xref: /openbmc/linux/net/ipv4/tcp_output.c (revision c997aabb)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 			   int push_one, gfp_t gfp);
67 
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 	struct inet_connection_sock *icsk = inet_csk(sk);
72 	struct tcp_sock *tp = tcp_sk(sk);
73 	unsigned int prior_packets = tp->packets_out;
74 
75 	tcp_advance_send_head(sk, skb);
76 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 		tcp_rearm_rto(sk);
81 
82 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 		      tcp_skb_pcount(skb));
84 }
85 
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87  * window scaling factor due to loss of precision.
88  * If window has been shrunk, what should we make? It is not clear at all.
89  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91  * invalid. OK, let's make this for now:
92  */
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 	const struct tcp_sock *tp = tcp_sk(sk);
96 
97 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 	    (tp->rx_opt.wscale_ok &&
99 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 		return tp->snd_nxt;
101 	else
102 		return tcp_wnd_end(tp);
103 }
104 
105 /* Calculate mss to advertise in SYN segment.
106  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107  *
108  * 1. It is independent of path mtu.
109  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111  *    attached devices, because some buggy hosts are confused by
112  *    large MSS.
113  * 4. We do not make 3, we advertise MSS, calculated from first
114  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
115  *    This may be overridden via information stored in routing table.
116  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117  *    probably even Jumbo".
118  */
119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 	struct tcp_sock *tp = tcp_sk(sk);
122 	const struct dst_entry *dst = __sk_dst_get(sk);
123 	int mss = tp->advmss;
124 
125 	if (dst) {
126 		unsigned int metric = dst_metric_advmss(dst);
127 
128 		if (metric < mss) {
129 			mss = metric;
130 			tp->advmss = mss;
131 		}
132 	}
133 
134 	return (__u16)mss;
135 }
136 
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138  * This is the first part of cwnd validation mechanism.
139  */
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 	struct tcp_sock *tp = tcp_sk(sk);
143 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 	u32 cwnd = tp->snd_cwnd;
145 
146 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147 
148 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 	restart_cwnd = min(restart_cwnd, cwnd);
150 
151 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 		cwnd >>= 1;
153 	tp->snd_cwnd = max(cwnd, restart_cwnd);
154 	tp->snd_cwnd_stamp = tcp_jiffies32;
155 	tp->snd_cwnd_used = 0;
156 }
157 
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 				struct sock *sk)
161 {
162 	struct inet_connection_sock *icsk = inet_csk(sk);
163 	const u32 now = tcp_jiffies32;
164 
165 	if (tcp_packets_in_flight(tp) == 0)
166 		tcp_ca_event(sk, CA_EVENT_TX_START);
167 
168 	tp->lsndtime = now;
169 
170 	/* If it is a reply for ato after last received
171 	 * packet, enter pingpong mode.
172 	 */
173 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 		icsk->icsk_ack.pingpong = 1;
175 }
176 
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 	tcp_dec_quickack_mode(sk, pkts);
181 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183 
184 
185 u32 tcp_default_init_rwnd(u32 mss)
186 {
187 	/* Initial receive window should be twice of TCP_INIT_CWND to
188 	 * enable proper sending of new unsent data during fast recovery
189 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
190 	 * limit when mss is larger than 1460.
191 	 */
192 	u32 init_rwnd = TCP_INIT_CWND * 2;
193 
194 	if (mss > 1460)
195 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
196 	return init_rwnd;
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
206 void tcp_select_initial_window(int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (*window_clamp == 0)
215 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 	space = min(*window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = rounddown(space, mss);
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (sysctl_tcp_workaround_signed_windows)
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = space;
234 
235 	(*rcv_wscale) = 0;
236 	if (wscale_ok) {
237 		/* Set window scaling on max possible window */
238 		space = max_t(u32, space, sysctl_tcp_rmem[2]);
239 		space = max_t(u32, space, sysctl_rmem_max);
240 		space = min_t(u32, space, *window_clamp);
241 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
242 			space >>= 1;
243 			(*rcv_wscale)++;
244 		}
245 	}
246 
247 	if (mss > (1 << *rcv_wscale)) {
248 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 			init_rcv_wnd = tcp_default_init_rwnd(mss);
250 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 	}
252 
253 	/* Set the clamp no higher than max representable value */
254 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
255 }
256 EXPORT_SYMBOL(tcp_select_initial_window);
257 
258 /* Chose a new window to advertise, update state in tcp_sock for the
259  * socket, and return result with RFC1323 scaling applied.  The return
260  * value can be stuffed directly into th->window for an outgoing
261  * frame.
262  */
263 static u16 tcp_select_window(struct sock *sk)
264 {
265 	struct tcp_sock *tp = tcp_sk(sk);
266 	u32 old_win = tp->rcv_wnd;
267 	u32 cur_win = tcp_receive_window(tp);
268 	u32 new_win = __tcp_select_window(sk);
269 
270 	/* Never shrink the offered window */
271 	if (new_win < cur_win) {
272 		/* Danger Will Robinson!
273 		 * Don't update rcv_wup/rcv_wnd here or else
274 		 * we will not be able to advertise a zero
275 		 * window in time.  --DaveM
276 		 *
277 		 * Relax Will Robinson.
278 		 */
279 		if (new_win == 0)
280 			NET_INC_STATS(sock_net(sk),
281 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
282 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
283 	}
284 	tp->rcv_wnd = new_win;
285 	tp->rcv_wup = tp->rcv_nxt;
286 
287 	/* Make sure we do not exceed the maximum possible
288 	 * scaled window.
289 	 */
290 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 		new_win = min(new_win, MAX_TCP_WINDOW);
292 	else
293 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
294 
295 	/* RFC1323 scaling applied */
296 	new_win >>= tp->rx_opt.rcv_wscale;
297 
298 	/* If we advertise zero window, disable fast path. */
299 	if (new_win == 0) {
300 		tp->pred_flags = 0;
301 		if (old_win)
302 			NET_INC_STATS(sock_net(sk),
303 				      LINUX_MIB_TCPTOZEROWINDOWADV);
304 	} else if (old_win == 0) {
305 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
306 	}
307 
308 	return new_win;
309 }
310 
311 /* Packet ECN state for a SYN-ACK */
312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
313 {
314 	const struct tcp_sock *tp = tcp_sk(sk);
315 
316 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
317 	if (!(tp->ecn_flags & TCP_ECN_OK))
318 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
319 	else if (tcp_ca_needs_ecn(sk) ||
320 		 tcp_bpf_ca_needs_ecn(sk))
321 		INET_ECN_xmit(sk);
322 }
323 
324 /* Packet ECN state for a SYN.  */
325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
326 {
327 	struct tcp_sock *tp = tcp_sk(sk);
328 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
329 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
330 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
331 
332 	if (!use_ecn) {
333 		const struct dst_entry *dst = __sk_dst_get(sk);
334 
335 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
336 			use_ecn = true;
337 	}
338 
339 	tp->ecn_flags = 0;
340 
341 	if (use_ecn) {
342 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
343 		tp->ecn_flags = TCP_ECN_OK;
344 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
345 			INET_ECN_xmit(sk);
346 	}
347 }
348 
349 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
350 {
351 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
352 		/* tp->ecn_flags are cleared at a later point in time when
353 		 * SYN ACK is ultimatively being received.
354 		 */
355 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
356 }
357 
358 static void
359 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
360 {
361 	if (inet_rsk(req)->ecn_ok)
362 		th->ece = 1;
363 }
364 
365 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
366  * be sent.
367  */
368 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
369 			 struct tcphdr *th, int tcp_header_len)
370 {
371 	struct tcp_sock *tp = tcp_sk(sk);
372 
373 	if (tp->ecn_flags & TCP_ECN_OK) {
374 		/* Not-retransmitted data segment: set ECT and inject CWR. */
375 		if (skb->len != tcp_header_len &&
376 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
377 			INET_ECN_xmit(sk);
378 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
379 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
380 				th->cwr = 1;
381 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
382 			}
383 		} else if (!tcp_ca_needs_ecn(sk)) {
384 			/* ACK or retransmitted segment: clear ECT|CE */
385 			INET_ECN_dontxmit(sk);
386 		}
387 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
388 			th->ece = 1;
389 	}
390 }
391 
392 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
393  * auto increment end seqno.
394  */
395 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
396 {
397 	skb->ip_summed = CHECKSUM_PARTIAL;
398 	skb->csum = 0;
399 
400 	TCP_SKB_CB(skb)->tcp_flags = flags;
401 	TCP_SKB_CB(skb)->sacked = 0;
402 
403 	tcp_skb_pcount_set(skb, 1);
404 
405 	TCP_SKB_CB(skb)->seq = seq;
406 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
407 		seq++;
408 	TCP_SKB_CB(skb)->end_seq = seq;
409 }
410 
411 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
412 {
413 	return tp->snd_una != tp->snd_up;
414 }
415 
416 #define OPTION_SACK_ADVERTISE	(1 << 0)
417 #define OPTION_TS		(1 << 1)
418 #define OPTION_MD5		(1 << 2)
419 #define OPTION_WSCALE		(1 << 3)
420 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
421 
422 struct tcp_out_options {
423 	u16 options;		/* bit field of OPTION_* */
424 	u16 mss;		/* 0 to disable */
425 	u8 ws;			/* window scale, 0 to disable */
426 	u8 num_sack_blocks;	/* number of SACK blocks to include */
427 	u8 hash_size;		/* bytes in hash_location */
428 	__u8 *hash_location;	/* temporary pointer, overloaded */
429 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
430 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
431 };
432 
433 /* Write previously computed TCP options to the packet.
434  *
435  * Beware: Something in the Internet is very sensitive to the ordering of
436  * TCP options, we learned this through the hard way, so be careful here.
437  * Luckily we can at least blame others for their non-compliance but from
438  * inter-operability perspective it seems that we're somewhat stuck with
439  * the ordering which we have been using if we want to keep working with
440  * those broken things (not that it currently hurts anybody as there isn't
441  * particular reason why the ordering would need to be changed).
442  *
443  * At least SACK_PERM as the first option is known to lead to a disaster
444  * (but it may well be that other scenarios fail similarly).
445  */
446 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
447 			      struct tcp_out_options *opts)
448 {
449 	u16 options = opts->options;	/* mungable copy */
450 
451 	if (unlikely(OPTION_MD5 & options)) {
452 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
453 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
454 		/* overload cookie hash location */
455 		opts->hash_location = (__u8 *)ptr;
456 		ptr += 4;
457 	}
458 
459 	if (unlikely(opts->mss)) {
460 		*ptr++ = htonl((TCPOPT_MSS << 24) |
461 			       (TCPOLEN_MSS << 16) |
462 			       opts->mss);
463 	}
464 
465 	if (likely(OPTION_TS & options)) {
466 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
467 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
468 				       (TCPOLEN_SACK_PERM << 16) |
469 				       (TCPOPT_TIMESTAMP << 8) |
470 				       TCPOLEN_TIMESTAMP);
471 			options &= ~OPTION_SACK_ADVERTISE;
472 		} else {
473 			*ptr++ = htonl((TCPOPT_NOP << 24) |
474 				       (TCPOPT_NOP << 16) |
475 				       (TCPOPT_TIMESTAMP << 8) |
476 				       TCPOLEN_TIMESTAMP);
477 		}
478 		*ptr++ = htonl(opts->tsval);
479 		*ptr++ = htonl(opts->tsecr);
480 	}
481 
482 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
483 		*ptr++ = htonl((TCPOPT_NOP << 24) |
484 			       (TCPOPT_NOP << 16) |
485 			       (TCPOPT_SACK_PERM << 8) |
486 			       TCPOLEN_SACK_PERM);
487 	}
488 
489 	if (unlikely(OPTION_WSCALE & options)) {
490 		*ptr++ = htonl((TCPOPT_NOP << 24) |
491 			       (TCPOPT_WINDOW << 16) |
492 			       (TCPOLEN_WINDOW << 8) |
493 			       opts->ws);
494 	}
495 
496 	if (unlikely(opts->num_sack_blocks)) {
497 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
498 			tp->duplicate_sack : tp->selective_acks;
499 		int this_sack;
500 
501 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
502 			       (TCPOPT_NOP  << 16) |
503 			       (TCPOPT_SACK <<  8) |
504 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
505 						     TCPOLEN_SACK_PERBLOCK)));
506 
507 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
508 		     ++this_sack) {
509 			*ptr++ = htonl(sp[this_sack].start_seq);
510 			*ptr++ = htonl(sp[this_sack].end_seq);
511 		}
512 
513 		tp->rx_opt.dsack = 0;
514 	}
515 
516 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
517 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
518 		u8 *p = (u8 *)ptr;
519 		u32 len; /* Fast Open option length */
520 
521 		if (foc->exp) {
522 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
523 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
524 				     TCPOPT_FASTOPEN_MAGIC);
525 			p += TCPOLEN_EXP_FASTOPEN_BASE;
526 		} else {
527 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
528 			*p++ = TCPOPT_FASTOPEN;
529 			*p++ = len;
530 		}
531 
532 		memcpy(p, foc->val, foc->len);
533 		if ((len & 3) == 2) {
534 			p[foc->len] = TCPOPT_NOP;
535 			p[foc->len + 1] = TCPOPT_NOP;
536 		}
537 		ptr += (len + 3) >> 2;
538 	}
539 }
540 
541 /* Compute TCP options for SYN packets. This is not the final
542  * network wire format yet.
543  */
544 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
545 				struct tcp_out_options *opts,
546 				struct tcp_md5sig_key **md5)
547 {
548 	struct tcp_sock *tp = tcp_sk(sk);
549 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
550 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
551 
552 #ifdef CONFIG_TCP_MD5SIG
553 	*md5 = tp->af_specific->md5_lookup(sk, sk);
554 	if (*md5) {
555 		opts->options |= OPTION_MD5;
556 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
557 	}
558 #else
559 	*md5 = NULL;
560 #endif
561 
562 	/* We always get an MSS option.  The option bytes which will be seen in
563 	 * normal data packets should timestamps be used, must be in the MSS
564 	 * advertised.  But we subtract them from tp->mss_cache so that
565 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
566 	 * fact here if necessary.  If we don't do this correctly, as a
567 	 * receiver we won't recognize data packets as being full sized when we
568 	 * should, and thus we won't abide by the delayed ACK rules correctly.
