1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 42 #include <linux/compiler.h> 43 #include <linux/gfp.h> 44 #include <linux/module.h> 45 #include <linux/static_key.h> 46 47 #include <trace/events/tcp.h> 48 49 /* Refresh clocks of a TCP socket, 50 * ensuring monotically increasing values. 51 */ 52 void tcp_mstamp_refresh(struct tcp_sock *tp) 53 { 54 u64 val = tcp_clock_ns(); 55 56 tp->tcp_clock_cache = val; 57 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 58 } 59 60 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 61 int push_one, gfp_t gfp); 62 63 /* Account for new data that has been sent to the network. */ 64 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 65 { 66 struct inet_connection_sock *icsk = inet_csk(sk); 67 struct tcp_sock *tp = tcp_sk(sk); 68 unsigned int prior_packets = tp->packets_out; 69 70 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 71 72 __skb_unlink(skb, &sk->sk_write_queue); 73 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 74 75 tp->packets_out += tcp_skb_pcount(skb); 76 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 77 tcp_rearm_rto(sk); 78 79 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 80 tcp_skb_pcount(skb)); 81 } 82 83 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 84 * window scaling factor due to loss of precision. 85 * If window has been shrunk, what should we make? It is not clear at all. 86 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 87 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 88 * invalid. OK, let's make this for now: 89 */ 90 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 91 { 92 const struct tcp_sock *tp = tcp_sk(sk); 93 94 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 95 (tp->rx_opt.wscale_ok && 96 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 97 return tp->snd_nxt; 98 else 99 return tcp_wnd_end(tp); 100 } 101 102 /* Calculate mss to advertise in SYN segment. 103 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 104 * 105 * 1. It is independent of path mtu. 106 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 107 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 108 * attached devices, because some buggy hosts are confused by 109 * large MSS. 110 * 4. We do not make 3, we advertise MSS, calculated from first 111 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 112 * This may be overridden via information stored in routing table. 113 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 114 * probably even Jumbo". 115 */ 116 static __u16 tcp_advertise_mss(struct sock *sk) 117 { 118 struct tcp_sock *tp = tcp_sk(sk); 119 const struct dst_entry *dst = __sk_dst_get(sk); 120 int mss = tp->advmss; 121 122 if (dst) { 123 unsigned int metric = dst_metric_advmss(dst); 124 125 if (metric < mss) { 126 mss = metric; 127 tp->advmss = mss; 128 } 129 } 130 131 return (__u16)mss; 132 } 133 134 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 135 * This is the first part of cwnd validation mechanism. 136 */ 137 void tcp_cwnd_restart(struct sock *sk, s32 delta) 138 { 139 struct tcp_sock *tp = tcp_sk(sk); 140 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 141 u32 cwnd = tp->snd_cwnd; 142 143 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 144 145 tp->snd_ssthresh = tcp_current_ssthresh(sk); 146 restart_cwnd = min(restart_cwnd, cwnd); 147 148 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 149 cwnd >>= 1; 150 tp->snd_cwnd = max(cwnd, restart_cwnd); 151 tp->snd_cwnd_stamp = tcp_jiffies32; 152 tp->snd_cwnd_used = 0; 153 } 154 155 /* Congestion state accounting after a packet has been sent. */ 156 static void tcp_event_data_sent(struct tcp_sock *tp, 157 struct sock *sk) 158 { 159 struct inet_connection_sock *icsk = inet_csk(sk); 160 const u32 now = tcp_jiffies32; 161 162 if (tcp_packets_in_flight(tp) == 0) 163 tcp_ca_event(sk, CA_EVENT_TX_START); 164 165 /* If this is the first data packet sent in response to the 166 * previous received data, 167 * and it is a reply for ato after last received packet, 168 * increase pingpong count. 