoing
253  * frame.
254  */
255 static u16 tcp_select_window(struct sock *sk)
256 {
257 	struct tcp_sock *tp = tcp_sk(sk);
258 	u32 old_win = tp->rcv_wnd;
259 	u32 cur_win = tcp_receive_window(tp);
260 	u32 new_win = __tcp_select_window(sk);
261 
262 	/* Never shrink the offered window */
263 	if (new_win < cur_win) {
264 		/* Danger Will Robinson!
265 		 * Don't update rcv_wup/rcv_wnd here or else
266 		 * we will not be able to advertise a zero
267 		 * window in time.  --DaveM
268 		 *
269 		 * Relax Will Robinson.
270 		 */
271 		if (new_win == 0)
272 			NET_INC_STATS(sock_net(sk),
273 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
274 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
275 	}
276 	tp->rcv_wnd = new_win;
277 	tp->rcv_wup = tp->rcv_nxt;
278 
279 	/* Make sure we do not exceed the maximum possible
280 	 * scaled window.
281 	 */
282 	if (!tp->rx_opt.rcv_wscale &&
283 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
284 		new_win = min(new_win, MAX_TCP_WINDOW);
285 	else
286 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
287 
288 	/* RFC1323 scaling applied */
289 	new_win >>= tp->rx_opt.rcv_wscale;
290 
291 	/* If we advertise zero window, disable fast path. */
292 	if (new_win == 0) {
293 		tp->pred_flags = 0;
294 		if (old_win)
295 			NET_INC_STATS(sock_net(sk),
296 				      LINUX_MIB_TCPTOZEROWINDOWADV);
297 	} else if (old_win == 0) {
298 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
299 	}
300 
301 	return new_win;
302 }
303 
304 /* Packet ECN state for a SYN-ACK */
305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
306 {
307 	const struct tcp_sock *tp = tcp_sk(sk);
308 
309 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
310 	if (!(tp->ecn_flags & TCP_ECN_OK))
311 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
312 	else if (tcp_ca_needs_ecn(sk) ||
313 		 tcp_bpf_ca_needs_ecn(sk))
314 		INET_ECN_xmit(sk);
315 }
316 
317 /* Packet ECN state for a SYN.  */
318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
319 {
320 	struct tcp_sock *tp = tcp_sk(sk);
321 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
322 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
323 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
324 
325 	if (!use_ecn) {
326 		const struct dst_entry *dst = __sk_dst_get(sk);
327 
328 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
329 			use_ecn = true;
330 	}
331 
332 	tp->ecn_flags = 0;
333 
334 	if (use_ecn) {
335 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 		tp->ecn_flags = TCP_ECN_OK;
337 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
338 			INET_ECN_xmit(sk);
339 	}
340 }
341 
342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
343 {
344 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
345 		/* tp->ecn_flags are cleared at a later point in time when
346 		 * SYN ACK is ultimatively being received.
347 		 */
348 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
349 }
350 
351 static void
352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
353 {
354 	if (inet_rsk(req)->ecn_ok)
355 		th->ece = 1;
356 }
357 
358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
359  * be sent.
360  */
361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
362 			 struct tcphdr *th, int tcp_header_len)
363 {
364 	struct tcp_sock *tp = tcp_sk(sk);
365 
366 	if (tp->ecn_flags & TCP_ECN_OK) {
367 		/* Not-retransmitted data segment: set ECT and inject CWR. */
368 		if (skb->len != tcp_header_len &&
369 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
370 			INET_ECN_xmit(sk);
371 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
372 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
373 				th->cwr = 1;
374 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
375 			}
376 		} else if (!tcp_ca_needs_ecn(sk)) {
377 			/* ACK or retransmitted segment: clear ECT|CE */
378 			INET_ECN_dontxmit(sk);
379 		}
380 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
381 			th->ece = 1;
382 	}
383 }
384 
385 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
386  * auto increment end seqno.
387  */
388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
389 {
390 	skb->ip_summed = CHECKSUM_PARTIAL;
391 
392 	TCP_SKB_CB(skb)->tcp_flags = flags;
393 	TCP_SKB_CB(skb)->sacked = 0;
394 
395 	tcp_skb_pcount_set(skb, 1);
396 
397 	TCP_SKB_CB(skb)->seq = seq;
398 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
399 		seq++;
400 	TCP_SKB_CB(skb)->end_seq = seq;
401 }
402 
403 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
404 {
405 	return tp->snd_una != tp->snd_up;
406 }
407 
408 #define OPTION_SACK_ADVERTISE	(1 << 0)
409 #define OPTION_TS		(1 << 1)
410 #define OPTION_MD5		(1 << 2)
411 #define OPTION_WSCALE		(1 << 3)
412 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
413 #define OPTION_SMC		(1 << 9)
414 
415 static void smc_options_write(__be32 *ptr, u16 *options)
416 {
417 #if IS_ENABLED(CONFIG_SMC)
418 	if (static_branch_unlikely(&tcp_have_smc)) {
419 		if (unlikely(OPTION_SMC & *options)) {
420 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
421 				       (TCPOPT_NOP  << 16) |
422 				       (TCPOPT_EXP <<  8) |
423 				       (TCPOLEN_EXP_SMC_BASE));
424 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
425 		}
426 	}
427 #endif
428 }
429 
430 struct tcp_out_options {
431 	u16 options;		/* bit field of OPTION_* */
432 	u16 mss;		/* 0 to disable */
433 	u8 ws;			/* window scale, 0 to disable */
434 	u8 num_sack_blocks;	/* number of SACK blocks to include */
435 	u8 hash_size;		/* bytes in hash_location */
436 	__u8 *hash_location;	/* temporary pointer, overloaded */
437 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
438 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
439 };
440 
441 /* Write previously computed TCP options to the packet.
442  *
443  * Beware: Something in the Internet is very sensitive to the ordering of
444  * TCP options, we learned this through the hard way, so be careful here.
445  * Luckily we can at least blame others for their non-compliance but from
446  * inter-operability perspective it seems that we're somewhat stuck with
447  * the ordering which we have been using if we want to keep working with
448  * those broken things (not that it currently hurts anybody as there isn't
449  * particular reason why the ordering would need to be changed).
450  *
451  * At least SACK_PERM as the first option is known to lead to a disaster
452  * (but it may well be that other scenarios fail similarly).
453  */
454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
455 			      struct tcp_out_options *opts)
456 {
457 	u16 options = opts->options;	/* mungable copy */
458 
459 	if (unlikely(OPTION_MD5 & options)) {
460 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
461 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
462 		/* overload cookie hash location */
463 		opts->hash_location = (__u8 *)ptr;
464 		ptr += 4;
465 	}
466 
467 	if (unlikely(opts->mss)) {
468 		*ptr++ = htonl((TCPOPT_MSS << 24) |
469 			       (TCPOLEN_MSS << 16) |
470 			       opts->mss);
471 	}
472 
473 	if (likely(OPTION_TS & options)) {
474 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
475 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
476 				       (TCPOLEN_SACK_PERM << 16) |
477 				       (TCPOPT_TIMESTAMP << 8) |
478 				       TCPOLEN_TIMESTAMP);
479 			options &= ~OPTION_SACK_ADVERTISE;
480 		} else {
481 			*ptr++ = htonl((TCPOPT_NOP << 24) |
482 				       (TCPOPT_NOP << 16) |
483 				       (TCPOPT_TIMESTAMP << 8) |
484 				       TCPOLEN_TIMESTAMP);
485 		}
486 		*ptr++ = htonl(opts->tsval);
487 		*ptr++ = htonl(opts->tsecr);
488 	}
489 
490 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
491 		*ptr++ = htonl((TCPOPT_NOP << 24) |
492 			       (TCPOPT_NOP << 16) |
493 			       (TCPOPT_SACK_PERM << 8) |
494 			       TCPOLEN_SACK_PERM);
495 	}
496 
497 	if (unlikely(OPTION_WSCALE & options)) {
498 		*ptr++ = htonl((TCPOPT_NOP << 24) |
499 			       (TCPOPT_WINDOW << 16) |
500 			       (TCPOLEN_WINDOW << 8) |
501 			       opts->ws);
502 	}
503 
504 	if (unlikely(opts->num_sack_blocks)) {
505 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
506 			tp->duplicate_sack : tp->selective_acks;
507 		int this_sack;
508 
509 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
510 			       (TCPOPT_NOP  << 16) |
511 			       (TCPOPT_SACK <<  8) |
512 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
513 						     TCPOLEN_SACK_PERBLOCK)));
514 
515 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
516 		     ++this_sack) {
517 			*ptr++ = htonl(sp[this_sack].start_seq);
518 			*ptr++ = htonl(sp[this_sack].end_seq);
519 		}
520 
521 		tp->rx_opt.dsack = 0;
522 	}
523 
524 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
525 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
526 		u8 *p = (u8 *)ptr;
527 		u32 len; /* Fast Open option length */
528 
529 		if (foc->exp) {
530 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
531 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
532 				     TCPOPT_FASTOPEN_MAGIC);
533 			p += TCPOLEN_EXP_FASTOPEN_BASE;
534 		} else {
535 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
536 			*p++ = TCPOPT_FASTOPEN;
537 			*p++ = len;
538 		}
539 
540 		memcpy(p, foc->val, foc->len);
541 		if ((len & 3) == 2) {
542 			p[foc->len] = TCPOPT_NOP;
543 			p[foc->len + 1] = TCPOPT_NOP;
544 		}
545 		ptr += (len + 3) >> 2;
546 	}
547 
548 	smc_options_write(ptr, &options);
549 }
550 
551 static void smc_set_option(const struct tcp_sock *tp,
552 			   struct tcp_out_options *opts,
553 			   unsigned int *remaining)
554 {
555 #if IS_ENABLED(CONFIG_SMC)
556 	if (static_branch_unlikely(&tcp_have_smc)) {
557 		if (tp->syn_smc) {
558 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
559 				opts->options |= OPTION_SMC;
560 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
561 			}
562 		}
563 	}
564 #endif
565 }
566 
567 static void smc_set_option_cond(const struct tcp_sock *tp,
568 				const struct inet_request_sock *ireq,
569 				struct tcp_out_options *opts,
570 				unsigned int *remaining)
571 {
572 #if IS_ENABLED(CONFIG_SMC)
573 	if (static_branch_unlikely(&tcp_have_smc)) {
574 		if (tp->syn_smc && ireq->smc_ok) {
575 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
576 				opts->options |= OPTION_SMC;
577 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
578 			}
579 		}
580 	}
581 #endif
582 }
583 
584 /* Compute TCP options for SYN packets. This is not the final
585  * network wire format yet.
586  */
587 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
588 				struct tcp_out_options *opts,
589 				struct tcp_md5sig_key **md5)
590 {
591 	struct tcp_sock *tp = tcp_sk(sk);
592 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
593 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
594 
595 	*md5 = NULL;
596 #ifdef CONFIG_TCP_MD5SIG
597 	if (static_branch_unlikely(&tcp_md5_needed) &&
598 	    rcu_access_pointer(tp->md5sig_info)) {
599 		*md5 = tp->af_specific->md5_lookup(sk, sk);
600 		if (*md5) {
601 			opts->options |= OPTION_MD5;
602 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
603 		}
604 	}
605 #endif
606 
607 	/* We always get an MSS option.  The option bytes which will be seen in
608 	 * normal data packets should timestamps be used, must be in the MSS
609 	 * advertised.  But we subtract them from tp->mss_cache so that
610 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
611 	 * fact here if necessary.  If we don't do this correctly, as a
612 	 * receiver we won't recognize data packets as being full sized when we
613 	 * should, and thus we won't abide by the delayed ACK rules correctly.
614 	 * SACKs don't matter, we never delay an ACK when we have any of those
615 	 * going out.  */
616 	opts->mss = tcp_advertise_mss(sk);
617 	remaining -= TCPOLEN_MSS_ALIGNED;
618 
619 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
620 		opts->options |= OPTION_TS;
621 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
622 		opts->tsecr = tp->rx_opt.ts_recent;
623 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
624 	}
625 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
626 		opts->ws = tp->rx_opt.rcv_wscale;
627 		opts->options |= OPTION_WSCALE;
628 		remaining -= TCPOLEN_WSCALE_ALIGNED;
629 	}
630 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
631 		opts->options |= OPTION_SACK_ADVERTISE;
632 		if (unlikely(!(OPTION_TS & opts->options)))
633 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
634 	}
635 
636 	if (fastopen && fastopen->cookie.len >= 0) {
637 		u32 need = fastopen->cookie.len;
638 
639 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
640 					       TCPOLEN_FASTOPEN_BASE;
641 		need = (need + 3) & ~3U;  /* Align to 32 bits */
642 		if (remaining >= need) {
643 			opts->options |= OPTION_FAST_OPEN_COOKIE;
644 			opts->fastopen_cookie = &fastopen->cookie;
645 			remaining -= need;
646 			tp->syn_fastopen = 1;
647 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
648 		}
649 	}
650 
651 	smc_set_option(tp, opts, &remaining);
652 
653 	return MAX_TCP_OPTION_SPACE - remaining;
654 }
655 
656 /* Set up TCP options for SYN-ACKs. */
657 static unsigned int tcp_synack_options(const struct sock *sk,
658 				       struct request_sock *req,
659 				       unsigned int mss, struct sk_buff *skb,
660 				       struct tcp_out_options *opts,
661 				       const struct tcp_md5sig_key *md5,
662 				       struct tcp_fastopen_cookie *foc)
663 {
664 	struct inet_request_sock *ireq = inet_rsk(req);
665 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
666 
667 #ifdef CONFIG_TCP_MD5SIG
668 	if (md5) {
669 		opts->options |= OPTION_MD5;
670 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
671 
672 		/* We can't fit any SACK blocks in a packet with MD5 + TS
673 		 * options. There was discussion about disabling SACK
674 		 * rather than TS in order to fit in better with old,
675 		 * buggy kernels, but that was deemed to be unnecessary.
