xref: /openbmc/linux/net/ipv4/tcp_output.c (revision c67ce71d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 	tcp_check_space(sk);
86 }
87 
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89  * window scaling factor due to loss of precision.
90  * If window has been shrunk, what should we make? It is not clear at all.
91  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93  * invalid. OK, let's make this for now:
94  */
95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 	const struct tcp_sock *tp = tcp_sk(sk);
98 
99 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 	    (tp->rx_opt.wscale_ok &&
101 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tcp_snd_cwnd(tp);
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 	tp->snd_cwnd_stamp = tcp_jiffies32;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_jiffies32;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, enter pingpong mode.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_enter_pingpong_mode(sk);
177 }
178 
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
181 {
182 	struct tcp_sock *tp = tcp_sk(sk);
183 
184 	if (unlikely(tp->compressed_ack)) {
185 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186 			      tp->compressed_ack);
187 		tp->compressed_ack = 0;
188 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
189 			__sock_put(sk);
190 	}
191 
192 	if (unlikely(rcv_nxt != tp->rcv_nxt))
193 		return;  /* Special ACK sent by DCTCP to reflect ECN */
194 	tcp_dec_quickack_mode(sk);
195 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196 }
197 
198 /* Determine a window scaling and initial window to offer.
199  * Based on the assumption that the given amount of space
200  * will be offered. Store the results in the tp structure.
201  * NOTE: for smooth operation initial space offering should
202  * be a multiple of mss if possible. We assume here that mss >= 1.
203  * This MUST be enforced by all callers.
204  */
205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206 			       __u32 *rcv_wnd, __u32 *__window_clamp,
207 			       int wscale_ok, __u8 *rcv_wscale,
208 			       __u32 init_rcv_wnd)
209 {
210 	unsigned int space = (__space < 0 ? 0 : __space);
211 	u32 window_clamp = READ_ONCE(*__window_clamp);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (window_clamp == 0)
215 		window_clamp = (U16_MAX << TCP_MAX_WSCALE);
216 	space = min(window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = rounddown(space, mss);
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
234 
235 	if (init_rcv_wnd)
236 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
237 
238 	*rcv_wscale = 0;
239 	if (wscale_ok) {
240 		/* Set window scaling on max possible window */
241 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
242 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
243 		space = min_t(u32, space, window_clamp);
244 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
245 				      0, TCP_MAX_WSCALE);
246 	}
247 	/* Set the clamp no higher than max representable value */
248 	WRITE_ONCE(*__window_clamp,
249 		   min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
250 }
251 EXPORT_SYMBOL(tcp_select_initial_window);
252 
253 /* Chose a new window to advertise, update state in tcp_sock for the
254  * socket, and return result with RFC1323 scaling applied.  The return
255  * value can be stuffed directly into th->window for an outgoing
256  * frame.
257  */
258 static u16 tcp_select_window(struct sock *sk)
259 {
260 	struct tcp_sock *tp = tcp_sk(sk);
261 	struct net *net = sock_net(sk);
262 	u32 old_win = tp->rcv_wnd;
263 	u32 cur_win, new_win;
264 
265 	/* Make the window 0 if we failed to queue the data because we
266 	 * are out of memory. The window is temporary, so we don't store
267 	 * it on the socket.
268 	 */
269 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
270 		return 0;
271 
272 	cur_win = tcp_receive_window(tp);
273 	new_win = __tcp_select_window(sk);
274 	if (new_win < cur_win) {
275 		/* Danger Will Robinson!
276 		 * Don't update rcv_wup/rcv_wnd here or else
277 		 * we will not be able to advertise a zero
278 		 * window in time.  --DaveM
279 		 *
280 		 * Relax Will Robinson.
281 		 */
282 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
283 			/* Never shrink the offered window */
284 			if (new_win == 0)
285 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
286 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
287 		}
288 	}
289 
290 	tp->rcv_wnd = new_win;
291 	tp->rcv_wup = tp->rcv_nxt;
292 
293 	/* Make sure we do not exceed the maximum possible
294 	 * scaled window.
295 	 */
296 	if (!tp->rx_opt.rcv_wscale &&
297 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
298 		new_win = min(new_win, MAX_TCP_WINDOW);
299 	else
300 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
301 
302 	/* RFC1323 scaling applied */
303 	new_win >>= tp->rx_opt.rcv_wscale;
304 
305 	/* If we advertise zero window, disable fast path. */
306 	if (new_win == 0) {
307 		tp->pred_flags = 0;
308 		if (old_win)
309 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
310 	} else if (old_win == 0) {
311 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
312 	}
313 
314 	return new_win;
315 }
316 
317 /* Packet ECN state for a SYN-ACK */
318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
319 {
320 	const struct tcp_sock *tp = tcp_sk(sk);
321 
322 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
323 	if (!(tp->ecn_flags & TCP_ECN_OK))
324 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
325 	else if (tcp_ca_needs_ecn(sk) ||
326 		 tcp_bpf_ca_needs_ecn(sk))
327 		INET_ECN_xmit(sk);
328 }
329 
330 /* Packet ECN state for a SYN.  */
331 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
332 {
333 	struct tcp_sock *tp = tcp_sk(sk);
334 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
335 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
336 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
337 
338 	if (!use_ecn) {
339 		const struct dst_entry *dst = __sk_dst_get(sk);
340 
341 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
342 			use_ecn = true;
343 	}
344 
345 	tp->ecn_flags = 0;
346 
347 	if (use_ecn) {
348 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
349 		tp->ecn_flags = TCP_ECN_OK;
350 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
351 			INET_ECN_xmit(sk);
352 	}
353 }
354 
355 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
356 {
357 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
358 		/* tp->ecn_flags are cleared at a later point in time when
359 		 * SYN ACK is ultimatively being received.
360 		 */
361 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
362 }
363 
364 static void
365 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
366 {
367 	if (inet_rsk(req)->ecn_ok)
368 		th->ece = 1;
369 }
370 
371 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
372  * be sent.
373  */
374 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
375 			 struct tcphdr *th, int tcp_header_len)
376 {
377 	struct tcp_sock *tp = tcp_sk(sk);
378 
379 	if (tp->ecn_flags & TCP_ECN_OK) {
380 		/* Not-retransmitted data segment: set ECT and inject CWR. */
381 		if (skb->len != tcp_header_len &&
382 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
383 			INET_ECN_xmit(sk);
384 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
385 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
386 				th->cwr = 1;
387 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
388 			}
389 		} else if (!tcp_ca_needs_ecn(sk)) {
390 			/* ACK or retransmitted segment: clear ECT|CE */
391 			INET_ECN_dontxmit(sk);
392 		}
393 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
394 			th->ece = 1;
395 	}
396 }
397 
398 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
399  * auto increment end seqno.
400  */
401 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
402 {
403 	skb->ip_summed = CHECKSUM_PARTIAL;
404 
405 	TCP_SKB_CB(skb)->tcp_flags = flags;
406 
407 	tcp_skb_pcount_set(skb, 1);
408 
409 	TCP_SKB_CB(skb)->seq = seq;
410 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
411 		seq++;
412 	TCP_SKB_CB(skb)->end_seq = seq;
413 }
414 
415 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
416 {
417 	return tp->snd_una != tp->snd_up;
418 }
419 
420 #define OPTION_SACK_ADVERTISE	BIT(0)
421 #define OPTION_TS		BIT(1)
422 #define OPTION_MD5		BIT(2)
423 #define OPTION_WSCALE		BIT(3)
424 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
425 #define OPTION_SMC		BIT(9)
426 #define OPTION_MPTCP		BIT(10)
427 
428 static void smc_options_write(__be32 *ptr, u16 *options)
429 {
430 #if IS_ENABLED(CONFIG_SMC)
431 	if (static_branch_unlikely(&tcp_have_smc)) {
432 		if (unlikely(OPTION_SMC & *options)) {
433 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
434 				       (TCPOPT_NOP  << 16) |
435 				       (TCPOPT_EXP <<  8) |
436 				       (TCPOLEN_EXP_SMC_BASE));
437 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
438 		}
439 	}
440 #endif
441 }
442 
443 struct tcp_out_options {
444 	u16 options;		/* bit field of OPTION_* */
445 	u16 mss;		/* 0 to disable */
446 	u8 ws;			/* window scale, 0 to disable */
447 	u8 num_sack_blocks;	/* number of SACK blocks to include */
448 	u8 hash_size;		/* bytes in hash_location */
449 	u8 bpf_opt_len;		/* length of BPF hdr option */
450 	__u8 *hash_location;	/* temporary pointer, overloaded */
451 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
452 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
453 	struct mptcp_out_options mptcp;
454 };
455 
456 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
457 				struct tcp_sock *tp,
458 				struct tcp_out_options *opts)
459 {
460 #if IS_ENABLED(CONFIG_MPTCP)
461 	if (unlikely(OPTION_MPTCP & opts->options))
462 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
463 #endif
464 }
465 
466 #ifdef CONFIG_CGROUP_BPF
467 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
468 					enum tcp_synack_type synack_type)
469 {
470 	if (unlikely(!skb))
471 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
472 
473 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
474 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
475 
476 	return 0;
477 }
478 
479 /* req, syn_skb and synack_type are used when writing synack */
480 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
481 				  struct request_sock *req,
482 				  struct sk_buff *syn_skb,
483 				  enum tcp_synack_type synack_type,
484 				  struct tcp_out_options *opts,
485 				  unsigned int *remaining)
486 {
487 	struct bpf_sock_ops_kern sock_ops;
488 	int err;
489 
490 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
491 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
492 	    !*remaining)
493 		return;
494 
495 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
496 
497 	/* init sock_ops */
498 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
499 
500 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
501 
502 	if (req) {
503 		/* The listen "sk" cannot be passed here because
504 		 * it is not locked.  It would not make too much
505 		 * sense to do bpf_setsockopt(listen_sk) based
506 		 * on individual connection request also.
507 		 *
508 		 * Thus, "req" is passed here and the cgroup-bpf-progs
509 		 * of the listen "sk" will be run.
510 		 *
511 		 * "req" is also used here for fastopen even the "sk" here is
512 		 * a fullsock "child" sk.  It is to keep the behavior
513 		 * consistent between fastopen and non-fastopen on
514 		 * the bpf programming side.
515 		 */
516 		sock_ops.sk = (struct sock *)req;
517 		sock_ops.syn_skb = syn_skb;
518 	} else {
519 		sock_owned_by_me(sk);
520 
521 		sock_ops.is_fullsock = 1;
522 		sock_ops.sk = sk;
523 	}
524 
525 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
526 	sock_ops.remaining_opt_len = *remaining;
527 	/* tcp_current_mss() does not pass a skb */
528 	if (skb)
529 		bpf_skops_init_skb(&sock_ops, skb, 0);
530 
531 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
532 
533 	if (err || sock_ops.remaining_opt_len == *remaining)
534 		return;
535 
536 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
537 	/* round up to 4 bytes */
538 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
539 
540 	*remaining -= opts->bpf_opt_len;
541 }
542 
543 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
544 				    struct request_sock *req,
545 				    struct sk_buff *syn_skb,
546 				    enum tcp_synack_type synack_type,
547 				    struct tcp_out_options *opts)
548 {
549 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
550 	struct bpf_sock_ops_kern sock_ops;
551 	int err;
552 
553 	if (likely(!max_opt_len))
554 		return;
555 
556 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
557 
558 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
559 
560 	if (req) {
561 		sock_ops.sk = (struct sock *)req;
562 		sock_ops.syn_skb = syn_skb;
563 	} else {
564 		sock_owned_by_me(sk);
565 
566 		sock_ops.is_fullsock = 1;
567 		sock_ops.sk = sk;
568 	}
569 
570 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
571 	sock_ops.remaining_opt_len = max_opt_len;
572 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
573 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
574 
575 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
576 
577 	if (err)
578 		nr_written = 0;
579 	else
580 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
581 
582 	if (nr_written < max_opt_len)
583 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
584 		       max_opt_len - nr_written);
585 }
586 #else
587 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
588 				  struct request_sock *req,
589 				  struct sk_buff *syn_skb,
590 				  enum tcp_synack_type synack_type,
591 				  struct tcp_out_options *opts,
592 				  unsigned int *remaining)
593 {
594 }
595 
596 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
597 				    struct request_sock *req,
598 				    struct sk_buff *syn_skb,
599 				    enum tcp_synack_type synack_type,
600 				    struct tcp_out_options *opts)
601 {
602 }
603 #endif
604 
605 /* Write previously computed TCP options to the packet.
606  *
607  * Beware: Something in the Internet is very sensitive to the ordering of
608  * TCP options, we learned this through the hard way, so be careful here.
609  * Luckily we can at least blame others for their non-compliance but from
610  * inter-operability perspective it seems that we're somewhat stuck with
611  * the ordering which we have been using if we want to keep working with
612  * those broken things (not that it currently hurts anybody as there isn't
613  * particular reason why the ordering would need to be changed).
614  *
615  * At least SACK_PERM as the first option is known to lead to a disaster
616  * (but it may well be that other scenarios fail similarly).
617  */
618 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
619 			      struct tcp_out_options *opts)
620 {
621 	__be32 *ptr = (__be32 *)(th + 1);
622 	u16 options = opts->options;	/* mungable copy */
623 
624 	if (unlikely(OPTION_MD5 & options)) {
625 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
626 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
627 		/* overload cookie hash location */
628 		opts->hash_location = (__u8 *)ptr;
629 		ptr += 4;
630 	}
631 
632 	if (unlikely(opts->mss)) {
633 		*ptr++ = htonl((TCPOPT_MSS << 24) |
634 			       (TCPOLEN_MSS << 16) |
635 			       opts->mss);
636 	}
637 
638 	if (likely(OPTION_TS & options)) {
639 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
640 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
641 				       (TCPOLEN_SACK_PERM << 16) |
642 				       (TCPOPT_TIMESTAMP << 8) |
643 				       TCPOLEN_TIMESTAMP);
644 			options &= ~OPTION_SACK_ADVERTISE;
645 		} else {
646 			*ptr++ = htonl((TCPOPT_NOP << 24) |
647 				       (TCPOPT_NOP << 16) |
648 				       (TCPOPT_TIMESTAMP << 8) |
649 				       TCPOLEN_TIMESTAMP);
650 		}
651 		*ptr++ = htonl(opts->tsval);
652 		*ptr++ = htonl(opts->tsecr);
653 	}
654 
655 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
656 		*ptr++ = htonl((TCPOPT_NOP << 24) |
657 			       (TCPOPT_NOP << 16) |
658 			       (TCPOPT_SACK_PERM << 8) |
659 			       TCPOLEN_SACK_PERM);
660 	}
661 
662 	if (unlikely(OPTION_WSCALE & options)) {
663 		*ptr++ = htonl((TCPOPT_NOP << 24) |
664 			       (TCPOPT_WINDOW << 16) |
665 			       (TCPOLEN_WINDOW << 8) |
666 			       opts->ws);
667 	}
668 
669 	if (unlikely(opts->num_sack_blocks)) {
670 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
671 			tp->duplicate_sack : tp->selective_acks;
672 		int this_sack;
673 
674 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
675 			       (TCPOPT_NOP  << 16) |
676 			       (TCPOPT_SACK <<  8) |
677 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
678 						     TCPOLEN_SACK_PERBLOCK)));
679 
680 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
681 		     ++this_sack) {
682 			*ptr++ = htonl(sp[this_sack].start_seq);
683 			*ptr++ = htonl(sp[this_sack].end_seq);
684 		}
685 
686 		tp->rx_opt.dsack = 0;
687 	}
688 
689 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
690 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
691 		u8 *p = (u8 *)ptr;
692 		u32 len; /* Fast Open option length */
693 
694 		if (foc->exp) {
695 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
696 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
697 				     TCPOPT_FASTOPEN_MAGIC);
698 			p += TCPOLEN_EXP_FASTOPEN_BASE;
699 		} else {
700 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
701 			*p++ = TCPOPT_FASTOPEN;
702 			*p++ = len;
703 		}
704 
705 		memcpy(p, foc->val, foc->len);
706 		if ((len & 3) == 2) {
707 			p[foc->len] = TCPOPT_NOP;
708 			p[foc->len + 1] = TCPOPT_NOP;
709 		}
710 		ptr += (len + 3) >> 2;
711 	}
712 
713 	smc_options_write(ptr, &options);
714 
715 	mptcp_options_write(th, ptr, tp, opts);
716 }
717 
718 static void smc_set_option(const struct tcp_sock *tp,
719 			   struct tcp_out_options *opts,
720 			   unsigned int *remaining)
721 {
722 #if IS_ENABLED(CONFIG_SMC)
723 	if (static_branch_unlikely(&tcp_have_smc)) {
724 		if (tp->syn_smc) {
725 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
726 				opts->options |= OPTION_SMC;
727 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
728 			}
729 		}
730 	}
731 #endif
732 }
733 
734 static void smc_set_option_cond(const struct tcp_sock *tp,
735 				const struct inet_request_sock *ireq,
736 				struct tcp_out_options *opts,
737 				unsigned int *remaining)
738 {
739 #if IS_ENABLED(CONFIG_SMC)
740 	if (static_branch_unlikely(&tcp_have_smc)) {
741 		if (tp->syn_smc && ireq->smc_ok) {
742 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
743 				opts->options |= OPTION_SMC;
744 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
745 			}
746 		}
747 	}
748 #endif
749 }
750 
751 static void mptcp_set_option_cond(const struct request_sock *req,
752 				  struct tcp_out_options *opts,
753 				  unsigned int *remaining)
754 {
755 	if (rsk_is_mptcp(req)) {
756 		unsigned int size;
757 
758 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
759 			if (*remaining >= size) {
760 				opts->options |= OPTION_MPTCP;
761 				*remaining -= size;
762 			}
763 		}
764 	}
765 }
766 
767 /* Compute TCP options for SYN packets. This is not the final
768  * network wire format yet.
