1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 66 int push_one, gfp_t gfp); 67 68 /* Account for new data that has been sent to the network. */ 69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 70 { 71 struct inet_connection_sock *icsk = inet_csk(sk); 72 struct tcp_sock *tp = tcp_sk(sk); 73 unsigned int prior_packets = tp->packets_out; 74 75 tcp_advance_send_head(sk, skb); 76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 80 tcp_rearm_rto(sk); 81 82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 83 tcp_skb_pcount(skb)); 84 } 85 86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 87 * window scaling factor due to loss of precision. 88 * If window has been shrunk, what should we make? It is not clear at all. 89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 91 * invalid. OK, let's make this for now: 92 */ 93 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 94 { 95 const struct tcp_sock *tp = tcp_sk(sk); 96 97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 98 (tp->rx_opt.wscale_ok && 99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 100 return tp->snd_nxt; 101 else 102 return tcp_wnd_end(tp); 103 } 104 105 /* Calculate mss to advertise in SYN segment. 106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 107 * 108 * 1. It is independent of path mtu. 109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 111 * attached devices, because some buggy hosts are confused by 112 * large MSS. 113 * 4. We do not make 3, we advertise MSS, calculated from first 114 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 115 * This may be overridden via information stored in routing table. 116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 117 * probably even Jumbo". 118 */ 119 static __u16 tcp_advertise_mss(struct sock *sk) 120 { 121 struct tcp_sock *tp = tcp_sk(sk); 122 const struct dst_entry *dst = __sk_dst_get(sk); 123 int mss = tp->advmss; 124 125 if (dst) { 126 unsigned int metric = dst_metric_advmss(dst); 127 128 if (metric < mss) { 129 mss = metric; 130 tp->advmss = mss; 131 } 132 } 133 134 return (__u16)mss; 135 } 136 137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 138 * This is the first part of cwnd validation mechanism. 139 */ 140 void tcp_cwnd_restart(struct sock *sk, s32 delta) 141 { 142 struct tcp_sock *tp = tcp_sk(sk); 143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 144 u32 cwnd = tp->snd_cwnd; 145 146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 147 148 tp->snd_ssthresh = tcp_current_ssthresh(sk); 149 restart_cwnd = min(restart_cwnd, cwnd); 150 151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 152 cwnd >>= 1; 153 tp->snd_cwnd = max(cwnd, restart_cwnd); 154 tp->snd_cwnd_stamp = tcp_time_stamp; 155 tp->snd_cwnd_used = 0; 156 } 157 158 /* Congestion state accounting after a packet has been sent. */ 159 static void tcp_event_data_sent(struct tcp_sock *tp, 160 struct sock *sk) 161 { 162 struct inet_connection_sock *icsk = inet_csk(sk); 163 const u32 now = tcp_time_stamp; 164 165 if (tcp_packets_in_flight(tp) == 0) 166 tcp_ca_event(sk, CA_EVENT_TX_START); 167 168 tp->lsndtime = now; 169 170 /* If it is a reply for ato after last received 171 * packet, enter pingpong mode. 172 */ 173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 174 icsk->icsk_ack.pingpong = 1; 175 } 176 177 /* Account for an ACK we sent. */ 178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 179 { 180 tcp_dec_quickack_mode(sk, pkts); 181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 182 } 183 184 185 u32 tcp_default_init_rwnd(u32 mss) 186 { 187 /* Initial receive window should be twice of TCP_INIT_CWND to 188 * enable proper sending of new unsent data during fast recovery 189 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 190 * limit when mss is larger than 1460. 191 */ 192 u32 init_rwnd = TCP_INIT_CWND * 2; 193 194 if (mss > 1460) 195 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 196 return init_rwnd; 197 } 198 199 /* Determine a window scaling and initial window to offer. 200 * Based on the assumption that the given amount of space 201 * will be offered. Store the results in the tp structure. 202 * NOTE: for smooth operation initial space offering should 203 * be a multiple of mss if possible. We assume here that mss >= 1. 204 * This MUST be enforced by all callers. 205 */ 206 void tcp_select_initial_window(int __space, __u32 mss, 207 __u32 *rcv_wnd, __u32 *window_clamp, 208 int wscale_ok, __u8 *rcv_wscale, 209 __u32 init_rcv_wnd) 210 { 211 unsigned int space = (__space < 0 ? 0 : __space); 212 213 /* If no clamp set the clamp to the max possible scaled window */ 214 if (*window_clamp == 0) 215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 216 space = min(*window_clamp, space); 217 218 /* Quantize space offering to a multiple of mss if possible. */ 219 if (space > mss) 220 space = rounddown(space, mss); 221 222 /* NOTE: offering an initial window larger than 32767 223 * will break some buggy TCP stacks. If the admin tells us 224 * it is likely we could be speaking with such a buggy stack 225 * we will truncate our initial window offering to 32K-1 226 * unless the remote has sent us a window scaling option, 227 * which we interpret as a sign the remote TCP is not 228 * misinterpreting the window field as a signed quantity. 229 */ 230 if (sysctl_tcp_workaround_signed_windows) 231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 232 else 233 (*rcv_wnd) = space; 234 235 (*rcv_wscale) = 0; 236 if (wscale_ok) { 237 /* Set window scaling on max possible window */ 238 space = max_t(u32, space, sysctl_tcp_rmem[2]); 239 space = max_t(u32, space, sysctl_rmem_max); 240 space = min_t(u32, space, *window_clamp); 241 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 242 space >>= 1; 243 (*rcv_wscale)++; 244 } 245 } 246 247 if (mss > (1 << *rcv_wscale)) { 248 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 249 init_rcv_wnd = tcp_default_init_rwnd(mss); 250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 251 } 252 253 /* Set the clamp no higher than max representable value */ 254 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 255 } 256 EXPORT_SYMBOL(tcp_select_initial_window); 257 258 /* Chose a new window to advertise, update state in tcp_sock for the 259 * socket, and return result with RFC1323 scaling applied. The return 260 * value can be stuffed directly into th->window for an outgoing 261 * frame. 262 */ 263 static u16 tcp_select_window(struct sock *sk) 264 { 265 struct tcp_sock *tp = tcp_sk(sk); 266 u32 old_win = tp->rcv_wnd; 267 u32 cur_win = tcp_receive_window(tp); 268 u32 new_win = __tcp_select_window(sk); 269 270 /* Never shrink the offered window */ 271 if (new_win < cur_win) { 272 /* Danger Will Robinson! 273 * Don't update rcv_wup/rcv_wnd here or else 274 * we will not be able to advertise a zero 275 * window in time. --DaveM 276 * 277 * Relax Will Robinson. 278 */ 279 if (new_win == 0) 280 NET_INC_STATS(sock_net(sk), 281 LINUX_MIB_TCPWANTZEROWINDOWADV); 282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 283 } 284 tp->rcv_wnd = new_win; 285 tp->rcv_wup = tp->rcv_nxt; 286 287 /* Make sure we do not exceed the maximum possible 288 * scaled window. 289 */ 290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 291 new_win = min(new_win, MAX_TCP_WINDOW); 292 else 293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 294 295 /* RFC1323 scaling applied */ 296 new_win >>= tp->rx_opt.rcv_wscale; 297 298 /* If we advertise zero window, disable fast path. */ 299 if (new_win == 0) { 300 tp->pred_flags = 0; 301 if (old_win) 302 NET_INC_STATS(sock_net(sk), 303 LINUX_MIB_TCPTOZEROWINDOWADV); 304 } else if (old_win == 0) { 305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 306 } 307 308 return new_win; 309 } 310 311 /* Packet ECN state for a SYN-ACK */ 312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 313 { 314 const struct tcp_sock *tp = tcp_sk(sk); 315 316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 317 if (!(tp->ecn_flags & TCP_ECN_OK)) 318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 319 else if (tcp_ca_needs_ecn(sk)) 320 INET_ECN_xmit(sk); 321 } 322 323 /* Packet ECN state for a SYN. */ 324 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 325 { 326 struct tcp_sock *tp = tcp_sk(sk); 327 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 328 tcp_ca_needs_ecn(sk); 329 330 if (!use_ecn) { 331 const struct dst_entry *dst = __sk_dst_get(sk); 332 333 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 334 use_ecn = true; 335 } 336 337 tp->ecn_flags = 0; 338 339 if (use_ecn) { 340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 341 tp->ecn_flags = TCP_ECN_OK; 342 if (tcp_ca_needs_ecn(sk)) 343 INET_ECN_xmit(sk); 344 } 345 } 346 347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 348 { 349 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 350 /* tp->ecn_flags are cleared at a later point in time when 351 * SYN ACK is ultimatively being received. 352 */ 353 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 354 } 355 356 static void 357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 358 { 359 if (inet_rsk(req)->ecn_ok) 360 th->ece = 1; 361 } 362 363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 364 * be sent. 365 */ 366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 367 struct tcphdr *th, int tcp_header_len) 368 { 369 struct tcp_sock *tp = tcp_sk(sk); 370 371 if (tp->ecn_flags & TCP_ECN_OK) { 372 /* Not-retransmitted data segment: set ECT and inject CWR. */ 373 if (skb->len != tcp_header_len && 374 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 375 INET_ECN_xmit(sk); 376 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 377 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 378 th->cwr = 1; 379 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 380 } 381 } else if (!tcp_ca_needs_ecn(sk)) { 382 /* ACK or retransmitted segment: clear ECT|CE */ 383 INET_ECN_dontxmit(sk); 384 } 385 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 386 th->ece = 1; 387 } 388 } 389 390 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 391 * auto increment end seqno. 392 */ 393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 394 { 395 skb->ip_summed = CHECKSUM_PARTIAL; 396 skb->csum = 0; 397 398 TCP_SKB_CB(skb)->tcp_flags = flags; 399 TCP_SKB_CB(skb)->sacked = 0; 400 401 tcp_skb_pcount_set(skb, 1); 402 403 TCP_SKB_CB(skb)->seq = seq; 404 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 405 seq++; 406 TCP_SKB_CB(skb)->end_seq = seq; 407 } 408 409 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 410 { 411 return tp->snd_una != tp->snd_up; 412 } 413 414 #define OPTION_SACK_ADVERTISE (1 << 0) 415 #define OPTION_TS (1 << 1) 416 #define OPTION_MD5 (1 << 2) 417 #define OPTION_WSCALE (1 << 3) 418 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 419 420 struct tcp_out_options { 421 u16 options; /* bit field of OPTION_* */ 422 u16 mss; /* 0 to disable */ 423 u8 ws; /* window scale, 0 to disable */ 424 u8 num_sack_blocks; /* number of SACK blocks to include */ 425 u8 hash_size; /* bytes in hash_location */ 426 __u8 *hash_location; /* temporary pointer, overloaded */ 427 __u32 tsval, tsecr; /* need to include OPTION_TS */ 428 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 429 }; 430 431 /* Write previously computed TCP options to the packet. 432 * 433 * Beware: Something in the Internet is very sensitive to the ordering of 434 * TCP options, we learned this through the hard way, so be careful here. 435 * Luckily we can at least blame others for their non-compliance but from 436 * inter-operability perspective it seems that we're somewhat stuck with 437 * the ordering which we have been using if we want to keep working with 438 * those broken things (not that it currently hurts anybody as there isn't 439 * particular reason why the ordering would need to be changed). 440 * 441 * At least SACK_PERM as the first option is known to lead to a disaster 442 * (but it may well be that other scenarios fail similarly). 443 */ 444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 445 struct tcp_out_options *opts) 446 { 447 u16 options = opts->options; /* mungable copy */ 448 449 if (unlikely(OPTION_MD5 & options)) { 450 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 451 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 452 /* overload cookie hash location */ 453 opts->hash_location = (__u8 *)ptr; 454 ptr += 4; 455 } 456 457 if (unlikely(opts->mss)) { 458 *ptr++ = htonl((TCPOPT_MSS << 24) | 459 (TCPOLEN_MSS << 16) | 460 opts->mss); 461 } 462 463 if (likely(OPTION_TS & options)) { 464 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 465 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 466 (TCPOLEN_SACK_PERM << 16) | 467 (TCPOPT_TIMESTAMP << 8) | 468 TCPOLEN_TIMESTAMP); 469 options &= ~OPTION_SACK_ADVERTISE; 470 } else { 471 *ptr++ = htonl((TCPOPT_NOP << 24) | 472 (TCPOPT_NOP << 16) | 473 (TCPOPT_TIMESTAMP << 8) | 474 TCPOLEN_TIMESTAMP); 475 } 476 *ptr++ = htonl(opts->tsval); 477 *ptr++ = htonl(opts->tsecr); 478 } 479 480 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 481 *ptr++ = htonl((TCPOPT_NOP << 24) | 482 (TCPOPT_NOP << 16) | 483 (TCPOPT_SACK_PERM << 8) | 484 TCPOLEN_SACK_PERM); 485 } 486 487 if (unlikely(OPTION_WSCALE & options)) { 488 *ptr++ = htonl((TCPOPT_NOP << 24) | 489 (TCPOPT_WINDOW << 16) | 490 (TCPOLEN_WINDOW << 8) | 491 opts->ws); 492 } 493 494 if (unlikely(opts->num_sack_blocks)) { 495 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 496 tp->duplicate_sack : tp->selective_acks; 497 int this_sack; 498 499 *ptr++ = htonl((TCPOPT_NOP << 24) | 500 (TCPOPT_NOP << 16) | 501 (TCPOPT_SACK << 8) | 502 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 503 TCPOLEN_SACK_PERBLOCK))); 504 505 for (this_sack = 0; this_sack < opts->num_sack_blocks; 506 ++this_sack) { 507 *ptr++ = htonl(sp[this_sack].start_seq); 508 *ptr++ = htonl(sp[this_sack].end_seq); 509 } 510 511 tp->rx_opt.dsack = 0; 512 } 513 514 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 515 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 516 u8 *p = (u8 *)ptr; 517 u32 len; /* Fast Open option length */ 518 519 if (foc->exp) { 520 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 521 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 522 TCPOPT_FASTOPEN_MAGIC); 523 p += TCPOLEN_EXP_FASTOPEN_BASE; 524 } else { 525 len = TCPOLEN_FASTOPEN_BASE + foc->len; 526 *p++ = TCPOPT_FASTOPEN; 527 *p++ = len; 528 } 529 530 memcpy(p, foc->val, foc->len); 531 if ((len & 3) == 2) { 532 p[foc->len] = TCPOPT_NOP; 533 p[foc->len + 1] = TCPOPT_NOP; 534 } 535 ptr += (len + 3) >> 2; 536 } 537 } 538 539 /* Compute TCP options for SYN packets. This is not the final 540 * network wire format yet. 541 */ 542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 543 struct tcp_out_options *opts, 544 struct tcp_md5sig_key **md5) 545 { 546 struct tcp_sock *tp = tcp_sk(sk); 547 unsigned int remaining = MAX_TCP_OPTION_SPACE; 548 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 549 550 #ifdef CONFIG_TCP_MD5SIG 551 *md5 = tp->af_specific->md5_lookup(sk, sk); 552 if (*md5) { 553 opts->options |= OPTION_MD5; 554 remaining -= TCPOLEN_MD5SIG_ALIGNED; 555 } 556 #else 557 *md5 = NULL; 558 #endif 559 560 /* We always get an MSS option. The option bytes which will be seen in 561 * normal data packets should timestamps be used, must be in the MSS 562 * advertised. But we subtract them from tp->mss_cache so that 563 * calculations in tcp_sendmsg are simpler etc. So account for this 564 * fact here if necessary. If we don't do this correctly, as a 565 * receiver we won't recognize data packets as being full sized when we 566 * should, and thus we won't abide by the delayed ACK rules correctly. 