676 		 */
677 		ireq->tstamp_ok &= !ireq->sack_ok;
678 	}
679 #endif
680 
681 	/* We always send an MSS option. */
682 	opts->mss = mss;
683 	remaining -= TCPOLEN_MSS_ALIGNED;
684 
685 	if (likely(ireq->wscale_ok)) {
686 		opts->ws = ireq->rcv_wscale;
687 		opts->options |= OPTION_WSCALE;
688 		remaining -= TCPOLEN_WSCALE_ALIGNED;
689 	}
690 	if (likely(ireq->tstamp_ok)) {
691 		opts->options |= OPTION_TS;
692 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
693 		opts->tsecr = req->ts_recent;
694 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
695 	}
696 	if (likely(ireq->sack_ok)) {
697 		opts->options |= OPTION_SACK_ADVERTISE;
698 		if (unlikely(!ireq->tstamp_ok))
699 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
700 	}
701 	if (foc != NULL && foc->len >= 0) {
702 		u32 need = foc->len;
703 
704 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
705 				   TCPOLEN_FASTOPEN_BASE;
706 		need = (need + 3) & ~3U;  /* Align to 32 bits */
707 		if (remaining >= need) {
708 			opts->options |= OPTION_FAST_OPEN_COOKIE;
709 			opts->fastopen_cookie = foc;
710 			remaining -= need;
711 		}
712 	}
713 
714 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
715 
716 	return MAX_TCP_OPTION_SPACE - remaining;
717 }
718 
719 /* Compute TCP options for ESTABLISHED sockets. This is not the
720  * final wire format yet.
721  */
722 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
723 					struct tcp_out_options *opts,
724 					struct tcp_md5sig_key **md5)
725 {
726 	struct tcp_sock *tp = tcp_sk(sk);
727 	unsigned int size = 0;
728 	unsigned int eff_sacks;
729 
730 	opts->options = 0;
731 
732 	*md5 = NULL;
733 #ifdef CONFIG_TCP_MD5SIG
734 	if (static_branch_unlikely(&tcp_md5_needed) &&
735 	    rcu_access_pointer(tp->md5sig_info)) {
736 		*md5 = tp->af_specific->md5_lookup(sk, sk);
737 		if (*md5) {
738 			opts->options |= OPTION_MD5;
739 			size += TCPOLEN_MD5SIG_ALIGNED;
740 		}
741 	}
742 #endif
743 
744 	if (likely(tp->rx_opt.tstamp_ok)) {
745 		opts->options |= OPTION_TS;
746 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
747 		opts->tsecr = tp->rx_opt.ts_recent;
748 		size += TCPOLEN_TSTAMP_ALIGNED;
749 	}
750 
751 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
752 	if (unlikely(eff_sacks)) {
753 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
754 		opts->num_sack_blocks =
755 			min_t(unsigned int, eff_sacks,
756 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
757 			      TCPOLEN_SACK_PERBLOCK);
758 		size += TCPOLEN_SACK_BASE_ALIGNED +
759 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
760 	}
761 
762 	return size;
763 }
764 
765 
766 /* TCP SMALL QUEUES (TSQ)
767  *
768  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
769  * to reduce RTT and bufferbloat.
770  * We do this using a special skb destructor (tcp_wfree).
771  *
772  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
773  * needs to be reallocated in a driver.
774  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
775  *
776  * Since transmit from skb destructor is forbidden, we use a tasklet
777  * to process all sockets that eventually need to send more skbs.
778  * We use one tasklet per cpu, with its own queue of sockets.
779  */
780 struct tsq_tasklet {
781 	struct tasklet_struct	tasklet;
782 	struct list_head	head; /* queue of tcp sockets */
783 };
784 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
785 
786 static void tcp_tsq_write(struct sock *sk)
787 {
788 	if ((1 << sk->sk_state) &
789 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
790 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
791 		struct tcp_sock *tp = tcp_sk(sk);
792 
793 		if (tp->lost_out > tp->retrans_out &&
794 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
795 			tcp_mstamp_refresh(tp);
796 			tcp_xmit_retransmit_queue(sk);
797 		}
798 
799 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
800 			       0, GFP_ATOMIC);
801 	}
802 }
803 
804 static void tcp_tsq_handler(struct sock *sk)
805 {
806 	bh_lock_sock(sk);
807 	if (!sock_owned_by_user(sk))
808 		tcp_tsq_write(sk);
809 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
810 		sock_hold(sk);
811 	bh_unlock_sock(sk);
812 }
813 /*
814  * One tasklet per cpu tries to send more skbs.
815  * We run in tasklet context but need to disable irqs when
816  * transferring tsq->head because tcp_wfree() might
817  * interrupt us (non NAPI drivers)
818  */
819 static void tcp_tasklet_func(unsigned long data)
820 {
821 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
822 	LIST_HEAD(list);
823 	unsigned long flags;
824 	struct list_head *q, *n;
825 	struct tcp_sock *tp;
826 	struct sock *sk;
827 
828 	local_irq_save(flags);
829 	list_splice_init(&tsq->head, &list);
830 	local_irq_restore(flags);
831 
832 	list_for_each_safe(q, n, &list) {
833 		tp = list_entry(q, struct tcp_sock, tsq_node);
834 		list_del(&tp->tsq_node);
835 
836 		sk = (struct sock *)tp;
837 		smp_mb__before_atomic();
838 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
839 
840 		tcp_tsq_handler(sk);
841 		sk_free(sk);
842 	}
843 }
844 
845 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
846 			  TCPF_WRITE_TIMER_DEFERRED |	\
847 			  TCPF_DELACK_TIMER_DEFERRED |	\
848 			  TCPF_MTU_REDUCED_DEFERRED)
849 /**
850  * tcp_release_cb - tcp release_sock() callback
851  * @sk: socket
852  *
853  * called from release_sock() to perform protocol dependent
854  * actions before socket release.
855  */
856 void tcp_release_cb(struct sock *sk)
857 {
858 	unsigned long flags, nflags;
859 
860 	/* perform an atomic operation only if at least one flag is set */
861 	do {
862 		flags = sk->sk_tsq_flags;
863 		if (!(flags & TCP_DEFERRED_ALL))
864 			return;
865 		nflags = flags & ~TCP_DEFERRED_ALL;
866 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
867 
868 	if (flags & TCPF_TSQ_DEFERRED) {
869 		tcp_tsq_write(sk);
870 		__sock_put(sk);
871 	}
872 	/* Here begins the tricky part :
873 	 * We are called from release_sock() with :
874 	 * 1) BH disabled
875 	 * 2) sk_lock.slock spinlock held
876 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
877 	 *
878 	 * But following code is meant to be called from BH handlers,
879 	 * so we should keep BH disabled, but early release socket ownership
880 	 */
881 	sock_release_ownership(sk);
882 
883 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
884 		tcp_write_timer_handler(sk);
885 		__sock_put(sk);
886 	}
887 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
888 		tcp_delack_timer_handler(sk);
889 		__sock_put(sk);
890 	}
891 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
892 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
893 		__sock_put(sk);
894 	}
895 }
896 EXPORT_SYMBOL(tcp_release_cb);
897 
898 void __init tcp_tasklet_init(void)
899 {
900 	int i;
901 
902 	for_each_possible_cpu(i) {
903 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
904 
905 		INIT_LIST_HEAD(&tsq->head);
906 		tasklet_init(&tsq->tasklet,
907 			     tcp_tasklet_func,
908 			     (unsigned long)tsq);
909 	}
910 }
911 
912 /*
913  * Write buffer destructor automatically called from kfree_skb.
914  * We can't xmit new skbs from this context, as we might already
915  * hold qdisc lock.
916  */
917 void tcp_wfree(struct sk_buff *skb)
918 {
919 	struct sock *sk = skb->sk;
920 	struct tcp_sock *tp = tcp_sk(sk);
921 	unsigned long flags, nval, oval;
922 
923 	/* Keep one reference on sk_wmem_alloc.
924 	 * Will be released by sk_free() from here or tcp_tasklet_func()
925 	 */
926 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
927 
928 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
929 	 * Wait until our queues (qdisc + devices) are drained.
930 	 * This gives :
931 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
932 	 * - chance for incoming ACK (processed by another cpu maybe)
933 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
934 	 */
935 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
936 		goto out;
937 
938 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
939 		struct tsq_tasklet *tsq;
940 		bool empty;
941 
942 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
943 			goto out;
944 
945 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
946 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
947 		if (nval != oval)
948 			continue;
949 
950 		/* queue this socket to tasklet queue */
951 		local_irq_save(flags);
952 		tsq = this_cpu_ptr(&tsq_tasklet);
953 		empty = list_empty(&tsq->head);
954 		list_add(&tp->tsq_node, &tsq->head);
955 		if (empty)
956 			tasklet_schedule(&tsq->tasklet);
957 		local_irq_restore(flags);
958 		return;
959 	}
960 out:
961 	sk_free(sk);
962 }
963 
964 /* Note: Called under soft irq.
965  * We can call TCP stack right away, unless socket is owned by user.
966  */
967 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
968 {
969 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
970 	struct sock *sk = (struct sock *)tp;
971 
972 	tcp_tsq_handler(sk);
973 	sock_put(sk);
974 
975 	return HRTIMER_NORESTART;
976 }
977 
978 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
979 				      u64 prior_wstamp)
980 {
981 	struct tcp_sock *tp = tcp_sk(sk);
982 
983 	if (sk->sk_pacing_status != SK_PACING_NONE) {
984 		unsigned long rate = sk->sk_pacing_rate;
985 
986 		/* Original sch_fq does not pace first 10 MSS
987 		 * Note that tp->data_segs_out overflows after 2^32 packets,
988 		 * this is a minor annoyance.
989 		 */
990 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
991 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
992 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
993 
994 			/* take into account OS jitter */
995 			len_ns -= min_t(u64, len_ns / 2, credit);
996 			tp->tcp_wstamp_ns += len_ns;
997 		}
998 	}
999 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1000 }
1001 
1002 /* This routine actually transmits TCP packets queued in by
1003  * tcp_do_sendmsg().  This is used by both the initial
1004  * transmission and possible later retransmissions.
1005  * All SKB's seen here are completely headerless.  It is our
1006  * job to build the TCP header, and pass the packet down to
1007  * IP so it can do the same plus pass the packet off to the
1008  * device.
1009  *
1010  * We are working here with either a clone of the original
1011  * SKB, or a fresh unique copy made by the retransmit engine.
1012  */
1013 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1014 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1015 {
1016 	const struct inet_connection_sock *icsk = inet_csk(sk);
1017 	struct inet_sock *inet;
1018 	struct tcp_sock *tp;
1019 	struct tcp_skb_cb *tcb;
1020 	struct tcp_out_options opts;
1021 	unsigned int tcp_options_size, tcp_header_size;
1022 	struct sk_buff *oskb = NULL;
1023 	struct tcp_md5sig_key *md5;
1024 	struct tcphdr *th;
1025 	u64 prior_wstamp;
1026 	int err;
1027 
1028 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1029 	tp = tcp_sk(sk);
1030 	prior_wstamp = tp->tcp_wstamp_ns;
1031 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1032 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1033 	if (clone_it) {
1034 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1035 			- tp->snd_una;
1036 		oskb = skb;
1037 
1038 		tcp_skb_tsorted_save(oskb) {
1039 			if (unlikely(skb_cloned(oskb)))
1040 				skb = pskb_copy(oskb, gfp_mask);
1041 			else
1042 				skb = skb_clone(oskb, gfp_mask);
1043 		} tcp_skb_tsorted_restore(oskb);
1044 
1045 		if (unlikely(!skb))
1046 			return -ENOBUFS;
1047 	}
1048 
1049 	inet = inet_sk(sk);
1050 	tcb = TCP_SKB_CB(skb);
1051 	memset(&opts, 0, sizeof(opts));
1052 
1053 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1054 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1055 	else
1056 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1057 							   &md5);
1058 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1059 
1060 	/* if no packet is in qdisc/device queue, then allow XPS to select
1061 	 * another queue. We can be called from tcp_tsq_handler()
1062 	 * which holds one reference to sk.
1063 	 *
1064 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1065 	 * One way to get this would be to set skb->truesize = 2 on them.
1066 	 */
1067 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1068 
1069 	/* If we had to use memory reserve to allocate this skb,
1070 	 * this might cause drops if packet is looped back :
1071 	 * Other socket might not have SOCK_MEMALLOC.
1072 	 * Packets not looped back do not care about pfmemalloc.
1073 	 */
1074 	skb->pfmemalloc = 0;
1075 
1076 	skb_push(skb, tcp_header_size);
1077 	skb_reset_transport_header(skb);
1078 
1079 	skb_orphan(skb);
1080 	skb->sk = sk;
1081 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1082 	skb_set_hash_from_sk(skb, sk);
1083 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1084 
1085 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1086 
1087 	/* Build TCP header and checksum it. */
1088 	th = (struct tcphdr *)skb->data;
1089 	th->source		= inet->inet_sport;
1090 	th->dest		= inet->inet_dport;
1091 	th->seq			= htonl(tcb->seq);
1092 	th->ack_seq		= htonl(rcv_nxt);
1093 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1094 					tcb->tcp_flags);
1095 
1096 	th->check		= 0;
1097 	th->urg_ptr		= 0;
1098 
1099 	/* The urg_mode check is necessary during a below snd_una win probe */
1100 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1101 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1102 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1103 			th->urg = 1;
1104 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1105 			th->urg_ptr = htons(0xFFFF);
1106 			th->urg = 1;
1107 		}
1108 	}
1109 
1110 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1111 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1112 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1113 		th->window      = htons(tcp_select_window(sk));
1114 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1115 	} else {
1116 		/* RFC1323: The window in SYN & SYN/ACK segments
1117 		 * is never scaled.