569 	 * SACKs don't matter, we never delay an ACK when we have any of those
570 	 * going out.  */
571 	opts->mss = tcp_advertise_mss(sk);
572 	remaining -= TCPOLEN_MSS_ALIGNED;
573 
574 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
575 		opts->options |= OPTION_TS;
576 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
577 		opts->tsecr = tp->rx_opt.ts_recent;
578 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
579 	}
580 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
581 		opts->ws = tp->rx_opt.rcv_wscale;
582 		opts->options |= OPTION_WSCALE;
583 		remaining -= TCPOLEN_WSCALE_ALIGNED;
584 	}
585 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
586 		opts->options |= OPTION_SACK_ADVERTISE;
587 		if (unlikely(!(OPTION_TS & opts->options)))
588 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
589 	}
590 
591 	if (fastopen && fastopen->cookie.len >= 0) {
592 		u32 need = fastopen->cookie.len;
593 
594 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
595 					       TCPOLEN_FASTOPEN_BASE;
596 		need = (need + 3) & ~3U;  /* Align to 32 bits */
597 		if (remaining >= need) {
598 			opts->options |= OPTION_FAST_OPEN_COOKIE;
599 			opts->fastopen_cookie = &fastopen->cookie;
600 			remaining -= need;
601 			tp->syn_fastopen = 1;
602 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
603 		}
604 	}
605 
606 	return MAX_TCP_OPTION_SPACE - remaining;
607 }
608 
609 /* Set up TCP options for SYN-ACKs. */
610 static unsigned int tcp_synack_options(struct request_sock *req,
611 				       unsigned int mss, struct sk_buff *skb,
612 				       struct tcp_out_options *opts,
613 				       const struct tcp_md5sig_key *md5,
614 				       struct tcp_fastopen_cookie *foc)
615 {
616 	struct inet_request_sock *ireq = inet_rsk(req);
617 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
618 
619 #ifdef CONFIG_TCP_MD5SIG
620 	if (md5) {
621 		opts->options |= OPTION_MD5;
622 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
623 
624 		/* We can't fit any SACK blocks in a packet with MD5 + TS
625 		 * options. There was discussion about disabling SACK
626 		 * rather than TS in order to fit in better with old,
627 		 * buggy kernels, but that was deemed to be unnecessary.
628 		 */
629 		ireq->tstamp_ok &= !ireq->sack_ok;
630 	}
631 #endif
632 
633 	/* We always send an MSS option. */
634 	opts->mss = mss;
635 	remaining -= TCPOLEN_MSS_ALIGNED;
636 
637 	if (likely(ireq->wscale_ok)) {
638 		opts->ws = ireq->rcv_wscale;
639 		opts->options |= OPTION_WSCALE;
640 		remaining -= TCPOLEN_WSCALE_ALIGNED;
641 	}
642 	if (likely(ireq->tstamp_ok)) {
643 		opts->options |= OPTION_TS;
644 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
645 		opts->tsecr = req->ts_recent;
646 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
647 	}
648 	if (likely(ireq->sack_ok)) {
649 		opts->options |= OPTION_SACK_ADVERTISE;
650 		if (unlikely(!ireq->tstamp_ok))
651 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
652 	}
653 	if (foc != NULL && foc->len >= 0) {
654 		u32 need = foc->len;
655 
656 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
657 				   TCPOLEN_FASTOPEN_BASE;
658 		need = (need + 3) & ~3U;  /* Align to 32 bits */
659 		if (remaining >= need) {
660 			opts->options |= OPTION_FAST_OPEN_COOKIE;
661 			opts->fastopen_cookie = foc;
662 			remaining -= need;
663 		}
664 	}
665 
666 	return MAX_TCP_OPTION_SPACE - remaining;
667 }
668 
669 /* Compute TCP options for ESTABLISHED sockets. This is not the
670  * final wire format yet.
671  */
672 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
673 					struct tcp_out_options *opts,
674 					struct tcp_md5sig_key **md5)
675 {
676 	struct tcp_sock *tp = tcp_sk(sk);
677 	unsigned int size = 0;
678 	unsigned int eff_sacks;
679 
680 	opts->options = 0;
681 
682 #ifdef CONFIG_TCP_MD5SIG
683 	*md5 = tp->af_specific->md5_lookup(sk, sk);
684 	if (unlikely(*md5)) {
685 		opts->options |= OPTION_MD5;
686 		size += TCPOLEN_MD5SIG_ALIGNED;
687 	}
688 #else
689 	*md5 = NULL;
690 #endif
691 
692 	if (likely(tp->rx_opt.tstamp_ok)) {
693 		opts->options |= OPTION_TS;
694 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
695 		opts->tsecr = tp->rx_opt.ts_recent;
696 		size += TCPOLEN_TSTAMP_ALIGNED;
697 	}
698 
699 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
700 	if (unlikely(eff_sacks)) {
701 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
702 		opts->num_sack_blocks =
703 			min_t(unsigned int, eff_sacks,
704 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
705 			      TCPOLEN_SACK_PERBLOCK);
706 		size += TCPOLEN_SACK_BASE_ALIGNED +
707 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
708 	}
709 
710 	return size;
711 }
712 
713 
714 /* TCP SMALL QUEUES (TSQ)
715  *
716  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
717  * to reduce RTT and bufferbloat.
718  * We do this using a special skb destructor (tcp_wfree).
719  *
720  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
721  * needs to be reallocated in a driver.
722  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
723  *
724  * Since transmit from skb destructor is forbidden, we use a tasklet
725  * to process all sockets that eventually need to send more skbs.
726  * We use one tasklet per cpu, with its own queue of sockets.
727  */
728 struct tsq_tasklet {
729 	struct tasklet_struct	tasklet;
730 	struct list_head	head; /* queue of tcp sockets */
731 };
732 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
733 
734 static void tcp_tsq_handler(struct sock *sk)
735 {
736 	if ((1 << sk->sk_state) &
737 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
738 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
739 		struct tcp_sock *tp = tcp_sk(sk);
740 
741 		if (tp->lost_out > tp->retrans_out &&
742 		    tp->snd_cwnd > tcp_packets_in_flight(tp))
743 			tcp_xmit_retransmit_queue(sk);
744 
745 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
746 			       0, GFP_ATOMIC);
747 	}
748 }
749 /*
750  * One tasklet per cpu tries to send more skbs.
751  * We run in tasklet context but need to disable irqs when
752  * transferring tsq->head because tcp_wfree() might
753  * interrupt us (non NAPI drivers)
754  */
755 static void tcp_tasklet_func(unsigned long data)
756 {
757 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
758 	LIST_HEAD(list);
759 	unsigned long flags;
760 	struct list_head *q, *n;
761 	struct tcp_sock *tp;
762 	struct sock *sk;
763 
764 	local_irq_save(flags);
765 	list_splice_init(&tsq->head, &list);
766 	local_irq_restore(flags);
767 
768 	list_for_each_safe(q, n, &list) {
769 		tp = list_entry(q, struct tcp_sock, tsq_node);
770 		list_del(&tp->tsq_node);
771 
772 		sk = (struct sock *)tp;
773 		smp_mb__before_atomic();
774 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
775 
776 		if (!sk->sk_lock.owned &&
777 		    test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
778 			bh_lock_sock(sk);
779 			if (!sock_owned_by_user(sk)) {
780 				clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
781 				tcp_tsq_handler(sk);
782 			}
783 			bh_unlock_sock(sk);
784 		}
785 
786 		sk_free(sk);
787 	}
788 }
789 
790 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
791 			  TCPF_WRITE_TIMER_DEFERRED |	\
792 			  TCPF_DELACK_TIMER_DEFERRED |	\
793 			  TCPF_MTU_REDUCED_DEFERRED)
794 /**
795  * tcp_release_cb - tcp release_sock() callback
796  * @sk: socket
797  *
798  * called from release_sock() to perform protocol dependent
799  * actions before socket release.
800  */
801 void tcp_release_cb(struct sock *sk)
802 {
803 	unsigned long flags, nflags;
804 
805 	/* perform an atomic operation only if at least one flag is set */
806 	do {
807 		flags = sk->sk_tsq_flags;
808 		if (!(flags & TCP_DEFERRED_ALL))
809 			return;
810 		nflags = flags & ~TCP_DEFERRED_ALL;
811 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
812 
813 	if (flags & TCPF_TSQ_DEFERRED)
814 		tcp_tsq_handler(sk);
815 
816 	/* Here begins the tricky part :
817 	 * We are called from release_sock() with :
818 	 * 1) BH disabled
819 	 * 2) sk_lock.slock spinlock held
820 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
821 	 *
822 	 * But following code is meant to be called from BH handlers,
823 	 * so we should keep BH disabled, but early release socket ownership
824 	 */
825 	sock_release_ownership(sk);
826 
827 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
828 		tcp_write_timer_handler(sk);
829 		__sock_put(sk);
830 	}
831 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
832 		tcp_delack_timer_handler(sk);
833 		__sock_put(sk);
834 	}
835 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
836 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
837 		__sock_put(sk);
838 	}
839 }
840 EXPORT_SYMBOL(tcp_release_cb);
841 
842 void __init tcp_tasklet_init(void)
843 {
844 	int i;
845 
846 	for_each_possible_cpu(i) {
847 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
848 
849 		INIT_LIST_HEAD(&tsq->head);
850 		tasklet_init(&tsq->tasklet,
851 			     tcp_tasklet_func,
852 			     (unsigned long)tsq);
853 	}
854 }
855 
856 /*
857  * Write buffer destructor automatically called from kfree_skb.
858  * We can't xmit new skbs from this context, as we might already
859  * hold qdisc lock.
860  */
861 void tcp_wfree(struct sk_buff *skb)
862 {
863 	struct sock *sk = skb->sk;
864 	struct tcp_sock *tp = tcp_sk(sk);
865 	unsigned long flags, nval, oval;
866 
867 	/* Keep one reference on sk_wmem_alloc.
868 	 * Will be released by sk_free() from here or tcp_tasklet_func()
869 	 */
870 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
871 
872 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
873 	 * Wait until our queues (qdisc + devices) are drained.
874 	 * This gives :
875 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
876 	 * - chance for incoming ACK (processed by another cpu maybe)
877 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
878 	 */
879 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
880 		goto out;
881 
882 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
883 		struct tsq_tasklet *tsq;
884 		bool empty;
885 
886 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
887 			goto out;
888 
889 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
890 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
891 		if (nval != oval)
892 			continue;
893 
894 		/* queue this socket to tasklet queue */
895 		local_irq_save(flags);
896 		tsq = this_cpu_ptr(&tsq_tasklet);
897 		empty = list_empty(&tsq->head);
898 		list_add(&tp->tsq_node, &tsq->head);
899 		if (empty)
900 			tasklet_schedule(&tsq->tasklet);
901 		local_irq_restore(flags);
902 		return;
903 	}
904 out:
905 	sk_free(sk);
906 }
907 
908 /* Note: Called under hard irq.
909  * We can not call TCP stack right away.
910  */
911 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
912 {
913 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
914 	struct sock *sk = (struct sock *)tp;
915 	unsigned long nval, oval;
916 
917 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
918 		struct tsq_tasklet *tsq;
919 		bool empty;
920 
921 		if (oval & TSQF_QUEUED)
922 			break;
923 
924 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
925 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
926 		if (nval != oval)
927 			continue;
928 
929 		if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
930 			break;
931 		/* queue this socket to tasklet queue */
932 		tsq = this_cpu_ptr(&tsq_tasklet);
933 		empty = list_empty(&tsq->head);
934 		list_add(&tp->tsq_node, &tsq->head);
935 		if (empty)
936 			tasklet_schedule(&tsq->tasklet);
937 		break;
938 	}
939 	return HRTIMER_NORESTART;
940 }
941 
942 /* BBR congestion control needs pacing.
943  * Same remark for SO_MAX_PACING_RATE.
944  * sch_fq packet scheduler is efficiently handling pacing,
945  * but is not always installed/used.
946  * Return true if TCP stack should pace packets itself.
947  */
948 static bool tcp_needs_internal_pacing(const struct sock *sk)
949 {
950 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
951 }
952 
953 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
954 {
955 	u64 len_ns;
956 	u32 rate;
957 
958 	if (!tcp_needs_internal_pacing(sk))
959 		return;
960 	rate = sk->sk_pacing_rate;
961 	if (!rate || rate == ~0U)
962 		return;
963 
964 	/* Should account for header sizes as sch_fq does,
965 	 * but lets make things simple.
966 	 */
967 	len_ns = (u64)skb->len * NSEC_PER_SEC;
968 	do_div(len_ns, rate);
969 	hrtimer_start(&tcp_sk(sk)->pacing_timer,
970 		      ktime_add_ns(ktime_get(), len_ns),
971 		      HRTIMER_MODE_ABS_PINNED);
972 }
973 
974 /* This routine actually transmits TCP packets queued in by
975  * tcp_do_sendmsg().  This is used by both the initial
976  * transmission and possible later retransmissions.
977  * All SKB's seen here are completely headerless.  It is our
978  * job to build the TCP header, and pass the packet down to
979  * IP so it can do the same plus pass the packet off to the
980  * device.
981  *
982  * We are working here with either a clone of the original
983  * SKB, or a fresh unique copy made by the retransmit engine.
984  */
985 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
986 			    gfp_t gfp_mask)
987 {
988 	const struct inet_connection_sock *icsk = inet_csk(sk);
989 	struct inet_sock *inet;
990 	struct tcp_sock *tp;
991 	struct tcp_skb_cb *tcb;
992 	struct tcp_out_options opts;
993 	unsigned int tcp_options_size, tcp_header_size;
994 	struct tcp_md5sig_key *md5;
995 	struct tcphdr *th;
996 	int err;
997 
998 	BUG_ON(!skb || !tcp_skb_pcount(skb));
999 	tp = tcp_sk(sk);
1000 
1001 	skb->skb_mstamp = tp->tcp_mstamp;
1002 	if (clone_it) {
1003 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1004 			- tp->snd_una;
1005 		tcp_rate_skb_sent(sk, skb);
1006 
1007 		if (unlikely(skb_cloned(skb)))
1008 			skb = pskb_copy(skb, gfp_mask);
1009 		else
1010 			skb = skb_clone(skb, gfp_mask);
1011 		if (unlikely(!skb))
1012 			return -ENOBUFS;
1013 	}
1014 
1015 	inet = inet_sk(sk);
1016 	tcb = TCP_SKB_CB(skb);
1017 	memset(&opts, 0, sizeof(opts));
1018 
1019 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1020 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1021 	else
1022 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1023 							   &md5);
1024 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1025 
1026 	/* if no packet is in qdisc/device queue, then allow XPS to select
1027 	 * another queue. We can be called from tcp_tsq_handler()
1028 	 * which holds one reference to sk_wmem_alloc.