567 * SACKs don't matter, we never delay an ACK when we have any of those 568 * going out. */ 569 opts->mss = tcp_advertise_mss(sk); 570 remaining -= TCPOLEN_MSS_ALIGNED; 571 572 if (likely(sysctl_tcp_timestamps && !*md5)) { 573 opts->options |= OPTION_TS; 574 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 575 opts->tsecr = tp->rx_opt.ts_recent; 576 remaining -= TCPOLEN_TSTAMP_ALIGNED; 577 } 578 if (likely(sysctl_tcp_window_scaling)) { 579 opts->ws = tp->rx_opt.rcv_wscale; 580 opts->options |= OPTION_WSCALE; 581 remaining -= TCPOLEN_WSCALE_ALIGNED; 582 } 583 if (likely(sysctl_tcp_sack)) { 584 opts->options |= OPTION_SACK_ADVERTISE; 585 if (unlikely(!(OPTION_TS & opts->options))) 586 remaining -= TCPOLEN_SACKPERM_ALIGNED; 587 } 588 589 if (fastopen && fastopen->cookie.len >= 0) { 590 u32 need = fastopen->cookie.len; 591 592 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 593 TCPOLEN_FASTOPEN_BASE; 594 need = (need + 3) & ~3U; /* Align to 32 bits */ 595 if (remaining >= need) { 596 opts->options |= OPTION_FAST_OPEN_COOKIE; 597 opts->fastopen_cookie = &fastopen->cookie; 598 remaining -= need; 599 tp->syn_fastopen = 1; 600 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 601 } 602 } 603 604 return MAX_TCP_OPTION_SPACE - remaining; 605 } 606 607 /* Set up TCP options for SYN-ACKs. */ 608 static unsigned int tcp_synack_options(struct request_sock *req, 609 unsigned int mss, struct sk_buff *skb, 610 struct tcp_out_options *opts, 611 const struct tcp_md5sig_key *md5, 612 struct tcp_fastopen_cookie *foc) 613 { 614 struct inet_request_sock *ireq = inet_rsk(req); 615 unsigned int remaining = MAX_TCP_OPTION_SPACE; 616 617 #ifdef CONFIG_TCP_MD5SIG 618 if (md5) { 619 opts->options |= OPTION_MD5; 620 remaining -= TCPOLEN_MD5SIG_ALIGNED; 621 622 /* We can't fit any SACK blocks in a packet with MD5 + TS 623 * options. There was discussion about disabling SACK 624 * rather than TS in order to fit in better with old, 625 * buggy kernels, but that was deemed to be unnecessary. 626 */ 627 ireq->tstamp_ok &= !ireq->sack_ok; 628 } 629 #endif 630 631 /* We always send an MSS option. */ 632 opts->mss = mss; 633 remaining -= TCPOLEN_MSS_ALIGNED; 634 635 if (likely(ireq->wscale_ok)) { 636 opts->ws = ireq->rcv_wscale; 637 opts->options |= OPTION_WSCALE; 638 remaining -= TCPOLEN_WSCALE_ALIGNED; 639 } 640 if (likely(ireq->tstamp_ok)) { 641 opts->options |= OPTION_TS; 642 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 643 opts->tsecr = req->ts_recent; 644 remaining -= TCPOLEN_TSTAMP_ALIGNED; 645 } 646 if (likely(ireq->sack_ok)) { 647 opts->options |= OPTION_SACK_ADVERTISE; 648 if (unlikely(!ireq->tstamp_ok)) 649 remaining -= TCPOLEN_SACKPERM_ALIGNED; 650 } 651 if (foc != NULL && foc->len >= 0) { 652 u32 need = foc->len; 653 654 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 655 TCPOLEN_FASTOPEN_BASE; 656 need = (need + 3) & ~3U; /* Align to 32 bits */ 657 if (remaining >= need) { 658 opts->options |= OPTION_FAST_OPEN_COOKIE; 659 opts->fastopen_cookie = foc; 660 remaining -= need; 661 } 662 } 663 664 return MAX_TCP_OPTION_SPACE - remaining; 665 } 666 667 /* Compute TCP options for ESTABLISHED sockets. This is not the 668 * final wire format yet. 669 */ 670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 671 struct tcp_out_options *opts, 672 struct tcp_md5sig_key **md5) 673 { 674 struct tcp_sock *tp = tcp_sk(sk); 675 unsigned int size = 0; 676 unsigned int eff_sacks; 677 678 opts->options = 0; 679 680 #ifdef CONFIG_TCP_MD5SIG 681 *md5 = tp->af_specific->md5_lookup(sk, sk); 682 if (unlikely(*md5)) { 683 opts->options |= OPTION_MD5; 684 size += TCPOLEN_MD5SIG_ALIGNED; 685 } 686 #else 687 *md5 = NULL; 688 #endif 689 690 if (likely(tp->rx_opt.tstamp_ok)) { 691 opts->options |= OPTION_TS; 692 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 693 opts->tsecr = tp->rx_opt.ts_recent; 694 size += TCPOLEN_TSTAMP_ALIGNED; 695 } 696 697 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 698 if (unlikely(eff_sacks)) { 699 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 700 opts->num_sack_blocks = 701 min_t(unsigned int, eff_sacks, 702 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 703 TCPOLEN_SACK_PERBLOCK); 704 size += TCPOLEN_SACK_BASE_ALIGNED + 705 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 706 } 707 708 return size; 709 } 710 711 712 /* TCP SMALL QUEUES (TSQ) 713 * 714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 715 * to reduce RTT and bufferbloat. 716 * We do this using a special skb destructor (tcp_wfree). 717 * 718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 719 * needs to be reallocated in a driver. 720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 721 * 722 * Since transmit from skb destructor is forbidden, we use a tasklet 723 * to process all sockets that eventually need to send more skbs. 724 * We use one tasklet per cpu, with its own queue of sockets. 725 */ 726 struct tsq_tasklet { 727 struct tasklet_struct tasklet; 728 struct list_head head; /* queue of tcp sockets */ 729 }; 730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 731 732 static void tcp_tsq_handler(struct sock *sk) 733 { 734 if ((1 << sk->sk_state) & 735 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 736 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 737 struct tcp_sock *tp = tcp_sk(sk); 738 739 if (tp->lost_out > tp->retrans_out && 740 tp->snd_cwnd > tcp_packets_in_flight(tp)) 741 tcp_xmit_retransmit_queue(sk); 742 743 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 744 0, GFP_ATOMIC); 745 } 746 } 747 /* 748 * One tasklet per cpu tries to send more skbs. 749 * We run in tasklet context but need to disable irqs when 750 * transferring tsq->head because tcp_wfree() might 751 * interrupt us (non NAPI drivers) 752 */ 753 static void tcp_tasklet_func(unsigned long data) 754 { 755 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 756 LIST_HEAD(list); 757 unsigned long flags; 758 struct list_head *q, *n; 759 struct tcp_sock *tp; 760 struct sock *sk; 761 762 local_irq_save(flags); 763 list_splice_init(&tsq->head, &list); 764 local_irq_restore(flags); 765 766 list_for_each_safe(q, n, &list) { 767 tp = list_entry(q, struct tcp_sock, tsq_node); 768 list_del(&tp->tsq_node); 769 770 sk = (struct sock *)tp; 771 smp_mb__before_atomic(); 772 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 773 774 if (!sk->sk_lock.owned && 775 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) { 776 bh_lock_sock(sk); 777 if (!sock_owned_by_user(sk)) { 778 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 779 tcp_tsq_handler(sk); 780 } 781 bh_unlock_sock(sk); 782 } 783 784 sk_free(sk); 785 } 786 } 787 788 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 789 TCPF_WRITE_TIMER_DEFERRED | \ 790 TCPF_DELACK_TIMER_DEFERRED | \ 791 TCPF_MTU_REDUCED_DEFERRED) 792 /** 793 * tcp_release_cb - tcp release_sock() callback 794 * @sk: socket 795 * 796 * called from release_sock() to perform protocol dependent 797 * actions before socket release. 798 */ 799 void tcp_release_cb(struct sock *sk) 800 { 801 unsigned long flags, nflags; 802 803 /* perform an atomic operation only if at least one flag is set */ 804 do { 805 flags = sk->sk_tsq_flags; 806 if (!(flags & TCP_DEFERRED_ALL)) 807 return; 808 nflags = flags & ~TCP_DEFERRED_ALL; 809 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 810 811 if (flags & TCPF_TSQ_DEFERRED) 812 tcp_tsq_handler(sk); 813 814 /* Here begins the tricky part : 815 * We are called from release_sock() with : 816 * 1) BH disabled 817 * 2) sk_lock.slock spinlock held 818 * 3) socket owned by us (sk->sk_lock.owned == 1) 819 * 820 * But following code is meant to be called from BH handlers, 821 * so we should keep BH disabled, but early release socket ownership 822 */ 823 sock_release_ownership(sk); 824 825 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 826 tcp_write_timer_handler(sk); 827 __sock_put(sk); 828 } 829 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 830 tcp_delack_timer_handler(sk); 831 __sock_put(sk); 832 } 833 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 834 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 835 __sock_put(sk); 836 } 837 } 838 EXPORT_SYMBOL(tcp_release_cb); 839 840 void __init tcp_tasklet_init(void) 841 { 842 int i; 843 844 for_each_possible_cpu(i) { 845 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 846 847 INIT_LIST_HEAD(&tsq->head); 848 tasklet_init(&tsq->tasklet, 849 tcp_tasklet_func, 850 (unsigned long)tsq); 851 } 852 } 853 854 /* 855 * Write buffer destructor automatically called from kfree_skb. 856 * We can't xmit new skbs from this context, as we might already 857 * hold qdisc lock. 858 */ 859 void tcp_wfree(struct sk_buff *skb) 860 { 861 struct sock *sk = skb->sk; 862 struct tcp_sock *tp = tcp_sk(sk); 863 unsigned long flags, nval, oval; 864 int wmem; 865 866 /* Keep one reference on sk_wmem_alloc. 867 * Will be released by sk_free() from here or tcp_tasklet_func() 868 */ 869 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 870 871 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 872 * Wait until our queues (qdisc + devices) are drained. 873 * This gives : 874 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 875 * - chance for incoming ACK (processed by another cpu maybe) 876 * to migrate this flow (skb->ooo_okay will be eventually set) 877 */ 878 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 879 goto out; 880 881 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 882 struct tsq_tasklet *tsq; 883 bool empty; 884 885 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 886 goto out; 887 888 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 889 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 890 if (nval != oval) 891 continue; 892 893 /* queue this socket to tasklet queue */ 894 local_irq_save(flags); 895 tsq = this_cpu_ptr(&tsq_tasklet); 896 empty = list_empty(&tsq->head); 897 list_add(&tp->tsq_node, &tsq->head); 898 if (empty) 899 tasklet_schedule(&tsq->tasklet); 900 local_irq_restore(flags); 901 return; 902 } 903 out: 904 sk_free(sk); 905 } 906 907 /* This routine actually transmits TCP packets queued in by 908 * tcp_do_sendmsg(). This is used by both the initial 909 * transmission and possible later retransmissions. 910 * All SKB's seen here are completely headerless. It is our 911 * job to build the TCP header, and pass the packet down to 912 * IP so it can do the same plus pass the packet off to the 913 * device. 914 * 915 * We are working here with either a clone of the original 916 * SKB, or a fresh unique copy made by the retransmit engine. 917 */ 918 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 919 gfp_t gfp_mask) 920 { 921 const struct inet_connection_sock *icsk = inet_csk(sk); 922 struct inet_sock *inet; 923 struct tcp_sock *tp; 924 struct tcp_skb_cb *tcb; 925 struct tcp_out_options opts; 926 unsigned int tcp_options_size, tcp_header_size; 927 struct tcp_md5sig_key *md5; 928 struct tcphdr *th; 929 int err; 930 931 BUG_ON(!skb || !tcp_skb_pcount(skb)); 932 tp = tcp_sk(sk); 933 934 if (clone_it) { 935 skb_mstamp_get(&skb->skb_mstamp); 936 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 937 - tp->snd_una; 938 tcp_rate_skb_sent(sk, skb); 939 940 if (unlikely(skb_cloned(skb))) 941 skb = pskb_copy(skb, gfp_mask); 942 else 943 skb = skb_clone(skb, gfp_mask); 944 if (unlikely(!skb)) 945 return -ENOBUFS; 946 } 947 948 inet = inet_sk(sk); 949 tcb = TCP_SKB_CB(skb); 950 memset(&opts, 0, sizeof(opts)); 951 952 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 953 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 954 else 955 tcp_options_size = tcp_established_options(sk, skb, &opts, 956 &md5); 957 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 958 959 /* if no packet is in qdisc/device queue, then allow XPS to select 960 * another queue. We can be called from tcp_tsq_handler() 961 * which holds one reference to sk_wmem_alloc. 962 * 963 * TODO: Ideally, in-flight pure ACK packets should not matter here. 964 * One way to get this would be to set skb->truesize = 2 on them. 965 */ 966 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 967 968 /* If we had to use memory reserve to allocate this skb, 969 * this might cause drops if packet is looped back : 970 * Other socket might not have SOCK_MEMALLOC. 971 * Packets not looped back do not care about pfmemalloc. 