769  */
770 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
771 				struct tcp_out_options *opts,
772 				struct tcp_md5sig_key **md5)
773 {
774 	struct tcp_sock *tp = tcp_sk(sk);
775 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
776 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
777 
778 	*md5 = NULL;
779 #ifdef CONFIG_TCP_MD5SIG
780 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
781 	    rcu_access_pointer(tp->md5sig_info)) {
782 		*md5 = tp->af_specific->md5_lookup(sk, sk);
783 		if (*md5) {
784 			opts->options |= OPTION_MD5;
785 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
786 		}
787 	}
788 #endif
789 
790 	/* We always get an MSS option.  The option bytes which will be seen in
791 	 * normal data packets should timestamps be used, must be in the MSS
792 	 * advertised.  But we subtract them from tp->mss_cache so that
793 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
794 	 * fact here if necessary.  If we don't do this correctly, as a
795 	 * receiver we won't recognize data packets as being full sized when we
796 	 * should, and thus we won't abide by the delayed ACK rules correctly.
797 	 * SACKs don't matter, we never delay an ACK when we have any of those
798 	 * going out.  */
799 	opts->mss = tcp_advertise_mss(sk);
800 	remaining -= TCPOLEN_MSS_ALIGNED;
801 
802 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
803 		opts->options |= OPTION_TS;
804 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
805 		opts->tsecr = tp->rx_opt.ts_recent;
806 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
807 	}
808 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
809 		opts->ws = tp->rx_opt.rcv_wscale;
810 		opts->options |= OPTION_WSCALE;
811 		remaining -= TCPOLEN_WSCALE_ALIGNED;
812 	}
813 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
814 		opts->options |= OPTION_SACK_ADVERTISE;
815 		if (unlikely(!(OPTION_TS & opts->options)))
816 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
817 	}
818 
819 	if (fastopen && fastopen->cookie.len >= 0) {
820 		u32 need = fastopen->cookie.len;
821 
822 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
823 					       TCPOLEN_FASTOPEN_BASE;
824 		need = (need + 3) & ~3U;  /* Align to 32 bits */
825 		if (remaining >= need) {
826 			opts->options |= OPTION_FAST_OPEN_COOKIE;
827 			opts->fastopen_cookie = &fastopen->cookie;
828 			remaining -= need;
829 			tp->syn_fastopen = 1;
830 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
831 		}
832 	}
833 
834 	smc_set_option(tp, opts, &remaining);
835 
836 	if (sk_is_mptcp(sk)) {
837 		unsigned int size;
838 
839 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
840 			opts->options |= OPTION_MPTCP;
841 			remaining -= size;
842 		}
843 	}
844 
845 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
846 
847 	return MAX_TCP_OPTION_SPACE - remaining;
848 }
849 
850 /* Set up TCP options for SYN-ACKs. */
851 static unsigned int tcp_synack_options(const struct sock *sk,
852 				       struct request_sock *req,
853 				       unsigned int mss, struct sk_buff *skb,
854 				       struct tcp_out_options *opts,
855 				       const struct tcp_md5sig_key *md5,
856 				       struct tcp_fastopen_cookie *foc,
857 				       enum tcp_synack_type synack_type,
858 				       struct sk_buff *syn_skb)
859 {
860 	struct inet_request_sock *ireq = inet_rsk(req);
861 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
862 
863 #ifdef CONFIG_TCP_MD5SIG
864 	if (md5) {
865 		opts->options |= OPTION_MD5;
866 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
867 
868 		/* We can't fit any SACK blocks in a packet with MD5 + TS
869 		 * options. There was discussion about disabling SACK
870 		 * rather than TS in order to fit in better with old,
871 		 * buggy kernels, but that was deemed to be unnecessary.
872 		 */
873 		if (synack_type != TCP_SYNACK_COOKIE)
874 			ireq->tstamp_ok &= !ireq->sack_ok;
875 	}
876 #endif
877 
878 	/* We always send an MSS option. */
879 	opts->mss = mss;
880 	remaining -= TCPOLEN_MSS_ALIGNED;
881 
882 	if (likely(ireq->wscale_ok)) {
883 		opts->ws = ireq->rcv_wscale;
884 		opts->options |= OPTION_WSCALE;
885 		remaining -= TCPOLEN_WSCALE_ALIGNED;
886 	}
887 	if (likely(ireq->tstamp_ok)) {
888 		opts->options |= OPTION_TS;
889 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
890 		opts->tsecr = READ_ONCE(req->ts_recent);
891 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
892 	}
893 	if (likely(ireq->sack_ok)) {
894 		opts->options |= OPTION_SACK_ADVERTISE;
895 		if (unlikely(!ireq->tstamp_ok))
896 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
897 	}
898 	if (foc != NULL && foc->len >= 0) {
899 		u32 need = foc->len;
900 
901 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
902 				   TCPOLEN_FASTOPEN_BASE;
903 		need = (need + 3) & ~3U;  /* Align to 32 bits */
904 		if (remaining >= need) {
905 			opts->options |= OPTION_FAST_OPEN_COOKIE;
906 			opts->fastopen_cookie = foc;
907 			remaining -= need;
908 		}
909 	}
910 
911 	mptcp_set_option_cond(req, opts, &remaining);
912 
913 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
914 
915 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
916 			      synack_type, opts, &remaining);
917 
918 	return MAX_TCP_OPTION_SPACE - remaining;
919 }
920 
921 /* Compute TCP options for ESTABLISHED sockets. This is not the
922  * final wire format yet.
923  */
924 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
925 					struct tcp_out_options *opts,
926 					struct tcp_md5sig_key **md5)
927 {
928 	struct tcp_sock *tp = tcp_sk(sk);
929 	unsigned int size = 0;
930 	unsigned int eff_sacks;
931 
932 	opts->options = 0;
933 
934 	*md5 = NULL;
935 #ifdef CONFIG_TCP_MD5SIG
936 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
937 	    rcu_access_pointer(tp->md5sig_info)) {
938 		*md5 = tp->af_specific->md5_lookup(sk, sk);
939 		if (*md5) {
940 			opts->options |= OPTION_MD5;
941 			size += TCPOLEN_MD5SIG_ALIGNED;
942 		}
943 	}
944 #endif
945 
946 	if (likely(tp->rx_opt.tstamp_ok)) {
947 		opts->options |= OPTION_TS;
948 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
949 		opts->tsecr = tp->rx_opt.ts_recent;
950 		size += TCPOLEN_TSTAMP_ALIGNED;
951 	}
952 
953 	/* MPTCP options have precedence over SACK for the limited TCP
954 	 * option space because a MPTCP connection would be forced to
955 	 * fall back to regular TCP if a required multipath option is
956 	 * missing. SACK still gets a chance to use whatever space is
957 	 * left.
958 	 */
959 	if (sk_is_mptcp(sk)) {
960 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
961 		unsigned int opt_size = 0;
962 
963 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
964 					      &opts->mptcp)) {
965 			opts->options |= OPTION_MPTCP;
966 			size += opt_size;
967 		}
968 	}
969 
970 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
971 	if (unlikely(eff_sacks)) {
972 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
973 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
974 					 TCPOLEN_SACK_PERBLOCK))
975 			return size;
976 
977 		opts->num_sack_blocks =
978 			min_t(unsigned int, eff_sacks,
979 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
980 			      TCPOLEN_SACK_PERBLOCK);
981 
982 		size += TCPOLEN_SACK_BASE_ALIGNED +
983 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
984 	}
985 
986 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
987 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
988 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
989 
990 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
991 
992 		size = MAX_TCP_OPTION_SPACE - remaining;
993 	}
994 
995 	return size;
996 }
997 
998 
999 /* TCP SMALL QUEUES (TSQ)
1000  *
1001  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1002  * to reduce RTT and bufferbloat.
1003  * We do this using a special skb destructor (tcp_wfree).
1004  *
1005  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1006  * needs to be reallocated in a driver.
1007  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1008  *
1009  * Since transmit from skb destructor is forbidden, we use a tasklet
1010  * to process all sockets that eventually need to send more skbs.
1011  * We use one tasklet per cpu, with its own queue of sockets.
1012  */
1013 struct tsq_tasklet {
1014 	struct tasklet_struct	tasklet;
1015 	struct list_head	head; /* queue of tcp sockets */
1016 };
1017 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1018 
1019 static void tcp_tsq_write(struct sock *sk)
1020 {
1021 	if ((1 << sk->sk_state) &
1022 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1023 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1024 		struct tcp_sock *tp = tcp_sk(sk);
1025 
1026 		if (tp->lost_out > tp->retrans_out &&
1027 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1028 			tcp_mstamp_refresh(tp);
1029 			tcp_xmit_retransmit_queue(sk);
1030 		}
1031 
1032 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1033 			       0, GFP_ATOMIC);
1034 	}
1035 }
1036 
1037 static void tcp_tsq_handler(struct sock *sk)
1038 {
1039 	bh_lock_sock(sk);
1040 	if (!sock_owned_by_user(sk))
1041 		tcp_tsq_write(sk);
1042 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1043 		sock_hold(sk);
1044 	bh_unlock_sock(sk);
1045 }
1046 /*
1047  * One tasklet per cpu tries to send more skbs.
1048  * We run in tasklet context but need to disable irqs when
1049  * transferring tsq->head because tcp_wfree() might
1050  * interrupt us (non NAPI drivers)
1051  */
1052 static void tcp_tasklet_func(struct tasklet_struct *t)
1053 {
1054 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1055 	LIST_HEAD(list);
1056 	unsigned long flags;
1057 	struct list_head *q, *n;
1058 	struct tcp_sock *tp;
1059 	struct sock *sk;
1060 
1061 	local_irq_save(flags);
1062 	list_splice_init(&tsq->head, &list);
1063 	local_irq_restore(flags);
1064 
1065 	list_for_each_safe(q, n, &list) {
1066 		tp = list_entry(q, struct tcp_sock, tsq_node);
1067 		list_del(&tp->tsq_node);
1068 
1069 		sk = (struct sock *)tp;
1070 		smp_mb__before_atomic();
1071 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1072 
1073 		tcp_tsq_handler(sk);
1074 		sk_free(sk);
1075 	}
1076 }
1077 
1078 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1079 			  TCPF_WRITE_TIMER_DEFERRED |	\
1080 			  TCPF_DELACK_TIMER_DEFERRED |	\
1081 			  TCPF_MTU_REDUCED_DEFERRED)
1082 /**
1083  * tcp_release_cb - tcp release_sock() callback
1084  * @sk: socket
1085  *
1086  * called from release_sock() to perform protocol dependent
1087  * actions before socket release.
1088  */
1089 void tcp_release_cb(struct sock *sk)
1090 {
1091 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1092 	unsigned long nflags;
1093 
1094 	/* perform an atomic operation only if at least one flag is set */
1095 	do {
1096 		if (!(flags & TCP_DEFERRED_ALL))
1097 			return;
1098 		nflags = flags & ~TCP_DEFERRED_ALL;
1099 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1100 
1101 	if (flags & TCPF_TSQ_DEFERRED) {
1102 		tcp_tsq_write(sk);
1103 		__sock_put(sk);
1104 	}
1105 	/* Here begins the tricky part :
1106 	 * We are called from release_sock() with :
1107 	 * 1) BH disabled
1108 	 * 2) sk_lock.slock spinlock held
1109 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1110 	 *
1111 	 * But following code is meant to be called from BH handlers,
1112 	 * so we should keep BH disabled, but early release socket ownership
1113 	 */
1114 	sock_release_ownership(sk);
1115 
1116 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1117 		tcp_write_timer_handler(sk);
1118 		__sock_put(sk);
1119 	}
1120 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1121 		tcp_delack_timer_handler(sk);
1122 		__sock_put(sk);
1123 	}
1124 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1125 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1126 		__sock_put(sk);
1127 	}
1128 }
1129 EXPORT_SYMBOL(tcp_release_cb);
1130 
1131 void __init tcp_tasklet_init(void)
1132 {
1133 	int i;
1134 
1135 	for_each_possible_cpu(i) {
1136 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1137 
1138 		INIT_LIST_HEAD(&tsq->head);
1139 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1140 	}
1141 }
1142 
1143 /*
1144  * Write buffer destructor automatically called from kfree_skb.
1145  * We can't xmit new skbs from this context, as we might already
1146  * hold qdisc lock.
1147  */
1148 void tcp_wfree(struct sk_buff *skb)
1149 {
1150 	struct sock *sk = skb->sk;
1151 	struct tcp_sock *tp = tcp_sk(sk);
1152 	unsigned long flags, nval, oval;
1153 	struct tsq_tasklet *tsq;
1154 	bool empty;
1155 
1156 	/* Keep one reference on sk_wmem_alloc.
1157 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1158 	 */
1159 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1160 
1161 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1162 	 * Wait until our queues (qdisc + devices) are drained.
1163 	 * This gives :
1164 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1165 	 * - chance for incoming ACK (processed by another cpu maybe)
1166 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1167 	 */
1168 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1169 		goto out;
1170 
1171 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1172 	do {
1173 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1174 			goto out;
1175 
1176 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1177 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1178 
1179 	/* queue this socket to tasklet queue */
1180 	local_irq_save(flags);
1181 	tsq = this_cpu_ptr(&tsq_tasklet);
1182 	empty = list_empty(&tsq->head);
1183 	list_add(&tp->tsq_node, &tsq->head);
1184 	if (empty)
1185 		tasklet_schedule(&tsq->tasklet);
1186 	local_irq_restore(flags);
1187 	return;
1188 out:
1189 	sk_free(sk);
1190 }
1191 
1192 /* Note: Called under soft irq.
1193  * We can call TCP stack right away, unless socket is owned by user.
1194  */
1195 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1196 {
1197 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1198 	struct sock *sk = (struct sock *)tp;
1199 
1200 	tcp_tsq_handler(sk);
1201 	sock_put(sk);
1202 
1203 	return HRTIMER_NORESTART;
1204 }
1205 
1206 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1207 				      u64 prior_wstamp)
1208 {
1209 	struct tcp_sock *tp = tcp_sk(sk);
1210 
1211 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1212 		unsigned long rate = sk->sk_pacing_rate;
1213 
1214 		/* Original sch_fq does not pace first 10 MSS
1215 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1216 		 * this is a minor annoyance.