1029 	 *
1030 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1031 	 * One way to get this would be to set skb->truesize = 2 on them.
1032 	 */
1033 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1034 
1035 	/* If we had to use memory reserve to allocate this skb,
1036 	 * this might cause drops if packet is looped back :
1037 	 * Other socket might not have SOCK_MEMALLOC.
1038 	 * Packets not looped back do not care about pfmemalloc.
1039 	 */
1040 	skb->pfmemalloc = 0;
1041 
1042 	skb_push(skb, tcp_header_size);
1043 	skb_reset_transport_header(skb);
1044 
1045 	skb_orphan(skb);
1046 	skb->sk = sk;
1047 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1048 	skb_set_hash_from_sk(skb, sk);
1049 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1050 
1051 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1052 
1053 	/* Build TCP header and checksum it. */
1054 	th = (struct tcphdr *)skb->data;
1055 	th->source		= inet->inet_sport;
1056 	th->dest		= inet->inet_dport;
1057 	th->seq			= htonl(tcb->seq);
1058 	th->ack_seq		= htonl(tp->rcv_nxt);
1059 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1060 					tcb->tcp_flags);
1061 
1062 	th->check		= 0;
1063 	th->urg_ptr		= 0;
1064 
1065 	/* The urg_mode check is necessary during a below snd_una win probe */
1066 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1067 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1068 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1069 			th->urg = 1;
1070 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1071 			th->urg_ptr = htons(0xFFFF);
1072 			th->urg = 1;
1073 		}
1074 	}
1075 
1076 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1077 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1078 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1079 		th->window      = htons(tcp_select_window(sk));
1080 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1081 	} else {
1082 		/* RFC1323: The window in SYN & SYN/ACK segments
1083 		 * is never scaled.
1084 		 */
1085 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1086 	}
1087 #ifdef CONFIG_TCP_MD5SIG
1088 	/* Calculate the MD5 hash, as we have all we need now */
1089 	if (md5) {
1090 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1091 		tp->af_specific->calc_md5_hash(opts.hash_location,
1092 					       md5, sk, skb);
1093 	}
1094 #endif
1095 
1096 	icsk->icsk_af_ops->send_check(sk, skb);
1097 
1098 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1099 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1100 
1101 	if (skb->len != tcp_header_size) {
1102 		tcp_event_data_sent(tp, sk);
1103 		tp->data_segs_out += tcp_skb_pcount(skb);
1104 		tcp_internal_pacing(sk, skb);
1105 	}
1106 
1107 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1108 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1109 			      tcp_skb_pcount(skb));
1110 
1111 	tp->segs_out += tcp_skb_pcount(skb);
1112 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1113 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1114 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1115 
1116 	/* Our usage of tstamp should remain private */
1117 	skb->tstamp = 0;
1118 
1119 	/* Cleanup our debris for IP stacks */
1120 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1121 			       sizeof(struct inet6_skb_parm)));
1122 
1123 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1124 
1125 	if (likely(err <= 0))
1126 		return err;
1127 
1128 	tcp_enter_cwr(sk);
1129 
1130 	return net_xmit_eval(err);
1131 }
1132 
1133 /* This routine just queues the buffer for sending.
1134  *
1135  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1136  * otherwise socket can stall.
1137  */
1138 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1139 {
1140 	struct tcp_sock *tp = tcp_sk(sk);
1141 
1142 	/* Advance write_seq and place onto the write_queue. */
1143 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1144 	__skb_header_release(skb);
1145 	tcp_add_write_queue_tail(sk, skb);
1146 	sk->sk_wmem_queued += skb->truesize;
1147 	sk_mem_charge(sk, skb->truesize);
1148 }
1149 
1150 /* Initialize TSO segments for a packet. */
1151 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1152 {
1153 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1154 		/* Avoid the costly divide in the normal
1155 		 * non-TSO case.
1156 		 */
1157 		tcp_skb_pcount_set(skb, 1);
1158 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1159 	} else {
1160 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1161 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1162 	}
1163 }
1164 
1165 /* When a modification to fackets out becomes necessary, we need to check
1166  * skb is counted to fackets_out or not.
1167  */
1168 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1169 				   int decr)
1170 {
1171 	struct tcp_sock *tp = tcp_sk(sk);
1172 
1173 	if (!tp->sacked_out || tcp_is_reno(tp))
1174 		return;
1175 
1176 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1177 		tp->fackets_out -= decr;
1178 }
1179 
1180 /* Pcount in the middle of the write queue got changed, we need to do various
1181  * tweaks to fix counters
1182  */
1183 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1184 {
1185 	struct tcp_sock *tp = tcp_sk(sk);
1186 
1187 	tp->packets_out -= decr;
1188 
1189 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1190 		tp->sacked_out -= decr;
1191 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1192 		tp->retrans_out -= decr;
1193 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1194 		tp->lost_out -= decr;
1195 
1196 	/* Reno case is special. Sigh... */
1197 	if (tcp_is_reno(tp) && decr > 0)
1198 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1199 
1200 	tcp_adjust_fackets_out(sk, skb, decr);
1201 
1202 	if (tp->lost_skb_hint &&
1203 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1204 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1205 		tp->lost_cnt_hint -= decr;
1206 
1207 	tcp_verify_left_out(tp);
1208 }
1209 
1210 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1211 {
1212 	return TCP_SKB_CB(skb)->txstamp_ack ||
1213 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1214 }
1215 
1216 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1217 {
1218 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1219 
1220 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1221 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1222 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1223 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1224 
1225 		shinfo->tx_flags &= ~tsflags;
1226 		shinfo2->tx_flags |= tsflags;
1227 		swap(shinfo->tskey, shinfo2->tskey);
1228 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1229 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1230 	}
1231 }
1232 
1233 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1234 {
1235 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1236 	TCP_SKB_CB(skb)->eor = 0;
1237 }
1238 
1239 /* Function to create two new TCP segments.  Shrinks the given segment
1240  * to the specified size and appends a new segment with the rest of the
1241  * packet to the list.  This won't be called frequently, I hope.
1242  * Remember, these are still headerless SKBs at this point.
1243  */
1244 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1245 		 unsigned int mss_now, gfp_t gfp)
1246 {
1247 	struct tcp_sock *tp = tcp_sk(sk);
1248 	struct sk_buff *buff;
1249 	int nsize, old_factor;
1250 	int nlen;
1251 	u8 flags;
1252 
1253 	if (WARN_ON(len > skb->len))
1254 		return -EINVAL;
1255 
1256 	nsize = skb_headlen(skb) - len;
1257 	if (nsize < 0)
1258 		nsize = 0;
1259 
1260 	if (skb_unclone(skb, gfp))
1261 		return -ENOMEM;
1262 
1263 	/* Get a new skb... force flag on. */
1264 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1265 	if (!buff)
1266 		return -ENOMEM; /* We'll just try again later. */
1267 
1268 	sk->sk_wmem_queued += buff->truesize;
1269 	sk_mem_charge(sk, buff->truesize);
1270 	nlen = skb->len - len - nsize;
1271 	buff->truesize += nlen;
1272 	skb->truesize -= nlen;
1273 
1274 	/* Correct the sequence numbers. */
1275 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1276 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1277 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1278 
1279 	/* PSH and FIN should only be set in the second packet. */
1280 	flags = TCP_SKB_CB(skb)->tcp_flags;
1281 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1282 	TCP_SKB_CB(buff)->tcp_flags = flags;
1283 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1284 	tcp_skb_fragment_eor(skb, buff);
1285 
1286 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1287 		/* Copy and checksum data tail into the new buffer. */
1288 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1289 						       skb_put(buff, nsize),
1290 						       nsize, 0);
1291 
1292 		skb_trim(skb, len);
1293 
1294 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1295 	} else {
1296 		skb->ip_summed = CHECKSUM_PARTIAL;
1297 		skb_split(skb, buff, len);
1298 	}
1299 
1300 	buff->ip_summed = skb->ip_summed;
1301 
1302 	buff->tstamp = skb->tstamp;
1303 	tcp_fragment_tstamp(skb, buff);
1304 
1305 	old_factor = tcp_skb_pcount(skb);
1306 
1307 	/* Fix up tso_factor for both original and new SKB.  */
1308 	tcp_set_skb_tso_segs(skb, mss_now);
1309 	tcp_set_skb_tso_segs(buff, mss_now);
1310 
1311 	/* Update delivered info for the new segment */
1312 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1313 
1314 	/* If this packet has been sent out already, we must
1315 	 * adjust the various packet counters.
1316 	 */
1317 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1318 		int diff = old_factor - tcp_skb_pcount(skb) -
1319 			tcp_skb_pcount(buff);
1320 
1321 		if (diff)
1322 			tcp_adjust_pcount(sk, skb, diff);
1323 	}
1324 
1325 	/* Link BUFF into the send queue. */
1326 	__skb_header_release(buff);
1327 	tcp_insert_write_queue_after(skb, buff, sk);
1328 
1329 	return 0;
1330 }
1331 
1332 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1333  * data is not copied, but immediately discarded.
1334  */
1335 static int __pskb_trim_head(struct sk_buff *skb, int len)
1336 {
1337 	struct skb_shared_info *shinfo;
1338 	int i, k, eat;
1339 
1340 	eat = min_t(int, len, skb_headlen(skb));
1341 	if (eat) {
1342 		__skb_pull(skb, eat);
1343 		len -= eat;
1344 		if (!len)
1345 			return 0;
1346 	}
1347 	eat = len;
1348 	k = 0;
1349 	shinfo = skb_shinfo(skb);
1350 	for (i = 0; i < shinfo->nr_frags; i++) {
1351 		int size = skb_frag_size(&shinfo->frags[i]);
1352 
1353 		if (size <= eat) {
1354 			skb_frag_unref(skb, i);
1355 			eat -= size;
1356 		} else {
1357 			shinfo->frags[k] = shinfo->frags[i];
1358 			if (eat) {
1359 				shinfo->frags[k].page_offset += eat;
1360 				skb_frag_size_sub(&shinfo->frags[k], eat);
1361 				eat = 0;
1362 			}
1363 			k++;
1364 		}
1365 	}
1366 	shinfo->nr_frags = k;
1367 
1368 	skb->data_len -= len;
1369 	skb->len = skb->data_len;
1370 	return len;
1371 }
1372 
1373 /* Remove acked data from a packet in the transmit queue. */
1374 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1375 {
1376 	u32 delta_truesize;
1377 
1378 	if (skb_unclone(skb, GFP_ATOMIC))
1379 		return -ENOMEM;
1380 
1381 	delta_truesize = __pskb_trim_head(skb, len);
1382 
1383 	TCP_SKB_CB(skb)->seq += len;
1384 	skb->ip_summed = CHECKSUM_PARTIAL;
1385 
1386 	if (delta_truesize) {
1387 		skb->truesize	   -= delta_truesize;
1388 		sk->sk_wmem_queued -= delta_truesize;
1389 		sk_mem_uncharge(sk, delta_truesize);
1390 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1391 	}
1392 
1393 	/* Any change of skb->len requires recalculation of tso factor. */
1394 	if (tcp_skb_pcount(skb) > 1)
1395 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1396 
1397 	return 0;
1398 }
1399 
1400 /* Calculate MSS not accounting any TCP options.  */
1401 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1402 {
1403 	const struct tcp_sock *tp = tcp_sk(sk);
1404 	const struct inet_connection_sock *icsk = inet_csk(sk);
1405 	int mss_now;
1406 
1407 	/* Calculate base mss without TCP options:
1408 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1409 	 */
1410 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1411 
1412 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1413 	if (icsk->icsk_af_ops->net_frag_header_len) {
1414 		const struct dst_entry *dst = __sk_dst_get(sk);
1415 
1416 		if (dst && dst_allfrag(dst))
1417 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1418 	}
1419 
1420 	/* Clamp it (mss_clamp does not include tcp options) */
1421 	if (mss_now > tp->rx_opt.mss_clamp)
1422 		mss_now = tp->rx_opt.mss_clamp;
1423 
1424 	/* Now subtract optional transport overhead */
1425 	mss_now -= icsk->icsk_ext_hdr_len;
1426 
1427 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1428 	if (mss_now < 48)
1429 		mss_now = 48;
1430 	return mss_now;
1431 }
1432 
1433 /* Calculate MSS. Not accounting for SACKs here.  */
1434 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1435 {
1436 	/* Subtract TCP options size, not including SACKs */
1437 	return __tcp_mtu_to_mss(sk, pmtu) -
1438 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1439 }
1440 
1441 /* Inverse of above */
1442 int tcp_mss_to_mtu(struct sock *sk, int mss)
1443 {
1444 	const struct tcp_sock *tp = tcp_sk(sk);
1445 	const struct inet_connection_sock *icsk = inet_csk(sk);
1446 	int mtu;
1447 
1448 	mtu = mss +
1449 	      tp->tcp_header_len +
1450 	      icsk->icsk_ext_hdr_len +
1451 	      icsk->icsk_af_ops->net_header_len;
1452 
1453 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1454 	if (icsk->icsk_af_ops->net_frag_header_len) {
1455 		const struct dst_entry *dst = __sk_dst_get(sk);
1456 
1457 		if (dst && dst_allfrag(dst))
1458 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1459 	}
1460 	return mtu;
1461 }
1462 EXPORT_SYMBOL(tcp_mss_to_mtu);
1463 
1464 /* MTU probing init per socket */
1465 void tcp_mtup_init(struct sock *sk)
1466 {
1467 	struct tcp_sock *tp = tcp_sk(sk);
1468 	struct inet_connection_sock *icsk = inet_csk(sk);
1469 	struct net *net = sock_net(sk);
1470 
1471 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1472 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1473 			       icsk->icsk_af_ops->net_header_len;
1474 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1475 	icsk->icsk_mtup.probe_size = 0;
1476 	if (icsk->icsk_mtup.enabled)
1477 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1478 }
1479 EXPORT_SYMBOL(tcp_mtup_init);
1480 
1481 /* This function synchronize snd mss to current pmtu/exthdr set.
1482 
1483    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1484    for TCP options, but includes only bare TCP header.
1485 
1486    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1487    It is minimum of user_mss and mss received with SYN.
