1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 66 int push_one, gfp_t gfp); 67 68 /* Account for new data that has been sent to the network. */ 69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 70 { 71 struct inet_connection_sock *icsk = inet_csk(sk); 72 struct tcp_sock *tp = tcp_sk(sk); 73 unsigned int prior_packets = tp->packets_out; 74 75 tcp_advance_send_head(sk, skb); 76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 80 tcp_rearm_rto(sk); 81 82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 83 tcp_skb_pcount(skb)); 84 } 85 86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 87 * window scaling factor due to loss of precision. 88 * If window has been shrunk, what should we make? It is not clear at all. 89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 91 * invalid. OK, let's make this for now: 92 */ 93 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 94 { 95 const struct tcp_sock *tp = tcp_sk(sk); 96 97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 98 (tp->rx_opt.wscale_ok && 99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 100 return tp->snd_nxt; 101 else 102 return tcp_wnd_end(tp); 103 } 104 105 /* Calculate mss to advertise in SYN segment. 106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 107 * 108 * 1. It is independent of path mtu. 109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 111 * attached devices, because some buggy hosts are confused by 112 * large MSS. 113 * 4. We do not make 3, we advertise MSS, calculated from first 114 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 115 * This may be overridden via information stored in routing table. 116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 117 * probably even Jumbo". 118 */ 119 static __u16 tcp_advertise_mss(struct sock *sk) 120 { 121 struct tcp_sock *tp = tcp_sk(sk); 122 const struct dst_entry *dst = __sk_dst_get(sk); 123 int mss = tp->advmss; 124 125 if (dst) { 126 unsigned int metric = dst_metric_advmss(dst); 127 128 if (metric < mss) { 129 mss = metric; 130 tp->advmss = mss; 131 } 132 } 133 134 return (__u16)mss; 135 } 136 137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 138 * This is the first part of cwnd validation mechanism. 139 */ 140 void tcp_cwnd_restart(struct sock *sk, s32 delta) 141 { 142 struct tcp_sock *tp = tcp_sk(sk); 143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 144 u32 cwnd = tp->snd_cwnd; 145 146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 147 148 tp->snd_ssthresh = tcp_current_ssthresh(sk); 149 restart_cwnd = min(restart_cwnd, cwnd); 150 151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 152 cwnd >>= 1; 153 tp->snd_cwnd = max(cwnd, restart_cwnd); 154 tp->snd_cwnd_stamp = tcp_jiffies32; 155 tp->snd_cwnd_used = 0; 156 } 157 158 /* Congestion state accounting after a packet has been sent. */ 159 static void tcp_event_data_sent(struct tcp_sock *tp, 160 struct sock *sk) 161 { 162 struct inet_connection_sock *icsk = inet_csk(sk); 163 const u32 now = tcp_jiffies32; 164 165 if (tcp_packets_in_flight(tp) == 0) 166 tcp_ca_event(sk, CA_EVENT_TX_START); 167 168 tp->lsndtime = now; 169 170 /* If it is a reply for ato after last received 171 * packet, enter pingpong mode. 172 */ 173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 174 icsk->icsk_ack.pingpong = 1; 175 } 176 177 /* Account for an ACK we sent. */ 178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 179 { 180 tcp_dec_quickack_mode(sk, pkts); 181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 182 } 183 184 185 u32 tcp_default_init_rwnd(u32 mss) 186 { 187 /* Initial receive window should be twice of TCP_INIT_CWND to 188 * enable proper sending of new unsent data during fast recovery 189 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 190 * limit when mss is larger than 1460. 191 */ 192 u32 init_rwnd = TCP_INIT_CWND * 2; 193 194 if (mss > 1460) 195 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 196 return init_rwnd; 197 } 198 199 /* Determine a window scaling and initial window to offer. 200 * Based on the assumption that the given amount of space 201 * will be offered. Store the results in the tp structure. 202 * NOTE: for smooth operation initial space offering should 203 * be a multiple of mss if possible. We assume here that mss >= 1. 204 * This MUST be enforced by all callers. 205 */ 206 void tcp_select_initial_window(int __space, __u32 mss, 207 __u32 *rcv_wnd, __u32 *window_clamp, 208 int wscale_ok, __u8 *rcv_wscale, 209 __u32 init_rcv_wnd) 210 { 211 unsigned int space = (__space < 0 ? 0 : __space); 212 213 /* If no clamp set the clamp to the max possible scaled window */ 214 if (*window_clamp == 0) 215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 216 space = min(*window_clamp, space); 217 218 /* Quantize space offering to a multiple of mss if possible. */ 219 if (space > mss) 220 space = rounddown(space, mss); 221 222 /* NOTE: offering an initial window larger than 32767 223 * will break some buggy TCP stacks. If the admin tells us 224 * it is likely we could be speaking with such a buggy stack 225 * we will truncate our initial window offering to 32K-1 226 * unless the remote has sent us a window scaling option, 227 * which we interpret as a sign the remote TCP is not 228 * misinterpreting the window field as a signed quantity. 229 */ 230 if (sysctl_tcp_workaround_signed_windows) 231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 232 else 233 (*rcv_wnd) = space; 234 235 (*rcv_wscale) = 0; 236 if (wscale_ok) { 237 /* Set window scaling on max possible window */ 238 space = max_t(u32, space, sysctl_tcp_rmem[2]); 239 space = max_t(u32, space, sysctl_rmem_max); 240 space = min_t(u32, space, *window_clamp); 241 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 242 space >>= 1; 243 (*rcv_wscale)++; 244 } 245 } 246 247 if (mss > (1 << *rcv_wscale)) { 248 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 249 init_rcv_wnd = tcp_default_init_rwnd(mss); 250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 251 } 252 253 /* Set the clamp no higher than max representable value */ 254 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 255 } 256 EXPORT_SYMBOL(tcp_select_initial_window); 257 258 /* Chose a new window to advertise, update state in tcp_sock for the 259 * socket, and return result with RFC1323 scaling applied. The return 260 * value can be stuffed directly into th->window for an outgoing 261 * frame. 262 */ 263 static u16 tcp_select_window(struct sock *sk) 264 { 265 struct tcp_sock *tp = tcp_sk(sk); 266 u32 old_win = tp->rcv_wnd; 267 u32 cur_win = tcp_receive_window(tp); 268 u32 new_win = __tcp_select_window(sk); 269 270 /* Never shrink the offered window */ 271 if (new_win < cur_win) { 272 /* Danger Will Robinson! 273 * Don't update rcv_wup/rcv_wnd here or else 274 * we will not be able to advertise a zero 275 * window in time. --DaveM 276 * 277 * Relax Will Robinson. 278 */ 279 if (new_win == 0) 280 NET_INC_STATS(sock_net(sk), 281 LINUX_MIB_TCPWANTZEROWINDOWADV); 282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 283 } 284 tp->rcv_wnd = new_win; 285 tp->rcv_wup = tp->rcv_nxt; 286 287 /* Make sure we do not exceed the maximum possible 288 * scaled window. 289 */ 290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 291 new_win = min(new_win, MAX_TCP_WINDOW); 292 else 293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 294 295 /* RFC1323 scaling applied */ 296 new_win >>= tp->rx_opt.rcv_wscale; 297 298 /* If we advertise zero window, disable fast path. */ 299 if (new_win == 0) { 300 tp->pred_flags = 0; 301 if (old_win) 302 NET_INC_STATS(sock_net(sk), 303 LINUX_MIB_TCPTOZEROWINDOWADV); 304 } else if (old_win == 0) { 305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 306 } 307 308 return new_win; 309 } 310 311 /* Packet ECN state for a SYN-ACK */ 312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 313 { 314 const struct tcp_sock *tp = tcp_sk(sk); 315 316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 317 if (!(tp->ecn_flags & TCP_ECN_OK)) 318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 319 else if (tcp_ca_needs_ecn(sk) || 320 tcp_bpf_ca_needs_ecn(sk)) 321 INET_ECN_xmit(sk); 322 } 323 324 /* Packet ECN state for a SYN. */ 325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 326 { 327 struct tcp_sock *tp = tcp_sk(sk); 328 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 329 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 330 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 331 332 if (!use_ecn) { 333 const struct dst_entry *dst = __sk_dst_get(sk); 334 335 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 336 use_ecn = true; 337 } 338 339 tp->ecn_flags = 0; 340 341 if (use_ecn) { 342 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 343 tp->ecn_flags = TCP_ECN_OK; 344 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 345 INET_ECN_xmit(sk); 346 } 347 } 348 349 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 350 { 351 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 352 /* tp->ecn_flags are cleared at a later point in time when 353 * SYN ACK is ultimatively being received. 354 */ 355 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 356 } 357 358 static void 359 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 360 { 361 if (inet_rsk(req)->ecn_ok) 362 th->ece = 1; 363 } 364 365 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 366 * be sent. 367 */ 368 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 369 struct tcphdr *th, int tcp_header_len) 370 { 371 struct tcp_sock *tp = tcp_sk(sk); 372 373 if (tp->ecn_flags & TCP_ECN_OK) { 374 /* Not-retransmitted data segment: set ECT and inject CWR. */ 375 if (skb->len != tcp_header_len && 376 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 377 INET_ECN_xmit(sk); 378 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 379 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 380 th->cwr = 1; 381 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 382 } 383 } else if (!tcp_ca_needs_ecn(sk)) { 384 /* ACK or retransmitted segment: clear ECT|CE */ 385 INET_ECN_dontxmit(sk); 386 } 387 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 388 th->ece = 1; 389 } 390 } 391 392 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 393 * auto increment end seqno. 394 */ 395 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 396 { 397 skb->ip_summed = CHECKSUM_PARTIAL; 398 skb->csum = 0; 399 400 TCP_SKB_CB(skb)->tcp_flags = flags; 401 TCP_SKB_CB(skb)->sacked = 0; 402 403 tcp_skb_pcount_set(skb, 1); 404 405 TCP_SKB_CB(skb)->seq = seq; 406 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 407 seq++; 408 TCP_SKB_CB(skb)->end_seq = seq; 409 } 410 411 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 412 { 413 return tp->snd_una != tp->snd_up; 414 } 415 416 #define OPTION_SACK_ADVERTISE (1 << 0) 417 #define OPTION_TS (1 << 1) 418 #define OPTION_MD5 (1 << 2) 419 #define OPTION_WSCALE (1 << 3) 420 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 421 422 struct tcp_out_options { 423 u16 options; /* bit field of OPTION_* */ 424 u16 mss; /* 0 to disable */ 425 u8 ws; /* window scale, 0 to disable */ 426 u8 num_sack_blocks; /* number of SACK blocks to include */ 427 u8 hash_size; /* bytes in hash_location */ 428 __u8 *hash_location; /* temporary pointer, overloaded */ 429 __u32 tsval, tsecr; /* need to include OPTION_TS */ 430 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 431 }; 432 433 /* Write previously computed TCP options to the packet. 434 * 435 * Beware: Something in the Internet is very sensitive to the ordering of 436 * TCP options, we learned this through the hard way, so be careful here. 437 * Luckily we can at least blame others for their non-compliance but from 438 * inter-operability perspective it seems that we're somewhat stuck with 439 * the ordering which we have been using if we want to keep working with 440 * those broken things (not that it currently hurts anybody as there isn't 441 * particular reason why the ordering would need to be changed). 442 * 443 * At least SACK_PERM as the first option is known to lead to a disaster 444 * (but it may well be that other scenarios fail similarly). 445 */ 446 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 447 struct tcp_out_options *opts) 448 { 449 u16 options = opts->options; /* mungable copy */ 450 451 if (unlikely(OPTION_MD5 & options)) { 452 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 453 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 454 /* overload cookie hash location */ 455 opts->hash_location = (__u8 *)ptr; 456 ptr += 4; 457 } 458 459 if (unlikely(opts->mss)) { 460 *ptr++ = htonl((TCPOPT_MSS << 24) | 461 (TCPOLEN_MSS << 16) | 462 opts->mss); 463 } 464 465 if (likely(OPTION_TS & options)) { 466 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 467 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 468 (TCPOLEN_SACK_PERM << 16) | 469 (TCPOPT_TIMESTAMP << 8) | 470 TCPOLEN_TIMESTAMP); 471 options &= ~OPTION_SACK_ADVERTISE; 472 } else { 473 *ptr++ = htonl((TCPOPT_NOP << 24) | 474 (TCPOPT_NOP << 16) | 475 (TCPOPT_TIMESTAMP << 8) | 476 TCPOLEN_TIMESTAMP); 477 } 478 *ptr++ = htonl(opts->tsval); 479 *ptr++ = htonl(opts->tsecr); 480 } 481 482 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 483 *ptr++ = htonl((TCPOPT_NOP << 24) | 484 (TCPOPT_NOP << 16) | 485 (TCPOPT_SACK_PERM << 8) | 486 TCPOLEN_SACK_PERM); 487 } 488 489 if (unlikely(OPTION_WSCALE & options)) { 490 *ptr++ = htonl((TCPOPT_NOP << 24) | 491 (TCPOPT_WINDOW << 16) | 492 (TCPOLEN_WINDOW << 8) | 493 opts->ws); 494 } 495 496 if (unlikely(opts->num_sack_blocks)) { 497 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 498 tp->duplicate_sack : tp->selective_acks; 499 int this_sack; 500 501 *ptr++ = htonl((TCPOPT_NOP << 24) | 502 (TCPOPT_NOP << 16) | 503 (TCPOPT_SACK << 8) | 504 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 505 TCPOLEN_SACK_PERBLOCK))); 506 507 for (this_sack = 0; this_sack < opts->num_sack_blocks; 508 ++this_sack) { 509 *ptr++ = htonl(sp[this_sack].start_seq); 510 *ptr++ = htonl(sp[this_sack].end_seq); 511 } 512 513 tp->rx_opt.dsack = 0; 514 } 515 516 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 517 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 518 u8 *p = (u8 *)ptr; 519 u32 len; /* Fast Open option length */ 520 521 if (foc->exp) { 522 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 523 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 524 TCPOPT_FASTOPEN_MAGIC); 525 p += TCPOLEN_EXP_FASTOPEN_BASE; 526 } else { 527 len = TCPOLEN_FASTOPEN_BASE + foc->len; 528 *p++ = TCPOPT_FASTOPEN; 529 *p++ = len; 530 } 531 532 memcpy(p, foc->val, foc->len); 533 if ((len & 3) == 2) { 534 p[foc->len] = TCPOPT_NOP; 535 p[foc->len + 1] = TCPOPT_NOP; 536 } 537 ptr += (len + 3) >> 2; 538 } 539 } 540 541 /* Compute TCP options for SYN packets. This is not the final 542 * network wire format yet. 543 */ 544 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 545 struct tcp_out_options *opts, 546 struct tcp_md5sig_key **md5) 547 { 548 struct tcp_sock *tp = tcp_sk(sk); 549 unsigned int remaining = MAX_TCP_OPTION_SPACE; 550 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 551 552 #ifdef CONFIG_TCP_MD5SIG 553 *md5 = tp->af_specific->md5_lookup(sk, sk); 554 if (*md5) { 555 opts->options |= OPTION_MD5; 556 remaining -= TCPOLEN_MD5SIG_ALIGNED; 557 } 558 #else 559 *md5 = NULL; 560 #endif 561 562 /* We always get an MSS option. The option bytes which will be seen in 563 * normal data packets should timestamps be used, must be in the MSS 564 * advertised. But we subtract them from tp->mss_cache so that 565 * calculations in tcp_sendmsg are simpler etc. So account for this 566 * fact here if necessary. If we don't do this correctly, as a 567 * receiver we won't recognize data packets as being full sized when we 568 * should, and thus we won't abide by the delayed ACK rules correctly. 