1118 		 */
1119 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1120 	}
1121 #ifdef CONFIG_TCP_MD5SIG
1122 	/* Calculate the MD5 hash, as we have all we need now */
1123 	if (md5) {
1124 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1125 		tp->af_specific->calc_md5_hash(opts.hash_location,
1126 					       md5, sk, skb);
1127 	}
1128 #endif
1129 
1130 	icsk->icsk_af_ops->send_check(sk, skb);
1131 
1132 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1133 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1134 
1135 	if (skb->len != tcp_header_size) {
1136 		tcp_event_data_sent(tp, sk);
1137 		tp->data_segs_out += tcp_skb_pcount(skb);
1138 		tp->bytes_sent += skb->len - tcp_header_size;
1139 	}
1140 
1141 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1142 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1143 			      tcp_skb_pcount(skb));
1144 
1145 	tp->segs_out += tcp_skb_pcount(skb);
1146 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1147 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1148 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1149 
1150 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1151 
1152 	/* Cleanup our debris for IP stacks */
1153 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1154 			       sizeof(struct inet6_skb_parm)));
1155 
1156 	tcp_add_tx_delay(skb, tp);
1157 
1158 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1159 
1160 	if (unlikely(err > 0)) {
1161 		tcp_enter_cwr(sk);
1162 		err = net_xmit_eval(err);
1163 	}
1164 	if (!err && oskb) {
1165 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1166 		tcp_rate_skb_sent(sk, oskb);
1167 	}
1168 	return err;
1169 }
1170 
1171 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1172 			    gfp_t gfp_mask)
1173 {
1174 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1175 				  tcp_sk(sk)->rcv_nxt);
1176 }
1177 
1178 /* This routine just queues the buffer for sending.
1179  *
1180  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1181  * otherwise socket can stall.
1182  */
1183 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1184 {
1185 	struct tcp_sock *tp = tcp_sk(sk);
1186 
1187 	/* Advance write_seq and place onto the write_queue. */
1188 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1189 	__skb_header_release(skb);
1190 	tcp_add_write_queue_tail(sk, skb);
1191 	sk->sk_wmem_queued += skb->truesize;
1192 	sk_mem_charge(sk, skb->truesize);
1193 }
1194 
1195 /* Initialize TSO segments for a packet. */
1196 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1197 {
1198 	if (skb->len <= mss_now) {
1199 		/* Avoid the costly divide in the normal
1200 		 * non-TSO case.
1201 		 */
1202 		tcp_skb_pcount_set(skb, 1);
1203 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1204 	} else {
1205 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1206 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1207 	}
1208 }
1209 
1210 /* Pcount in the middle of the write queue got changed, we need to do various
1211  * tweaks to fix counters
1212  */
1213 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1214 {
1215 	struct tcp_sock *tp = tcp_sk(sk);
1216 
1217 	tp->packets_out -= decr;
1218 
1219 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1220 		tp->sacked_out -= decr;
1221 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1222 		tp->retrans_out -= decr;
1223 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1224 		tp->lost_out -= decr;
1225 
1226 	/* Reno case is special. Sigh... */
1227 	if (tcp_is_reno(tp) && decr > 0)
1228 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1229 
1230 	if (tp->lost_skb_hint &&
1231 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1232 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1233 		tp->lost_cnt_hint -= decr;
1234 
1235 	tcp_verify_left_out(tp);
1236 }
1237 
1238 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1239 {
1240 	return TCP_SKB_CB(skb)->txstamp_ack ||
1241 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1242 }
1243 
1244 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1245 {
1246 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1247 
1248 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1249 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1250 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1251 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1252 
1253 		shinfo->tx_flags &= ~tsflags;
1254 		shinfo2->tx_flags |= tsflags;
1255 		swap(shinfo->tskey, shinfo2->tskey);
1256 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1257 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1258 	}
1259 }
1260 
1261 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1262 {
1263 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1264 	TCP_SKB_CB(skb)->eor = 0;
1265 }
1266 
1267 /* Insert buff after skb on the write or rtx queue of sk.  */
1268 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1269 					 struct sk_buff *buff,
1270 					 struct sock *sk,
1271 					 enum tcp_queue tcp_queue)
1272 {
1273 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1274 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1275 	else
1276 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1277 }
1278 
1279 /* Function to create two new TCP segments.  Shrinks the given segment
1280  * to the specified size and appends a new segment with the rest of the
1281  * packet to the list.  This won't be called frequently, I hope.
1282  * Remember, these are still headerless SKBs at this point.
1283  */
1284 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1285 		 struct sk_buff *skb, u32 len,
1286 		 unsigned int mss_now, gfp_t gfp)
1287 {
1288 	struct tcp_sock *tp = tcp_sk(sk);
1289 	struct sk_buff *buff;
1290 	int nsize, old_factor;
1291 	int nlen;
1292 	u8 flags;
1293 
1294 	if (WARN_ON(len > skb->len))
1295 		return -EINVAL;
1296 
1297 	nsize = skb_headlen(skb) - len;
1298 	if (nsize < 0)
1299 		nsize = 0;
1300 
1301 	if (unlikely((sk->sk_wmem_queued >> 1) > sk->sk_sndbuf &&
1302 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE)) {
1303 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1304 		return -ENOMEM;
1305 	}
1306 
1307 	if (skb_unclone(skb, gfp))
1308 		return -ENOMEM;
1309 
1310 	/* Get a new skb... force flag on. */
1311 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1312 	if (!buff)
1313 		return -ENOMEM; /* We'll just try again later. */
1314 
1315 	sk->sk_wmem_queued += buff->truesize;
1316 	sk_mem_charge(sk, buff->truesize);
1317 	nlen = skb->len - len - nsize;
1318 	buff->truesize += nlen;
1319 	skb->truesize -= nlen;
1320 
1321 	/* Correct the sequence numbers. */
1322 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1323 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1324 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1325 
1326 	/* PSH and FIN should only be set in the second packet. */
1327 	flags = TCP_SKB_CB(skb)->tcp_flags;
1328 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1329 	TCP_SKB_CB(buff)->tcp_flags = flags;
1330 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1331 	tcp_skb_fragment_eor(skb, buff);
1332 
1333 	skb_split(skb, buff, len);
1334 
1335 	buff->ip_summed = CHECKSUM_PARTIAL;
1336 
1337 	buff->tstamp = skb->tstamp;
1338 	tcp_fragment_tstamp(skb, buff);
1339 
1340 	old_factor = tcp_skb_pcount(skb);
1341 
1342 	/* Fix up tso_factor for both original and new SKB.  */
1343 	tcp_set_skb_tso_segs(skb, mss_now);
1344 	tcp_set_skb_tso_segs(buff, mss_now);
1345 
1346 	/* Update delivered info for the new segment */
1347 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1348 
1349 	/* If this packet has been sent out already, we must
1350 	 * adjust the various packet counters.
1351 	 */
1352 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1353 		int diff = old_factor - tcp_skb_pcount(skb) -
1354 			tcp_skb_pcount(buff);
1355 
1356 		if (diff)
1357 			tcp_adjust_pcount(sk, skb, diff);
1358 	}
1359 
1360 	/* Link BUFF into the send queue. */
1361 	__skb_header_release(buff);
1362 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1363 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1364 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1365 
1366 	return 0;
1367 }
1368 
1369 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1370  * data is not copied, but immediately discarded.
1371  */
1372 static int __pskb_trim_head(struct sk_buff *skb, int len)
1373 {
1374 	struct skb_shared_info *shinfo;
1375 	int i, k, eat;
1376 
1377 	eat = min_t(int, len, skb_headlen(skb));
1378 	if (eat) {
1379 		__skb_pull(skb, eat);
1380 		len -= eat;
1381 		if (!len)
1382 			return 0;
1383 	}
1384 	eat = len;
1385 	k = 0;
1386 	shinfo = skb_shinfo(skb);
1387 	for (i = 0; i < shinfo->nr_frags; i++) {
1388 		int size = skb_frag_size(&shinfo->frags[i]);
1389 
1390 		if (size <= eat) {
1391 			skb_frag_unref(skb, i);
1392 			eat -= size;
1393 		} else {
1394 			shinfo->frags[k] = shinfo->frags[i];
1395 			if (eat) {
1396 				shinfo->frags[k].page_offset += eat;
1397 				skb_frag_size_sub(&shinfo->frags[k], eat);
1398 				eat = 0;
1399 			}
1400 			k++;
1401 		}
1402 	}
1403 	shinfo->nr_frags = k;
1404 
1405 	skb->data_len -= len;
1406 	skb->len = skb->data_len;
1407 	return len;
1408 }
1409 
1410 /* Remove acked data from a packet in the transmit queue. */
1411 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1412 {
1413 	u32 delta_truesize;
1414 
1415 	if (skb_unclone(skb, GFP_ATOMIC))
1416 		return -ENOMEM;
1417 
1418 	delta_truesize = __pskb_trim_head(skb, len);
1419 
1420 	TCP_SKB_CB(skb)->seq += len;
1421 	skb->ip_summed = CHECKSUM_PARTIAL;
1422 
1423 	if (delta_truesize) {
1424 		skb->truesize	   -= delta_truesize;
1425 		sk->sk_wmem_queued -= delta_truesize;
1426 		sk_mem_uncharge(sk, delta_truesize);
1427 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1428 	}
1429 
1430 	/* Any change of skb->len requires recalculation of tso factor. */
1431 	if (tcp_skb_pcount(skb) > 1)
1432 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1433 
1434 	return 0;
1435 }
1436 
1437 /* Calculate MSS not accounting any TCP options.  */
1438 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1439 {
1440 	const struct tcp_sock *tp = tcp_sk(sk);
1441 	const struct inet_connection_sock *icsk = inet_csk(sk);
1442 	int mss_now;
1443 
1444 	/* Calculate base mss without TCP options:
1445 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1446 	 */
1447 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1448 
1449 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1450 	if (icsk->icsk_af_ops->net_frag_header_len) {
1451 		const struct dst_entry *dst = __sk_dst_get(sk);
1452 
1453 		if (dst && dst_allfrag(dst))
1454 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1455 	}
1456 
1457 	/* Clamp it (mss_clamp does not include tcp options) */
1458 	if (mss_now > tp->rx_opt.mss_clamp)
1459 		mss_now = tp->rx_opt.mss_clamp;
1460 
1461 	/* Now subtract optional transport overhead */
1462 	mss_now -= icsk->icsk_ext_hdr_len;
1463 
1464 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1465 	mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1466 	return mss_now;
1467 }
1468 
1469 /* Calculate MSS. Not accounting for SACKs here.  */
1470 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1471 {
1472 	/* Subtract TCP options size, not including SACKs */
1473 	return __tcp_mtu_to_mss(sk, pmtu) -
1474 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1475 }
1476 
1477 /* Inverse of above */
1478 int tcp_mss_to_mtu(struct sock *sk, int mss)
1479 {
1480 	const struct tcp_sock *tp = tcp_sk(sk);
1481 	const struct inet_connection_sock *icsk = inet_csk(sk);
1482 	int mtu;
1483 
1484 	mtu = mss +
1485 	      tp->tcp_header_len +
1486 	      icsk->icsk_ext_hdr_len +
1487 	      icsk->icsk_af_ops->net_header_len;
1488 
1489 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1490 	if (icsk->icsk_af_ops->net_frag_header_len) {
1491 		const struct dst_entry *dst = __sk_dst_get(sk);
1492 
1493 		if (dst && dst_allfrag(dst))
1494 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1495 	}
1496 	return mtu;
1497 }
1498 EXPORT_SYMBOL(tcp_mss_to_mtu);
1499 
1500 /* MTU probing init per socket */
1501 void tcp_mtup_init(struct sock *sk)
1502 {
1503 	struct tcp_sock *tp = tcp_sk(sk);
1504 	struct inet_connection_sock *icsk = inet_csk(sk);
1505 	struct net *net = sock_net(sk);
1506 
1507 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1508 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1509 			       icsk->icsk_af_ops->net_header_len;
1510 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1511 	icsk->icsk_mtup.probe_size = 0;
1512 	if (icsk->icsk_mtup.enabled)
1513 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1514 }
1515 EXPORT_SYMBOL(tcp_mtup_init);
1516 
1517 /* This function synchronize snd mss to current pmtu/exthdr set.
1518 
1519    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1520    for TCP options, but includes only bare TCP header.
1521 
1522    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1523    It is minimum of user_mss and mss received with SYN.
1524    It also does not include TCP options.
1525 
1526    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1527 
1528    tp->mss_cache is current effective sending mss, including
1529    all tcp options except for SACKs. It is evaluated,
1530    taking into account current pmtu, but never exceeds
1531    tp->rx_opt.mss_clamp.
1532 
1533    NOTE1. rfc1122 clearly states that advertised MSS
1534    DOES NOT include either tcp or ip options.
1535 
1536    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1537    are READ ONLY outside this function.		--ANK (980731)
1538  */
1539 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1540 {
1541 	struct tcp_sock *tp = tcp_sk(sk);
1542 	struct inet_connection_sock *icsk = inet_csk(sk);
1543 	int mss_now;
1544 
1545 	if (icsk->icsk_mtup.search_high > pmtu)
1546 		icsk->icsk_mtup.search_high = pmtu;
1547 
1548 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1549 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1550 
1551 	/* And store cached results */
1552 	icsk->icsk_pmtu_cookie = pmtu;
1553 	if (icsk->icsk_mtup.enabled)
1554 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1555 	tp->mss_cache = mss_now;
1556 
1557 	return mss_now;
1558 }
1559 EXPORT_SYMBOL(tcp_sync_mss);
1560 
1561 /* Compute the current effective MSS, taking SACKs and IP options,
1562  * and even PMTU discovery events into account.
1563  */
1564 unsigned int tcp_current_mss(struct sock *sk)
1565 {
1566 	const struct tcp_sock *tp = tcp_sk(sk);
1567 	const struct dst_entry *dst = __sk_dst_get(sk);
1568 	u32 mss_now;
1569 	unsigned int header_len;
1570 	struct tcp_out_options opts;
1571 	struct tcp_md5sig_key *md5;
1572 
1573 	mss_now = tp->mss_cache;
1574 
1575 	if (dst) {
1576 		u32 mtu = dst_mtu(dst);
1577 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1578 			mss_now = tcp_sync_mss(sk, mtu);
1579 	}
1580 
1581 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1582 		     sizeof(struct tcphdr);
1583 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1584 	 * some common options. If this is an odd packet (because we have SACK
1585 	 * blocks etc) then our calculated header_len will be different, and
1586 	 * we have to adjust mss_now correspondingly */
1587 	if (header_len != tp->tcp_header_len) {
1588 		int delta = (int) header_len - tp->tcp_header_len;
1589 		mss_now -= delta;
1590 	}
1591 
1592 	return mss_now;
1593 }
1594 
1595 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1596  * As additional protections, we do not touch cwnd in retransmission phases,
1597  * and if application hit its sndbuf limit recently.