1488    It also does not include TCP options.
1489 
1490    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1491 
1492    tp->mss_cache is current effective sending mss, including
1493    all tcp options except for SACKs. It is evaluated,
1494    taking into account current pmtu, but never exceeds
1495    tp->rx_opt.mss_clamp.
1496 
1497    NOTE1. rfc1122 clearly states that advertised MSS
1498    DOES NOT include either tcp or ip options.
1499 
1500    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1501    are READ ONLY outside this function.		--ANK (980731)
1502  */
1503 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1504 {
1505 	struct tcp_sock *tp = tcp_sk(sk);
1506 	struct inet_connection_sock *icsk = inet_csk(sk);
1507 	int mss_now;
1508 
1509 	if (icsk->icsk_mtup.search_high > pmtu)
1510 		icsk->icsk_mtup.search_high = pmtu;
1511 
1512 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1513 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1514 
1515 	/* And store cached results */
1516 	icsk->icsk_pmtu_cookie = pmtu;
1517 	if (icsk->icsk_mtup.enabled)
1518 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1519 	tp->mss_cache = mss_now;
1520 
1521 	return mss_now;
1522 }
1523 EXPORT_SYMBOL(tcp_sync_mss);
1524 
1525 /* Compute the current effective MSS, taking SACKs and IP options,
1526  * and even PMTU discovery events into account.
1527  */
1528 unsigned int tcp_current_mss(struct sock *sk)
1529 {
1530 	const struct tcp_sock *tp = tcp_sk(sk);
1531 	const struct dst_entry *dst = __sk_dst_get(sk);
1532 	u32 mss_now;
1533 	unsigned int header_len;
1534 	struct tcp_out_options opts;
1535 	struct tcp_md5sig_key *md5;
1536 
1537 	mss_now = tp->mss_cache;
1538 
1539 	if (dst) {
1540 		u32 mtu = dst_mtu(dst);
1541 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1542 			mss_now = tcp_sync_mss(sk, mtu);
1543 	}
1544 
1545 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1546 		     sizeof(struct tcphdr);
1547 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1548 	 * some common options. If this is an odd packet (because we have SACK
1549 	 * blocks etc) then our calculated header_len will be different, and
1550 	 * we have to adjust mss_now correspondingly */
1551 	if (header_len != tp->tcp_header_len) {
1552 		int delta = (int) header_len - tp->tcp_header_len;
1553 		mss_now -= delta;
1554 	}
1555 
1556 	return mss_now;
1557 }
1558 
1559 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1560  * As additional protections, we do not touch cwnd in retransmission phases,
1561  * and if application hit its sndbuf limit recently.
1562  */
1563 static void tcp_cwnd_application_limited(struct sock *sk)
1564 {
1565 	struct tcp_sock *tp = tcp_sk(sk);
1566 
1567 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1568 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1569 		/* Limited by application or receiver window. */
1570 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1571 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1572 		if (win_used < tp->snd_cwnd) {
1573 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1574 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1575 		}
1576 		tp->snd_cwnd_used = 0;
1577 	}
1578 	tp->snd_cwnd_stamp = tcp_jiffies32;
1579 }
1580 
1581 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1582 {
1583 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1584 	struct tcp_sock *tp = tcp_sk(sk);
1585 
1586 	/* Track the maximum number of outstanding packets in each
1587 	 * window, and remember whether we were cwnd-limited then.
1588 	 */
1589 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1590 	    tp->packets_out > tp->max_packets_out) {
1591 		tp->max_packets_out = tp->packets_out;
1592 		tp->max_packets_seq = tp->snd_nxt;
1593 		tp->is_cwnd_limited = is_cwnd_limited;
1594 	}
1595 
1596 	if (tcp_is_cwnd_limited(sk)) {
1597 		/* Network is feed fully. */
1598 		tp->snd_cwnd_used = 0;
1599 		tp->snd_cwnd_stamp = tcp_jiffies32;
1600 	} else {
1601 		/* Network starves. */
1602 		if (tp->packets_out > tp->snd_cwnd_used)
1603 			tp->snd_cwnd_used = tp->packets_out;
1604 
1605 		if (sysctl_tcp_slow_start_after_idle &&
1606 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1607 		    !ca_ops->cong_control)
1608 			tcp_cwnd_application_limited(sk);
1609 
1610 		/* The following conditions together indicate the starvation
1611 		 * is caused by insufficient sender buffer:
1612 		 * 1) just sent some data (see tcp_write_xmit)
1613 		 * 2) not cwnd limited (this else condition)
1614 		 * 3) no more data to send (null tcp_send_head )
1615 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1616 		 */
1617 		if (!tcp_send_head(sk) && sk->sk_socket &&
1618 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1619 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1620 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1621 	}
1622 }
1623 
1624 /* Minshall's variant of the Nagle send check. */
1625 static bool tcp_minshall_check(const struct tcp_sock *tp)
1626 {
1627 	return after(tp->snd_sml, tp->snd_una) &&
1628 		!after(tp->snd_sml, tp->snd_nxt);
1629 }
1630 
1631 /* Update snd_sml if this skb is under mss
1632  * Note that a TSO packet might end with a sub-mss segment
1633  * The test is really :
1634  * if ((skb->len % mss) != 0)
1635  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1636  * But we can avoid doing the divide again given we already have
1637  *  skb_pcount = skb->len / mss_now
1638  */
1639 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1640 				const struct sk_buff *skb)
1641 {
1642 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1643 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1644 }
1645 
1646 /* Return false, if packet can be sent now without violation Nagle's rules:
1647  * 1. It is full sized. (provided by caller in %partial bool)
1648  * 2. Or it contains FIN. (already checked by caller)
1649  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1650  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1651  *    With Minshall's modification: all sent small packets are ACKed.
1652  */
1653 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1654 			    int nonagle)
1655 {
1656 	return partial &&
1657 		((nonagle & TCP_NAGLE_CORK) ||
1658 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1659 }
1660 
1661 /* Return how many segs we'd like on a TSO packet,
1662  * to send one TSO packet per ms
1663  */
1664 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1665 		     int min_tso_segs)
1666 {
1667 	u32 bytes, segs;
1668 
1669 	bytes = min(sk->sk_pacing_rate >> 10,
1670 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1671 
1672 	/* Goal is to send at least one packet per ms,
1673 	 * not one big TSO packet every 100 ms.
1674 	 * This preserves ACK clocking and is consistent
1675 	 * with tcp_tso_should_defer() heuristic.
1676 	 */
1677 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1678 
1679 	return min_t(u32, segs, sk->sk_gso_max_segs);
1680 }
1681 EXPORT_SYMBOL(tcp_tso_autosize);
1682 
1683 /* Return the number of segments we want in the skb we are transmitting.
1684  * See if congestion control module wants to decide; otherwise, autosize.
1685  */
1686 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1687 {
1688 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1689 	u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1690 
1691 	return tso_segs ? :
1692 		tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1693 }
1694 
1695 /* Returns the portion of skb which can be sent right away */
1696 static unsigned int tcp_mss_split_point(const struct sock *sk,
1697 					const struct sk_buff *skb,
1698 					unsigned int mss_now,
1699 					unsigned int max_segs,
1700 					int nonagle)
1701 {
1702 	const struct tcp_sock *tp = tcp_sk(sk);
1703 	u32 partial, needed, window, max_len;
1704 
1705 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1706 	max_len = mss_now * max_segs;
1707 
1708 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1709 		return max_len;
1710 
1711 	needed = min(skb->len, window);
1712 
1713 	if (max_len <= needed)
1714 		return max_len;
1715 
1716 	partial = needed % mss_now;
1717 	/* If last segment is not a full MSS, check if Nagle rules allow us
1718 	 * to include this last segment in this skb.
1719 	 * Otherwise, we'll split the skb at last MSS boundary
1720 	 */
1721 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1722 		return needed - partial;
1723 
1724 	return needed;
1725 }
1726 
1727 /* Can at least one segment of SKB be sent right now, according to the
1728  * congestion window rules?  If so, return how many segments are allowed.
1729  */
1730 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1731 					 const struct sk_buff *skb)
1732 {
1733 	u32 in_flight, cwnd, halfcwnd;
1734 
1735 	/* Don't be strict about the congestion window for the final FIN.  */
1736 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1737 	    tcp_skb_pcount(skb) == 1)
1738 		return 1;
1739 
1740 	in_flight = tcp_packets_in_flight(tp);
1741 	cwnd = tp->snd_cwnd;
1742 	if (in_flight >= cwnd)
1743 		return 0;
1744 
1745 	/* For better scheduling, ensure we have at least
1746 	 * 2 GSO packets in flight.
1747 	 */
1748 	halfcwnd = max(cwnd >> 1, 1U);
1749 	return min(halfcwnd, cwnd - in_flight);
1750 }
1751 
1752 /* Initialize TSO state of a skb.
1753  * This must be invoked the first time we consider transmitting
1754  * SKB onto the wire.
1755  */
1756 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1757 {
1758 	int tso_segs = tcp_skb_pcount(skb);
1759 
1760 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1761 		tcp_set_skb_tso_segs(skb, mss_now);
1762 		tso_segs = tcp_skb_pcount(skb);
1763 	}
1764 	return tso_segs;
1765 }
1766 
1767 
1768 /* Return true if the Nagle test allows this packet to be
1769  * sent now.
1770  */
1771 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1772 				  unsigned int cur_mss, int nonagle)
1773 {
1774 	/* Nagle rule does not apply to frames, which sit in the middle of the
1775 	 * write_queue (they have no chances to get new data).
1776 	 *
1777 	 * This is implemented in the callers, where they modify the 'nonagle'
1778 	 * argument based upon the location of SKB in the send queue.
1779 	 */
1780 	if (nonagle & TCP_NAGLE_PUSH)
1781 		return true;
1782 
1783 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1784 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1785 		return true;
1786 
1787 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1788 		return true;
1789 
1790 	return false;
1791 }
1792 
1793 /* Does at least the first segment of SKB fit into the send window? */
1794 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1795 			     const struct sk_buff *skb,
1796 			     unsigned int cur_mss)
1797 {
1798 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1799 
1800 	if (skb->len > cur_mss)
1801 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1802 
1803 	return !after(end_seq, tcp_wnd_end(tp));
1804 }
1805 
1806 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1807  * should be put on the wire right now.  If so, it returns the number of
1808  * packets allowed by the congestion window.
1809  */
1810 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1811 				 unsigned int cur_mss, int nonagle)
1812 {
1813 	const struct tcp_sock *tp = tcp_sk(sk);
1814 	unsigned int cwnd_quota;
1815 
1816 	tcp_init_tso_segs(skb, cur_mss);
1817 
1818 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1819 		return 0;
1820 
1821 	cwnd_quota = tcp_cwnd_test(tp, skb);
1822 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1823 		cwnd_quota = 0;
1824 
1825 	return cwnd_quota;
1826 }
1827 
1828 /* Test if sending is allowed right now. */
1829 bool tcp_may_send_now(struct sock *sk)
1830 {
1831 	const struct tcp_sock *tp = tcp_sk(sk);
1832 	struct sk_buff *skb = tcp_send_head(sk);
1833 
1834 	return skb &&
1835 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1836 			     (tcp_skb_is_last(sk, skb) ?
1837 			      tp->nonagle : TCP_NAGLE_PUSH));
1838 }
1839 
1840 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1841  * which is put after SKB on the list.  It is very much like
1842  * tcp_fragment() except that it may make several kinds of assumptions
1843  * in order to speed up the splitting operation.  In particular, we
1844  * know that all the data is in scatter-gather pages, and that the
1845  * packet has never been sent out before (and thus is not cloned).
1846  */
1847 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1848 			unsigned int mss_now, gfp_t gfp)
1849 {
1850 	struct sk_buff *buff;
1851 	int nlen = skb->len - len;
1852 	u8 flags;
1853 
1854 	/* All of a TSO frame must be composed of paged data.  */
1855 	if (skb->len != skb->data_len)
1856 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1857 
1858 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1859 	if (unlikely(!buff))
1860 		return -ENOMEM;
1861 
1862 	sk->sk_wmem_queued += buff->truesize;
1863 	sk_mem_charge(sk, buff->truesize);
1864 	buff->truesize += nlen;
1865 	skb->truesize -= nlen;
1866 
1867 	/* Correct the sequence numbers. */
1868 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1869 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1870 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1871 
1872 	/* PSH and FIN should only be set in the second packet. */
1873 	flags = TCP_SKB_CB(skb)->tcp_flags;
1874 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1875 	TCP_SKB_CB(buff)->tcp_flags = flags;
1876 
1877 	/* This packet was never sent out yet, so no SACK bits. */
1878 	TCP_SKB_CB(buff)->sacked = 0;
1879 
1880 	tcp_skb_fragment_eor(skb, buff);
1881 
1882 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1883 	skb_split(skb, buff, len);
1884 	tcp_fragment_tstamp(skb, buff);
1885 
1886 	/* Fix up tso_factor for both original and new SKB.  */
1887 	tcp_set_skb_tso_segs(skb, mss_now);
1888 	tcp_set_skb_tso_segs(buff, mss_now);
1889 
1890 	/* Link BUFF into the send queue. */
1891 	__skb_header_release(buff);
1892 	tcp_insert_write_queue_after(skb, buff, sk);
1893 
1894 	return 0;
1895 }
1896 
1897 /* Try to defer sending, if possible, in order to minimize the amount
1898  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1899  *
1900  * This algorithm is from John Heffner.
1901  */
1902 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1903 				 bool *is_cwnd_limited, u32 max_segs)
1904 {
1905 	const struct inet_connection_sock *icsk = inet_csk(sk);
1906 	u32 age, send_win, cong_win, limit, in_flight;
1907 	struct tcp_sock *tp = tcp_sk(sk);
1908 	struct sk_buff *head;
1909 	int win_divisor;
1910 
1911 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1912 		goto send_now;
1913 
1914 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1915 		goto send_now;
1916 
1917 	/* Avoid bursty behavior by allowing defer
1918 	 * only if the last write was recent.
1919 	 */
1920 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1921 		goto send_now;
1922 
1923 	in_flight = tcp_packets_in_flight(tp);
1924 
1925 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1926 
1927 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1928 
1929 	/* From in_flight test above, we know that cwnd > in_flight.  */
1930 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1931 
1932 	limit = min(send_win, cong_win);
1933 
1934 	/* If a full-sized TSO skb can be sent, do it. */
1935 	if (limit >= max_segs * tp->mss_cache)
1936 		goto send_now;
1937 
1938 	/* Middle in queue won't get any more data, full sendable already? */
1939 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1940 		goto send_now;
1941 
1942 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1943 	if (win_divisor) {
1944 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1945 
1946 		/* If at least some fraction of a window is available,
1947 		 * just use it.
