1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 tcp_check_space(sk); 86 } 87 88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 89 * window scaling factor due to loss of precision. 90 * If window has been shrunk, what should we make? It is not clear at all. 91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 93 * invalid. OK, let's make this for now: 94 */ 95 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 96 { 97 const struct tcp_sock *tp = tcp_sk(sk); 98 99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 100 (tp->rx_opt.wscale_ok && 101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. 141 */ 142 void tcp_cwnd_restart(struct sock *sk, s32 delta) 143 { 144 struct tcp_sock *tp = tcp_sk(sk); 145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 146 u32 cwnd = tcp_snd_cwnd(tp); 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 156 tp->snd_cwnd_stamp = tcp_jiffies32; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_jiffies32; 166 167 if (tcp_packets_in_flight(tp) == 0) 168 tcp_ca_event(sk, CA_EVENT_TX_START); 169 170 tp->lsndtime = now; 171 172 /* If it is a reply for ato after last received 173 * packet, enter pingpong mode. 174 */ 175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_enter_pingpong_mode(sk); 177 } 178 179 /* Account for an ACK we sent. */ 180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 181 { 182 struct tcp_sock *tp = tcp_sk(sk); 183 184 if (unlikely(tp->compressed_ack)) { 185 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 186 tp->compressed_ack); 187 tp->compressed_ack = 0; 188 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 189 __sock_put(sk); 190 } 191 192 if (unlikely(rcv_nxt != tp->rcv_nxt)) 193 return; /* Special ACK sent by DCTCP to reflect ECN */ 194 tcp_dec_quickack_mode(sk); 195 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 196 } 197 198 /* Determine a window scaling and initial window to offer. 199 * Based on the assumption that the given amount of space 200 * will be offered. Store the results in the tp structure. 201 * NOTE: for smooth operation initial space offering should 202 * be a multiple of mss if possible. We assume here that mss >= 1. 203 * This MUST be enforced by all callers. 204 */ 205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 206 __u32 *rcv_wnd, __u32 *__window_clamp, 207 int wscale_ok, __u8 *rcv_wscale, 208 __u32 init_rcv_wnd) 209 { 210 unsigned int space = (__space < 0 ? 0 : __space); 211 u32 window_clamp = READ_ONCE(*__window_clamp); 212 213 /* If no clamp set the clamp to the max possible scaled window */ 214 if (window_clamp == 0) 215 window_clamp = (U16_MAX << TCP_MAX_WSCALE); 216 space = min(window_clamp, space); 217 218 /* Quantize space offering to a multiple of mss if possible. */ 219 if (space > mss) 220 space = rounddown(space, mss); 221 222 /* NOTE: offering an initial window larger than 32767 223 * will break some buggy TCP stacks. If the admin tells us 224 * it is likely we could be speaking with such a buggy stack 225 * we will truncate our initial window offering to 32K-1 226 * unless the remote has sent us a window scaling option, 227 * which we interpret as a sign the remote TCP is not 228 * misinterpreting the window field as a signed quantity. 229 */ 230 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 232 else 233 (*rcv_wnd) = min_t(u32, space, U16_MAX); 234 235 if (init_rcv_wnd) 236 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 237 238 *rcv_wscale = 0; 239 if (wscale_ok) { 240 /* Set window scaling on max possible window */ 241 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 242 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 243 space = min_t(u32, space, window_clamp); 244 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 245 0, TCP_MAX_WSCALE); 246 } 247 /* Set the clamp no higher than max representable value */ 248 WRITE_ONCE(*__window_clamp, 249 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp)); 250 } 251 EXPORT_SYMBOL(tcp_select_initial_window); 252 253 /* Chose a new window to advertise, update state in tcp_sock for the 254 * socket, and return result with RFC1323 scaling applied. The return 255 * value can be stuffed directly into th->window for an outgoing 256 * frame. 257 */ 258 static u16 tcp_select_window(struct sock *sk) 259 { 260 struct tcp_sock *tp = tcp_sk(sk); 261 struct net *net = sock_net(sk); 262 u32 old_win = tp->rcv_wnd; 263 u32 cur_win, new_win; 264 265 /* Make the window 0 if we failed to queue the data because we 266 * are out of memory. The window is temporary, so we don't store 267 * it on the socket. 268 */ 269 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) 270 return 0; 271 272 cur_win = tcp_receive_window(tp); 273 new_win = __tcp_select_window(sk); 274 if (new_win < cur_win) { 275 /* Danger Will Robinson! 276 * Don't update rcv_wup/rcv_wnd here or else 277 * we will not be able to advertise a zero 278 * window in time. --DaveM 279 * 280 * Relax Will Robinson. 281 */ 282 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 283 /* Never shrink the offered window */ 284 if (new_win == 0) 285 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 286 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 287 } 288 } 289 290 tp->rcv_wnd = new_win; 291 tp->rcv_wup = tp->rcv_nxt; 292 293 /* Make sure we do not exceed the maximum possible 294 * scaled window. 295 */ 296 if (!tp->rx_opt.rcv_wscale && 297 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 298 new_win = min(new_win, MAX_TCP_WINDOW); 299 else 300 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 301 302 /* RFC1323 scaling applied */ 303 new_win >>= tp->rx_opt.rcv_wscale; 304 305 /* If we advertise zero window, disable fast path. */ 306 if (new_win == 0) { 307 tp->pred_flags = 0; 308 if (old_win) 309 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 310 } else if (old_win == 0) { 311 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 312 } 313 314 return new_win; 315 } 316 317 /* Packet ECN state for a SYN-ACK */ 318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 319 { 320 const struct tcp_sock *tp = tcp_sk(sk); 321 322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 323 if (!(tp->ecn_flags & TCP_ECN_OK)) 324 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 325 else if (tcp_ca_needs_ecn(sk) || 326 tcp_bpf_ca_needs_ecn(sk)) 327 INET_ECN_xmit(sk); 328 } 329 330 /* Packet ECN state for a SYN. */ 331 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 332 { 333 struct tcp_sock *tp = tcp_sk(sk); 334 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 335 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 336 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 337 338 if (!use_ecn) { 339 const struct dst_entry *dst = __sk_dst_get(sk); 340 341 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 342 use_ecn = true; 343 } 344 345 tp->ecn_flags = 0; 346 347 if (use_ecn) { 348 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 349 tp->ecn_flags = TCP_ECN_OK; 350 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 351 INET_ECN_xmit(sk); 352 } 353 } 354 355 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 356 { 357 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 358 /* tp->ecn_flags are cleared at a later point in time when 359 * SYN ACK is ultimatively being received. 360 */ 361 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 362 } 363 364 static void 365 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 366 { 367 if (inet_rsk(req)->ecn_ok) 368 th->ece = 1; 369 } 370 371 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 372 * be sent. 373 */ 374 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 375 struct tcphdr *th, int tcp_header_len) 376 { 377 struct tcp_sock *tp = tcp_sk(sk); 378 379 if (tp->ecn_flags & TCP_ECN_OK) { 380 /* Not-retransmitted data segment: set ECT and inject CWR. */ 381 if (skb->len != tcp_header_len && 382 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 383 INET_ECN_xmit(sk); 384 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 385 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 386 th->cwr = 1; 387 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 388 } 389 } else if (!tcp_ca_needs_ecn(sk)) { 390 /* ACK or retransmitted segment: clear ECT|CE */ 391 INET_ECN_dontxmit(sk); 392 } 393 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 394 th->ece = 1; 395 } 396 } 397 398 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 399 * auto increment end seqno. 400 */ 401 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 402 { 403 skb->ip_summed = CHECKSUM_PARTIAL; 404 405 TCP_SKB_CB(skb)->tcp_flags = flags; 406 407 tcp_skb_pcount_set(skb, 1); 408 409 TCP_SKB_CB(skb)->seq = seq; 410 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 411 seq++; 412 TCP_SKB_CB(skb)->end_seq = seq; 413 } 414 415 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 416 { 417 return tp->snd_una != tp->snd_up; 418 } 419 420 #define OPTION_SACK_ADVERTISE BIT(0) 421 #define OPTION_TS BIT(1) 422 #define OPTION_MD5 BIT(2) 423 #define OPTION_WSCALE BIT(3) 424 #define OPTION_FAST_OPEN_COOKIE BIT(8) 425 #define OPTION_SMC BIT(9) 426 #define OPTION_MPTCP BIT(10) 427 428 static void smc_options_write(__be32 *ptr, u16 *options) 429 { 430 #if IS_ENABLED(CONFIG_SMC) 431 if (static_branch_unlikely(&tcp_have_smc)) { 432 if (unlikely(OPTION_SMC & *options)) { 433 *ptr++ = htonl((TCPOPT_NOP << 24) | 434 (TCPOPT_NOP << 16) | 435 (TCPOPT_EXP << 8) | 436 (TCPOLEN_EXP_SMC_BASE)); 437 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 438 } 439 } 440 #endif 441 } 442 443 struct tcp_out_options { 444 u16 options; /* bit field of OPTION_* */ 445 u16 mss; /* 0 to disable */ 446 u8 ws; /* window scale, 0 to disable */ 447 u8 num_sack_blocks; /* number of SACK blocks to include */ 448 u8 hash_size; /* bytes in hash_location */ 449 u8 bpf_opt_len; /* length of BPF hdr option */ 450 __u8 *hash_location; /* temporary pointer, overloaded */ 451 __u32 tsval, tsecr; /* need to include OPTION_TS */ 452 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 453 struct mptcp_out_options mptcp; 454 }; 455 456 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 457 struct tcp_sock *tp, 458 struct tcp_out_options *opts) 459 { 460 #if IS_ENABLED(CONFIG_MPTCP) 461 if (unlikely(OPTION_MPTCP & opts->options)) 462 mptcp_write_options(th, ptr, tp, &opts->mptcp); 463 #endif 464 } 465 466 #ifdef CONFIG_CGROUP_BPF 467 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 468 enum tcp_synack_type synack_type) 469 { 470 if (unlikely(!skb)) 471 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 472 473 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 474 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 475 476 return 0; 477 } 478 479 /* req, syn_skb and synack_type are used when writing synack */ 480 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 481 struct request_sock *req, 482 struct sk_buff *syn_skb, 483 enum tcp_synack_type synack_type, 484 struct tcp_out_options *opts, 485 unsigned int *remaining) 486 { 487 struct bpf_sock_ops_kern sock_ops; 488 int err; 489 490 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 491 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 492 !*remaining) 493 return; 494 495 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 496 497 /* init sock_ops */ 498 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 499 500 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 501 502 if (req) { 503 /* The listen "sk" cannot be passed here because 504 * it is not locked. It would not make too much 505 * sense to do bpf_setsockopt(listen_sk) based 506 * on individual connection request also. 507 * 508 * Thus, "req" is passed here and the cgroup-bpf-progs 509 * of the listen "sk" will be run. 510 * 511 * "req" is also used here for fastopen even the "sk" here is 512 * a fullsock "child" sk. It is to keep the behavior 513 * consistent between fastopen and non-fastopen on 514 * the bpf programming side. 515 */ 516 sock_ops.sk = (struct sock *)req; 517 sock_ops.syn_skb = syn_skb; 518 } else { 519 sock_owned_by_me(sk); 520 521 sock_ops.is_fullsock = 1; 522 sock_ops.sk = sk; 523 } 524 525 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 526 sock_ops.remaining_opt_len = *remaining; 527 /* tcp_current_mss() does not pass a skb */ 528 if (skb) 529 bpf_skops_init_skb(&sock_ops, skb, 0); 530 531 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 532 533 if (err || sock_ops.remaining_opt_len == *remaining) 534 return; 535 536 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 537 /* round up to 4 bytes */ 538 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 539 540 *remaining -= opts->bpf_opt_len; 541 } 542 543 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 544 struct request_sock *req, 545 struct sk_buff *syn_skb, 546 enum tcp_synack_type synack_type, 547 struct tcp_out_options *opts) 548 { 549 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 550 struct bpf_sock_ops_kern sock_ops; 551 int err; 552 553 if (likely(!max_opt_len)) 554 return; 555 556 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 557 558 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 559 560 if (req) { 561 sock_ops.sk = (struct sock *)req; 562 sock_ops.syn_skb = syn_skb; 563 } else { 564 sock_owned_by_me(sk); 565 566 sock_ops.is_fullsock = 1; 567 sock_ops.sk = sk; 568 } 569 570 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 571 sock_ops.remaining_opt_len = max_opt_len; 572 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 573 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 574 575 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 576 577 if (err) 578 nr_written = 0; 579 else 580 nr_written = max_opt_len - sock_ops.remaining_opt_len; 581 582 if (nr_written < max_opt_len) 583 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 584 max_opt_len - nr_written); 585 } 586 #else 587 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 588 struct request_sock *req, 589 struct sk_buff *syn_skb, 590 enum tcp_synack_type synack_type, 591 struct tcp_out_options *opts, 592 unsigned int *remaining) 593 { 594 } 595 596 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 597 struct request_sock *req, 598 struct sk_buff *syn_skb, 599 enum tcp_synack_type synack_type, 600 struct tcp_out_options *opts) 601 { 602 } 603 #endif 604 605 /* Write previously computed TCP options to the packet. 606 * 607 * Beware: Something in the Internet is very sensitive to the ordering of 608 * TCP options, we learned this through the hard way, so be careful here. 609 * Luckily we can at least blame others for their non-compliance but from 610 * inter-operability perspective it seems that we're somewhat stuck with 611 * the ordering which we have been using if we want to keep working with 612 * those broken things (not that it currently hurts anybody as there isn't 613 * particular reason why the ordering would need to be changed). 614 * 615 * At least SACK_PERM as the first option is known to lead to a disaster 616 * (but it may well be that other scenarios fail similarly). 