1598  */
1599 static void tcp_cwnd_application_limited(struct sock *sk)
1600 {
1601 	struct tcp_sock *tp = tcp_sk(sk);
1602 
1603 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1604 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1605 		/* Limited by application or receiver window. */
1606 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1607 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1608 		if (win_used < tp->snd_cwnd) {
1609 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1610 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1611 		}
1612 		tp->snd_cwnd_used = 0;
1613 	}
1614 	tp->snd_cwnd_stamp = tcp_jiffies32;
1615 }
1616 
1617 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1618 {
1619 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1620 	struct tcp_sock *tp = tcp_sk(sk);
1621 
1622 	/* Track the maximum number of outstanding packets in each
1623 	 * window, and remember whether we were cwnd-limited then.
1624 	 */
1625 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1626 	    tp->packets_out > tp->max_packets_out) {
1627 		tp->max_packets_out = tp->packets_out;
1628 		tp->max_packets_seq = tp->snd_nxt;
1629 		tp->is_cwnd_limited = is_cwnd_limited;
1630 	}
1631 
1632 	if (tcp_is_cwnd_limited(sk)) {
1633 		/* Network is feed fully. */
1634 		tp->snd_cwnd_used = 0;
1635 		tp->snd_cwnd_stamp = tcp_jiffies32;
1636 	} else {
1637 		/* Network starves. */
1638 		if (tp->packets_out > tp->snd_cwnd_used)
1639 			tp->snd_cwnd_used = tp->packets_out;
1640 
1641 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1642 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1643 		    !ca_ops->cong_control)
1644 			tcp_cwnd_application_limited(sk);
1645 
1646 		/* The following conditions together indicate the starvation
1647 		 * is caused by insufficient sender buffer:
1648 		 * 1) just sent some data (see tcp_write_xmit)
1649 		 * 2) not cwnd limited (this else condition)
1650 		 * 3) no more data to send (tcp_write_queue_empty())
1651 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1652 		 */
1653 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1654 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1655 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1656 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1657 	}
1658 }
1659 
1660 /* Minshall's variant of the Nagle send check. */
1661 static bool tcp_minshall_check(const struct tcp_sock *tp)
1662 {
1663 	return after(tp->snd_sml, tp->snd_una) &&
1664 		!after(tp->snd_sml, tp->snd_nxt);
1665 }
1666 
1667 /* Update snd_sml if this skb is under mss
1668  * Note that a TSO packet might end with a sub-mss segment
1669  * The test is really :
1670  * if ((skb->len % mss) != 0)
1671  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1672  * But we can avoid doing the divide again given we already have
1673  *  skb_pcount = skb->len / mss_now
1674  */
1675 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1676 				const struct sk_buff *skb)
1677 {
1678 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1679 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1680 }
1681 
1682 /* Return false, if packet can be sent now without violation Nagle's rules:
1683  * 1. It is full sized. (provided by caller in %partial bool)
1684  * 2. Or it contains FIN. (already checked by caller)
1685  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1686  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1687  *    With Minshall's modification: all sent small packets are ACKed.
1688  */
1689 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1690 			    int nonagle)
1691 {
1692 	return partial &&
1693 		((nonagle & TCP_NAGLE_CORK) ||
1694 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1695 }
1696 
1697 /* Return how many segs we'd like on a TSO packet,
1698  * to send one TSO packet per ms
1699  */
1700 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1701 			    int min_tso_segs)
1702 {
1703 	u32 bytes, segs;
1704 
1705 	bytes = min_t(unsigned long,
1706 		      sk->sk_pacing_rate >> sk->sk_pacing_shift,
1707 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1708 
1709 	/* Goal is to send at least one packet per ms,
1710 	 * not one big TSO packet every 100 ms.
1711 	 * This preserves ACK clocking and is consistent
1712 	 * with tcp_tso_should_defer() heuristic.
1713 	 */
1714 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1715 
1716 	return segs;
1717 }
1718 
1719 /* Return the number of segments we want in the skb we are transmitting.
1720  * See if congestion control module wants to decide; otherwise, autosize.
1721  */
1722 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1723 {
1724 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1725 	u32 min_tso, tso_segs;
1726 
1727 	min_tso = ca_ops->min_tso_segs ?
1728 			ca_ops->min_tso_segs(sk) :
1729 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1730 
1731 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1732 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1733 }
1734 
1735 /* Returns the portion of skb which can be sent right away */
1736 static unsigned int tcp_mss_split_point(const struct sock *sk,
1737 					const struct sk_buff *skb,
1738 					unsigned int mss_now,
1739 					unsigned int max_segs,
1740 					int nonagle)
1741 {
1742 	const struct tcp_sock *tp = tcp_sk(sk);
1743 	u32 partial, needed, window, max_len;
1744 
1745 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1746 	max_len = mss_now * max_segs;
1747 
1748 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1749 		return max_len;
1750 
1751 	needed = min(skb->len, window);
1752 
1753 	if (max_len <= needed)
1754 		return max_len;
1755 
1756 	partial = needed % mss_now;
1757 	/* If last segment is not a full MSS, check if Nagle rules allow us
1758 	 * to include this last segment in this skb.
1759 	 * Otherwise, we'll split the skb at last MSS boundary
1760 	 */
1761 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1762 		return needed - partial;
1763 
1764 	return needed;
1765 }
1766 
1767 /* Can at least one segment of SKB be sent right now, according to the
1768  * congestion window rules?  If so, return how many segments are allowed.
1769  */
1770 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1771 					 const struct sk_buff *skb)
1772 {
1773 	u32 in_flight, cwnd, halfcwnd;
1774 
1775 	/* Don't be strict about the congestion window for the final FIN.  */
1776 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1777 	    tcp_skb_pcount(skb) == 1)
1778 		return 1;
1779 
1780 	in_flight = tcp_packets_in_flight(tp);
1781 	cwnd = tp->snd_cwnd;
1782 	if (in_flight >= cwnd)
1783 		return 0;
1784 
1785 	/* For better scheduling, ensure we have at least
1786 	 * 2 GSO packets in flight.
1787 	 */
1788 	halfcwnd = max(cwnd >> 1, 1U);
1789 	return min(halfcwnd, cwnd - in_flight);
1790 }
1791 
1792 /* Initialize TSO state of a skb.
1793  * This must be invoked the first time we consider transmitting
1794  * SKB onto the wire.
1795  */
1796 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1797 {
1798 	int tso_segs = tcp_skb_pcount(skb);
1799 
1800 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1801 		tcp_set_skb_tso_segs(skb, mss_now);
1802 		tso_segs = tcp_skb_pcount(skb);
1803 	}
1804 	return tso_segs;
1805 }
1806 
1807 
1808 /* Return true if the Nagle test allows this packet to be
1809  * sent now.
1810  */
1811 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1812 				  unsigned int cur_mss, int nonagle)
1813 {
1814 	/* Nagle rule does not apply to frames, which sit in the middle of the
1815 	 * write_queue (they have no chances to get new data).
1816 	 *
1817 	 * This is implemented in the callers, where they modify the 'nonagle'
1818 	 * argument based upon the location of SKB in the send queue.
1819 	 */
1820 	if (nonagle & TCP_NAGLE_PUSH)
1821 		return true;
1822 
1823 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1824 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1825 		return true;
1826 
1827 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1828 		return true;
1829 
1830 	return false;
1831 }
1832 
1833 /* Does at least the first segment of SKB fit into the send window? */
1834 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1835 			     const struct sk_buff *skb,
1836 			     unsigned int cur_mss)
1837 {
1838 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1839 
1840 	if (skb->len > cur_mss)
1841 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1842 
1843 	return !after(end_seq, tcp_wnd_end(tp));
1844 }
1845 
1846 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1847  * which is put after SKB on the list.  It is very much like
1848  * tcp_fragment() except that it may make several kinds of assumptions
1849  * in order to speed up the splitting operation.  In particular, we
1850  * know that all the data is in scatter-gather pages, and that the
1851  * packet has never been sent out before (and thus is not cloned).
1852  */
1853 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1854 			unsigned int mss_now, gfp_t gfp)
1855 {
1856 	int nlen = skb->len - len;
1857 	struct sk_buff *buff;
1858 	u8 flags;
1859 
1860 	/* All of a TSO frame must be composed of paged data.  */
1861 	if (skb->len != skb->data_len)
1862 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1863 				    skb, len, mss_now, gfp);
1864 
1865 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1866 	if (unlikely(!buff))
1867 		return -ENOMEM;
1868 
1869 	sk->sk_wmem_queued += buff->truesize;
1870 	sk_mem_charge(sk, buff->truesize);
1871 	buff->truesize += nlen;
1872 	skb->truesize -= nlen;
1873 
1874 	/* Correct the sequence numbers. */
1875 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1876 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1877 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1878 
1879 	/* PSH and FIN should only be set in the second packet. */
1880 	flags = TCP_SKB_CB(skb)->tcp_flags;
1881 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1882 	TCP_SKB_CB(buff)->tcp_flags = flags;
1883 
1884 	/* This packet was never sent out yet, so no SACK bits. */
1885 	TCP_SKB_CB(buff)->sacked = 0;
1886 
1887 	tcp_skb_fragment_eor(skb, buff);
1888 
1889 	buff->ip_summed = CHECKSUM_PARTIAL;
1890 	skb_split(skb, buff, len);
1891 	tcp_fragment_tstamp(skb, buff);
1892 
1893 	/* Fix up tso_factor for both original and new SKB.  */
1894 	tcp_set_skb_tso_segs(skb, mss_now);
1895 	tcp_set_skb_tso_segs(buff, mss_now);
1896 
1897 	/* Link BUFF into the send queue. */
1898 	__skb_header_release(buff);
1899 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
1900 
1901 	return 0;
1902 }
1903 
1904 /* Try to defer sending, if possible, in order to minimize the amount
1905  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1906  *
1907  * This algorithm is from John Heffner.
1908  */
1909 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1910 				 bool *is_cwnd_limited,
1911 				 bool *is_rwnd_limited,
1912 				 u32 max_segs)
1913 {
1914 	const struct inet_connection_sock *icsk = inet_csk(sk);
1915 	u32 send_win, cong_win, limit, in_flight;
1916 	struct tcp_sock *tp = tcp_sk(sk);
1917 	struct sk_buff *head;
1918 	int win_divisor;
1919 	s64 delta;
1920 
1921 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1922 		goto send_now;
1923 
1924 	/* Avoid bursty behavior by allowing defer
1925 	 * only if the last write was recent (1 ms).
1926 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
1927 	 * packets waiting in a qdisc or device for EDT delivery.
1928 	 */
1929 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
1930 	if (delta > 0)
1931 		goto send_now;
1932 
1933 	in_flight = tcp_packets_in_flight(tp);
1934 
1935 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1936 	BUG_ON(tp->snd_cwnd <= in_flight);
1937 
1938 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1939 
1940 	/* From in_flight test above, we know that cwnd > in_flight.  */
1941 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1942 
1943 	limit = min(send_win, cong_win);
1944 
1945 	/* If a full-sized TSO skb can be sent, do it. */
1946 	if (limit >= max_segs * tp->mss_cache)
1947 		goto send_now;
1948 
1949 	/* Middle in queue won't get any more data, full sendable already? */
1950 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1951 		goto send_now;
1952 
1953 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1954 	if (win_divisor) {
1955 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1956 
1957 		/* If at least some fraction of a window is available,
1958 		 * just use it.
1959 		 */
1960 		chunk /= win_divisor;
1961 		if (limit >= chunk)
1962 			goto send_now;
1963 	} else {
1964 		/* Different approach, try not to defer past a single
1965 		 * ACK.  Receiver should ACK every other full sized
1966 		 * frame, so if we have space for more than 3 frames
1967 		 * then send now.
1968 		 */
1969 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1970 			goto send_now;
1971 	}
1972 
1973 	/* TODO : use tsorted_sent_queue ? */
1974 	head = tcp_rtx_queue_head(sk);
1975 	if (!head)
1976 		goto send_now;
1977 	delta = tp->tcp_clock_cache - head->tstamp;
1978 	/* If next ACK is likely to come too late (half srtt), do not defer */
1979 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
1980 		goto send_now;
1981 
1982 	/* Ok, it looks like it is advisable to defer.
1983 	 * Three cases are tracked :
1984 	 * 1) We are cwnd-limited
1985 	 * 2) We are rwnd-limited
1986 	 * 3) We are application limited.
1987 	 */
1988 	if (cong_win < send_win) {
1989 		if (cong_win <= skb->len) {
1990 			*is_cwnd_limited = true;
1991 			return true;
1992 		}
1993 	} else {
1994 		if (send_win <= skb->len) {
1995 			*is_rwnd_limited = true;
1996 			return true;
1997 		}
1998 	}
1999 
2000 	/* If this packet won't get more data, do not wait. */
2001 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2002 	    TCP_SKB_CB(skb)->eor)
2003 		goto send_now;
2004 
2005 	return true;
2006 
2007 send_now:
2008 	return false;
2009 }
2010 
2011 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2012 {
2013 	struct inet_connection_sock *icsk = inet_csk(sk);
2014 	struct tcp_sock *tp = tcp_sk(sk);
2015 	struct net *net = sock_net(sk);
2016 	u32 interval;
2017 	s32 delta;
2018 
2019 	interval = net->ipv4.sysctl_tcp_probe_interval;
2020 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2021 	if (unlikely(delta >= interval * HZ)) {
2022 		int mss = tcp_current_mss(sk);
2023 
2024 		/* Update current search range */
2025 		icsk->icsk_mtup.probe_size = 0;
2026 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2027 			sizeof(struct tcphdr) +
2028 			icsk->icsk_af_ops->net_header_len;
2029 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2030 
2031 		/* Update probe time stamp */
2032 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2033 	}
2034 }
2035 
2036 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2037 {
2038 	struct sk_buff *skb, *next;
2039 
2040 	skb = tcp_send_head(sk);
2041 	tcp_for_write_queue_from_safe(skb, next, sk) {
2042 		if (len <= skb->len)
2043 			break;
2044 
2045 		if (unlikely(TCP_SKB_CB(skb)->eor))
2046 			return false;
2047 
2048 		len -= skb->len;
2049 	}
2050 
2051 	return true;
2052 }
2053 
2054 /* Create a new MTU probe if we are ready.