1217 		 */
1218 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1219 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1220 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1221 
1222 			/* take into account OS jitter */
1223 			len_ns -= min_t(u64, len_ns / 2, credit);
1224 			tp->tcp_wstamp_ns += len_ns;
1225 		}
1226 	}
1227 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1228 }
1229 
1230 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1231 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1232 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1233 
1234 /* This routine actually transmits TCP packets queued in by
1235  * tcp_do_sendmsg().  This is used by both the initial
1236  * transmission and possible later retransmissions.
1237  * All SKB's seen here are completely headerless.  It is our
1238  * job to build the TCP header, and pass the packet down to
1239  * IP so it can do the same plus pass the packet off to the
1240  * device.
1241  *
1242  * We are working here with either a clone of the original
1243  * SKB, or a fresh unique copy made by the retransmit engine.
1244  */
1245 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1246 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1247 {
1248 	const struct inet_connection_sock *icsk = inet_csk(sk);
1249 	struct inet_sock *inet;
1250 	struct tcp_sock *tp;
1251 	struct tcp_skb_cb *tcb;
1252 	struct tcp_out_options opts;
1253 	unsigned int tcp_options_size, tcp_header_size;
1254 	struct sk_buff *oskb = NULL;
1255 	struct tcp_md5sig_key *md5;
1256 	struct tcphdr *th;
1257 	u64 prior_wstamp;
1258 	int err;
1259 
1260 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1261 	tp = tcp_sk(sk);
1262 	prior_wstamp = tp->tcp_wstamp_ns;
1263 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1264 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1265 	if (clone_it) {
1266 		oskb = skb;
1267 
1268 		tcp_skb_tsorted_save(oskb) {
1269 			if (unlikely(skb_cloned(oskb)))
1270 				skb = pskb_copy(oskb, gfp_mask);
1271 			else
1272 				skb = skb_clone(oskb, gfp_mask);
1273 		} tcp_skb_tsorted_restore(oskb);
1274 
1275 		if (unlikely(!skb))
1276 			return -ENOBUFS;
1277 		/* retransmit skbs might have a non zero value in skb->dev
1278 		 * because skb->dev is aliased with skb->rbnode.rb_left
1279 		 */
1280 		skb->dev = NULL;
1281 	}
1282 
1283 	inet = inet_sk(sk);
1284 	tcb = TCP_SKB_CB(skb);
1285 	memset(&opts, 0, sizeof(opts));
1286 
1287 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1288 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1289 	} else {
1290 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1291 							   &md5);
1292 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1293 		 * at receiver : This slightly improve GRO performance.
1294 		 * Note that we do not force the PSH flag for non GSO packets,
1295 		 * because they might be sent under high congestion events,
1296 		 * and in this case it is better to delay the delivery of 1-MSS
1297 		 * packets and thus the corresponding ACK packet that would
1298 		 * release the following packet.
1299 		 */
1300 		if (tcp_skb_pcount(skb) > 1)
1301 			tcb->tcp_flags |= TCPHDR_PSH;
1302 	}
1303 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1304 
1305 	/* We set skb->ooo_okay to one if this packet can select
1306 	 * a different TX queue than prior packets of this flow,
1307 	 * to avoid self inflicted reorders.
1308 	 * The 'other' queue decision is based on current cpu number
1309 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1310 	 * We can switch to another (and better) queue if:
1311 	 * 1) No packet with payload is in qdisc/device queues.
1312 	 *    Delays in TX completion can defeat the test
1313 	 *    even if packets were already sent.
1314 	 * 2) Or rtx queue is empty.
1315 	 *    This mitigates above case if ACK packets for
1316 	 *    all prior packets were already processed.
1317 	 */
1318 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1319 			tcp_rtx_queue_empty(sk);
1320 
1321 	/* If we had to use memory reserve to allocate this skb,
1322 	 * this might cause drops if packet is looped back :
1323 	 * Other socket might not have SOCK_MEMALLOC.
1324 	 * Packets not looped back do not care about pfmemalloc.
1325 	 */
1326 	skb->pfmemalloc = 0;
1327 
1328 	skb_push(skb, tcp_header_size);
1329 	skb_reset_transport_header(skb);
1330 
1331 	skb_orphan(skb);
1332 	skb->sk = sk;
1333 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1334 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1335 
1336 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1337 
1338 	/* Build TCP header and checksum it. */
1339 	th = (struct tcphdr *)skb->data;
1340 	th->source		= inet->inet_sport;
1341 	th->dest		= inet->inet_dport;
1342 	th->seq			= htonl(tcb->seq);
1343 	th->ack_seq		= htonl(rcv_nxt);
1344 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1345 					tcb->tcp_flags);
1346 
1347 	th->check		= 0;
1348 	th->urg_ptr		= 0;
1349 
1350 	/* The urg_mode check is necessary during a below snd_una win probe */
1351 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1352 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1353 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1354 			th->urg = 1;
1355 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1356 			th->urg_ptr = htons(0xFFFF);
1357 			th->urg = 1;
1358 		}
1359 	}
1360 
1361 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1362 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1363 		th->window      = htons(tcp_select_window(sk));
1364 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1365 	} else {
1366 		/* RFC1323: The window in SYN & SYN/ACK segments
1367 		 * is never scaled.
1368 		 */
1369 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1370 	}
1371 
1372 	tcp_options_write(th, tp, &opts);
1373 
1374 #ifdef CONFIG_TCP_MD5SIG
1375 	/* Calculate the MD5 hash, as we have all we need now */
1376 	if (md5) {
1377 		sk_gso_disable(sk);
1378 		tp->af_specific->calc_md5_hash(opts.hash_location,
1379 					       md5, sk, skb);
1380 	}
1381 #endif
1382 
1383 	/* BPF prog is the last one writing header option */
1384 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1385 
1386 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1387 			   tcp_v6_send_check, tcp_v4_send_check,
1388 			   sk, skb);
1389 
1390 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1391 		tcp_event_ack_sent(sk, rcv_nxt);
1392 
1393 	if (skb->len != tcp_header_size) {
1394 		tcp_event_data_sent(tp, sk);
1395 		tp->data_segs_out += tcp_skb_pcount(skb);
1396 		tp->bytes_sent += skb->len - tcp_header_size;
1397 	}
1398 
1399 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1400 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1401 			      tcp_skb_pcount(skb));
1402 
1403 	tp->segs_out += tcp_skb_pcount(skb);
1404 	skb_set_hash_from_sk(skb, sk);
1405 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1406 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1407 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1408 
1409 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1410 
1411 	/* Cleanup our debris for IP stacks */
1412 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1413 			       sizeof(struct inet6_skb_parm)));
1414 
1415 	tcp_add_tx_delay(skb, tp);
1416 
1417 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1418 				 inet6_csk_xmit, ip_queue_xmit,
1419 				 sk, skb, &inet->cork.fl);
1420 
1421 	if (unlikely(err > 0)) {
1422 		tcp_enter_cwr(sk);
1423 		err = net_xmit_eval(err);
1424 	}
1425 	if (!err && oskb) {
1426 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1427 		tcp_rate_skb_sent(sk, oskb);
1428 	}
1429 	return err;
1430 }
1431 
1432 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1433 			    gfp_t gfp_mask)
1434 {
1435 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1436 				  tcp_sk(sk)->rcv_nxt);
1437 }
1438 
1439 /* This routine just queues the buffer for sending.
1440  *
1441  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1442  * otherwise socket can stall.
1443  */
1444 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1445 {
1446 	struct tcp_sock *tp = tcp_sk(sk);
1447 
1448 	/* Advance write_seq and place onto the write_queue. */
1449 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1450 	__skb_header_release(skb);
1451 	tcp_add_write_queue_tail(sk, skb);
1452 	sk_wmem_queued_add(sk, skb->truesize);
1453 	sk_mem_charge(sk, skb->truesize);
1454 }
1455 
1456 /* Initialize TSO segments for a packet. */
1457 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1458 {
1459 	if (skb->len <= mss_now) {
1460 		/* Avoid the costly divide in the normal
1461 		 * non-TSO case.
1462 		 */
1463 		tcp_skb_pcount_set(skb, 1);
1464 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1465 	} else {
1466 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1467 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1468 	}
1469 }
1470 
1471 /* Pcount in the middle of the write queue got changed, we need to do various
1472  * tweaks to fix counters
1473  */
1474 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1475 {
1476 	struct tcp_sock *tp = tcp_sk(sk);
1477 
1478 	tp->packets_out -= decr;
1479 
1480 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1481 		tp->sacked_out -= decr;
1482 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1483 		tp->retrans_out -= decr;
1484 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1485 		tp->lost_out -= decr;
1486 
1487 	/* Reno case is special. Sigh... */
1488 	if (tcp_is_reno(tp) && decr > 0)
1489 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1490 
1491 	if (tp->lost_skb_hint &&
1492 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1493 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1494 		tp->lost_cnt_hint -= decr;
1495 
1496 	tcp_verify_left_out(tp);
1497 }
1498 
1499 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1500 {
1501 	return TCP_SKB_CB(skb)->txstamp_ack ||
1502 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1503 }
1504 
1505 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1506 {
1507 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1508 
1509 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1510 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1511 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1512 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1513 
1514 		shinfo->tx_flags &= ~tsflags;
1515 		shinfo2->tx_flags |= tsflags;
1516 		swap(shinfo->tskey, shinfo2->tskey);
1517 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1518 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1519 	}
1520 }
1521 
1522 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1523 {
1524 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1525 	TCP_SKB_CB(skb)->eor = 0;
1526 }
1527 
1528 /* Insert buff after skb on the write or rtx queue of sk.  */
1529 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1530 					 struct sk_buff *buff,
1531 					 struct sock *sk,
1532 					 enum tcp_queue tcp_queue)
1533 {
1534 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1535 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1536 	else
1537 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1538 }
1539 
1540 /* Function to create two new TCP segments.  Shrinks the given segment
1541  * to the specified size and appends a new segment with the rest of the
1542  * packet to the list.  This won't be called frequently, I hope.
1543  * Remember, these are still headerless SKBs at this point.
1544  */
1545 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1546 		 struct sk_buff *skb, u32 len,
1547 		 unsigned int mss_now, gfp_t gfp)
1548 {
1549 	struct tcp_sock *tp = tcp_sk(sk);
1550 	struct sk_buff *buff;
1551 	int old_factor;
1552 	long limit;
1553 	int nlen;
1554 	u8 flags;
1555 
1556 	if (WARN_ON(len > skb->len))
1557 		return -EINVAL;
1558 
1559 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1560 
1561 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1562 	 * We need some allowance to not penalize applications setting small
1563 	 * SO_SNDBUF values.
1564 	 * Also allow first and last skb in retransmit queue to be split.
1565 	 */
1566 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1567 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1568 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1569 		     skb != tcp_rtx_queue_head(sk) &&
1570 		     skb != tcp_rtx_queue_tail(sk))) {
1571 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1572 		return -ENOMEM;
1573 	}
1574 
1575 	if (skb_unclone_keeptruesize(skb, gfp))
1576 		return -ENOMEM;
1577 
1578 	/* Get a new skb... force flag on. */
1579 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1580 	if (!buff)
1581 		return -ENOMEM; /* We'll just try again later. */
1582 	skb_copy_decrypted(buff, skb);
1583 	mptcp_skb_ext_copy(buff, skb);
1584 
1585 	sk_wmem_queued_add(sk, buff->truesize);
1586 	sk_mem_charge(sk, buff->truesize);
1587 	nlen = skb->len - len;
1588 	buff->truesize += nlen;
1589 	skb->truesize -= nlen;
1590 
1591 	/* Correct the sequence numbers. */
1592 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1593 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1594 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1595 
1596 	/* PSH and FIN should only be set in the second packet. */
1597 	flags = TCP_SKB_CB(skb)->tcp_flags;
1598 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1599 	TCP_SKB_CB(buff)->tcp_flags = flags;
1600 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1601 	tcp_skb_fragment_eor(skb, buff);
1602 
1603 	skb_split(skb, buff, len);
1604 
1605 	skb_set_delivery_time(buff, skb->tstamp, true);
1606 	tcp_fragment_tstamp(skb, buff);
1607 
1608 	old_factor = tcp_skb_pcount(skb);
1609 
1610 	/* Fix up tso_factor for both original and new SKB.  */
1611 	tcp_set_skb_tso_segs(skb, mss_now);
1612 	tcp_set_skb_tso_segs(buff, mss_now);
1613 
1614 	/* Update delivered info for the new segment */
1615 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1616 
1617 	/* If this packet has been sent out already, we must
1618 	 * adjust the various packet counters.
1619 	 */
1620 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1621 		int diff = old_factor - tcp_skb_pcount(skb) -
1622 			tcp_skb_pcount(buff);
1623 
1624 		if (diff)
1625 			tcp_adjust_pcount(sk, skb, diff);
1626 	}
1627 
1628 	/* Link BUFF into the send queue. */
1629 	__skb_header_release(buff);
1630 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1631 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1632 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1633 
1634 	return 0;
1635 }
1636 
1637 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1638  * data is not copied, but immediately discarded.
1639  */
1640 static int __pskb_trim_head(struct sk_buff *skb, int len)
1641 {
1642 	struct skb_shared_info *shinfo;
1643 	int i, k, eat;
1644 
1645 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1646 	eat = len;
1647 	k = 0;
1648 	shinfo = skb_shinfo(skb);
1649 	for (i = 0; i < shinfo->nr_frags; i++) {
1650 		int size = skb_frag_size(&shinfo->frags[i]);
1651 
1652 		if (size <= eat) {
1653 			skb_frag_unref(skb, i);
1654 			eat -= size;
1655 		} else {
1656 			shinfo->frags[k] = shinfo->frags[i];
1657 			if (eat) {
1658 				skb_frag_off_add(&shinfo->frags[k], eat);
1659 				skb_frag_size_sub(&shinfo->frags[k], eat);
1660 				eat = 0;
1661 			}
1662 			k++;
1663 		}
1664 	}
1665 	shinfo->nr_frags = k;
1666 
1667 	skb->data_len -= len;
1668 	skb->len = skb->data_len;
1669 	return len;
1670 }
1671 
1672 /* Remove acked data from a packet in the transmit queue. */
1673 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1674 {
1675 	u32 delta_truesize;
1676 
1677 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1678 		return -ENOMEM;
1679 
1680 	delta_truesize = __pskb_trim_head(skb, len);
1681 
1682 	TCP_SKB_CB(skb)->seq += len;
1683 
1684 	skb->truesize	   -= delta_truesize;
1685 	sk_wmem_queued_add(sk, -delta_truesize);
1686 	if (!skb_zcopy_pure(skb))
1687 		sk_mem_uncharge(sk, delta_truesize);
1688 
1689 	/* Any change of skb->len requires recalculation of tso factor. */
1690 	if (tcp_skb_pcount(skb) > 1)
1691 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1692 
1693 	return 0;
1694 }
1695 
1696 /* Calculate MSS not accounting any TCP options.  */
1697 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1698 {
1699 	const struct tcp_sock *tp = tcp_sk(sk);
1700 	const struct inet_connection_sock *icsk = inet_csk(sk);
1701 	int mss_now;
1702 
1703 	/* Calculate base mss without TCP options:
1704 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1705 	 */
1706 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1707 
1708 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1709 	if (icsk->icsk_af_ops->net_frag_header_len) {
1710 		const struct dst_entry *dst = __sk_dst_get(sk);
1711 
1712 		if (dst && dst_allfrag(dst))
1713 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1714 	}
1715 
1716 	/* Clamp it (mss_clamp does not include tcp options) */
1717 	if (mss_now > tp->rx_opt.mss_clamp)
1718 		mss_now = tp->rx_opt.mss_clamp;
1719 
1720 	/* Now subtract optional transport overhead */
1721 	mss_now -= icsk->icsk_ext_hdr_len;
1722 
1723 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1724 	mss_now = max(mss_now,
1725 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1726 	return mss_now;
1727 }
1728 
1729 /* Calculate MSS. Not accounting for SACKs here.  */
1730 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1731 {
1732 	/* Subtract TCP options size, not including SACKs */
1733 	return __tcp_mtu_to_mss(sk, pmtu) -
1734 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1735 }
1736 EXPORT_SYMBOL(tcp_mtu_to_mss);
1737 
1738 /* Inverse of above */
1739 int tcp_mss_to_mtu(struct sock *sk, int mss)
1740 {
1741 	const struct tcp_sock *tp = tcp_sk(sk);
1742 	const struct inet_connection_sock *icsk = inet_csk(sk);
1743 	int mtu;
1744 
1745 	mtu = mss +
1746 	      tp->tcp_header_len +
1747 	      icsk->icsk_ext_hdr_len +
1748 	      icsk->icsk_af_ops->net_header_len;
1749 
1750 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1751 	if (icsk->icsk_af_ops->net_frag_header_len) {
1752 		const struct dst_entry *dst = __sk_dst_get(sk);
1753 
1754 		if (dst && dst_allfrag(dst))
1755 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1756 	}
1757 	return mtu;
1758 }
1759 EXPORT_SYMBOL(tcp_mss_to_mtu);
1760 
1761 /* MTU probing init per socket */
1762 void tcp_mtup_init(struct sock *sk)
1763 {
1764 	struct tcp_sock *tp = tcp_sk(sk);
1765 	struct inet_connection_sock *icsk = inet_csk(sk);
1766 	struct net *net = sock_net(sk);
1767 
1768 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1769 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1770 			       icsk->icsk_af_ops->net_header_len;
1771 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1772 	icsk->icsk_mtup.probe_size = 0;
1773 	if (icsk->icsk_mtup.enabled)
1774 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1775 }
1776 EXPORT_SYMBOL(tcp_mtup_init);
1777 
1778 /* This function synchronize snd mss to current pmtu/exthdr set.