972 */ 973 skb->pfmemalloc = 0; 974 975 skb_push(skb, tcp_header_size); 976 skb_reset_transport_header(skb); 977 978 skb_orphan(skb); 979 skb->sk = sk; 980 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 981 skb_set_hash_from_sk(skb, sk); 982 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 983 984 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 985 986 /* Build TCP header and checksum it. */ 987 th = (struct tcphdr *)skb->data; 988 th->source = inet->inet_sport; 989 th->dest = inet->inet_dport; 990 th->seq = htonl(tcb->seq); 991 th->ack_seq = htonl(tp->rcv_nxt); 992 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 993 tcb->tcp_flags); 994 995 th->check = 0; 996 th->urg_ptr = 0; 997 998 /* The urg_mode check is necessary during a below snd_una win probe */ 999 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1000 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1001 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1002 th->urg = 1; 1003 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1004 th->urg_ptr = htons(0xFFFF); 1005 th->urg = 1; 1006 } 1007 } 1008 1009 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1010 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1011 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1012 th->window = htons(tcp_select_window(sk)); 1013 tcp_ecn_send(sk, skb, th, tcp_header_size); 1014 } else { 1015 /* RFC1323: The window in SYN & SYN/ACK segments 1016 * is never scaled. 1017 */ 1018 th->window = htons(min(tp->rcv_wnd, 65535U)); 1019 } 1020 #ifdef CONFIG_TCP_MD5SIG 1021 /* Calculate the MD5 hash, as we have all we need now */ 1022 if (md5) { 1023 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1024 tp->af_specific->calc_md5_hash(opts.hash_location, 1025 md5, sk, skb); 1026 } 1027 #endif 1028 1029 icsk->icsk_af_ops->send_check(sk, skb); 1030 1031 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1032 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1033 1034 if (skb->len != tcp_header_size) { 1035 tcp_event_data_sent(tp, sk); 1036 tp->data_segs_out += tcp_skb_pcount(skb); 1037 } 1038 1039 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1040 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1041 tcp_skb_pcount(skb)); 1042 1043 tp->segs_out += tcp_skb_pcount(skb); 1044 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1045 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1046 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1047 1048 /* Our usage of tstamp should remain private */ 1049 skb->tstamp = 0; 1050 1051 /* Cleanup our debris for IP stacks */ 1052 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1053 sizeof(struct inet6_skb_parm))); 1054 1055 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1056 1057 if (likely(err <= 0)) 1058 return err; 1059 1060 tcp_enter_cwr(sk); 1061 1062 return net_xmit_eval(err); 1063 } 1064 1065 /* This routine just queues the buffer for sending. 1066 * 1067 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1068 * otherwise socket can stall. 1069 */ 1070 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1071 { 1072 struct tcp_sock *tp = tcp_sk(sk); 1073 1074 /* Advance write_seq and place onto the write_queue. */ 1075 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1076 __skb_header_release(skb); 1077 tcp_add_write_queue_tail(sk, skb); 1078 sk->sk_wmem_queued += skb->truesize; 1079 sk_mem_charge(sk, skb->truesize); 1080 } 1081 1082 /* Initialize TSO segments for a packet. */ 1083 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1084 { 1085 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1086 /* Avoid the costly divide in the normal 1087 * non-TSO case. 1088 */ 1089 tcp_skb_pcount_set(skb, 1); 1090 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1091 } else { 1092 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1093 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1094 } 1095 } 1096 1097 /* When a modification to fackets out becomes necessary, we need to check 1098 * skb is counted to fackets_out or not. 1099 */ 1100 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1101 int decr) 1102 { 1103 struct tcp_sock *tp = tcp_sk(sk); 1104 1105 if (!tp->sacked_out || tcp_is_reno(tp)) 1106 return; 1107 1108 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1109 tp->fackets_out -= decr; 1110 } 1111 1112 /* Pcount in the middle of the write queue got changed, we need to do various 1113 * tweaks to fix counters 1114 */ 1115 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1116 { 1117 struct tcp_sock *tp = tcp_sk(sk); 1118 1119 tp->packets_out -= decr; 1120 1121 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1122 tp->sacked_out -= decr; 1123 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1124 tp->retrans_out -= decr; 1125 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1126 tp->lost_out -= decr; 1127 1128 /* Reno case is special. Sigh... */ 1129 if (tcp_is_reno(tp) && decr > 0) 1130 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1131 1132 tcp_adjust_fackets_out(sk, skb, decr); 1133 1134 if (tp->lost_skb_hint && 1135 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1136 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1137 tp->lost_cnt_hint -= decr; 1138 1139 tcp_verify_left_out(tp); 1140 } 1141 1142 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1143 { 1144 return TCP_SKB_CB(skb)->txstamp_ack || 1145 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1146 } 1147 1148 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1149 { 1150 struct skb_shared_info *shinfo = skb_shinfo(skb); 1151 1152 if (unlikely(tcp_has_tx_tstamp(skb)) && 1153 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1154 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1155 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1156 1157 shinfo->tx_flags &= ~tsflags; 1158 shinfo2->tx_flags |= tsflags; 1159 swap(shinfo->tskey, shinfo2->tskey); 1160 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1161 TCP_SKB_CB(skb)->txstamp_ack = 0; 1162 } 1163 } 1164 1165 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1166 { 1167 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1168 TCP_SKB_CB(skb)->eor = 0; 1169 } 1170 1171 /* Function to create two new TCP segments. Shrinks the given segment 1172 * to the specified size and appends a new segment with the rest of the 1173 * packet to the list. This won't be called frequently, I hope. 1174 * Remember, these are still headerless SKBs at this point. 1175 */ 1176 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1177 unsigned int mss_now, gfp_t gfp) 1178 { 1179 struct tcp_sock *tp = tcp_sk(sk); 1180 struct sk_buff *buff; 1181 int nsize, old_factor; 1182 int nlen; 1183 u8 flags; 1184 1185 if (WARN_ON(len > skb->len)) 1186 return -EINVAL; 1187 1188 nsize = skb_headlen(skb) - len; 1189 if (nsize < 0) 1190 nsize = 0; 1191 1192 if (skb_unclone(skb, gfp)) 1193 return -ENOMEM; 1194 1195 /* Get a new skb... force flag on. */ 1196 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1197 if (!buff) 1198 return -ENOMEM; /* We'll just try again later. */ 1199 1200 sk->sk_wmem_queued += buff->truesize; 1201 sk_mem_charge(sk, buff->truesize); 1202 nlen = skb->len - len - nsize; 1203 buff->truesize += nlen; 1204 skb->truesize -= nlen; 1205 1206 /* Correct the sequence numbers. */ 1207 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1208 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1209 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1210 1211 /* PSH and FIN should only be set in the second packet. */ 1212 flags = TCP_SKB_CB(skb)->tcp_flags; 1213 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1214 TCP_SKB_CB(buff)->tcp_flags = flags; 1215 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1216 tcp_skb_fragment_eor(skb, buff); 1217 1218 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1219 /* Copy and checksum data tail into the new buffer. */ 1220 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1221 skb_put(buff, nsize), 1222 nsize, 0); 1223 1224 skb_trim(skb, len); 1225 1226 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1227 } else { 1228 skb->ip_summed = CHECKSUM_PARTIAL; 1229 skb_split(skb, buff, len); 1230 } 1231 1232 buff->ip_summed = skb->ip_summed; 1233 1234 buff->tstamp = skb->tstamp; 1235 tcp_fragment_tstamp(skb, buff); 1236 1237 old_factor = tcp_skb_pcount(skb); 1238 1239 /* Fix up tso_factor for both original and new SKB. */ 1240 tcp_set_skb_tso_segs(skb, mss_now); 1241 tcp_set_skb_tso_segs(buff, mss_now); 1242 1243 /* Update delivered info for the new segment */ 1244 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1245 1246 /* If this packet has been sent out already, we must 1247 * adjust the various packet counters. 1248 */ 1249 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1250 int diff = old_factor - tcp_skb_pcount(skb) - 1251 tcp_skb_pcount(buff); 1252 1253 if (diff) 1254 tcp_adjust_pcount(sk, skb, diff); 1255 } 1256 1257 /* Link BUFF into the send queue. */ 1258 __skb_header_release(buff); 1259 tcp_insert_write_queue_after(skb, buff, sk); 1260 1261 return 0; 1262 } 1263 1264 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1265 * eventually). The difference is that pulled data not copied, but 1266 * immediately discarded. 1267 */ 1268 static int __pskb_trim_head(struct sk_buff *skb, int len) 1269 { 1270 struct skb_shared_info *shinfo; 1271 int i, k, eat; 1272 1273 eat = min_t(int, len, skb_headlen(skb)); 1274 if (eat) { 1275 __skb_pull(skb, eat); 1276 len -= eat; 1277 if (!len) 1278 return 0; 1279 } 1280 eat = len; 1281 k = 0; 1282 shinfo = skb_shinfo(skb); 1283 for (i = 0; i < shinfo->nr_frags; i++) { 1284 int size = skb_frag_size(&shinfo->frags[i]); 1285 1286 if (size <= eat) { 1287 skb_frag_unref(skb, i); 1288 eat -= size; 1289 } else { 1290 shinfo->frags[k] = shinfo->frags[i]; 1291 if (eat) { 1292 shinfo->frags[k].page_offset += eat; 1293 skb_frag_size_sub(&shinfo->frags[k], eat); 1294 eat = 0; 1295 } 1296 k++; 1297 } 1298 } 1299 shinfo->nr_frags = k; 1300 1301 skb_reset_tail_pointer(skb); 1302 skb->data_len -= len; 1303 skb->len = skb->data_len; 1304 return len; 1305 } 1306 1307 /* Remove acked data from a packet in the transmit queue. */ 1308 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1309 { 1310 u32 delta_truesize; 1311 1312 if (skb_unclone(skb, GFP_ATOMIC)) 1313 return -ENOMEM; 1314 1315 delta_truesize = __pskb_trim_head(skb, len); 1316 1317 TCP_SKB_CB(skb)->seq += len; 1318 skb->ip_summed = CHECKSUM_PARTIAL; 1319 1320 if (delta_truesize) { 1321 skb->truesize -= delta_truesize; 1322 sk->sk_wmem_queued -= delta_truesize; 1323 sk_mem_uncharge(sk, delta_truesize); 1324 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1325 } 1326 1327 /* Any change of skb->len requires recalculation of tso factor. */ 1328 if (tcp_skb_pcount(skb) > 1) 1329 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1330 1331 return 0; 1332 } 1333 1334 /* Calculate MSS not accounting any TCP options. */ 1335 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1336 { 1337 const struct tcp_sock *tp = tcp_sk(sk); 1338 const struct inet_connection_sock *icsk = inet_csk(sk); 1339 int mss_now; 1340 1341 /* Calculate base mss without TCP options: 1342 It is MMS_S - sizeof(tcphdr) of rfc1122 1343 */ 1344 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1345 1346 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1347 if (icsk->icsk_af_ops->net_frag_header_len) { 1348 const struct dst_entry *dst = __sk_dst_get(sk); 1349 1350 if (dst && dst_allfrag(dst)) 1351 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1352 } 1353 1354 /* Clamp it (mss_clamp does not include tcp options) */ 1355 if (mss_now > tp->rx_opt.mss_clamp) 1356 mss_now = tp->rx_opt.mss_clamp; 1357 1358 /* Now subtract optional transport overhead */ 1359 mss_now -= icsk->icsk_ext_hdr_len; 1360 1361 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1362 if (mss_now < 48) 1363 mss_now = 48; 1364 return mss_now; 1365 } 1366 1367 /* Calculate MSS. Not accounting for SACKs here. */ 1368 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1369 { 1370 /* Subtract TCP options size, not including SACKs */ 1371 return __tcp_mtu_to_mss(sk, pmtu) - 1372 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1373 } 1374 1375 /* Inverse of above */ 1376 int tcp_mss_to_mtu(struct sock *sk, int mss) 1377 { 1378 const struct tcp_sock *tp = tcp_sk(sk); 1379 const struct inet_connection_sock *icsk = inet_csk(sk); 1380 int mtu; 1381 1382 mtu = mss + 1383 tp->tcp_header_len + 1384 icsk->icsk_ext_hdr_len + 1385 icsk->icsk_af_ops->net_header_len; 1386 1387 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1388 if (icsk->icsk_af_ops->net_frag_header_len) { 1389 const struct dst_entry *dst = __sk_dst_get(sk); 1390 1391 if (dst && dst_allfrag(dst)) 1392 mtu += icsk->icsk_af_ops->net_frag_header_len; 1393 } 1394 return mtu; 1395 } 1396 EXPORT_SYMBOL(tcp_mss_to_mtu); 1397 1398 /* MTU probing init per socket */ 1399 void tcp_mtup_init(struct sock *sk) 1400 { 1401 struct tcp_sock *tp = tcp_sk(sk); 1402 struct inet_connection_sock *icsk = inet_csk(sk); 1403 struct net *net = sock_net(sk); 1404 1405 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1406 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1407 icsk->icsk_af_ops->net_header_len; 1408 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1409 icsk->icsk_mtup.probe_size = 0; 1410 if (icsk->icsk_mtup.enabled) 1411 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1412 } 1413 EXPORT_SYMBOL(tcp_mtup_init); 1414 1415 /* This function synchronize snd mss to current pmtu/exthdr set. 1416 1417 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1418 for TCP options, but includes only bare TCP header. 1419 1420 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1421 It is minimum of user_mss and mss received with SYN. 1422 It also does not include TCP options. 1423 1424 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1425 1426 tp->mss_cache is current effective sending mss, including 1427 all tcp options except for SACKs. It is evaluated, 1428 taking into account current pmtu, but never exceeds 1429 tp->rx_opt.mss_clamp. 1430 1431 NOTE1. rfc1122 clearly states that advertised MSS 1432 DOES NOT include either tcp or ip options. 