2055  * MTU probe is regularly attempting to increase the path MTU by
2056  * deliberately sending larger packets.  This discovers routing
2057  * changes resulting in larger path MTUs.
2058  *
2059  * Returns 0 if we should wait to probe (no cwnd available),
2060  *         1 if a probe was sent,
2061  *         -1 otherwise
2062  */
2063 static int tcp_mtu_probe(struct sock *sk)
2064 {
2065 	struct inet_connection_sock *icsk = inet_csk(sk);
2066 	struct tcp_sock *tp = tcp_sk(sk);
2067 	struct sk_buff *skb, *nskb, *next;
2068 	struct net *net = sock_net(sk);
2069 	int probe_size;
2070 	int size_needed;
2071 	int copy, len;
2072 	int mss_now;
2073 	int interval;
2074 
2075 	/* Not currently probing/verifying,
2076 	 * not in recovery,
2077 	 * have enough cwnd, and
2078 	 * not SACKing (the variable headers throw things off)
2079 	 */
2080 	if (likely(!icsk->icsk_mtup.enabled ||
2081 		   icsk->icsk_mtup.probe_size ||
2082 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2083 		   tp->snd_cwnd < 11 ||
2084 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2085 		return -1;
2086 
2087 	/* Use binary search for probe_size between tcp_mss_base,
2088 	 * and current mss_clamp. if (search_high - search_low)
2089 	 * smaller than a threshold, backoff from probing.
2090 	 */
2091 	mss_now = tcp_current_mss(sk);
2092 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2093 				    icsk->icsk_mtup.search_low) >> 1);
2094 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2095 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2096 	/* When misfortune happens, we are reprobing actively,
2097 	 * and then reprobe timer has expired. We stick with current
2098 	 * probing process by not resetting search range to its orignal.
2099 	 */
2100 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2101 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2102 		/* Check whether enough time has elaplased for
2103 		 * another round of probing.
2104 		 */
2105 		tcp_mtu_check_reprobe(sk);
2106 		return -1;
2107 	}
2108 
2109 	/* Have enough data in the send queue to probe? */
2110 	if (tp->write_seq - tp->snd_nxt < size_needed)
2111 		return -1;
2112 
2113 	if (tp->snd_wnd < size_needed)
2114 		return -1;
2115 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2116 		return 0;
2117 
2118 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2119 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2120 		if (!tcp_packets_in_flight(tp))
2121 			return -1;
2122 		else
2123 			return 0;
2124 	}
2125 
2126 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2127 		return -1;
2128 
2129 	/* We're allowed to probe.  Build it now. */
2130 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2131 	if (!nskb)
2132 		return -1;
2133 	sk->sk_wmem_queued += nskb->truesize;
2134 	sk_mem_charge(sk, nskb->truesize);
2135 
2136 	skb = tcp_send_head(sk);
2137 
2138 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2139 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2140 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2141 	TCP_SKB_CB(nskb)->sacked = 0;
2142 	nskb->csum = 0;
2143 	nskb->ip_summed = CHECKSUM_PARTIAL;
2144 
2145 	tcp_insert_write_queue_before(nskb, skb, sk);
2146 	tcp_highest_sack_replace(sk, skb, nskb);
2147 
2148 	len = 0;
2149 	tcp_for_write_queue_from_safe(skb, next, sk) {
2150 		copy = min_t(int, skb->len, probe_size - len);
2151 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2152 
2153 		if (skb->len <= copy) {
2154 			/* We've eaten all the data from this skb.
2155 			 * Throw it away. */
2156 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2157 			/* If this is the last SKB we copy and eor is set
2158 			 * we need to propagate it to the new skb.
2159 			 */
2160 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2161 			tcp_unlink_write_queue(skb, sk);
2162 			sk_wmem_free_skb(sk, skb);
2163 		} else {
2164 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2165 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2166 			if (!skb_shinfo(skb)->nr_frags) {
2167 				skb_pull(skb, copy);
2168 			} else {
2169 				__pskb_trim_head(skb, copy);
2170 				tcp_set_skb_tso_segs(skb, mss_now);
2171 			}
2172 			TCP_SKB_CB(skb)->seq += copy;
2173 		}
2174 
2175 		len += copy;
2176 
2177 		if (len >= probe_size)
2178 			break;
2179 	}
2180 	tcp_init_tso_segs(nskb, nskb->len);
2181 
2182 	/* We're ready to send.  If this fails, the probe will
2183 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2184 	 */
2185 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2186 		/* Decrement cwnd here because we are sending
2187 		 * effectively two packets. */
2188 		tp->snd_cwnd--;
2189 		tcp_event_new_data_sent(sk, nskb);
2190 
2191 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2192 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2193 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2194 
2195 		return 1;
2196 	}
2197 
2198 	return -1;
2199 }
2200 
2201 static bool tcp_pacing_check(struct sock *sk)
2202 {
2203 	struct tcp_sock *tp = tcp_sk(sk);
2204 
2205 	if (!tcp_needs_internal_pacing(sk))
2206 		return false;
2207 
2208 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2209 		return false;
2210 
2211 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2212 		hrtimer_start(&tp->pacing_timer,
2213 			      ns_to_ktime(tp->tcp_wstamp_ns),
2214 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2215 		sock_hold(sk);
2216 	}
2217 	return true;
2218 }
2219 
2220 /* TCP Small Queues :
2221  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2222  * (These limits are doubled for retransmits)
2223  * This allows for :
2224  *  - better RTT estimation and ACK scheduling
2225  *  - faster recovery
2226  *  - high rates
2227  * Alas, some drivers / subsystems require a fair amount
2228  * of queued bytes to ensure line rate.
2229  * One example is wifi aggregation (802.11 AMPDU)
2230  */
2231 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2232 				  unsigned int factor)
2233 {
2234 	unsigned long limit;
2235 
2236 	limit = max_t(unsigned long,
2237 		      2 * skb->truesize,
2238 		      sk->sk_pacing_rate >> sk->sk_pacing_shift);
2239 	if (sk->sk_pacing_status == SK_PACING_NONE)
2240 		limit = min_t(unsigned long, limit,
2241 			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2242 	limit <<= factor;
2243 
2244 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2245 	    tcp_sk(sk)->tcp_tx_delay) {
2246 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2247 
2248 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2249 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2250 		 * USEC_PER_SEC is approximated by 2^20.
2251 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2252 		 */
2253 		extra_bytes >>= (20 - 1);
2254 		limit += extra_bytes;
2255 	}
2256 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2257 		/* Always send skb if rtx queue is empty.
2258 		 * No need to wait for TX completion to call us back,
2259 		 * after softirq/tasklet schedule.
2260 		 * This helps when TX completions are delayed too much.
2261 		 */
2262 		if (tcp_rtx_queue_empty(sk))
2263 			return false;
2264 
2265 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2266 		/* It is possible TX completion already happened
2267 		 * before we set TSQ_THROTTLED, so we must
2268 		 * test again the condition.
2269 		 */
2270 		smp_mb__after_atomic();
2271 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2272 			return true;
2273 	}
2274 	return false;
2275 }
2276 
2277 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2278 {
2279 	const u32 now = tcp_jiffies32;
2280 	enum tcp_chrono old = tp->chrono_type;
2281 
2282 	if (old > TCP_CHRONO_UNSPEC)
2283 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2284 	tp->chrono_start = now;
2285 	tp->chrono_type = new;
2286 }
2287 
2288 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2289 {
2290 	struct tcp_sock *tp = tcp_sk(sk);
2291 
2292 	/* If there are multiple conditions worthy of tracking in a
2293 	 * chronograph then the highest priority enum takes precedence
2294 	 * over the other conditions. So that if something "more interesting"
2295 	 * starts happening, stop the previous chrono and start a new one.
2296 	 */
2297 	if (type > tp->chrono_type)
2298 		tcp_chrono_set(tp, type);
2299 }
2300 
2301 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2302 {
2303 	struct tcp_sock *tp = tcp_sk(sk);
2304 
2305 
2306 	/* There are multiple conditions worthy of tracking in a
2307 	 * chronograph, so that the highest priority enum takes
2308 	 * precedence over the other conditions (see tcp_chrono_start).
2309 	 * If a condition stops, we only stop chrono tracking if
2310 	 * it's the "most interesting" or current chrono we are
2311 	 * tracking and starts busy chrono if we have pending data.
2312 	 */
2313 	if (tcp_rtx_and_write_queues_empty(sk))
2314 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2315 	else if (type == tp->chrono_type)
2316 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2317 }
2318 
2319 /* This routine writes packets to the network.  It advances the
2320  * send_head.  This happens as incoming acks open up the remote
2321  * window for us.
2322  *
2323  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2324  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2325  * account rare use of URG, this is not a big flaw.
2326  *
2327  * Send at most one packet when push_one > 0. Temporarily ignore
2328  * cwnd limit to force at most one packet out when push_one == 2.
2329 
2330  * Returns true, if no segments are in flight and we have queued segments,
2331  * but cannot send anything now because of SWS or another problem.
2332  */
2333 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2334 			   int push_one, gfp_t gfp)
2335 {
2336 	struct tcp_sock *tp = tcp_sk(sk);
2337 	struct sk_buff *skb;
2338 	unsigned int tso_segs, sent_pkts;
2339 	int cwnd_quota;
2340 	int result;
2341 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2342 	u32 max_segs;
2343 
2344 	sent_pkts = 0;
2345 
2346 	tcp_mstamp_refresh(tp);
2347 	if (!push_one) {
2348 		/* Do MTU probing. */
2349 		result = tcp_mtu_probe(sk);
2350 		if (!result) {
2351 			return false;
2352 		} else if (result > 0) {
2353 			sent_pkts = 1;
2354 		}
2355 	}
2356 
2357 	max_segs = tcp_tso_segs(sk, mss_now);
2358 	while ((skb = tcp_send_head(sk))) {
2359 		unsigned int limit;
2360 
2361 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2362 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2363 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2364 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2365 			tcp_init_tso_segs(skb, mss_now);
2366 			goto repair; /* Skip network transmission */
2367 		}
2368 
2369 		if (tcp_pacing_check(sk))
2370 			break;
2371 
2372 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2373 		BUG_ON(!tso_segs);
2374 
2375 		cwnd_quota = tcp_cwnd_test(tp, skb);
2376 		if (!cwnd_quota) {
2377 			if (push_one == 2)
2378 				/* Force out a loss probe pkt. */
2379 				cwnd_quota = 1;
2380 			else
2381 				break;
2382 		}
2383 
2384 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2385 			is_rwnd_limited = true;
2386 			break;
2387 		}
2388 
2389 		if (tso_segs == 1) {
2390 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2391 						     (tcp_skb_is_last(sk, skb) ?
2392 						      nonagle : TCP_NAGLE_PUSH))))
2393 				break;
2394 		} else {
2395 			if (!push_one &&
2396 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2397 						 &is_rwnd_limited, max_segs))
2398 				break;
2399 		}
2400 
2401 		limit = mss_now;
2402 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2403 			limit = tcp_mss_split_point(sk, skb, mss_now,
2404 						    min_t(unsigned int,
2405 							  cwnd_quota,
2406 							  max_segs),
2407 						    nonagle);
2408 
2409 		if (skb->len > limit &&
2410 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2411 			break;
2412 
2413 		if (tcp_small_queue_check(sk, skb, 0))
2414 			break;
2415 
2416 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2417 			break;
2418 
2419 repair:
2420 		/* Advance the send_head.  This one is sent out.
2421 		 * This call will increment packets_out.
2422 		 */
2423 		tcp_event_new_data_sent(sk, skb);
2424 
2425 		tcp_minshall_update(tp, mss_now, skb);
2426 		sent_pkts += tcp_skb_pcount(skb);
2427 
2428 		if (push_one)
2429 			break;
2430 	}
2431 
2432 	if (is_rwnd_limited)
2433 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2434 	else
2435 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2436 
2437 	if (likely(sent_pkts)) {
2438 		if (tcp_in_cwnd_reduction(sk))
2439 			tp->prr_out += sent_pkts;
2440 
2441 		/* Send one loss probe per tail loss episode. */
2442 		if (push_one != 2)
2443 			tcp_schedule_loss_probe(sk, false);
2444 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2445 		tcp_cwnd_validate(sk, is_cwnd_limited);
2446 		return false;
2447 	}
2448 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2449 }
2450 
2451 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2452 {
2453 	struct inet_connection_sock *icsk = inet_csk(sk);
2454 	struct tcp_sock *tp = tcp_sk(sk);
2455 	u32 timeout, rto_delta_us;
2456 	int early_retrans;
2457 
2458 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2459 	 * finishes.
2460 	 */
2461 	if (tp->fastopen_rsk)
2462 		return false;
2463 
2464 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2465 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2466 	 * not in loss recovery, that are either limited by cwnd or application.
2467 	 */
2468 	if ((early_retrans != 3 && early_retrans != 4) ||
2469 	    !tp->packets_out || !tcp_is_sack(tp) ||
2470 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2471 	     icsk->icsk_ca_state != TCP_CA_CWR))
2472 		return false;
2473 
2474 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2475 	 * for delayed ack when there's one outstanding packet. If no RTT
2476 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2477 	 */
2478 	if (tp->srtt_us) {
2479 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2480 		if (tp->packets_out == 1)
2481 			timeout += TCP_RTO_MIN;
2482 		else
2483 			timeout += TCP_TIMEOUT_MIN;
2484 	} else {
2485 		timeout = TCP_TIMEOUT_INIT;
2486 	}
2487 
2488 	/* If the RTO formula yields an earlier time, then use that time. */
2489 	rto_delta_us = advancing_rto ?
2490 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2491 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2492 	if (rto_delta_us > 0)
2493 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2494 
2495 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2496 			     TCP_RTO_MAX, NULL);
2497 	return true;
2498 }
2499 
2500 /* Thanks to skb fast clones, we can detect if a prior transmit of
2501  * a packet is still in a qdisc or driver queue.