569 * SACKs don't matter, we never delay an ACK when we have any of those 570 * going out. */ 571 opts->mss = tcp_advertise_mss(sk); 572 remaining -= TCPOLEN_MSS_ALIGNED; 573 574 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 575 opts->options |= OPTION_TS; 576 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 577 opts->tsecr = tp->rx_opt.ts_recent; 578 remaining -= TCPOLEN_TSTAMP_ALIGNED; 579 } 580 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 581 opts->ws = tp->rx_opt.rcv_wscale; 582 opts->options |= OPTION_WSCALE; 583 remaining -= TCPOLEN_WSCALE_ALIGNED; 584 } 585 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 586 opts->options |= OPTION_SACK_ADVERTISE; 587 if (unlikely(!(OPTION_TS & opts->options))) 588 remaining -= TCPOLEN_SACKPERM_ALIGNED; 589 } 590 591 if (fastopen && fastopen->cookie.len >= 0) { 592 u32 need = fastopen->cookie.len; 593 594 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 595 TCPOLEN_FASTOPEN_BASE; 596 need = (need + 3) & ~3U; /* Align to 32 bits */ 597 if (remaining >= need) { 598 opts->options |= OPTION_FAST_OPEN_COOKIE; 599 opts->fastopen_cookie = &fastopen->cookie; 600 remaining -= need; 601 tp->syn_fastopen = 1; 602 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 603 } 604 } 605 606 return MAX_TCP_OPTION_SPACE - remaining; 607 } 608 609 /* Set up TCP options for SYN-ACKs. */ 610 static unsigned int tcp_synack_options(struct request_sock *req, 611 unsigned int mss, struct sk_buff *skb, 612 struct tcp_out_options *opts, 613 const struct tcp_md5sig_key *md5, 614 struct tcp_fastopen_cookie *foc) 615 { 616 struct inet_request_sock *ireq = inet_rsk(req); 617 unsigned int remaining = MAX_TCP_OPTION_SPACE; 618 619 #ifdef CONFIG_TCP_MD5SIG 620 if (md5) { 621 opts->options |= OPTION_MD5; 622 remaining -= TCPOLEN_MD5SIG_ALIGNED; 623 624 /* We can't fit any SACK blocks in a packet with MD5 + TS 625 * options. There was discussion about disabling SACK 626 * rather than TS in order to fit in better with old, 627 * buggy kernels, but that was deemed to be unnecessary. 628 */ 629 ireq->tstamp_ok &= !ireq->sack_ok; 630 } 631 #endif 632 633 /* We always send an MSS option. */ 634 opts->mss = mss; 635 remaining -= TCPOLEN_MSS_ALIGNED; 636 637 if (likely(ireq->wscale_ok)) { 638 opts->ws = ireq->rcv_wscale; 639 opts->options |= OPTION_WSCALE; 640 remaining -= TCPOLEN_WSCALE_ALIGNED; 641 } 642 if (likely(ireq->tstamp_ok)) { 643 opts->options |= OPTION_TS; 644 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 645 opts->tsecr = req->ts_recent; 646 remaining -= TCPOLEN_TSTAMP_ALIGNED; 647 } 648 if (likely(ireq->sack_ok)) { 649 opts->options |= OPTION_SACK_ADVERTISE; 650 if (unlikely(!ireq->tstamp_ok)) 651 remaining -= TCPOLEN_SACKPERM_ALIGNED; 652 } 653 if (foc != NULL && foc->len >= 0) { 654 u32 need = foc->len; 655 656 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 657 TCPOLEN_FASTOPEN_BASE; 658 need = (need + 3) & ~3U; /* Align to 32 bits */ 659 if (remaining >= need) { 660 opts->options |= OPTION_FAST_OPEN_COOKIE; 661 opts->fastopen_cookie = foc; 662 remaining -= need; 663 } 664 } 665 666 return MAX_TCP_OPTION_SPACE - remaining; 667 } 668 669 /* Compute TCP options for ESTABLISHED sockets. This is not the 670 * final wire format yet. 671 */ 672 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 673 struct tcp_out_options *opts, 674 struct tcp_md5sig_key **md5) 675 { 676 struct tcp_sock *tp = tcp_sk(sk); 677 unsigned int size = 0; 678 unsigned int eff_sacks; 679 680 opts->options = 0; 681 682 #ifdef CONFIG_TCP_MD5SIG 683 *md5 = tp->af_specific->md5_lookup(sk, sk); 684 if (unlikely(*md5)) { 685 opts->options |= OPTION_MD5; 686 size += TCPOLEN_MD5SIG_ALIGNED; 687 } 688 #else 689 *md5 = NULL; 690 #endif 691 692 if (likely(tp->rx_opt.tstamp_ok)) { 693 opts->options |= OPTION_TS; 694 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 695 opts->tsecr = tp->rx_opt.ts_recent; 696 size += TCPOLEN_TSTAMP_ALIGNED; 697 } 698 699 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 700 if (unlikely(eff_sacks)) { 701 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 702 opts->num_sack_blocks = 703 min_t(unsigned int, eff_sacks, 704 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 705 TCPOLEN_SACK_PERBLOCK); 706 size += TCPOLEN_SACK_BASE_ALIGNED + 707 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 708 } 709 710 return size; 711 } 712 713 714 /* TCP SMALL QUEUES (TSQ) 715 * 716 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 717 * to reduce RTT and bufferbloat. 718 * We do this using a special skb destructor (tcp_wfree). 719 * 720 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 721 * needs to be reallocated in a driver. 722 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 723 * 724 * Since transmit from skb destructor is forbidden, we use a tasklet 725 * to process all sockets that eventually need to send more skbs. 726 * We use one tasklet per cpu, with its own queue of sockets. 727 */ 728 struct tsq_tasklet { 729 struct tasklet_struct tasklet; 730 struct list_head head; /* queue of tcp sockets */ 731 }; 732 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 733 734 static void tcp_tsq_handler(struct sock *sk) 735 { 736 if ((1 << sk->sk_state) & 737 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 738 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 739 struct tcp_sock *tp = tcp_sk(sk); 740 741 if (tp->lost_out > tp->retrans_out && 742 tp->snd_cwnd > tcp_packets_in_flight(tp)) 743 tcp_xmit_retransmit_queue(sk); 744 745 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 746 0, GFP_ATOMIC); 747 } 748 } 749 /* 750 * One tasklet per cpu tries to send more skbs. 751 * We run in tasklet context but need to disable irqs when 752 * transferring tsq->head because tcp_wfree() might 753 * interrupt us (non NAPI drivers) 754 */ 755 static void tcp_tasklet_func(unsigned long data) 756 { 757 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 758 LIST_HEAD(list); 759 unsigned long flags; 760 struct list_head *q, *n; 761 struct tcp_sock *tp; 762 struct sock *sk; 763 764 local_irq_save(flags); 765 list_splice_init(&tsq->head, &list); 766 local_irq_restore(flags); 767 768 list_for_each_safe(q, n, &list) { 769 tp = list_entry(q, struct tcp_sock, tsq_node); 770 list_del(&tp->tsq_node); 771 772 sk = (struct sock *)tp; 773 smp_mb__before_atomic(); 774 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 775 776 if (!sk->sk_lock.owned && 777 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) { 778 bh_lock_sock(sk); 779 if (!sock_owned_by_user(sk)) { 780 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 781 tcp_tsq_handler(sk); 782 } 783 bh_unlock_sock(sk); 784 } 785 786 sk_free(sk); 787 } 788 } 789 790 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 791 TCPF_WRITE_TIMER_DEFERRED | \ 792 TCPF_DELACK_TIMER_DEFERRED | \ 793 TCPF_MTU_REDUCED_DEFERRED) 794 /** 795 * tcp_release_cb - tcp release_sock() callback 796 * @sk: socket 797 * 798 * called from release_sock() to perform protocol dependent 799 * actions before socket release. 800 */ 801 void tcp_release_cb(struct sock *sk) 802 { 803 unsigned long flags, nflags; 804 805 /* perform an atomic operation only if at least one flag is set */ 806 do { 807 flags = sk->sk_tsq_flags; 808 if (!(flags & TCP_DEFERRED_ALL)) 809 return; 810 nflags = flags & ~TCP_DEFERRED_ALL; 811 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 812 813 if (flags & TCPF_TSQ_DEFERRED) 814 tcp_tsq_handler(sk); 815 816 /* Here begins the tricky part : 817 * We are called from release_sock() with : 818 * 1) BH disabled 819 * 2) sk_lock.slock spinlock held 820 * 3) socket owned by us (sk->sk_lock.owned == 1) 821 * 822 * But following code is meant to be called from BH handlers, 823 * so we should keep BH disabled, but early release socket ownership 824 */ 825 sock_release_ownership(sk); 826 827 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 828 tcp_write_timer_handler(sk); 829 __sock_put(sk); 830 } 831 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 832 tcp_delack_timer_handler(sk); 833 __sock_put(sk); 834 } 835 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 836 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 837 __sock_put(sk); 838 } 839 } 840 EXPORT_SYMBOL(tcp_release_cb); 841 842 void __init tcp_tasklet_init(void) 843 { 844 int i; 845 846 for_each_possible_cpu(i) { 847 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 848 849 INIT_LIST_HEAD(&tsq->head); 850 tasklet_init(&tsq->tasklet, 851 tcp_tasklet_func, 852 (unsigned long)tsq); 853 } 854 } 855 856 /* 857 * Write buffer destructor automatically called from kfree_skb. 858 * We can't xmit new skbs from this context, as we might already 859 * hold qdisc lock. 860 */ 861 void tcp_wfree(struct sk_buff *skb) 862 { 863 struct sock *sk = skb->sk; 864 struct tcp_sock *tp = tcp_sk(sk); 865 unsigned long flags, nval, oval; 866 867 /* Keep one reference on sk_wmem_alloc. 868 * Will be released by sk_free() from here or tcp_tasklet_func() 869 */ 870 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 871 872 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 873 * Wait until our queues (qdisc + devices) are drained. 874 * This gives : 875 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 876 * - chance for incoming ACK (processed by another cpu maybe) 877 * to migrate this flow (skb->ooo_okay will be eventually set) 878 */ 879 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 880 goto out; 881 882 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 883 struct tsq_tasklet *tsq; 884 bool empty; 885 886 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 887 goto out; 888 889 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 890 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 891 if (nval != oval) 892 continue; 893 894 /* queue this socket to tasklet queue */ 895 local_irq_save(flags); 896 tsq = this_cpu_ptr(&tsq_tasklet); 897 empty = list_empty(&tsq->head); 898 list_add(&tp->tsq_node, &tsq->head); 899 if (empty) 900 tasklet_schedule(&tsq->tasklet); 901 local_irq_restore(flags); 902 return; 903 } 904 out: 905 sk_free(sk); 906 } 907 908 /* Note: Called under hard irq. 909 * We can not call TCP stack right away. 910 */ 911 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 912 { 913 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 914 struct sock *sk = (struct sock *)tp; 915 unsigned long nval, oval; 916 917 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 918 struct tsq_tasklet *tsq; 919 bool empty; 920 921 if (oval & TSQF_QUEUED) 922 break; 923 924 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 925 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 926 if (nval != oval) 927 continue; 928 929 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc)) 930 break; 931 /* queue this socket to tasklet queue */ 932 tsq = this_cpu_ptr(&tsq_tasklet); 933 empty = list_empty(&tsq->head); 934 list_add(&tp->tsq_node, &tsq->head); 935 if (empty) 936 tasklet_schedule(&tsq->tasklet); 937 break; 938 } 939 return HRTIMER_NORESTART; 940 } 941 942 /* BBR congestion control needs pacing. 943 * Same remark for SO_MAX_PACING_RATE. 944 * sch_fq packet scheduler is efficiently handling pacing, 945 * but is not always installed/used. 946 * Return true if TCP stack should pace packets itself. 947 */ 948 static bool tcp_needs_internal_pacing(const struct sock *sk) 949 { 950 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 951 } 952 953 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) 954 { 955 u64 len_ns; 956 u32 rate; 957 958 if (!tcp_needs_internal_pacing(sk)) 959 return; 960 rate = sk->sk_pacing_rate; 961 if (!rate || rate == ~0U) 962 return; 963 964 /* Should account for header sizes as sch_fq does, 965 * but lets make things simple. 966 */ 967 len_ns = (u64)skb->len * NSEC_PER_SEC; 968 do_div(len_ns, rate); 969 hrtimer_start(&tcp_sk(sk)->pacing_timer, 970 ktime_add_ns(ktime_get(), len_ns), 971 HRTIMER_MODE_ABS_PINNED); 972 } 973 974 /* This routine actually transmits TCP packets queued in by 975 * tcp_do_sendmsg(). This is used by both the initial 976 * transmission and possible later retransmissions. 977 * All SKB's seen here are completely headerless. It is our 978 * job to build the TCP header, and pass the packet down to 979 * IP so it can do the same plus pass the packet off to the 980 * device. 981 * 982 * We are working here with either a clone of the original 983 * SKB, or a fresh unique copy made by the retransmit engine. 984 */ 985 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 986 gfp_t gfp_mask) 987 { 988 const struct inet_connection_sock *icsk = inet_csk(sk); 989 struct inet_sock *inet; 990 struct tcp_sock *tp; 991 struct tcp_skb_cb *tcb; 992 struct tcp_out_options opts; 993 unsigned int tcp_options_size, tcp_header_size; 994 struct tcp_md5sig_key *md5; 995 struct tcphdr *th; 996 int err; 997 998 BUG_ON(!skb || !tcp_skb_pcount(skb)); 999 tp = tcp_sk(sk); 1000 1001 skb->skb_mstamp = tp->tcp_mstamp; 1002 if (clone_it) { 1003 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1004 - tp->snd_una; 1005 tcp_rate_skb_sent(sk, skb); 1006 1007 if (unlikely(skb_cloned(skb))) 1008 skb = pskb_copy(skb, gfp_mask); 1009 else 1010 skb = skb_clone(skb, gfp_mask); 1011 if (unlikely(!skb)) 1012 return -ENOBUFS; 1013 } 1014 1015 inet = inet_sk(sk); 1016 tcb = TCP_SKB_CB(skb); 1017 memset(&opts, 0, sizeof(opts)); 1018 1019 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1020 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1021 else 1022 tcp_options_size = tcp_established_options(sk, skb, &opts, 1023 &md5); 1024 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1025 1026 /* if no packet is in qdisc/device queue, then allow XPS to select 1027 * another queue. We can be called from tcp_tsq_handler() 1028 * which holds one reference to sk_wmem_alloc. 