1433 1434 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1435 are READ ONLY outside this function. --ANK (980731) 1436 */ 1437 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1438 { 1439 struct tcp_sock *tp = tcp_sk(sk); 1440 struct inet_connection_sock *icsk = inet_csk(sk); 1441 int mss_now; 1442 1443 if (icsk->icsk_mtup.search_high > pmtu) 1444 icsk->icsk_mtup.search_high = pmtu; 1445 1446 mss_now = tcp_mtu_to_mss(sk, pmtu); 1447 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1448 1449 /* And store cached results */ 1450 icsk->icsk_pmtu_cookie = pmtu; 1451 if (icsk->icsk_mtup.enabled) 1452 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1453 tp->mss_cache = mss_now; 1454 1455 return mss_now; 1456 } 1457 EXPORT_SYMBOL(tcp_sync_mss); 1458 1459 /* Compute the current effective MSS, taking SACKs and IP options, 1460 * and even PMTU discovery events into account. 1461 */ 1462 unsigned int tcp_current_mss(struct sock *sk) 1463 { 1464 const struct tcp_sock *tp = tcp_sk(sk); 1465 const struct dst_entry *dst = __sk_dst_get(sk); 1466 u32 mss_now; 1467 unsigned int header_len; 1468 struct tcp_out_options opts; 1469 struct tcp_md5sig_key *md5; 1470 1471 mss_now = tp->mss_cache; 1472 1473 if (dst) { 1474 u32 mtu = dst_mtu(dst); 1475 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1476 mss_now = tcp_sync_mss(sk, mtu); 1477 } 1478 1479 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1480 sizeof(struct tcphdr); 1481 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1482 * some common options. If this is an odd packet (because we have SACK 1483 * blocks etc) then our calculated header_len will be different, and 1484 * we have to adjust mss_now correspondingly */ 1485 if (header_len != tp->tcp_header_len) { 1486 int delta = (int) header_len - tp->tcp_header_len; 1487 mss_now -= delta; 1488 } 1489 1490 return mss_now; 1491 } 1492 1493 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1494 * As additional protections, we do not touch cwnd in retransmission phases, 1495 * and if application hit its sndbuf limit recently. 1496 */ 1497 static void tcp_cwnd_application_limited(struct sock *sk) 1498 { 1499 struct tcp_sock *tp = tcp_sk(sk); 1500 1501 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1502 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1503 /* Limited by application or receiver window. */ 1504 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1505 u32 win_used = max(tp->snd_cwnd_used, init_win); 1506 if (win_used < tp->snd_cwnd) { 1507 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1508 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1509 } 1510 tp->snd_cwnd_used = 0; 1511 } 1512 tp->snd_cwnd_stamp = tcp_time_stamp; 1513 } 1514 1515 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1516 { 1517 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1518 struct tcp_sock *tp = tcp_sk(sk); 1519 1520 /* Track the maximum number of outstanding packets in each 1521 * window, and remember whether we were cwnd-limited then. 1522 */ 1523 if (!before(tp->snd_una, tp->max_packets_seq) || 1524 tp->packets_out > tp->max_packets_out) { 1525 tp->max_packets_out = tp->packets_out; 1526 tp->max_packets_seq = tp->snd_nxt; 1527 tp->is_cwnd_limited = is_cwnd_limited; 1528 } 1529 1530 if (tcp_is_cwnd_limited(sk)) { 1531 /* Network is feed fully. */ 1532 tp->snd_cwnd_used = 0; 1533 tp->snd_cwnd_stamp = tcp_time_stamp; 1534 } else { 1535 /* Network starves. */ 1536 if (tp->packets_out > tp->snd_cwnd_used) 1537 tp->snd_cwnd_used = tp->packets_out; 1538 1539 if (sysctl_tcp_slow_start_after_idle && 1540 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1541 !ca_ops->cong_control) 1542 tcp_cwnd_application_limited(sk); 1543 1544 /* The following conditions together indicate the starvation 1545 * is caused by insufficient sender buffer: 1546 * 1) just sent some data (see tcp_write_xmit) 1547 * 2) not cwnd limited (this else condition) 1548 * 3) no more data to send (null tcp_send_head ) 1549 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1550 */ 1551 if (!tcp_send_head(sk) && sk->sk_socket && 1552 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1553 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1554 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1555 } 1556 } 1557 1558 /* Minshall's variant of the Nagle send check. */ 1559 static bool tcp_minshall_check(const struct tcp_sock *tp) 1560 { 1561 return after(tp->snd_sml, tp->snd_una) && 1562 !after(tp->snd_sml, tp->snd_nxt); 1563 } 1564 1565 /* Update snd_sml if this skb is under mss 1566 * Note that a TSO packet might end with a sub-mss segment 1567 * The test is really : 1568 * if ((skb->len % mss) != 0) 1569 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1570 * But we can avoid doing the divide again given we already have 1571 * skb_pcount = skb->len / mss_now 1572 */ 1573 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1574 const struct sk_buff *skb) 1575 { 1576 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1577 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1578 } 1579 1580 /* Return false, if packet can be sent now without violation Nagle's rules: 1581 * 1. It is full sized. (provided by caller in %partial bool) 1582 * 2. Or it contains FIN. (already checked by caller) 1583 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1584 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1585 * With Minshall's modification: all sent small packets are ACKed. 1586 */ 1587 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1588 int nonagle) 1589 { 1590 return partial && 1591 ((nonagle & TCP_NAGLE_CORK) || 1592 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1593 } 1594 1595 /* Return how many segs we'd like on a TSO packet, 1596 * to send one TSO packet per ms 1597 */ 1598 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1599 int min_tso_segs) 1600 { 1601 u32 bytes, segs; 1602 1603 bytes = min(sk->sk_pacing_rate >> 10, 1604 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1605 1606 /* Goal is to send at least one packet per ms, 1607 * not one big TSO packet every 100 ms. 1608 * This preserves ACK clocking and is consistent 1609 * with tcp_tso_should_defer() heuristic. 1610 */ 1611 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1612 1613 return min_t(u32, segs, sk->sk_gso_max_segs); 1614 } 1615 EXPORT_SYMBOL(tcp_tso_autosize); 1616 1617 /* Return the number of segments we want in the skb we are transmitting. 1618 * See if congestion control module wants to decide; otherwise, autosize. 1619 */ 1620 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1621 { 1622 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1623 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0; 1624 1625 return tso_segs ? : 1626 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs); 1627 } 1628 1629 /* Returns the portion of skb which can be sent right away */ 1630 static unsigned int tcp_mss_split_point(const struct sock *sk, 1631 const struct sk_buff *skb, 1632 unsigned int mss_now, 1633 unsigned int max_segs, 1634 int nonagle) 1635 { 1636 const struct tcp_sock *tp = tcp_sk(sk); 1637 u32 partial, needed, window, max_len; 1638 1639 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1640 max_len = mss_now * max_segs; 1641 1642 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1643 return max_len; 1644 1645 needed = min(skb->len, window); 1646 1647 if (max_len <= needed) 1648 return max_len; 1649 1650 partial = needed % mss_now; 1651 /* If last segment is not a full MSS, check if Nagle rules allow us 1652 * to include this last segment in this skb. 1653 * Otherwise, we'll split the skb at last MSS boundary 1654 */ 1655 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1656 return needed - partial; 1657 1658 return needed; 1659 } 1660 1661 /* Can at least one segment of SKB be sent right now, according to the 1662 * congestion window rules? If so, return how many segments are allowed. 1663 */ 1664 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1665 const struct sk_buff *skb) 1666 { 1667 u32 in_flight, cwnd, halfcwnd; 1668 1669 /* Don't be strict about the congestion window for the final FIN. */ 1670 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1671 tcp_skb_pcount(skb) == 1) 1672 return 1; 1673 1674 in_flight = tcp_packets_in_flight(tp); 1675 cwnd = tp->snd_cwnd; 1676 if (in_flight >= cwnd) 1677 return 0; 1678 1679 /* For better scheduling, ensure we have at least 1680 * 2 GSO packets in flight. 1681 */ 1682 halfcwnd = max(cwnd >> 1, 1U); 1683 return min(halfcwnd, cwnd - in_flight); 1684 } 1685 1686 /* Initialize TSO state of a skb. 1687 * This must be invoked the first time we consider transmitting 1688 * SKB onto the wire. 1689 */ 1690 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1691 { 1692 int tso_segs = tcp_skb_pcount(skb); 1693 1694 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1695 tcp_set_skb_tso_segs(skb, mss_now); 1696 tso_segs = tcp_skb_pcount(skb); 1697 } 1698 return tso_segs; 1699 } 1700 1701 1702 /* Return true if the Nagle test allows this packet to be 1703 * sent now. 1704 */ 1705 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1706 unsigned int cur_mss, int nonagle) 1707 { 1708 /* Nagle rule does not apply to frames, which sit in the middle of the 1709 * write_queue (they have no chances to get new data). 1710 * 1711 * This is implemented in the callers, where they modify the 'nonagle' 1712 * argument based upon the location of SKB in the send queue. 1713 */ 1714 if (nonagle & TCP_NAGLE_PUSH) 1715 return true; 1716 1717 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1718 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1719 return true; 1720 1721 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1722 return true; 1723 1724 return false; 1725 } 1726 1727 /* Does at least the first segment of SKB fit into the send window? */ 1728 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1729 const struct sk_buff *skb, 1730 unsigned int cur_mss) 1731 { 1732 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1733 1734 if (skb->len > cur_mss) 1735 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1736 1737 return !after(end_seq, tcp_wnd_end(tp)); 1738 } 1739 1740 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1741 * should be put on the wire right now. If so, it returns the number of 1742 * packets allowed by the congestion window. 1743 */ 1744 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1745 unsigned int cur_mss, int nonagle) 1746 { 1747 const struct tcp_sock *tp = tcp_sk(sk); 1748 unsigned int cwnd_quota; 1749 1750 tcp_init_tso_segs(skb, cur_mss); 1751 1752 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1753 return 0; 1754 1755 cwnd_quota = tcp_cwnd_test(tp, skb); 1756 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1757 cwnd_quota = 0; 1758 1759 return cwnd_quota; 1760 } 1761 1762 /* Test if sending is allowed right now. */ 1763 bool tcp_may_send_now(struct sock *sk) 1764 { 1765 const struct tcp_sock *tp = tcp_sk(sk); 1766 struct sk_buff *skb = tcp_send_head(sk); 1767 1768 return skb && 1769 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1770 (tcp_skb_is_last(sk, skb) ? 1771 tp->nonagle : TCP_NAGLE_PUSH)); 1772 } 1773 1774 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1775 * which is put after SKB on the list. It is very much like 1776 * tcp_fragment() except that it may make several kinds of assumptions 1777 * in order to speed up the splitting operation. In particular, we 1778 * know that all the data is in scatter-gather pages, and that the 1779 * packet has never been sent out before (and thus is not cloned). 1780 */ 1781 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1782 unsigned int mss_now, gfp_t gfp) 1783 { 1784 struct sk_buff *buff; 1785 int nlen = skb->len - len; 1786 u8 flags; 1787 1788 /* All of a TSO frame must be composed of paged data. */ 1789 if (skb->len != skb->data_len) 1790 return tcp_fragment(sk, skb, len, mss_now, gfp); 1791 1792 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1793 if (unlikely(!buff)) 1794 return -ENOMEM; 1795 1796 sk->sk_wmem_queued += buff->truesize; 1797 sk_mem_charge(sk, buff->truesize); 1798 buff->truesize += nlen; 1799 skb->truesize -= nlen; 1800 1801 /* Correct the sequence numbers. */ 1802 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1803 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1804 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1805 1806 /* PSH and FIN should only be set in the second packet. */ 1807 flags = TCP_SKB_CB(skb)->tcp_flags; 1808 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1809 TCP_SKB_CB(buff)->tcp_flags = flags; 1810 1811 /* This packet was never sent out yet, so no SACK bits. */ 1812 TCP_SKB_CB(buff)->sacked = 0; 1813 1814 tcp_skb_fragment_eor(skb, buff); 1815 1816 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1817 skb_split(skb, buff, len); 1818 tcp_fragment_tstamp(skb, buff); 1819 1820 /* Fix up tso_factor for both original and new SKB. */ 1821 tcp_set_skb_tso_segs(skb, mss_now); 1822 tcp_set_skb_tso_segs(buff, mss_now); 1823 1824 /* Link BUFF into the send queue. */ 1825 __skb_header_release(buff); 1826 tcp_insert_write_queue_after(skb, buff, sk); 1827 1828 return 0; 1829 } 1830 1831 /* Try to defer sending, if possible, in order to minimize the amount 1832 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1833 * 1834 * This algorithm is from John Heffner. 1835 */ 1836 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1837 bool *is_cwnd_limited, u32 max_segs) 1838 { 1839 const struct inet_connection_sock *icsk = inet_csk(sk); 1840 u32 age, send_win, cong_win, limit, in_flight; 1841 struct tcp_sock *tp = tcp_sk(sk); 1842 struct skb_mstamp now; 1843 struct sk_buff *head; 1844 int win_divisor; 1845 1846 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1847 goto send_now; 1848 1849 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1850 goto send_now; 1851 1852 /* Avoid bursty behavior by allowing defer 1853 * only if the last write was recent. 