2502  * In this case, there is very little point doing a retransmit !
2503  */
2504 static bool skb_still_in_host_queue(const struct sock *sk,
2505 				    const struct sk_buff *skb)
2506 {
2507 	if (unlikely(skb_fclone_busy(sk, skb))) {
2508 		NET_INC_STATS(sock_net(sk),
2509 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2510 		return true;
2511 	}
2512 	return false;
2513 }
2514 
2515 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2516  * retransmit the last segment.
2517  */
2518 void tcp_send_loss_probe(struct sock *sk)
2519 {
2520 	struct tcp_sock *tp = tcp_sk(sk);
2521 	struct sk_buff *skb;
2522 	int pcount;
2523 	int mss = tcp_current_mss(sk);
2524 
2525 	skb = tcp_send_head(sk);
2526 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2527 		pcount = tp->packets_out;
2528 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2529 		if (tp->packets_out > pcount)
2530 			goto probe_sent;
2531 		goto rearm_timer;
2532 	}
2533 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2534 	if (unlikely(!skb)) {
2535 		WARN_ONCE(tp->packets_out,
2536 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2537 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2538 		inet_csk(sk)->icsk_pending = 0;
2539 		return;
2540 	}
2541 
2542 	/* At most one outstanding TLP retransmission. */
2543 	if (tp->tlp_high_seq)
2544 		goto rearm_timer;
2545 
2546 	if (skb_still_in_host_queue(sk, skb))
2547 		goto rearm_timer;
2548 
2549 	pcount = tcp_skb_pcount(skb);
2550 	if (WARN_ON(!pcount))
2551 		goto rearm_timer;
2552 
2553 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2554 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2555 					  (pcount - 1) * mss, mss,
2556 					  GFP_ATOMIC)))
2557 			goto rearm_timer;
2558 		skb = skb_rb_next(skb);
2559 	}
2560 
2561 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2562 		goto rearm_timer;
2563 
2564 	if (__tcp_retransmit_skb(sk, skb, 1))
2565 		goto rearm_timer;
2566 
2567 	/* Record snd_nxt for loss detection. */
2568 	tp->tlp_high_seq = tp->snd_nxt;
2569 
2570 probe_sent:
2571 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2572 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2573 	inet_csk(sk)->icsk_pending = 0;
2574 rearm_timer:
2575 	tcp_rearm_rto(sk);
2576 }
2577 
2578 /* Push out any pending frames which were held back due to
2579  * TCP_CORK or attempt at coalescing tiny packets.
2580  * The socket must be locked by the caller.
2581  */
2582 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2583 			       int nonagle)
2584 {
2585 	/* If we are closed, the bytes will have to remain here.
2586 	 * In time closedown will finish, we empty the write queue and
2587 	 * all will be happy.
2588 	 */
2589 	if (unlikely(sk->sk_state == TCP_CLOSE))
2590 		return;
2591 
2592 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2593 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2594 		tcp_check_probe_timer(sk);
2595 }
2596 
2597 /* Send _single_ skb sitting at the send head. This function requires
2598  * true push pending frames to setup probe timer etc.
2599  */
2600 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2601 {
2602 	struct sk_buff *skb = tcp_send_head(sk);
2603 
2604 	BUG_ON(!skb || skb->len < mss_now);
2605 
2606 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2607 }
2608 
2609 /* This function returns the amount that we can raise the
2610  * usable window based on the following constraints
2611  *
2612  * 1. The window can never be shrunk once it is offered (RFC 793)
2613  * 2. We limit memory per socket
2614  *
2615  * RFC 1122:
2616  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2617  *  RECV.NEXT + RCV.WIN fixed until:
2618  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2619  *
2620  * i.e. don't raise the right edge of the window until you can raise
2621  * it at least MSS bytes.
2622  *
2623  * Unfortunately, the recommended algorithm breaks header prediction,
2624  * since header prediction assumes th->window stays fixed.
2625  *
2626  * Strictly speaking, keeping th->window fixed violates the receiver
2627  * side SWS prevention criteria. The problem is that under this rule
2628  * a stream of single byte packets will cause the right side of the
2629  * window to always advance by a single byte.
2630  *
2631  * Of course, if the sender implements sender side SWS prevention
2632  * then this will not be a problem.
2633  *
2634  * BSD seems to make the following compromise:
2635  *
2636  *	If the free space is less than the 1/4 of the maximum
2637  *	space available and the free space is less than 1/2 mss,
2638  *	then set the window to 0.
2639  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2640  *	Otherwise, just prevent the window from shrinking
2641  *	and from being larger than the largest representable value.
2642  *
2643  * This prevents incremental opening of the window in the regime
2644  * where TCP is limited by the speed of the reader side taking
2645  * data out of the TCP receive queue. It does nothing about
2646  * those cases where the window is constrained on the sender side
2647  * because the pipeline is full.
2648  *
2649  * BSD also seems to "accidentally" limit itself to windows that are a
2650  * multiple of MSS, at least until the free space gets quite small.
2651  * This would appear to be a side effect of the mbuf implementation.
2652  * Combining these two algorithms results in the observed behavior
2653  * of having a fixed window size at almost all times.
2654  *
2655  * Below we obtain similar behavior by forcing the offered window to
2656  * a multiple of the mss when it is feasible to do so.
2657  *
2658  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2659  * Regular options like TIMESTAMP are taken into account.
2660  */
2661 u32 __tcp_select_window(struct sock *sk)
2662 {
2663 	struct inet_connection_sock *icsk = inet_csk(sk);
2664 	struct tcp_sock *tp = tcp_sk(sk);
2665 	/* MSS for the peer's data.  Previous versions used mss_clamp
2666 	 * here.  I don't know if the value based on our guesses
2667 	 * of peer's MSS is better for the performance.  It's more correct
2668 	 * but may be worse for the performance because of rcv_mss
2669 	 * fluctuations.  --SAW  1998/11/1
2670 	 */
2671 	int mss = icsk->icsk_ack.rcv_mss;
2672 	int free_space = tcp_space(sk);
2673 	int allowed_space = tcp_full_space(sk);
2674 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2675 	int window;
2676 
2677 	if (unlikely(mss > full_space)) {
2678 		mss = full_space;
2679 		if (mss <= 0)
2680 			return 0;
2681 	}
2682 	if (free_space < (full_space >> 1)) {
2683 		icsk->icsk_ack.quick = 0;
2684 
2685 		if (tcp_under_memory_pressure(sk))
2686 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2687 					       4U * tp->advmss);
2688 
2689 		/* free_space might become our new window, make sure we don't
2690 		 * increase it due to wscale.
2691 		 */
2692 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2693 
2694 		/* if free space is less than mss estimate, or is below 1/16th
2695 		 * of the maximum allowed, try to move to zero-window, else
2696 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2697 		 * new incoming data is dropped due to memory limits.
2698 		 * With large window, mss test triggers way too late in order
2699 		 * to announce zero window in time before rmem limit kicks in.
2700 		 */
2701 		if (free_space < (allowed_space >> 4) || free_space < mss)
2702 			return 0;
2703 	}
2704 
2705 	if (free_space > tp->rcv_ssthresh)
2706 		free_space = tp->rcv_ssthresh;
2707 
2708 	/* Don't do rounding if we are using window scaling, since the
2709 	 * scaled window will not line up with the MSS boundary anyway.
2710 	 */
2711 	if (tp->rx_opt.rcv_wscale) {
2712 		window = free_space;
2713 
2714 		/* Advertise enough space so that it won't get scaled away.
2715 		 * Import case: prevent zero window announcement if
2716 		 * 1<<rcv_wscale > mss.
2717 		 */
2718 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2719 	} else {
2720 		window = tp->rcv_wnd;
2721 		/* Get the largest window that is a nice multiple of mss.
2722 		 * Window clamp already applied above.
2723 		 * If our current window offering is within 1 mss of the
2724 		 * free space we just keep it. This prevents the divide
2725 		 * and multiply from happening most of the time.
2726 		 * We also don't do any window rounding when the free space
2727 		 * is too small.
2728 		 */
2729 		if (window <= free_space - mss || window > free_space)
2730 			window = rounddown(free_space, mss);
2731 		else if (mss == full_space &&
2732 			 free_space > window + (full_space >> 1))
2733 			window = free_space;
2734 	}
2735 
2736 	return window;
2737 }
2738 
2739 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2740 			     const struct sk_buff *next_skb)
2741 {
2742 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2743 		const struct skb_shared_info *next_shinfo =
2744 			skb_shinfo(next_skb);
2745 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2746 
2747 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2748 		shinfo->tskey = next_shinfo->tskey;
2749 		TCP_SKB_CB(skb)->txstamp_ack |=
2750 			TCP_SKB_CB(next_skb)->txstamp_ack;
2751 	}
2752 }
2753 
2754 /* Collapses two adjacent SKB's during retransmission. */
2755 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2756 {
2757 	struct tcp_sock *tp = tcp_sk(sk);
2758 	struct sk_buff *next_skb = skb_rb_next(skb);
2759 	int next_skb_size;
2760 
2761 	next_skb_size = next_skb->len;
2762 
2763 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2764 
2765 	if (next_skb_size) {
2766 		if (next_skb_size <= skb_availroom(skb))
2767 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2768 				      next_skb_size);
2769 		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2770 			return false;
2771 	}
2772 	tcp_highest_sack_replace(sk, next_skb, skb);
2773 
2774 	/* Update sequence range on original skb. */
2775 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2776 
2777 	/* Merge over control information. This moves PSH/FIN etc. over */
2778 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2779 
2780 	/* All done, get rid of second SKB and account for it so
2781 	 * packet counting does not break.
2782 	 */
2783 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2784 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2785 
2786 	/* changed transmit queue under us so clear hints */
2787 	tcp_clear_retrans_hints_partial(tp);
2788 	if (next_skb == tp->retransmit_skb_hint)
2789 		tp->retransmit_skb_hint = skb;
2790 
2791 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2792 
2793 	tcp_skb_collapse_tstamp(skb, next_skb);
2794 
2795 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2796 	return true;
2797 }
2798 
2799 /* Check if coalescing SKBs is legal. */
2800 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2801 {
2802 	if (tcp_skb_pcount(skb) > 1)
2803 		return false;
2804 	if (skb_cloned(skb))
2805 		return false;
2806 	/* Some heuristics for collapsing over SACK'd could be invented */
2807 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2808 		return false;
2809 
2810 	return true;
2811 }
2812 
2813 /* Collapse packets in the retransmit queue to make to create
2814  * less packets on the wire. This is only done on retransmission.
2815  */
2816 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2817 				     int space)
2818 {
2819 	struct tcp_sock *tp = tcp_sk(sk);
2820 	struct sk_buff *skb = to, *tmp;
2821 	bool first = true;
2822 
2823 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2824 		return;
2825 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2826 		return;
2827 
2828 	skb_rbtree_walk_from_safe(skb, tmp) {
2829 		if (!tcp_can_collapse(sk, skb))
2830 			break;
2831 
2832 		if (!tcp_skb_can_collapse_to(to))
2833 			break;
2834 
2835 		space -= skb->len;
2836 
2837 		if (first) {
2838 			first = false;
2839 			continue;
2840 		}
2841 
2842 		if (space < 0)
2843 			break;
2844 
2845 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2846 			break;
2847 
2848 		if (!tcp_collapse_retrans(sk, to))
2849 			break;
2850 	}
2851 }
2852 
2853 /* This retransmits one SKB.  Policy decisions and retransmit queue
2854  * state updates are done by the caller.  Returns non-zero if an
2855  * error occurred which prevented the send.
2856  */
2857 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2858 {
2859 	struct inet_connection_sock *icsk = inet_csk(sk);
2860 	struct tcp_sock *tp = tcp_sk(sk);
2861 	unsigned int cur_mss;
2862 	int diff, len, err;
2863 
2864 
2865 	/* Inconclusive MTU probe */
2866 	if (icsk->icsk_mtup.probe_size)
2867 		icsk->icsk_mtup.probe_size = 0;
2868 
2869 	/* Do not sent more than we queued. 1/4 is reserved for possible
2870 	 * copying overhead: fragmentation, tunneling, mangling etc.
2871 	 */
2872 	if (refcount_read(&sk->sk_wmem_alloc) >
2873 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2874 		  sk->sk_sndbuf))
2875 		return -EAGAIN;
2876 
2877 	if (skb_still_in_host_queue(sk, skb))
2878 		return -EBUSY;
2879 
2880 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2881 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2882 			WARN_ON_ONCE(1);
2883 			return -EINVAL;
2884 		}
2885 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2886 			return -ENOMEM;
2887 	}
2888 
2889 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2890 		return -EHOSTUNREACH; /* Routing failure or similar. */
2891 
2892 	cur_mss = tcp_current_mss(sk);
2893 
2894 	/* If receiver has shrunk his window, and skb is out of
2895 	 * new window, do not retransmit it. The exception is the
2896 	 * case, when window is shrunk to zero. In this case
2897 	 * our retransmit serves as a zero window probe.
2898 	 */
2899 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2900 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2901 		return -EAGAIN;
2902 
2903 	len = cur_mss * segs;
2904 	if (skb->len > len) {
2905 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2906 				 cur_mss, GFP_ATOMIC))
2907 			return -ENOMEM; /* We'll try again later. */
2908 	} else {
2909 		if (skb_unclone(skb, GFP_ATOMIC))
2910 			return -ENOMEM;
2911 
2912 		diff = tcp_skb_pcount(skb);
2913 		tcp_set_skb_tso_segs(skb, cur_mss);
2914 		diff -= tcp_skb_pcount(skb);
2915 		if (diff)
2916 			tcp_adjust_pcount(sk, skb, diff);
2917 		if (skb->len < cur_mss)
2918 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2919 	}
2920 
2921 	/* RFC3168, section 6.1.1.1. ECN fallback */
2922 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2923 		tcp_ecn_clear_syn(sk, skb);
2924 
2925 	/* Update global and local TCP statistics. */
2926 	segs = tcp_skb_pcount(skb);
2927 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2928 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2929 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2930 	tp->total_retrans += segs;
2931 	tp->bytes_retrans += skb->len;
2932 
2933 	/* make sure skb->data is aligned on arches that require it
2934 	 * and check if ack-trimming & collapsing extended the headroom
2935 	 * beyond what csum_start can cover.