1029 * 1030 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1031 * One way to get this would be to set skb->truesize = 2 on them. 1032 */ 1033 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1034 1035 /* If we had to use memory reserve to allocate this skb, 1036 * this might cause drops if packet is looped back : 1037 * Other socket might not have SOCK_MEMALLOC. 1038 * Packets not looped back do not care about pfmemalloc. 1039 */ 1040 skb->pfmemalloc = 0; 1041 1042 skb_push(skb, tcp_header_size); 1043 skb_reset_transport_header(skb); 1044 1045 skb_orphan(skb); 1046 skb->sk = sk; 1047 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1048 skb_set_hash_from_sk(skb, sk); 1049 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1050 1051 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1052 1053 /* Build TCP header and checksum it. */ 1054 th = (struct tcphdr *)skb->data; 1055 th->source = inet->inet_sport; 1056 th->dest = inet->inet_dport; 1057 th->seq = htonl(tcb->seq); 1058 th->ack_seq = htonl(tp->rcv_nxt); 1059 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1060 tcb->tcp_flags); 1061 1062 th->check = 0; 1063 th->urg_ptr = 0; 1064 1065 /* The urg_mode check is necessary during a below snd_una win probe */ 1066 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1067 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1068 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1069 th->urg = 1; 1070 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1071 th->urg_ptr = htons(0xFFFF); 1072 th->urg = 1; 1073 } 1074 } 1075 1076 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1077 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1078 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1079 th->window = htons(tcp_select_window(sk)); 1080 tcp_ecn_send(sk, skb, th, tcp_header_size); 1081 } else { 1082 /* RFC1323: The window in SYN & SYN/ACK segments 1083 * is never scaled. 1084 */ 1085 th->window = htons(min(tp->rcv_wnd, 65535U)); 1086 } 1087 #ifdef CONFIG_TCP_MD5SIG 1088 /* Calculate the MD5 hash, as we have all we need now */ 1089 if (md5) { 1090 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1091 tp->af_specific->calc_md5_hash(opts.hash_location, 1092 md5, sk, skb); 1093 } 1094 #endif 1095 1096 icsk->icsk_af_ops->send_check(sk, skb); 1097 1098 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1099 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1100 1101 if (skb->len != tcp_header_size) { 1102 tcp_event_data_sent(tp, sk); 1103 tp->data_segs_out += tcp_skb_pcount(skb); 1104 tcp_internal_pacing(sk, skb); 1105 } 1106 1107 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1108 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1109 tcp_skb_pcount(skb)); 1110 1111 tp->segs_out += tcp_skb_pcount(skb); 1112 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1113 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1114 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1115 1116 /* Our usage of tstamp should remain private */ 1117 skb->tstamp = 0; 1118 1119 /* Cleanup our debris for IP stacks */ 1120 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1121 sizeof(struct inet6_skb_parm))); 1122 1123 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1124 1125 if (likely(err <= 0)) 1126 return err; 1127 1128 tcp_enter_cwr(sk); 1129 1130 return net_xmit_eval(err); 1131 } 1132 1133 /* This routine just queues the buffer for sending. 1134 * 1135 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1136 * otherwise socket can stall. 1137 */ 1138 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1139 { 1140 struct tcp_sock *tp = tcp_sk(sk); 1141 1142 /* Advance write_seq and place onto the write_queue. */ 1143 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1144 __skb_header_release(skb); 1145 tcp_add_write_queue_tail(sk, skb); 1146 sk->sk_wmem_queued += skb->truesize; 1147 sk_mem_charge(sk, skb->truesize); 1148 } 1149 1150 /* Initialize TSO segments for a packet. */ 1151 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1152 { 1153 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1154 /* Avoid the costly divide in the normal 1155 * non-TSO case. 1156 */ 1157 tcp_skb_pcount_set(skb, 1); 1158 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1159 } else { 1160 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1161 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1162 } 1163 } 1164 1165 /* When a modification to fackets out becomes necessary, we need to check 1166 * skb is counted to fackets_out or not. 1167 */ 1168 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1169 int decr) 1170 { 1171 struct tcp_sock *tp = tcp_sk(sk); 1172 1173 if (!tp->sacked_out || tcp_is_reno(tp)) 1174 return; 1175 1176 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1177 tp->fackets_out -= decr; 1178 } 1179 1180 /* Pcount in the middle of the write queue got changed, we need to do various 1181 * tweaks to fix counters 1182 */ 1183 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1184 { 1185 struct tcp_sock *tp = tcp_sk(sk); 1186 1187 tp->packets_out -= decr; 1188 1189 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1190 tp->sacked_out -= decr; 1191 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1192 tp->retrans_out -= decr; 1193 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1194 tp->lost_out -= decr; 1195 1196 /* Reno case is special. Sigh... */ 1197 if (tcp_is_reno(tp) && decr > 0) 1198 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1199 1200 tcp_adjust_fackets_out(sk, skb, decr); 1201 1202 if (tp->lost_skb_hint && 1203 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1204 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1205 tp->lost_cnt_hint -= decr; 1206 1207 tcp_verify_left_out(tp); 1208 } 1209 1210 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1211 { 1212 return TCP_SKB_CB(skb)->txstamp_ack || 1213 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1214 } 1215 1216 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1217 { 1218 struct skb_shared_info *shinfo = skb_shinfo(skb); 1219 1220 if (unlikely(tcp_has_tx_tstamp(skb)) && 1221 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1222 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1223 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1224 1225 shinfo->tx_flags &= ~tsflags; 1226 shinfo2->tx_flags |= tsflags; 1227 swap(shinfo->tskey, shinfo2->tskey); 1228 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1229 TCP_SKB_CB(skb)->txstamp_ack = 0; 1230 } 1231 } 1232 1233 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1234 { 1235 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1236 TCP_SKB_CB(skb)->eor = 0; 1237 } 1238 1239 /* Function to create two new TCP segments. Shrinks the given segment 1240 * to the specified size and appends a new segment with the rest of the 1241 * packet to the list. This won't be called frequently, I hope. 1242 * Remember, these are still headerless SKBs at this point. 1243 */ 1244 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1245 unsigned int mss_now, gfp_t gfp) 1246 { 1247 struct tcp_sock *tp = tcp_sk(sk); 1248 struct sk_buff *buff; 1249 int nsize, old_factor; 1250 int nlen; 1251 u8 flags; 1252 1253 if (WARN_ON(len > skb->len)) 1254 return -EINVAL; 1255 1256 nsize = skb_headlen(skb) - len; 1257 if (nsize < 0) 1258 nsize = 0; 1259 1260 if (skb_unclone(skb, gfp)) 1261 return -ENOMEM; 1262 1263 /* Get a new skb... force flag on. */ 1264 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1265 if (!buff) 1266 return -ENOMEM; /* We'll just try again later. */ 1267 1268 sk->sk_wmem_queued += buff->truesize; 1269 sk_mem_charge(sk, buff->truesize); 1270 nlen = skb->len - len - nsize; 1271 buff->truesize += nlen; 1272 skb->truesize -= nlen; 1273 1274 /* Correct the sequence numbers. */ 1275 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1276 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1277 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1278 1279 /* PSH and FIN should only be set in the second packet. */ 1280 flags = TCP_SKB_CB(skb)->tcp_flags; 1281 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1282 TCP_SKB_CB(buff)->tcp_flags = flags; 1283 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1284 tcp_skb_fragment_eor(skb, buff); 1285 1286 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1287 /* Copy and checksum data tail into the new buffer. */ 1288 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1289 skb_put(buff, nsize), 1290 nsize, 0); 1291 1292 skb_trim(skb, len); 1293 1294 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1295 } else { 1296 skb->ip_summed = CHECKSUM_PARTIAL; 1297 skb_split(skb, buff, len); 1298 } 1299 1300 buff->ip_summed = skb->ip_summed; 1301 1302 buff->tstamp = skb->tstamp; 1303 tcp_fragment_tstamp(skb, buff); 1304 1305 old_factor = tcp_skb_pcount(skb); 1306 1307 /* Fix up tso_factor for both original and new SKB. */ 1308 tcp_set_skb_tso_segs(skb, mss_now); 1309 tcp_set_skb_tso_segs(buff, mss_now); 1310 1311 /* Update delivered info for the new segment */ 1312 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1313 1314 /* If this packet has been sent out already, we must 1315 * adjust the various packet counters. 1316 */ 1317 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1318 int diff = old_factor - tcp_skb_pcount(skb) - 1319 tcp_skb_pcount(buff); 1320 1321 if (diff) 1322 tcp_adjust_pcount(sk, skb, diff); 1323 } 1324 1325 /* Link BUFF into the send queue. */ 1326 __skb_header_release(buff); 1327 tcp_insert_write_queue_after(skb, buff, sk); 1328 1329 return 0; 1330 } 1331 1332 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1333 * data is not copied, but immediately discarded. 1334 */ 1335 static int __pskb_trim_head(struct sk_buff *skb, int len) 1336 { 1337 struct skb_shared_info *shinfo; 1338 int i, k, eat; 1339 1340 eat = min_t(int, len, skb_headlen(skb)); 1341 if (eat) { 1342 __skb_pull(skb, eat); 1343 len -= eat; 1344 if (!len) 1345 return 0; 1346 } 1347 eat = len; 1348 k = 0; 1349 shinfo = skb_shinfo(skb); 1350 for (i = 0; i < shinfo->nr_frags; i++) { 1351 int size = skb_frag_size(&shinfo->frags[i]); 1352 1353 if (size <= eat) { 1354 skb_frag_unref(skb, i); 1355 eat -= size; 1356 } else { 1357 shinfo->frags[k] = shinfo->frags[i]; 1358 if (eat) { 1359 shinfo->frags[k].page_offset += eat; 1360 skb_frag_size_sub(&shinfo->frags[k], eat); 1361 eat = 0; 1362 } 1363 k++; 1364 } 1365 } 1366 shinfo->nr_frags = k; 1367 1368 skb->data_len -= len; 1369 skb->len = skb->data_len; 1370 return len; 1371 } 1372 1373 /* Remove acked data from a packet in the transmit queue. */ 1374 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1375 { 1376 u32 delta_truesize; 1377 1378 if (skb_unclone(skb, GFP_ATOMIC)) 1379 return -ENOMEM; 1380 1381 delta_truesize = __pskb_trim_head(skb, len); 1382 1383 TCP_SKB_CB(skb)->seq += len; 1384 skb->ip_summed = CHECKSUM_PARTIAL; 1385 1386 if (delta_truesize) { 1387 skb->truesize -= delta_truesize; 1388 sk->sk_wmem_queued -= delta_truesize; 1389 sk_mem_uncharge(sk, delta_truesize); 1390 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1391 } 1392 1393 /* Any change of skb->len requires recalculation of tso factor. */ 1394 if (tcp_skb_pcount(skb) > 1) 1395 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1396 1397 return 0; 1398 } 1399 1400 /* Calculate MSS not accounting any TCP options. */ 1401 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1402 { 1403 const struct tcp_sock *tp = tcp_sk(sk); 1404 const struct inet_connection_sock *icsk = inet_csk(sk); 1405 int mss_now; 1406 1407 /* Calculate base mss without TCP options: 1408 It is MMS_S - sizeof(tcphdr) of rfc1122 1409 */ 1410 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1411 1412 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1413 if (icsk->icsk_af_ops->net_frag_header_len) { 1414 const struct dst_entry *dst = __sk_dst_get(sk); 1415 1416 if (dst && dst_allfrag(dst)) 1417 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1418 } 1419 1420 /* Clamp it (mss_clamp does not include tcp options) */ 1421 if (mss_now > tp->rx_opt.mss_clamp) 1422 mss_now = tp->rx_opt.mss_clamp; 1423 1424 /* Now subtract optional transport overhead */ 1425 mss_now -= icsk->icsk_ext_hdr_len; 1426 1427 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1428 if (mss_now < 48) 1429 mss_now = 48; 1430 return mss_now; 1431 } 1432 1433 /* Calculate MSS. Not accounting for SACKs here. */ 1434 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1435 { 1436 /* Subtract TCP options size, not including SACKs */ 1437 return __tcp_mtu_to_mss(sk, pmtu) - 1438 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1439 } 1440 1441 /* Inverse of above */ 1442 int tcp_mss_to_mtu(struct sock *sk, int mss) 1443 { 1444 const struct tcp_sock *tp = tcp_sk(sk); 1445 const struct inet_connection_sock *icsk = inet_csk(sk); 1446 int mtu; 1447 1448 mtu = mss + 1449 tp->tcp_header_len + 1450 icsk->icsk_ext_hdr_len + 1451 icsk->icsk_af_ops->net_header_len; 1452 1453 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1454 if (icsk->icsk_af_ops->net_frag_header_len) { 1455 const struct dst_entry *dst = __sk_dst_get(sk); 1456 1457 if (dst && dst_allfrag(dst)) 1458 mtu += icsk->icsk_af_ops->net_frag_header_len; 1459 } 1460 return mtu; 1461 } 1462 EXPORT_SYMBOL(tcp_mss_to_mtu); 1463 1464 /* MTU probing init per socket */ 1465 void tcp_mtup_init(struct sock *sk) 1466 { 1467 struct tcp_sock *tp = tcp_sk(sk); 1468 struct inet_connection_sock *icsk = inet_csk(sk); 1469 struct net *net = sock_net(sk); 1470 1471 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1472 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1473 icsk->icsk_af_ops->net_header_len; 1474 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1475 icsk->icsk_mtup.probe_size = 0; 1476 if (icsk->icsk_mtup.enabled) 1477 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1478 } 1479 EXPORT_SYMBOL(tcp_mtup_init); 1480 1481 /* This function synchronize snd mss to current pmtu/exthdr set. 1482 1483 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1484 for TCP options, but includes only bare TCP header. 