1854 */ 1855 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0) 1856 goto send_now; 1857 1858 in_flight = tcp_packets_in_flight(tp); 1859 1860 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1861 1862 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1863 1864 /* From in_flight test above, we know that cwnd > in_flight. */ 1865 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1866 1867 limit = min(send_win, cong_win); 1868 1869 /* If a full-sized TSO skb can be sent, do it. */ 1870 if (limit >= max_segs * tp->mss_cache) 1871 goto send_now; 1872 1873 /* Middle in queue won't get any more data, full sendable already? */ 1874 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1875 goto send_now; 1876 1877 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1878 if (win_divisor) { 1879 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1880 1881 /* If at least some fraction of a window is available, 1882 * just use it. 1883 */ 1884 chunk /= win_divisor; 1885 if (limit >= chunk) 1886 goto send_now; 1887 } else { 1888 /* Different approach, try not to defer past a single 1889 * ACK. Receiver should ACK every other full sized 1890 * frame, so if we have space for more than 3 frames 1891 * then send now. 1892 */ 1893 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1894 goto send_now; 1895 } 1896 1897 head = tcp_write_queue_head(sk); 1898 skb_mstamp_get(&now); 1899 age = skb_mstamp_us_delta(&now, &head->skb_mstamp); 1900 /* If next ACK is likely to come too late (half srtt), do not defer */ 1901 if (age < (tp->srtt_us >> 4)) 1902 goto send_now; 1903 1904 /* Ok, it looks like it is advisable to defer. */ 1905 1906 if (cong_win < send_win && cong_win <= skb->len) 1907 *is_cwnd_limited = true; 1908 1909 return true; 1910 1911 send_now: 1912 return false; 1913 } 1914 1915 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1916 { 1917 struct inet_connection_sock *icsk = inet_csk(sk); 1918 struct tcp_sock *tp = tcp_sk(sk); 1919 struct net *net = sock_net(sk); 1920 u32 interval; 1921 s32 delta; 1922 1923 interval = net->ipv4.sysctl_tcp_probe_interval; 1924 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp; 1925 if (unlikely(delta >= interval * HZ)) { 1926 int mss = tcp_current_mss(sk); 1927 1928 /* Update current search range */ 1929 icsk->icsk_mtup.probe_size = 0; 1930 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1931 sizeof(struct tcphdr) + 1932 icsk->icsk_af_ops->net_header_len; 1933 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1934 1935 /* Update probe time stamp */ 1936 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1937 } 1938 } 1939 1940 /* Create a new MTU probe if we are ready. 1941 * MTU probe is regularly attempting to increase the path MTU by 1942 * deliberately sending larger packets. This discovers routing 1943 * changes resulting in larger path MTUs. 1944 * 1945 * Returns 0 if we should wait to probe (no cwnd available), 1946 * 1 if a probe was sent, 1947 * -1 otherwise 1948 */ 1949 static int tcp_mtu_probe(struct sock *sk) 1950 { 1951 struct inet_connection_sock *icsk = inet_csk(sk); 1952 struct tcp_sock *tp = tcp_sk(sk); 1953 struct sk_buff *skb, *nskb, *next; 1954 struct net *net = sock_net(sk); 1955 int probe_size; 1956 int size_needed; 1957 int copy, len; 1958 int mss_now; 1959 int interval; 1960 1961 /* Not currently probing/verifying, 1962 * not in recovery, 1963 * have enough cwnd, and 1964 * not SACKing (the variable headers throw things off) 1965 */ 1966 if (likely(!icsk->icsk_mtup.enabled || 1967 icsk->icsk_mtup.probe_size || 1968 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1969 tp->snd_cwnd < 11 || 1970 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 1971 return -1; 1972 1973 /* Use binary search for probe_size between tcp_mss_base, 1974 * and current mss_clamp. if (search_high - search_low) 1975 * smaller than a threshold, backoff from probing. 1976 */ 1977 mss_now = tcp_current_mss(sk); 1978 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 1979 icsk->icsk_mtup.search_low) >> 1); 1980 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1981 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 1982 /* When misfortune happens, we are reprobing actively, 1983 * and then reprobe timer has expired. We stick with current 1984 * probing process by not resetting search range to its orignal. 1985 */ 1986 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 1987 interval < net->ipv4.sysctl_tcp_probe_threshold) { 1988 /* Check whether enough time has elaplased for 1989 * another round of probing. 1990 */ 1991 tcp_mtu_check_reprobe(sk); 1992 return -1; 1993 } 1994 1995 /* Have enough data in the send queue to probe? */ 1996 if (tp->write_seq - tp->snd_nxt < size_needed) 1997 return -1; 1998 1999 if (tp->snd_wnd < size_needed) 2000 return -1; 2001 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2002 return 0; 2003 2004 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2005 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2006 if (!tcp_packets_in_flight(tp)) 2007 return -1; 2008 else 2009 return 0; 2010 } 2011 2012 /* We're allowed to probe. Build it now. */ 2013 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2014 if (!nskb) 2015 return -1; 2016 sk->sk_wmem_queued += nskb->truesize; 2017 sk_mem_charge(sk, nskb->truesize); 2018 2019 skb = tcp_send_head(sk); 2020 2021 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2022 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2023 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2024 TCP_SKB_CB(nskb)->sacked = 0; 2025 nskb->csum = 0; 2026 nskb->ip_summed = skb->ip_summed; 2027 2028 tcp_insert_write_queue_before(nskb, skb, sk); 2029 2030 len = 0; 2031 tcp_for_write_queue_from_safe(skb, next, sk) { 2032 copy = min_t(int, skb->len, probe_size - len); 2033 if (nskb->ip_summed) { 2034 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2035 } else { 2036 __wsum csum = skb_copy_and_csum_bits(skb, 0, 2037 skb_put(nskb, copy), 2038 copy, 0); 2039 nskb->csum = csum_block_add(nskb->csum, csum, len); 2040 } 2041 2042 if (skb->len <= copy) { 2043 /* We've eaten all the data from this skb. 2044 * Throw it away. */ 2045 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2046 tcp_unlink_write_queue(skb, sk); 2047 sk_wmem_free_skb(sk, skb); 2048 } else { 2049 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2050 ~(TCPHDR_FIN|TCPHDR_PSH); 2051 if (!skb_shinfo(skb)->nr_frags) { 2052 skb_pull(skb, copy); 2053 if (skb->ip_summed != CHECKSUM_PARTIAL) 2054 skb->csum = csum_partial(skb->data, 2055 skb->len, 0); 2056 } else { 2057 __pskb_trim_head(skb, copy); 2058 tcp_set_skb_tso_segs(skb, mss_now); 2059 } 2060 TCP_SKB_CB(skb)->seq += copy; 2061 } 2062 2063 len += copy; 2064 2065 if (len >= probe_size) 2066 break; 2067 } 2068 tcp_init_tso_segs(nskb, nskb->len); 2069 2070 /* We're ready to send. If this fails, the probe will 2071 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2072 */ 2073 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2074 /* Decrement cwnd here because we are sending 2075 * effectively two packets. */ 2076 tp->snd_cwnd--; 2077 tcp_event_new_data_sent(sk, nskb); 2078 2079 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2080 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2081 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2082 2083 return 1; 2084 } 2085 2086 return -1; 2087 } 2088 2089 /* TCP Small Queues : 2090 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2091 * (These limits are doubled for retransmits) 2092 * This allows for : 2093 * - better RTT estimation and ACK scheduling 2094 * - faster recovery 2095 * - high rates 2096 * Alas, some drivers / subsystems require a fair amount 2097 * of queued bytes to ensure line rate. 2098 * One example is wifi aggregation (802.11 AMPDU) 2099 */ 2100 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2101 unsigned int factor) 2102 { 2103 unsigned int limit; 2104 2105 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2106 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2107 limit <<= factor; 2108 2109 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2110 /* Always send the 1st or 2nd skb in write queue. 2111 * No need to wait for TX completion to call us back, 2112 * after softirq/tasklet schedule. 2113 * This helps when TX completions are delayed too much. 2114 */ 2115 if (skb == sk->sk_write_queue.next || 2116 skb->prev == sk->sk_write_queue.next) 2117 return false; 2118 2119 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2120 /* It is possible TX completion already happened 2121 * before we set TSQ_THROTTLED, so we must 2122 * test again the condition. 2123 */ 2124 smp_mb__after_atomic(); 2125 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2126 return true; 2127 } 2128 return false; 2129 } 2130 2131 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2132 { 2133 const u32 now = tcp_time_stamp; 2134 2135 if (tp->chrono_type > TCP_CHRONO_UNSPEC) 2136 tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start; 2137 tp->chrono_start = now; 2138 tp->chrono_type = new; 2139 } 2140 2141 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2142 { 2143 struct tcp_sock *tp = tcp_sk(sk); 2144 2145 /* If there are multiple conditions worthy of tracking in a 2146 * chronograph then the highest priority enum takes precedence 2147 * over the other conditions. So that if something "more interesting" 2148 * starts happening, stop the previous chrono and start a new one. 2149 */ 2150 if (type > tp->chrono_type) 2151 tcp_chrono_set(tp, type); 2152 } 2153 2154 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2155 { 2156 struct tcp_sock *tp = tcp_sk(sk); 2157 2158 2159 /* There are multiple conditions worthy of tracking in a 2160 * chronograph, so that the highest priority enum takes 2161 * precedence over the other conditions (see tcp_chrono_start). 2162 * If a condition stops, we only stop chrono tracking if 2163 * it's the "most interesting" or current chrono we are 2164 * tracking and starts busy chrono if we have pending data. 2165 */ 2166 if (tcp_write_queue_empty(sk)) 2167 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2168 else if (type == tp->chrono_type) 2169 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2170 } 2171 2172 /* This routine writes packets to the network. It advances the 2173 * send_head. This happens as incoming acks open up the remote 2174 * window for us. 2175 * 2176 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2177 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2178 * account rare use of URG, this is not a big flaw. 2179 * 2180 * Send at most one packet when push_one > 0. Temporarily ignore 2181 * cwnd limit to force at most one packet out when push_one == 2. 2182 2183 * Returns true, if no segments are in flight and we have queued segments, 2184 * but cannot send anything now because of SWS or another problem. 2185 */ 2186 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2187 int push_one, gfp_t gfp) 2188 { 2189 struct tcp_sock *tp = tcp_sk(sk); 2190 struct sk_buff *skb; 2191 unsigned int tso_segs, sent_pkts; 2192 int cwnd_quota; 2193 int result; 2194 bool is_cwnd_limited = false, is_rwnd_limited = false; 2195 u32 max_segs; 2196 2197 sent_pkts = 0; 2198 2199 if (!push_one) { 2200 /* Do MTU probing. */ 2201 result = tcp_mtu_probe(sk); 2202 if (!result) { 2203 return false; 2204 } else if (result > 0) { 2205 sent_pkts = 1; 2206 } 2207 } 2208 2209 max_segs = tcp_tso_segs(sk, mss_now); 2210 while ((skb = tcp_send_head(sk))) { 2211 unsigned int limit; 2212 2213 tso_segs = tcp_init_tso_segs(skb, mss_now); 2214 BUG_ON(!tso_segs); 2215 2216 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2217 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2218 skb_mstamp_get(&skb->skb_mstamp); 2219 goto repair; /* Skip network transmission */ 2220 } 2221 2222 cwnd_quota = tcp_cwnd_test(tp, skb); 2223 if (!cwnd_quota) { 2224 if (push_one == 2) 2225 /* Force out a loss probe pkt. */ 2226 cwnd_quota = 1; 2227 else 2228 break; 2229 } 2230 2231 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2232 is_rwnd_limited = true; 2233 break; 2234 } 2235 2236 if (tso_segs == 1) { 2237 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2238 (tcp_skb_is_last(sk, skb) ? 2239 nonagle : TCP_NAGLE_PUSH)))) 2240 break; 2241 } else { 2242 if (!push_one && 2243 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2244 max_segs)) 2245 break; 2246 } 2247 2248 limit = mss_now; 2249 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2250 limit = tcp_mss_split_point(sk, skb, mss_now, 2251 min_t(unsigned int, 2252 cwnd_quota, 2253 max_segs), 2254 nonagle); 2255 2256 if (skb->len > limit && 2257 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2258 break; 2259 2260 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 2261 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 2262 if (tcp_small_queue_check(sk, skb, 0)) 2263 break; 2264 2265 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2266 break; 2267 2268 repair: 2269 /* Advance the send_head. This one is sent out. 2270 * This call will increment packets_out. 2271 */ 2272 tcp_event_new_data_sent(sk, skb); 2273 2274 tcp_minshall_update(tp, mss_now, skb); 2275 sent_pkts += tcp_skb_pcount(skb); 2276 2277 if (push_one) 2278 break; 2279 } 2280 2281 if (is_rwnd_limited) 2282 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2283 else 2284 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2285 2286 if (likely(sent_pkts)) { 2287 if (tcp_in_cwnd_reduction(sk)) 2288 tp->prr_out += sent_pkts; 2289 2290 /* Send one loss probe per tail loss episode. */ 2291 if (push_one != 2) 2292 tcp_schedule_loss_probe(sk); 2293 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2294 tcp_cwnd_validate(sk, is_cwnd_limited); 2295 return false; 2296 } 2297 return !tp->packets_out && tcp_send_head(sk); 2298 } 2299 2300 bool tcp_schedule_loss_probe(struct sock *sk) 2301 { 2302 struct inet_connection_sock *icsk = inet_csk(sk); 2303 struct tcp_sock *tp = tcp_sk(sk); 2304 u32 timeout, tlp_time_stamp, rto_time_stamp; 2305 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2306 2307 /* No consecutive loss probes. */ 2308 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2309 tcp_rearm_rto(sk); 2310 return false; 2311 } 2312 /* Don't do any loss probe on a Fast Open connection before 3WHS 2313 * finishes. 2314 */ 2315 if (tp->fastopen_rsk) 2316 return false; 2317 2318 /* TLP is only scheduled when next timer event is RTO. */ 2319 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2320 return false; 2321 2322 /* Schedule a loss probe in 2*RTT for SACK capable connections 2323 * in Open state, that are either limited by cwnd or application. 