2936 	 */
2937 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2938 		     skb_headroom(skb) >= 0xFFFF)) {
2939 		struct sk_buff *nskb;
2940 
2941 		tcp_skb_tsorted_save(skb) {
2942 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2943 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2944 				     -ENOBUFS;
2945 		} tcp_skb_tsorted_restore(skb);
2946 
2947 		if (!err) {
2948 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
2949 			tcp_rate_skb_sent(sk, skb);
2950 		}
2951 	} else {
2952 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2953 	}
2954 
2955 	/* To avoid taking spuriously low RTT samples based on a timestamp
2956 	 * for a transmit that never happened, always mark EVER_RETRANS
2957 	 */
2958 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2959 
2960 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2961 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2962 				  TCP_SKB_CB(skb)->seq, segs, err);
2963 
2964 	if (likely(!err)) {
2965 		trace_tcp_retransmit_skb(sk, skb);
2966 	} else if (err != -EBUSY) {
2967 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
2968 	}
2969 	return err;
2970 }
2971 
2972 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2973 {
2974 	struct tcp_sock *tp = tcp_sk(sk);
2975 	int err = __tcp_retransmit_skb(sk, skb, segs);
2976 
2977 	if (err == 0) {
2978 #if FASTRETRANS_DEBUG > 0
2979 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2980 			net_dbg_ratelimited("retrans_out leaked\n");
2981 		}
2982 #endif
2983 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2984 		tp->retrans_out += tcp_skb_pcount(skb);
2985 	}
2986 
2987 	/* Save stamp of the first (attempted) retransmit. */
2988 	if (!tp->retrans_stamp)
2989 		tp->retrans_stamp = tcp_skb_timestamp(skb);
2990 
2991 	if (tp->undo_retrans < 0)
2992 		tp->undo_retrans = 0;
2993 	tp->undo_retrans += tcp_skb_pcount(skb);
2994 	return err;
2995 }
2996 
2997 /* This gets called after a retransmit timeout, and the initially
2998  * retransmitted data is acknowledged.  It tries to continue
2999  * resending the rest of the retransmit queue, until either
3000  * we've sent it all or the congestion window limit is reached.
3001  */
3002 void tcp_xmit_retransmit_queue(struct sock *sk)
3003 {
3004 	const struct inet_connection_sock *icsk = inet_csk(sk);
3005 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3006 	struct tcp_sock *tp = tcp_sk(sk);
3007 	u32 max_segs;
3008 	int mib_idx;
3009 
3010 	if (!tp->packets_out)
3011 		return;
3012 
3013 	rtx_head = tcp_rtx_queue_head(sk);
3014 	skb = tp->retransmit_skb_hint ?: rtx_head;
3015 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3016 	skb_rbtree_walk_from(skb) {
3017 		__u8 sacked;
3018 		int segs;
3019 
3020 		if (tcp_pacing_check(sk))
3021 			break;
3022 
3023 		/* we could do better than to assign each time */
3024 		if (!hole)
3025 			tp->retransmit_skb_hint = skb;
3026 
3027 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3028 		if (segs <= 0)
3029 			return;
3030 		sacked = TCP_SKB_CB(skb)->sacked;
3031 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3032 		 * we need to make sure not sending too bigs TSO packets
3033 		 */
3034 		segs = min_t(int, segs, max_segs);
3035 
3036 		if (tp->retrans_out >= tp->lost_out) {
3037 			break;
3038 		} else if (!(sacked & TCPCB_LOST)) {
3039 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3040 				hole = skb;
3041 			continue;
3042 
3043 		} else {
3044 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3045 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3046 			else
3047 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3048 		}
3049 
3050 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3051 			continue;
3052 
3053 		if (tcp_small_queue_check(sk, skb, 1))
3054 			return;
3055 
3056 		if (tcp_retransmit_skb(sk, skb, segs))
3057 			return;
3058 
3059 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3060 
3061 		if (tcp_in_cwnd_reduction(sk))
3062 			tp->prr_out += tcp_skb_pcount(skb);
3063 
3064 		if (skb == rtx_head &&
3065 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3066 			tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3067 					     inet_csk(sk)->icsk_rto,
3068 					     TCP_RTO_MAX,
3069 					     skb);
3070 	}
3071 }
3072 
3073 /* We allow to exceed memory limits for FIN packets to expedite
3074  * connection tear down and (memory) recovery.
3075  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3076  * or even be forced to close flow without any FIN.
3077  * In general, we want to allow one skb per socket to avoid hangs
3078  * with edge trigger epoll()
3079  */
3080 void sk_forced_mem_schedule(struct sock *sk, int size)
3081 {
3082 	int amt;
3083 
3084 	if (size <= sk->sk_forward_alloc)
3085 		return;
3086 	amt = sk_mem_pages(size);
3087 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3088 	sk_memory_allocated_add(sk, amt);
3089 
3090 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3091 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3092 }
3093 
3094 /* Send a FIN. The caller locks the socket for us.
3095  * We should try to send a FIN packet really hard, but eventually give up.
3096  */
3097 void tcp_send_fin(struct sock *sk)
3098 {
3099 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3100 	struct tcp_sock *tp = tcp_sk(sk);
3101 
3102 	/* Optimization, tack on the FIN if we have one skb in write queue and
3103 	 * this skb was not yet sent, or we are under memory pressure.
3104 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3105 	 * as TCP stack thinks it has already been transmitted.
3106 	 */
3107 	if (!tskb && tcp_under_memory_pressure(sk))
3108 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3109 
3110 	if (tskb) {
3111 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3112 		TCP_SKB_CB(tskb)->end_seq++;
3113 		tp->write_seq++;
3114 		if (tcp_write_queue_empty(sk)) {
3115 			/* This means tskb was already sent.
3116 			 * Pretend we included the FIN on previous transmit.
3117 			 * We need to set tp->snd_nxt to the value it would have
3118 			 * if FIN had been sent. This is because retransmit path
3119 			 * does not change tp->snd_nxt.
3120 			 */
3121 			tp->snd_nxt++;
3122 			return;
3123 		}
3124 	} else {
3125 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3126 		if (unlikely(!skb))
3127 			return;
3128 
3129 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3130 		skb_reserve(skb, MAX_TCP_HEADER);
3131 		sk_forced_mem_schedule(sk, skb->truesize);
3132 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3133 		tcp_init_nondata_skb(skb, tp->write_seq,
3134 				     TCPHDR_ACK | TCPHDR_FIN);
3135 		tcp_queue_skb(sk, skb);
3136 	}
3137 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3138 }
3139 
3140 /* We get here when a process closes a file descriptor (either due to
3141  * an explicit close() or as a byproduct of exit()'ing) and there
3142  * was unread data in the receive queue.  This behavior is recommended
3143  * by RFC 2525, section 2.17.  -DaveM
3144  */
3145 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3146 {
3147 	struct sk_buff *skb;
3148 
3149 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3150 
3151 	/* NOTE: No TCP options attached and we never retransmit this. */
3152 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3153 	if (!skb) {
3154 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3155 		return;
3156 	}
3157 
3158 	/* Reserve space for headers and prepare control bits. */
3159 	skb_reserve(skb, MAX_TCP_HEADER);
3160 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3161 			     TCPHDR_ACK | TCPHDR_RST);
3162 	tcp_mstamp_refresh(tcp_sk(sk));
3163 	/* Send it off. */
3164 	if (tcp_transmit_skb(sk, skb, 0, priority))
3165 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3166 
3167 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3168 	 * skb here is different to the troublesome skb, so use NULL
3169 	 */
3170 	trace_tcp_send_reset(sk, NULL);
3171 }
3172 
3173 /* Send a crossed SYN-ACK during socket establishment.
3174  * WARNING: This routine must only be called when we have already sent
3175  * a SYN packet that crossed the incoming SYN that caused this routine
3176  * to get called. If this assumption fails then the initial rcv_wnd
3177  * and rcv_wscale values will not be correct.
3178  */
3179 int tcp_send_synack(struct sock *sk)
3180 {
3181 	struct sk_buff *skb;
3182 
3183 	skb = tcp_rtx_queue_head(sk);
3184 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3185 		pr_err("%s: wrong queue state\n", __func__);
3186 		return -EFAULT;
3187 	}
3188 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3189 		if (skb_cloned(skb)) {
3190 			struct sk_buff *nskb;
3191 
3192 			tcp_skb_tsorted_save(skb) {
3193 				nskb = skb_copy(skb, GFP_ATOMIC);
3194 			} tcp_skb_tsorted_restore(skb);
3195 			if (!nskb)
3196 				return -ENOMEM;
3197 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3198 			tcp_rtx_queue_unlink_and_free(skb, sk);
3199 			__skb_header_release(nskb);
3200 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3201 			sk->sk_wmem_queued += nskb->truesize;
3202 			sk_mem_charge(sk, nskb->truesize);
3203 			skb = nskb;
3204 		}
3205 
3206 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3207 		tcp_ecn_send_synack(sk, skb);
3208 	}
3209 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3210 }
3211 
3212 /**
3213  * tcp_make_synack - Prepare a SYN-ACK.
3214  * sk: listener socket
3215  * dst: dst entry attached to the SYNACK
3216  * req: request_sock pointer
3217  *
3218  * Allocate one skb and build a SYNACK packet.
3219  * @dst is consumed : Caller should not use it again.
3220  */
3221 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3222 				struct request_sock *req,
3223 				struct tcp_fastopen_cookie *foc,
3224 				enum tcp_synack_type synack_type)
3225 {
3226 	struct inet_request_sock *ireq = inet_rsk(req);
3227 	const struct tcp_sock *tp = tcp_sk(sk);
3228 	struct tcp_md5sig_key *md5 = NULL;
3229 	struct tcp_out_options opts;
3230 	struct sk_buff *skb;
3231 	int tcp_header_size;
3232 	struct tcphdr *th;
3233 	int mss;
3234 	u64 now;
3235 
3236 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3237 	if (unlikely(!skb)) {
3238 		dst_release(dst);
3239 		return NULL;
3240 	}
3241 	/* Reserve space for headers. */
3242 	skb_reserve(skb, MAX_TCP_HEADER);
3243 
3244 	switch (synack_type) {
3245 	case TCP_SYNACK_NORMAL:
3246 		skb_set_owner_w(skb, req_to_sk(req));
3247 		break;
3248 	case TCP_SYNACK_COOKIE:
3249 		/* Under synflood, we do not attach skb to a socket,
3250 		 * to avoid false sharing.
3251 		 */
3252 		break;
3253 	case TCP_SYNACK_FASTOPEN:
3254 		/* sk is a const pointer, because we want to express multiple
3255 		 * cpu might call us concurrently.
3256 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3257 		 */
3258 		skb_set_owner_w(skb, (struct sock *)sk);
3259 		break;
3260 	}
3261 	skb_dst_set(skb, dst);
3262 
3263 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3264 
3265 	memset(&opts, 0, sizeof(opts));
3266 	now = tcp_clock_ns();
3267 #ifdef CONFIG_SYN_COOKIES
3268 	if (unlikely(req->cookie_ts))
3269 		skb->skb_mstamp_ns = cookie_init_timestamp(req);
3270 	else
3271 #endif
3272 	{
3273 		skb->skb_mstamp_ns = now;
3274 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3275 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3276 	}
3277 
3278 #ifdef CONFIG_TCP_MD5SIG
3279 	rcu_read_lock();
3280 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3281 #endif
3282 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3283 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3284 					     foc) + sizeof(*th);
3285 
3286 	skb_push(skb, tcp_header_size);
3287 	skb_reset_transport_header(skb);
3288 
3289 	th = (struct tcphdr *)skb->data;
3290 	memset(th, 0, sizeof(struct tcphdr));
3291 	th->syn = 1;
3292 	th->ack = 1;
3293 	tcp_ecn_make_synack(req, th);
3294 	th->source = htons(ireq->ir_num);
3295 	th->dest = ireq->ir_rmt_port;
3296 	skb->mark = ireq->ir_mark;
3297 	skb->ip_summed = CHECKSUM_PARTIAL;
3298 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3299 	/* XXX data is queued and acked as is. No buffer/window check */
3300 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3301 
3302 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3303 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3304 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3305 	th->doff = (tcp_header_size >> 2);
3306 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3307 
3308 #ifdef CONFIG_TCP_MD5SIG
3309 	/* Okay, we have all we need - do the md5 hash if needed */
3310 	if (md5)
3311 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3312 					       md5, req_to_sk(req), skb);
3313 	rcu_read_unlock();
3314 #endif
3315 
3316 	skb->skb_mstamp_ns = now;
3317 	tcp_add_tx_delay(skb, tp);
3318 
3319 	return skb;
3320 }
3321 EXPORT_SYMBOL(tcp_make_synack);
3322 
3323 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3324 {
3325 	struct inet_connection_sock *icsk = inet_csk(sk);
3326 	const struct tcp_congestion_ops *ca;
3327 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3328 
3329 	if (ca_key == TCP_CA_UNSPEC)
3330 		return;
3331 
3332 	rcu_read_lock();
3333 	ca = tcp_ca_find_key(ca_key);
3334 	if (likely(ca && try_module_get(ca->owner))) {
3335 		module_put(icsk->icsk_ca_ops->owner);
3336 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3337 		icsk->icsk_ca_ops = ca;
3338 	}
3339 	rcu_read_unlock();
3340 }
3341 
3342 /* Do all connect socket setups that can be done AF independent. */
3343 static void tcp_connect_init(struct sock *sk)
3344 {
3345 	const struct dst_entry *dst = __sk_dst_get(sk);
3346 	struct tcp_sock *tp = tcp_sk(sk);
3347 	__u8 rcv_wscale;
3348 	u32 rcv_wnd;
3349 
3350 	/* We'll fix this up when we get a response from the other end.