1485 1486 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1487 It is minimum of user_mss and mss received with SYN. 1488 It also does not include TCP options. 1489 1490 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1491 1492 tp->mss_cache is current effective sending mss, including 1493 all tcp options except for SACKs. It is evaluated, 1494 taking into account current pmtu, but never exceeds 1495 tp->rx_opt.mss_clamp. 1496 1497 NOTE1. rfc1122 clearly states that advertised MSS 1498 DOES NOT include either tcp or ip options. 1499 1500 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1501 are READ ONLY outside this function. --ANK (980731) 1502 */ 1503 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1504 { 1505 struct tcp_sock *tp = tcp_sk(sk); 1506 struct inet_connection_sock *icsk = inet_csk(sk); 1507 int mss_now; 1508 1509 if (icsk->icsk_mtup.search_high > pmtu) 1510 icsk->icsk_mtup.search_high = pmtu; 1511 1512 mss_now = tcp_mtu_to_mss(sk, pmtu); 1513 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1514 1515 /* And store cached results */ 1516 icsk->icsk_pmtu_cookie = pmtu; 1517 if (icsk->icsk_mtup.enabled) 1518 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1519 tp->mss_cache = mss_now; 1520 1521 return mss_now; 1522 } 1523 EXPORT_SYMBOL(tcp_sync_mss); 1524 1525 /* Compute the current effective MSS, taking SACKs and IP options, 1526 * and even PMTU discovery events into account. 1527 */ 1528 unsigned int tcp_current_mss(struct sock *sk) 1529 { 1530 const struct tcp_sock *tp = tcp_sk(sk); 1531 const struct dst_entry *dst = __sk_dst_get(sk); 1532 u32 mss_now; 1533 unsigned int header_len; 1534 struct tcp_out_options opts; 1535 struct tcp_md5sig_key *md5; 1536 1537 mss_now = tp->mss_cache; 1538 1539 if (dst) { 1540 u32 mtu = dst_mtu(dst); 1541 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1542 mss_now = tcp_sync_mss(sk, mtu); 1543 } 1544 1545 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1546 sizeof(struct tcphdr); 1547 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1548 * some common options. If this is an odd packet (because we have SACK 1549 * blocks etc) then our calculated header_len will be different, and 1550 * we have to adjust mss_now correspondingly */ 1551 if (header_len != tp->tcp_header_len) { 1552 int delta = (int) header_len - tp->tcp_header_len; 1553 mss_now -= delta; 1554 } 1555 1556 return mss_now; 1557 } 1558 1559 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1560 * As additional protections, we do not touch cwnd in retransmission phases, 1561 * and if application hit its sndbuf limit recently. 1562 */ 1563 static void tcp_cwnd_application_limited(struct sock *sk) 1564 { 1565 struct tcp_sock *tp = tcp_sk(sk); 1566 1567 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1568 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1569 /* Limited by application or receiver window. */ 1570 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1571 u32 win_used = max(tp->snd_cwnd_used, init_win); 1572 if (win_used < tp->snd_cwnd) { 1573 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1574 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1575 } 1576 tp->snd_cwnd_used = 0; 1577 } 1578 tp->snd_cwnd_stamp = tcp_jiffies32; 1579 } 1580 1581 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1582 { 1583 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1584 struct tcp_sock *tp = tcp_sk(sk); 1585 1586 /* Track the maximum number of outstanding packets in each 1587 * window, and remember whether we were cwnd-limited then. 1588 */ 1589 if (!before(tp->snd_una, tp->max_packets_seq) || 1590 tp->packets_out > tp->max_packets_out) { 1591 tp->max_packets_out = tp->packets_out; 1592 tp->max_packets_seq = tp->snd_nxt; 1593 tp->is_cwnd_limited = is_cwnd_limited; 1594 } 1595 1596 if (tcp_is_cwnd_limited(sk)) { 1597 /* Network is feed fully. */ 1598 tp->snd_cwnd_used = 0; 1599 tp->snd_cwnd_stamp = tcp_jiffies32; 1600 } else { 1601 /* Network starves. */ 1602 if (tp->packets_out > tp->snd_cwnd_used) 1603 tp->snd_cwnd_used = tp->packets_out; 1604 1605 if (sysctl_tcp_slow_start_after_idle && 1606 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1607 !ca_ops->cong_control) 1608 tcp_cwnd_application_limited(sk); 1609 1610 /* The following conditions together indicate the starvation 1611 * is caused by insufficient sender buffer: 1612 * 1) just sent some data (see tcp_write_xmit) 1613 * 2) not cwnd limited (this else condition) 1614 * 3) no more data to send (null tcp_send_head ) 1615 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1616 */ 1617 if (!tcp_send_head(sk) && sk->sk_socket && 1618 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1619 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1620 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1621 } 1622 } 1623 1624 /* Minshall's variant of the Nagle send check. */ 1625 static bool tcp_minshall_check(const struct tcp_sock *tp) 1626 { 1627 return after(tp->snd_sml, tp->snd_una) && 1628 !after(tp->snd_sml, tp->snd_nxt); 1629 } 1630 1631 /* Update snd_sml if this skb is under mss 1632 * Note that a TSO packet might end with a sub-mss segment 1633 * The test is really : 1634 * if ((skb->len % mss) != 0) 1635 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1636 * But we can avoid doing the divide again given we already have 1637 * skb_pcount = skb->len / mss_now 1638 */ 1639 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1640 const struct sk_buff *skb) 1641 { 1642 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1643 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1644 } 1645 1646 /* Return false, if packet can be sent now without violation Nagle's rules: 1647 * 1. It is full sized. (provided by caller in %partial bool) 1648 * 2. Or it contains FIN. (already checked by caller) 1649 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1650 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1651 * With Minshall's modification: all sent small packets are ACKed. 1652 */ 1653 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1654 int nonagle) 1655 { 1656 return partial && 1657 ((nonagle & TCP_NAGLE_CORK) || 1658 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1659 } 1660 1661 /* Return how many segs we'd like on a TSO packet, 1662 * to send one TSO packet per ms 1663 */ 1664 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1665 int min_tso_segs) 1666 { 1667 u32 bytes, segs; 1668 1669 bytes = min(sk->sk_pacing_rate >> 10, 1670 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1671 1672 /* Goal is to send at least one packet per ms, 1673 * not one big TSO packet every 100 ms. 1674 * This preserves ACK clocking and is consistent 1675 * with tcp_tso_should_defer() heuristic. 1676 */ 1677 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1678 1679 return min_t(u32, segs, sk->sk_gso_max_segs); 1680 } 1681 EXPORT_SYMBOL(tcp_tso_autosize); 1682 1683 /* Return the number of segments we want in the skb we are transmitting. 1684 * See if congestion control module wants to decide; otherwise, autosize. 1685 */ 1686 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1687 { 1688 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1689 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0; 1690 1691 return tso_segs ? : 1692 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs); 1693 } 1694 1695 /* Returns the portion of skb which can be sent right away */ 1696 static unsigned int tcp_mss_split_point(const struct sock *sk, 1697 const struct sk_buff *skb, 1698 unsigned int mss_now, 1699 unsigned int max_segs, 1700 int nonagle) 1701 { 1702 const struct tcp_sock *tp = tcp_sk(sk); 1703 u32 partial, needed, window, max_len; 1704 1705 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1706 max_len = mss_now * max_segs; 1707 1708 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1709 return max_len; 1710 1711 needed = min(skb->len, window); 1712 1713 if (max_len <= needed) 1714 return max_len; 1715 1716 partial = needed % mss_now; 1717 /* If last segment is not a full MSS, check if Nagle rules allow us 1718 * to include this last segment in this skb. 1719 * Otherwise, we'll split the skb at last MSS boundary 1720 */ 1721 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1722 return needed - partial; 1723 1724 return needed; 1725 } 1726 1727 /* Can at least one segment of SKB be sent right now, according to the 1728 * congestion window rules? If so, return how many segments are allowed. 1729 */ 1730 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1731 const struct sk_buff *skb) 1732 { 1733 u32 in_flight, cwnd, halfcwnd; 1734 1735 /* Don't be strict about the congestion window for the final FIN. */ 1736 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1737 tcp_skb_pcount(skb) == 1) 1738 return 1; 1739 1740 in_flight = tcp_packets_in_flight(tp); 1741 cwnd = tp->snd_cwnd; 1742 if (in_flight >= cwnd) 1743 return 0; 1744 1745 /* For better scheduling, ensure we have at least 1746 * 2 GSO packets in flight. 1747 */ 1748 halfcwnd = max(cwnd >> 1, 1U); 1749 return min(halfcwnd, cwnd - in_flight); 1750 } 1751 1752 /* Initialize TSO state of a skb. 1753 * This must be invoked the first time we consider transmitting 1754 * SKB onto the wire. 1755 */ 1756 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1757 { 1758 int tso_segs = tcp_skb_pcount(skb); 1759 1760 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1761 tcp_set_skb_tso_segs(skb, mss_now); 1762 tso_segs = tcp_skb_pcount(skb); 1763 } 1764 return tso_segs; 1765 } 1766 1767 1768 /* Return true if the Nagle test allows this packet to be 1769 * sent now. 1770 */ 1771 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1772 unsigned int cur_mss, int nonagle) 1773 { 1774 /* Nagle rule does not apply to frames, which sit in the middle of the 1775 * write_queue (they have no chances to get new data). 1776 * 1777 * This is implemented in the callers, where they modify the 'nonagle' 1778 * argument based upon the location of SKB in the send queue. 1779 */ 1780 if (nonagle & TCP_NAGLE_PUSH) 1781 return true; 1782 1783 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1784 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1785 return true; 1786 1787 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1788 return true; 1789 1790 return false; 1791 } 1792 1793 /* Does at least the first segment of SKB fit into the send window? */ 1794 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1795 const struct sk_buff *skb, 1796 unsigned int cur_mss) 1797 { 1798 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1799 1800 if (skb->len > cur_mss) 1801 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1802 1803 return !after(end_seq, tcp_wnd_end(tp)); 1804 } 1805 1806 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1807 * should be put on the wire right now. If so, it returns the number of 1808 * packets allowed by the congestion window. 1809 */ 1810 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1811 unsigned int cur_mss, int nonagle) 1812 { 1813 const struct tcp_sock *tp = tcp_sk(sk); 1814 unsigned int cwnd_quota; 1815 1816 tcp_init_tso_segs(skb, cur_mss); 1817 1818 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1819 return 0; 1820 1821 cwnd_quota = tcp_cwnd_test(tp, skb); 1822 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1823 cwnd_quota = 0; 1824 1825 return cwnd_quota; 1826 } 1827 1828 /* Test if sending is allowed right now. */ 1829 bool tcp_may_send_now(struct sock *sk) 1830 { 1831 const struct tcp_sock *tp = tcp_sk(sk); 1832 struct sk_buff *skb = tcp_send_head(sk); 1833 1834 return skb && 1835 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1836 (tcp_skb_is_last(sk, skb) ? 1837 tp->nonagle : TCP_NAGLE_PUSH)); 1838 } 1839 1840 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1841 * which is put after SKB on the list. It is very much like 1842 * tcp_fragment() except that it may make several kinds of assumptions 1843 * in order to speed up the splitting operation. In particular, we 1844 * know that all the data is in scatter-gather pages, and that the 1845 * packet has never been sent out before (and thus is not cloned). 1846 */ 1847 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1848 unsigned int mss_now, gfp_t gfp) 1849 { 1850 struct sk_buff *buff; 1851 int nlen = skb->len - len; 1852 u8 flags; 1853 1854 /* All of a TSO frame must be composed of paged data. */ 1855 if (skb->len != skb->data_len) 1856 return tcp_fragment(sk, skb, len, mss_now, gfp); 1857 1858 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1859 if (unlikely(!buff)) 1860 return -ENOMEM; 1861 1862 sk->sk_wmem_queued += buff->truesize; 1863 sk_mem_charge(sk, buff->truesize); 1864 buff->truesize += nlen; 1865 skb->truesize -= nlen; 1866 1867 /* Correct the sequence numbers. */ 1868 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1869 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1870 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1871 1872 /* PSH and FIN should only be set in the second packet. */ 1873 flags = TCP_SKB_CB(skb)->tcp_flags; 1874 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1875 TCP_SKB_CB(buff)->tcp_flags = flags; 1876 1877 /* This packet was never sent out yet, so no SACK bits. */ 1878 TCP_SKB_CB(buff)->sacked = 0; 1879 1880 tcp_skb_fragment_eor(skb, buff); 1881 1882 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1883 skb_split(skb, buff, len); 1884 tcp_fragment_tstamp(skb, buff); 1885 1886 /* Fix up tso_factor for both original and new SKB. */ 1887 tcp_set_skb_tso_segs(skb, mss_now); 1888 tcp_set_skb_tso_segs(buff, mss_now); 1889 1890 /* Link BUFF into the send queue. */ 1891 __skb_header_release(buff); 1892 tcp_insert_write_queue_after(skb, buff, sk); 1893 1894 return 0; 1895 } 1896 1897 /* Try to defer sending, if possible, in order to minimize the amount 1898 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1899 * 1900 * This algorithm is from John Heffner. 1901 */ 1902 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1903 bool *is_cwnd_limited, u32 max_segs) 1904 { 1905 const struct inet_connection_sock *icsk = inet_csk(sk); 1906 u32 age, send_win, cong_win, limit, in_flight; 1907 struct tcp_sock *tp = tcp_sk(sk); 1908 struct sk_buff *head; 1909 int win_divisor; 1910 1911 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1912 goto send_now; 1913 1914 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1915 goto send_now; 1916 1917 /* Avoid bursty behavior by allowing defer 1918 * only if the last write was recent. 