617 */ 618 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 619 struct tcp_out_options *opts) 620 { 621 __be32 *ptr = (__be32 *)(th + 1); 622 u16 options = opts->options; /* mungable copy */ 623 624 if (unlikely(OPTION_MD5 & options)) { 625 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 626 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 627 /* overload cookie hash location */ 628 opts->hash_location = (__u8 *)ptr; 629 ptr += 4; 630 } 631 632 if (unlikely(opts->mss)) { 633 *ptr++ = htonl((TCPOPT_MSS << 24) | 634 (TCPOLEN_MSS << 16) | 635 opts->mss); 636 } 637 638 if (likely(OPTION_TS & options)) { 639 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 640 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 641 (TCPOLEN_SACK_PERM << 16) | 642 (TCPOPT_TIMESTAMP << 8) | 643 TCPOLEN_TIMESTAMP); 644 options &= ~OPTION_SACK_ADVERTISE; 645 } else { 646 *ptr++ = htonl((TCPOPT_NOP << 24) | 647 (TCPOPT_NOP << 16) | 648 (TCPOPT_TIMESTAMP << 8) | 649 TCPOLEN_TIMESTAMP); 650 } 651 *ptr++ = htonl(opts->tsval); 652 *ptr++ = htonl(opts->tsecr); 653 } 654 655 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 656 *ptr++ = htonl((TCPOPT_NOP << 24) | 657 (TCPOPT_NOP << 16) | 658 (TCPOPT_SACK_PERM << 8) | 659 TCPOLEN_SACK_PERM); 660 } 661 662 if (unlikely(OPTION_WSCALE & options)) { 663 *ptr++ = htonl((TCPOPT_NOP << 24) | 664 (TCPOPT_WINDOW << 16) | 665 (TCPOLEN_WINDOW << 8) | 666 opts->ws); 667 } 668 669 if (unlikely(opts->num_sack_blocks)) { 670 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 671 tp->duplicate_sack : tp->selective_acks; 672 int this_sack; 673 674 *ptr++ = htonl((TCPOPT_NOP << 24) | 675 (TCPOPT_NOP << 16) | 676 (TCPOPT_SACK << 8) | 677 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 678 TCPOLEN_SACK_PERBLOCK))); 679 680 for (this_sack = 0; this_sack < opts->num_sack_blocks; 681 ++this_sack) { 682 *ptr++ = htonl(sp[this_sack].start_seq); 683 *ptr++ = htonl(sp[this_sack].end_seq); 684 } 685 686 tp->rx_opt.dsack = 0; 687 } 688 689 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 690 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 691 u8 *p = (u8 *)ptr; 692 u32 len; /* Fast Open option length */ 693 694 if (foc->exp) { 695 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 696 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 697 TCPOPT_FASTOPEN_MAGIC); 698 p += TCPOLEN_EXP_FASTOPEN_BASE; 699 } else { 700 len = TCPOLEN_FASTOPEN_BASE + foc->len; 701 *p++ = TCPOPT_FASTOPEN; 702 *p++ = len; 703 } 704 705 memcpy(p, foc->val, foc->len); 706 if ((len & 3) == 2) { 707 p[foc->len] = TCPOPT_NOP; 708 p[foc->len + 1] = TCPOPT_NOP; 709 } 710 ptr += (len + 3) >> 2; 711 } 712 713 smc_options_write(ptr, &options); 714 715 mptcp_options_write(th, ptr, tp, opts); 716 } 717 718 static void smc_set_option(const struct tcp_sock *tp, 719 struct tcp_out_options *opts, 720 unsigned int *remaining) 721 { 722 #if IS_ENABLED(CONFIG_SMC) 723 if (static_branch_unlikely(&tcp_have_smc)) { 724 if (tp->syn_smc) { 725 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 726 opts->options |= OPTION_SMC; 727 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 728 } 729 } 730 } 731 #endif 732 } 733 734 static void smc_set_option_cond(const struct tcp_sock *tp, 735 const struct inet_request_sock *ireq, 736 struct tcp_out_options *opts, 737 unsigned int *remaining) 738 { 739 #if IS_ENABLED(CONFIG_SMC) 740 if (static_branch_unlikely(&tcp_have_smc)) { 741 if (tp->syn_smc && ireq->smc_ok) { 742 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 743 opts->options |= OPTION_SMC; 744 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 745 } 746 } 747 } 748 #endif 749 } 750 751 static void mptcp_set_option_cond(const struct request_sock *req, 752 struct tcp_out_options *opts, 753 unsigned int *remaining) 754 { 755 if (rsk_is_mptcp(req)) { 756 unsigned int size; 757 758 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 759 if (*remaining >= size) { 760 opts->options |= OPTION_MPTCP; 761 *remaining -= size; 762 } 763 } 764 } 765 } 766 767 /* Compute TCP options for SYN packets. This is not the final 768 * network wire format yet. 769 */ 770 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 771 struct tcp_out_options *opts, 772 struct tcp_md5sig_key **md5) 773 { 774 struct tcp_sock *tp = tcp_sk(sk); 775 unsigned int remaining = MAX_TCP_OPTION_SPACE; 776 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 777 778 *md5 = NULL; 779 #ifdef CONFIG_TCP_MD5SIG 780 if (static_branch_unlikely(&tcp_md5_needed.key) && 781 rcu_access_pointer(tp->md5sig_info)) { 782 *md5 = tp->af_specific->md5_lookup(sk, sk); 783 if (*md5) { 784 opts->options |= OPTION_MD5; 785 remaining -= TCPOLEN_MD5SIG_ALIGNED; 786 } 787 } 788 #endif 789 790 /* We always get an MSS option. The option bytes which will be seen in 791 * normal data packets should timestamps be used, must be in the MSS 792 * advertised. But we subtract them from tp->mss_cache so that 793 * calculations in tcp_sendmsg are simpler etc. So account for this 794 * fact here if necessary. If we don't do this correctly, as a 795 * receiver we won't recognize data packets as being full sized when we 796 * should, and thus we won't abide by the delayed ACK rules correctly. 797 * SACKs don't matter, we never delay an ACK when we have any of those 798 * going out. */ 799 opts->mss = tcp_advertise_mss(sk); 800 remaining -= TCPOLEN_MSS_ALIGNED; 801 802 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) { 803 opts->options |= OPTION_TS; 804 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 805 opts->tsecr = tp->rx_opt.ts_recent; 806 remaining -= TCPOLEN_TSTAMP_ALIGNED; 807 } 808 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 809 opts->ws = tp->rx_opt.rcv_wscale; 810 opts->options |= OPTION_WSCALE; 811 remaining -= TCPOLEN_WSCALE_ALIGNED; 812 } 813 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 814 opts->options |= OPTION_SACK_ADVERTISE; 815 if (unlikely(!(OPTION_TS & opts->options))) 816 remaining -= TCPOLEN_SACKPERM_ALIGNED; 817 } 818 819 if (fastopen && fastopen->cookie.len >= 0) { 820 u32 need = fastopen->cookie.len; 821 822 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 823 TCPOLEN_FASTOPEN_BASE; 824 need = (need + 3) & ~3U; /* Align to 32 bits */ 825 if (remaining >= need) { 826 opts->options |= OPTION_FAST_OPEN_COOKIE; 827 opts->fastopen_cookie = &fastopen->cookie; 828 remaining -= need; 829 tp->syn_fastopen = 1; 830 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 831 } 832 } 833 834 smc_set_option(tp, opts, &remaining); 835 836 if (sk_is_mptcp(sk)) { 837 unsigned int size; 838 839 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 840 opts->options |= OPTION_MPTCP; 841 remaining -= size; 842 } 843 } 844 845 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 846 847 return MAX_TCP_OPTION_SPACE - remaining; 848 } 849 850 /* Set up TCP options for SYN-ACKs. */ 851 static unsigned int tcp_synack_options(const struct sock *sk, 852 struct request_sock *req, 853 unsigned int mss, struct sk_buff *skb, 854 struct tcp_out_options *opts, 855 const struct tcp_md5sig_key *md5, 856 struct tcp_fastopen_cookie *foc, 857 enum tcp_synack_type synack_type, 858 struct sk_buff *syn_skb) 859 { 860 struct inet_request_sock *ireq = inet_rsk(req); 861 unsigned int remaining = MAX_TCP_OPTION_SPACE; 862 863 #ifdef CONFIG_TCP_MD5SIG 864 if (md5) { 865 opts->options |= OPTION_MD5; 866 remaining -= TCPOLEN_MD5SIG_ALIGNED; 867 868 /* We can't fit any SACK blocks in a packet with MD5 + TS 869 * options. There was discussion about disabling SACK 870 * rather than TS in order to fit in better with old, 871 * buggy kernels, but that was deemed to be unnecessary. 872 */ 873 if (synack_type != TCP_SYNACK_COOKIE) 874 ireq->tstamp_ok &= !ireq->sack_ok; 875 } 876 #endif 877 878 /* We always send an MSS option. */ 879 opts->mss = mss; 880 remaining -= TCPOLEN_MSS_ALIGNED; 881 882 if (likely(ireq->wscale_ok)) { 883 opts->ws = ireq->rcv_wscale; 884 opts->options |= OPTION_WSCALE; 885 remaining -= TCPOLEN_WSCALE_ALIGNED; 886 } 887 if (likely(ireq->tstamp_ok)) { 888 opts->options |= OPTION_TS; 889 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 890 opts->tsecr = READ_ONCE(req->ts_recent); 891 remaining -= TCPOLEN_TSTAMP_ALIGNED; 892 } 893 if (likely(ireq->sack_ok)) { 894 opts->options |= OPTION_SACK_ADVERTISE; 895 if (unlikely(!ireq->tstamp_ok)) 896 remaining -= TCPOLEN_SACKPERM_ALIGNED; 897 } 898 if (foc != NULL && foc->len >= 0) { 899 u32 need = foc->len; 900 901 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 902 TCPOLEN_FASTOPEN_BASE; 903 need = (need + 3) & ~3U; /* Align to 32 bits */ 904 if (remaining >= need) { 905 opts->options |= OPTION_FAST_OPEN_COOKIE; 906 opts->fastopen_cookie = foc; 907 remaining -= need; 908 } 909 } 910 911 mptcp_set_option_cond(req, opts, &remaining); 912 913 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 914 915 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 916 synack_type, opts, &remaining); 917 918 return MAX_TCP_OPTION_SPACE - remaining; 919 } 920 921 /* Compute TCP options for ESTABLISHED sockets. This is not the 922 * final wire format yet. 923 */ 924 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 925 struct tcp_out_options *opts, 926 struct tcp_md5sig_key **md5) 927 { 928 struct tcp_sock *tp = tcp_sk(sk); 929 unsigned int size = 0; 930 unsigned int eff_sacks; 931 932 opts->options = 0; 933 934 *md5 = NULL; 935 #ifdef CONFIG_TCP_MD5SIG 936 if (static_branch_unlikely(&tcp_md5_needed.key) && 937 rcu_access_pointer(tp->md5sig_info)) { 938 *md5 = tp->af_specific->md5_lookup(sk, sk); 939 if (*md5) { 940 opts->options |= OPTION_MD5; 941 size += TCPOLEN_MD5SIG_ALIGNED; 942 } 943 } 944 #endif 945 946 if (likely(tp->rx_opt.tstamp_ok)) { 947 opts->options |= OPTION_TS; 948 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 949 opts->tsecr = tp->rx_opt.ts_recent; 950 size += TCPOLEN_TSTAMP_ALIGNED; 951 } 952 953 /* MPTCP options have precedence over SACK for the limited TCP 954 * option space because a MPTCP connection would be forced to 955 * fall back to regular TCP if a required multipath option is 956 * missing. SACK still gets a chance to use whatever space is 957 * left. 958 */ 959 if (sk_is_mptcp(sk)) { 960 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 961 unsigned int opt_size = 0; 962 963 if (mptcp_established_options(sk, skb, &opt_size, remaining, 964 &opts->mptcp)) { 965 opts->options |= OPTION_MPTCP; 966 size += opt_size; 967 } 968 } 969 970 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 971 if (unlikely(eff_sacks)) { 972 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 973 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 974 TCPOLEN_SACK_PERBLOCK)) 975 return size; 976 977 opts->num_sack_blocks = 978 min_t(unsigned int, eff_sacks, 979 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 980 TCPOLEN_SACK_PERBLOCK); 981 982 size += TCPOLEN_SACK_BASE_ALIGNED + 983 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 984 } 985 986 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 987 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 988 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 989 990 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 991 992 size = MAX_TCP_OPTION_SPACE - remaining; 993 } 994 995 return size; 996 } 997 998 999 /* TCP SMALL QUEUES (TSQ) 1000 * 1001 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1002 * to reduce RTT and bufferbloat. 1003 * We do this using a special skb destructor (tcp_wfree). 1004 * 1005 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1006 * needs to be reallocated in a driver. 1007 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1008 * 1009 * Since transmit from skb destructor is forbidden, we use a tasklet 1010 * to process all sockets that eventually need to send more skbs. 1011 * We use one tasklet per cpu, with its own queue of sockets. 1012 */ 1013 struct tsq_tasklet { 1014 struct tasklet_struct tasklet; 1015 struct list_head head; /* queue of tcp sockets */ 1016 }; 1017 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1018 1019 static void tcp_tsq_write(struct sock *sk) 1020 { 1021 if ((1 << sk->sk_state) & 1022 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1023 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1024 struct tcp_sock *tp = tcp_sk(sk); 1025 1026 if (tp->lost_out > tp->retrans_out && 1027 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1028 tcp_mstamp_refresh(tp); 1029 tcp_xmit_retransmit_queue(sk); 1030 } 1031 1032 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1033 0, GFP_ATOMIC); 1034 } 1035 } 1036 1037 static void tcp_tsq_handler(struct sock *sk) 1038 { 1039 bh_lock_sock(sk); 1040 if (!sock_owned_by_user(sk)) 1041 tcp_tsq_write(sk); 1042 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1043 sock_hold(sk); 1044 bh_unlock_sock(sk); 1045 } 1046 /* 1047 * One tasklet per cpu tries to send more skbs. 1048 * We run in tasklet context but need to disable irqs when 1049 * transferring tsq->head because tcp_wfree() might 1050 * interrupt us (non NAPI drivers) 1051 */ 1052 static void tcp_tasklet_func(struct tasklet_struct *t) 1053 { 1054 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1055 LIST_HEAD(list); 1056 unsigned long flags; 1057 struct list_head *q, *n; 1058 struct tcp_sock *tp; 1059 struct sock *sk; 1060 1061 local_irq_save(flags); 1062 list_splice_init(&tsq->head, &list); 1063 local_irq_restore(flags); 1064 1065 list_for_each_safe(q, n, &list) { 1066 tp = list_entry(q, struct tcp_sock, tsq_node); 1067 list_del(&tp->tsq_node); 1068 1069 sk = (struct sock *)tp; 1070 smp_mb__before_atomic(); 1071 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1072 1073 tcp_tsq_handler(sk); 1074 sk_free(sk); 1075 } 1076 } 1077 1078 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1079 TCPF_WRITE_TIMER_DEFERRED | \ 1080 TCPF_DELACK_TIMER_DEFERRED | \ 1081 TCPF_MTU_REDUCED_DEFERRED) 1082 /** 1083 * tcp_release_cb - tcp release_sock() callback 1084 * @sk: socket 1085 * 1086 * called from release_sock() to perform protocol dependent 1087 * actions before socket release. 1088 */ 1089 void tcp_release_cb(struct sock *sk) 1090 { 1091 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1092 unsigned long nflags; 1093 1094 /* perform an atomic operation only if at least one flag is set */ 1095 do { 1096 if (!(flags & TCP_DEFERRED_ALL)) 1097 return; 1098 nflags = flags & ~TCP_DEFERRED_ALL; 1099 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1100 1101 if (flags & TCPF_TSQ_DEFERRED) { 1102 tcp_tsq_write(sk); 1103 __sock_put(sk); 1104 } 1105 /* Here begins the tricky part : 1106 * We are called from release_sock() with : 1107 * 1) BH disabled 1108 * 2) sk_lock.slock spinlock held 1109 * 3) socket owned by us (sk->sk_lock.owned == 1) 1110 * 1111 * But following code is meant to be called from BH handlers, 1112 * so we should keep BH disabled, but early release socket ownership 1113 */ 1114 sock_release_ownership(sk); 1115 1116 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1117 tcp_write_timer_handler(sk); 1118 __sock_put(sk); 1119 } 1120 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1121 tcp_delack_timer_handler(sk); 1122 __sock_put(sk); 1123 } 1124 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1125 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1126 __sock_put(sk); 1127 } 1128 } 1129 EXPORT_SYMBOL(tcp_release_cb); 1130 1131 void __init tcp_tasklet_init(void) 1132 { 1133 int i; 1134 1135 for_each_possible_cpu(i) { 1136 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1137 1138 INIT_LIST_HEAD(&tsq->head); 1139 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1140 } 1141 } 1142 1143 /* 1144 * Write buffer destructor automatically called from kfree_skb. 1145 * We can't xmit new skbs from this context, as we might already 1146 * hold qdisc lock. 1147 */ 1148 void tcp_wfree(struct sk_buff *skb) 1149 { 1150 struct sock *sk = skb->sk; 1151 struct tcp_sock *tp = tcp_sk(sk); 1152 unsigned long flags, nval, oval; 1153 struct tsq_tasklet *tsq; 1154 bool empty; 1155 1156 /* Keep one reference on sk_wmem_alloc. 1157 * Will be released by sk_free() from here or tcp_tasklet_func() 1158 */ 1159 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1160 1161 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1162 * Wait until our queues (qdisc + devices) are drained. 1163 * This gives : 1164 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1165 * - chance for incoming ACK (processed by another cpu maybe) 1166 * to migrate this flow (skb->ooo_okay will be eventually set) 1167 */ 1168 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1169 goto out; 1170 1171 oval = smp_load_acquire(&sk->sk_tsq_flags); 1172 do { 1173 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1174 goto out; 1175 1176 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1177 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1178 1179 /* queue this socket to tasklet queue */ 1180 local_irq_save(flags); 1181 tsq = this_cpu_ptr(&tsq_tasklet); 1182 empty = list_empty(&tsq->head); 1183 list_add(&tp->tsq_node, &tsq->head); 1184 if (empty) 1185 tasklet_schedule(&tsq->tasklet); 1186 local_irq_restore(flags); 1187 return; 1188 out: 1189 sk_free(sk); 1190 } 1191 1192 /* Note: Called under soft irq. 1193 * We can call TCP stack right away, unless socket is owned by user. 1194 */ 1195 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1196 { 1197 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1198 struct sock *sk = (struct sock *)tp; 1199 1200 tcp_tsq_handler(sk); 1201 sock_put(sk); 1202 1203 return HRTIMER_NORESTART; 1204 } 1205 1206 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1207 u64 prior_wstamp) 1208 { 1209 struct tcp_sock *tp = tcp_sk(sk); 1210 1211 if (sk->sk_pacing_status != SK_PACING_NONE) { 1212 unsigned long rate = sk->sk_pacing_rate; 1213 1214 /* Original sch_fq does not pace first 10 MSS 1215 * Note that tp->data_segs_out overflows after 2^32 packets, 1216 * this is a minor annoyance. 