2324 */ 2325 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) || 2326 !tp->packets_out || !tcp_is_sack(tp) || 2327 icsk->icsk_ca_state != TCP_CA_Open) 2328 return false; 2329 2330 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2331 tcp_send_head(sk)) 2332 return false; 2333 2334 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2335 * for delayed ack when there's one outstanding packet. If no RTT 2336 * sample is available then probe after TCP_TIMEOUT_INIT. 2337 */ 2338 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT; 2339 if (tp->packets_out == 1) 2340 timeout = max_t(u32, timeout, 2341 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2342 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2343 2344 /* If RTO is shorter, just schedule TLP in its place. */ 2345 tlp_time_stamp = tcp_time_stamp + timeout; 2346 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2347 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2348 s32 delta = rto_time_stamp - tcp_time_stamp; 2349 if (delta > 0) 2350 timeout = delta; 2351 } 2352 2353 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2354 TCP_RTO_MAX); 2355 return true; 2356 } 2357 2358 /* Thanks to skb fast clones, we can detect if a prior transmit of 2359 * a packet is still in a qdisc or driver queue. 2360 * In this case, there is very little point doing a retransmit ! 2361 */ 2362 static bool skb_still_in_host_queue(const struct sock *sk, 2363 const struct sk_buff *skb) 2364 { 2365 if (unlikely(skb_fclone_busy(sk, skb))) { 2366 NET_INC_STATS(sock_net(sk), 2367 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2368 return true; 2369 } 2370 return false; 2371 } 2372 2373 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2374 * retransmit the last segment. 2375 */ 2376 void tcp_send_loss_probe(struct sock *sk) 2377 { 2378 struct tcp_sock *tp = tcp_sk(sk); 2379 struct sk_buff *skb; 2380 int pcount; 2381 int mss = tcp_current_mss(sk); 2382 2383 skb = tcp_send_head(sk); 2384 if (skb) { 2385 if (tcp_snd_wnd_test(tp, skb, mss)) { 2386 pcount = tp->packets_out; 2387 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2388 if (tp->packets_out > pcount) 2389 goto probe_sent; 2390 goto rearm_timer; 2391 } 2392 skb = tcp_write_queue_prev(sk, skb); 2393 } else { 2394 skb = tcp_write_queue_tail(sk); 2395 } 2396 2397 /* At most one outstanding TLP retransmission. */ 2398 if (tp->tlp_high_seq) 2399 goto rearm_timer; 2400 2401 /* Retransmit last segment. */ 2402 if (WARN_ON(!skb)) 2403 goto rearm_timer; 2404 2405 if (skb_still_in_host_queue(sk, skb)) 2406 goto rearm_timer; 2407 2408 pcount = tcp_skb_pcount(skb); 2409 if (WARN_ON(!pcount)) 2410 goto rearm_timer; 2411 2412 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2413 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2414 GFP_ATOMIC))) 2415 goto rearm_timer; 2416 skb = tcp_write_queue_next(sk, skb); 2417 } 2418 2419 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2420 goto rearm_timer; 2421 2422 if (__tcp_retransmit_skb(sk, skb, 1)) 2423 goto rearm_timer; 2424 2425 /* Record snd_nxt for loss detection. */ 2426 tp->tlp_high_seq = tp->snd_nxt; 2427 2428 probe_sent: 2429 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2430 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2431 inet_csk(sk)->icsk_pending = 0; 2432 rearm_timer: 2433 tcp_rearm_rto(sk); 2434 } 2435 2436 /* Push out any pending frames which were held back due to 2437 * TCP_CORK or attempt at coalescing tiny packets. 2438 * The socket must be locked by the caller. 2439 */ 2440 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2441 int nonagle) 2442 { 2443 /* If we are closed, the bytes will have to remain here. 2444 * In time closedown will finish, we empty the write queue and 2445 * all will be happy. 2446 */ 2447 if (unlikely(sk->sk_state == TCP_CLOSE)) 2448 return; 2449 2450 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2451 sk_gfp_mask(sk, GFP_ATOMIC))) 2452 tcp_check_probe_timer(sk); 2453 } 2454 2455 /* Send _single_ skb sitting at the send head. This function requires 2456 * true push pending frames to setup probe timer etc. 2457 */ 2458 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2459 { 2460 struct sk_buff *skb = tcp_send_head(sk); 2461 2462 BUG_ON(!skb || skb->len < mss_now); 2463 2464 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2465 } 2466 2467 /* This function returns the amount that we can raise the 2468 * usable window based on the following constraints 2469 * 2470 * 1. The window can never be shrunk once it is offered (RFC 793) 2471 * 2. We limit memory per socket 2472 * 2473 * RFC 1122: 2474 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2475 * RECV.NEXT + RCV.WIN fixed until: 2476 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2477 * 2478 * i.e. don't raise the right edge of the window until you can raise 2479 * it at least MSS bytes. 2480 * 2481 * Unfortunately, the recommended algorithm breaks header prediction, 2482 * since header prediction assumes th->window stays fixed. 2483 * 2484 * Strictly speaking, keeping th->window fixed violates the receiver 2485 * side SWS prevention criteria. The problem is that under this rule 2486 * a stream of single byte packets will cause the right side of the 2487 * window to always advance by a single byte. 2488 * 2489 * Of course, if the sender implements sender side SWS prevention 2490 * then this will not be a problem. 2491 * 2492 * BSD seems to make the following compromise: 2493 * 2494 * If the free space is less than the 1/4 of the maximum 2495 * space available and the free space is less than 1/2 mss, 2496 * then set the window to 0. 2497 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2498 * Otherwise, just prevent the window from shrinking 2499 * and from being larger than the largest representable value. 2500 * 2501 * This prevents incremental opening of the window in the regime 2502 * where TCP is limited by the speed of the reader side taking 2503 * data out of the TCP receive queue. It does nothing about 2504 * those cases where the window is constrained on the sender side 2505 * because the pipeline is full. 2506 * 2507 * BSD also seems to "accidentally" limit itself to windows that are a 2508 * multiple of MSS, at least until the free space gets quite small. 2509 * This would appear to be a side effect of the mbuf implementation. 2510 * Combining these two algorithms results in the observed behavior 2511 * of having a fixed window size at almost all times. 2512 * 2513 * Below we obtain similar behavior by forcing the offered window to 2514 * a multiple of the mss when it is feasible to do so. 2515 * 2516 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2517 * Regular options like TIMESTAMP are taken into account. 2518 */ 2519 u32 __tcp_select_window(struct sock *sk) 2520 { 2521 struct inet_connection_sock *icsk = inet_csk(sk); 2522 struct tcp_sock *tp = tcp_sk(sk); 2523 /* MSS for the peer's data. Previous versions used mss_clamp 2524 * here. I don't know if the value based on our guesses 2525 * of peer's MSS is better for the performance. It's more correct 2526 * but may be worse for the performance because of rcv_mss 2527 * fluctuations. --SAW 1998/11/1 2528 */ 2529 int mss = icsk->icsk_ack.rcv_mss; 2530 int free_space = tcp_space(sk); 2531 int allowed_space = tcp_full_space(sk); 2532 int full_space = min_t(int, tp->window_clamp, allowed_space); 2533 int window; 2534 2535 if (unlikely(mss > full_space)) { 2536 mss = full_space; 2537 if (mss <= 0) 2538 return 0; 2539 } 2540 if (free_space < (full_space >> 1)) { 2541 icsk->icsk_ack.quick = 0; 2542 2543 if (tcp_under_memory_pressure(sk)) 2544 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2545 4U * tp->advmss); 2546 2547 /* free_space might become our new window, make sure we don't 2548 * increase it due to wscale. 2549 */ 2550 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2551 2552 /* if free space is less than mss estimate, or is below 1/16th 2553 * of the maximum allowed, try to move to zero-window, else 2554 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2555 * new incoming data is dropped due to memory limits. 2556 * With large window, mss test triggers way too late in order 2557 * to announce zero window in time before rmem limit kicks in. 2558 */ 2559 if (free_space < (allowed_space >> 4) || free_space < mss) 2560 return 0; 2561 } 2562 2563 if (free_space > tp->rcv_ssthresh) 2564 free_space = tp->rcv_ssthresh; 2565 2566 /* Don't do rounding if we are using window scaling, since the 2567 * scaled window will not line up with the MSS boundary anyway. 2568 */ 2569 if (tp->rx_opt.rcv_wscale) { 2570 window = free_space; 2571 2572 /* Advertise enough space so that it won't get scaled away. 2573 * Import case: prevent zero window announcement if 2574 * 1<<rcv_wscale > mss. 2575 */ 2576 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2577 } else { 2578 window = tp->rcv_wnd; 2579 /* Get the largest window that is a nice multiple of mss. 2580 * Window clamp already applied above. 2581 * If our current window offering is within 1 mss of the 2582 * free space we just keep it. This prevents the divide 2583 * and multiply from happening most of the time. 2584 * We also don't do any window rounding when the free space 2585 * is too small. 2586 */ 2587 if (window <= free_space - mss || window > free_space) 2588 window = rounddown(free_space, mss); 2589 else if (mss == full_space && 2590 free_space > window + (full_space >> 1)) 2591 window = free_space; 2592 } 2593 2594 return window; 2595 } 2596 2597 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2598 const struct sk_buff *next_skb) 2599 { 2600 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2601 const struct skb_shared_info *next_shinfo = 2602 skb_shinfo(next_skb); 2603 struct skb_shared_info *shinfo = skb_shinfo(skb); 2604 2605 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2606 shinfo->tskey = next_shinfo->tskey; 2607 TCP_SKB_CB(skb)->txstamp_ack |= 2608 TCP_SKB_CB(next_skb)->txstamp_ack; 2609 } 2610 } 2611 2612 /* Collapses two adjacent SKB's during retransmission. */ 2613 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2614 { 2615 struct tcp_sock *tp = tcp_sk(sk); 2616 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2617 int skb_size, next_skb_size; 2618 2619 skb_size = skb->len; 2620 next_skb_size = next_skb->len; 2621 2622 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2623 2624 if (next_skb_size) { 2625 if (next_skb_size <= skb_availroom(skb)) 2626 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2627 next_skb_size); 2628 else if (!skb_shift(skb, next_skb, next_skb_size)) 2629 return false; 2630 } 2631 tcp_highest_sack_combine(sk, next_skb, skb); 2632 2633 tcp_unlink_write_queue(next_skb, sk); 2634 2635 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2636 skb->ip_summed = CHECKSUM_PARTIAL; 2637 2638 if (skb->ip_summed != CHECKSUM_PARTIAL) 2639 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2640 2641 /* Update sequence range on original skb. */ 2642 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2643 2644 /* Merge over control information. This moves PSH/FIN etc. over */ 2645 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2646 2647 /* All done, get rid of second SKB and account for it so 2648 * packet counting does not break. 2649 */ 2650 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2651 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2652 2653 /* changed transmit queue under us so clear hints */ 2654 tcp_clear_retrans_hints_partial(tp); 2655 if (next_skb == tp->retransmit_skb_hint) 2656 tp->retransmit_skb_hint = skb; 2657 2658 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2659 2660 tcp_skb_collapse_tstamp(skb, next_skb); 2661 2662 sk_wmem_free_skb(sk, next_skb); 2663 return true; 2664 } 2665 2666 /* Check if coalescing SKBs is legal. */ 2667 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2668 { 2669 if (tcp_skb_pcount(skb) > 1) 2670 return false; 2671 if (skb_cloned(skb)) 2672 return false; 2673 if (skb == tcp_send_head(sk)) 2674 return false; 2675 /* Some heuristics for collapsing over SACK'd could be invented */ 2676 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2677 return false; 2678 2679 return true; 2680 } 2681 2682 /* Collapse packets in the retransmit queue to make to create 2683 * less packets on the wire. This is only done on retransmission. 2684 */ 2685 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2686 int space) 2687 { 2688 struct tcp_sock *tp = tcp_sk(sk); 2689 struct sk_buff *skb = to, *tmp; 2690 bool first = true; 2691 2692 if (!sysctl_tcp_retrans_collapse) 2693 return; 2694 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2695 return; 2696 2697 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2698 if (!tcp_can_collapse(sk, skb)) 2699 break; 2700 2701 if (!tcp_skb_can_collapse_to(to)) 2702 break; 2703 2704 space -= skb->len; 2705 2706 if (first) { 2707 first = false; 2708 continue; 2709 } 2710 2711 if (space < 0) 2712 break; 2713 2714 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2715 break; 2716 2717 if (!tcp_collapse_retrans(sk, to)) 2718 break; 2719 } 2720 } 2721 2722 /* This retransmits one SKB. Policy decisions and retransmit queue 2723 * state updates are done by the caller. Returns non-zero if an 2724 * error occurred which prevented the send. 2725 */ 2726 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2727 { 2728 struct inet_connection_sock *icsk = inet_csk(sk); 2729 struct tcp_sock *tp = tcp_sk(sk); 2730 unsigned int cur_mss; 2731 int diff, len, err; 2732 2733 2734 /* Inconclusive MTU probe */ 2735 if (icsk->icsk_mtup.probe_size) 2736 icsk->icsk_mtup.probe_size = 0; 2737 2738 /* Do not sent more than we queued. 1/4 is reserved for possible 2739 * copying overhead: fragmentation, tunneling, mangling etc. 2740 */ 2741 if (atomic_read(&sk->sk_wmem_alloc) > 2742 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2743 sk->sk_sndbuf)) 2744 return -EAGAIN; 2745 2746 if (skb_still_in_host_queue(sk, skb)) 2747 return -EBUSY; 2748 2749 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2750 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2751 BUG(); 2752 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2753 return -ENOMEM; 2754 } 2755 2756 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2757 return -EHOSTUNREACH; /* Routing failure or similar. */ 2758 2759 cur_mss = tcp_current_mss(sk); 2760 2761 /* If receiver has shrunk his window, and skb is out of 2762 * new window, do not retransmit it. The exception is the 2763 * case, when window is shrunk to zero. In this case 2764 * our retransmit serves as a zero window probe. 