1919 */ 1920 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1921 goto send_now; 1922 1923 in_flight = tcp_packets_in_flight(tp); 1924 1925 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1926 1927 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1928 1929 /* From in_flight test above, we know that cwnd > in_flight. */ 1930 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1931 1932 limit = min(send_win, cong_win); 1933 1934 /* If a full-sized TSO skb can be sent, do it. */ 1935 if (limit >= max_segs * tp->mss_cache) 1936 goto send_now; 1937 1938 /* Middle in queue won't get any more data, full sendable already? */ 1939 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1940 goto send_now; 1941 1942 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1943 if (win_divisor) { 1944 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1945 1946 /* If at least some fraction of a window is available, 1947 * just use it. 1948 */ 1949 chunk /= win_divisor; 1950 if (limit >= chunk) 1951 goto send_now; 1952 } else { 1953 /* Different approach, try not to defer past a single 1954 * ACK. Receiver should ACK every other full sized 1955 * frame, so if we have space for more than 3 frames 1956 * then send now. 1957 */ 1958 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1959 goto send_now; 1960 } 1961 1962 head = tcp_write_queue_head(sk); 1963 1964 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); 1965 /* If next ACK is likely to come too late (half srtt), do not defer */ 1966 if (age < (tp->srtt_us >> 4)) 1967 goto send_now; 1968 1969 /* Ok, it looks like it is advisable to defer. */ 1970 1971 if (cong_win < send_win && cong_win <= skb->len) 1972 *is_cwnd_limited = true; 1973 1974 return true; 1975 1976 send_now: 1977 return false; 1978 } 1979 1980 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1981 { 1982 struct inet_connection_sock *icsk = inet_csk(sk); 1983 struct tcp_sock *tp = tcp_sk(sk); 1984 struct net *net = sock_net(sk); 1985 u32 interval; 1986 s32 delta; 1987 1988 interval = net->ipv4.sysctl_tcp_probe_interval; 1989 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 1990 if (unlikely(delta >= interval * HZ)) { 1991 int mss = tcp_current_mss(sk); 1992 1993 /* Update current search range */ 1994 icsk->icsk_mtup.probe_size = 0; 1995 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1996 sizeof(struct tcphdr) + 1997 icsk->icsk_af_ops->net_header_len; 1998 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1999 2000 /* Update probe time stamp */ 2001 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2002 } 2003 } 2004 2005 /* Create a new MTU probe if we are ready. 2006 * MTU probe is regularly attempting to increase the path MTU by 2007 * deliberately sending larger packets. This discovers routing 2008 * changes resulting in larger path MTUs. 2009 * 2010 * Returns 0 if we should wait to probe (no cwnd available), 2011 * 1 if a probe was sent, 2012 * -1 otherwise 2013 */ 2014 static int tcp_mtu_probe(struct sock *sk) 2015 { 2016 struct inet_connection_sock *icsk = inet_csk(sk); 2017 struct tcp_sock *tp = tcp_sk(sk); 2018 struct sk_buff *skb, *nskb, *next; 2019 struct net *net = sock_net(sk); 2020 int probe_size; 2021 int size_needed; 2022 int copy, len; 2023 int mss_now; 2024 int interval; 2025 2026 /* Not currently probing/verifying, 2027 * not in recovery, 2028 * have enough cwnd, and 2029 * not SACKing (the variable headers throw things off) 2030 */ 2031 if (likely(!icsk->icsk_mtup.enabled || 2032 icsk->icsk_mtup.probe_size || 2033 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2034 tp->snd_cwnd < 11 || 2035 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2036 return -1; 2037 2038 /* Use binary search for probe_size between tcp_mss_base, 2039 * and current mss_clamp. if (search_high - search_low) 2040 * smaller than a threshold, backoff from probing. 2041 */ 2042 mss_now = tcp_current_mss(sk); 2043 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2044 icsk->icsk_mtup.search_low) >> 1); 2045 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2046 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2047 /* When misfortune happens, we are reprobing actively, 2048 * and then reprobe timer has expired. We stick with current 2049 * probing process by not resetting search range to its orignal. 2050 */ 2051 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2052 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2053 /* Check whether enough time has elaplased for 2054 * another round of probing. 2055 */ 2056 tcp_mtu_check_reprobe(sk); 2057 return -1; 2058 } 2059 2060 /* Have enough data in the send queue to probe? */ 2061 if (tp->write_seq - tp->snd_nxt < size_needed) 2062 return -1; 2063 2064 if (tp->snd_wnd < size_needed) 2065 return -1; 2066 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2067 return 0; 2068 2069 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2070 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2071 if (!tcp_packets_in_flight(tp)) 2072 return -1; 2073 else 2074 return 0; 2075 } 2076 2077 /* We're allowed to probe. Build it now. */ 2078 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2079 if (!nskb) 2080 return -1; 2081 sk->sk_wmem_queued += nskb->truesize; 2082 sk_mem_charge(sk, nskb->truesize); 2083 2084 skb = tcp_send_head(sk); 2085 2086 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2087 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2088 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2089 TCP_SKB_CB(nskb)->sacked = 0; 2090 nskb->csum = 0; 2091 nskb->ip_summed = skb->ip_summed; 2092 2093 tcp_insert_write_queue_before(nskb, skb, sk); 2094 2095 len = 0; 2096 tcp_for_write_queue_from_safe(skb, next, sk) { 2097 copy = min_t(int, skb->len, probe_size - len); 2098 if (nskb->ip_summed) { 2099 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2100 } else { 2101 __wsum csum = skb_copy_and_csum_bits(skb, 0, 2102 skb_put(nskb, copy), 2103 copy, 0); 2104 nskb->csum = csum_block_add(nskb->csum, csum, len); 2105 } 2106 2107 if (skb->len <= copy) { 2108 /* We've eaten all the data from this skb. 2109 * Throw it away. */ 2110 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2111 tcp_unlink_write_queue(skb, sk); 2112 sk_wmem_free_skb(sk, skb); 2113 } else { 2114 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2115 ~(TCPHDR_FIN|TCPHDR_PSH); 2116 if (!skb_shinfo(skb)->nr_frags) { 2117 skb_pull(skb, copy); 2118 if (skb->ip_summed != CHECKSUM_PARTIAL) 2119 skb->csum = csum_partial(skb->data, 2120 skb->len, 0); 2121 } else { 2122 __pskb_trim_head(skb, copy); 2123 tcp_set_skb_tso_segs(skb, mss_now); 2124 } 2125 TCP_SKB_CB(skb)->seq += copy; 2126 } 2127 2128 len += copy; 2129 2130 if (len >= probe_size) 2131 break; 2132 } 2133 tcp_init_tso_segs(nskb, nskb->len); 2134 2135 /* We're ready to send. If this fails, the probe will 2136 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2137 */ 2138 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2139 /* Decrement cwnd here because we are sending 2140 * effectively two packets. */ 2141 tp->snd_cwnd--; 2142 tcp_event_new_data_sent(sk, nskb); 2143 2144 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2145 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2146 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2147 2148 return 1; 2149 } 2150 2151 return -1; 2152 } 2153 2154 static bool tcp_pacing_check(const struct sock *sk) 2155 { 2156 return tcp_needs_internal_pacing(sk) && 2157 hrtimer_active(&tcp_sk(sk)->pacing_timer); 2158 } 2159 2160 /* TCP Small Queues : 2161 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2162 * (These limits are doubled for retransmits) 2163 * This allows for : 2164 * - better RTT estimation and ACK scheduling 2165 * - faster recovery 2166 * - high rates 2167 * Alas, some drivers / subsystems require a fair amount 2168 * of queued bytes to ensure line rate. 2169 * One example is wifi aggregation (802.11 AMPDU) 2170 */ 2171 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2172 unsigned int factor) 2173 { 2174 unsigned int limit; 2175 2176 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2177 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2178 limit <<= factor; 2179 2180 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2181 /* Always send the 1st or 2nd skb in write queue. 2182 * No need to wait for TX completion to call us back, 2183 * after softirq/tasklet schedule. 2184 * This helps when TX completions are delayed too much. 2185 */ 2186 if (skb == sk->sk_write_queue.next || 2187 skb->prev == sk->sk_write_queue.next) 2188 return false; 2189 2190 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2191 /* It is possible TX completion already happened 2192 * before we set TSQ_THROTTLED, so we must 2193 * test again the condition. 2194 */ 2195 smp_mb__after_atomic(); 2196 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2197 return true; 2198 } 2199 return false; 2200 } 2201 2202 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2203 { 2204 const u32 now = tcp_jiffies32; 2205 2206 if (tp->chrono_type > TCP_CHRONO_UNSPEC) 2207 tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start; 2208 tp->chrono_start = now; 2209 tp->chrono_type = new; 2210 } 2211 2212 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2213 { 2214 struct tcp_sock *tp = tcp_sk(sk); 2215 2216 /* If there are multiple conditions worthy of tracking in a 2217 * chronograph then the highest priority enum takes precedence 2218 * over the other conditions. So that if something "more interesting" 2219 * starts happening, stop the previous chrono and start a new one. 2220 */ 2221 if (type > tp->chrono_type) 2222 tcp_chrono_set(tp, type); 2223 } 2224 2225 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2226 { 2227 struct tcp_sock *tp = tcp_sk(sk); 2228 2229 2230 /* There are multiple conditions worthy of tracking in a 2231 * chronograph, so that the highest priority enum takes 2232 * precedence over the other conditions (see tcp_chrono_start). 2233 * If a condition stops, we only stop chrono tracking if 2234 * it's the "most interesting" or current chrono we are 2235 * tracking and starts busy chrono if we have pending data. 2236 */ 2237 if (tcp_write_queue_empty(sk)) 2238 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2239 else if (type == tp->chrono_type) 2240 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2241 } 2242 2243 /* This routine writes packets to the network. It advances the 2244 * send_head. This happens as incoming acks open up the remote 2245 * window for us. 2246 * 2247 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2248 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2249 * account rare use of URG, this is not a big flaw. 2250 * 2251 * Send at most one packet when push_one > 0. Temporarily ignore 2252 * cwnd limit to force at most one packet out when push_one == 2. 2253 2254 * Returns true, if no segments are in flight and we have queued segments, 2255 * but cannot send anything now because of SWS or another problem. 2256 */ 2257 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2258 int push_one, gfp_t gfp) 2259 { 2260 struct tcp_sock *tp = tcp_sk(sk); 2261 struct sk_buff *skb; 2262 unsigned int tso_segs, sent_pkts; 2263 int cwnd_quota; 2264 int result; 2265 bool is_cwnd_limited = false, is_rwnd_limited = false; 2266 u32 max_segs; 2267 2268 sent_pkts = 0; 2269 2270 if (!push_one) { 2271 /* Do MTU probing. */ 2272 result = tcp_mtu_probe(sk); 2273 if (!result) { 2274 return false; 2275 } else if (result > 0) { 2276 sent_pkts = 1; 2277 } 2278 } 2279 2280 max_segs = tcp_tso_segs(sk, mss_now); 2281 tcp_mstamp_refresh(tp); 2282 while ((skb = tcp_send_head(sk))) { 2283 unsigned int limit; 2284 2285 if (tcp_pacing_check(sk)) 2286 break; 2287 2288 tso_segs = tcp_init_tso_segs(skb, mss_now); 2289 BUG_ON(!tso_segs); 2290 2291 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2292 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2293 skb->skb_mstamp = tp->tcp_mstamp; 2294 goto repair; /* Skip network transmission */ 2295 } 2296 2297 cwnd_quota = tcp_cwnd_test(tp, skb); 2298 if (!cwnd_quota) { 2299 if (push_one == 2) 2300 /* Force out a loss probe pkt. */ 2301 cwnd_quota = 1; 2302 else 2303 break; 2304 } 2305 2306 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2307 is_rwnd_limited = true; 2308 break; 2309 } 2310 2311 if (tso_segs == 1) { 2312 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2313 (tcp_skb_is_last(sk, skb) ? 2314 nonagle : TCP_NAGLE_PUSH)))) 2315 break; 2316 } else { 2317 if (!push_one && 2318 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2319 max_segs)) 2320 break; 2321 } 2322 2323 limit = mss_now; 2324 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2325 limit = tcp_mss_split_point(sk, skb, mss_now, 2326 min_t(unsigned int, 2327 cwnd_quota, 2328 max_segs), 2329 nonagle); 2330 2331 if (skb->len > limit && 2332 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2333 break; 2334 2335 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 2336 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 2337 if (tcp_small_queue_check(sk, skb, 0)) 2338 break; 2339 2340 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2341 break; 2342 2343 repair: 2344 /* Advance the send_head. This one is sent out. 2345 * This call will increment packets_out. 2346 */ 2347 tcp_event_new_data_sent(sk, skb); 2348 2349 tcp_minshall_update(tp, mss_now, skb); 2350 sent_pkts += tcp_skb_pcount(skb); 2351 2352 if (push_one) 2353 break; 2354 } 2355 2356 if (is_rwnd_limited) 2357 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2358 else 2359 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2360 2361 if (likely(sent_pkts)) { 2362 if (tcp_in_cwnd_reduction(sk)) 2363 tp->prr_out += sent_pkts; 2364 2365 /* Send one loss probe per tail loss episode. */ 2366 if (push_one != 2) 2367 tcp_schedule_loss_probe(sk); 2368 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2369 tcp_cwnd_validate(sk, is_cwnd_limited); 2370 return false; 2371 } 2372 return !tp->packets_out && tcp_send_head(sk); 2373 } 2374 2375 bool tcp_schedule_loss_probe(struct sock *sk) 2376 { 2377 struct inet_connection_sock *icsk = inet_csk(sk); 2378 struct tcp_sock *tp = tcp_sk(sk); 2379 u32 timeout, tlp_time_stamp, rto_time_stamp; 2380 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2381 2382 /* No consecutive loss probes. */ 2383 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2384 tcp_rearm_rto(sk); 2385 return false; 2386 } 2387 /* Don't do any loss probe on a Fast Open connection before 3WHS 2388 * finishes. 