1217 */ 1218 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1219 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1220 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1221 1222 /* take into account OS jitter */ 1223 len_ns -= min_t(u64, len_ns / 2, credit); 1224 tp->tcp_wstamp_ns += len_ns; 1225 } 1226 } 1227 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1228 } 1229 1230 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1231 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1232 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1233 1234 /* This routine actually transmits TCP packets queued in by 1235 * tcp_do_sendmsg(). This is used by both the initial 1236 * transmission and possible later retransmissions. 1237 * All SKB's seen here are completely headerless. It is our 1238 * job to build the TCP header, and pass the packet down to 1239 * IP so it can do the same plus pass the packet off to the 1240 * device. 1241 * 1242 * We are working here with either a clone of the original 1243 * SKB, or a fresh unique copy made by the retransmit engine. 1244 */ 1245 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1246 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1247 { 1248 const struct inet_connection_sock *icsk = inet_csk(sk); 1249 struct inet_sock *inet; 1250 struct tcp_sock *tp; 1251 struct tcp_skb_cb *tcb; 1252 struct tcp_out_options opts; 1253 unsigned int tcp_options_size, tcp_header_size; 1254 struct sk_buff *oskb = NULL; 1255 struct tcp_md5sig_key *md5; 1256 struct tcphdr *th; 1257 u64 prior_wstamp; 1258 int err; 1259 1260 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1261 tp = tcp_sk(sk); 1262 prior_wstamp = tp->tcp_wstamp_ns; 1263 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1264 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 1265 if (clone_it) { 1266 oskb = skb; 1267 1268 tcp_skb_tsorted_save(oskb) { 1269 if (unlikely(skb_cloned(oskb))) 1270 skb = pskb_copy(oskb, gfp_mask); 1271 else 1272 skb = skb_clone(oskb, gfp_mask); 1273 } tcp_skb_tsorted_restore(oskb); 1274 1275 if (unlikely(!skb)) 1276 return -ENOBUFS; 1277 /* retransmit skbs might have a non zero value in skb->dev 1278 * because skb->dev is aliased with skb->rbnode.rb_left 1279 */ 1280 skb->dev = NULL; 1281 } 1282 1283 inet = inet_sk(sk); 1284 tcb = TCP_SKB_CB(skb); 1285 memset(&opts, 0, sizeof(opts)); 1286 1287 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1288 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1289 } else { 1290 tcp_options_size = tcp_established_options(sk, skb, &opts, 1291 &md5); 1292 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1293 * at receiver : This slightly improve GRO performance. 1294 * Note that we do not force the PSH flag for non GSO packets, 1295 * because they might be sent under high congestion events, 1296 * and in this case it is better to delay the delivery of 1-MSS 1297 * packets and thus the corresponding ACK packet that would 1298 * release the following packet. 1299 */ 1300 if (tcp_skb_pcount(skb) > 1) 1301 tcb->tcp_flags |= TCPHDR_PSH; 1302 } 1303 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1304 1305 /* We set skb->ooo_okay to one if this packet can select 1306 * a different TX queue than prior packets of this flow, 1307 * to avoid self inflicted reorders. 1308 * The 'other' queue decision is based on current cpu number 1309 * if XPS is enabled, or sk->sk_txhash otherwise. 1310 * We can switch to another (and better) queue if: 1311 * 1) No packet with payload is in qdisc/device queues. 1312 * Delays in TX completion can defeat the test 1313 * even if packets were already sent. 1314 * 2) Or rtx queue is empty. 1315 * This mitigates above case if ACK packets for 1316 * all prior packets were already processed. 1317 */ 1318 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1319 tcp_rtx_queue_empty(sk); 1320 1321 /* If we had to use memory reserve to allocate this skb, 1322 * this might cause drops if packet is looped back : 1323 * Other socket might not have SOCK_MEMALLOC. 1324 * Packets not looped back do not care about pfmemalloc. 1325 */ 1326 skb->pfmemalloc = 0; 1327 1328 skb_push(skb, tcp_header_size); 1329 skb_reset_transport_header(skb); 1330 1331 skb_orphan(skb); 1332 skb->sk = sk; 1333 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1334 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1335 1336 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1337 1338 /* Build TCP header and checksum it. */ 1339 th = (struct tcphdr *)skb->data; 1340 th->source = inet->inet_sport; 1341 th->dest = inet->inet_dport; 1342 th->seq = htonl(tcb->seq); 1343 th->ack_seq = htonl(rcv_nxt); 1344 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1345 tcb->tcp_flags); 1346 1347 th->check = 0; 1348 th->urg_ptr = 0; 1349 1350 /* The urg_mode check is necessary during a below snd_una win probe */ 1351 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1352 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1353 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1354 th->urg = 1; 1355 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1356 th->urg_ptr = htons(0xFFFF); 1357 th->urg = 1; 1358 } 1359 } 1360 1361 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1362 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1363 th->window = htons(tcp_select_window(sk)); 1364 tcp_ecn_send(sk, skb, th, tcp_header_size); 1365 } else { 1366 /* RFC1323: The window in SYN & SYN/ACK segments 1367 * is never scaled. 1368 */ 1369 th->window = htons(min(tp->rcv_wnd, 65535U)); 1370 } 1371 1372 tcp_options_write(th, tp, &opts); 1373 1374 #ifdef CONFIG_TCP_MD5SIG 1375 /* Calculate the MD5 hash, as we have all we need now */ 1376 if (md5) { 1377 sk_gso_disable(sk); 1378 tp->af_specific->calc_md5_hash(opts.hash_location, 1379 md5, sk, skb); 1380 } 1381 #endif 1382 1383 /* BPF prog is the last one writing header option */ 1384 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1385 1386 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1387 tcp_v6_send_check, tcp_v4_send_check, 1388 sk, skb); 1389 1390 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1391 tcp_event_ack_sent(sk, rcv_nxt); 1392 1393 if (skb->len != tcp_header_size) { 1394 tcp_event_data_sent(tp, sk); 1395 tp->data_segs_out += tcp_skb_pcount(skb); 1396 tp->bytes_sent += skb->len - tcp_header_size; 1397 } 1398 1399 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1400 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1401 tcp_skb_pcount(skb)); 1402 1403 tp->segs_out += tcp_skb_pcount(skb); 1404 skb_set_hash_from_sk(skb, sk); 1405 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1406 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1407 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1408 1409 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1410 1411 /* Cleanup our debris for IP stacks */ 1412 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1413 sizeof(struct inet6_skb_parm))); 1414 1415 tcp_add_tx_delay(skb, tp); 1416 1417 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1418 inet6_csk_xmit, ip_queue_xmit, 1419 sk, skb, &inet->cork.fl); 1420 1421 if (unlikely(err > 0)) { 1422 tcp_enter_cwr(sk); 1423 err = net_xmit_eval(err); 1424 } 1425 if (!err && oskb) { 1426 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1427 tcp_rate_skb_sent(sk, oskb); 1428 } 1429 return err; 1430 } 1431 1432 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1433 gfp_t gfp_mask) 1434 { 1435 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1436 tcp_sk(sk)->rcv_nxt); 1437 } 1438 1439 /* This routine just queues the buffer for sending. 1440 * 1441 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1442 * otherwise socket can stall. 1443 */ 1444 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1445 { 1446 struct tcp_sock *tp = tcp_sk(sk); 1447 1448 /* Advance write_seq and place onto the write_queue. */ 1449 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1450 __skb_header_release(skb); 1451 tcp_add_write_queue_tail(sk, skb); 1452 sk_wmem_queued_add(sk, skb->truesize); 1453 sk_mem_charge(sk, skb->truesize); 1454 } 1455 1456 /* Initialize TSO segments for a packet. */ 1457 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1458 { 1459 if (skb->len <= mss_now) { 1460 /* Avoid the costly divide in the normal 1461 * non-TSO case. 1462 */ 1463 tcp_skb_pcount_set(skb, 1); 1464 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1465 } else { 1466 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1467 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1468 } 1469 } 1470 1471 /* Pcount in the middle of the write queue got changed, we need to do various 1472 * tweaks to fix counters 1473 */ 1474 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1475 { 1476 struct tcp_sock *tp = tcp_sk(sk); 1477 1478 tp->packets_out -= decr; 1479 1480 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1481 tp->sacked_out -= decr; 1482 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1483 tp->retrans_out -= decr; 1484 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1485 tp->lost_out -= decr; 1486 1487 /* Reno case is special. Sigh... */ 1488 if (tcp_is_reno(tp) && decr > 0) 1489 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1490 1491 if (tp->lost_skb_hint && 1492 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1493 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1494 tp->lost_cnt_hint -= decr; 1495 1496 tcp_verify_left_out(tp); 1497 } 1498 1499 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1500 { 1501 return TCP_SKB_CB(skb)->txstamp_ack || 1502 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1503 } 1504 1505 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1506 { 1507 struct skb_shared_info *shinfo = skb_shinfo(skb); 1508 1509 if (unlikely(tcp_has_tx_tstamp(skb)) && 1510 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1511 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1512 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1513 1514 shinfo->tx_flags &= ~tsflags; 1515 shinfo2->tx_flags |= tsflags; 1516 swap(shinfo->tskey, shinfo2->tskey); 1517 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1518 TCP_SKB_CB(skb)->txstamp_ack = 0; 1519 } 1520 } 1521 1522 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1523 { 1524 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1525 TCP_SKB_CB(skb)->eor = 0; 1526 } 1527 1528 /* Insert buff after skb on the write or rtx queue of sk. */ 1529 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1530 struct sk_buff *buff, 1531 struct sock *sk, 1532 enum tcp_queue tcp_queue) 1533 { 1534 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1535 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1536 else 1537 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1538 } 1539 1540 /* Function to create two new TCP segments. Shrinks the given segment 1541 * to the specified size and appends a new segment with the rest of the 1542 * packet to the list. This won't be called frequently, I hope. 1543 * Remember, these are still headerless SKBs at this point. 1544 */ 1545 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1546 struct sk_buff *skb, u32 len, 1547 unsigned int mss_now, gfp_t gfp) 1548 { 1549 struct tcp_sock *tp = tcp_sk(sk); 1550 struct sk_buff *buff; 1551 int old_factor; 1552 long limit; 1553 int nlen; 1554 u8 flags; 1555 1556 if (WARN_ON(len > skb->len)) 1557 return -EINVAL; 1558 1559 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1560 1561 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1562 * We need some allowance to not penalize applications setting small 1563 * SO_SNDBUF values. 1564 * Also allow first and last skb in retransmit queue to be split. 1565 */ 1566 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1567 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1568 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1569 skb != tcp_rtx_queue_head(sk) && 1570 skb != tcp_rtx_queue_tail(sk))) { 1571 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1572 return -ENOMEM; 1573 } 1574 1575 if (skb_unclone_keeptruesize(skb, gfp)) 1576 return -ENOMEM; 1577 1578 /* Get a new skb... force flag on. */ 1579 buff = tcp_stream_alloc_skb(sk, gfp, true); 1580 if (!buff) 1581 return -ENOMEM; /* We'll just try again later. */ 1582 skb_copy_decrypted(buff, skb); 1583 mptcp_skb_ext_copy(buff, skb); 1584 1585 sk_wmem_queued_add(sk, buff->truesize); 1586 sk_mem_charge(sk, buff->truesize); 1587 nlen = skb->len - len; 1588 buff->truesize += nlen; 1589 skb->truesize -= nlen; 1590 1591 /* Correct the sequence numbers. */ 1592 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1593 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1594 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1595 1596 /* PSH and FIN should only be set in the second packet. */ 1597 flags = TCP_SKB_CB(skb)->tcp_flags; 1598 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1599 TCP_SKB_CB(buff)->tcp_flags = flags; 1600 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1601 tcp_skb_fragment_eor(skb, buff); 1602 1603 skb_split(skb, buff, len); 1604 1605 skb_set_delivery_time(buff, skb->tstamp, true); 1606 tcp_fragment_tstamp(skb, buff); 1607 1608 old_factor = tcp_skb_pcount(skb); 1609 1610 /* Fix up tso_factor for both original and new SKB. */ 1611 tcp_set_skb_tso_segs(skb, mss_now); 1612 tcp_set_skb_tso_segs(buff, mss_now); 1613 1614 /* Update delivered info for the new segment */ 1615 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1616 1617 /* If this packet has been sent out already, we must 1618 * adjust the various packet counters. 1619 */ 1620 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1621 int diff = old_factor - tcp_skb_pcount(skb) - 1622 tcp_skb_pcount(buff); 1623 1624 if (diff) 1625 tcp_adjust_pcount(sk, skb, diff); 1626 } 1627 1628 /* Link BUFF into the send queue. */ 1629 __skb_header_release(buff); 1630 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1631 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1632 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1633 1634 return 0; 1635 } 1636 1637 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1638 * data is not copied, but immediately discarded. 1639 */ 1640 static int __pskb_trim_head(struct sk_buff *skb, int len) 1641 { 1642 struct skb_shared_info *shinfo; 1643 int i, k, eat; 1644 1645 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1646 eat = len; 1647 k = 0; 1648 shinfo = skb_shinfo(skb); 1649 for (i = 0; i < shinfo->nr_frags; i++) { 1650 int size = skb_frag_size(&shinfo->frags[i]); 1651 1652 if (size <= eat) { 1653 skb_frag_unref(skb, i); 1654 eat -= size; 1655 } else { 1656 shinfo->frags[k] = shinfo->frags[i]; 1657 if (eat) { 1658 skb_frag_off_add(&shinfo->frags[k], eat); 1659 skb_frag_size_sub(&shinfo->frags[k], eat); 1660 eat = 0; 1661 } 1662 k++; 1663 } 1664 } 1665 shinfo->nr_frags = k; 1666 1667 skb->data_len -= len; 1668 skb->len = skb->data_len; 1669 return len; 1670 } 1671 1672 /* Remove acked data from a packet in the transmit queue. */ 1673 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1674 { 1675 u32 delta_truesize; 1676 1677 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1678 return -ENOMEM; 1679 1680 delta_truesize = __pskb_trim_head(skb, len); 1681 1682 TCP_SKB_CB(skb)->seq += len; 1683 1684 skb->truesize -= delta_truesize; 1685 sk_wmem_queued_add(sk, -delta_truesize); 1686 if (!skb_zcopy_pure(skb)) 1687 sk_mem_uncharge(sk, delta_truesize); 1688 1689 /* Any change of skb->len requires recalculation of tso factor. */ 1690 if (tcp_skb_pcount(skb) > 1) 1691 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1692 1693 return 0; 1694 } 1695 1696 /* Calculate MSS not accounting any TCP options. */ 1697 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1698 { 1699 const struct tcp_sock *tp = tcp_sk(sk); 1700 const struct inet_connection_sock *icsk = inet_csk(sk); 1701 int mss_now; 1702 1703 /* Calculate base mss without TCP options: 1704 It is MMS_S - sizeof(tcphdr) of rfc1122 1705 */ 1706 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1707 1708 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1709 if (icsk->icsk_af_ops->net_frag_header_len) { 1710 const struct dst_entry *dst = __sk_dst_get(sk); 1711 1712 if (dst && dst_allfrag(dst)) 1713 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1714 } 1715 1716 /* Clamp it (mss_clamp does not include tcp options) */ 1717 if (mss_now > tp->rx_opt.mss_clamp) 1718 mss_now = tp->rx_opt.mss_clamp; 1719 1720 /* Now subtract optional transport overhead */ 1721 mss_now -= icsk->icsk_ext_hdr_len; 1722 1723 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1724 mss_now = max(mss_now, 1725 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1726 return mss_now; 1727 } 1728 1729 /* Calculate MSS. Not accounting for SACKs here. */ 1730 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1731 { 1732 /* Subtract TCP options size, not including SACKs */ 1733 return __tcp_mtu_to_mss(sk, pmtu) - 1734 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1735 } 1736 EXPORT_SYMBOL(tcp_mtu_to_mss); 1737 1738 /* Inverse of above */ 1739 int tcp_mss_to_mtu(struct sock *sk, int mss) 1740 { 1741 const struct tcp_sock *tp = tcp_sk(sk); 1742 const struct inet_connection_sock *icsk = inet_csk(sk); 1743 int mtu; 1744 1745 mtu = mss + 1746 tp->tcp_header_len + 1747 icsk->icsk_ext_hdr_len + 1748 icsk->icsk_af_ops->net_header_len; 1749 1750 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1751 if (icsk->icsk_af_ops->net_frag_header_len) { 1752 const struct dst_entry *dst = __sk_dst_get(sk); 1753 1754 if (dst && dst_allfrag(dst)) 1755 mtu += icsk->icsk_af_ops->net_frag_header_len; 1756 } 1757 return mtu; 1758 } 1759 EXPORT_SYMBOL(tcp_mss_to_mtu); 1760 1761 /* MTU probing init per socket */ 1762 void tcp_mtup_init(struct sock *sk) 1763 { 1764 struct tcp_sock *tp = tcp_sk(sk); 1765 struct inet_connection_sock *icsk = inet_csk(sk); 1766 struct net *net = sock_net(sk); 1767 1768 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1769 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1770 icsk->icsk_af_ops->net_header_len; 1771 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1772 icsk->icsk_mtup.probe_size = 0; 1773 if (icsk->icsk_mtup.enabled) 1774 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1775 } 1776 EXPORT_SYMBOL(tcp_mtup_init); 1777 1778 /* This function synchronize snd mss to current pmtu/exthdr set. 1779 1780 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1781 for TCP options, but includes only bare TCP header. 