1948 		 */
1949 		chunk /= win_divisor;
1950 		if (limit >= chunk)
1951 			goto send_now;
1952 	} else {
1953 		/* Different approach, try not to defer past a single
1954 		 * ACK.  Receiver should ACK every other full sized
1955 		 * frame, so if we have space for more than 3 frames
1956 		 * then send now.
1957 		 */
1958 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1959 			goto send_now;
1960 	}
1961 
1962 	head = tcp_write_queue_head(sk);
1963 
1964 	age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1965 	/* If next ACK is likely to come too late (half srtt), do not defer */
1966 	if (age < (tp->srtt_us >> 4))
1967 		goto send_now;
1968 
1969 	/* Ok, it looks like it is advisable to defer. */
1970 
1971 	if (cong_win < send_win && cong_win <= skb->len)
1972 		*is_cwnd_limited = true;
1973 
1974 	return true;
1975 
1976 send_now:
1977 	return false;
1978 }
1979 
1980 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1981 {
1982 	struct inet_connection_sock *icsk = inet_csk(sk);
1983 	struct tcp_sock *tp = tcp_sk(sk);
1984 	struct net *net = sock_net(sk);
1985 	u32 interval;
1986 	s32 delta;
1987 
1988 	interval = net->ipv4.sysctl_tcp_probe_interval;
1989 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
1990 	if (unlikely(delta >= interval * HZ)) {
1991 		int mss = tcp_current_mss(sk);
1992 
1993 		/* Update current search range */
1994 		icsk->icsk_mtup.probe_size = 0;
1995 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1996 			sizeof(struct tcphdr) +
1997 			icsk->icsk_af_ops->net_header_len;
1998 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1999 
2000 		/* Update probe time stamp */
2001 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2002 	}
2003 }
2004 
2005 /* Create a new MTU probe if we are ready.
2006  * MTU probe is regularly attempting to increase the path MTU by
2007  * deliberately sending larger packets.  This discovers routing
2008  * changes resulting in larger path MTUs.
2009  *
2010  * Returns 0 if we should wait to probe (no cwnd available),
2011  *         1 if a probe was sent,
2012  *         -1 otherwise
2013  */
2014 static int tcp_mtu_probe(struct sock *sk)
2015 {
2016 	struct inet_connection_sock *icsk = inet_csk(sk);
2017 	struct tcp_sock *tp = tcp_sk(sk);
2018 	struct sk_buff *skb, *nskb, *next;
2019 	struct net *net = sock_net(sk);
2020 	int probe_size;
2021 	int size_needed;
2022 	int copy, len;
2023 	int mss_now;
2024 	int interval;
2025 
2026 	/* Not currently probing/verifying,
2027 	 * not in recovery,
2028 	 * have enough cwnd, and
2029 	 * not SACKing (the variable headers throw things off)
2030 	 */
2031 	if (likely(!icsk->icsk_mtup.enabled ||
2032 		   icsk->icsk_mtup.probe_size ||
2033 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2034 		   tp->snd_cwnd < 11 ||
2035 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2036 		return -1;
2037 
2038 	/* Use binary search for probe_size between tcp_mss_base,
2039 	 * and current mss_clamp. if (search_high - search_low)
2040 	 * smaller than a threshold, backoff from probing.
2041 	 */
2042 	mss_now = tcp_current_mss(sk);
2043 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2044 				    icsk->icsk_mtup.search_low) >> 1);
2045 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2046 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2047 	/* When misfortune happens, we are reprobing actively,
2048 	 * and then reprobe timer has expired. We stick with current
2049 	 * probing process by not resetting search range to its orignal.
2050 	 */
2051 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2052 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2053 		/* Check whether enough time has elaplased for
2054 		 * another round of probing.
2055 		 */
2056 		tcp_mtu_check_reprobe(sk);
2057 		return -1;
2058 	}
2059 
2060 	/* Have enough data in the send queue to probe? */
2061 	if (tp->write_seq - tp->snd_nxt < size_needed)
2062 		return -1;
2063 
2064 	if (tp->snd_wnd < size_needed)
2065 		return -1;
2066 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2067 		return 0;
2068 
2069 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2070 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2071 		if (!tcp_packets_in_flight(tp))
2072 			return -1;
2073 		else
2074 			return 0;
2075 	}
2076 
2077 	/* We're allowed to probe.  Build it now. */
2078 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2079 	if (!nskb)
2080 		return -1;
2081 	sk->sk_wmem_queued += nskb->truesize;
2082 	sk_mem_charge(sk, nskb->truesize);
2083 
2084 	skb = tcp_send_head(sk);
2085 
2086 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2087 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2088 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2089 	TCP_SKB_CB(nskb)->sacked = 0;
2090 	nskb->csum = 0;
2091 	nskb->ip_summed = skb->ip_summed;
2092 
2093 	tcp_insert_write_queue_before(nskb, skb, sk);
2094 
2095 	len = 0;
2096 	tcp_for_write_queue_from_safe(skb, next, sk) {
2097 		copy = min_t(int, skb->len, probe_size - len);
2098 		if (nskb->ip_summed) {
2099 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2100 		} else {
2101 			__wsum csum = skb_copy_and_csum_bits(skb, 0,
2102 							     skb_put(nskb, copy),
2103 							     copy, 0);
2104 			nskb->csum = csum_block_add(nskb->csum, csum, len);
2105 		}
2106 
2107 		if (skb->len <= copy) {
2108 			/* We've eaten all the data from this skb.
2109 			 * Throw it away. */
2110 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2111 			tcp_unlink_write_queue(skb, sk);
2112 			sk_wmem_free_skb(sk, skb);
2113 		} else {
2114 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2115 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2116 			if (!skb_shinfo(skb)->nr_frags) {
2117 				skb_pull(skb, copy);
2118 				if (skb->ip_summed != CHECKSUM_PARTIAL)
2119 					skb->csum = csum_partial(skb->data,
2120 								 skb->len, 0);
2121 			} else {
2122 				__pskb_trim_head(skb, copy);
2123 				tcp_set_skb_tso_segs(skb, mss_now);
2124 			}
2125 			TCP_SKB_CB(skb)->seq += copy;
2126 		}
2127 
2128 		len += copy;
2129 
2130 		if (len >= probe_size)
2131 			break;
2132 	}
2133 	tcp_init_tso_segs(nskb, nskb->len);
2134 
2135 	/* We're ready to send.  If this fails, the probe will
2136 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2137 	 */
2138 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2139 		/* Decrement cwnd here because we are sending
2140 		 * effectively two packets. */
2141 		tp->snd_cwnd--;
2142 		tcp_event_new_data_sent(sk, nskb);
2143 
2144 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2145 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2146 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2147 
2148 		return 1;
2149 	}
2150 
2151 	return -1;
2152 }
2153 
2154 static bool tcp_pacing_check(const struct sock *sk)
2155 {
2156 	return tcp_needs_internal_pacing(sk) &&
2157 	       hrtimer_active(&tcp_sk(sk)->pacing_timer);
2158 }
2159 
2160 /* TCP Small Queues :
2161  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2162  * (These limits are doubled for retransmits)
2163  * This allows for :
2164  *  - better RTT estimation and ACK scheduling
2165  *  - faster recovery
2166  *  - high rates
2167  * Alas, some drivers / subsystems require a fair amount
2168  * of queued bytes to ensure line rate.
2169  * One example is wifi aggregation (802.11 AMPDU)
2170  */
2171 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2172 				  unsigned int factor)
2173 {
2174 	unsigned int limit;
2175 
2176 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2177 	limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2178 	limit <<= factor;
2179 
2180 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2181 		/* Always send the 1st or 2nd skb in write queue.
2182 		 * No need to wait for TX completion to call us back,
2183 		 * after softirq/tasklet schedule.
2184 		 * This helps when TX completions are delayed too much.
2185 		 */
2186 		if (skb == sk->sk_write_queue.next ||
2187 		    skb->prev == sk->sk_write_queue.next)
2188 			return false;
2189 
2190 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2191 		/* It is possible TX completion already happened
2192 		 * before we set TSQ_THROTTLED, so we must
2193 		 * test again the condition.
2194 		 */
2195 		smp_mb__after_atomic();
2196 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2197 			return true;
2198 	}
2199 	return false;
2200 }
2201 
2202 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2203 {
2204 	const u32 now = tcp_jiffies32;
2205 
2206 	if (tp->chrono_type > TCP_CHRONO_UNSPEC)
2207 		tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
2208 	tp->chrono_start = now;
2209 	tp->chrono_type = new;
2210 }
2211 
2212 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2213 {
2214 	struct tcp_sock *tp = tcp_sk(sk);
2215 
2216 	/* If there are multiple conditions worthy of tracking in a
2217 	 * chronograph then the highest priority enum takes precedence
2218 	 * over the other conditions. So that if something "more interesting"
2219 	 * starts happening, stop the previous chrono and start a new one.
2220 	 */
2221 	if (type > tp->chrono_type)
2222 		tcp_chrono_set(tp, type);
2223 }
2224 
2225 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2226 {
2227 	struct tcp_sock *tp = tcp_sk(sk);
2228 
2229 
2230 	/* There are multiple conditions worthy of tracking in a
2231 	 * chronograph, so that the highest priority enum takes
2232 	 * precedence over the other conditions (see tcp_chrono_start).
2233 	 * If a condition stops, we only stop chrono tracking if
2234 	 * it's the "most interesting" or current chrono we are
2235 	 * tracking and starts busy chrono if we have pending data.
2236 	 */
2237 	if (tcp_write_queue_empty(sk))
2238 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2239 	else if (type == tp->chrono_type)
2240 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2241 }
2242 
2243 /* This routine writes packets to the network.  It advances the
2244  * send_head.  This happens as incoming acks open up the remote
2245  * window for us.
2246  *
2247  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2248  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2249  * account rare use of URG, this is not a big flaw.
2250  *
2251  * Send at most one packet when push_one > 0. Temporarily ignore
2252  * cwnd limit to force at most one packet out when push_one == 2.
2253 
2254  * Returns true, if no segments are in flight and we have queued segments,
2255  * but cannot send anything now because of SWS or another problem.
2256  */
2257 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2258 			   int push_one, gfp_t gfp)
2259 {
2260 	struct tcp_sock *tp = tcp_sk(sk);
2261 	struct sk_buff *skb;
2262 	unsigned int tso_segs, sent_pkts;
2263 	int cwnd_quota;
2264 	int result;
2265 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2266 	u32 max_segs;
2267 
2268 	sent_pkts = 0;
2269 
2270 	if (!push_one) {
2271 		/* Do MTU probing. */
2272 		result = tcp_mtu_probe(sk);
2273 		if (!result) {
2274 			return false;
2275 		} else if (result > 0) {
2276 			sent_pkts = 1;
2277 		}
2278 	}
2279 
2280 	max_segs = tcp_tso_segs(sk, mss_now);
2281 	tcp_mstamp_refresh(tp);
2282 	while ((skb = tcp_send_head(sk))) {
2283 		unsigned int limit;
2284 
2285 		if (tcp_pacing_check(sk))
2286 			break;
2287 
2288 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2289 		BUG_ON(!tso_segs);
2290 
2291 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2292 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2293 			skb->skb_mstamp = tp->tcp_mstamp;
2294 			goto repair; /* Skip network transmission */
2295 		}
2296 
2297 		cwnd_quota = tcp_cwnd_test(tp, skb);
2298 		if (!cwnd_quota) {
2299 			if (push_one == 2)
2300 				/* Force out a loss probe pkt. */
2301 				cwnd_quota = 1;
2302 			else
2303 				break;
2304 		}
2305 
2306 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2307 			is_rwnd_limited = true;
2308 			break;
2309 		}
2310 
2311 		if (tso_segs == 1) {
2312 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2313 						     (tcp_skb_is_last(sk, skb) ?
2314 						      nonagle : TCP_NAGLE_PUSH))))
2315 				break;
2316 		} else {
2317 			if (!push_one &&
2318 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2319 						 max_segs))
2320 				break;
2321 		}
2322 
2323 		limit = mss_now;
2324 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2325 			limit = tcp_mss_split_point(sk, skb, mss_now,
2326 						    min_t(unsigned int,
2327 							  cwnd_quota,
2328 							  max_segs),
2329 						    nonagle);
2330 
2331 		if (skb->len > limit &&
2332 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2333 			break;
2334 
2335 		if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2336 			clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2337 		if (tcp_small_queue_check(sk, skb, 0))
2338 			break;
2339 
2340 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2341 			break;
2342 
2343 repair:
2344 		/* Advance the send_head.  This one is sent out.
2345 		 * This call will increment packets_out.
2346 		 */
2347 		tcp_event_new_data_sent(sk, skb);
2348 
2349 		tcp_minshall_update(tp, mss_now, skb);
2350 		sent_pkts += tcp_skb_pcount(skb);
2351 
2352 		if (push_one)
2353 			break;
2354 	}
2355 
2356 	if (is_rwnd_limited)
2357 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2358 	else
2359 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2360 
2361 	if (likely(sent_pkts)) {
2362 		if (tcp_in_cwnd_reduction(sk))
2363 			tp->prr_out += sent_pkts;
2364 
2365 		/* Send one loss probe per tail loss episode. */
2366 		if (push_one != 2)
2367 			tcp_schedule_loss_probe(sk);
2368 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2369 		tcp_cwnd_validate(sk, is_cwnd_limited);
2370 		return false;
2371 	}
2372 	return !tp->packets_out && tcp_send_head(sk);
2373 }
2374 
2375 bool tcp_schedule_loss_probe(struct sock *sk)
2376 {
2377 	struct inet_connection_sock *icsk = inet_csk(sk);
2378 	struct tcp_sock *tp = tcp_sk(sk);
2379 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2380 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2381 
2382 	/* No consecutive loss probes. */
2383 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2384 		tcp_rearm_rto(sk);
2385 		return false;
2386 	}
2387 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2388 	 * finishes.
2389 	 */
2390 	if (tp->fastopen_rsk)
2391 		return false;
2392 
2393 	/* TLP is only scheduled when next timer event is RTO. */
2394 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2395 		return false;
2396 
2397 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2398 	 * in Open state, that are either limited by cwnd or application.