2389 */ 2390 if (tp->fastopen_rsk) 2391 return false; 2392 2393 /* TLP is only scheduled when next timer event is RTO. */ 2394 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2395 return false; 2396 2397 /* Schedule a loss probe in 2*RTT for SACK capable connections 2398 * in Open state, that are either limited by cwnd or application. 2399 */ 2400 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) || 2401 !tp->packets_out || !tcp_is_sack(tp) || 2402 icsk->icsk_ca_state != TCP_CA_Open) 2403 return false; 2404 2405 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2406 tcp_send_head(sk)) 2407 return false; 2408 2409 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2410 * for delayed ack when there's one outstanding packet. If no RTT 2411 * sample is available then probe after TCP_TIMEOUT_INIT. 2412 */ 2413 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT; 2414 if (tp->packets_out == 1) 2415 timeout = max_t(u32, timeout, 2416 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2417 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2418 2419 /* If RTO is shorter, just schedule TLP in its place. */ 2420 tlp_time_stamp = tcp_jiffies32 + timeout; 2421 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2422 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2423 s32 delta = rto_time_stamp - tcp_jiffies32; 2424 if (delta > 0) 2425 timeout = delta; 2426 } 2427 2428 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2429 TCP_RTO_MAX); 2430 return true; 2431 } 2432 2433 /* Thanks to skb fast clones, we can detect if a prior transmit of 2434 * a packet is still in a qdisc or driver queue. 2435 * In this case, there is very little point doing a retransmit ! 2436 */ 2437 static bool skb_still_in_host_queue(const struct sock *sk, 2438 const struct sk_buff *skb) 2439 { 2440 if (unlikely(skb_fclone_busy(sk, skb))) { 2441 NET_INC_STATS(sock_net(sk), 2442 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2443 return true; 2444 } 2445 return false; 2446 } 2447 2448 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2449 * retransmit the last segment. 2450 */ 2451 void tcp_send_loss_probe(struct sock *sk) 2452 { 2453 struct tcp_sock *tp = tcp_sk(sk); 2454 struct sk_buff *skb; 2455 int pcount; 2456 int mss = tcp_current_mss(sk); 2457 2458 skb = tcp_send_head(sk); 2459 if (skb) { 2460 if (tcp_snd_wnd_test(tp, skb, mss)) { 2461 pcount = tp->packets_out; 2462 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2463 if (tp->packets_out > pcount) 2464 goto probe_sent; 2465 goto rearm_timer; 2466 } 2467 skb = tcp_write_queue_prev(sk, skb); 2468 } else { 2469 skb = tcp_write_queue_tail(sk); 2470 } 2471 2472 /* At most one outstanding TLP retransmission. */ 2473 if (tp->tlp_high_seq) 2474 goto rearm_timer; 2475 2476 /* Retransmit last segment. */ 2477 if (WARN_ON(!skb)) 2478 goto rearm_timer; 2479 2480 if (skb_still_in_host_queue(sk, skb)) 2481 goto rearm_timer; 2482 2483 pcount = tcp_skb_pcount(skb); 2484 if (WARN_ON(!pcount)) 2485 goto rearm_timer; 2486 2487 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2488 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2489 GFP_ATOMIC))) 2490 goto rearm_timer; 2491 skb = tcp_write_queue_next(sk, skb); 2492 } 2493 2494 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2495 goto rearm_timer; 2496 2497 if (__tcp_retransmit_skb(sk, skb, 1)) 2498 goto rearm_timer; 2499 2500 /* Record snd_nxt for loss detection. */ 2501 tp->tlp_high_seq = tp->snd_nxt; 2502 2503 probe_sent: 2504 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2505 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2506 inet_csk(sk)->icsk_pending = 0; 2507 rearm_timer: 2508 tcp_rearm_rto(sk); 2509 } 2510 2511 /* Push out any pending frames which were held back due to 2512 * TCP_CORK or attempt at coalescing tiny packets. 2513 * The socket must be locked by the caller. 2514 */ 2515 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2516 int nonagle) 2517 { 2518 /* If we are closed, the bytes will have to remain here. 2519 * In time closedown will finish, we empty the write queue and 2520 * all will be happy. 2521 */ 2522 if (unlikely(sk->sk_state == TCP_CLOSE)) 2523 return; 2524 2525 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2526 sk_gfp_mask(sk, GFP_ATOMIC))) 2527 tcp_check_probe_timer(sk); 2528 } 2529 2530 /* Send _single_ skb sitting at the send head. This function requires 2531 * true push pending frames to setup probe timer etc. 2532 */ 2533 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2534 { 2535 struct sk_buff *skb = tcp_send_head(sk); 2536 2537 BUG_ON(!skb || skb->len < mss_now); 2538 2539 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2540 } 2541 2542 /* This function returns the amount that we can raise the 2543 * usable window based on the following constraints 2544 * 2545 * 1. The window can never be shrunk once it is offered (RFC 793) 2546 * 2. We limit memory per socket 2547 * 2548 * RFC 1122: 2549 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2550 * RECV.NEXT + RCV.WIN fixed until: 2551 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2552 * 2553 * i.e. don't raise the right edge of the window until you can raise 2554 * it at least MSS bytes. 2555 * 2556 * Unfortunately, the recommended algorithm breaks header prediction, 2557 * since header prediction assumes th->window stays fixed. 2558 * 2559 * Strictly speaking, keeping th->window fixed violates the receiver 2560 * side SWS prevention criteria. The problem is that under this rule 2561 * a stream of single byte packets will cause the right side of the 2562 * window to always advance by a single byte. 2563 * 2564 * Of course, if the sender implements sender side SWS prevention 2565 * then this will not be a problem. 2566 * 2567 * BSD seems to make the following compromise: 2568 * 2569 * If the free space is less than the 1/4 of the maximum 2570 * space available and the free space is less than 1/2 mss, 2571 * then set the window to 0. 2572 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2573 * Otherwise, just prevent the window from shrinking 2574 * and from being larger than the largest representable value. 2575 * 2576 * This prevents incremental opening of the window in the regime 2577 * where TCP is limited by the speed of the reader side taking 2578 * data out of the TCP receive queue. It does nothing about 2579 * those cases where the window is constrained on the sender side 2580 * because the pipeline is full. 2581 * 2582 * BSD also seems to "accidentally" limit itself to windows that are a 2583 * multiple of MSS, at least until the free space gets quite small. 2584 * This would appear to be a side effect of the mbuf implementation. 2585 * Combining these two algorithms results in the observed behavior 2586 * of having a fixed window size at almost all times. 2587 * 2588 * Below we obtain similar behavior by forcing the offered window to 2589 * a multiple of the mss when it is feasible to do so. 2590 * 2591 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2592 * Regular options like TIMESTAMP are taken into account. 2593 */ 2594 u32 __tcp_select_window(struct sock *sk) 2595 { 2596 struct inet_connection_sock *icsk = inet_csk(sk); 2597 struct tcp_sock *tp = tcp_sk(sk); 2598 /* MSS for the peer's data. Previous versions used mss_clamp 2599 * here. I don't know if the value based on our guesses 2600 * of peer's MSS is better for the performance. It's more correct 2601 * but may be worse for the performance because of rcv_mss 2602 * fluctuations. --SAW 1998/11/1 2603 */ 2604 int mss = icsk->icsk_ack.rcv_mss; 2605 int free_space = tcp_space(sk); 2606 int allowed_space = tcp_full_space(sk); 2607 int full_space = min_t(int, tp->window_clamp, allowed_space); 2608 int window; 2609 2610 if (unlikely(mss > full_space)) { 2611 mss = full_space; 2612 if (mss <= 0) 2613 return 0; 2614 } 2615 if (free_space < (full_space >> 1)) { 2616 icsk->icsk_ack.quick = 0; 2617 2618 if (tcp_under_memory_pressure(sk)) 2619 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2620 4U * tp->advmss); 2621 2622 /* free_space might become our new window, make sure we don't 2623 * increase it due to wscale. 2624 */ 2625 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2626 2627 /* if free space is less than mss estimate, or is below 1/16th 2628 * of the maximum allowed, try to move to zero-window, else 2629 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2630 * new incoming data is dropped due to memory limits. 2631 * With large window, mss test triggers way too late in order 2632 * to announce zero window in time before rmem limit kicks in. 2633 */ 2634 if (free_space < (allowed_space >> 4) || free_space < mss) 2635 return 0; 2636 } 2637 2638 if (free_space > tp->rcv_ssthresh) 2639 free_space = tp->rcv_ssthresh; 2640 2641 /* Don't do rounding if we are using window scaling, since the 2642 * scaled window will not line up with the MSS boundary anyway. 2643 */ 2644 if (tp->rx_opt.rcv_wscale) { 2645 window = free_space; 2646 2647 /* Advertise enough space so that it won't get scaled away. 2648 * Import case: prevent zero window announcement if 2649 * 1<<rcv_wscale > mss. 2650 */ 2651 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2652 } else { 2653 window = tp->rcv_wnd; 2654 /* Get the largest window that is a nice multiple of mss. 2655 * Window clamp already applied above. 2656 * If our current window offering is within 1 mss of the 2657 * free space we just keep it. This prevents the divide 2658 * and multiply from happening most of the time. 2659 * We also don't do any window rounding when the free space 2660 * is too small. 2661 */ 2662 if (window <= free_space - mss || window > free_space) 2663 window = rounddown(free_space, mss); 2664 else if (mss == full_space && 2665 free_space > window + (full_space >> 1)) 2666 window = free_space; 2667 } 2668 2669 return window; 2670 } 2671 2672 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2673 const struct sk_buff *next_skb) 2674 { 2675 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2676 const struct skb_shared_info *next_shinfo = 2677 skb_shinfo(next_skb); 2678 struct skb_shared_info *shinfo = skb_shinfo(skb); 2679 2680 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2681 shinfo->tskey = next_shinfo->tskey; 2682 TCP_SKB_CB(skb)->txstamp_ack |= 2683 TCP_SKB_CB(next_skb)->txstamp_ack; 2684 } 2685 } 2686 2687 /* Collapses two adjacent SKB's during retransmission. */ 2688 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2689 { 2690 struct tcp_sock *tp = tcp_sk(sk); 2691 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2692 int skb_size, next_skb_size; 2693 2694 skb_size = skb->len; 2695 next_skb_size = next_skb->len; 2696 2697 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2698 2699 if (next_skb_size) { 2700 if (next_skb_size <= skb_availroom(skb)) 2701 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2702 next_skb_size); 2703 else if (!skb_shift(skb, next_skb, next_skb_size)) 2704 return false; 2705 } 2706 tcp_highest_sack_combine(sk, next_skb, skb); 2707 2708 tcp_unlink_write_queue(next_skb, sk); 2709 2710 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2711 skb->ip_summed = CHECKSUM_PARTIAL; 2712 2713 if (skb->ip_summed != CHECKSUM_PARTIAL) 2714 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2715 2716 /* Update sequence range on original skb. */ 2717 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2718 2719 /* Merge over control information. This moves PSH/FIN etc. over */ 2720 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2721 2722 /* All done, get rid of second SKB and account for it so 2723 * packet counting does not break. 2724 */ 2725 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2726 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2727 2728 /* changed transmit queue under us so clear hints */ 2729 tcp_clear_retrans_hints_partial(tp); 2730 if (next_skb == tp->retransmit_skb_hint) 2731 tp->retransmit_skb_hint = skb; 2732 2733 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2734 2735 tcp_skb_collapse_tstamp(skb, next_skb); 2736 2737 sk_wmem_free_skb(sk, next_skb); 2738 return true; 2739 } 2740 2741 /* Check if coalescing SKBs is legal. */ 2742 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2743 { 2744 if (tcp_skb_pcount(skb) > 1) 2745 return false; 2746 if (skb_cloned(skb)) 2747 return false; 2748 if (skb == tcp_send_head(sk)) 2749 return false; 2750 /* Some heuristics for collapsing over SACK'd could be invented */ 2751 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2752 return false; 2753 2754 return true; 2755 } 2756 2757 /* Collapse packets in the retransmit queue to make to create 2758 * less packets on the wire. This is only done on retransmission. 2759 */ 2760 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2761 int space) 2762 { 2763 struct tcp_sock *tp = tcp_sk(sk); 2764 struct sk_buff *skb = to, *tmp; 2765 bool first = true; 2766 2767 if (!sysctl_tcp_retrans_collapse) 2768 return; 2769 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2770 return; 2771 2772 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2773 if (!tcp_can_collapse(sk, skb)) 2774 break; 2775 2776 if (!tcp_skb_can_collapse_to(to)) 2777 break; 2778 2779 space -= skb->len; 2780 2781 if (first) { 2782 first = false; 2783 continue; 2784 } 2785 2786 if (space < 0) 2787 break; 2788 2789 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2790 break; 2791 2792 if (!tcp_collapse_retrans(sk, to)) 2793 break; 2794 } 2795 } 2796 2797 /* This retransmits one SKB. Policy decisions and retransmit queue 2798 * state updates are done by the caller. Returns non-zero if an 2799 * error occurred which prevented the send. 2800 */ 2801 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2802 { 2803 struct inet_connection_sock *icsk = inet_csk(sk); 2804 struct tcp_sock *tp = tcp_sk(sk); 2805 unsigned int cur_mss; 2806 int diff, len, err; 2807 2808 2809 /* Inconclusive MTU probe */ 2810 if (icsk->icsk_mtup.probe_size) 2811 icsk->icsk_mtup.probe_size = 0; 2812 2813 /* Do not sent more than we queued. 