1782 1783 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1784 It is minimum of user_mss and mss received with SYN. 1785 It also does not include TCP options. 1786 1787 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1788 1789 tp->mss_cache is current effective sending mss, including 1790 all tcp options except for SACKs. It is evaluated, 1791 taking into account current pmtu, but never exceeds 1792 tp->rx_opt.mss_clamp. 1793 1794 NOTE1. rfc1122 clearly states that advertised MSS 1795 DOES NOT include either tcp or ip options. 1796 1797 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1798 are READ ONLY outside this function. --ANK (980731) 1799 */ 1800 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1801 { 1802 struct tcp_sock *tp = tcp_sk(sk); 1803 struct inet_connection_sock *icsk = inet_csk(sk); 1804 int mss_now; 1805 1806 if (icsk->icsk_mtup.search_high > pmtu) 1807 icsk->icsk_mtup.search_high = pmtu; 1808 1809 mss_now = tcp_mtu_to_mss(sk, pmtu); 1810 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1811 1812 /* And store cached results */ 1813 icsk->icsk_pmtu_cookie = pmtu; 1814 if (icsk->icsk_mtup.enabled) 1815 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1816 tp->mss_cache = mss_now; 1817 1818 return mss_now; 1819 } 1820 EXPORT_SYMBOL(tcp_sync_mss); 1821 1822 /* Compute the current effective MSS, taking SACKs and IP options, 1823 * and even PMTU discovery events into account. 1824 */ 1825 unsigned int tcp_current_mss(struct sock *sk) 1826 { 1827 const struct tcp_sock *tp = tcp_sk(sk); 1828 const struct dst_entry *dst = __sk_dst_get(sk); 1829 u32 mss_now; 1830 unsigned int header_len; 1831 struct tcp_out_options opts; 1832 struct tcp_md5sig_key *md5; 1833 1834 mss_now = tp->mss_cache; 1835 1836 if (dst) { 1837 u32 mtu = dst_mtu(dst); 1838 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1839 mss_now = tcp_sync_mss(sk, mtu); 1840 } 1841 1842 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1843 sizeof(struct tcphdr); 1844 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1845 * some common options. If this is an odd packet (because we have SACK 1846 * blocks etc) then our calculated header_len will be different, and 1847 * we have to adjust mss_now correspondingly */ 1848 if (header_len != tp->tcp_header_len) { 1849 int delta = (int) header_len - tp->tcp_header_len; 1850 mss_now -= delta; 1851 } 1852 1853 return mss_now; 1854 } 1855 1856 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1857 * As additional protections, we do not touch cwnd in retransmission phases, 1858 * and if application hit its sndbuf limit recently. 1859 */ 1860 static void tcp_cwnd_application_limited(struct sock *sk) 1861 { 1862 struct tcp_sock *tp = tcp_sk(sk); 1863 1864 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1865 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1866 /* Limited by application or receiver window. */ 1867 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1868 u32 win_used = max(tp->snd_cwnd_used, init_win); 1869 if (win_used < tcp_snd_cwnd(tp)) { 1870 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1871 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1872 } 1873 tp->snd_cwnd_used = 0; 1874 } 1875 tp->snd_cwnd_stamp = tcp_jiffies32; 1876 } 1877 1878 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1879 { 1880 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1881 struct tcp_sock *tp = tcp_sk(sk); 1882 1883 /* Track the strongest available signal of the degree to which the cwnd 1884 * is fully utilized. If cwnd-limited then remember that fact for the 1885 * current window. If not cwnd-limited then track the maximum number of 1886 * outstanding packets in the current window. (If cwnd-limited then we 1887 * chose to not update tp->max_packets_out to avoid an extra else 1888 * clause with no functional impact.) 1889 */ 1890 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1891 is_cwnd_limited || 1892 (!tp->is_cwnd_limited && 1893 tp->packets_out > tp->max_packets_out)) { 1894 tp->is_cwnd_limited = is_cwnd_limited; 1895 tp->max_packets_out = tp->packets_out; 1896 tp->cwnd_usage_seq = tp->snd_nxt; 1897 } 1898 1899 if (tcp_is_cwnd_limited(sk)) { 1900 /* Network is feed fully. */ 1901 tp->snd_cwnd_used = 0; 1902 tp->snd_cwnd_stamp = tcp_jiffies32; 1903 } else { 1904 /* Network starves. */ 1905 if (tp->packets_out > tp->snd_cwnd_used) 1906 tp->snd_cwnd_used = tp->packets_out; 1907 1908 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1909 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1910 !ca_ops->cong_control) 1911 tcp_cwnd_application_limited(sk); 1912 1913 /* The following conditions together indicate the starvation 1914 * is caused by insufficient sender buffer: 1915 * 1) just sent some data (see tcp_write_xmit) 1916 * 2) not cwnd limited (this else condition) 1917 * 3) no more data to send (tcp_write_queue_empty()) 1918 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1919 */ 1920 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1921 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1922 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1923 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1924 } 1925 } 1926 1927 /* Minshall's variant of the Nagle send check. */ 1928 static bool tcp_minshall_check(const struct tcp_sock *tp) 1929 { 1930 return after(tp->snd_sml, tp->snd_una) && 1931 !after(tp->snd_sml, tp->snd_nxt); 1932 } 1933 1934 /* Update snd_sml if this skb is under mss 1935 * Note that a TSO packet might end with a sub-mss segment 1936 * The test is really : 1937 * if ((skb->len % mss) != 0) 1938 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1939 * But we can avoid doing the divide again given we already have 1940 * skb_pcount = skb->len / mss_now 1941 */ 1942 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1943 const struct sk_buff *skb) 1944 { 1945 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1946 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1947 } 1948 1949 /* Return false, if packet can be sent now without violation Nagle's rules: 1950 * 1. It is full sized. (provided by caller in %partial bool) 1951 * 2. Or it contains FIN. (already checked by caller) 1952 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1953 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1954 * With Minshall's modification: all sent small packets are ACKed. 1955 */ 1956 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1957 int nonagle) 1958 { 1959 return partial && 1960 ((nonagle & TCP_NAGLE_CORK) || 1961 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1962 } 1963 1964 /* Return how many segs we'd like on a TSO packet, 1965 * depending on current pacing rate, and how close the peer is. 1966 * 1967 * Rationale is: 1968 * - For close peers, we rather send bigger packets to reduce 1969 * cpu costs, because occasional losses will be repaired fast. 1970 * - For long distance/rtt flows, we would like to get ACK clocking 1971 * with 1 ACK per ms. 1972 * 1973 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 1974 * in bigger TSO bursts. We we cut the RTT-based allowance in half 1975 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 1976 * is below 1500 bytes after 6 * ~500 usec = 3ms. 1977 */ 1978 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1979 int min_tso_segs) 1980 { 1981 unsigned long bytes; 1982 u32 r; 1983 1984 bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift); 1985 1986 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 1987 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 1988 bytes += sk->sk_gso_max_size >> r; 1989 1990 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 1991 1992 return max_t(u32, bytes / mss_now, min_tso_segs); 1993 } 1994 1995 /* Return the number of segments we want in the skb we are transmitting. 1996 * See if congestion control module wants to decide; otherwise, autosize. 1997 */ 1998 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1999 { 2000 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2001 u32 min_tso, tso_segs; 2002 2003 min_tso = ca_ops->min_tso_segs ? 2004 ca_ops->min_tso_segs(sk) : 2005 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 2006 2007 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2008 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2009 } 2010 2011 /* Returns the portion of skb which can be sent right away */ 2012 static unsigned int tcp_mss_split_point(const struct sock *sk, 2013 const struct sk_buff *skb, 2014 unsigned int mss_now, 2015 unsigned int max_segs, 2016 int nonagle) 2017 { 2018 const struct tcp_sock *tp = tcp_sk(sk); 2019 u32 partial, needed, window, max_len; 2020 2021 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2022 max_len = mss_now * max_segs; 2023 2024 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2025 return max_len; 2026 2027 needed = min(skb->len, window); 2028 2029 if (max_len <= needed) 2030 return max_len; 2031 2032 partial = needed % mss_now; 2033 /* If last segment is not a full MSS, check if Nagle rules allow us 2034 * to include this last segment in this skb. 2035 * Otherwise, we'll split the skb at last MSS boundary 2036 */ 2037 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2038 return needed - partial; 2039 2040 return needed; 2041 } 2042 2043 /* Can at least one segment of SKB be sent right now, according to the 2044 * congestion window rules? If so, return how many segments are allowed. 2045 */ 2046 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 2047 const struct sk_buff *skb) 2048 { 2049 u32 in_flight, cwnd, halfcwnd; 2050 2051 /* Don't be strict about the congestion window for the final FIN. */ 2052 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2053 tcp_skb_pcount(skb) == 1) 2054 return 1; 2055 2056 in_flight = tcp_packets_in_flight(tp); 2057 cwnd = tcp_snd_cwnd(tp); 2058 if (in_flight >= cwnd) 2059 return 0; 2060 2061 /* For better scheduling, ensure we have at least 2062 * 2 GSO packets in flight. 2063 */ 2064 halfcwnd = max(cwnd >> 1, 1U); 2065 return min(halfcwnd, cwnd - in_flight); 2066 } 2067 2068 /* Initialize TSO state of a skb. 2069 * This must be invoked the first time we consider transmitting 2070 * SKB onto the wire. 2071 */ 2072 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2073 { 2074 int tso_segs = tcp_skb_pcount(skb); 2075 2076 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 2077 tcp_set_skb_tso_segs(skb, mss_now); 2078 tso_segs = tcp_skb_pcount(skb); 2079 } 2080 return tso_segs; 2081 } 2082 2083 2084 /* Return true if the Nagle test allows this packet to be 2085 * sent now. 2086 */ 2087 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2088 unsigned int cur_mss, int nonagle) 2089 { 2090 /* Nagle rule does not apply to frames, which sit in the middle of the 2091 * write_queue (they have no chances to get new data). 2092 * 2093 * This is implemented in the callers, where they modify the 'nonagle' 2094 * argument based upon the location of SKB in the send queue. 2095 */ 2096 if (nonagle & TCP_NAGLE_PUSH) 2097 return true; 2098 2099 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2100 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2101 return true; 2102 2103 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2104 return true; 2105 2106 return false; 2107 } 2108 2109 /* Does at least the first segment of SKB fit into the send window? */ 2110 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2111 const struct sk_buff *skb, 2112 unsigned int cur_mss) 2113 { 2114 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2115 2116 if (skb->len > cur_mss) 2117 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2118 2119 return !after(end_seq, tcp_wnd_end(tp)); 2120 } 2121 2122 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2123 * which is put after SKB on the list. It is very much like 2124 * tcp_fragment() except that it may make several kinds of assumptions 2125 * in order to speed up the splitting operation. In particular, we 2126 * know that all the data is in scatter-gather pages, and that the 2127 * packet has never been sent out before (and thus is not cloned). 2128 */ 2129 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2130 unsigned int mss_now, gfp_t gfp) 2131 { 2132 int nlen = skb->len - len; 2133 struct sk_buff *buff; 2134 u8 flags; 2135 2136 /* All of a TSO frame must be composed of paged data. */ 2137 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2138 2139 buff = tcp_stream_alloc_skb(sk, gfp, true); 2140 if (unlikely(!buff)) 2141 return -ENOMEM; 2142 skb_copy_decrypted(buff, skb); 2143 mptcp_skb_ext_copy(buff, skb); 2144 2145 sk_wmem_queued_add(sk, buff->truesize); 2146 sk_mem_charge(sk, buff->truesize); 2147 buff->truesize += nlen; 2148 skb->truesize -= nlen; 2149 2150 /* Correct the sequence numbers. */ 2151 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2152 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2153 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2154 2155 /* PSH and FIN should only be set in the second packet. */ 2156 flags = TCP_SKB_CB(skb)->tcp_flags; 2157 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2158 TCP_SKB_CB(buff)->tcp_flags = flags; 2159 2160 tcp_skb_fragment_eor(skb, buff); 2161 2162 skb_split(skb, buff, len); 2163 tcp_fragment_tstamp(skb, buff); 2164 2165 /* Fix up tso_factor for both original and new SKB. */ 2166 tcp_set_skb_tso_segs(skb, mss_now); 2167 tcp_set_skb_tso_segs(buff, mss_now); 2168 2169 /* Link BUFF into the send queue. */ 2170 __skb_header_release(buff); 2171 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2172 2173 return 0; 2174 } 2175 2176 /* Try to defer sending, if possible, in order to minimize the amount 2177 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2178 * 2179 * This algorithm is from John Heffner. 2180 */ 2181 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2182 bool *is_cwnd_limited, 2183 bool *is_rwnd_limited, 2184 u32 max_segs) 2185 { 2186 const struct inet_connection_sock *icsk = inet_csk(sk); 2187 u32 send_win, cong_win, limit, in_flight; 2188 struct tcp_sock *tp = tcp_sk(sk); 2189 struct sk_buff *head; 2190 int win_divisor; 2191 s64 delta; 2192 2193 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2194 goto send_now; 2195 2196 /* Avoid bursty behavior by allowing defer 2197 * only if the last write was recent (1 ms). 2198 * Note that tp->tcp_wstamp_ns can be in the future if we have 2199 * packets waiting in a qdisc or device for EDT delivery. 