2399 	 */
2400 	if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2401 	    !tp->packets_out || !tcp_is_sack(tp) ||
2402 	    icsk->icsk_ca_state != TCP_CA_Open)
2403 		return false;
2404 
2405 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2406 	     tcp_send_head(sk))
2407 		return false;
2408 
2409 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2410 	 * for delayed ack when there's one outstanding packet. If no RTT
2411 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2412 	 */
2413 	timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2414 	if (tp->packets_out == 1)
2415 		timeout = max_t(u32, timeout,
2416 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2417 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2418 
2419 	/* If RTO is shorter, just schedule TLP in its place. */
2420 	tlp_time_stamp = tcp_jiffies32 + timeout;
2421 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2422 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2423 		s32 delta = rto_time_stamp - tcp_jiffies32;
2424 		if (delta > 0)
2425 			timeout = delta;
2426 	}
2427 
2428 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2429 				  TCP_RTO_MAX);
2430 	return true;
2431 }
2432 
2433 /* Thanks to skb fast clones, we can detect if a prior transmit of
2434  * a packet is still in a qdisc or driver queue.
2435  * In this case, there is very little point doing a retransmit !
2436  */
2437 static bool skb_still_in_host_queue(const struct sock *sk,
2438 				    const struct sk_buff *skb)
2439 {
2440 	if (unlikely(skb_fclone_busy(sk, skb))) {
2441 		NET_INC_STATS(sock_net(sk),
2442 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2443 		return true;
2444 	}
2445 	return false;
2446 }
2447 
2448 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2449  * retransmit the last segment.
2450  */
2451 void tcp_send_loss_probe(struct sock *sk)
2452 {
2453 	struct tcp_sock *tp = tcp_sk(sk);
2454 	struct sk_buff *skb;
2455 	int pcount;
2456 	int mss = tcp_current_mss(sk);
2457 
2458 	skb = tcp_send_head(sk);
2459 	if (skb) {
2460 		if (tcp_snd_wnd_test(tp, skb, mss)) {
2461 			pcount = tp->packets_out;
2462 			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2463 			if (tp->packets_out > pcount)
2464 				goto probe_sent;
2465 			goto rearm_timer;
2466 		}
2467 		skb = tcp_write_queue_prev(sk, skb);
2468 	} else {
2469 		skb = tcp_write_queue_tail(sk);
2470 	}
2471 
2472 	/* At most one outstanding TLP retransmission. */
2473 	if (tp->tlp_high_seq)
2474 		goto rearm_timer;
2475 
2476 	/* Retransmit last segment. */
2477 	if (WARN_ON(!skb))
2478 		goto rearm_timer;
2479 
2480 	if (skb_still_in_host_queue(sk, skb))
2481 		goto rearm_timer;
2482 
2483 	pcount = tcp_skb_pcount(skb);
2484 	if (WARN_ON(!pcount))
2485 		goto rearm_timer;
2486 
2487 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2488 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2489 					  GFP_ATOMIC)))
2490 			goto rearm_timer;
2491 		skb = tcp_write_queue_next(sk, skb);
2492 	}
2493 
2494 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2495 		goto rearm_timer;
2496 
2497 	if (__tcp_retransmit_skb(sk, skb, 1))
2498 		goto rearm_timer;
2499 
2500 	/* Record snd_nxt for loss detection. */
2501 	tp->tlp_high_seq = tp->snd_nxt;
2502 
2503 probe_sent:
2504 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2505 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2506 	inet_csk(sk)->icsk_pending = 0;
2507 rearm_timer:
2508 	tcp_rearm_rto(sk);
2509 }
2510 
2511 /* Push out any pending frames which were held back due to
2512  * TCP_CORK or attempt at coalescing tiny packets.
2513  * The socket must be locked by the caller.
2514  */
2515 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2516 			       int nonagle)
2517 {
2518 	/* If we are closed, the bytes will have to remain here.
2519 	 * In time closedown will finish, we empty the write queue and
2520 	 * all will be happy.
2521 	 */
2522 	if (unlikely(sk->sk_state == TCP_CLOSE))
2523 		return;
2524 
2525 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2526 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2527 		tcp_check_probe_timer(sk);
2528 }
2529 
2530 /* Send _single_ skb sitting at the send head. This function requires
2531  * true push pending frames to setup probe timer etc.
2532  */
2533 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2534 {
2535 	struct sk_buff *skb = tcp_send_head(sk);
2536 
2537 	BUG_ON(!skb || skb->len < mss_now);
2538 
2539 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2540 }
2541 
2542 /* This function returns the amount that we can raise the
2543  * usable window based on the following constraints
2544  *
2545  * 1. The window can never be shrunk once it is offered (RFC 793)
2546  * 2. We limit memory per socket
2547  *
2548  * RFC 1122:
2549  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2550  *  RECV.NEXT + RCV.WIN fixed until:
2551  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2552  *
2553  * i.e. don't raise the right edge of the window until you can raise
2554  * it at least MSS bytes.
2555  *
2556  * Unfortunately, the recommended algorithm breaks header prediction,
2557  * since header prediction assumes th->window stays fixed.
2558  *
2559  * Strictly speaking, keeping th->window fixed violates the receiver
2560  * side SWS prevention criteria. The problem is that under this rule
2561  * a stream of single byte packets will cause the right side of the
2562  * window to always advance by a single byte.
2563  *
2564  * Of course, if the sender implements sender side SWS prevention
2565  * then this will not be a problem.
2566  *
2567  * BSD seems to make the following compromise:
2568  *
2569  *	If the free space is less than the 1/4 of the maximum
2570  *	space available and the free space is less than 1/2 mss,
2571  *	then set the window to 0.
2572  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2573  *	Otherwise, just prevent the window from shrinking
2574  *	and from being larger than the largest representable value.
2575  *
2576  * This prevents incremental opening of the window in the regime
2577  * where TCP is limited by the speed of the reader side taking
2578  * data out of the TCP receive queue. It does nothing about
2579  * those cases where the window is constrained on the sender side
2580  * because the pipeline is full.
2581  *
2582  * BSD also seems to "accidentally" limit itself to windows that are a
2583  * multiple of MSS, at least until the free space gets quite small.
2584  * This would appear to be a side effect of the mbuf implementation.
2585  * Combining these two algorithms results in the observed behavior
2586  * of having a fixed window size at almost all times.
2587  *
2588  * Below we obtain similar behavior by forcing the offered window to
2589  * a multiple of the mss when it is feasible to do so.
2590  *
2591  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2592  * Regular options like TIMESTAMP are taken into account.
2593  */
2594 u32 __tcp_select_window(struct sock *sk)
2595 {
2596 	struct inet_connection_sock *icsk = inet_csk(sk);
2597 	struct tcp_sock *tp = tcp_sk(sk);
2598 	/* MSS for the peer's data.  Previous versions used mss_clamp
2599 	 * here.  I don't know if the value based on our guesses
2600 	 * of peer's MSS is better for the performance.  It's more correct
2601 	 * but may be worse for the performance because of rcv_mss
2602 	 * fluctuations.  --SAW  1998/11/1
2603 	 */
2604 	int mss = icsk->icsk_ack.rcv_mss;
2605 	int free_space = tcp_space(sk);
2606 	int allowed_space = tcp_full_space(sk);
2607 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2608 	int window;
2609 
2610 	if (unlikely(mss > full_space)) {
2611 		mss = full_space;
2612 		if (mss <= 0)
2613 			return 0;
2614 	}
2615 	if (free_space < (full_space >> 1)) {
2616 		icsk->icsk_ack.quick = 0;
2617 
2618 		if (tcp_under_memory_pressure(sk))
2619 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2620 					       4U * tp->advmss);
2621 
2622 		/* free_space might become our new window, make sure we don't
2623 		 * increase it due to wscale.
2624 		 */
2625 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2626 
2627 		/* if free space is less than mss estimate, or is below 1/16th
2628 		 * of the maximum allowed, try to move to zero-window, else
2629 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2630 		 * new incoming data is dropped due to memory limits.
2631 		 * With large window, mss test triggers way too late in order
2632 		 * to announce zero window in time before rmem limit kicks in.
2633 		 */
2634 		if (free_space < (allowed_space >> 4) || free_space < mss)
2635 			return 0;
2636 	}
2637 
2638 	if (free_space > tp->rcv_ssthresh)
2639 		free_space = tp->rcv_ssthresh;
2640 
2641 	/* Don't do rounding if we are using window scaling, since the
2642 	 * scaled window will not line up with the MSS boundary anyway.
2643 	 */
2644 	if (tp->rx_opt.rcv_wscale) {
2645 		window = free_space;
2646 
2647 		/* Advertise enough space so that it won't get scaled away.
2648 		 * Import case: prevent zero window announcement if
2649 		 * 1<<rcv_wscale > mss.
2650 		 */
2651 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2652 	} else {
2653 		window = tp->rcv_wnd;
2654 		/* Get the largest window that is a nice multiple of mss.
2655 		 * Window clamp already applied above.
2656 		 * If our current window offering is within 1 mss of the
2657 		 * free space we just keep it. This prevents the divide
2658 		 * and multiply from happening most of the time.
2659 		 * We also don't do any window rounding when the free space
2660 		 * is too small.
2661 		 */
2662 		if (window <= free_space - mss || window > free_space)
2663 			window = rounddown(free_space, mss);
2664 		else if (mss == full_space &&
2665 			 free_space > window + (full_space >> 1))
2666 			window = free_space;
2667 	}
2668 
2669 	return window;
2670 }
2671 
2672 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2673 			     const struct sk_buff *next_skb)
2674 {
2675 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2676 		const struct skb_shared_info *next_shinfo =
2677 			skb_shinfo(next_skb);
2678 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2679 
2680 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2681 		shinfo->tskey = next_shinfo->tskey;
2682 		TCP_SKB_CB(skb)->txstamp_ack |=
2683 			TCP_SKB_CB(next_skb)->txstamp_ack;
2684 	}
2685 }
2686 
2687 /* Collapses two adjacent SKB's during retransmission. */
2688 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2689 {
2690 	struct tcp_sock *tp = tcp_sk(sk);
2691 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2692 	int skb_size, next_skb_size;
2693 
2694 	skb_size = skb->len;
2695 	next_skb_size = next_skb->len;
2696 
2697 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2698 
2699 	if (next_skb_size) {
2700 		if (next_skb_size <= skb_availroom(skb))
2701 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2702 				      next_skb_size);
2703 		else if (!skb_shift(skb, next_skb, next_skb_size))
2704 			return false;
2705 	}
2706 	tcp_highest_sack_combine(sk, next_skb, skb);
2707 
2708 	tcp_unlink_write_queue(next_skb, sk);
2709 
2710 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2711 		skb->ip_summed = CHECKSUM_PARTIAL;
2712 
2713 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2714 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2715 
2716 	/* Update sequence range on original skb. */
2717 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2718 
2719 	/* Merge over control information. This moves PSH/FIN etc. over */
2720 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2721 
2722 	/* All done, get rid of second SKB and account for it so
2723 	 * packet counting does not break.
2724 	 */
2725 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2726 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2727 
2728 	/* changed transmit queue under us so clear hints */
2729 	tcp_clear_retrans_hints_partial(tp);
2730 	if (next_skb == tp->retransmit_skb_hint)
2731 		tp->retransmit_skb_hint = skb;
2732 
2733 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2734 
2735 	tcp_skb_collapse_tstamp(skb, next_skb);
2736 
2737 	sk_wmem_free_skb(sk, next_skb);
2738 	return true;
2739 }
2740 
2741 /* Check if coalescing SKBs is legal. */
2742 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2743 {
2744 	if (tcp_skb_pcount(skb) > 1)
2745 		return false;
2746 	if (skb_cloned(skb))
2747 		return false;
2748 	if (skb == tcp_send_head(sk))
2749 		return false;
2750 	/* Some heuristics for collapsing over SACK'd could be invented */
2751 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2752 		return false;
2753 
2754 	return true;
2755 }
2756 
2757 /* Collapse packets in the retransmit queue to make to create
2758  * less packets on the wire. This is only done on retransmission.
2759  */
2760 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2761 				     int space)
2762 {
2763 	struct tcp_sock *tp = tcp_sk(sk);
2764 	struct sk_buff *skb = to, *tmp;
2765 	bool first = true;
2766 
2767 	if (!sysctl_tcp_retrans_collapse)
2768 		return;
2769 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2770 		return;
2771 
2772 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2773 		if (!tcp_can_collapse(sk, skb))
2774 			break;
2775 
2776 		if (!tcp_skb_can_collapse_to(to))
2777 			break;
2778 
2779 		space -= skb->len;
2780 
2781 		if (first) {
2782 			first = false;
2783 			continue;
2784 		}
2785 
2786 		if (space < 0)
2787 			break;
2788 
2789 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2790 			break;
2791 
2792 		if (!tcp_collapse_retrans(sk, to))
2793 			break;
2794 	}
2795 }
2796 
2797 /* This retransmits one SKB.  Policy decisions and retransmit queue
2798  * state updates are done by the caller.  Returns non-zero if an
2799  * error occurred which prevented the send.
2800  */
2801 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2802 {
2803 	struct inet_connection_sock *icsk = inet_csk(sk);
2804 	struct tcp_sock *tp = tcp_sk(sk);
2805 	unsigned int cur_mss;
2806 	int diff, len, err;
2807 
2808 
2809 	/* Inconclusive MTU probe */
2810 	if (icsk->icsk_mtup.probe_size)
2811 		icsk->icsk_mtup.probe_size = 0;
2812 
2813 	/* Do not sent more than we queued. 1/4 is reserved for possible
2814 	 * copying overhead: fragmentation, tunneling, mangling etc.
2815 	 */
2816 	if (refcount_read(&sk->sk_wmem_alloc) >
2817 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2818 		  sk->sk_sndbuf))
2819 		return -EAGAIN;
2820 
2821 	if (skb_still_in_host_queue(sk, skb))
2822 		return -EBUSY;
2823 
2824 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2825 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2826 			BUG();
2827 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2828 			return -ENOMEM;
2829 	}
2830 
2831 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2832 		return -EHOSTUNREACH; /* Routing failure or similar. */
2833 
2834 	cur_mss = tcp_current_mss(sk);
2835 
2836 	/* If receiver has shrunk his window, and skb is out of
2837 	 * new window, do not retransmit it. The exception is the
2838 	 * case, when window is shrunk to zero. In this case
2839 	 * our retransmit serves as a zero window probe.