2765 */ 2766 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2767 TCP_SKB_CB(skb)->seq != tp->snd_una) 2768 return -EAGAIN; 2769 2770 len = cur_mss * segs; 2771 if (skb->len > len) { 2772 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC)) 2773 return -ENOMEM; /* We'll try again later. */ 2774 } else { 2775 if (skb_unclone(skb, GFP_ATOMIC)) 2776 return -ENOMEM; 2777 2778 diff = tcp_skb_pcount(skb); 2779 tcp_set_skb_tso_segs(skb, cur_mss); 2780 diff -= tcp_skb_pcount(skb); 2781 if (diff) 2782 tcp_adjust_pcount(sk, skb, diff); 2783 if (skb->len < cur_mss) 2784 tcp_retrans_try_collapse(sk, skb, cur_mss); 2785 } 2786 2787 /* RFC3168, section 6.1.1.1. ECN fallback */ 2788 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2789 tcp_ecn_clear_syn(sk, skb); 2790 2791 /* Update global and local TCP statistics. */ 2792 segs = tcp_skb_pcount(skb); 2793 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2794 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2795 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2796 tp->total_retrans += segs; 2797 2798 /* make sure skb->data is aligned on arches that require it 2799 * and check if ack-trimming & collapsing extended the headroom 2800 * beyond what csum_start can cover. 2801 */ 2802 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2803 skb_headroom(skb) >= 0xFFFF)) { 2804 struct sk_buff *nskb; 2805 2806 skb_mstamp_get(&skb->skb_mstamp); 2807 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2808 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2809 -ENOBUFS; 2810 } else { 2811 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2812 } 2813 2814 if (likely(!err)) { 2815 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2816 } else if (err != -EBUSY) { 2817 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2818 } 2819 return err; 2820 } 2821 2822 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2823 { 2824 struct tcp_sock *tp = tcp_sk(sk); 2825 int err = __tcp_retransmit_skb(sk, skb, segs); 2826 2827 if (err == 0) { 2828 #if FASTRETRANS_DEBUG > 0 2829 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2830 net_dbg_ratelimited("retrans_out leaked\n"); 2831 } 2832 #endif 2833 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2834 tp->retrans_out += tcp_skb_pcount(skb); 2835 2836 /* Save stamp of the first retransmit. */ 2837 if (!tp->retrans_stamp) 2838 tp->retrans_stamp = tcp_skb_timestamp(skb); 2839 2840 } 2841 2842 if (tp->undo_retrans < 0) 2843 tp->undo_retrans = 0; 2844 tp->undo_retrans += tcp_skb_pcount(skb); 2845 return err; 2846 } 2847 2848 /* This gets called after a retransmit timeout, and the initially 2849 * retransmitted data is acknowledged. It tries to continue 2850 * resending the rest of the retransmit queue, until either 2851 * we've sent it all or the congestion window limit is reached. 2852 * If doing SACK, the first ACK which comes back for a timeout 2853 * based retransmit packet might feed us FACK information again. 2854 * If so, we use it to avoid unnecessarily retransmissions. 2855 */ 2856 void tcp_xmit_retransmit_queue(struct sock *sk) 2857 { 2858 const struct inet_connection_sock *icsk = inet_csk(sk); 2859 struct tcp_sock *tp = tcp_sk(sk); 2860 struct sk_buff *skb; 2861 struct sk_buff *hole = NULL; 2862 u32 max_segs; 2863 int mib_idx; 2864 2865 if (!tp->packets_out) 2866 return; 2867 2868 if (tp->retransmit_skb_hint) { 2869 skb = tp->retransmit_skb_hint; 2870 } else { 2871 skb = tcp_write_queue_head(sk); 2872 } 2873 2874 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2875 tcp_for_write_queue_from(skb, sk) { 2876 __u8 sacked; 2877 int segs; 2878 2879 if (skb == tcp_send_head(sk)) 2880 break; 2881 /* we could do better than to assign each time */ 2882 if (!hole) 2883 tp->retransmit_skb_hint = skb; 2884 2885 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2886 if (segs <= 0) 2887 return; 2888 sacked = TCP_SKB_CB(skb)->sacked; 2889 /* In case tcp_shift_skb_data() have aggregated large skbs, 2890 * we need to make sure not sending too bigs TSO packets 2891 */ 2892 segs = min_t(int, segs, max_segs); 2893 2894 if (tp->retrans_out >= tp->lost_out) { 2895 break; 2896 } else if (!(sacked & TCPCB_LOST)) { 2897 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2898 hole = skb; 2899 continue; 2900 2901 } else { 2902 if (icsk->icsk_ca_state != TCP_CA_Loss) 2903 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2904 else 2905 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2906 } 2907 2908 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2909 continue; 2910 2911 if (tcp_small_queue_check(sk, skb, 1)) 2912 return; 2913 2914 if (tcp_retransmit_skb(sk, skb, segs)) 2915 return; 2916 2917 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 2918 2919 if (tcp_in_cwnd_reduction(sk)) 2920 tp->prr_out += tcp_skb_pcount(skb); 2921 2922 if (skb == tcp_write_queue_head(sk) && 2923 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 2924 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2925 inet_csk(sk)->icsk_rto, 2926 TCP_RTO_MAX); 2927 } 2928 } 2929 2930 /* We allow to exceed memory limits for FIN packets to expedite 2931 * connection tear down and (memory) recovery. 2932 * Otherwise tcp_send_fin() could be tempted to either delay FIN 2933 * or even be forced to close flow without any FIN. 2934 * In general, we want to allow one skb per socket to avoid hangs 2935 * with edge trigger epoll() 2936 */ 2937 void sk_forced_mem_schedule(struct sock *sk, int size) 2938 { 2939 int amt; 2940 2941 if (size <= sk->sk_forward_alloc) 2942 return; 2943 amt = sk_mem_pages(size); 2944 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2945 sk_memory_allocated_add(sk, amt); 2946 2947 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2948 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 2949 } 2950 2951 /* Send a FIN. The caller locks the socket for us. 2952 * We should try to send a FIN packet really hard, but eventually give up. 2953 */ 2954 void tcp_send_fin(struct sock *sk) 2955 { 2956 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 2957 struct tcp_sock *tp = tcp_sk(sk); 2958 2959 /* Optimization, tack on the FIN if we have one skb in write queue and 2960 * this skb was not yet sent, or we are under memory pressure. 2961 * Note: in the latter case, FIN packet will be sent after a timeout, 2962 * as TCP stack thinks it has already been transmitted. 2963 */ 2964 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) { 2965 coalesce: 2966 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 2967 TCP_SKB_CB(tskb)->end_seq++; 2968 tp->write_seq++; 2969 if (!tcp_send_head(sk)) { 2970 /* This means tskb was already sent. 2971 * Pretend we included the FIN on previous transmit. 2972 * We need to set tp->snd_nxt to the value it would have 2973 * if FIN had been sent. This is because retransmit path 2974 * does not change tp->snd_nxt. 2975 */ 2976 tp->snd_nxt++; 2977 return; 2978 } 2979 } else { 2980 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 2981 if (unlikely(!skb)) { 2982 if (tskb) 2983 goto coalesce; 2984 return; 2985 } 2986 skb_reserve(skb, MAX_TCP_HEADER); 2987 sk_forced_mem_schedule(sk, skb->truesize); 2988 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2989 tcp_init_nondata_skb(skb, tp->write_seq, 2990 TCPHDR_ACK | TCPHDR_FIN); 2991 tcp_queue_skb(sk, skb); 2992 } 2993 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 2994 } 2995 2996 /* We get here when a process closes a file descriptor (either due to 2997 * an explicit close() or as a byproduct of exit()'ing) and there 2998 * was unread data in the receive queue. This behavior is recommended 2999 * by RFC 2525, section 2.17. -DaveM 3000 */ 3001 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3002 { 3003 struct sk_buff *skb; 3004 3005 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3006 3007 /* NOTE: No TCP options attached and we never retransmit this. */ 3008 skb = alloc_skb(MAX_TCP_HEADER, priority); 3009 if (!skb) { 3010 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3011 return; 3012 } 3013 3014 /* Reserve space for headers and prepare control bits. */ 3015 skb_reserve(skb, MAX_TCP_HEADER); 3016 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3017 TCPHDR_ACK | TCPHDR_RST); 3018 skb_mstamp_get(&skb->skb_mstamp); 3019 /* Send it off. */ 3020 if (tcp_transmit_skb(sk, skb, 0, priority)) 3021 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3022 } 3023 3024 /* Send a crossed SYN-ACK during socket establishment. 3025 * WARNING: This routine must only be called when we have already sent 3026 * a SYN packet that crossed the incoming SYN that caused this routine 3027 * to get called. If this assumption fails then the initial rcv_wnd 3028 * and rcv_wscale values will not be correct. 3029 */ 3030 int tcp_send_synack(struct sock *sk) 3031 { 3032 struct sk_buff *skb; 3033 3034 skb = tcp_write_queue_head(sk); 3035 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3036 pr_debug("%s: wrong queue state\n", __func__); 3037 return -EFAULT; 3038 } 3039 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3040 if (skb_cloned(skb)) { 3041 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 3042 if (!nskb) 3043 return -ENOMEM; 3044 tcp_unlink_write_queue(skb, sk); 3045 __skb_header_release(nskb); 3046 __tcp_add_write_queue_head(sk, nskb); 3047 sk_wmem_free_skb(sk, skb); 3048 sk->sk_wmem_queued += nskb->truesize; 3049 sk_mem_charge(sk, nskb->truesize); 3050 skb = nskb; 3051 } 3052 3053 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3054 tcp_ecn_send_synack(sk, skb); 3055 } 3056 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3057 } 3058 3059 /** 3060 * tcp_make_synack - Prepare a SYN-ACK. 3061 * sk: listener socket 3062 * dst: dst entry attached to the SYNACK 3063 * req: request_sock pointer 3064 * 3065 * Allocate one skb and build a SYNACK packet. 3066 * @dst is consumed : Caller should not use it again. 3067 */ 3068 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3069 struct request_sock *req, 3070 struct tcp_fastopen_cookie *foc, 3071 enum tcp_synack_type synack_type) 3072 { 3073 struct inet_request_sock *ireq = inet_rsk(req); 3074 const struct tcp_sock *tp = tcp_sk(sk); 3075 struct tcp_md5sig_key *md5 = NULL; 3076 struct tcp_out_options opts; 3077 struct sk_buff *skb; 3078 int tcp_header_size; 3079 struct tcphdr *th; 3080 int mss; 3081 3082 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3083 if (unlikely(!skb)) { 3084 dst_release(dst); 3085 return NULL; 3086 } 3087 /* Reserve space for headers. */ 3088 skb_reserve(skb, MAX_TCP_HEADER); 3089 3090 switch (synack_type) { 3091 case TCP_SYNACK_NORMAL: 3092 skb_set_owner_w(skb, req_to_sk(req)); 3093 break; 3094 case TCP_SYNACK_COOKIE: 3095 /* Under synflood, we do not attach skb to a socket, 3096 * to avoid false sharing. 3097 */ 3098 break; 3099 case TCP_SYNACK_FASTOPEN: 3100 /* sk is a const pointer, because we want to express multiple 3101 * cpu might call us concurrently. 3102 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3103 */ 3104 skb_set_owner_w(skb, (struct sock *)sk); 3105 break; 3106 } 3107 skb_dst_set(skb, dst); 3108 3109 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3110 3111 memset(&opts, 0, sizeof(opts)); 3112 #ifdef CONFIG_SYN_COOKIES 3113 if (unlikely(req->cookie_ts)) 3114 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 3115 else 3116 #endif 3117 skb_mstamp_get(&skb->skb_mstamp); 3118 3119 #ifdef CONFIG_TCP_MD5SIG 3120 rcu_read_lock(); 3121 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3122 #endif 3123 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3124 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) + 3125 sizeof(*th); 3126 3127 skb_push(skb, tcp_header_size); 3128 skb_reset_transport_header(skb); 3129 3130 th = (struct tcphdr *)skb->data; 3131 memset(th, 0, sizeof(struct tcphdr)); 3132 th->syn = 1; 3133 th->ack = 1; 3134 tcp_ecn_make_synack(req, th); 3135 th->source = htons(ireq->ir_num); 3136 th->dest = ireq->ir_rmt_port; 3137 /* Setting of flags are superfluous here for callers (and ECE is 3138 * not even correctly set) 3139 */ 3140 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3141 TCPHDR_SYN | TCPHDR_ACK); 3142 3143 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3144 /* XXX data is queued and acked as is. No buffer/window check */ 3145 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3146 3147 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3148 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3149 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3150 th->doff = (tcp_header_size >> 2); 3151 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3152 3153 #ifdef CONFIG_TCP_MD5SIG 3154 /* Okay, we have all we need - do the md5 hash if needed */ 3155 if (md5) 3156 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3157 md5, req_to_sk(req), skb); 3158 rcu_read_unlock(); 3159 #endif 3160 3161 /* Do not fool tcpdump (if any), clean our debris */ 3162 skb->tstamp = 0; 3163 return skb; 3164 } 3165 EXPORT_SYMBOL(tcp_make_synack); 3166 3167 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3168 { 3169 struct inet_connection_sock *icsk = inet_csk(sk); 3170 const struct tcp_congestion_ops *ca; 3171 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3172 3173 if (ca_key == TCP_CA_UNSPEC) 3174 return; 3175 3176 rcu_read_lock(); 3177 ca = tcp_ca_find_key(ca_key); 3178 if (likely(ca && try_module_get(ca->owner))) { 3179 module_put(icsk->icsk_ca_ops->owner); 3180 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3181 icsk->icsk_ca_ops = ca; 3182 } 3183 rcu_read_unlock(); 3184 } 3185 3186 /* Do all connect socket setups that can be done AF independent. */ 3187 static void tcp_connect_init(struct sock *sk) 3188 { 3189 const struct dst_entry *dst = __sk_dst_get(sk); 3190 struct tcp_sock *tp = tcp_sk(sk); 3191 __u8 rcv_wscale; 3192 3193 /* We'll fix this up when we get a response from the other end. 3194 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3195 */ 3196 tp->tcp_header_len = sizeof(struct tcphdr) + 3197 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 3198 3199 #ifdef CONFIG_TCP_MD5SIG 3200 if (tp->af_specific->md5_lookup(sk, sk)) 3201 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3202 #endif 3203 3204 /* If user gave his TCP_MAXSEG, record it to clamp */ 3205 if (tp->rx_opt.user_mss) 3206 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3207 tp->max_window = 0; 3208 tcp_mtup_init(sk); 3209 tcp_sync_mss(sk, dst_mtu(dst)); 3210 3211 tcp_ca_dst_init(sk, dst); 3212 3213 if (!tp->window_clamp) 3214 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3215 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3216 3217 tcp_initialize_rcv_mss(sk); 3218 3219 /* limit the window selection if the user enforce a smaller rx buffer */ 3220 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3221 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3222 tp->window_clamp = tcp_full_space(sk); 3223 3224 tcp_select_initial_window(tcp_full_space(sk), 3225 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3226 &tp->rcv_wnd, 3227 &tp->window_clamp, 3228 sysctl_tcp_window_scaling, 3229 &rcv_wscale, 3230 dst_metric(dst, RTAX_INITRWND)); 3231 3232 tp->rx_opt.rcv_wscale = rcv_wscale; 3233 tp->rcv_ssthresh = tp->rcv_wnd; 3234 3235 sk->sk_err = 0; 3236 sock_reset_flag(sk, SOCK_DONE); 3237 tp->snd_wnd = 0; 3238 tcp_init_wl(tp, 0); 3239 tp->snd_una = tp->write_seq; 3240 tp->snd_sml = tp->write_seq; 3241 tp->snd_up = tp->write_seq; 3242 tp->snd_nxt = tp->write_seq; 3243 3244 if (likely(!tp->repair)) 3245 tp->rcv_nxt = 0; 3246 else 3247 tp->rcv_tstamp = tcp_time_stamp; 3248 tp->rcv_wup = tp->rcv_nxt; 3249 tp->copied_seq = tp->rcv_nxt; 3250 3251 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3252 inet_csk(sk)->icsk_retransmits = 0; 3253 tcp_clear_retrans(tp); 3254 } 3255 3256 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3257 { 3258 struct tcp_sock *tp = tcp_sk(sk); 3259 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3260 3261 tcb->end_seq += skb->len; 3262 __skb_header_release(skb); 3263 __tcp_add_write_queue_tail(sk, skb); 3264 sk->sk_wmem_queued += skb->truesize; 3265 sk_mem_charge(sk, skb->truesize); 3266 tp->write_seq = tcb->end_seq; 3267 tp->packets_out += tcp_skb_pcount(skb); 3268 } 3269 3270 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3271 * queue a data-only packet after the regular SYN, such that regular SYNs 3272 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3273 * only the SYN sequence, the data are retransmitted in the first ACK. 3274 * If cookie is not cached or other error occurs, falls back to send a 3275 * regular SYN with Fast Open cookie request option. 3276 */ 3277 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3278 { 3279 struct tcp_sock *tp = tcp_sk(sk); 3280 struct tcp_fastopen_request *fo = tp->fastopen_req; 3281 int space, err = 0; 3282 struct sk_buff *syn_data; 3283 3284 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3285 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3286 goto fallback; 3287 3288 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3289 * user-MSS. Reserve maximum option space for middleboxes that add 3290 * private TCP options. The cost is reduced data space in SYN :( 3291 */ 3292 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3293 3294 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3295 MAX_TCP_OPTION_SPACE; 3296 3297 space = min_t(size_t, space, fo->size); 3298 3299 /* limit to order-0 allocations */ 3300 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3301 3302 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3303 if (!syn_data) 3304 goto fallback; 3305 syn_data->ip_summed = CHECKSUM_PARTIAL; 3306 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3307 if (space) { 3308 int copied = copy_from_iter(skb_put(syn_data, space), space, 3309 &fo->data->msg_iter); 3310 if (unlikely(!copied)) { 3311 kfree_skb(syn_data); 3312 goto fallback; 3313 } 3314 if (copied != space) { 3315 skb_trim(syn_data, copied); 3316 space = copied; 3317 } 3318 } 3319 /* No more data pending in inet_wait_for_connect() */ 3320 if (space == fo->size) 3321 fo->data = NULL; 3322 fo->copied = space; 3323 3324 tcp_connect_queue_skb(sk, syn_data); 3325 if (syn_data->len) 3326 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3327 3328 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3329 3330 syn->skb_mstamp = syn_data->skb_mstamp; 3331 3332 /* Now full SYN+DATA was cloned and sent (or not), 3333 * remove the SYN from the original skb (syn_data) 3334 * we keep in write queue in case of a retransmit, as we 3335 * also have the SYN packet (with no data) in the same queue. 3336 */ 3337 TCP_SKB_CB(syn_data)->seq++; 3338 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3339 if (!err) { 3340 tp->syn_data = (fo->copied > 0); 3341 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3342 goto done; 3343 } 3344 3345 fallback: 3346 /* Send a regular SYN with Fast Open cookie request option */ 3347 if (fo->cookie.len > 0) 3348 fo->cookie.len = 0; 3349 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3350 if (err) 3351 tp->syn_fastopen = 0; 3352 done: 3353 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3354 return err; 3355 } 3356 3357 /* Build a SYN and send it off. */ 3358 int tcp_connect(struct sock *sk) 3359 { 3360 struct tcp_sock *tp = tcp_sk(sk); 3361 struct sk_buff *buff; 3362 int err; 3363 3364 tcp_connect_init(sk); 3365 3366 if (unlikely(tp->repair)) { 3367 tcp_finish_connect(sk, NULL); 3368 return 0; 3369 } 3370 3371 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3372 if (unlikely(!buff)) 3373 return -ENOBUFS; 3374 3375 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3376 tp->retrans_stamp = tcp_time_stamp; 3377 tcp_connect_queue_skb(sk, buff); 3378 tcp_ecn_send_syn(sk, buff); 3379 3380 /* Send off SYN; include data in Fast Open. */ 3381 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3382 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3383 if (err == -ECONNREFUSED) 3384 return err; 3385 3386 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3387 * in order to make this packet get counted in tcpOutSegs. 3388 */ 3389 tp->snd_nxt = tp->write_seq; 3390 tp->pushed_seq = tp->write_seq; 3391 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3392 3393 /* Timer for repeating the SYN until an answer. */ 3394 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3395 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3396 return 0; 3397 } 3398 EXPORT_SYMBOL(tcp_connect); 3399 3400 /* Send out a delayed ack, the caller does the policy checking 3401 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3402 * for details. 3403 */ 3404 void tcp_send_delayed_ack(struct sock *sk) 3405 { 3406 struct inet_connection_sock *icsk = inet_csk(sk); 3407 int ato = icsk->icsk_ack.ato; 3408 unsigned long timeout; 3409 3410 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3411 3412 if (ato > TCP_DELACK_MIN) { 3413 const struct tcp_sock *tp = tcp_sk(sk); 3414 int max_ato = HZ / 2; 3415 3416 if (icsk->icsk_ack.pingpong || 3417 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3418 max_ato = TCP_DELACK_MAX; 3419 3420 /* Slow path, intersegment interval is "high". */ 3421 3422 /* If some rtt estimate is known, use it to bound delayed ack. 3423 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3424 * directly. 3425 */ 3426 if (tp->srtt_us) { 3427 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3428 TCP_DELACK_MIN); 3429 3430 if (rtt < max_ato) 3431 max_ato = rtt; 3432 } 3433 3434 ato = min(ato, max_ato); 3435 } 3436 3437 /* Stay within the limit we were given */ 3438 timeout = jiffies + ato; 3439 3440 /* Use new timeout only if there wasn't a older one earlier. */ 3441 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3442 /* If delack timer was blocked or is about to expire, 3443 * send ACK now. 3444 */ 3445 if (icsk->icsk_ack.blocked || 3446 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3447 tcp_send_ack(sk); 3448 return; 3449 } 3450 3451 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3452 timeout = icsk->icsk_ack.timeout; 3453 } 3454 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3455 icsk->icsk_ack.timeout = timeout; 3456 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3457 } 3458 3459 /* This routine sends an ack and also updates the window. */ 3460 void tcp_send_ack(struct sock *sk) 3461 { 3462 struct sk_buff *buff; 3463 3464 /* If we have been reset, we may not send again. */ 3465 if (sk->sk_state == TCP_CLOSE) 3466 return; 3467 3468 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3469 3470 /* We are not putting this on the write queue, so 3471 * tcp_transmit_skb() will set the ownership to this 3472 * sock. 3473 */ 3474 buff = alloc_skb(MAX_TCP_HEADER, 3475 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3476 if (unlikely(!buff)) { 3477 inet_csk_schedule_ack(sk); 3478 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3479 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3480 TCP_DELACK_MAX, TCP_RTO_MAX); 3481 return; 3482 } 3483 3484 /* Reserve space for headers and prepare control bits. */ 3485 skb_reserve(buff, MAX_TCP_HEADER); 3486 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3487 3488 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3489 * too much. 3490 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3491 */ 3492 skb_set_tcp_pure_ack(buff); 3493 3494 /* Send it off, this clears delayed acks for us. */ 3495 skb_mstamp_get(&buff->skb_mstamp); 3496 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3497 } 3498 EXPORT_SYMBOL_GPL(tcp_send_ack); 3499 3500 /* This routine sends a packet with an out of date sequence 3501 * number. It assumes the other end will try to ack it. 3502 * 3503 * Question: what should we make while urgent mode? 3504 * 4.4BSD forces sending single byte of data. We cannot send 3505 * out of window data, because we have SND.NXT==SND.MAX... 3506 * 3507 * Current solution: to send TWO zero-length segments in urgent mode: 3508 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3509 * out-of-date with SND.UNA-1 to probe window. 3510 */ 3511 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3512 { 3513 struct tcp_sock *tp = tcp_sk(sk); 3514 struct sk_buff *skb; 3515 3516 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3517 skb = alloc_skb(MAX_TCP_HEADER, 3518 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3519 if (!skb) 3520 return -1; 3521 3522 /* Reserve space for headers and set control bits. */ 3523 skb_reserve(skb, MAX_TCP_HEADER); 3524 /* Use a previous sequence. This should cause the other 3525 * end to send an ack. Don't queue or clone SKB, just 3526 * send it. 3527 */ 3528 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3529 skb_mstamp_get(&skb->skb_mstamp); 3530 NET_INC_STATS(sock_net(sk), mib); 3531 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3532 } 3533 3534 void tcp_send_window_probe(struct sock *sk) 3535 { 3536 if (sk->sk_state == TCP_ESTABLISHED) { 3537 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3538 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3539 } 3540 } 3541 3542 /* Initiate keepalive or window probe from timer. */ 3543 int tcp_write_wakeup(struct sock *sk, int mib) 3544 { 3545 struct tcp_sock *tp = tcp_sk(sk); 3546 struct sk_buff *skb; 3547 3548 if (sk->sk_state == TCP_CLOSE) 3549 return -1; 3550 3551 skb = tcp_send_head(sk); 3552 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3553 int err; 3554 unsigned int mss = tcp_current_mss(sk); 3555 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3556 3557 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3558 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3559 3560 /* We are probing the opening of a window 3561 * but the window size is != 0 3562 * must have been a result SWS avoidance ( sender ) 3563 */ 3564 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3565 skb->len > mss) { 3566 seg_size = min(seg_size, mss); 3567 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3568 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3569 return -1; 3570 } else if (!tcp_skb_pcount(skb)) 3571 tcp_set_skb_tso_segs(skb, mss); 3572 3573 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3574 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3575 if (!err) 3576 tcp_event_new_data_sent(sk, skb); 3577 return err; 3578 } else { 3579 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3580 tcp_xmit_probe_skb(sk, 1, mib); 3581 return tcp_xmit_probe_skb(sk, 0, mib); 3582 } 3583 } 3584 3585 /* A window probe timeout has occurred. If window is not closed send 3586 * a partial packet else a zero probe. 3587 */ 3588 void tcp_send_probe0(struct sock *sk) 3589 { 3590 struct inet_connection_sock *icsk = inet_csk(sk); 3591 struct tcp_sock *tp = tcp_sk(sk); 3592 struct net *net = sock_net(sk); 3593 unsigned long probe_max; 3594 int err; 3595 3596 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3597 3598 if (tp->packets_out || !tcp_send_head(sk)) { 3599 /* Cancel probe timer, if it is not required. */ 3600 icsk->icsk_probes_out = 0; 3601 icsk->icsk_backoff = 0; 3602 return; 3603 } 3604 3605 if (err <= 0) { 3606 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3607 icsk->icsk_backoff++; 3608 icsk->icsk_probes_out++; 3609 probe_max = TCP_RTO_MAX; 3610 } else { 3611 /* If packet was not sent due to local congestion, 3612 * do not backoff and do not remember icsk_probes_out. 3613 * Let local senders to fight for local resources. 3614 * 3615 * Use accumulated backoff yet. 3616 */ 3617 if (!icsk->icsk_probes_out) 3618 icsk->icsk_probes_out = 1; 3619 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3620 } 3621 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3622 tcp_probe0_when(sk, probe_max), 3623 TCP_RTO_MAX); 3624 } 3625 3626 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3627 { 3628 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3629 struct flowi fl; 3630 int res; 3631 3632 tcp_rsk(req)->txhash = net_tx_rndhash(); 3633 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3634 if (!res) { 3635 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3636 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3637 if (unlikely(tcp_passive_fastopen(sk))) 3638 tcp_sk(sk)->total_retrans++; 3639 } 3640 return res; 3641 } 3642 EXPORT_SYMBOL(tcp_rtx_synack); 3643