2200 */ 2201 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2202 if (delta > 0) 2203 goto send_now; 2204 2205 in_flight = tcp_packets_in_flight(tp); 2206 2207 BUG_ON(tcp_skb_pcount(skb) <= 1); 2208 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2209 2210 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2211 2212 /* From in_flight test above, we know that cwnd > in_flight. */ 2213 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2214 2215 limit = min(send_win, cong_win); 2216 2217 /* If a full-sized TSO skb can be sent, do it. */ 2218 if (limit >= max_segs * tp->mss_cache) 2219 goto send_now; 2220 2221 /* Middle in queue won't get any more data, full sendable already? */ 2222 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2223 goto send_now; 2224 2225 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2226 if (win_divisor) { 2227 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2228 2229 /* If at least some fraction of a window is available, 2230 * just use it. 2231 */ 2232 chunk /= win_divisor; 2233 if (limit >= chunk) 2234 goto send_now; 2235 } else { 2236 /* Different approach, try not to defer past a single 2237 * ACK. Receiver should ACK every other full sized 2238 * frame, so if we have space for more than 3 frames 2239 * then send now. 2240 */ 2241 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2242 goto send_now; 2243 } 2244 2245 /* TODO : use tsorted_sent_queue ? */ 2246 head = tcp_rtx_queue_head(sk); 2247 if (!head) 2248 goto send_now; 2249 delta = tp->tcp_clock_cache - head->tstamp; 2250 /* If next ACK is likely to come too late (half srtt), do not defer */ 2251 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2252 goto send_now; 2253 2254 /* Ok, it looks like it is advisable to defer. 2255 * Three cases are tracked : 2256 * 1) We are cwnd-limited 2257 * 2) We are rwnd-limited 2258 * 3) We are application limited. 2259 */ 2260 if (cong_win < send_win) { 2261 if (cong_win <= skb->len) { 2262 *is_cwnd_limited = true; 2263 return true; 2264 } 2265 } else { 2266 if (send_win <= skb->len) { 2267 *is_rwnd_limited = true; 2268 return true; 2269 } 2270 } 2271 2272 /* If this packet won't get more data, do not wait. */ 2273 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2274 TCP_SKB_CB(skb)->eor) 2275 goto send_now; 2276 2277 return true; 2278 2279 send_now: 2280 return false; 2281 } 2282 2283 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2284 { 2285 struct inet_connection_sock *icsk = inet_csk(sk); 2286 struct tcp_sock *tp = tcp_sk(sk); 2287 struct net *net = sock_net(sk); 2288 u32 interval; 2289 s32 delta; 2290 2291 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2292 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2293 if (unlikely(delta >= interval * HZ)) { 2294 int mss = tcp_current_mss(sk); 2295 2296 /* Update current search range */ 2297 icsk->icsk_mtup.probe_size = 0; 2298 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2299 sizeof(struct tcphdr) + 2300 icsk->icsk_af_ops->net_header_len; 2301 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2302 2303 /* Update probe time stamp */ 2304 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2305 } 2306 } 2307 2308 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2309 { 2310 struct sk_buff *skb, *next; 2311 2312 skb = tcp_send_head(sk); 2313 tcp_for_write_queue_from_safe(skb, next, sk) { 2314 if (len <= skb->len) 2315 break; 2316 2317 if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next)) 2318 return false; 2319 2320 len -= skb->len; 2321 } 2322 2323 return true; 2324 } 2325 2326 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2327 int probe_size) 2328 { 2329 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2330 int i, todo, len = 0, nr_frags = 0; 2331 const struct sk_buff *skb; 2332 2333 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2334 return -ENOMEM; 2335 2336 skb_queue_walk(&sk->sk_write_queue, skb) { 2337 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2338 2339 if (skb_headlen(skb)) 2340 return -EINVAL; 2341 2342 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2343 if (len >= probe_size) 2344 goto commit; 2345 todo = min_t(int, skb_frag_size(fragfrom), 2346 probe_size - len); 2347 len += todo; 2348 if (lastfrag && 2349 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2350 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2351 skb_frag_size(lastfrag)) { 2352 skb_frag_size_add(lastfrag, todo); 2353 continue; 2354 } 2355 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2356 return -E2BIG; 2357 skb_frag_page_copy(fragto, fragfrom); 2358 skb_frag_off_copy(fragto, fragfrom); 2359 skb_frag_size_set(fragto, todo); 2360 nr_frags++; 2361 lastfrag = fragto++; 2362 } 2363 } 2364 commit: 2365 WARN_ON_ONCE(len != probe_size); 2366 for (i = 0; i < nr_frags; i++) 2367 skb_frag_ref(to, i); 2368 2369 skb_shinfo(to)->nr_frags = nr_frags; 2370 to->truesize += probe_size; 2371 to->len += probe_size; 2372 to->data_len += probe_size; 2373 __skb_header_release(to); 2374 return 0; 2375 } 2376 2377 /* Create a new MTU probe if we are ready. 2378 * MTU probe is regularly attempting to increase the path MTU by 2379 * deliberately sending larger packets. This discovers routing 2380 * changes resulting in larger path MTUs. 2381 * 2382 * Returns 0 if we should wait to probe (no cwnd available), 2383 * 1 if a probe was sent, 2384 * -1 otherwise 2385 */ 2386 static int tcp_mtu_probe(struct sock *sk) 2387 { 2388 struct inet_connection_sock *icsk = inet_csk(sk); 2389 struct tcp_sock *tp = tcp_sk(sk); 2390 struct sk_buff *skb, *nskb, *next; 2391 struct net *net = sock_net(sk); 2392 int probe_size; 2393 int size_needed; 2394 int copy, len; 2395 int mss_now; 2396 int interval; 2397 2398 /* Not currently probing/verifying, 2399 * not in recovery, 2400 * have enough cwnd, and 2401 * not SACKing (the variable headers throw things off) 2402 */ 2403 if (likely(!icsk->icsk_mtup.enabled || 2404 icsk->icsk_mtup.probe_size || 2405 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2406 tcp_snd_cwnd(tp) < 11 || 2407 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2408 return -1; 2409 2410 /* Use binary search for probe_size between tcp_mss_base, 2411 * and current mss_clamp. if (search_high - search_low) 2412 * smaller than a threshold, backoff from probing. 2413 */ 2414 mss_now = tcp_current_mss(sk); 2415 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2416 icsk->icsk_mtup.search_low) >> 1); 2417 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2418 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2419 /* When misfortune happens, we are reprobing actively, 2420 * and then reprobe timer has expired. We stick with current 2421 * probing process by not resetting search range to its orignal. 2422 */ 2423 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2424 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2425 /* Check whether enough time has elaplased for 2426 * another round of probing. 2427 */ 2428 tcp_mtu_check_reprobe(sk); 2429 return -1; 2430 } 2431 2432 /* Have enough data in the send queue to probe? */ 2433 if (tp->write_seq - tp->snd_nxt < size_needed) 2434 return -1; 2435 2436 if (tp->snd_wnd < size_needed) 2437 return -1; 2438 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2439 return 0; 2440 2441 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2442 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2443 if (!tcp_packets_in_flight(tp)) 2444 return -1; 2445 else 2446 return 0; 2447 } 2448 2449 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2450 return -1; 2451 2452 /* We're allowed to probe. Build it now. */ 2453 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2454 if (!nskb) 2455 return -1; 2456 2457 /* build the payload, and be prepared to abort if this fails. */ 2458 if (tcp_clone_payload(sk, nskb, probe_size)) { 2459 tcp_skb_tsorted_anchor_cleanup(nskb); 2460 consume_skb(nskb); 2461 return -1; 2462 } 2463 sk_wmem_queued_add(sk, nskb->truesize); 2464 sk_mem_charge(sk, nskb->truesize); 2465 2466 skb = tcp_send_head(sk); 2467 skb_copy_decrypted(nskb, skb); 2468 mptcp_skb_ext_copy(nskb, skb); 2469 2470 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2471 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2472 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2473 2474 tcp_insert_write_queue_before(nskb, skb, sk); 2475 tcp_highest_sack_replace(sk, skb, nskb); 2476 2477 len = 0; 2478 tcp_for_write_queue_from_safe(skb, next, sk) { 2479 copy = min_t(int, skb->len, probe_size - len); 2480 2481 if (skb->len <= copy) { 2482 /* We've eaten all the data from this skb. 2483 * Throw it away. */ 2484 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2485 /* If this is the last SKB we copy and eor is set 2486 * we need to propagate it to the new skb. 2487 */ 2488 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2489 tcp_skb_collapse_tstamp(nskb, skb); 2490 tcp_unlink_write_queue(skb, sk); 2491 tcp_wmem_free_skb(sk, skb); 2492 } else { 2493 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2494 ~(TCPHDR_FIN|TCPHDR_PSH); 2495 __pskb_trim_head(skb, copy); 2496 tcp_set_skb_tso_segs(skb, mss_now); 2497 TCP_SKB_CB(skb)->seq += copy; 2498 } 2499 2500 len += copy; 2501 2502 if (len >= probe_size) 2503 break; 2504 } 2505 tcp_init_tso_segs(nskb, nskb->len); 2506 2507 /* We're ready to send. If this fails, the probe will 2508 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2509 */ 2510 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2511 /* Decrement cwnd here because we are sending 2512 * effectively two packets. */ 2513 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2514 tcp_event_new_data_sent(sk, nskb); 2515 2516 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2517 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2518 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2519 2520 return 1; 2521 } 2522 2523 return -1; 2524 } 2525 2526 static bool tcp_pacing_check(struct sock *sk) 2527 { 2528 struct tcp_sock *tp = tcp_sk(sk); 2529 2530 if (!tcp_needs_internal_pacing(sk)) 2531 return false; 2532 2533 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2534 return false; 2535 2536 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2537 hrtimer_start(&tp->pacing_timer, 2538 ns_to_ktime(tp->tcp_wstamp_ns), 2539 HRTIMER_MODE_ABS_PINNED_SOFT); 2540 sock_hold(sk); 2541 } 2542 return true; 2543 } 2544 2545 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk) 2546 { 2547 const struct rb_node *node = sk->tcp_rtx_queue.rb_node; 2548 2549 /* No skb in the rtx queue. */ 2550 if (!node) 2551 return true; 2552 2553 /* Only one skb in rtx queue. */ 2554 return !node->rb_left && !node->rb_right; 2555 } 2556 2557 /* TCP Small Queues : 2558 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2559 * (These limits are doubled for retransmits) 2560 * This allows for : 2561 * - better RTT estimation and ACK scheduling 2562 * - faster recovery 2563 * - high rates 2564 * Alas, some drivers / subsystems require a fair amount 2565 * of queued bytes to ensure line rate. 2566 * One example is wifi aggregation (802.11 AMPDU) 2567 */ 2568 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2569 unsigned int factor) 2570 { 2571 unsigned long limit; 2572 2573 limit = max_t(unsigned long, 2574 2 * skb->truesize, 2575 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift)); 2576 if (sk->sk_pacing_status == SK_PACING_NONE) 2577 limit = min_t(unsigned long, limit, 2578 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2579 limit <<= factor; 2580 2581 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2582 tcp_sk(sk)->tcp_tx_delay) { 2583 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2584 2585 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2586 * approximate our needs assuming an ~100% skb->truesize overhead. 2587 * USEC_PER_SEC is approximated by 2^20. 2588 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2589 */ 2590 extra_bytes >>= (20 - 1); 2591 limit += extra_bytes; 2592 } 2593 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2594 /* Always send skb if rtx queue is empty or has one skb. 2595 * No need to wait for TX completion to call us back, 2596 * after softirq/tasklet schedule. 2597 * This helps when TX completions are delayed too much. 2598 */ 2599 if (tcp_rtx_queue_empty_or_single_skb(sk)) 2600 return false; 2601 2602 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2603 /* It is possible TX completion already happened 2604 * before we set TSQ_THROTTLED, so we must 2605 * test again the condition. 2606 */ 2607 smp_mb__after_atomic(); 2608 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2609 return true; 2610 } 2611 return false; 2612 } 2613 2614 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2615 { 2616 const u32 now = tcp_jiffies32; 2617 enum tcp_chrono old = tp->chrono_type; 2618 2619 if (old > TCP_CHRONO_UNSPEC) 2620 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2621 tp->chrono_start = now; 2622 tp->chrono_type = new; 2623 } 2624 2625 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2626 { 2627 struct tcp_sock *tp = tcp_sk(sk); 2628 2629 /* If there are multiple conditions worthy of tracking in a 2630 * chronograph then the highest priority enum takes precedence 2631 * over the other conditions. So that if something "more interesting" 2632 * starts happening, stop the previous chrono and start a new one. 2633 */ 2634 if (type > tp->chrono_type) 2635 tcp_chrono_set(tp, type); 2636 } 2637 2638 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2639 { 2640 struct tcp_sock *tp = tcp_sk(sk); 2641 2642 2643 /* There are multiple conditions worthy of tracking in a 2644 * chronograph, so that the highest priority enum takes 2645 * precedence over the other conditions (see tcp_chrono_start). 2646 * If a condition stops, we only stop chrono tracking if 2647 * it's the "most interesting" or current chrono we are 2648 * tracking and starts busy chrono if we have pending data. 2649 */ 2650 if (tcp_rtx_and_write_queues_empty(sk)) 2651 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2652 else if (type == tp->chrono_type) 2653 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2654 } 2655 2656 /* This routine writes packets to the network. It advances the 2657 * send_head. This happens as incoming acks open up the remote 2658 * window for us. 2659 * 2660 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2661 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2662 * account rare use of URG, this is not a big flaw. 2663 * 2664 * Send at most one packet when push_one > 0. Temporarily ignore 2665 * cwnd limit to force at most one packet out when push_one == 2. 2666 2667 * Returns true, if no segments are in flight and we have queued segments, 2668 * but cannot send anything now because of SWS or another problem. 2669 */ 2670 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2671 int push_one, gfp_t gfp) 2672 { 2673 struct tcp_sock *tp = tcp_sk(sk); 2674 struct sk_buff *skb; 2675 unsigned int tso_segs, sent_pkts; 2676 int cwnd_quota; 2677 int result; 2678 bool is_cwnd_limited = false, is_rwnd_limited = false; 2679 u32 max_segs; 2680 2681 sent_pkts = 0; 2682 2683 tcp_mstamp_refresh(tp); 2684 if (!push_one) { 2685 /* Do MTU probing. */ 2686 result = tcp_mtu_probe(sk); 2687 if (!result) { 2688 return false; 2689 } else if (result > 0) { 2690 sent_pkts = 1; 2691 } 2692 } 2693 2694 max_segs = tcp_tso_segs(sk, mss_now); 2695 while ((skb = tcp_send_head(sk))) { 2696 unsigned int limit; 2697 2698 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2699 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2700 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2701 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 2702 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2703 tcp_init_tso_segs(skb, mss_now); 2704 goto repair; /* Skip network transmission */ 2705 } 2706 2707 if (tcp_pacing_check(sk)) 2708 break; 2709 2710 tso_segs = tcp_init_tso_segs(skb, mss_now); 2711 BUG_ON(!tso_segs); 2712 2713 cwnd_quota = tcp_cwnd_test(tp, skb); 2714 if (!cwnd_quota) { 2715 if (push_one == 2) 2716 /* Force out a loss probe pkt. */ 2717 cwnd_quota = 1; 2718 else 2719 break; 2720 } 2721 2722 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2723 is_rwnd_limited = true; 2724 break; 2725 } 2726 2727 if (tso_segs == 1) { 2728 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2729 (tcp_skb_is_last(sk, skb) ? 2730 nonagle : TCP_NAGLE_PUSH)))) 2731 break; 2732 } else { 2733 if (!push_one && 2734 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2735 &is_rwnd_limited, max_segs)) 2736 break; 2737 } 2738 2739 limit = mss_now; 2740 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2741 limit = tcp_mss_split_point(sk, skb, mss_now, 2742 min_t(unsigned int, 2743 cwnd_quota, 2744 max_segs), 2745 nonagle); 2746 2747 if (skb->len > limit && 2748 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2749 break; 2750 2751 if (tcp_small_queue_check(sk, skb, 0)) 2752 break; 2753 2754 /* Argh, we hit an empty skb(), presumably a thread 2755 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2756 * We do not want to send a pure-ack packet and have 2757 * a strange looking rtx queue with empty packet(s). 