3351 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3352 	 */
3353 	tp->tcp_header_len = sizeof(struct tcphdr);
3354 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3355 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3356 
3357 #ifdef CONFIG_TCP_MD5SIG
3358 	if (tp->af_specific->md5_lookup(sk, sk))
3359 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3360 #endif
3361 
3362 	/* If user gave his TCP_MAXSEG, record it to clamp */
3363 	if (tp->rx_opt.user_mss)
3364 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3365 	tp->max_window = 0;
3366 	tcp_mtup_init(sk);
3367 	tcp_sync_mss(sk, dst_mtu(dst));
3368 
3369 	tcp_ca_dst_init(sk, dst);
3370 
3371 	if (!tp->window_clamp)
3372 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3373 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3374 
3375 	tcp_initialize_rcv_mss(sk);
3376 
3377 	/* limit the window selection if the user enforce a smaller rx buffer */
3378 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3379 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3380 		tp->window_clamp = tcp_full_space(sk);
3381 
3382 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3383 	if (rcv_wnd == 0)
3384 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3385 
3386 	tcp_select_initial_window(sk, tcp_full_space(sk),
3387 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3388 				  &tp->rcv_wnd,
3389 				  &tp->window_clamp,
3390 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3391 				  &rcv_wscale,
3392 				  rcv_wnd);
3393 
3394 	tp->rx_opt.rcv_wscale = rcv_wscale;
3395 	tp->rcv_ssthresh = tp->rcv_wnd;
3396 
3397 	sk->sk_err = 0;
3398 	sock_reset_flag(sk, SOCK_DONE);
3399 	tp->snd_wnd = 0;
3400 	tcp_init_wl(tp, 0);
3401 	tcp_write_queue_purge(sk);
3402 	tp->snd_una = tp->write_seq;
3403 	tp->snd_sml = tp->write_seq;
3404 	tp->snd_up = tp->write_seq;
3405 	tp->snd_nxt = tp->write_seq;
3406 
3407 	if (likely(!tp->repair))
3408 		tp->rcv_nxt = 0;
3409 	else
3410 		tp->rcv_tstamp = tcp_jiffies32;
3411 	tp->rcv_wup = tp->rcv_nxt;
3412 	tp->copied_seq = tp->rcv_nxt;
3413 
3414 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3415 	inet_csk(sk)->icsk_retransmits = 0;
3416 	tcp_clear_retrans(tp);
3417 }
3418 
3419 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3420 {
3421 	struct tcp_sock *tp = tcp_sk(sk);
3422 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3423 
3424 	tcb->end_seq += skb->len;
3425 	__skb_header_release(skb);
3426 	sk->sk_wmem_queued += skb->truesize;
3427 	sk_mem_charge(sk, skb->truesize);
3428 	tp->write_seq = tcb->end_seq;
3429 	tp->packets_out += tcp_skb_pcount(skb);
3430 }
3431 
3432 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3433  * queue a data-only packet after the regular SYN, such that regular SYNs
3434  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3435  * only the SYN sequence, the data are retransmitted in the first ACK.
3436  * If cookie is not cached or other error occurs, falls back to send a
3437  * regular SYN with Fast Open cookie request option.
3438  */
3439 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3440 {
3441 	struct tcp_sock *tp = tcp_sk(sk);
3442 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3443 	int space, err = 0;
3444 	struct sk_buff *syn_data;
3445 
3446 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3447 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3448 		goto fallback;
3449 
3450 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3451 	 * user-MSS. Reserve maximum option space for middleboxes that add
3452 	 * private TCP options. The cost is reduced data space in SYN :(
3453 	 */
3454 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3455 
3456 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3457 		MAX_TCP_OPTION_SPACE;
3458 
3459 	space = min_t(size_t, space, fo->size);
3460 
3461 	/* limit to order-0 allocations */
3462 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3463 
3464 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3465 	if (!syn_data)
3466 		goto fallback;
3467 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3468 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3469 	if (space) {
3470 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3471 					    &fo->data->msg_iter);
3472 		if (unlikely(!copied)) {
3473 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3474 			kfree_skb(syn_data);
3475 			goto fallback;
3476 		}
3477 		if (copied != space) {
3478 			skb_trim(syn_data, copied);
3479 			space = copied;
3480 		}
3481 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3482 	}
3483 	/* No more data pending in inet_wait_for_connect() */
3484 	if (space == fo->size)
3485 		fo->data = NULL;
3486 	fo->copied = space;
3487 
3488 	tcp_connect_queue_skb(sk, syn_data);
3489 	if (syn_data->len)
3490 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3491 
3492 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3493 
3494 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3495 
3496 	/* Now full SYN+DATA was cloned and sent (or not),
3497 	 * remove the SYN from the original skb (syn_data)
3498 	 * we keep in write queue in case of a retransmit, as we
3499 	 * also have the SYN packet (with no data) in the same queue.
3500 	 */
3501 	TCP_SKB_CB(syn_data)->seq++;
3502 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3503 	if (!err) {
3504 		tp->syn_data = (fo->copied > 0);
3505 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3506 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3507 		goto done;
3508 	}
3509 
3510 	/* data was not sent, put it in write_queue */
3511 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3512 	tp->packets_out -= tcp_skb_pcount(syn_data);
3513 
3514 fallback:
3515 	/* Send a regular SYN with Fast Open cookie request option */
3516 	if (fo->cookie.len > 0)
3517 		fo->cookie.len = 0;
3518 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3519 	if (err)
3520 		tp->syn_fastopen = 0;
3521 done:
3522 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3523 	return err;
3524 }
3525 
3526 /* Build a SYN and send it off. */
3527 int tcp_connect(struct sock *sk)
3528 {
3529 	struct tcp_sock *tp = tcp_sk(sk);
3530 	struct sk_buff *buff;
3531 	int err;
3532 
3533 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3534 
3535 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3536 		return -EHOSTUNREACH; /* Routing failure or similar. */
3537 
3538 	tcp_connect_init(sk);
3539 
3540 	if (unlikely(tp->repair)) {
3541 		tcp_finish_connect(sk, NULL);
3542 		return 0;
3543 	}
3544 
3545 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3546 	if (unlikely(!buff))
3547 		return -ENOBUFS;
3548 
3549 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3550 	tcp_mstamp_refresh(tp);
3551 	tp->retrans_stamp = tcp_time_stamp(tp);
3552 	tcp_connect_queue_skb(sk, buff);
3553 	tcp_ecn_send_syn(sk, buff);
3554 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3555 
3556 	/* Send off SYN; include data in Fast Open. */
3557 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3558 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3559 	if (err == -ECONNREFUSED)
3560 		return err;
3561 
3562 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3563 	 * in order to make this packet get counted in tcpOutSegs.
3564 	 */
3565 	tp->snd_nxt = tp->write_seq;
3566 	tp->pushed_seq = tp->write_seq;
3567 	buff = tcp_send_head(sk);
3568 	if (unlikely(buff)) {
3569 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3570 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3571 	}
3572 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3573 
3574 	/* Timer for repeating the SYN until an answer. */
3575 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3576 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3577 	return 0;
3578 }
3579 EXPORT_SYMBOL(tcp_connect);
3580 
3581 /* Send out a delayed ack, the caller does the policy checking
3582  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3583  * for details.
3584  */
3585 void tcp_send_delayed_ack(struct sock *sk)
3586 {
3587 	struct inet_connection_sock *icsk = inet_csk(sk);
3588 	int ato = icsk->icsk_ack.ato;
3589 	unsigned long timeout;
3590 
3591 	if (ato > TCP_DELACK_MIN) {
3592 		const struct tcp_sock *tp = tcp_sk(sk);
3593 		int max_ato = HZ / 2;
3594 
3595 		if (inet_csk_in_pingpong_mode(sk) ||
3596 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3597 			max_ato = TCP_DELACK_MAX;
3598 
3599 		/* Slow path, intersegment interval is "high". */
3600 
3601 		/* If some rtt estimate is known, use it to bound delayed ack.
3602 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3603 		 * directly.
3604 		 */
3605 		if (tp->srtt_us) {
3606 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3607 					TCP_DELACK_MIN);
3608 
3609 			if (rtt < max_ato)
3610 				max_ato = rtt;
3611 		}
3612 
3613 		ato = min(ato, max_ato);
3614 	}
3615 
3616 	/* Stay within the limit we were given */
3617 	timeout = jiffies + ato;
3618 
3619 	/* Use new timeout only if there wasn't a older one earlier. */
3620 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3621 		/* If delack timer was blocked or is about to expire,
3622 		 * send ACK now.
3623 		 */
3624 		if (icsk->icsk_ack.blocked ||
3625 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3626 			tcp_send_ack(sk);
3627 			return;
3628 		}
3629 
3630 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3631 			timeout = icsk->icsk_ack.timeout;
3632 	}
3633 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3634 	icsk->icsk_ack.timeout = timeout;
3635 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3636 }
3637 
3638 /* This routine sends an ack and also updates the window. */
3639 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3640 {
3641 	struct sk_buff *buff;
3642 
3643 	/* If we have been reset, we may not send again. */
3644 	if (sk->sk_state == TCP_CLOSE)
3645 		return;
3646 
3647 	/* We are not putting this on the write queue, so
3648 	 * tcp_transmit_skb() will set the ownership to this
3649 	 * sock.
3650 	 */
3651 	buff = alloc_skb(MAX_TCP_HEADER,
3652 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3653 	if (unlikely(!buff)) {
3654 		inet_csk_schedule_ack(sk);
3655 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3656 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3657 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3658 		return;
3659 	}
3660 
3661 	/* Reserve space for headers and prepare control bits. */
3662 	skb_reserve(buff, MAX_TCP_HEADER);
3663 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3664 
3665 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3666 	 * too much.
3667 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3668 	 */
3669 	skb_set_tcp_pure_ack(buff);
3670 
3671 	/* Send it off, this clears delayed acks for us. */
3672 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3673 }
3674 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3675 
3676 void tcp_send_ack(struct sock *sk)
3677 {
3678 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3679 }
3680 
3681 /* This routine sends a packet with an out of date sequence
3682  * number. It assumes the other end will try to ack it.
3683  *
3684  * Question: what should we make while urgent mode?
3685  * 4.4BSD forces sending single byte of data. We cannot send
3686  * out of window data, because we have SND.NXT==SND.MAX...
3687  *
3688  * Current solution: to send TWO zero-length segments in urgent mode:
3689  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3690  * out-of-date with SND.UNA-1 to probe window.
3691  */
3692 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3693 {
3694 	struct tcp_sock *tp = tcp_sk(sk);
3695 	struct sk_buff *skb;
3696 
3697 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3698 	skb = alloc_skb(MAX_TCP_HEADER,
3699 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3700 	if (!skb)
3701 		return -1;
3702 
3703 	/* Reserve space for headers and set control bits. */
3704 	skb_reserve(skb, MAX_TCP_HEADER);
3705 	/* Use a previous sequence.  This should cause the other
3706 	 * end to send an ack.  Don't queue or clone SKB, just
3707 	 * send it.
3708 	 */
3709 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3710 	NET_INC_STATS(sock_net(sk), mib);
3711 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3712 }
3713 
3714 /* Called from setsockopt( ... TCP_REPAIR ) */
3715 void tcp_send_window_probe(struct sock *sk)
3716 {
3717 	if (sk->sk_state == TCP_ESTABLISHED) {
3718 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3719 		tcp_mstamp_refresh(tcp_sk(sk));
3720 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3721 	}
3722 }
3723 
3724 /* Initiate keepalive or window probe from timer. */
3725 int tcp_write_wakeup(struct sock *sk, int mib)
3726 {
3727 	struct tcp_sock *tp = tcp_sk(sk);
3728 	struct sk_buff *skb;
3729 
3730 	if (sk->sk_state == TCP_CLOSE)
3731 		return -1;
3732 
3733 	skb = tcp_send_head(sk);
3734 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3735 		int err;
3736 		unsigned int mss = tcp_current_mss(sk);
3737 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3738 
3739 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3740 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3741 
3742 		/* We are probing the opening of a window
3743 		 * but the window size is != 0
3744 		 * must have been a result SWS avoidance ( sender )
3745 		 */
3746 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3747 		    skb->len > mss) {
3748 			seg_size = min(seg_size, mss);
3749 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3750 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3751 					 skb, seg_size, mss, GFP_ATOMIC))
3752 				return -1;
3753 		} else if (!tcp_skb_pcount(skb))
3754 			tcp_set_skb_tso_segs(skb, mss);
3755 
3756 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3757 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3758 		if (!err)
3759 			tcp_event_new_data_sent(sk, skb);
3760 		return err;
3761 	} else {
3762 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3763 			tcp_xmit_probe_skb(sk, 1, mib);
3764 		return tcp_xmit_probe_skb(sk, 0, mib);
3765 	}
3766 }
3767 
3768 /* A window probe timeout has occurred.  If window is not closed send
3769  * a partial packet else a zero probe.
3770  */
3771 void tcp_send_probe0(struct sock *sk)
3772 {
3773 	struct inet_connection_sock *icsk = inet_csk(sk);
3774 	struct tcp_sock *tp = tcp_sk(sk);
3775 	struct net *net = sock_net(sk);
3776 	unsigned long timeout;
3777 	int err;
3778 
3779 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3780 
3781 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3782 		/* Cancel probe timer, if it is not required. */
3783 		icsk->icsk_probes_out = 0;
3784 		icsk->icsk_backoff = 0;
3785 		return;
3786 	}
3787 
3788 	icsk->icsk_probes_out++;
3789 	if (err <= 0) {
3790 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3791 			icsk->icsk_backoff++;
3792 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3793 	} else {
3794 		/* If packet was not sent due to local congestion,
3795 		 * Let senders fight for local resources conservatively.
3796 		 */
3797 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
3798 	}
3799 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL);
3800 }
3801 
3802 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3803 {
3804 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3805 	struct flowi fl;
3806 	int res;
3807 
3808 	tcp_rsk(req)->txhash = net_tx_rndhash();
3809 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3810 	if (!res) {
3811 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3812 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3813 		if (unlikely(tcp_passive_fastopen(sk)))
3814 			tcp_sk(sk)->total_retrans++;
3815 		trace_tcp_retransmit_synack(sk, req);
3816 	}
3817 	return res;
3818 }
3819 EXPORT_SYMBOL(tcp_rtx_synack);
3820