1779 
1780    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1781    for TCP options, but includes only bare TCP header.
1782 
1783    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1784    It is minimum of user_mss and mss received with SYN.
1785    It also does not include TCP options.
1786 
1787    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1788 
1789    tp->mss_cache is current effective sending mss, including
1790    all tcp options except for SACKs. It is evaluated,
1791    taking into account current pmtu, but never exceeds
1792    tp->rx_opt.mss_clamp.
1793 
1794    NOTE1. rfc1122 clearly states that advertised MSS
1795    DOES NOT include either tcp or ip options.
1796 
1797    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1798    are READ ONLY outside this function.		--ANK (980731)
1799  */
1800 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1801 {
1802 	struct tcp_sock *tp = tcp_sk(sk);
1803 	struct inet_connection_sock *icsk = inet_csk(sk);
1804 	int mss_now;
1805 
1806 	if (icsk->icsk_mtup.search_high > pmtu)
1807 		icsk->icsk_mtup.search_high = pmtu;
1808 
1809 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1810 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1811 
1812 	/* And store cached results */
1813 	icsk->icsk_pmtu_cookie = pmtu;
1814 	if (icsk->icsk_mtup.enabled)
1815 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1816 	tp->mss_cache = mss_now;
1817 
1818 	return mss_now;
1819 }
1820 EXPORT_SYMBOL(tcp_sync_mss);
1821 
1822 /* Compute the current effective MSS, taking SACKs and IP options,
1823  * and even PMTU discovery events into account.
1824  */
1825 unsigned int tcp_current_mss(struct sock *sk)
1826 {
1827 	const struct tcp_sock *tp = tcp_sk(sk);
1828 	const struct dst_entry *dst = __sk_dst_get(sk);
1829 	u32 mss_now;
1830 	unsigned int header_len;
1831 	struct tcp_out_options opts;
1832 	struct tcp_md5sig_key *md5;
1833 
1834 	mss_now = tp->mss_cache;
1835 
1836 	if (dst) {
1837 		u32 mtu = dst_mtu(dst);
1838 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1839 			mss_now = tcp_sync_mss(sk, mtu);
1840 	}
1841 
1842 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1843 		     sizeof(struct tcphdr);
1844 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1845 	 * some common options. If this is an odd packet (because we have SACK
1846 	 * blocks etc) then our calculated header_len will be different, and
1847 	 * we have to adjust mss_now correspondingly */
1848 	if (header_len != tp->tcp_header_len) {
1849 		int delta = (int) header_len - tp->tcp_header_len;
1850 		mss_now -= delta;
1851 	}
1852 
1853 	return mss_now;
1854 }
1855 
1856 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1857  * As additional protections, we do not touch cwnd in retransmission phases,
1858  * and if application hit its sndbuf limit recently.
1859  */
1860 static void tcp_cwnd_application_limited(struct sock *sk)
1861 {
1862 	struct tcp_sock *tp = tcp_sk(sk);
1863 
1864 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1865 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1866 		/* Limited by application or receiver window. */
1867 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1868 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1869 		if (win_used < tcp_snd_cwnd(tp)) {
1870 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1871 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1872 		}
1873 		tp->snd_cwnd_used = 0;
1874 	}
1875 	tp->snd_cwnd_stamp = tcp_jiffies32;
1876 }
1877 
1878 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1879 {
1880 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1881 	struct tcp_sock *tp = tcp_sk(sk);
1882 
1883 	/* Track the strongest available signal of the degree to which the cwnd
1884 	 * is fully utilized. If cwnd-limited then remember that fact for the
1885 	 * current window. If not cwnd-limited then track the maximum number of
1886 	 * outstanding packets in the current window. (If cwnd-limited then we
1887 	 * chose to not update tp->max_packets_out to avoid an extra else
1888 	 * clause with no functional impact.)
1889 	 */
1890 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1891 	    is_cwnd_limited ||
1892 	    (!tp->is_cwnd_limited &&
1893 	     tp->packets_out > tp->max_packets_out)) {
1894 		tp->is_cwnd_limited = is_cwnd_limited;
1895 		tp->max_packets_out = tp->packets_out;
1896 		tp->cwnd_usage_seq = tp->snd_nxt;
1897 	}
1898 
1899 	if (tcp_is_cwnd_limited(sk)) {
1900 		/* Network is feed fully. */
1901 		tp->snd_cwnd_used = 0;
1902 		tp->snd_cwnd_stamp = tcp_jiffies32;
1903 	} else {
1904 		/* Network starves. */
1905 		if (tp->packets_out > tp->snd_cwnd_used)
1906 			tp->snd_cwnd_used = tp->packets_out;
1907 
1908 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1909 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1910 		    !ca_ops->cong_control)
1911 			tcp_cwnd_application_limited(sk);
1912 
1913 		/* The following conditions together indicate the starvation
1914 		 * is caused by insufficient sender buffer:
1915 		 * 1) just sent some data (see tcp_write_xmit)
1916 		 * 2) not cwnd limited (this else condition)
1917 		 * 3) no more data to send (tcp_write_queue_empty())
1918 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1919 		 */
1920 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1921 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1922 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1923 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1924 	}
1925 }
1926 
1927 /* Minshall's variant of the Nagle send check. */
1928 static bool tcp_minshall_check(const struct tcp_sock *tp)
1929 {
1930 	return after(tp->snd_sml, tp->snd_una) &&
1931 		!after(tp->snd_sml, tp->snd_nxt);
1932 }
1933 
1934 /* Update snd_sml if this skb is under mss
1935  * Note that a TSO packet might end with a sub-mss segment
1936  * The test is really :
1937  * if ((skb->len % mss) != 0)
1938  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1939  * But we can avoid doing the divide again given we already have
1940  *  skb_pcount = skb->len / mss_now
1941  */
1942 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1943 				const struct sk_buff *skb)
1944 {
1945 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1946 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1947 }
1948 
1949 /* Return false, if packet can be sent now without violation Nagle's rules:
1950  * 1. It is full sized. (provided by caller in %partial bool)
1951  * 2. Or it contains FIN. (already checked by caller)
1952  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1953  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1954  *    With Minshall's modification: all sent small packets are ACKed.
1955  */
1956 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1957 			    int nonagle)
1958 {
1959 	return partial &&
1960 		((nonagle & TCP_NAGLE_CORK) ||
1961 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1962 }
1963 
1964 /* Return how many segs we'd like on a TSO packet,
1965  * depending on current pacing rate, and how close the peer is.
1966  *
1967  * Rationale is:
1968  * - For close peers, we rather send bigger packets to reduce
1969  *   cpu costs, because occasional losses will be repaired fast.
1970  * - For long distance/rtt flows, we would like to get ACK clocking
1971  *   with 1 ACK per ms.
1972  *
1973  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1974  * in bigger TSO bursts. We we cut the RTT-based allowance in half
1975  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1976  * is below 1500 bytes after 6 * ~500 usec = 3ms.
1977  */
1978 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1979 			    int min_tso_segs)
1980 {
1981 	unsigned long bytes;
1982 	u32 r;
1983 
1984 	bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1985 
1986 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1987 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1988 		bytes += sk->sk_gso_max_size >> r;
1989 
1990 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1991 
1992 	return max_t(u32, bytes / mss_now, min_tso_segs);
1993 }
1994 
1995 /* Return the number of segments we want in the skb we are transmitting.
1996  * See if congestion control module wants to decide; otherwise, autosize.
1997  */
1998 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1999 {
2000 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2001 	u32 min_tso, tso_segs;
2002 
2003 	min_tso = ca_ops->min_tso_segs ?
2004 			ca_ops->min_tso_segs(sk) :
2005 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2006 
2007 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2008 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2009 }
2010 
2011 /* Returns the portion of skb which can be sent right away */
2012 static unsigned int tcp_mss_split_point(const struct sock *sk,
2013 					const struct sk_buff *skb,
2014 					unsigned int mss_now,
2015 					unsigned int max_segs,
2016 					int nonagle)
2017 {
2018 	const struct tcp_sock *tp = tcp_sk(sk);
2019 	u32 partial, needed, window, max_len;
2020 
2021 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2022 	max_len = mss_now * max_segs;
2023 
2024 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2025 		return max_len;
2026 
2027 	needed = min(skb->len, window);
2028 
2029 	if (max_len <= needed)
2030 		return max_len;
2031 
2032 	partial = needed % mss_now;
2033 	/* If last segment is not a full MSS, check if Nagle rules allow us
2034 	 * to include this last segment in this skb.
2035 	 * Otherwise, we'll split the skb at last MSS boundary
2036 	 */
2037 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2038 		return needed - partial;
2039 
2040 	return needed;
2041 }
2042 
2043 /* Can at least one segment of SKB be sent right now, according to the
2044  * congestion window rules?  If so, return how many segments are allowed.
2045  */
2046 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2047 					 const struct sk_buff *skb)
2048 {
2049 	u32 in_flight, cwnd, halfcwnd;
2050 
2051 	/* Don't be strict about the congestion window for the final FIN.  */
2052 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2053 	    tcp_skb_pcount(skb) == 1)
2054 		return 1;
2055 
2056 	in_flight = tcp_packets_in_flight(tp);
2057 	cwnd = tcp_snd_cwnd(tp);
2058 	if (in_flight >= cwnd)
2059 		return 0;
2060 
2061 	/* For better scheduling, ensure we have at least
2062 	 * 2 GSO packets in flight.
2063 	 */
2064 	halfcwnd = max(cwnd >> 1, 1U);
2065 	return min(halfcwnd, cwnd - in_flight);
2066 }
2067 
2068 /* Initialize TSO state of a skb.
2069  * This must be invoked the first time we consider transmitting
2070  * SKB onto the wire.
2071  */
2072 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2073 {
2074 	int tso_segs = tcp_skb_pcount(skb);
2075 
2076 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2077 		tcp_set_skb_tso_segs(skb, mss_now);
2078 		tso_segs = tcp_skb_pcount(skb);
2079 	}
2080 	return tso_segs;
2081 }
2082 
2083 
2084 /* Return true if the Nagle test allows this packet to be
2085  * sent now.
2086  */
2087 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2088 				  unsigned int cur_mss, int nonagle)
2089 {
2090 	/* Nagle rule does not apply to frames, which sit in the middle of the
2091 	 * write_queue (they have no chances to get new data).
2092 	 *
2093 	 * This is implemented in the callers, where they modify the 'nonagle'
2094 	 * argument based upon the location of SKB in the send queue.
2095 	 */
2096 	if (nonagle & TCP_NAGLE_PUSH)
2097 		return true;
2098 
2099 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2100 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2101 		return true;
2102 
2103 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2104 		return true;
2105 
2106 	return false;
2107 }
2108 
2109 /* Does at least the first segment of SKB fit into the send window? */
2110 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2111 			     const struct sk_buff *skb,
2112 			     unsigned int cur_mss)
2113 {
2114 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2115 
2116 	if (skb->len > cur_mss)
2117 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2118 
2119 	return !after(end_seq, tcp_wnd_end(tp));
2120 }
2121 
2122 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2123  * which is put after SKB on the list.  It is very much like
2124  * tcp_fragment() except that it may make several kinds of assumptions
2125  * in order to speed up the splitting operation.  In particular, we
2126  * know that all the data is in scatter-gather pages, and that the
2127  * packet has never been sent out before (and thus is not cloned).
2128  */
2129 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2130 			unsigned int mss_now, gfp_t gfp)
2131 {
2132 	int nlen = skb->len - len;
2133 	struct sk_buff *buff;
2134 	u8 flags;
2135 
2136 	/* All of a TSO frame must be composed of paged data.  */
2137 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2138 
2139 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2140 	if (unlikely(!buff))
2141 		return -ENOMEM;
2142 	skb_copy_decrypted(buff, skb);
2143 	mptcp_skb_ext_copy(buff, skb);
2144 
2145 	sk_wmem_queued_add(sk, buff->truesize);
2146 	sk_mem_charge(sk, buff->truesize);
2147 	buff->truesize += nlen;
2148 	skb->truesize -= nlen;
2149 
2150 	/* Correct the sequence numbers. */
2151 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2152 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2153 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2154 
2155 	/* PSH and FIN should only be set in the second packet. */
2156 	flags = TCP_SKB_CB(skb)->tcp_flags;
2157 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2158 	TCP_SKB_CB(buff)->tcp_flags = flags;
2159 
2160 	tcp_skb_fragment_eor(skb, buff);
2161 
2162 	skb_split(skb, buff, len);
2163 	tcp_fragment_tstamp(skb, buff);
2164 
2165 	/* Fix up tso_factor for both original and new SKB.  */
2166 	tcp_set_skb_tso_segs(skb, mss_now);
2167 	tcp_set_skb_tso_segs(buff, mss_now);
2168 
2169 	/* Link BUFF into the send queue. */
2170 	__skb_header_release(buff);
2171 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2172 
2173 	return 0;
2174 }
2175 
2176 /* Try to defer sending, if possible, in order to minimize the amount
2177  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2178  *
2179  * This algorithm is from John Heffner.
2180  */
2181 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2182 				 bool *is_cwnd_limited,
2183 				 bool *is_rwnd_limited,
2184 				 u32 max_segs)
2185 {
2186 	const struct inet_connection_sock *icsk = inet_csk(sk);
2187 	u32 send_win, cong_win, limit, in_flight;
2188 	struct tcp_sock *tp = tcp_sk(sk);
2189 	struct sk_buff *head;
2190 	int win_divisor;
2191 	s64 delta;
2192 
2193 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2194 		goto send_now;
2195 
2196 	/* Avoid bursty behavior by allowing defer
2197 	 * only if the last write was recent (1 ms).
2198 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2199 	 * packets waiting in a qdisc or device for EDT delivery.
2200 	 */
2201 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2202 	if (delta > 0)
2203 		goto send_now;
2204 
2205 	in_flight = tcp_packets_in_flight(tp);
2206 
2207 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2208 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2209 
2210 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2211 
2212 	/* From in_flight test above, we know that cwnd > in_flight.  */
2213 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2214 
2215 	limit = min(send_win, cong_win);
2216 
2217 	/* If a full-sized TSO skb can be sent, do it. */
2218 	if (limit >= max_segs * tp->mss_cache)
2219 		goto send_now;
2220 
2221 	/* Middle in queue won't get any more data, full sendable already? */
2222 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2223 		goto send_now;
2224 
2225 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2226 	if (win_divisor) {
2227 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2228 
2229 		/* If at least some fraction of a window is available,
2230 		 * just use it.