2758 */ 2759 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2760 break; 2761 2762 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2763 break; 2764 2765 repair: 2766 /* Advance the send_head. This one is sent out. 2767 * This call will increment packets_out. 2768 */ 2769 tcp_event_new_data_sent(sk, skb); 2770 2771 tcp_minshall_update(tp, mss_now, skb); 2772 sent_pkts += tcp_skb_pcount(skb); 2773 2774 if (push_one) 2775 break; 2776 } 2777 2778 if (is_rwnd_limited) 2779 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2780 else 2781 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2782 2783 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2784 if (likely(sent_pkts || is_cwnd_limited)) 2785 tcp_cwnd_validate(sk, is_cwnd_limited); 2786 2787 if (likely(sent_pkts)) { 2788 if (tcp_in_cwnd_reduction(sk)) 2789 tp->prr_out += sent_pkts; 2790 2791 /* Send one loss probe per tail loss episode. */ 2792 if (push_one != 2) 2793 tcp_schedule_loss_probe(sk, false); 2794 return false; 2795 } 2796 return !tp->packets_out && !tcp_write_queue_empty(sk); 2797 } 2798 2799 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2800 { 2801 struct inet_connection_sock *icsk = inet_csk(sk); 2802 struct tcp_sock *tp = tcp_sk(sk); 2803 u32 timeout, timeout_us, rto_delta_us; 2804 int early_retrans; 2805 2806 /* Don't do any loss probe on a Fast Open connection before 3WHS 2807 * finishes. 2808 */ 2809 if (rcu_access_pointer(tp->fastopen_rsk)) 2810 return false; 2811 2812 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2813 /* Schedule a loss probe in 2*RTT for SACK capable connections 2814 * not in loss recovery, that are either limited by cwnd or application. 2815 */ 2816 if ((early_retrans != 3 && early_retrans != 4) || 2817 !tp->packets_out || !tcp_is_sack(tp) || 2818 (icsk->icsk_ca_state != TCP_CA_Open && 2819 icsk->icsk_ca_state != TCP_CA_CWR)) 2820 return false; 2821 2822 /* Probe timeout is 2*rtt. Add minimum RTO to account 2823 * for delayed ack when there's one outstanding packet. If no RTT 2824 * sample is available then probe after TCP_TIMEOUT_INIT. 2825 */ 2826 if (tp->srtt_us) { 2827 timeout_us = tp->srtt_us >> 2; 2828 if (tp->packets_out == 1) 2829 timeout_us += tcp_rto_min_us(sk); 2830 else 2831 timeout_us += TCP_TIMEOUT_MIN_US; 2832 timeout = usecs_to_jiffies(timeout_us); 2833 } else { 2834 timeout = TCP_TIMEOUT_INIT; 2835 } 2836 2837 /* If the RTO formula yields an earlier time, then use that time. */ 2838 rto_delta_us = advancing_rto ? 2839 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2840 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2841 if (rto_delta_us > 0) 2842 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2843 2844 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2845 return true; 2846 } 2847 2848 /* Thanks to skb fast clones, we can detect if a prior transmit of 2849 * a packet is still in a qdisc or driver queue. 2850 * In this case, there is very little point doing a retransmit ! 2851 */ 2852 static bool skb_still_in_host_queue(struct sock *sk, 2853 const struct sk_buff *skb) 2854 { 2855 if (unlikely(skb_fclone_busy(sk, skb))) { 2856 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2857 smp_mb__after_atomic(); 2858 if (skb_fclone_busy(sk, skb)) { 2859 NET_INC_STATS(sock_net(sk), 2860 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2861 return true; 2862 } 2863 } 2864 return false; 2865 } 2866 2867 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2868 * retransmit the last segment. 2869 */ 2870 void tcp_send_loss_probe(struct sock *sk) 2871 { 2872 struct tcp_sock *tp = tcp_sk(sk); 2873 struct sk_buff *skb; 2874 int pcount; 2875 int mss = tcp_current_mss(sk); 2876 2877 /* At most one outstanding TLP */ 2878 if (tp->tlp_high_seq) 2879 goto rearm_timer; 2880 2881 tp->tlp_retrans = 0; 2882 skb = tcp_send_head(sk); 2883 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2884 pcount = tp->packets_out; 2885 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2886 if (tp->packets_out > pcount) 2887 goto probe_sent; 2888 goto rearm_timer; 2889 } 2890 skb = skb_rb_last(&sk->tcp_rtx_queue); 2891 if (unlikely(!skb)) { 2892 WARN_ONCE(tp->packets_out, 2893 "invalid inflight: %u state %u cwnd %u mss %d\n", 2894 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss); 2895 inet_csk(sk)->icsk_pending = 0; 2896 return; 2897 } 2898 2899 if (skb_still_in_host_queue(sk, skb)) 2900 goto rearm_timer; 2901 2902 pcount = tcp_skb_pcount(skb); 2903 if (WARN_ON(!pcount)) 2904 goto rearm_timer; 2905 2906 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2907 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2908 (pcount - 1) * mss, mss, 2909 GFP_ATOMIC))) 2910 goto rearm_timer; 2911 skb = skb_rb_next(skb); 2912 } 2913 2914 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2915 goto rearm_timer; 2916 2917 if (__tcp_retransmit_skb(sk, skb, 1)) 2918 goto rearm_timer; 2919 2920 tp->tlp_retrans = 1; 2921 2922 probe_sent: 2923 /* Record snd_nxt for loss detection. */ 2924 tp->tlp_high_seq = tp->snd_nxt; 2925 2926 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2927 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2928 inet_csk(sk)->icsk_pending = 0; 2929 rearm_timer: 2930 tcp_rearm_rto(sk); 2931 } 2932 2933 /* Push out any pending frames which were held back due to 2934 * TCP_CORK or attempt at coalescing tiny packets. 2935 * The socket must be locked by the caller. 2936 */ 2937 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2938 int nonagle) 2939 { 2940 /* If we are closed, the bytes will have to remain here. 2941 * In time closedown will finish, we empty the write queue and 2942 * all will be happy. 2943 */ 2944 if (unlikely(sk->sk_state == TCP_CLOSE)) 2945 return; 2946 2947 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2948 sk_gfp_mask(sk, GFP_ATOMIC))) 2949 tcp_check_probe_timer(sk); 2950 } 2951 2952 /* Send _single_ skb sitting at the send head. This function requires 2953 * true push pending frames to setup probe timer etc. 2954 */ 2955 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2956 { 2957 struct sk_buff *skb = tcp_send_head(sk); 2958 2959 BUG_ON(!skb || skb->len < mss_now); 2960 2961 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2962 } 2963 2964 /* This function returns the amount that we can raise the 2965 * usable window based on the following constraints 2966 * 2967 * 1. The window can never be shrunk once it is offered (RFC 793) 2968 * 2. We limit memory per socket 2969 * 2970 * RFC 1122: 2971 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2972 * RECV.NEXT + RCV.WIN fixed until: 2973 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2974 * 2975 * i.e. don't raise the right edge of the window until you can raise 2976 * it at least MSS bytes. 2977 * 2978 * Unfortunately, the recommended algorithm breaks header prediction, 2979 * since header prediction assumes th->window stays fixed. 2980 * 2981 * Strictly speaking, keeping th->window fixed violates the receiver 2982 * side SWS prevention criteria. The problem is that under this rule 2983 * a stream of single byte packets will cause the right side of the 2984 * window to always advance by a single byte. 2985 * 2986 * Of course, if the sender implements sender side SWS prevention 2987 * then this will not be a problem. 2988 * 2989 * BSD seems to make the following compromise: 2990 * 2991 * If the free space is less than the 1/4 of the maximum 2992 * space available and the free space is less than 1/2 mss, 2993 * then set the window to 0. 2994 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2995 * Otherwise, just prevent the window from shrinking 2996 * and from being larger than the largest representable value. 2997 * 2998 * This prevents incremental opening of the window in the regime 2999 * where TCP is limited by the speed of the reader side taking 3000 * data out of the TCP receive queue. It does nothing about 3001 * those cases where the window is constrained on the sender side 3002 * because the pipeline is full. 3003 * 3004 * BSD also seems to "accidentally" limit itself to windows that are a 3005 * multiple of MSS, at least until the free space gets quite small. 3006 * This would appear to be a side effect of the mbuf implementation. 3007 * Combining these two algorithms results in the observed behavior 3008 * of having a fixed window size at almost all times. 3009 * 3010 * Below we obtain similar behavior by forcing the offered window to 3011 * a multiple of the mss when it is feasible to do so. 3012 * 3013 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3014 * Regular options like TIMESTAMP are taken into account. 3015 */ 3016 u32 __tcp_select_window(struct sock *sk) 3017 { 3018 struct inet_connection_sock *icsk = inet_csk(sk); 3019 struct tcp_sock *tp = tcp_sk(sk); 3020 struct net *net = sock_net(sk); 3021 /* MSS for the peer's data. Previous versions used mss_clamp 3022 * here. I don't know if the value based on our guesses 3023 * of peer's MSS is better for the performance. It's more correct 3024 * but may be worse for the performance because of rcv_mss 3025 * fluctuations. --SAW 1998/11/1 3026 */ 3027 int mss = icsk->icsk_ack.rcv_mss; 3028 int free_space = tcp_space(sk); 3029 int allowed_space = tcp_full_space(sk); 3030 int full_space, window; 3031 3032 if (sk_is_mptcp(sk)) 3033 mptcp_space(sk, &free_space, &allowed_space); 3034 3035 full_space = min_t(int, tp->window_clamp, allowed_space); 3036 3037 if (unlikely(mss > full_space)) { 3038 mss = full_space; 3039 if (mss <= 0) 3040 return 0; 3041 } 3042 3043 /* Only allow window shrink if the sysctl is enabled and we have 3044 * a non-zero scaling factor in effect. 3045 */ 3046 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3047 goto shrink_window_allowed; 3048 3049 /* do not allow window to shrink */ 3050 3051 if (free_space < (full_space >> 1)) { 3052 icsk->icsk_ack.quick = 0; 3053 3054 if (tcp_under_memory_pressure(sk)) 3055 tcp_adjust_rcv_ssthresh(sk); 3056 3057 /* free_space might become our new window, make sure we don't 3058 * increase it due to wscale. 3059 */ 3060 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3061 3062 /* if free space is less than mss estimate, or is below 1/16th 3063 * of the maximum allowed, try to move to zero-window, else 3064 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3065 * new incoming data is dropped due to memory limits. 3066 * With large window, mss test triggers way too late in order 3067 * to announce zero window in time before rmem limit kicks in. 3068 */ 3069 if (free_space < (allowed_space >> 4) || free_space < mss) 3070 return 0; 3071 } 3072 3073 if (free_space > tp->rcv_ssthresh) 3074 free_space = tp->rcv_ssthresh; 3075 3076 /* Don't do rounding if we are using window scaling, since the 3077 * scaled window will not line up with the MSS boundary anyway. 3078 */ 3079 if (tp->rx_opt.rcv_wscale) { 3080 window = free_space; 3081 3082 /* Advertise enough space so that it won't get scaled away. 3083 * Import case: prevent zero window announcement if 3084 * 1<<rcv_wscale > mss. 3085 */ 3086 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3087 } else { 3088 window = tp->rcv_wnd; 3089 /* Get the largest window that is a nice multiple of mss. 3090 * Window clamp already applied above. 3091 * If our current window offering is within 1 mss of the 3092 * free space we just keep it. This prevents the divide 3093 * and multiply from happening most of the time. 3094 * We also don't do any window rounding when the free space 3095 * is too small. 3096 */ 3097 if (window <= free_space - mss || window > free_space) 3098 window = rounddown(free_space, mss); 3099 else if (mss == full_space && 3100 free_space > window + (full_space >> 1)) 3101 window = free_space; 3102 } 3103 3104 return window; 3105 3106 shrink_window_allowed: 3107 /* new window should always be an exact multiple of scaling factor */ 3108 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3109 3110 if (free_space < (full_space >> 1)) { 3111 icsk->icsk_ack.quick = 0; 3112 3113 if (tcp_under_memory_pressure(sk)) 3114 tcp_adjust_rcv_ssthresh(sk); 3115 3116 /* if free space is too low, return a zero window */ 3117 if (free_space < (allowed_space >> 4) || free_space < mss || 3118 free_space < (1 << tp->rx_opt.rcv_wscale)) 3119 return 0; 3120 } 3121 3122 if (free_space > tp->rcv_ssthresh) { 3123 free_space = tp->rcv_ssthresh; 3124 /* new window should always be an exact multiple of scaling factor 3125 * 3126 * For this case, we ALIGN "up" (increase free_space) because 3127 * we know free_space is not zero here, it has been reduced from 3128 * the memory-based limit, and rcv_ssthresh is not a hard limit 3129 * (unlike sk_rcvbuf). 3130 */ 3131 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3132 } 3133 3134 return free_space; 3135 } 3136 3137 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3138 const struct sk_buff *next_skb) 3139 { 3140 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3141 const struct skb_shared_info *next_shinfo = 3142 skb_shinfo(next_skb); 3143 struct skb_shared_info *shinfo = skb_shinfo(skb); 3144 3145 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3146 shinfo->tskey = next_shinfo->tskey; 3147 TCP_SKB_CB(skb)->txstamp_ack |= 3148 TCP_SKB_CB(next_skb)->txstamp_ack; 3149 } 3150 } 3151 3152 /* Collapses two adjacent SKB's during retransmission. */ 3153 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3154 { 3155 struct tcp_sock *tp = tcp_sk(sk); 3156 struct sk_buff *next_skb = skb_rb_next(skb); 3157 int next_skb_size; 3158 3159 next_skb_size = next_skb->len; 3160 3161 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3162 3163 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3164 return false; 3165 3166 tcp_highest_sack_replace(sk, next_skb, skb); 3167 3168 /* Update sequence range on original skb. */ 3169 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3170 3171 /* Merge over control information. This moves PSH/FIN etc. over */ 3172 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3173 3174 /* All done, get rid of second SKB and account for it so 3175 * packet counting does not break. 3176 */ 3177 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3178 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3179 3180 /* changed transmit queue under us so clear hints */ 3181 tcp_clear_retrans_hints_partial(tp); 3182 if (next_skb == tp->retransmit_skb_hint) 3183 tp->retransmit_skb_hint = skb; 3184 3185 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3186 3187 tcp_skb_collapse_tstamp(skb, next_skb); 3188 3189 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3190 return true; 3191 } 3192 3193 /* Check if coalescing SKBs is legal. */ 3194 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3195 { 3196 if (tcp_skb_pcount(skb) > 1) 3197 return false; 3198 if (skb_cloned(skb)) 3199 return false; 3200 /* Some heuristics for collapsing over SACK'd could be invented */ 3201 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3202 return false; 3203 3204 return true; 3205 } 3206 3207 /* Collapse packets in the retransmit queue to make to create 3208 * less packets on the wire. This is only done on retransmission. 3209 */ 3210 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3211 int space) 3212 { 3213 struct tcp_sock *tp = tcp_sk(sk); 3214 struct sk_buff *skb = to, *tmp; 3215 bool first = true; 3216 3217 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3218 return; 3219 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3220 return; 3221 3222 skb_rbtree_walk_from_safe(skb, tmp) { 3223 if (!tcp_can_collapse(sk, skb)) 3224 break; 3225 3226 if (!tcp_skb_can_collapse(to, skb)) 3227 break; 3228 3229 space -= skb->len; 3230 3231 if (first) { 3232 first = false; 3233 continue; 3234 } 3235 3236 if (space < 0) 3237 break; 3238 3239 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3240 break; 3241 3242 if (!tcp_collapse_retrans(sk, to)) 3243 break; 3244 } 3245 } 3246 3247 /* This retransmits one SKB. Policy decisions and retransmit queue 3248 * state updates are done by the caller. Returns non-zero if an 3249 * error occurred which prevented the send. 3250 */ 3251 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3252 { 3253 struct inet_connection_sock *icsk = inet_csk(sk); 3254 struct tcp_sock *tp = tcp_sk(sk); 3255 unsigned int cur_mss; 3256 int diff, len, err; 3257 int avail_wnd; 3258 3259 /* Inconclusive MTU probe */ 3260 if (icsk->icsk_mtup.probe_size) 3261 icsk->icsk_mtup.probe_size = 0; 3262 3263 if (skb_still_in_host_queue(sk, skb)) 3264 return -EBUSY; 3265 3266 start: 3267 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3268 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3269 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 3270 TCP_SKB_CB(skb)->seq++; 3271 goto start; 3272 } 3273 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3274 WARN_ON_ONCE(1); 3275 return -EINVAL; 3276 } 3277 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3278 return -ENOMEM; 3279 } 3280 3281 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3282 return -EHOSTUNREACH; /* Routing failure or similar. */ 3283 3284 cur_mss = tcp_current_mss(sk); 3285 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3286 3287 /* If receiver has shrunk his window, and skb is out of 3288 * new window, do not retransmit it. The exception is the 3289 * case, when window is shrunk to zero. In this case 3290 * our retransmit of one segment serves as a zero window probe. 