2840 	 */
2841 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2842 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2843 		return -EAGAIN;
2844 
2845 	len = cur_mss * segs;
2846 	if (skb->len > len) {
2847 		if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2848 			return -ENOMEM; /* We'll try again later. */
2849 	} else {
2850 		if (skb_unclone(skb, GFP_ATOMIC))
2851 			return -ENOMEM;
2852 
2853 		diff = tcp_skb_pcount(skb);
2854 		tcp_set_skb_tso_segs(skb, cur_mss);
2855 		diff -= tcp_skb_pcount(skb);
2856 		if (diff)
2857 			tcp_adjust_pcount(sk, skb, diff);
2858 		if (skb->len < cur_mss)
2859 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2860 	}
2861 
2862 	/* RFC3168, section 6.1.1.1. ECN fallback */
2863 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2864 		tcp_ecn_clear_syn(sk, skb);
2865 
2866 	/* Update global and local TCP statistics. */
2867 	segs = tcp_skb_pcount(skb);
2868 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2869 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2870 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2871 	tp->total_retrans += segs;
2872 
2873 	/* make sure skb->data is aligned on arches that require it
2874 	 * and check if ack-trimming & collapsing extended the headroom
2875 	 * beyond what csum_start can cover.
2876 	 */
2877 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2878 		     skb_headroom(skb) >= 0xFFFF)) {
2879 		struct sk_buff *nskb;
2880 
2881 		skb->skb_mstamp = tp->tcp_mstamp;
2882 		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2883 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2884 			     -ENOBUFS;
2885 	} else {
2886 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2887 	}
2888 
2889 	if (likely(!err)) {
2890 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2891 	} else if (err != -EBUSY) {
2892 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2893 	}
2894 	return err;
2895 }
2896 
2897 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2898 {
2899 	struct tcp_sock *tp = tcp_sk(sk);
2900 	int err = __tcp_retransmit_skb(sk, skb, segs);
2901 
2902 	if (err == 0) {
2903 #if FASTRETRANS_DEBUG > 0
2904 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2905 			net_dbg_ratelimited("retrans_out leaked\n");
2906 		}
2907 #endif
2908 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2909 		tp->retrans_out += tcp_skb_pcount(skb);
2910 
2911 		/* Save stamp of the first retransmit. */
2912 		if (!tp->retrans_stamp)
2913 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2914 
2915 	}
2916 
2917 	if (tp->undo_retrans < 0)
2918 		tp->undo_retrans = 0;
2919 	tp->undo_retrans += tcp_skb_pcount(skb);
2920 	return err;
2921 }
2922 
2923 /* This gets called after a retransmit timeout, and the initially
2924  * retransmitted data is acknowledged.  It tries to continue
2925  * resending the rest of the retransmit queue, until either
2926  * we've sent it all or the congestion window limit is reached.
2927  * If doing SACK, the first ACK which comes back for a timeout
2928  * based retransmit packet might feed us FACK information again.
2929  * If so, we use it to avoid unnecessarily retransmissions.
2930  */
2931 void tcp_xmit_retransmit_queue(struct sock *sk)
2932 {
2933 	const struct inet_connection_sock *icsk = inet_csk(sk);
2934 	struct tcp_sock *tp = tcp_sk(sk);
2935 	struct sk_buff *skb;
2936 	struct sk_buff *hole = NULL;
2937 	u32 max_segs;
2938 	int mib_idx;
2939 
2940 	if (!tp->packets_out)
2941 		return;
2942 
2943 	if (tp->retransmit_skb_hint) {
2944 		skb = tp->retransmit_skb_hint;
2945 	} else {
2946 		skb = tcp_write_queue_head(sk);
2947 	}
2948 
2949 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2950 	tcp_for_write_queue_from(skb, sk) {
2951 		__u8 sacked;
2952 		int segs;
2953 
2954 		if (skb == tcp_send_head(sk))
2955 			break;
2956 
2957 		if (tcp_pacing_check(sk))
2958 			break;
2959 
2960 		/* we could do better than to assign each time */
2961 		if (!hole)
2962 			tp->retransmit_skb_hint = skb;
2963 
2964 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2965 		if (segs <= 0)
2966 			return;
2967 		sacked = TCP_SKB_CB(skb)->sacked;
2968 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2969 		 * we need to make sure not sending too bigs TSO packets
2970 		 */
2971 		segs = min_t(int, segs, max_segs);
2972 
2973 		if (tp->retrans_out >= tp->lost_out) {
2974 			break;
2975 		} else if (!(sacked & TCPCB_LOST)) {
2976 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2977 				hole = skb;
2978 			continue;
2979 
2980 		} else {
2981 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2982 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2983 			else
2984 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2985 		}
2986 
2987 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2988 			continue;
2989 
2990 		if (tcp_small_queue_check(sk, skb, 1))
2991 			return;
2992 
2993 		if (tcp_retransmit_skb(sk, skb, segs))
2994 			return;
2995 
2996 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2997 
2998 		if (tcp_in_cwnd_reduction(sk))
2999 			tp->prr_out += tcp_skb_pcount(skb);
3000 
3001 		if (skb == tcp_write_queue_head(sk) &&
3002 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3003 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3004 						  inet_csk(sk)->icsk_rto,
3005 						  TCP_RTO_MAX);
3006 	}
3007 }
3008 
3009 /* We allow to exceed memory limits for FIN packets to expedite
3010  * connection tear down and (memory) recovery.
3011  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3012  * or even be forced to close flow without any FIN.
3013  * In general, we want to allow one skb per socket to avoid hangs
3014  * with edge trigger epoll()
3015  */
3016 void sk_forced_mem_schedule(struct sock *sk, int size)
3017 {
3018 	int amt;
3019 
3020 	if (size <= sk->sk_forward_alloc)
3021 		return;
3022 	amt = sk_mem_pages(size);
3023 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3024 	sk_memory_allocated_add(sk, amt);
3025 
3026 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3027 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3028 }
3029 
3030 /* Send a FIN. The caller locks the socket for us.
3031  * We should try to send a FIN packet really hard, but eventually give up.
3032  */
3033 void tcp_send_fin(struct sock *sk)
3034 {
3035 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3036 	struct tcp_sock *tp = tcp_sk(sk);
3037 
3038 	/* Optimization, tack on the FIN if we have one skb in write queue and
3039 	 * this skb was not yet sent, or we are under memory pressure.
3040 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3041 	 * as TCP stack thinks it has already been transmitted.
3042 	 */
3043 	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
3044 coalesce:
3045 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3046 		TCP_SKB_CB(tskb)->end_seq++;
3047 		tp->write_seq++;
3048 		if (!tcp_send_head(sk)) {
3049 			/* This means tskb was already sent.
3050 			 * Pretend we included the FIN on previous transmit.
3051 			 * We need to set tp->snd_nxt to the value it would have
3052 			 * if FIN had been sent. This is because retransmit path
3053 			 * does not change tp->snd_nxt.
3054 			 */
3055 			tp->snd_nxt++;
3056 			return;
3057 		}
3058 	} else {
3059 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3060 		if (unlikely(!skb)) {
3061 			if (tskb)
3062 				goto coalesce;
3063 			return;
3064 		}
3065 		skb_reserve(skb, MAX_TCP_HEADER);
3066 		sk_forced_mem_schedule(sk, skb->truesize);
3067 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3068 		tcp_init_nondata_skb(skb, tp->write_seq,
3069 				     TCPHDR_ACK | TCPHDR_FIN);
3070 		tcp_queue_skb(sk, skb);
3071 	}
3072 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3073 }
3074 
3075 /* We get here when a process closes a file descriptor (either due to
3076  * an explicit close() or as a byproduct of exit()'ing) and there
3077  * was unread data in the receive queue.  This behavior is recommended
3078  * by RFC 2525, section 2.17.  -DaveM
3079  */
3080 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3081 {
3082 	struct sk_buff *skb;
3083 
3084 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3085 
3086 	/* NOTE: No TCP options attached and we never retransmit this. */
3087 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3088 	if (!skb) {
3089 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3090 		return;
3091 	}
3092 
3093 	/* Reserve space for headers and prepare control bits. */
3094 	skb_reserve(skb, MAX_TCP_HEADER);
3095 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3096 			     TCPHDR_ACK | TCPHDR_RST);
3097 	tcp_mstamp_refresh(tcp_sk(sk));
3098 	/* Send it off. */
3099 	if (tcp_transmit_skb(sk, skb, 0, priority))
3100 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3101 }
3102 
3103 /* Send a crossed SYN-ACK during socket establishment.
3104  * WARNING: This routine must only be called when we have already sent
3105  * a SYN packet that crossed the incoming SYN that caused this routine
3106  * to get called. If this assumption fails then the initial rcv_wnd
3107  * and rcv_wscale values will not be correct.
3108  */
3109 int tcp_send_synack(struct sock *sk)
3110 {
3111 	struct sk_buff *skb;
3112 
3113 	skb = tcp_write_queue_head(sk);
3114 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3115 		pr_debug("%s: wrong queue state\n", __func__);
3116 		return -EFAULT;
3117 	}
3118 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3119 		if (skb_cloned(skb)) {
3120 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3121 			if (!nskb)
3122 				return -ENOMEM;
3123 			tcp_unlink_write_queue(skb, sk);
3124 			__skb_header_release(nskb);
3125 			__tcp_add_write_queue_head(sk, nskb);
3126 			sk_wmem_free_skb(sk, skb);
3127 			sk->sk_wmem_queued += nskb->truesize;
3128 			sk_mem_charge(sk, nskb->truesize);
3129 			skb = nskb;
3130 		}
3131 
3132 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3133 		tcp_ecn_send_synack(sk, skb);
3134 	}
3135 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3136 }
3137 
3138 /**
3139  * tcp_make_synack - Prepare a SYN-ACK.
3140  * sk: listener socket
3141  * dst: dst entry attached to the SYNACK
3142  * req: request_sock pointer
3143  *
3144  * Allocate one skb and build a SYNACK packet.
3145  * @dst is consumed : Caller should not use it again.
3146  */
3147 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3148 				struct request_sock *req,
3149 				struct tcp_fastopen_cookie *foc,
3150 				enum tcp_synack_type synack_type)
3151 {
3152 	struct inet_request_sock *ireq = inet_rsk(req);
3153 	const struct tcp_sock *tp = tcp_sk(sk);
3154 	struct tcp_md5sig_key *md5 = NULL;
3155 	struct tcp_out_options opts;
3156 	struct sk_buff *skb;
3157 	int tcp_header_size;
3158 	struct tcphdr *th;
3159 	int mss;
3160 
3161 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3162 	if (unlikely(!skb)) {
3163 		dst_release(dst);
3164 		return NULL;
3165 	}
3166 	/* Reserve space for headers. */
3167 	skb_reserve(skb, MAX_TCP_HEADER);
3168 
3169 	switch (synack_type) {
3170 	case TCP_SYNACK_NORMAL:
3171 		skb_set_owner_w(skb, req_to_sk(req));
3172 		break;
3173 	case TCP_SYNACK_COOKIE:
3174 		/* Under synflood, we do not attach skb to a socket,
3175 		 * to avoid false sharing.
3176 		 */
3177 		break;
3178 	case TCP_SYNACK_FASTOPEN:
3179 		/* sk is a const pointer, because we want to express multiple
3180 		 * cpu might call us concurrently.
3181 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3182 		 */
3183 		skb_set_owner_w(skb, (struct sock *)sk);
3184 		break;
3185 	}
3186 	skb_dst_set(skb, dst);
3187 
3188 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3189 
3190 	memset(&opts, 0, sizeof(opts));
3191 #ifdef CONFIG_SYN_COOKIES
3192 	if (unlikely(req->cookie_ts))
3193 		skb->skb_mstamp = cookie_init_timestamp(req);
3194 	else
3195 #endif
3196 		skb->skb_mstamp = tcp_clock_us();
3197 
3198 #ifdef CONFIG_TCP_MD5SIG
3199 	rcu_read_lock();
3200 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3201 #endif
3202 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3203 	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3204 			  sizeof(*th);
3205 
3206 	skb_push(skb, tcp_header_size);
3207 	skb_reset_transport_header(skb);
3208 
3209 	th = (struct tcphdr *)skb->data;
3210 	memset(th, 0, sizeof(struct tcphdr));
3211 	th->syn = 1;
3212 	th->ack = 1;
3213 	tcp_ecn_make_synack(req, th);
3214 	th->source = htons(ireq->ir_num);
3215 	th->dest = ireq->ir_rmt_port;
3216 	skb->mark = ireq->ir_mark;
3217 	/* Setting of flags are superfluous here for callers (and ECE is
3218 	 * not even correctly set)
3219 	 */
3220 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3221 			     TCPHDR_SYN | TCPHDR_ACK);
3222 
3223 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3224 	/* XXX data is queued and acked as is. No buffer/window check */
3225 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3226 
3227 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3228 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3229 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3230 	th->doff = (tcp_header_size >> 2);
3231 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3232 
3233 #ifdef CONFIG_TCP_MD5SIG
3234 	/* Okay, we have all we need - do the md5 hash if needed */
3235 	if (md5)
3236 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3237 					       md5, req_to_sk(req), skb);
3238 	rcu_read_unlock();
3239 #endif
3240 
3241 	/* Do not fool tcpdump (if any), clean our debris */
3242 	skb->tstamp = 0;
3243 	return skb;
3244 }
3245 EXPORT_SYMBOL(tcp_make_synack);
3246 
3247 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3248 {
3249 	struct inet_connection_sock *icsk = inet_csk(sk);
3250 	const struct tcp_congestion_ops *ca;
3251 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3252 
3253 	if (ca_key == TCP_CA_UNSPEC)
3254 		return;
3255 
3256 	rcu_read_lock();
3257 	ca = tcp_ca_find_key(ca_key);
3258 	if (likely(ca && try_module_get(ca->owner))) {
3259 		module_put(icsk->icsk_ca_ops->owner);
3260 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3261 		icsk->icsk_ca_ops = ca;
3262 	}
3263 	rcu_read_unlock();
3264 }
3265 
3266 /* Do all connect socket setups that can be done AF independent. */
3267 static void tcp_connect_init(struct sock *sk)
3268 {
3269 	const struct dst_entry *dst = __sk_dst_get(sk);
3270 	struct tcp_sock *tp = tcp_sk(sk);
3271 	__u8 rcv_wscale;
3272 	u32 rcv_wnd;
3273 
3274 	/* We'll fix this up when we get a response from the other end.