2231 		 */
2232 		chunk /= win_divisor;
2233 		if (limit >= chunk)
2234 			goto send_now;
2235 	} else {
2236 		/* Different approach, try not to defer past a single
2237 		 * ACK.  Receiver should ACK every other full sized
2238 		 * frame, so if we have space for more than 3 frames
2239 		 * then send now.
2240 		 */
2241 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2242 			goto send_now;
2243 	}
2244 
2245 	/* TODO : use tsorted_sent_queue ? */
2246 	head = tcp_rtx_queue_head(sk);
2247 	if (!head)
2248 		goto send_now;
2249 	delta = tp->tcp_clock_cache - head->tstamp;
2250 	/* If next ACK is likely to come too late (half srtt), do not defer */
2251 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2252 		goto send_now;
2253 
2254 	/* Ok, it looks like it is advisable to defer.
2255 	 * Three cases are tracked :
2256 	 * 1) We are cwnd-limited
2257 	 * 2) We are rwnd-limited
2258 	 * 3) We are application limited.
2259 	 */
2260 	if (cong_win < send_win) {
2261 		if (cong_win <= skb->len) {
2262 			*is_cwnd_limited = true;
2263 			return true;
2264 		}
2265 	} else {
2266 		if (send_win <= skb->len) {
2267 			*is_rwnd_limited = true;
2268 			return true;
2269 		}
2270 	}
2271 
2272 	/* If this packet won't get more data, do not wait. */
2273 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2274 	    TCP_SKB_CB(skb)->eor)
2275 		goto send_now;
2276 
2277 	return true;
2278 
2279 send_now:
2280 	return false;
2281 }
2282 
2283 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2284 {
2285 	struct inet_connection_sock *icsk = inet_csk(sk);
2286 	struct tcp_sock *tp = tcp_sk(sk);
2287 	struct net *net = sock_net(sk);
2288 	u32 interval;
2289 	s32 delta;
2290 
2291 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2292 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2293 	if (unlikely(delta >= interval * HZ)) {
2294 		int mss = tcp_current_mss(sk);
2295 
2296 		/* Update current search range */
2297 		icsk->icsk_mtup.probe_size = 0;
2298 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2299 			sizeof(struct tcphdr) +
2300 			icsk->icsk_af_ops->net_header_len;
2301 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2302 
2303 		/* Update probe time stamp */
2304 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2305 	}
2306 }
2307 
2308 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2309 {
2310 	struct sk_buff *skb, *next;
2311 
2312 	skb = tcp_send_head(sk);
2313 	tcp_for_write_queue_from_safe(skb, next, sk) {
2314 		if (len <= skb->len)
2315 			break;
2316 
2317 		if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2318 			return false;
2319 
2320 		len -= skb->len;
2321 	}
2322 
2323 	return true;
2324 }
2325 
2326 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2327 			     int probe_size)
2328 {
2329 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2330 	int i, todo, len = 0, nr_frags = 0;
2331 	const struct sk_buff *skb;
2332 
2333 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2334 		return -ENOMEM;
2335 
2336 	skb_queue_walk(&sk->sk_write_queue, skb) {
2337 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2338 
2339 		if (skb_headlen(skb))
2340 			return -EINVAL;
2341 
2342 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2343 			if (len >= probe_size)
2344 				goto commit;
2345 			todo = min_t(int, skb_frag_size(fragfrom),
2346 				     probe_size - len);
2347 			len += todo;
2348 			if (lastfrag &&
2349 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2350 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2351 						      skb_frag_size(lastfrag)) {
2352 				skb_frag_size_add(lastfrag, todo);
2353 				continue;
2354 			}
2355 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2356 				return -E2BIG;
2357 			skb_frag_page_copy(fragto, fragfrom);
2358 			skb_frag_off_copy(fragto, fragfrom);
2359 			skb_frag_size_set(fragto, todo);
2360 			nr_frags++;
2361 			lastfrag = fragto++;
2362 		}
2363 	}
2364 commit:
2365 	WARN_ON_ONCE(len != probe_size);
2366 	for (i = 0; i < nr_frags; i++)
2367 		skb_frag_ref(to, i);
2368 
2369 	skb_shinfo(to)->nr_frags = nr_frags;
2370 	to->truesize += probe_size;
2371 	to->len += probe_size;
2372 	to->data_len += probe_size;
2373 	__skb_header_release(to);
2374 	return 0;
2375 }
2376 
2377 /* Create a new MTU probe if we are ready.
2378  * MTU probe is regularly attempting to increase the path MTU by
2379  * deliberately sending larger packets.  This discovers routing
2380  * changes resulting in larger path MTUs.
2381  *
2382  * Returns 0 if we should wait to probe (no cwnd available),
2383  *         1 if a probe was sent,
2384  *         -1 otherwise
2385  */
2386 static int tcp_mtu_probe(struct sock *sk)
2387 {
2388 	struct inet_connection_sock *icsk = inet_csk(sk);
2389 	struct tcp_sock *tp = tcp_sk(sk);
2390 	struct sk_buff *skb, *nskb, *next;
2391 	struct net *net = sock_net(sk);
2392 	int probe_size;
2393 	int size_needed;
2394 	int copy, len;
2395 	int mss_now;
2396 	int interval;
2397 
2398 	/* Not currently probing/verifying,
2399 	 * not in recovery,
2400 	 * have enough cwnd, and
2401 	 * not SACKing (the variable headers throw things off)
2402 	 */
2403 	if (likely(!icsk->icsk_mtup.enabled ||
2404 		   icsk->icsk_mtup.probe_size ||
2405 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2406 		   tcp_snd_cwnd(tp) < 11 ||
2407 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2408 		return -1;
2409 
2410 	/* Use binary search for probe_size between tcp_mss_base,
2411 	 * and current mss_clamp. if (search_high - search_low)
2412 	 * smaller than a threshold, backoff from probing.
2413 	 */
2414 	mss_now = tcp_current_mss(sk);
2415 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2416 				    icsk->icsk_mtup.search_low) >> 1);
2417 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2418 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2419 	/* When misfortune happens, we are reprobing actively,
2420 	 * and then reprobe timer has expired. We stick with current
2421 	 * probing process by not resetting search range to its orignal.
2422 	 */
2423 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2424 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2425 		/* Check whether enough time has elaplased for
2426 		 * another round of probing.
2427 		 */
2428 		tcp_mtu_check_reprobe(sk);
2429 		return -1;
2430 	}
2431 
2432 	/* Have enough data in the send queue to probe? */
2433 	if (tp->write_seq - tp->snd_nxt < size_needed)
2434 		return -1;
2435 
2436 	if (tp->snd_wnd < size_needed)
2437 		return -1;
2438 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2439 		return 0;
2440 
2441 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2442 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2443 		if (!tcp_packets_in_flight(tp))
2444 			return -1;
2445 		else
2446 			return 0;
2447 	}
2448 
2449 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2450 		return -1;
2451 
2452 	/* We're allowed to probe.  Build it now. */
2453 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2454 	if (!nskb)
2455 		return -1;
2456 
2457 	/* build the payload, and be prepared to abort if this fails. */
2458 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2459 		tcp_skb_tsorted_anchor_cleanup(nskb);
2460 		consume_skb(nskb);
2461 		return -1;
2462 	}
2463 	sk_wmem_queued_add(sk, nskb->truesize);
2464 	sk_mem_charge(sk, nskb->truesize);
2465 
2466 	skb = tcp_send_head(sk);
2467 	skb_copy_decrypted(nskb, skb);
2468 	mptcp_skb_ext_copy(nskb, skb);
2469 
2470 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2471 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2472 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2473 
2474 	tcp_insert_write_queue_before(nskb, skb, sk);
2475 	tcp_highest_sack_replace(sk, skb, nskb);
2476 
2477 	len = 0;
2478 	tcp_for_write_queue_from_safe(skb, next, sk) {
2479 		copy = min_t(int, skb->len, probe_size - len);
2480 
2481 		if (skb->len <= copy) {
2482 			/* We've eaten all the data from this skb.
2483 			 * Throw it away. */
2484 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2485 			/* If this is the last SKB we copy and eor is set
2486 			 * we need to propagate it to the new skb.
2487 			 */
2488 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2489 			tcp_skb_collapse_tstamp(nskb, skb);
2490 			tcp_unlink_write_queue(skb, sk);
2491 			tcp_wmem_free_skb(sk, skb);
2492 		} else {
2493 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2494 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2495 			__pskb_trim_head(skb, copy);
2496 			tcp_set_skb_tso_segs(skb, mss_now);
2497 			TCP_SKB_CB(skb)->seq += copy;
2498 		}
2499 
2500 		len += copy;
2501 
2502 		if (len >= probe_size)
2503 			break;
2504 	}
2505 	tcp_init_tso_segs(nskb, nskb->len);
2506 
2507 	/* We're ready to send.  If this fails, the probe will
2508 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2509 	 */
2510 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2511 		/* Decrement cwnd here because we are sending
2512 		 * effectively two packets. */
2513 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2514 		tcp_event_new_data_sent(sk, nskb);
2515 
2516 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2517 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2518 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2519 
2520 		return 1;
2521 	}
2522 
2523 	return -1;
2524 }
2525 
2526 static bool tcp_pacing_check(struct sock *sk)
2527 {
2528 	struct tcp_sock *tp = tcp_sk(sk);
2529 
2530 	if (!tcp_needs_internal_pacing(sk))
2531 		return false;
2532 
2533 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2534 		return false;
2535 
2536 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2537 		hrtimer_start(&tp->pacing_timer,
2538 			      ns_to_ktime(tp->tcp_wstamp_ns),
2539 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2540 		sock_hold(sk);
2541 	}
2542 	return true;
2543 }
2544 
2545 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2546 {
2547 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2548 
2549 	/* No skb in the rtx queue. */
2550 	if (!node)
2551 		return true;
2552 
2553 	/* Only one skb in rtx queue. */
2554 	return !node->rb_left && !node->rb_right;
2555 }
2556 
2557 /* TCP Small Queues :
2558  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2559  * (These limits are doubled for retransmits)
2560  * This allows for :
2561  *  - better RTT estimation and ACK scheduling
2562  *  - faster recovery
2563  *  - high rates
2564  * Alas, some drivers / subsystems require a fair amount
2565  * of queued bytes to ensure line rate.
2566  * One example is wifi aggregation (802.11 AMPDU)
2567  */
2568 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2569 				  unsigned int factor)
2570 {
2571 	unsigned long limit;
2572 
2573 	limit = max_t(unsigned long,
2574 		      2 * skb->truesize,
2575 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2576 	if (sk->sk_pacing_status == SK_PACING_NONE)
2577 		limit = min_t(unsigned long, limit,
2578 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2579 	limit <<= factor;
2580 
2581 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2582 	    tcp_sk(sk)->tcp_tx_delay) {
2583 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2584 
2585 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2586 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2587 		 * USEC_PER_SEC is approximated by 2^20.
2588 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2589 		 */
2590 		extra_bytes >>= (20 - 1);
2591 		limit += extra_bytes;
2592 	}
2593 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2594 		/* Always send skb if rtx queue is empty or has one skb.
2595 		 * No need to wait for TX completion to call us back,
2596 		 * after softirq/tasklet schedule.
2597 		 * This helps when TX completions are delayed too much.
2598 		 */
2599 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2600 			return false;
2601 
2602 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2603 		/* It is possible TX completion already happened
2604 		 * before we set TSQ_THROTTLED, so we must
2605 		 * test again the condition.
2606 		 */
2607 		smp_mb__after_atomic();
2608 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2609 			return true;
2610 	}
2611 	return false;
2612 }
2613 
2614 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2615 {
2616 	const u32 now = tcp_jiffies32;
2617 	enum tcp_chrono old = tp->chrono_type;
2618 
2619 	if (old > TCP_CHRONO_UNSPEC)
2620 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2621 	tp->chrono_start = now;
2622 	tp->chrono_type = new;
2623 }
2624 
2625 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2626 {
2627 	struct tcp_sock *tp = tcp_sk(sk);
2628 
2629 	/* If there are multiple conditions worthy of tracking in a
2630 	 * chronograph then the highest priority enum takes precedence
2631 	 * over the other conditions. So that if something "more interesting"
2632 	 * starts happening, stop the previous chrono and start a new one.
2633 	 */
2634 	if (type > tp->chrono_type)
2635 		tcp_chrono_set(tp, type);
2636 }
2637 
2638 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2639 {
2640 	struct tcp_sock *tp = tcp_sk(sk);
2641 
2642 
2643 	/* There are multiple conditions worthy of tracking in a
2644 	 * chronograph, so that the highest priority enum takes
2645 	 * precedence over the other conditions (see tcp_chrono_start).
2646 	 * If a condition stops, we only stop chrono tracking if
2647 	 * it's the "most interesting" or current chrono we are
2648 	 * tracking and starts busy chrono if we have pending data.
2649 	 */
2650 	if (tcp_rtx_and_write_queues_empty(sk))
2651 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2652 	else if (type == tp->chrono_type)
2653 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2654 }
2655 
2656 /* This routine writes packets to the network.  It advances the
2657  * send_head.  This happens as incoming acks open up the remote
2658  * window for us.
2659  *
2660  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2661  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2662  * account rare use of URG, this is not a big flaw.
2663  *
2664  * Send at most one packet when push_one > 0. Temporarily ignore
2665  * cwnd limit to force at most one packet out when push_one == 2.
2666 
2667  * Returns true, if no segments are in flight and we have queued segments,
2668  * but cannot send anything now because of SWS or another problem.
2669  */
2670 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2671 			   int push_one, gfp_t gfp)
2672 {
2673 	struct tcp_sock *tp = tcp_sk(sk);
2674 	struct sk_buff *skb;
2675 	unsigned int tso_segs, sent_pkts;
2676 	int cwnd_quota;
2677 	int result;
2678 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2679 	u32 max_segs;
2680 
2681 	sent_pkts = 0;
2682 
2683 	tcp_mstamp_refresh(tp);
2684 	if (!push_one) {
2685 		/* Do MTU probing. */
2686 		result = tcp_mtu_probe(sk);
2687 		if (!result) {
2688 			return false;
2689 		} else if (result > 0) {
2690 			sent_pkts = 1;
2691 		}
2692 	}
2693 
2694 	max_segs = tcp_tso_segs(sk, mss_now);
2695 	while ((skb = tcp_send_head(sk))) {
2696 		unsigned int limit;
2697 
2698 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2699 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2700 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2701 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2702 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2703 			tcp_init_tso_segs(skb, mss_now);
2704 			goto repair; /* Skip network transmission */
2705 		}
2706 
2707 		if (tcp_pacing_check(sk))
2708 			break;
2709 
2710 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2711 		BUG_ON(!tso_segs);
2712 
2713 		cwnd_quota = tcp_cwnd_test(tp, skb);
2714 		if (!cwnd_quota) {
2715 			if (push_one == 2)
2716 				/* Force out a loss probe pkt. */
2717 				cwnd_quota = 1;
2718 			else
2719 				break;
2720 		}
2721 
2722 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2723 			is_rwnd_limited = true;
2724 			break;
2725 		}
2726 
2727 		if (tso_segs == 1) {
2728 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2729 						     (tcp_skb_is_last(sk, skb) ?
2730 						      nonagle : TCP_NAGLE_PUSH))))
2731 				break;
2732 		} else {
2733 			if (!push_one &&
2734 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2735 						 &is_rwnd_limited, max_segs))
2736 				break;
2737 		}
2738 
2739 		limit = mss_now;
2740 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2741 			limit = tcp_mss_split_point(sk, skb, mss_now,
2742 						    min_t(unsigned int,
2743 							  cwnd_quota,
2744 							  max_segs),
2745 						    nonagle);
2746 
2747 		if (skb->len > limit &&
2748 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2749 			break;
2750 
2751 		if (tcp_small_queue_check(sk, skb, 0))
2752 			break;
2753 
2754 		/* Argh, we hit an empty skb(), presumably a thread
2755 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2756 		 * We do not want to send a pure-ack packet and have
2757 		 * a strange looking rtx queue with empty packet(s).