3291 */ 3292 if (avail_wnd <= 0) { 3293 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3294 return -EAGAIN; 3295 avail_wnd = cur_mss; 3296 } 3297 3298 len = cur_mss * segs; 3299 if (len > avail_wnd) { 3300 len = rounddown(avail_wnd, cur_mss); 3301 if (!len) 3302 len = avail_wnd; 3303 } 3304 if (skb->len > len) { 3305 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3306 cur_mss, GFP_ATOMIC)) 3307 return -ENOMEM; /* We'll try again later. */ 3308 } else { 3309 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3310 return -ENOMEM; 3311 3312 diff = tcp_skb_pcount(skb); 3313 tcp_set_skb_tso_segs(skb, cur_mss); 3314 diff -= tcp_skb_pcount(skb); 3315 if (diff) 3316 tcp_adjust_pcount(sk, skb, diff); 3317 avail_wnd = min_t(int, avail_wnd, cur_mss); 3318 if (skb->len < avail_wnd) 3319 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3320 } 3321 3322 /* RFC3168, section 6.1.1.1. ECN fallback */ 3323 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3324 tcp_ecn_clear_syn(sk, skb); 3325 3326 /* Update global and local TCP statistics. */ 3327 segs = tcp_skb_pcount(skb); 3328 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3329 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3330 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3331 tp->total_retrans += segs; 3332 tp->bytes_retrans += skb->len; 3333 3334 /* make sure skb->data is aligned on arches that require it 3335 * and check if ack-trimming & collapsing extended the headroom 3336 * beyond what csum_start can cover. 3337 */ 3338 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3339 skb_headroom(skb) >= 0xFFFF)) { 3340 struct sk_buff *nskb; 3341 3342 tcp_skb_tsorted_save(skb) { 3343 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3344 if (nskb) { 3345 nskb->dev = NULL; 3346 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3347 } else { 3348 err = -ENOBUFS; 3349 } 3350 } tcp_skb_tsorted_restore(skb); 3351 3352 if (!err) { 3353 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3354 tcp_rate_skb_sent(sk, skb); 3355 } 3356 } else { 3357 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3358 } 3359 3360 /* To avoid taking spuriously low RTT samples based on a timestamp 3361 * for a transmit that never happened, always mark EVER_RETRANS 3362 */ 3363 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3364 3365 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3366 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3367 TCP_SKB_CB(skb)->seq, segs, err); 3368 3369 if (likely(!err)) { 3370 trace_tcp_retransmit_skb(sk, skb); 3371 } else if (err != -EBUSY) { 3372 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3373 } 3374 return err; 3375 } 3376 3377 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3378 { 3379 struct tcp_sock *tp = tcp_sk(sk); 3380 int err = __tcp_retransmit_skb(sk, skb, segs); 3381 3382 if (err == 0) { 3383 #if FASTRETRANS_DEBUG > 0 3384 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3385 net_dbg_ratelimited("retrans_out leaked\n"); 3386 } 3387 #endif 3388 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3389 tp->retrans_out += tcp_skb_pcount(skb); 3390 } 3391 3392 /* Save stamp of the first (attempted) retransmit. */ 3393 if (!tp->retrans_stamp) 3394 tp->retrans_stamp = tcp_skb_timestamp(skb); 3395 3396 if (tp->undo_retrans < 0) 3397 tp->undo_retrans = 0; 3398 tp->undo_retrans += tcp_skb_pcount(skb); 3399 return err; 3400 } 3401 3402 /* This gets called after a retransmit timeout, and the initially 3403 * retransmitted data is acknowledged. It tries to continue 3404 * resending the rest of the retransmit queue, until either 3405 * we've sent it all or the congestion window limit is reached. 3406 */ 3407 void tcp_xmit_retransmit_queue(struct sock *sk) 3408 { 3409 const struct inet_connection_sock *icsk = inet_csk(sk); 3410 struct sk_buff *skb, *rtx_head, *hole = NULL; 3411 struct tcp_sock *tp = tcp_sk(sk); 3412 bool rearm_timer = false; 3413 u32 max_segs; 3414 int mib_idx; 3415 3416 if (!tp->packets_out) 3417 return; 3418 3419 rtx_head = tcp_rtx_queue_head(sk); 3420 skb = tp->retransmit_skb_hint ?: rtx_head; 3421 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3422 skb_rbtree_walk_from(skb) { 3423 __u8 sacked; 3424 int segs; 3425 3426 if (tcp_pacing_check(sk)) 3427 break; 3428 3429 /* we could do better than to assign each time */ 3430 if (!hole) 3431 tp->retransmit_skb_hint = skb; 3432 3433 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3434 if (segs <= 0) 3435 break; 3436 sacked = TCP_SKB_CB(skb)->sacked; 3437 /* In case tcp_shift_skb_data() have aggregated large skbs, 3438 * we need to make sure not sending too bigs TSO packets 3439 */ 3440 segs = min_t(int, segs, max_segs); 3441 3442 if (tp->retrans_out >= tp->lost_out) { 3443 break; 3444 } else if (!(sacked & TCPCB_LOST)) { 3445 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3446 hole = skb; 3447 continue; 3448 3449 } else { 3450 if (icsk->icsk_ca_state != TCP_CA_Loss) 3451 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3452 else 3453 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3454 } 3455 3456 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3457 continue; 3458 3459 if (tcp_small_queue_check(sk, skb, 1)) 3460 break; 3461 3462 if (tcp_retransmit_skb(sk, skb, segs)) 3463 break; 3464 3465 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3466 3467 if (tcp_in_cwnd_reduction(sk)) 3468 tp->prr_out += tcp_skb_pcount(skb); 3469 3470 if (skb == rtx_head && 3471 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3472 rearm_timer = true; 3473 3474 } 3475 if (rearm_timer) 3476 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3477 inet_csk(sk)->icsk_rto, 3478 TCP_RTO_MAX); 3479 } 3480 3481 /* We allow to exceed memory limits for FIN packets to expedite 3482 * connection tear down and (memory) recovery. 3483 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3484 * or even be forced to close flow without any FIN. 3485 * In general, we want to allow one skb per socket to avoid hangs 3486 * with edge trigger epoll() 3487 */ 3488 void sk_forced_mem_schedule(struct sock *sk, int size) 3489 { 3490 int delta, amt; 3491 3492 delta = size - sk->sk_forward_alloc; 3493 if (delta <= 0) 3494 return; 3495 amt = sk_mem_pages(delta); 3496 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3497 sk_memory_allocated_add(sk, amt); 3498 3499 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3500 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3501 gfp_memcg_charge() | __GFP_NOFAIL); 3502 } 3503 3504 /* Send a FIN. The caller locks the socket for us. 3505 * We should try to send a FIN packet really hard, but eventually give up. 3506 */ 3507 void tcp_send_fin(struct sock *sk) 3508 { 3509 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3510 struct tcp_sock *tp = tcp_sk(sk); 3511 3512 /* Optimization, tack on the FIN if we have one skb in write queue and 3513 * this skb was not yet sent, or we are under memory pressure. 3514 * Note: in the latter case, FIN packet will be sent after a timeout, 3515 * as TCP stack thinks it has already been transmitted. 3516 */ 3517 tskb = tail; 3518 if (!tskb && tcp_under_memory_pressure(sk)) 3519 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3520 3521 if (tskb) { 3522 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3523 TCP_SKB_CB(tskb)->end_seq++; 3524 tp->write_seq++; 3525 if (!tail) { 3526 /* This means tskb was already sent. 3527 * Pretend we included the FIN on previous transmit. 3528 * We need to set tp->snd_nxt to the value it would have 3529 * if FIN had been sent. This is because retransmit path 3530 * does not change tp->snd_nxt. 3531 */ 3532 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3533 return; 3534 } 3535 } else { 3536 skb = alloc_skb_fclone(MAX_TCP_HEADER, 3537 sk_gfp_mask(sk, GFP_ATOMIC | 3538 __GFP_NOWARN)); 3539 if (unlikely(!skb)) 3540 return; 3541 3542 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3543 skb_reserve(skb, MAX_TCP_HEADER); 3544 sk_forced_mem_schedule(sk, skb->truesize); 3545 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3546 tcp_init_nondata_skb(skb, tp->write_seq, 3547 TCPHDR_ACK | TCPHDR_FIN); 3548 tcp_queue_skb(sk, skb); 3549 } 3550 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3551 } 3552 3553 /* We get here when a process closes a file descriptor (either due to 3554 * an explicit close() or as a byproduct of exit()'ing) and there 3555 * was unread data in the receive queue. This behavior is recommended 3556 * by RFC 2525, section 2.17. -DaveM 3557 */ 3558 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3559 { 3560 struct sk_buff *skb; 3561 3562 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3563 3564 /* NOTE: No TCP options attached and we never retransmit this. */ 3565 skb = alloc_skb(MAX_TCP_HEADER, priority); 3566 if (!skb) { 3567 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3568 return; 3569 } 3570 3571 /* Reserve space for headers and prepare control bits. */ 3572 skb_reserve(skb, MAX_TCP_HEADER); 3573 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3574 TCPHDR_ACK | TCPHDR_RST); 3575 tcp_mstamp_refresh(tcp_sk(sk)); 3576 /* Send it off. */ 3577 if (tcp_transmit_skb(sk, skb, 0, priority)) 3578 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3579 3580 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3581 * skb here is different to the troublesome skb, so use NULL 3582 */ 3583 trace_tcp_send_reset(sk, NULL); 3584 } 3585 3586 /* Send a crossed SYN-ACK during socket establishment. 3587 * WARNING: This routine must only be called when we have already sent 3588 * a SYN packet that crossed the incoming SYN that caused this routine 3589 * to get called. If this assumption fails then the initial rcv_wnd 3590 * and rcv_wscale values will not be correct. 3591 */ 3592 int tcp_send_synack(struct sock *sk) 3593 { 3594 struct sk_buff *skb; 3595 3596 skb = tcp_rtx_queue_head(sk); 3597 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3598 pr_err("%s: wrong queue state\n", __func__); 3599 return -EFAULT; 3600 } 3601 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3602 if (skb_cloned(skb)) { 3603 struct sk_buff *nskb; 3604 3605 tcp_skb_tsorted_save(skb) { 3606 nskb = skb_copy(skb, GFP_ATOMIC); 3607 } tcp_skb_tsorted_restore(skb); 3608 if (!nskb) 3609 return -ENOMEM; 3610 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3611 tcp_highest_sack_replace(sk, skb, nskb); 3612 tcp_rtx_queue_unlink_and_free(skb, sk); 3613 __skb_header_release(nskb); 3614 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3615 sk_wmem_queued_add(sk, nskb->truesize); 3616 sk_mem_charge(sk, nskb->truesize); 3617 skb = nskb; 3618 } 3619 3620 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3621 tcp_ecn_send_synack(sk, skb); 3622 } 3623 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3624 } 3625 3626 /** 3627 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3628 * @sk: listener socket 3629 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3630 * should not use it again. 3631 * @req: request_sock pointer 3632 * @foc: cookie for tcp fast open 3633 * @synack_type: Type of synack to prepare 3634 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3635 */ 3636 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3637 struct request_sock *req, 3638 struct tcp_fastopen_cookie *foc, 3639 enum tcp_synack_type synack_type, 3640 struct sk_buff *syn_skb) 3641 { 3642 struct inet_request_sock *ireq = inet_rsk(req); 3643 const struct tcp_sock *tp = tcp_sk(sk); 3644 struct tcp_md5sig_key *md5 = NULL; 3645 struct tcp_out_options opts; 3646 struct sk_buff *skb; 3647 int tcp_header_size; 3648 struct tcphdr *th; 3649 int mss; 3650 u64 now; 3651 3652 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3653 if (unlikely(!skb)) { 3654 dst_release(dst); 3655 return NULL; 3656 } 3657 /* Reserve space for headers. */ 3658 skb_reserve(skb, MAX_TCP_HEADER); 3659 3660 switch (synack_type) { 3661 case TCP_SYNACK_NORMAL: 3662 skb_set_owner_w(skb, req_to_sk(req)); 3663 break; 3664 case TCP_SYNACK_COOKIE: 3665 /* Under synflood, we do not attach skb to a socket, 3666 * to avoid false sharing. 3667 */ 3668 break; 3669 case TCP_SYNACK_FASTOPEN: 3670 /* sk is a const pointer, because we want to express multiple 3671 * cpu might call us concurrently. 3672 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3673 */ 3674 skb_set_owner_w(skb, (struct sock *)sk); 3675 break; 3676 } 3677 skb_dst_set(skb, dst); 3678 3679 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3680 3681 memset(&opts, 0, sizeof(opts)); 3682 now = tcp_clock_ns(); 3683 #ifdef CONFIG_SYN_COOKIES 3684 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3685 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3686 true); 3687 else 3688 #endif 3689 { 3690 skb_set_delivery_time(skb, now, true); 3691 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3692 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3693 } 3694 3695 #ifdef CONFIG_TCP_MD5SIG 3696 rcu_read_lock(); 3697 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3698 #endif 3699 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3700 /* bpf program will be interested in the tcp_flags */ 3701 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3702 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3703 foc, synack_type, 3704 syn_skb) + sizeof(*th); 3705 3706 skb_push(skb, tcp_header_size); 3707 skb_reset_transport_header(skb); 3708 3709 th = (struct tcphdr *)skb->data; 3710 memset(th, 0, sizeof(struct tcphdr)); 3711 th->syn = 1; 3712 th->ack = 1; 3713 tcp_ecn_make_synack(req, th); 3714 th->source = htons(ireq->ir_num); 3715 th->dest = ireq->ir_rmt_port; 3716 skb->mark = ireq->ir_mark; 3717 skb->ip_summed = CHECKSUM_PARTIAL; 3718 th->seq = htonl(tcp_rsk(req)->snt_isn); 3719 /* XXX data is queued and acked as is. No buffer/window check */ 3720 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3721 3722 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3723 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3724 tcp_options_write(th, NULL, &opts); 3725 th->doff = (tcp_header_size >> 2); 3726 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3727 3728 #ifdef CONFIG_TCP_MD5SIG 3729 /* Okay, we have all we need - do the md5 hash if needed */ 3730 if (md5) 3731 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3732 md5, req_to_sk(req), skb); 3733 rcu_read_unlock(); 3734 #endif 3735 3736 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3737 synack_type, &opts); 3738 3739 skb_set_delivery_time(skb, now, true); 3740 tcp_add_tx_delay(skb, tp); 3741 3742 return skb; 3743 } 3744 EXPORT_SYMBOL(tcp_make_synack); 3745 3746 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3747 { 3748 struct inet_connection_sock *icsk = inet_csk(sk); 3749 const struct tcp_congestion_ops *ca; 3750 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3751 3752 if (ca_key == TCP_CA_UNSPEC) 3753 return; 3754 3755 rcu_read_lock(); 3756 ca = tcp_ca_find_key(ca_key); 3757 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3758 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3759 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3760 icsk->icsk_ca_ops = ca; 3761 } 3762 rcu_read_unlock(); 3763 } 3764 3765 /* Do all connect socket setups that can be done AF independent. */ 3766 static void tcp_connect_init(struct sock *sk) 3767 { 3768 const struct dst_entry *dst = __sk_dst_get(sk); 3769 struct tcp_sock *tp = tcp_sk(sk); 3770 __u8 rcv_wscale; 3771 u32 rcv_wnd; 3772 3773 /* We'll fix this up when we get a response from the other end. 3774 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3775 */ 3776 tp->tcp_header_len = sizeof(struct tcphdr); 3777 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3778 