3275 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3276 	 */
3277 	tp->tcp_header_len = sizeof(struct tcphdr);
3278 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3279 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3280 
3281 #ifdef CONFIG_TCP_MD5SIG
3282 	if (tp->af_specific->md5_lookup(sk, sk))
3283 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3284 #endif
3285 
3286 	/* If user gave his TCP_MAXSEG, record it to clamp */
3287 	if (tp->rx_opt.user_mss)
3288 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3289 	tp->max_window = 0;
3290 	tcp_mtup_init(sk);
3291 	tcp_sync_mss(sk, dst_mtu(dst));
3292 
3293 	tcp_ca_dst_init(sk, dst);
3294 
3295 	if (!tp->window_clamp)
3296 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3297 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3298 
3299 	tcp_initialize_rcv_mss(sk);
3300 
3301 	/* limit the window selection if the user enforce a smaller rx buffer */
3302 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3303 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3304 		tp->window_clamp = tcp_full_space(sk);
3305 
3306 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3307 	if (rcv_wnd == 0)
3308 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3309 
3310 	tcp_select_initial_window(tcp_full_space(sk),
3311 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3312 				  &tp->rcv_wnd,
3313 				  &tp->window_clamp,
3314 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3315 				  &rcv_wscale,
3316 				  rcv_wnd);
3317 
3318 	tp->rx_opt.rcv_wscale = rcv_wscale;
3319 	tp->rcv_ssthresh = tp->rcv_wnd;
3320 
3321 	sk->sk_err = 0;
3322 	sock_reset_flag(sk, SOCK_DONE);
3323 	tp->snd_wnd = 0;
3324 	tcp_init_wl(tp, 0);
3325 	tp->snd_una = tp->write_seq;
3326 	tp->snd_sml = tp->write_seq;
3327 	tp->snd_up = tp->write_seq;
3328 	tp->snd_nxt = tp->write_seq;
3329 
3330 	if (likely(!tp->repair))
3331 		tp->rcv_nxt = 0;
3332 	else
3333 		tp->rcv_tstamp = tcp_jiffies32;
3334 	tp->rcv_wup = tp->rcv_nxt;
3335 	tp->copied_seq = tp->rcv_nxt;
3336 
3337 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3338 	inet_csk(sk)->icsk_retransmits = 0;
3339 	tcp_clear_retrans(tp);
3340 }
3341 
3342 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3343 {
3344 	struct tcp_sock *tp = tcp_sk(sk);
3345 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3346 
3347 	tcb->end_seq += skb->len;
3348 	__skb_header_release(skb);
3349 	__tcp_add_write_queue_tail(sk, skb);
3350 	sk->sk_wmem_queued += skb->truesize;
3351 	sk_mem_charge(sk, skb->truesize);
3352 	tp->write_seq = tcb->end_seq;
3353 	tp->packets_out += tcp_skb_pcount(skb);
3354 }
3355 
3356 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3357  * queue a data-only packet after the regular SYN, such that regular SYNs
3358  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3359  * only the SYN sequence, the data are retransmitted in the first ACK.
3360  * If cookie is not cached or other error occurs, falls back to send a
3361  * regular SYN with Fast Open cookie request option.
3362  */
3363 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3364 {
3365 	struct tcp_sock *tp = tcp_sk(sk);
3366 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3367 	int space, err = 0;
3368 	struct sk_buff *syn_data;
3369 
3370 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3371 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3372 		goto fallback;
3373 
3374 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3375 	 * user-MSS. Reserve maximum option space for middleboxes that add
3376 	 * private TCP options. The cost is reduced data space in SYN :(
3377 	 */
3378 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3379 
3380 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3381 		MAX_TCP_OPTION_SPACE;
3382 
3383 	space = min_t(size_t, space, fo->size);
3384 
3385 	/* limit to order-0 allocations */
3386 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3387 
3388 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3389 	if (!syn_data)
3390 		goto fallback;
3391 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3392 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3393 	if (space) {
3394 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3395 					    &fo->data->msg_iter);
3396 		if (unlikely(!copied)) {
3397 			kfree_skb(syn_data);
3398 			goto fallback;
3399 		}
3400 		if (copied != space) {
3401 			skb_trim(syn_data, copied);
3402 			space = copied;
3403 		}
3404 	}
3405 	/* No more data pending in inet_wait_for_connect() */
3406 	if (space == fo->size)
3407 		fo->data = NULL;
3408 	fo->copied = space;
3409 
3410 	tcp_connect_queue_skb(sk, syn_data);
3411 	if (syn_data->len)
3412 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3413 
3414 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3415 
3416 	syn->skb_mstamp = syn_data->skb_mstamp;
3417 
3418 	/* Now full SYN+DATA was cloned and sent (or not),
3419 	 * remove the SYN from the original skb (syn_data)
3420 	 * we keep in write queue in case of a retransmit, as we
3421 	 * also have the SYN packet (with no data) in the same queue.
3422 	 */
3423 	TCP_SKB_CB(syn_data)->seq++;
3424 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3425 	if (!err) {
3426 		tp->syn_data = (fo->copied > 0);
3427 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3428 		goto done;
3429 	}
3430 
3431 fallback:
3432 	/* Send a regular SYN with Fast Open cookie request option */
3433 	if (fo->cookie.len > 0)
3434 		fo->cookie.len = 0;
3435 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3436 	if (err)
3437 		tp->syn_fastopen = 0;
3438 done:
3439 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3440 	return err;
3441 }
3442 
3443 /* Build a SYN and send it off. */
3444 int tcp_connect(struct sock *sk)
3445 {
3446 	struct tcp_sock *tp = tcp_sk(sk);
3447 	struct sk_buff *buff;
3448 	int err;
3449 
3450 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
3451 	tcp_connect_init(sk);
3452 
3453 	if (unlikely(tp->repair)) {
3454 		tcp_finish_connect(sk, NULL);
3455 		return 0;
3456 	}
3457 
3458 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3459 	if (unlikely(!buff))
3460 		return -ENOBUFS;
3461 
3462 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3463 	tcp_mstamp_refresh(tp);
3464 	tp->retrans_stamp = tcp_time_stamp(tp);
3465 	tcp_connect_queue_skb(sk, buff);
3466 	tcp_ecn_send_syn(sk, buff);
3467 
3468 	/* Send off SYN; include data in Fast Open. */
3469 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3470 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3471 	if (err == -ECONNREFUSED)
3472 		return err;
3473 
3474 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3475 	 * in order to make this packet get counted in tcpOutSegs.
3476 	 */
3477 	tp->snd_nxt = tp->write_seq;
3478 	tp->pushed_seq = tp->write_seq;
3479 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3480 
3481 	/* Timer for repeating the SYN until an answer. */
3482 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3483 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3484 	return 0;
3485 }
3486 EXPORT_SYMBOL(tcp_connect);
3487 
3488 /* Send out a delayed ack, the caller does the policy checking
3489  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3490  * for details.
3491  */
3492 void tcp_send_delayed_ack(struct sock *sk)
3493 {
3494 	struct inet_connection_sock *icsk = inet_csk(sk);
3495 	int ato = icsk->icsk_ack.ato;
3496 	unsigned long timeout;
3497 
3498 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3499 
3500 	if (ato > TCP_DELACK_MIN) {
3501 		const struct tcp_sock *tp = tcp_sk(sk);
3502 		int max_ato = HZ / 2;
3503 
3504 		if (icsk->icsk_ack.pingpong ||
3505 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3506 			max_ato = TCP_DELACK_MAX;
3507 
3508 		/* Slow path, intersegment interval is "high". */
3509 
3510 		/* If some rtt estimate is known, use it to bound delayed ack.
3511 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3512 		 * directly.
3513 		 */
3514 		if (tp->srtt_us) {
3515 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3516 					TCP_DELACK_MIN);
3517 
3518 			if (rtt < max_ato)
3519 				max_ato = rtt;
3520 		}
3521 
3522 		ato = min(ato, max_ato);
3523 	}
3524 
3525 	/* Stay within the limit we were given */
3526 	timeout = jiffies + ato;
3527 
3528 	/* Use new timeout only if there wasn't a older one earlier. */
3529 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3530 		/* If delack timer was blocked or is about to expire,
3531 		 * send ACK now.
3532 		 */
3533 		if (icsk->icsk_ack.blocked ||
3534 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3535 			tcp_send_ack(sk);
3536 			return;
3537 		}
3538 
3539 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3540 			timeout = icsk->icsk_ack.timeout;
3541 	}
3542 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3543 	icsk->icsk_ack.timeout = timeout;
3544 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3545 }
3546 
3547 /* This routine sends an ack and also updates the window. */
3548 void tcp_send_ack(struct sock *sk)
3549 {
3550 	struct sk_buff *buff;
3551 
3552 	/* If we have been reset, we may not send again. */
3553 	if (sk->sk_state == TCP_CLOSE)
3554 		return;
3555 
3556 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3557 
3558 	/* We are not putting this on the write queue, so
3559 	 * tcp_transmit_skb() will set the ownership to this
3560 	 * sock.
3561 	 */
3562 	buff = alloc_skb(MAX_TCP_HEADER,
3563 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3564 	if (unlikely(!buff)) {
3565 		inet_csk_schedule_ack(sk);
3566 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3567 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3568 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3569 		return;
3570 	}
3571 
3572 	/* Reserve space for headers and prepare control bits. */
3573 	skb_reserve(buff, MAX_TCP_HEADER);
3574 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3575 
3576 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3577 	 * too much.
3578 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3579 	 */
3580 	skb_set_tcp_pure_ack(buff);
3581 
3582 	/* Send it off, this clears delayed acks for us. */
3583 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3584 }
3585 EXPORT_SYMBOL_GPL(tcp_send_ack);
3586 
3587 /* This routine sends a packet with an out of date sequence
3588  * number. It assumes the other end will try to ack it.
3589  *
3590  * Question: what should we make while urgent mode?
3591  * 4.4BSD forces sending single byte of data. We cannot send
3592  * out of window data, because we have SND.NXT==SND.MAX...
3593  *
3594  * Current solution: to send TWO zero-length segments in urgent mode:
3595  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3596  * out-of-date with SND.UNA-1 to probe window.
3597  */
3598 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3599 {
3600 	struct tcp_sock *tp = tcp_sk(sk);
3601 	struct sk_buff *skb;
3602 
3603 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3604 	skb = alloc_skb(MAX_TCP_HEADER,
3605 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3606 	if (!skb)
3607 		return -1;
3608 
3609 	/* Reserve space for headers and set control bits. */
3610 	skb_reserve(skb, MAX_TCP_HEADER);
3611 	/* Use a previous sequence.  This should cause the other
3612 	 * end to send an ack.  Don't queue or clone SKB, just
3613 	 * send it.
3614 	 */
3615 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3616 	NET_INC_STATS(sock_net(sk), mib);
3617 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3618 }
3619 
3620 /* Called from setsockopt( ... TCP_REPAIR ) */
3621 void tcp_send_window_probe(struct sock *sk)
3622 {
3623 	if (sk->sk_state == TCP_ESTABLISHED) {
3624 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3625 		tcp_mstamp_refresh(tcp_sk(sk));
3626 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3627 	}
3628 }
3629 
3630 /* Initiate keepalive or window probe from timer. */
3631 int tcp_write_wakeup(struct sock *sk, int mib)
3632 {
3633 	struct tcp_sock *tp = tcp_sk(sk);
3634 	struct sk_buff *skb;
3635 
3636 	if (sk->sk_state == TCP_CLOSE)
3637 		return -1;
3638 
3639 	skb = tcp_send_head(sk);
3640 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3641 		int err;
3642 		unsigned int mss = tcp_current_mss(sk);
3643 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3644 
3645 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3646 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3647 
3648 		/* We are probing the opening of a window
3649 		 * but the window size is != 0
3650 		 * must have been a result SWS avoidance ( sender )
3651 		 */
3652 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3653 		    skb->len > mss) {
3654 			seg_size = min(seg_size, mss);
3655 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3656 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3657 				return -1;
3658 		} else if (!tcp_skb_pcount(skb))
3659 			tcp_set_skb_tso_segs(skb, mss);
3660 
3661 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3662 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3663 		if (!err)
3664 			tcp_event_new_data_sent(sk, skb);
3665 		return err;
3666 	} else {
3667 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3668 			tcp_xmit_probe_skb(sk, 1, mib);
3669 		return tcp_xmit_probe_skb(sk, 0, mib);
3670 	}
3671 }
3672 
3673 /* A window probe timeout has occurred.  If window is not closed send
3674  * a partial packet else a zero probe.
3675  */
3676 void tcp_send_probe0(struct sock *sk)
3677 {
3678 	struct inet_connection_sock *icsk = inet_csk(sk);
3679 	struct tcp_sock *tp = tcp_sk(sk);
3680 	struct net *net = sock_net(sk);
3681 	unsigned long probe_max;
3682 	int err;
3683 
3684 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3685 
3686 	if (tp->packets_out || !tcp_send_head(sk)) {
3687 		/* Cancel probe timer, if it is not required. */
3688 		icsk->icsk_probes_out = 0;
3689 		icsk->icsk_backoff = 0;
3690 		return;
3691 	}
3692 
3693 	if (err <= 0) {
3694 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3695 			icsk->icsk_backoff++;
3696 		icsk->icsk_probes_out++;
3697 		probe_max = TCP_RTO_MAX;
3698 	} else {
3699 		/* If packet was not sent due to local congestion,
3700 		 * do not backoff and do not remember icsk_probes_out.
3701 		 * Let local senders to fight for local resources.
3702 		 *
3703 		 * Use accumulated backoff yet.
3704 		 */
3705 		if (!icsk->icsk_probes_out)
3706 			icsk->icsk_probes_out = 1;
3707 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3708 	}
3709 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3710 				  tcp_probe0_when(sk, probe_max),
3711 				  TCP_RTO_MAX);
3712 }
3713 
3714 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3715 {
3716 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3717 	struct flowi fl;
3718 	int res;
3719 
3720 	tcp_rsk(req)->txhash = net_tx_rndhash();
3721 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3722 	if (!res) {
3723 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3724 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3725 		if (unlikely(tcp_passive_fastopen(sk)))
3726 			tcp_sk(sk)->total_retrans++;
3727 	}
3728 	return res;
3729 }
3730 EXPORT_SYMBOL(tcp_rtx_synack);
3731