2758 		 */
2759 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2760 			break;
2761 
2762 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2763 			break;
2764 
2765 repair:
2766 		/* Advance the send_head.  This one is sent out.
2767 		 * This call will increment packets_out.
2768 		 */
2769 		tcp_event_new_data_sent(sk, skb);
2770 
2771 		tcp_minshall_update(tp, mss_now, skb);
2772 		sent_pkts += tcp_skb_pcount(skb);
2773 
2774 		if (push_one)
2775 			break;
2776 	}
2777 
2778 	if (is_rwnd_limited)
2779 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2780 	else
2781 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2782 
2783 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2784 	if (likely(sent_pkts || is_cwnd_limited))
2785 		tcp_cwnd_validate(sk, is_cwnd_limited);
2786 
2787 	if (likely(sent_pkts)) {
2788 		if (tcp_in_cwnd_reduction(sk))
2789 			tp->prr_out += sent_pkts;
2790 
2791 		/* Send one loss probe per tail loss episode. */
2792 		if (push_one != 2)
2793 			tcp_schedule_loss_probe(sk, false);
2794 		return false;
2795 	}
2796 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2797 }
2798 
2799 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2800 {
2801 	struct inet_connection_sock *icsk = inet_csk(sk);
2802 	struct tcp_sock *tp = tcp_sk(sk);
2803 	u32 timeout, timeout_us, rto_delta_us;
2804 	int early_retrans;
2805 
2806 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2807 	 * finishes.
2808 	 */
2809 	if (rcu_access_pointer(tp->fastopen_rsk))
2810 		return false;
2811 
2812 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2813 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2814 	 * not in loss recovery, that are either limited by cwnd or application.
2815 	 */
2816 	if ((early_retrans != 3 && early_retrans != 4) ||
2817 	    !tp->packets_out || !tcp_is_sack(tp) ||
2818 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2819 	     icsk->icsk_ca_state != TCP_CA_CWR))
2820 		return false;
2821 
2822 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2823 	 * for delayed ack when there's one outstanding packet. If no RTT
2824 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2825 	 */
2826 	if (tp->srtt_us) {
2827 		timeout_us = tp->srtt_us >> 2;
2828 		if (tp->packets_out == 1)
2829 			timeout_us += tcp_rto_min_us(sk);
2830 		else
2831 			timeout_us += TCP_TIMEOUT_MIN_US;
2832 		timeout = usecs_to_jiffies(timeout_us);
2833 	} else {
2834 		timeout = TCP_TIMEOUT_INIT;
2835 	}
2836 
2837 	/* If the RTO formula yields an earlier time, then use that time. */
2838 	rto_delta_us = advancing_rto ?
2839 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2840 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2841 	if (rto_delta_us > 0)
2842 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2843 
2844 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2845 	return true;
2846 }
2847 
2848 /* Thanks to skb fast clones, we can detect if a prior transmit of
2849  * a packet is still in a qdisc or driver queue.
2850  * In this case, there is very little point doing a retransmit !
2851  */
2852 static bool skb_still_in_host_queue(struct sock *sk,
2853 				    const struct sk_buff *skb)
2854 {
2855 	if (unlikely(skb_fclone_busy(sk, skb))) {
2856 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2857 		smp_mb__after_atomic();
2858 		if (skb_fclone_busy(sk, skb)) {
2859 			NET_INC_STATS(sock_net(sk),
2860 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2861 			return true;
2862 		}
2863 	}
2864 	return false;
2865 }
2866 
2867 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2868  * retransmit the last segment.
2869  */
2870 void tcp_send_loss_probe(struct sock *sk)
2871 {
2872 	struct tcp_sock *tp = tcp_sk(sk);
2873 	struct sk_buff *skb;
2874 	int pcount;
2875 	int mss = tcp_current_mss(sk);
2876 
2877 	/* At most one outstanding TLP */
2878 	if (tp->tlp_high_seq)
2879 		goto rearm_timer;
2880 
2881 	tp->tlp_retrans = 0;
2882 	skb = tcp_send_head(sk);
2883 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2884 		pcount = tp->packets_out;
2885 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2886 		if (tp->packets_out > pcount)
2887 			goto probe_sent;
2888 		goto rearm_timer;
2889 	}
2890 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2891 	if (unlikely(!skb)) {
2892 		WARN_ONCE(tp->packets_out,
2893 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2894 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2895 		inet_csk(sk)->icsk_pending = 0;
2896 		return;
2897 	}
2898 
2899 	if (skb_still_in_host_queue(sk, skb))
2900 		goto rearm_timer;
2901 
2902 	pcount = tcp_skb_pcount(skb);
2903 	if (WARN_ON(!pcount))
2904 		goto rearm_timer;
2905 
2906 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2907 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2908 					  (pcount - 1) * mss, mss,
2909 					  GFP_ATOMIC)))
2910 			goto rearm_timer;
2911 		skb = skb_rb_next(skb);
2912 	}
2913 
2914 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2915 		goto rearm_timer;
2916 
2917 	if (__tcp_retransmit_skb(sk, skb, 1))
2918 		goto rearm_timer;
2919 
2920 	tp->tlp_retrans = 1;
2921 
2922 probe_sent:
2923 	/* Record snd_nxt for loss detection. */
2924 	tp->tlp_high_seq = tp->snd_nxt;
2925 
2926 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2927 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2928 	inet_csk(sk)->icsk_pending = 0;
2929 rearm_timer:
2930 	tcp_rearm_rto(sk);
2931 }
2932 
2933 /* Push out any pending frames which were held back due to
2934  * TCP_CORK or attempt at coalescing tiny packets.
2935  * The socket must be locked by the caller.
2936  */
2937 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2938 			       int nonagle)
2939 {
2940 	/* If we are closed, the bytes will have to remain here.
2941 	 * In time closedown will finish, we empty the write queue and
2942 	 * all will be happy.
2943 	 */
2944 	if (unlikely(sk->sk_state == TCP_CLOSE))
2945 		return;
2946 
2947 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2948 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2949 		tcp_check_probe_timer(sk);
2950 }
2951 
2952 /* Send _single_ skb sitting at the send head. This function requires
2953  * true push pending frames to setup probe timer etc.
2954  */
2955 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2956 {
2957 	struct sk_buff *skb = tcp_send_head(sk);
2958 
2959 	BUG_ON(!skb || skb->len < mss_now);
2960 
2961 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2962 }
2963 
2964 /* This function returns the amount that we can raise the
2965  * usable window based on the following constraints
2966  *
2967  * 1. The window can never be shrunk once it is offered (RFC 793)
2968  * 2. We limit memory per socket
2969  *
2970  * RFC 1122:
2971  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2972  *  RECV.NEXT + RCV.WIN fixed until:
2973  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2974  *
2975  * i.e. don't raise the right edge of the window until you can raise
2976  * it at least MSS bytes.
2977  *
2978  * Unfortunately, the recommended algorithm breaks header prediction,
2979  * since header prediction assumes th->window stays fixed.
2980  *
2981  * Strictly speaking, keeping th->window fixed violates the receiver
2982  * side SWS prevention criteria. The problem is that under this rule
2983  * a stream of single byte packets will cause the right side of the
2984  * window to always advance by a single byte.
2985  *
2986  * Of course, if the sender implements sender side SWS prevention
2987  * then this will not be a problem.
2988  *
2989  * BSD seems to make the following compromise:
2990  *
2991  *	If the free space is less than the 1/4 of the maximum
2992  *	space available and the free space is less than 1/2 mss,
2993  *	then set the window to 0.
2994  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2995  *	Otherwise, just prevent the window from shrinking
2996  *	and from being larger than the largest representable value.
2997  *
2998  * This prevents incremental opening of the window in the regime
2999  * where TCP is limited by the speed of the reader side taking
3000  * data out of the TCP receive queue. It does nothing about
3001  * those cases where the window is constrained on the sender side
3002  * because the pipeline is full.
3003  *
3004  * BSD also seems to "accidentally" limit itself to windows that are a
3005  * multiple of MSS, at least until the free space gets quite small.
3006  * This would appear to be a side effect of the mbuf implementation.
3007  * Combining these two algorithms results in the observed behavior
3008  * of having a fixed window size at almost all times.
3009  *
3010  * Below we obtain similar behavior by forcing the offered window to
3011  * a multiple of the mss when it is feasible to do so.
3012  *
3013  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3014  * Regular options like TIMESTAMP are taken into account.
3015  */
3016 u32 __tcp_select_window(struct sock *sk)
3017 {
3018 	struct inet_connection_sock *icsk = inet_csk(sk);
3019 	struct tcp_sock *tp = tcp_sk(sk);
3020 	struct net *net = sock_net(sk);
3021 	/* MSS for the peer's data.  Previous versions used mss_clamp
3022 	 * here.  I don't know if the value based on our guesses
3023 	 * of peer's MSS is better for the performance.  It's more correct
3024 	 * but may be worse for the performance because of rcv_mss
3025 	 * fluctuations.  --SAW  1998/11/1
3026 	 */
3027 	int mss = icsk->icsk_ack.rcv_mss;
3028 	int free_space = tcp_space(sk);
3029 	int allowed_space = tcp_full_space(sk);
3030 	int full_space, window;
3031 
3032 	if (sk_is_mptcp(sk))
3033 		mptcp_space(sk, &free_space, &allowed_space);
3034 
3035 	full_space = min_t(int, tp->window_clamp, allowed_space);
3036 
3037 	if (unlikely(mss > full_space)) {
3038 		mss = full_space;
3039 		if (mss <= 0)
3040 			return 0;
3041 	}
3042 
3043 	/* Only allow window shrink if the sysctl is enabled and we have
3044 	 * a non-zero scaling factor in effect.
3045 	 */
3046 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3047 		goto shrink_window_allowed;
3048 
3049 	/* do not allow window to shrink */
3050 
3051 	if (free_space < (full_space >> 1)) {
3052 		icsk->icsk_ack.quick = 0;
3053 
3054 		if (tcp_under_memory_pressure(sk))
3055 			tcp_adjust_rcv_ssthresh(sk);
3056 
3057 		/* free_space might become our new window, make sure we don't
3058 		 * increase it due to wscale.
3059 		 */
3060 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3061 
3062 		/* if free space is less than mss estimate, or is below 1/16th
3063 		 * of the maximum allowed, try to move to zero-window, else
3064 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3065 		 * new incoming data is dropped due to memory limits.
3066 		 * With large window, mss test triggers way too late in order
3067 		 * to announce zero window in time before rmem limit kicks in.
3068 		 */
3069 		if (free_space < (allowed_space >> 4) || free_space < mss)
3070 			return 0;
3071 	}
3072 
3073 	if (free_space > tp->rcv_ssthresh)
3074 		free_space = tp->rcv_ssthresh;
3075 
3076 	/* Don't do rounding if we are using window scaling, since the
3077 	 * scaled window will not line up with the MSS boundary anyway.
3078 	 */
3079 	if (tp->rx_opt.rcv_wscale) {
3080 		window = free_space;
3081 
3082 		/* Advertise enough space so that it won't get scaled away.
3083 		 * Import case: prevent zero window announcement if
3084 		 * 1<<rcv_wscale > mss.
3085 		 */
3086 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3087 	} else {
3088 		window = tp->rcv_wnd;
3089 		/* Get the largest window that is a nice multiple of mss.
3090 		 * Window clamp already applied above.
3091 		 * If our current window offering is within 1 mss of the
3092 		 * free space we just keep it. This prevents the divide
3093 		 * and multiply from happening most of the time.
3094 		 * We also don't do any window rounding when the free space
3095 		 * is too small.
3096 		 */
3097 		if (window <= free_space - mss || window > free_space)
3098 			window = rounddown(free_space, mss);
3099 		else if (mss == full_space &&
3100 			 free_space > window + (full_space >> 1))
3101 			window = free_space;
3102 	}
3103 
3104 	return window;
3105 
3106 shrink_window_allowed:
3107 	/* new window should always be an exact multiple of scaling factor */
3108 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3109 
3110 	if (free_space < (full_space >> 1)) {
3111 		icsk->icsk_ack.quick = 0;
3112 
3113 		if (tcp_under_memory_pressure(sk))
3114 			tcp_adjust_rcv_ssthresh(sk);
3115 
3116 		/* if free space is too low, return a zero window */
3117 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3118 			free_space < (1 << tp->rx_opt.rcv_wscale))
3119 			return 0;
3120 	}
3121 
3122 	if (free_space > tp->rcv_ssthresh) {
3123 		free_space = tp->rcv_ssthresh;
3124 		/* new window should always be an exact multiple of scaling factor
3125 		 *
3126 		 * For this case, we ALIGN "up" (increase free_space) because
3127 		 * we know free_space is not zero here, it has been reduced from
3128 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3129 		 * (unlike sk_rcvbuf).
3130 		 */
3131 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3132 	}
3133 
3134 	return free_space;
3135 }
3136 
3137 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3138 			     const struct sk_buff *next_skb)
3139 {
3140 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3141 		const struct skb_shared_info *next_shinfo =
3142 			skb_shinfo(next_skb);
3143 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3144 
3145 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3146 		shinfo->tskey = next_shinfo->tskey;
3147 		TCP_SKB_CB(skb)->txstamp_ack |=
3148 			TCP_SKB_CB(next_skb)->txstamp_ack;
3149 	}
3150 }
3151 
3152 /* Collapses two adjacent SKB's during retransmission. */
3153 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3154 {
3155 	struct tcp_sock *tp = tcp_sk(sk);
3156 	struct sk_buff *next_skb = skb_rb_next(skb);
3157 	int next_skb_size;
3158 
3159 	next_skb_size = next_skb->len;
3160 
3161 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3162 
3163 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3164 		return false;
3165 
3166 	tcp_highest_sack_replace(sk, next_skb, skb);
3167 
3168 	/* Update sequence range on original skb. */
3169 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3170 
3171 	/* Merge over control information. This moves PSH/FIN etc. over */
3172 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3173 
3174 	/* All done, get rid of second SKB and account for it so
3175 	 * packet counting does not break.
3176 	 */
3177 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3178 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3179 
3180 	/* changed transmit queue under us so clear hints */
3181 	tcp_clear_retrans_hints_partial(tp);
3182 	if (next_skb == tp->retransmit_skb_hint)
3183 		tp->retransmit_skb_hint = skb;
3184 
3185 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3186 
3187 	tcp_skb_collapse_tstamp(skb, next_skb);
3188 
3189 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3190 	return true;
3191 }
3192 
3193 /* Check if coalescing SKBs is legal. */
3194 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3195 {
3196 	if (tcp_skb_pcount(skb) > 1)
3197 		return false;
3198 	if (skb_cloned(skb))
3199 		return false;
3200 	/* Some heuristics for collapsing over SACK'd could be invented */
3201 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3202 		return false;
3203 
3204 	return true;
3205 }
3206 
3207 /* Collapse packets in the retransmit queue to make to create
3208  * less packets on the wire. This is only done on retransmission.
3209  */
3210 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3211 				     int space)
3212 {
3213 	struct tcp_sock *tp = tcp_sk(sk);
3214 	struct sk_buff *skb = to, *tmp;
3215 	bool first = true;
3216 
3217 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3218 		return;
3219 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3220 		return;
3221 
3222 	skb_rbtree_walk_from_safe(skb, tmp) {
3223 		if (!tcp_can_collapse(sk, skb))
3224 			break;
3225 
3226 		if (!tcp_skb_can_collapse(to, skb))
3227 			break;
3228 
3229 		space -= skb->len;
3230 
3231 		if (first) {
3232 			first = false;
3233 			continue;
3234 		}
3235 
3236 		if (space < 0)
3237 			break;
3238 
3239 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3240 			break;
3241 
3242 		if (!tcp_collapse_retrans(sk, to))
3243 			break;
3244 	}
3245 }
3246 
3247 /* This retransmits one SKB.  Policy decisions and retransmit queue
3248  * state updates are done by the caller.  Returns non-zero if an
3249  * error occurred which prevented the send.