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3779 3780 /* If user gave his TCP_MAXSEG, record it to clamp */ 3781 if (tp->rx_opt.user_mss) 3782 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3783 tp->max_window = 0; 3784 tcp_mtup_init(sk); 3785 tcp_sync_mss(sk, dst_mtu(dst)); 3786 3787 tcp_ca_dst_init(sk, dst); 3788 3789 if (!tp->window_clamp) 3790 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW)); 3791 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3792 3793 tcp_initialize_rcv_mss(sk); 3794 3795 /* limit the window selection if the user enforce a smaller rx buffer */ 3796 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3797 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3798 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk)); 3799 3800 rcv_wnd = tcp_rwnd_init_bpf(sk); 3801 if (rcv_wnd == 0) 3802 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3803 3804 tcp_select_initial_window(sk, tcp_full_space(sk), 3805 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3806 &tp->rcv_wnd, 3807 &tp->window_clamp, 3808 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3809 &rcv_wscale, 3810 rcv_wnd); 3811 3812 tp->rx_opt.rcv_wscale = rcv_wscale; 3813 tp->rcv_ssthresh = tp->rcv_wnd; 3814 3815 WRITE_ONCE(sk->sk_err, 0); 3816 sock_reset_flag(sk, SOCK_DONE); 3817 tp->snd_wnd = 0; 3818 tcp_init_wl(tp, 0); 3819 tcp_write_queue_purge(sk); 3820 tp->snd_una = tp->write_seq; 3821 tp->snd_sml = tp->write_seq; 3822 tp->snd_up = tp->write_seq; 3823 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3824 3825 if (likely(!tp->repair)) 3826 tp->rcv_nxt = 0; 3827 else 3828 tp->rcv_tstamp = tcp_jiffies32; 3829 tp->rcv_wup = tp->rcv_nxt; 3830 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3831 3832 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3833 inet_csk(sk)->icsk_retransmits = 0; 3834 tcp_clear_retrans(tp); 3835 } 3836 3837 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3838 { 3839 struct tcp_sock *tp = tcp_sk(sk); 3840 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3841 3842 tcb->end_seq += skb->len; 3843 __skb_header_release(skb); 3844 sk_wmem_queued_add(sk, skb->truesize); 3845 sk_mem_charge(sk, skb->truesize); 3846 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3847 tp->packets_out += tcp_skb_pcount(skb); 3848 } 3849 3850 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3851 * queue a data-only packet after the regular SYN, such that regular SYNs 3852 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3853 * only the SYN sequence, the data are retransmitted in the first ACK. 3854 * If cookie is not cached or other error occurs, falls back to send a 3855 * regular SYN with Fast Open cookie request option. 3856 */ 3857 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3858 { 3859 struct inet_connection_sock *icsk = inet_csk(sk); 3860 struct tcp_sock *tp = tcp_sk(sk); 3861 struct tcp_fastopen_request *fo = tp->fastopen_req; 3862 struct page_frag *pfrag = sk_page_frag(sk); 3863 struct sk_buff *syn_data; 3864 int space, err = 0; 3865 3866 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3867 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3868 goto fallback; 3869 3870 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3871 * user-MSS. Reserve maximum option space for middleboxes that add 3872 * private TCP options. The cost is reduced data space in SYN :( 3873 */ 3874 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3875 /* Sync mss_cache after updating the mss_clamp */ 3876 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3877 3878 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3879 MAX_TCP_OPTION_SPACE; 3880 3881 space = min_t(size_t, space, fo->size); 3882 3883 if (space && 3884 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 3885 pfrag, sk->sk_allocation)) 3886 goto fallback; 3887 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 3888 if (!syn_data) 3889 goto fallback; 3890 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3891 if (space) { 3892 space = min_t(size_t, space, pfrag->size - pfrag->offset); 3893 space = tcp_wmem_schedule(sk, space); 3894 } 3895 if (space) { 3896 space = copy_page_from_iter(pfrag->page, pfrag->offset, 3897 space, &fo->data->msg_iter); 3898 if (unlikely(!space)) { 3899 tcp_skb_tsorted_anchor_cleanup(syn_data); 3900 kfree_skb(syn_data); 3901 goto fallback; 3902 } 3903 skb_fill_page_desc(syn_data, 0, pfrag->page, 3904 pfrag->offset, space); 3905 page_ref_inc(pfrag->page); 3906 pfrag->offset += space; 3907 skb_len_add(syn_data, space); 3908 skb_zcopy_set(syn_data, fo->uarg, NULL); 3909 } 3910 /* No more data pending in inet_wait_for_connect() */ 3911 if (space == fo->size) 3912 fo->data = NULL; 3913 fo->copied = space; 3914 3915 tcp_connect_queue_skb(sk, syn_data); 3916 if (syn_data->len) 3917 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3918 3919 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3920 3921 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true); 3922 3923 /* Now full SYN+DATA was cloned and sent (or not), 3924 * remove the SYN from the original skb (syn_data) 3925 * we keep in write queue in case of a retransmit, as we 3926 * also have the SYN packet (with no data) in the same queue. 3927 */ 3928 TCP_SKB_CB(syn_data)->seq++; 3929 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3930 if (!err) { 3931 tp->syn_data = (fo->copied > 0); 3932 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3933 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3934 goto done; 3935 } 3936 3937 /* data was not sent, put it in write_queue */ 3938 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3939 tp->packets_out -= tcp_skb_pcount(syn_data); 3940 3941 fallback: 3942 /* Send a regular SYN with Fast Open cookie request option */ 3943 if (fo->cookie.len > 0) 3944 fo->cookie.len = 0; 3945 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3946 if (err) 3947 tp->syn_fastopen = 0; 3948 done: 3949 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3950 return err; 3951 } 3952 3953 /* Build a SYN and send it off. */ 3954 int tcp_connect(struct sock *sk) 3955 { 3956 struct tcp_sock *tp = tcp_sk(sk); 3957 struct sk_buff *buff; 3958 int err; 3959 3960 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3961 3962 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3963 return -EHOSTUNREACH; /* Routing failure or similar. */ 3964 3965 tcp_connect_init(sk); 3966 3967 if (unlikely(tp->repair)) { 3968 tcp_finish_connect(sk, NULL); 3969 return 0; 3970 } 3971 3972 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 3973 if (unlikely(!buff)) 3974 return -ENOBUFS; 3975 3976 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3977 tcp_mstamp_refresh(tp); 3978 tp->retrans_stamp = tcp_time_stamp(tp); 3979 tcp_connect_queue_skb(sk, buff); 3980 tcp_ecn_send_syn(sk, buff); 3981 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3982 3983 /* Send off SYN; include data in Fast Open. */ 3984 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3985 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3986 if (err == -ECONNREFUSED) 3987 return err; 3988 3989 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3990 * in order to make this packet get counted in tcpOutSegs. 3991 */ 3992 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3993 tp->pushed_seq = tp->write_seq; 3994 buff = tcp_send_head(sk); 3995 if (unlikely(buff)) { 3996 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3997 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3998 } 3999 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 4000 4001 /* Timer for repeating the SYN until an answer. */ 4002 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 4003 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 4004 return 0; 4005 } 4006 EXPORT_SYMBOL(tcp_connect); 4007 4008 u32 tcp_delack_max(const struct sock *sk) 4009 { 4010 const struct dst_entry *dst = __sk_dst_get(sk); 4011 u32 delack_max = inet_csk(sk)->icsk_delack_max; 4012 4013 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) { 4014 u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 4015 u32 delack_from_rto_min = max_t(int, 1, rto_min - 1); 4016 4017 delack_max = min_t(u32, delack_max, delack_from_rto_min); 4018 } 4019 return delack_max; 4020 } 4021 4022 /* Send out a delayed ack, the caller does the policy checking 4023 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 4024 * for details. 4025 */ 4026 void tcp_send_delayed_ack(struct sock *sk) 4027 { 4028 struct inet_connection_sock *icsk = inet_csk(sk); 4029 int ato = icsk->icsk_ack.ato; 4030 unsigned long timeout; 4031 4032 if (ato > TCP_DELACK_MIN) { 4033 const struct tcp_sock *tp = tcp_sk(sk); 4034 int max_ato = HZ / 2; 4035 4036 if (inet_csk_in_pingpong_mode(sk) || 4037 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4038 max_ato = TCP_DELACK_MAX; 4039 4040 /* Slow path, intersegment interval is "high". */ 4041 4042 /* If some rtt estimate is known, use it to bound delayed ack. 4043 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4044 * directly. 4045 */ 4046 if (tp->srtt_us) { 4047 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4048 TCP_DELACK_MIN); 4049 4050 if (rtt < max_ato) 4051 max_ato = rtt; 4052 } 4053 4054 ato = min(ato, max_ato); 4055 } 4056 4057 ato = min_t(u32, ato, tcp_delack_max(sk)); 4058 4059 /* Stay within the limit we were given */ 4060 timeout = jiffies + ato; 4061 4062 /* Use new timeout only if there wasn't a older one earlier. */ 4063 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4064 /* If delack timer is about to expire, send ACK now. */ 4065 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 4066 tcp_send_ack(sk); 4067 return; 4068 } 4069 4070 if (!time_before(timeout, icsk->icsk_ack.timeout)) 4071 timeout = icsk->icsk_ack.timeout; 4072 } 4073 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 4074 icsk->icsk_ack.timeout = timeout; 4075 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4076 } 4077 4078 /* This routine sends an ack and also updates the window. */ 4079 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 4080 { 4081 struct sk_buff *buff; 4082 4083 /* If we have been reset, we may not send again. */ 4084 if (sk->sk_state == TCP_CLOSE) 4085 return; 4086 4087 /* We are not putting this on the write queue, so 4088 * tcp_transmit_skb() will set the ownership to this 4089 * sock. 4090 */ 4091 buff = alloc_skb(MAX_TCP_HEADER, 4092 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4093 if (unlikely(!buff)) { 4094 struct inet_connection_sock *icsk = inet_csk(sk); 4095 unsigned long delay; 4096 4097 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4098 if (delay < TCP_RTO_MAX) 4099 icsk->icsk_ack.retry++; 4100 inet_csk_schedule_ack(sk); 4101 icsk->icsk_ack.ato = TCP_ATO_MIN; 4102 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 4103 return; 4104 } 4105 4106 /* Reserve space for headers and prepare control bits. */ 4107 skb_reserve(buff, MAX_TCP_HEADER); 4108 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 4109 4110 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4111 * too much. 4112 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4113 */ 4114 skb_set_tcp_pure_ack(buff); 4115 4116 /* Send it off, this clears delayed acks for us. */ 4117 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4118 } 4119 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4120 4121 void tcp_send_ack(struct sock *sk) 4122 { 4123 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 4124 } 4125 4126 /* This routine sends a packet with an out of date sequence 4127 * number. It assumes the other end will try to ack it. 4128 * 4129 * Question: what should we make while urgent mode? 4130 * 4.4BSD forces sending single byte of data. We cannot send 4131 * out of window data, because we have SND.NXT==SND.MAX... 4132 * 4133 * Current solution: to send TWO zero-length segments in urgent mode: 4134 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4135 * out-of-date with SND.UNA-1 to probe window. 4136 */ 4137 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4138 { 4139 struct tcp_sock *tp = tcp_sk(sk); 4140 struct sk_buff *skb; 4141 4142 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4143 skb = alloc_skb(MAX_TCP_HEADER, 4144 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4145 if (!skb) 4146 return -1; 4147 4148 /* Reserve space for headers and set control bits. */ 4149 skb_reserve(skb, MAX_TCP_HEADER); 4150 /* Use a previous sequence. This should cause the other 4151 * end to send an ack. Don't queue or clone SKB, just 4152 * send it. 4153 */ 4154 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4155 NET_INC_STATS(sock_net(sk), mib); 4156 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4157 } 4158 4159 /* Called from setsockopt( ... TCP_REPAIR ) */ 4160 void tcp_send_window_probe(struct sock *sk) 4161 { 4162 if (sk->sk_state == TCP_ESTABLISHED) { 4163 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4164 tcp_mstamp_refresh(tcp_sk(sk)); 4165 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4166 } 4167 } 4168 4169 /* Initiate keepalive or window probe from timer. */ 4170 int tcp_write_wakeup(struct sock *sk, int mib) 4171 { 4172 struct tcp_sock *tp = tcp_sk(sk); 4173 struct sk_buff *skb; 4174 4175 if (sk->sk_state == TCP_CLOSE) 4176 return -1; 4177 4178 skb = tcp_send_head(sk); 4179 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4180 int err; 4181 unsigned int mss = tcp_current_mss(sk); 4182 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4183 4184 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4185 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4186 4187 /* We are probing the opening of a window 4188 * but the window size is != 0 4189 * must have been a result SWS avoidance ( sender ) 4190 */ 4191 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4192 skb->len > mss) { 4193 seg_size = min(seg_size, mss); 4194 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4195 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4196 skb, seg_size, mss, GFP_ATOMIC)) 4197 return -1; 4198 } else if (!tcp_skb_pcount(skb)) 4199 tcp_set_skb_tso_segs(skb, mss); 4200 4201 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4202 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4203 if (!err) 4204 tcp_event_new_data_sent(sk, skb); 4205 return err; 4206 } else { 4207 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4208 tcp_xmit_probe_skb(sk, 1, mib); 4209 return tcp_xmit_probe_skb(sk, 0, mib); 4210 } 4211 } 4212 4213 /* A window probe timeout has occurred. If window is not closed send 4214 * a partial packet else a zero probe. 4215 */ 4216 void tcp_send_probe0(struct sock *sk) 4217 { 4218 struct inet_connection_sock *icsk = inet_csk(sk); 4219 struct tcp_sock *tp = tcp_sk(sk); 4220 struct net *net = sock_net(sk); 4221 unsigned long timeout; 4222 int err; 4223 4224 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4225 4226 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4227 /* Cancel probe timer, if it is not required. */ 4228 icsk->icsk_probes_out = 0; 4229 icsk->icsk_backoff = 0; 4230 icsk->icsk_probes_tstamp = 0; 4231 return; 4232 } 4233 4234 icsk->icsk_probes_out++; 4235 if (err <= 0) { 4236 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4237 icsk->icsk_backoff++; 4238 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4239 } else { 4240 /* If packet was not sent due to local congestion, 4241 * Let senders fight for local resources conservatively. 4242 */ 4243 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4244 } 4245 4246 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4247 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4248 } 4249 4250 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4251 { 4252 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4253 struct flowi fl; 4254 int res; 4255 4256 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4257 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4258 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4259 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4260 NULL); 4261 if (!res) { 4262 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4263 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4264 if (unlikely(tcp_passive_fastopen(sk))) { 4265 /* sk has const attribute because listeners are lockless. 4266 * However in this case, we are dealing with a passive fastopen 4267 * socket thus we can change total_retrans value. 4268 */ 4269 tcp_sk_rw(sk)->total_retrans++; 4270 } 4271 trace_tcp_retransmit_synack(sk, req); 4272 } 4273 return res; 4274 } 4275 EXPORT_SYMBOL(tcp_rtx_synack); 4276