1/4 is reserved for possible 2814 * copying overhead: fragmentation, tunneling, mangling etc. 2815 */ 2816 if (refcount_read(&sk->sk_wmem_alloc) > 2817 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2818 sk->sk_sndbuf)) 2819 return -EAGAIN; 2820 2821 if (skb_still_in_host_queue(sk, skb)) 2822 return -EBUSY; 2823 2824 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2825 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2826 BUG(); 2827 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2828 return -ENOMEM; 2829 } 2830 2831 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2832 return -EHOSTUNREACH; /* Routing failure or similar. */ 2833 2834 cur_mss = tcp_current_mss(sk); 2835 2836 /* If receiver has shrunk his window, and skb is out of 2837 * new window, do not retransmit it. The exception is the 2838 * case, when window is shrunk to zero. In this case 2839 * our retransmit serves as a zero window probe. 2840 */ 2841 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2842 TCP_SKB_CB(skb)->seq != tp->snd_una) 2843 return -EAGAIN; 2844 2845 len = cur_mss * segs; 2846 if (skb->len > len) { 2847 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC)) 2848 return -ENOMEM; /* We'll try again later. */ 2849 } else { 2850 if (skb_unclone(skb, GFP_ATOMIC)) 2851 return -ENOMEM; 2852 2853 diff = tcp_skb_pcount(skb); 2854 tcp_set_skb_tso_segs(skb, cur_mss); 2855 diff -= tcp_skb_pcount(skb); 2856 if (diff) 2857 tcp_adjust_pcount(sk, skb, diff); 2858 if (skb->len < cur_mss) 2859 tcp_retrans_try_collapse(sk, skb, cur_mss); 2860 } 2861 2862 /* RFC3168, section 6.1.1.1. ECN fallback */ 2863 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2864 tcp_ecn_clear_syn(sk, skb); 2865 2866 /* Update global and local TCP statistics. */ 2867 segs = tcp_skb_pcount(skb); 2868 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2869 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2870 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2871 tp->total_retrans += segs; 2872 2873 /* make sure skb->data is aligned on arches that require it 2874 * and check if ack-trimming & collapsing extended the headroom 2875 * beyond what csum_start can cover. 2876 */ 2877 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2878 skb_headroom(skb) >= 0xFFFF)) { 2879 struct sk_buff *nskb; 2880 2881 skb->skb_mstamp = tp->tcp_mstamp; 2882 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2883 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2884 -ENOBUFS; 2885 } else { 2886 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2887 } 2888 2889 if (likely(!err)) { 2890 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2891 } else if (err != -EBUSY) { 2892 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2893 } 2894 return err; 2895 } 2896 2897 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2898 { 2899 struct tcp_sock *tp = tcp_sk(sk); 2900 int err = __tcp_retransmit_skb(sk, skb, segs); 2901 2902 if (err == 0) { 2903 #if FASTRETRANS_DEBUG > 0 2904 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2905 net_dbg_ratelimited("retrans_out leaked\n"); 2906 } 2907 #endif 2908 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2909 tp->retrans_out += tcp_skb_pcount(skb); 2910 2911 /* Save stamp of the first retransmit. */ 2912 if (!tp->retrans_stamp) 2913 tp->retrans_stamp = tcp_skb_timestamp(skb); 2914 2915 } 2916 2917 if (tp->undo_retrans < 0) 2918 tp->undo_retrans = 0; 2919 tp->undo_retrans += tcp_skb_pcount(skb); 2920 return err; 2921 } 2922 2923 /* This gets called after a retransmit timeout, and the initially 2924 * retransmitted data is acknowledged. It tries to continue 2925 * resending the rest of the retransmit queue, until either 2926 * we've sent it all or the congestion window limit is reached. 2927 * If doing SACK, the first ACK which comes back for a timeout 2928 * based retransmit packet might feed us FACK information again. 2929 * If so, we use it to avoid unnecessarily retransmissions. 2930 */ 2931 void tcp_xmit_retransmit_queue(struct sock *sk) 2932 { 2933 const struct inet_connection_sock *icsk = inet_csk(sk); 2934 struct tcp_sock *tp = tcp_sk(sk); 2935 struct sk_buff *skb; 2936 struct sk_buff *hole = NULL; 2937 u32 max_segs; 2938 int mib_idx; 2939 2940 if (!tp->packets_out) 2941 return; 2942 2943 if (tp->retransmit_skb_hint) { 2944 skb = tp->retransmit_skb_hint; 2945 } else { 2946 skb = tcp_write_queue_head(sk); 2947 } 2948 2949 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2950 tcp_for_write_queue_from(skb, sk) { 2951 __u8 sacked; 2952 int segs; 2953 2954 if (skb == tcp_send_head(sk)) 2955 break; 2956 2957 if (tcp_pacing_check(sk)) 2958 break; 2959 2960 /* we could do better than to assign each time */ 2961 if (!hole) 2962 tp->retransmit_skb_hint = skb; 2963 2964 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2965 if (segs <= 0) 2966 return; 2967 sacked = TCP_SKB_CB(skb)->sacked; 2968 /* In case tcp_shift_skb_data() have aggregated large skbs, 2969 * we need to make sure not sending too bigs TSO packets 2970 */ 2971 segs = min_t(int, segs, max_segs); 2972 2973 if (tp->retrans_out >= tp->lost_out) { 2974 break; 2975 } else if (!(sacked & TCPCB_LOST)) { 2976 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2977 hole = skb; 2978 continue; 2979 2980 } else { 2981 if (icsk->icsk_ca_state != TCP_CA_Loss) 2982 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2983 else 2984 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2985 } 2986 2987 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2988 continue; 2989 2990 if (tcp_small_queue_check(sk, skb, 1)) 2991 return; 2992 2993 if (tcp_retransmit_skb(sk, skb, segs)) 2994 return; 2995 2996 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 2997 2998 if (tcp_in_cwnd_reduction(sk)) 2999 tp->prr_out += tcp_skb_pcount(skb); 3000 3001 if (skb == tcp_write_queue_head(sk) && 3002 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3003 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3004 inet_csk(sk)->icsk_rto, 3005 TCP_RTO_MAX); 3006 } 3007 } 3008 3009 /* We allow to exceed memory limits for FIN packets to expedite 3010 * connection tear down and (memory) recovery. 3011 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3012 * or even be forced to close flow without any FIN. 3013 * In general, we want to allow one skb per socket to avoid hangs 3014 * with edge trigger epoll() 3015 */ 3016 void sk_forced_mem_schedule(struct sock *sk, int size) 3017 { 3018 int amt; 3019 3020 if (size <= sk->sk_forward_alloc) 3021 return; 3022 amt = sk_mem_pages(size); 3023 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3024 sk_memory_allocated_add(sk, amt); 3025 3026 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3027 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3028 } 3029 3030 /* Send a FIN. The caller locks the socket for us. 3031 * We should try to send a FIN packet really hard, but eventually give up. 3032 */ 3033 void tcp_send_fin(struct sock *sk) 3034 { 3035 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3036 struct tcp_sock *tp = tcp_sk(sk); 3037 3038 /* Optimization, tack on the FIN if we have one skb in write queue and 3039 * this skb was not yet sent, or we are under memory pressure. 3040 * Note: in the latter case, FIN packet will be sent after a timeout, 3041 * as TCP stack thinks it has already been transmitted. 3042 */ 3043 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) { 3044 coalesce: 3045 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3046 TCP_SKB_CB(tskb)->end_seq++; 3047 tp->write_seq++; 3048 if (!tcp_send_head(sk)) { 3049 /* This means tskb was already sent. 3050 * Pretend we included the FIN on previous transmit. 3051 * We need to set tp->snd_nxt to the value it would have 3052 * if FIN had been sent. This is because retransmit path 3053 * does not change tp->snd_nxt. 3054 */ 3055 tp->snd_nxt++; 3056 return; 3057 } 3058 } else { 3059 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3060 if (unlikely(!skb)) { 3061 if (tskb) 3062 goto coalesce; 3063 return; 3064 } 3065 skb_reserve(skb, MAX_TCP_HEADER); 3066 sk_forced_mem_schedule(sk, skb->truesize); 3067 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3068 tcp_init_nondata_skb(skb, tp->write_seq, 3069 TCPHDR_ACK | TCPHDR_FIN); 3070 tcp_queue_skb(sk, skb); 3071 } 3072 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3073 } 3074 3075 /* We get here when a process closes a file descriptor (either due to 3076 * an explicit close() or as a byproduct of exit()'ing) and there 3077 * was unread data in the receive queue. This behavior is recommended 3078 * by RFC 2525, section 2.17. -DaveM 3079 */ 3080 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3081 { 3082 struct sk_buff *skb; 3083 3084 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3085 3086 /* NOTE: No TCP options attached and we never retransmit this. */ 3087 skb = alloc_skb(MAX_TCP_HEADER, priority); 3088 if (!skb) { 3089 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3090 return; 3091 } 3092 3093 /* Reserve space for headers and prepare control bits. */ 3094 skb_reserve(skb, MAX_TCP_HEADER); 3095 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3096 TCPHDR_ACK | TCPHDR_RST); 3097 tcp_mstamp_refresh(tcp_sk(sk)); 3098 /* Send it off. */ 3099 if (tcp_transmit_skb(sk, skb, 0, priority)) 3100 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3101 } 3102 3103 /* Send a crossed SYN-ACK during socket establishment. 3104 * WARNING: This routine must only be called when we have already sent 3105 * a SYN packet that crossed the incoming SYN that caused this routine 3106 * to get called. If this assumption fails then the initial rcv_wnd 3107 * and rcv_wscale values will not be correct. 3108 */ 3109 int tcp_send_synack(struct sock *sk) 3110 { 3111 struct sk_buff *skb; 3112 3113 skb = tcp_write_queue_head(sk); 3114 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3115 pr_debug("%s: wrong queue state\n", __func__); 3116 return -EFAULT; 3117 } 3118 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3119 if (skb_cloned(skb)) { 3120 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 3121 if (!nskb) 3122 return -ENOMEM; 3123 tcp_unlink_write_queue(skb, sk); 3124 __skb_header_release(nskb); 3125 __tcp_add_write_queue_head(sk, nskb); 3126 sk_wmem_free_skb(sk, skb); 3127 sk->sk_wmem_queued += nskb->truesize; 3128 sk_mem_charge(sk, nskb->truesize); 3129 skb = nskb; 3130 } 3131 3132 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3133 tcp_ecn_send_synack(sk, skb); 3134 } 3135 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3136 } 3137 3138 /** 3139 * tcp_make_synack - Prepare a SYN-ACK. 3140 * sk: listener socket 3141 * dst: dst entry attached to the SYNACK 3142 * req: request_sock pointer 3143 * 3144 * Allocate one skb and build a SYNACK packet. 3145 * @dst is consumed : Caller should not use it again. 3146 */ 3147 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3148 struct request_sock *req, 3149 struct tcp_fastopen_cookie *foc, 3150 enum tcp_synack_type synack_type) 3151 { 3152 struct inet_request_sock *ireq = inet_rsk(req); 3153 const struct tcp_sock *tp = tcp_sk(sk); 3154 struct tcp_md5sig_key *md5 = NULL; 3155 struct tcp_out_options opts; 3156 struct sk_buff *skb; 3157 int tcp_header_size; 3158 struct tcphdr *th; 3159 int mss; 3160 3161 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3162 if (unlikely(!skb)) { 3163 dst_release(dst); 3164 return NULL; 3165 } 3166 /* Reserve space for headers. */ 3167 skb_reserve(skb, MAX_TCP_HEADER); 3168 3169 switch (synack_type) { 3170 case TCP_SYNACK_NORMAL: 3171 skb_set_owner_w(skb, req_to_sk(req)); 3172 break; 3173 case TCP_SYNACK_COOKIE: 3174 /* Under synflood, we do not attach skb to a socket, 3175 * to avoid false sharing. 3176 */ 3177 break; 3178 case TCP_SYNACK_FASTOPEN: 3179 /* sk is a const pointer, because we want to express multiple 3180 * cpu might call us concurrently. 3181 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3182 */ 3183 skb_set_owner_w(skb, (struct sock *)sk); 3184 break; 3185 } 3186 skb_dst_set(skb, dst); 3187 3188 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3189 3190 memset(&opts, 0, sizeof(opts)); 3191 #ifdef CONFIG_SYN_COOKIES 3192 if (unlikely(req->cookie_ts)) 3193 skb->skb_mstamp = cookie_init_timestamp(req); 3194 else 3195 #endif 3196 skb->skb_mstamp = tcp_clock_us(); 3197 3198 #ifdef CONFIG_TCP_MD5SIG 3199 rcu_read_lock(); 3200 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3201 #endif 3202 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3203 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) + 3204 sizeof(*th); 3205 3206 skb_push(skb, tcp_header_size); 3207 skb_reset_transport_header(skb); 3208 3209 th = (struct tcphdr *)skb->data; 3210 memset(th, 0, sizeof(struct tcphdr)); 3211 th->syn = 1; 3212 th->ack = 1; 3213 tcp_ecn_make_synack(req, th); 3214 th->source = htons(ireq->ir_num); 3215 th->dest = ireq->ir_rmt_port; 3216 skb->mark = ireq->ir_mark; 3217 /* Setting of flags are superfluous here for callers (and ECE is 3218 * not even correctly set) 3219 */ 3220 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3221 TCPHDR_SYN | TCPHDR_ACK); 3222 3223 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3224 /* XXX data is queued and acked as is. No buffer/window check */ 3225 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3226 3227 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3228 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3229 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3230 th->doff = (tcp_header_size >> 2); 3231 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3232 3233 #ifdef CONFIG_TCP_MD5SIG 3234 /* Okay, we have all we need - do the md5 hash if needed */ 3235 if (md5) 3236 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3237 md5, req_to_sk(req), skb); 3238 rcu_read_unlock(); 3239 #endif 3240 3241 /* Do not fool tcpdump (if any), clean our debris */ 3242 skb->tstamp = 0; 3243 return skb; 3244 } 3245 EXPORT_SYMBOL(tcp_make_synack); 3246 3247 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3248 { 3249 struct inet_connection_sock *icsk = inet_csk(sk); 3250 const struct tcp_congestion_ops *ca; 3251 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3252 3253 if (ca_key == TCP_CA_UNSPEC) 3254 return; 3255 3256 rcu_read_lock(); 3257 ca = tcp_ca_find_key(ca_key); 3258 if (likely(ca && try_module_get(ca->owner))) { 3259 module_put(icsk->icsk_ca_ops->owner); 3260 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3261 icsk->icsk_ca_ops = ca; 3262 } 3263 rcu_read_unlock(); 3264 } 3265 3266 /* Do all connect socket setups that can be done AF independent. */ 3267 static void tcp_connect_init(struct sock *sk) 3268 { 3269 const struct dst_entry *dst = __sk_dst_get(sk); 3270 struct tcp_sock *tp = tcp_sk(sk); 3271 __u8 rcv_wscale; 3272 u32 rcv_wnd; 3273 3274 /* We'll fix this up when we get a response from the other end. 3275 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3276 */ 3277 tp->tcp_header_len = sizeof(struct tcphdr); 3278 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3279 