3250  */
3251 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3252 {
3253 	struct inet_connection_sock *icsk = inet_csk(sk);
3254 	struct tcp_sock *tp = tcp_sk(sk);
3255 	unsigned int cur_mss;
3256 	int diff, len, err;
3257 	int avail_wnd;
3258 
3259 	/* Inconclusive MTU probe */
3260 	if (icsk->icsk_mtup.probe_size)
3261 		icsk->icsk_mtup.probe_size = 0;
3262 
3263 	if (skb_still_in_host_queue(sk, skb))
3264 		return -EBUSY;
3265 
3266 start:
3267 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3268 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3269 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3270 			TCP_SKB_CB(skb)->seq++;
3271 			goto start;
3272 		}
3273 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3274 			WARN_ON_ONCE(1);
3275 			return -EINVAL;
3276 		}
3277 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3278 			return -ENOMEM;
3279 	}
3280 
3281 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3282 		return -EHOSTUNREACH; /* Routing failure or similar. */
3283 
3284 	cur_mss = tcp_current_mss(sk);
3285 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3286 
3287 	/* If receiver has shrunk his window, and skb is out of
3288 	 * new window, do not retransmit it. The exception is the
3289 	 * case, when window is shrunk to zero. In this case
3290 	 * our retransmit of one segment serves as a zero window probe.
3291 	 */
3292 	if (avail_wnd <= 0) {
3293 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3294 			return -EAGAIN;
3295 		avail_wnd = cur_mss;
3296 	}
3297 
3298 	len = cur_mss * segs;
3299 	if (len > avail_wnd) {
3300 		len = rounddown(avail_wnd, cur_mss);
3301 		if (!len)
3302 			len = avail_wnd;
3303 	}
3304 	if (skb->len > len) {
3305 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3306 				 cur_mss, GFP_ATOMIC))
3307 			return -ENOMEM; /* We'll try again later. */
3308 	} else {
3309 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3310 			return -ENOMEM;
3311 
3312 		diff = tcp_skb_pcount(skb);
3313 		tcp_set_skb_tso_segs(skb, cur_mss);
3314 		diff -= tcp_skb_pcount(skb);
3315 		if (diff)
3316 			tcp_adjust_pcount(sk, skb, diff);
3317 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3318 		if (skb->len < avail_wnd)
3319 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3320 	}
3321 
3322 	/* RFC3168, section 6.1.1.1. ECN fallback */
3323 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3324 		tcp_ecn_clear_syn(sk, skb);
3325 
3326 	/* Update global and local TCP statistics. */
3327 	segs = tcp_skb_pcount(skb);
3328 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3329 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3330 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3331 	tp->total_retrans += segs;
3332 	tp->bytes_retrans += skb->len;
3333 
3334 	/* make sure skb->data is aligned on arches that require it
3335 	 * and check if ack-trimming & collapsing extended the headroom
3336 	 * beyond what csum_start can cover.
3337 	 */
3338 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3339 		     skb_headroom(skb) >= 0xFFFF)) {
3340 		struct sk_buff *nskb;
3341 
3342 		tcp_skb_tsorted_save(skb) {
3343 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3344 			if (nskb) {
3345 				nskb->dev = NULL;
3346 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3347 			} else {
3348 				err = -ENOBUFS;
3349 			}
3350 		} tcp_skb_tsorted_restore(skb);
3351 
3352 		if (!err) {
3353 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3354 			tcp_rate_skb_sent(sk, skb);
3355 		}
3356 	} else {
3357 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3358 	}
3359 
3360 	/* To avoid taking spuriously low RTT samples based on a timestamp
3361 	 * for a transmit that never happened, always mark EVER_RETRANS
3362 	 */
3363 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3364 
3365 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3366 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3367 				  TCP_SKB_CB(skb)->seq, segs, err);
3368 
3369 	if (likely(!err)) {
3370 		trace_tcp_retransmit_skb(sk, skb);
3371 	} else if (err != -EBUSY) {
3372 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3373 	}
3374 	return err;
3375 }
3376 
3377 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3378 {
3379 	struct tcp_sock *tp = tcp_sk(sk);
3380 	int err = __tcp_retransmit_skb(sk, skb, segs);
3381 
3382 	if (err == 0) {
3383 #if FASTRETRANS_DEBUG > 0
3384 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3385 			net_dbg_ratelimited("retrans_out leaked\n");
3386 		}
3387 #endif
3388 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3389 		tp->retrans_out += tcp_skb_pcount(skb);
3390 	}
3391 
3392 	/* Save stamp of the first (attempted) retransmit. */
3393 	if (!tp->retrans_stamp)
3394 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3395 
3396 	if (tp->undo_retrans < 0)
3397 		tp->undo_retrans = 0;
3398 	tp->undo_retrans += tcp_skb_pcount(skb);
3399 	return err;
3400 }
3401 
3402 /* This gets called after a retransmit timeout, and the initially
3403  * retransmitted data is acknowledged.  It tries to continue
3404  * resending the rest of the retransmit queue, until either
3405  * we've sent it all or the congestion window limit is reached.
3406  */
3407 void tcp_xmit_retransmit_queue(struct sock *sk)
3408 {
3409 	const struct inet_connection_sock *icsk = inet_csk(sk);
3410 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3411 	struct tcp_sock *tp = tcp_sk(sk);
3412 	bool rearm_timer = false;
3413 	u32 max_segs;
3414 	int mib_idx;
3415 
3416 	if (!tp->packets_out)
3417 		return;
3418 
3419 	rtx_head = tcp_rtx_queue_head(sk);
3420 	skb = tp->retransmit_skb_hint ?: rtx_head;
3421 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3422 	skb_rbtree_walk_from(skb) {
3423 		__u8 sacked;
3424 		int segs;
3425 
3426 		if (tcp_pacing_check(sk))
3427 			break;
3428 
3429 		/* we could do better than to assign each time */
3430 		if (!hole)
3431 			tp->retransmit_skb_hint = skb;
3432 
3433 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3434 		if (segs <= 0)
3435 			break;
3436 		sacked = TCP_SKB_CB(skb)->sacked;
3437 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3438 		 * we need to make sure not sending too bigs TSO packets
3439 		 */
3440 		segs = min_t(int, segs, max_segs);
3441 
3442 		if (tp->retrans_out >= tp->lost_out) {
3443 			break;
3444 		} else if (!(sacked & TCPCB_LOST)) {
3445 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3446 				hole = skb;
3447 			continue;
3448 
3449 		} else {
3450 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3451 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3452 			else
3453 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3454 		}
3455 
3456 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3457 			continue;
3458 
3459 		if (tcp_small_queue_check(sk, skb, 1))
3460 			break;
3461 
3462 		if (tcp_retransmit_skb(sk, skb, segs))
3463 			break;
3464 
3465 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3466 
3467 		if (tcp_in_cwnd_reduction(sk))
3468 			tp->prr_out += tcp_skb_pcount(skb);
3469 
3470 		if (skb == rtx_head &&
3471 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3472 			rearm_timer = true;
3473 
3474 	}
3475 	if (rearm_timer)
3476 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3477 				     inet_csk(sk)->icsk_rto,
3478 				     TCP_RTO_MAX);
3479 }
3480 
3481 /* We allow to exceed memory limits for FIN packets to expedite
3482  * connection tear down and (memory) recovery.
3483  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3484  * or even be forced to close flow without any FIN.
3485  * In general, we want to allow one skb per socket to avoid hangs
3486  * with edge trigger epoll()
3487  */
3488 void sk_forced_mem_schedule(struct sock *sk, int size)
3489 {
3490 	int delta, amt;
3491 
3492 	delta = size - sk->sk_forward_alloc;
3493 	if (delta <= 0)
3494 		return;
3495 	amt = sk_mem_pages(delta);
3496 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3497 	sk_memory_allocated_add(sk, amt);
3498 
3499 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3500 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3501 					gfp_memcg_charge() | __GFP_NOFAIL);
3502 }
3503 
3504 /* Send a FIN. The caller locks the socket for us.
3505  * We should try to send a FIN packet really hard, but eventually give up.
3506  */
3507 void tcp_send_fin(struct sock *sk)
3508 {
3509 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3510 	struct tcp_sock *tp = tcp_sk(sk);
3511 
3512 	/* Optimization, tack on the FIN if we have one skb in write queue and
3513 	 * this skb was not yet sent, or we are under memory pressure.
3514 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3515 	 * as TCP stack thinks it has already been transmitted.
3516 	 */
3517 	tskb = tail;
3518 	if (!tskb && tcp_under_memory_pressure(sk))
3519 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3520 
3521 	if (tskb) {
3522 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3523 		TCP_SKB_CB(tskb)->end_seq++;
3524 		tp->write_seq++;
3525 		if (!tail) {
3526 			/* This means tskb was already sent.
3527 			 * Pretend we included the FIN on previous transmit.
3528 			 * We need to set tp->snd_nxt to the value it would have
3529 			 * if FIN had been sent. This is because retransmit path
3530 			 * does not change tp->snd_nxt.
3531 			 */
3532 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3533 			return;
3534 		}
3535 	} else {
3536 		skb = alloc_skb_fclone(MAX_TCP_HEADER,
3537 				       sk_gfp_mask(sk, GFP_ATOMIC |
3538 						       __GFP_NOWARN));
3539 		if (unlikely(!skb))
3540 			return;
3541 
3542 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3543 		skb_reserve(skb, MAX_TCP_HEADER);
3544 		sk_forced_mem_schedule(sk, skb->truesize);
3545 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3546 		tcp_init_nondata_skb(skb, tp->write_seq,
3547 				     TCPHDR_ACK | TCPHDR_FIN);
3548 		tcp_queue_skb(sk, skb);
3549 	}
3550 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3551 }
3552 
3553 /* We get here when a process closes a file descriptor (either due to
3554  * an explicit close() or as a byproduct of exit()'ing) and there
3555  * was unread data in the receive queue.  This behavior is recommended
3556  * by RFC 2525, section 2.17.  -DaveM
3557  */
3558 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3559 {
3560 	struct sk_buff *skb;
3561 
3562 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3563 
3564 	/* NOTE: No TCP options attached and we never retransmit this. */
3565 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3566 	if (!skb) {
3567 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3568 		return;
3569 	}
3570 
3571 	/* Reserve space for headers and prepare control bits. */
3572 	skb_reserve(skb, MAX_TCP_HEADER);
3573 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3574 			     TCPHDR_ACK | TCPHDR_RST);
3575 	tcp_mstamp_refresh(tcp_sk(sk));
3576 	/* Send it off. */
3577 	if (tcp_transmit_skb(sk, skb, 0, priority))
3578 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3579 
3580 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3581 	 * skb here is different to the troublesome skb, so use NULL
3582 	 */
3583 	trace_tcp_send_reset(sk, NULL);
3584 }
3585 
3586 /* Send a crossed SYN-ACK during socket establishment.
3587  * WARNING: This routine must only be called when we have already sent
3588  * a SYN packet that crossed the incoming SYN that caused this routine
3589  * to get called. If this assumption fails then the initial rcv_wnd
3590  * and rcv_wscale values will not be correct.
3591  */
3592 int tcp_send_synack(struct sock *sk)
3593 {
3594 	struct sk_buff *skb;
3595 
3596 	skb = tcp_rtx_queue_head(sk);
3597 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3598 		pr_err("%s: wrong queue state\n", __func__);
3599 		return -EFAULT;
3600 	}
3601 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3602 		if (skb_cloned(skb)) {
3603 			struct sk_buff *nskb;
3604 
3605 			tcp_skb_tsorted_save(skb) {
3606 				nskb = skb_copy(skb, GFP_ATOMIC);
3607 			} tcp_skb_tsorted_restore(skb);
3608 			if (!nskb)
3609 				return -ENOMEM;
3610 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3611 			tcp_highest_sack_replace(sk, skb, nskb);
3612 			tcp_rtx_queue_unlink_and_free(skb, sk);
3613 			__skb_header_release(nskb);
3614 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3615 			sk_wmem_queued_add(sk, nskb->truesize);
3616 			sk_mem_charge(sk, nskb->truesize);
3617 			skb = nskb;
3618 		}
3619 
3620 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3621 		tcp_ecn_send_synack(sk, skb);
3622 	}
3623 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3624 }
3625 
3626 /**
3627  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3628  * @sk: listener socket
3629  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3630  *       should not use it again.
3631  * @req: request_sock pointer
3632  * @foc: cookie for tcp fast open
3633  * @synack_type: Type of synack to prepare
3634  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3635  */
3636 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3637 				struct request_sock *req,
3638 				struct tcp_fastopen_cookie *foc,
3639 				enum tcp_synack_type synack_type,
3640 				struct sk_buff *syn_skb)
3641 {
3642 	struct inet_request_sock *ireq = inet_rsk(req);
3643 	const struct tcp_sock *tp = tcp_sk(sk);
3644 	struct tcp_md5sig_key *md5 = NULL;
3645 	struct tcp_out_options opts;
3646 	struct sk_buff *skb;
3647 	int tcp_header_size;
3648 	struct tcphdr *th;
3649 	int mss;
3650 	u64 now;
3651 
3652 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3653 	if (unlikely(!skb)) {
3654 		dst_release(dst);
3655 		return NULL;
3656 	}
3657 	/* Reserve space for headers. */
3658 	skb_reserve(skb, MAX_TCP_HEADER);
3659 
3660 	switch (synack_type) {
3661 	case TCP_SYNACK_NORMAL:
3662 		skb_set_owner_w(skb, req_to_sk(req));
3663 		break;
3664 	case TCP_SYNACK_COOKIE:
3665 		/* Under synflood, we do not attach skb to a socket,
3666 		 * to avoid false sharing.
3667 		 */
3668 		break;
3669 	case TCP_SYNACK_FASTOPEN:
3670 		/* sk is a const pointer, because we want to express multiple
3671 		 * cpu might call us concurrently.
3672 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3673 		 */
3674 		skb_set_owner_w(skb, (struct sock *)sk);
3675 		break;
3676 	}
3677 	skb_dst_set(skb, dst);
3678 
3679 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3680 
3681 	memset(&opts, 0, sizeof(opts));
3682 	now = tcp_clock_ns();
3683 #ifdef CONFIG_SYN_COOKIES
3684 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3685 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3686 				      true);
3687 	else
3688 #endif
3689 	{
3690 		skb_set_delivery_time(skb, now, true);
3691 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3692 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3693 	}
3694 
3695 #ifdef CONFIG_TCP_MD5SIG
3696 	rcu_read_lock();
3697 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3698 #endif
3699 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3700 	/* bpf program will be interested in the tcp_flags */
3701 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3702 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3703 					     foc, synack_type,
3704 					     syn_skb) + sizeof(*th);
3705 
3706 	skb_push(skb, tcp_header_size);
3707 	skb_reset_transport_header(skb);
3708 
3709 	th = (struct tcphdr *)skb->data;
3710 	memset(th, 0, sizeof(struct tcphdr));
3711 	th->syn = 1;
3712 	th->ack = 1;
3713 	tcp_ecn_make_synack(req, th);
3714 	th->source = htons(ireq->ir_num);
3715 	th->dest = ireq->ir_rmt_port;
3716 	skb->mark = ireq->ir_mark;
3717 	skb->ip_summed = CHECKSUM_PARTIAL;
3718 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3719 	/* XXX data is queued and acked as is. No buffer/window check */
3720 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3721 
3722 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3723 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3724 	tcp_options_write(th, NULL, &opts);
3725 	th->doff = (tcp_header_size >> 2);
3726 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3727 
3728 #ifdef CONFIG_TCP_MD5SIG
3729 	/* Okay, we have all we need - do the md5 hash if needed */
3730 	if (md5)
3731 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3732 					       md5, req_to_sk(req), skb);
3733 	rcu_read_unlock();
3734 #endif
3735 
3736 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3737 				synack_type, &opts);
3738 
3739 	skb_set_delivery_time(skb, now, true);
3740 	tcp_add_tx_delay(skb, tp);
3741 
3742 	return skb;
3743 }
3744 EXPORT_SYMBOL(tcp_make_synack);
3745 
3746 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3747 {
3748 	struct inet_connection_sock *icsk = inet_csk(sk);
3749 	const struct tcp_congestion_ops *ca;
3750 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3751 
3752 	if (ca_key == TCP_CA_UNSPEC)
3753 		return;
3754 
3755 	rcu_read_lock();
3756 	ca = tcp_ca_find_key(ca_key);
3757 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3758 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3759 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3760 		icsk->icsk_ca_ops = ca;
3761 	}
3762 	rcu_read_unlock();
3763 }
3764 
3765 /* Do all connect socket setups that can be done AF independent. */
3766 static void tcp_connect_init(struct sock *sk)
3767 {
3768 	const struct dst_entry *dst = __sk_dst_get(sk);
3769 	struct tcp_sock *tp = tcp_sk(sk);
3770 	__u8 rcv_wscale;
3771 	u32 rcv_wnd;
3772 
3773 	/* We'll fix this up when we get a response from the other end.