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3280 3281 #ifdef CONFIG_TCP_MD5SIG 3282 if (tp->af_specific->md5_lookup(sk, sk)) 3283 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3284 #endif 3285 3286 /* If user gave his TCP_MAXSEG, record it to clamp */ 3287 if (tp->rx_opt.user_mss) 3288 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3289 tp->max_window = 0; 3290 tcp_mtup_init(sk); 3291 tcp_sync_mss(sk, dst_mtu(dst)); 3292 3293 tcp_ca_dst_init(sk, dst); 3294 3295 if (!tp->window_clamp) 3296 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3297 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3298 3299 tcp_initialize_rcv_mss(sk); 3300 3301 /* limit the window selection if the user enforce a smaller rx buffer */ 3302 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3303 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3304 tp->window_clamp = tcp_full_space(sk); 3305 3306 rcv_wnd = tcp_rwnd_init_bpf(sk); 3307 if (rcv_wnd == 0) 3308 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3309 3310 tcp_select_initial_window(tcp_full_space(sk), 3311 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3312 &tp->rcv_wnd, 3313 &tp->window_clamp, 3314 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3315 &rcv_wscale, 3316 rcv_wnd); 3317 3318 tp->rx_opt.rcv_wscale = rcv_wscale; 3319 tp->rcv_ssthresh = tp->rcv_wnd; 3320 3321 sk->sk_err = 0; 3322 sock_reset_flag(sk, SOCK_DONE); 3323 tp->snd_wnd = 0; 3324 tcp_init_wl(tp, 0); 3325 tp->snd_una = tp->write_seq; 3326 tp->snd_sml = tp->write_seq; 3327 tp->snd_up = tp->write_seq; 3328 tp->snd_nxt = tp->write_seq; 3329 3330 if (likely(!tp->repair)) 3331 tp->rcv_nxt = 0; 3332 else 3333 tp->rcv_tstamp = tcp_jiffies32; 3334 tp->rcv_wup = tp->rcv_nxt; 3335 tp->copied_seq = tp->rcv_nxt; 3336 3337 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3338 inet_csk(sk)->icsk_retransmits = 0; 3339 tcp_clear_retrans(tp); 3340 } 3341 3342 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3343 { 3344 struct tcp_sock *tp = tcp_sk(sk); 3345 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3346 3347 tcb->end_seq += skb->len; 3348 __skb_header_release(skb); 3349 __tcp_add_write_queue_tail(sk, skb); 3350 sk->sk_wmem_queued += skb->truesize; 3351 sk_mem_charge(sk, skb->truesize); 3352 tp->write_seq = tcb->end_seq; 3353 tp->packets_out += tcp_skb_pcount(skb); 3354 } 3355 3356 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3357 * queue a data-only packet after the regular SYN, such that regular SYNs 3358 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3359 * only the SYN sequence, the data are retransmitted in the first ACK. 3360 * If cookie is not cached or other error occurs, falls back to send a 3361 * regular SYN with Fast Open cookie request option. 3362 */ 3363 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3364 { 3365 struct tcp_sock *tp = tcp_sk(sk); 3366 struct tcp_fastopen_request *fo = tp->fastopen_req; 3367 int space, err = 0; 3368 struct sk_buff *syn_data; 3369 3370 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3371 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3372 goto fallback; 3373 3374 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3375 * user-MSS. Reserve maximum option space for middleboxes that add 3376 * private TCP options. The cost is reduced data space in SYN :( 3377 */ 3378 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3379 3380 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3381 MAX_TCP_OPTION_SPACE; 3382 3383 space = min_t(size_t, space, fo->size); 3384 3385 /* limit to order-0 allocations */ 3386 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3387 3388 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3389 if (!syn_data) 3390 goto fallback; 3391 syn_data->ip_summed = CHECKSUM_PARTIAL; 3392 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3393 if (space) { 3394 int copied = copy_from_iter(skb_put(syn_data, space), space, 3395 &fo->data->msg_iter); 3396 if (unlikely(!copied)) { 3397 kfree_skb(syn_data); 3398 goto fallback; 3399 } 3400 if (copied != space) { 3401 skb_trim(syn_data, copied); 3402 space = copied; 3403 } 3404 } 3405 /* No more data pending in inet_wait_for_connect() */ 3406 if (space == fo->size) 3407 fo->data = NULL; 3408 fo->copied = space; 3409 3410 tcp_connect_queue_skb(sk, syn_data); 3411 if (syn_data->len) 3412 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3413 3414 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3415 3416 syn->skb_mstamp = syn_data->skb_mstamp; 3417 3418 /* Now full SYN+DATA was cloned and sent (or not), 3419 * remove the SYN from the original skb (syn_data) 3420 * we keep in write queue in case of a retransmit, as we 3421 * also have the SYN packet (with no data) in the same queue. 3422 */ 3423 TCP_SKB_CB(syn_data)->seq++; 3424 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3425 if (!err) { 3426 tp->syn_data = (fo->copied > 0); 3427 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3428 goto done; 3429 } 3430 3431 fallback: 3432 /* Send a regular SYN with Fast Open cookie request option */ 3433 if (fo->cookie.len > 0) 3434 fo->cookie.len = 0; 3435 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3436 if (err) 3437 tp->syn_fastopen = 0; 3438 done: 3439 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3440 return err; 3441 } 3442 3443 /* Build a SYN and send it off. */ 3444 int tcp_connect(struct sock *sk) 3445 { 3446 struct tcp_sock *tp = tcp_sk(sk); 3447 struct sk_buff *buff; 3448 int err; 3449 3450 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB); 3451 tcp_connect_init(sk); 3452 3453 if (unlikely(tp->repair)) { 3454 tcp_finish_connect(sk, NULL); 3455 return 0; 3456 } 3457 3458 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3459 if (unlikely(!buff)) 3460 return -ENOBUFS; 3461 3462 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3463 tcp_mstamp_refresh(tp); 3464 tp->retrans_stamp = tcp_time_stamp(tp); 3465 tcp_connect_queue_skb(sk, buff); 3466 tcp_ecn_send_syn(sk, buff); 3467 3468 /* Send off SYN; include data in Fast Open. */ 3469 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3470 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3471 if (err == -ECONNREFUSED) 3472 return err; 3473 3474 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3475 * in order to make this packet get counted in tcpOutSegs. 3476 */ 3477 tp->snd_nxt = tp->write_seq; 3478 tp->pushed_seq = tp->write_seq; 3479 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3480 3481 /* Timer for repeating the SYN until an answer. */ 3482 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3483 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3484 return 0; 3485 } 3486 EXPORT_SYMBOL(tcp_connect); 3487 3488 /* Send out a delayed ack, the caller does the policy checking 3489 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3490 * for details. 3491 */ 3492 void tcp_send_delayed_ack(struct sock *sk) 3493 { 3494 struct inet_connection_sock *icsk = inet_csk(sk); 3495 int ato = icsk->icsk_ack.ato; 3496 unsigned long timeout; 3497 3498 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3499 3500 if (ato > TCP_DELACK_MIN) { 3501 const struct tcp_sock *tp = tcp_sk(sk); 3502 int max_ato = HZ / 2; 3503 3504 if (icsk->icsk_ack.pingpong || 3505 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3506 max_ato = TCP_DELACK_MAX; 3507 3508 /* Slow path, intersegment interval is "high". */ 3509 3510 /* If some rtt estimate is known, use it to bound delayed ack. 3511 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3512 * directly. 3513 */ 3514 if (tp->srtt_us) { 3515 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3516 TCP_DELACK_MIN); 3517 3518 if (rtt < max_ato) 3519 max_ato = rtt; 3520 } 3521 3522 ato = min(ato, max_ato); 3523 } 3524 3525 /* Stay within the limit we were given */ 3526 timeout = jiffies + ato; 3527 3528 /* Use new timeout only if there wasn't a older one earlier. */ 3529 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3530 /* If delack timer was blocked or is about to expire, 3531 * send ACK now. 3532 */ 3533 if (icsk->icsk_ack.blocked || 3534 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3535 tcp_send_ack(sk); 3536 return; 3537 } 3538 3539 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3540 timeout = icsk->icsk_ack.timeout; 3541 } 3542 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3543 icsk->icsk_ack.timeout = timeout; 3544 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3545 } 3546 3547 /* This routine sends an ack and also updates the window. */ 3548 void tcp_send_ack(struct sock *sk) 3549 { 3550 struct sk_buff *buff; 3551 3552 /* If we have been reset, we may not send again. */ 3553 if (sk->sk_state == TCP_CLOSE) 3554 return; 3555 3556 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3557 3558 /* We are not putting this on the write queue, so 3559 * tcp_transmit_skb() will set the ownership to this 3560 * sock. 3561 */ 3562 buff = alloc_skb(MAX_TCP_HEADER, 3563 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3564 if (unlikely(!buff)) { 3565 inet_csk_schedule_ack(sk); 3566 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3567 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3568 TCP_DELACK_MAX, TCP_RTO_MAX); 3569 return; 3570 } 3571 3572 /* Reserve space for headers and prepare control bits. */ 3573 skb_reserve(buff, MAX_TCP_HEADER); 3574 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3575 3576 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3577 * too much. 3578 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3579 */ 3580 skb_set_tcp_pure_ack(buff); 3581 3582 /* Send it off, this clears delayed acks for us. */ 3583 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3584 } 3585 EXPORT_SYMBOL_GPL(tcp_send_ack); 3586 3587 /* This routine sends a packet with an out of date sequence 3588 * number. It assumes the other end will try to ack it. 3589 * 3590 * Question: what should we make while urgent mode? 3591 * 4.4BSD forces sending single byte of data. We cannot send 3592 * out of window data, because we have SND.NXT==SND.MAX... 3593 * 3594 * Current solution: to send TWO zero-length segments in urgent mode: 3595 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3596 * out-of-date with SND.UNA-1 to probe window. 3597 */ 3598 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3599 { 3600 struct tcp_sock *tp = tcp_sk(sk); 3601 struct sk_buff *skb; 3602 3603 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3604 skb = alloc_skb(MAX_TCP_HEADER, 3605 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3606 if (!skb) 3607 return -1; 3608 3609 /* Reserve space for headers and set control bits. */ 3610 skb_reserve(skb, MAX_TCP_HEADER); 3611 /* Use a previous sequence. This should cause the other 3612 * end to send an ack. Don't queue or clone SKB, just 3613 * send it. 3614 */ 3615 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3616 NET_INC_STATS(sock_net(sk), mib); 3617 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3618 } 3619 3620 /* Called from setsockopt( ... TCP_REPAIR ) */ 3621 void tcp_send_window_probe(struct sock *sk) 3622 { 3623 if (sk->sk_state == TCP_ESTABLISHED) { 3624 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3625 tcp_mstamp_refresh(tcp_sk(sk)); 3626 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3627 } 3628 } 3629 3630 /* Initiate keepalive or window probe from timer. */ 3631 int tcp_write_wakeup(struct sock *sk, int mib) 3632 { 3633 struct tcp_sock *tp = tcp_sk(sk); 3634 struct sk_buff *skb; 3635 3636 if (sk->sk_state == TCP_CLOSE) 3637 return -1; 3638 3639 skb = tcp_send_head(sk); 3640 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3641 int err; 3642 unsigned int mss = tcp_current_mss(sk); 3643 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3644 3645 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3646 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3647 3648 /* We are probing the opening of a window 3649 * but the window size is != 0 3650 * must have been a result SWS avoidance ( sender ) 3651 */ 3652 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3653 skb->len > mss) { 3654 seg_size = min(seg_size, mss); 3655 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3656 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3657 return -1; 3658 } else if (!tcp_skb_pcount(skb)) 3659 tcp_set_skb_tso_segs(skb, mss); 3660 3661 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3662 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3663 if (!err) 3664 tcp_event_new_data_sent(sk, skb); 3665 return err; 3666 } else { 3667 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3668 tcp_xmit_probe_skb(sk, 1, mib); 3669 return tcp_xmit_probe_skb(sk, 0, mib); 3670 } 3671 } 3672 3673 /* A window probe timeout has occurred. If window is not closed send 3674 * a partial packet else a zero probe. 3675 */ 3676 void tcp_send_probe0(struct sock *sk) 3677 { 3678 struct inet_connection_sock *icsk = inet_csk(sk); 3679 struct tcp_sock *tp = tcp_sk(sk); 3680 struct net *net = sock_net(sk); 3681 unsigned long probe_max; 3682 int err; 3683 3684 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3685 3686 if (tp->packets_out || !tcp_send_head(sk)) { 3687 /* Cancel probe timer, if it is not required. */ 3688 icsk->icsk_probes_out = 0; 3689 icsk->icsk_backoff = 0; 3690 return; 3691 } 3692 3693 if (err <= 0) { 3694 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3695 icsk->icsk_backoff++; 3696 icsk->icsk_probes_out++; 3697 probe_max = TCP_RTO_MAX; 3698 } else { 3699 /* If packet was not sent due to local congestion, 3700 * do not backoff and do not remember icsk_probes_out. 3701 * Let local senders to fight for local resources. 3702 * 3703 * Use accumulated backoff yet. 3704 */ 3705 if (!icsk->icsk_probes_out) 3706 icsk->icsk_probes_out = 1; 3707 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3708 } 3709 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3710 tcp_probe0_when(sk, probe_max), 3711 TCP_RTO_MAX); 3712 } 3713 3714 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3715 { 3716 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3717 struct flowi fl; 3718 int res; 3719 3720 tcp_rsk(req)->txhash = net_tx_rndhash(); 3721 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3722 if (!res) { 3723 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3724 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3725 if (unlikely(tcp_passive_fastopen(sk))) 3726 tcp_sk(sk)->total_retrans++; 3727 } 3728 return res; 3729 } 3730 EXPORT_SYMBOL(tcp_rtx_synack); 3731