3774 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3775 	 */
3776 	tp->tcp_header_len = sizeof(struct tcphdr);
3777 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3778 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3779 
3780 	/* If user gave his TCP_MAXSEG, record it to clamp */
3781 	if (tp->rx_opt.user_mss)
3782 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3783 	tp->max_window = 0;
3784 	tcp_mtup_init(sk);
3785 	tcp_sync_mss(sk, dst_mtu(dst));
3786 
3787 	tcp_ca_dst_init(sk, dst);
3788 
3789 	if (!tp->window_clamp)
3790 		WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3791 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3792 
3793 	tcp_initialize_rcv_mss(sk);
3794 
3795 	/* limit the window selection if the user enforce a smaller rx buffer */
3796 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3797 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3798 		WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3799 
3800 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3801 	if (rcv_wnd == 0)
3802 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3803 
3804 	tcp_select_initial_window(sk, tcp_full_space(sk),
3805 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3806 				  &tp->rcv_wnd,
3807 				  &tp->window_clamp,
3808 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3809 				  &rcv_wscale,
3810 				  rcv_wnd);
3811 
3812 	tp->rx_opt.rcv_wscale = rcv_wscale;
3813 	tp->rcv_ssthresh = tp->rcv_wnd;
3814 
3815 	WRITE_ONCE(sk->sk_err, 0);
3816 	sock_reset_flag(sk, SOCK_DONE);
3817 	tp->snd_wnd = 0;
3818 	tcp_init_wl(tp, 0);
3819 	tcp_write_queue_purge(sk);
3820 	tp->snd_una = tp->write_seq;
3821 	tp->snd_sml = tp->write_seq;
3822 	tp->snd_up = tp->write_seq;
3823 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3824 
3825 	if (likely(!tp->repair))
3826 		tp->rcv_nxt = 0;
3827 	else
3828 		tp->rcv_tstamp = tcp_jiffies32;
3829 	tp->rcv_wup = tp->rcv_nxt;
3830 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3831 
3832 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3833 	inet_csk(sk)->icsk_retransmits = 0;
3834 	tcp_clear_retrans(tp);
3835 }
3836 
3837 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3838 {
3839 	struct tcp_sock *tp = tcp_sk(sk);
3840 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3841 
3842 	tcb->end_seq += skb->len;
3843 	__skb_header_release(skb);
3844 	sk_wmem_queued_add(sk, skb->truesize);
3845 	sk_mem_charge(sk, skb->truesize);
3846 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3847 	tp->packets_out += tcp_skb_pcount(skb);
3848 }
3849 
3850 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3851  * queue a data-only packet after the regular SYN, such that regular SYNs
3852  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3853  * only the SYN sequence, the data are retransmitted in the first ACK.
3854  * If cookie is not cached or other error occurs, falls back to send a
3855  * regular SYN with Fast Open cookie request option.
3856  */
3857 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3858 {
3859 	struct inet_connection_sock *icsk = inet_csk(sk);
3860 	struct tcp_sock *tp = tcp_sk(sk);
3861 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3862 	struct page_frag *pfrag = sk_page_frag(sk);
3863 	struct sk_buff *syn_data;
3864 	int space, err = 0;
3865 
3866 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3867 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3868 		goto fallback;
3869 
3870 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3871 	 * user-MSS. Reserve maximum option space for middleboxes that add
3872 	 * private TCP options. The cost is reduced data space in SYN :(
3873 	 */
3874 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3875 	/* Sync mss_cache after updating the mss_clamp */
3876 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3877 
3878 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3879 		MAX_TCP_OPTION_SPACE;
3880 
3881 	space = min_t(size_t, space, fo->size);
3882 
3883 	if (space &&
3884 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3885 				  pfrag, sk->sk_allocation))
3886 		goto fallback;
3887 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3888 	if (!syn_data)
3889 		goto fallback;
3890 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3891 	if (space) {
3892 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3893 		space = tcp_wmem_schedule(sk, space);
3894 	}
3895 	if (space) {
3896 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3897 					    space, &fo->data->msg_iter);
3898 		if (unlikely(!space)) {
3899 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3900 			kfree_skb(syn_data);
3901 			goto fallback;
3902 		}
3903 		skb_fill_page_desc(syn_data, 0, pfrag->page,
3904 				   pfrag->offset, space);
3905 		page_ref_inc(pfrag->page);
3906 		pfrag->offset += space;
3907 		skb_len_add(syn_data, space);
3908 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3909 	}
3910 	/* No more data pending in inet_wait_for_connect() */
3911 	if (space == fo->size)
3912 		fo->data = NULL;
3913 	fo->copied = space;
3914 
3915 	tcp_connect_queue_skb(sk, syn_data);
3916 	if (syn_data->len)
3917 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3918 
3919 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3920 
3921 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3922 
3923 	/* Now full SYN+DATA was cloned and sent (or not),
3924 	 * remove the SYN from the original skb (syn_data)
3925 	 * we keep in write queue in case of a retransmit, as we
3926 	 * also have the SYN packet (with no data) in the same queue.
3927 	 */
3928 	TCP_SKB_CB(syn_data)->seq++;
3929 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3930 	if (!err) {
3931 		tp->syn_data = (fo->copied > 0);
3932 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3933 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3934 		goto done;
3935 	}
3936 
3937 	/* data was not sent, put it in write_queue */
3938 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3939 	tp->packets_out -= tcp_skb_pcount(syn_data);
3940 
3941 fallback:
3942 	/* Send a regular SYN with Fast Open cookie request option */
3943 	if (fo->cookie.len > 0)
3944 		fo->cookie.len = 0;
3945 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3946 	if (err)
3947 		tp->syn_fastopen = 0;
3948 done:
3949 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3950 	return err;
3951 }
3952 
3953 /* Build a SYN and send it off. */
3954 int tcp_connect(struct sock *sk)
3955 {
3956 	struct tcp_sock *tp = tcp_sk(sk);
3957 	struct sk_buff *buff;
3958 	int err;
3959 
3960 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3961 
3962 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3963 		return -EHOSTUNREACH; /* Routing failure or similar. */
3964 
3965 	tcp_connect_init(sk);
3966 
3967 	if (unlikely(tp->repair)) {
3968 		tcp_finish_connect(sk, NULL);
3969 		return 0;
3970 	}
3971 
3972 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
3973 	if (unlikely(!buff))
3974 		return -ENOBUFS;
3975 
3976 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3977 	tcp_mstamp_refresh(tp);
3978 	tp->retrans_stamp = tcp_time_stamp(tp);
3979 	tcp_connect_queue_skb(sk, buff);
3980 	tcp_ecn_send_syn(sk, buff);
3981 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3982 
3983 	/* Send off SYN; include data in Fast Open. */
3984 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3985 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3986 	if (err == -ECONNREFUSED)
3987 		return err;
3988 
3989 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3990 	 * in order to make this packet get counted in tcpOutSegs.
3991 	 */
3992 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3993 	tp->pushed_seq = tp->write_seq;
3994 	buff = tcp_send_head(sk);
3995 	if (unlikely(buff)) {
3996 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3997 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3998 	}
3999 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4000 
4001 	/* Timer for repeating the SYN until an answer. */
4002 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4003 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4004 	return 0;
4005 }
4006 EXPORT_SYMBOL(tcp_connect);
4007 
4008 u32 tcp_delack_max(const struct sock *sk)
4009 {
4010 	const struct dst_entry *dst = __sk_dst_get(sk);
4011 	u32 delack_max = inet_csk(sk)->icsk_delack_max;
4012 
4013 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
4014 		u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
4015 		u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
4016 
4017 		delack_max = min_t(u32, delack_max, delack_from_rto_min);
4018 	}
4019 	return delack_max;
4020 }
4021 
4022 /* Send out a delayed ack, the caller does the policy checking
4023  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4024  * for details.
4025  */
4026 void tcp_send_delayed_ack(struct sock *sk)
4027 {
4028 	struct inet_connection_sock *icsk = inet_csk(sk);
4029 	int ato = icsk->icsk_ack.ato;
4030 	unsigned long timeout;
4031 
4032 	if (ato > TCP_DELACK_MIN) {
4033 		const struct tcp_sock *tp = tcp_sk(sk);
4034 		int max_ato = HZ / 2;
4035 
4036 		if (inet_csk_in_pingpong_mode(sk) ||
4037 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4038 			max_ato = TCP_DELACK_MAX;
4039 
4040 		/* Slow path, intersegment interval is "high". */
4041 
4042 		/* If some rtt estimate is known, use it to bound delayed ack.
4043 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4044 		 * directly.
4045 		 */
4046 		if (tp->srtt_us) {
4047 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4048 					TCP_DELACK_MIN);
4049 
4050 			if (rtt < max_ato)
4051 				max_ato = rtt;
4052 		}
4053 
4054 		ato = min(ato, max_ato);
4055 	}
4056 
4057 	ato = min_t(u32, ato, tcp_delack_max(sk));
4058 
4059 	/* Stay within the limit we were given */
4060 	timeout = jiffies + ato;
4061 
4062 	/* Use new timeout only if there wasn't a older one earlier. */
4063 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4064 		/* If delack timer is about to expire, send ACK now. */
4065 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4066 			tcp_send_ack(sk);
4067 			return;
4068 		}
4069 
4070 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4071 			timeout = icsk->icsk_ack.timeout;
4072 	}
4073 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4074 	icsk->icsk_ack.timeout = timeout;
4075 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4076 }
4077 
4078 /* This routine sends an ack and also updates the window. */
4079 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4080 {
4081 	struct sk_buff *buff;
4082 
4083 	/* If we have been reset, we may not send again. */
4084 	if (sk->sk_state == TCP_CLOSE)
4085 		return;
4086 
4087 	/* We are not putting this on the write queue, so
4088 	 * tcp_transmit_skb() will set the ownership to this
4089 	 * sock.
4090 	 */
4091 	buff = alloc_skb(MAX_TCP_HEADER,
4092 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4093 	if (unlikely(!buff)) {
4094 		struct inet_connection_sock *icsk = inet_csk(sk);
4095 		unsigned long delay;
4096 
4097 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4098 		if (delay < TCP_RTO_MAX)
4099 			icsk->icsk_ack.retry++;
4100 		inet_csk_schedule_ack(sk);
4101 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4102 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4103 		return;
4104 	}
4105 
4106 	/* Reserve space for headers and prepare control bits. */
4107 	skb_reserve(buff, MAX_TCP_HEADER);
4108 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4109 
4110 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4111 	 * too much.
4112 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4113 	 */
4114 	skb_set_tcp_pure_ack(buff);
4115 
4116 	/* Send it off, this clears delayed acks for us. */
4117 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4118 }
4119 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4120 
4121 void tcp_send_ack(struct sock *sk)
4122 {
4123 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4124 }
4125 
4126 /* This routine sends a packet with an out of date sequence
4127  * number. It assumes the other end will try to ack it.
4128  *
4129  * Question: what should we make while urgent mode?
4130  * 4.4BSD forces sending single byte of data. We cannot send
4131  * out of window data, because we have SND.NXT==SND.MAX...
4132  *
4133  * Current solution: to send TWO zero-length segments in urgent mode:
4134  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4135  * out-of-date with SND.UNA-1 to probe window.
4136  */
4137 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4138 {
4139 	struct tcp_sock *tp = tcp_sk(sk);
4140 	struct sk_buff *skb;
4141 
4142 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4143 	skb = alloc_skb(MAX_TCP_HEADER,
4144 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4145 	if (!skb)
4146 		return -1;
4147 
4148 	/* Reserve space for headers and set control bits. */
4149 	skb_reserve(skb, MAX_TCP_HEADER);
4150 	/* Use a previous sequence.  This should cause the other
4151 	 * end to send an ack.  Don't queue or clone SKB, just
4152 	 * send it.
4153 	 */
4154 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4155 	NET_INC_STATS(sock_net(sk), mib);
4156 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4157 }
4158 
4159 /* Called from setsockopt( ... TCP_REPAIR ) */
4160 void tcp_send_window_probe(struct sock *sk)
4161 {
4162 	if (sk->sk_state == TCP_ESTABLISHED) {
4163 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4164 		tcp_mstamp_refresh(tcp_sk(sk));
4165 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4166 	}
4167 }
4168 
4169 /* Initiate keepalive or window probe from timer. */
4170 int tcp_write_wakeup(struct sock *sk, int mib)
4171 {
4172 	struct tcp_sock *tp = tcp_sk(sk);
4173 	struct sk_buff *skb;
4174 
4175 	if (sk->sk_state == TCP_CLOSE)
4176 		return -1;
4177 
4178 	skb = tcp_send_head(sk);
4179 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4180 		int err;
4181 		unsigned int mss = tcp_current_mss(sk);
4182 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4183 
4184 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4185 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4186 
4187 		/* We are probing the opening of a window
4188 		 * but the window size is != 0
4189 		 * must have been a result SWS avoidance ( sender )
4190 		 */
4191 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4192 		    skb->len > mss) {
4193 			seg_size = min(seg_size, mss);
4194 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4195 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4196 					 skb, seg_size, mss, GFP_ATOMIC))
4197 				return -1;
4198 		} else if (!tcp_skb_pcount(skb))
4199 			tcp_set_skb_tso_segs(skb, mss);
4200 
4201 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4202 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4203 		if (!err)
4204 			tcp_event_new_data_sent(sk, skb);
4205 		return err;
4206 	} else {
4207 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4208 			tcp_xmit_probe_skb(sk, 1, mib);
4209 		return tcp_xmit_probe_skb(sk, 0, mib);
4210 	}
4211 }
4212 
4213 /* A window probe timeout has occurred.  If window is not closed send
4214  * a partial packet else a zero probe.
4215  */
4216 void tcp_send_probe0(struct sock *sk)
4217 {
4218 	struct inet_connection_sock *icsk = inet_csk(sk);
4219 	struct tcp_sock *tp = tcp_sk(sk);
4220 	struct net *net = sock_net(sk);
4221 	unsigned long timeout;
4222 	int err;
4223 
4224 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4225 
4226 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4227 		/* Cancel probe timer, if it is not required. */
4228 		icsk->icsk_probes_out = 0;
4229 		icsk->icsk_backoff = 0;
4230 		icsk->icsk_probes_tstamp = 0;
4231 		return;
4232 	}
4233 
4234 	icsk->icsk_probes_out++;
4235 	if (err <= 0) {
4236 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4237 			icsk->icsk_backoff++;
4238 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4239 	} else {
4240 		/* If packet was not sent due to local congestion,
4241 		 * Let senders fight for local resources conservatively.
4242 		 */
4243 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4244 	}
4245 
4246 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4247 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4248 }
4249 
4250 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4251 {
4252 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4253 	struct flowi fl;
4254 	int res;
4255 
4256 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4257 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4258 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4259 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4260 				  NULL);
4261 	if (!res) {
4262 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4263 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4264 		if (unlikely(tcp_passive_fastopen(sk))) {
4265 			/* sk has const attribute because listeners are lockless.
4266 			 * However in this case, we are dealing with a passive fastopen
4267 			 * socket thus we can change total_retrans value.
4268 			 */
4269 			tcp_sk_rw(sk)->total_retrans++;
4270 		}
4271 		trace_tcp_retransmit_synack(sk, req);
4272 	}
4273 	return res;
4274 }
4275 EXPORT_SYMBOL(tcp_rtx_synack);
4276