169 */ 170 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) && 171 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 172 inet_csk_inc_pingpong_cnt(sk); 173 174 tp->lsndtime = now; 175 } 176 177 /* Account for an ACK we sent. */ 178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 179 u32 rcv_nxt) 180 { 181 struct tcp_sock *tp = tcp_sk(sk); 182 183 if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) { 184 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 185 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 186 tp->compressed_ack = TCP_FASTRETRANS_THRESH; 187 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 188 __sock_put(sk); 189 } 190 191 if (unlikely(rcv_nxt != tp->rcv_nxt)) 192 return; /* Special ACK sent by DCTCP to reflect ECN */ 193 tcp_dec_quickack_mode(sk, pkts); 194 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 195 } 196 197 /* Determine a window scaling and initial window to offer. 198 * Based on the assumption that the given amount of space 199 * will be offered. Store the results in the tp structure. 200 * NOTE: for smooth operation initial space offering should 201 * be a multiple of mss if possible. We assume here that mss >= 1. 202 * This MUST be enforced by all callers. 203 */ 204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 205 __u32 *rcv_wnd, __u32 *window_clamp, 206 int wscale_ok, __u8 *rcv_wscale, 207 __u32 init_rcv_wnd) 208 { 209 unsigned int space = (__space < 0 ? 0 : __space); 210 211 /* If no clamp set the clamp to the max possible scaled window */ 212 if (*window_clamp == 0) 213 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 214 space = min(*window_clamp, space); 215 216 /* Quantize space offering to a multiple of mss if possible. */ 217 if (space > mss) 218 space = rounddown(space, mss); 219 220 /* NOTE: offering an initial window larger than 32767 221 * will break some buggy TCP stacks. If the admin tells us 222 * it is likely we could be speaking with such a buggy stack 223 * we will truncate our initial window offering to 32K-1 224 * unless the remote has sent us a window scaling option, 225 * which we interpret as a sign the remote TCP is not 226 * misinterpreting the window field as a signed quantity. 227 */ 228 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 229 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 230 else 231 (*rcv_wnd) = min_t(u32, space, U16_MAX); 232 233 if (init_rcv_wnd) 234 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 235 236 *rcv_wscale = 0; 237 if (wscale_ok) { 238 /* Set window scaling on max possible window */ 239 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 240 space = max_t(u32, space, sysctl_rmem_max); 241 space = min_t(u32, space, *window_clamp); 242 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 243 0, TCP_MAX_WSCALE); 244 } 245 /* Set the clamp no higher than max representable value */ 246 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 247 } 248 EXPORT_SYMBOL(tcp_select_initial_window); 249 250 /* Chose a new window to advertise, update state in tcp_sock for the 251 * socket, and return result with RFC1323 scaling applied. The return 252 * value can be stuffed directly into th->window for an outgoing 253 * frame. 254 */ 255 static u16 tcp_select_window(struct sock *sk) 256 { 257 struct tcp_sock *tp = tcp_sk(sk); 258 u32 old_win = tp->rcv_wnd; 259 u32 cur_win = tcp_receive_window(tp); 260 u32 new_win = __tcp_select_window(sk); 261 262 /* Never shrink the offered window */ 263 if (new_win < cur_win) { 264 /* Danger Will Robinson! 265 * Don't update rcv_wup/rcv_wnd here or else 266 * we will not be able to advertise a zero 267 * window in time. --DaveM 268 * 269 * Relax Will Robinson. 270 */ 271 if (new_win == 0) 272 NET_INC_STATS(sock_net(sk), 273 LINUX_MIB_TCPWANTZEROWINDOWADV); 274 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 275 } 276 tp->rcv_wnd = new_win; 277 tp->rcv_wup = tp->rcv_nxt; 278 279 /* Make sure we do not exceed the maximum possible 280 * scaled window. 281 */ 282 if (!tp->rx_opt.rcv_wscale && 283 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 284 new_win = min(new_win, MAX_TCP_WINDOW); 285 else 286 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 287 288 /* RFC1323 scaling applied */ 289 new_win >>= tp->rx_opt.rcv_wscale; 290 291 /* If we advertise zero window, disable fast path. */ 292 if (new_win == 0) { 293 tp->pred_flags = 0; 294 if (old_win) 295 NET_INC_STATS(sock_net(sk), 296 LINUX_MIB_TCPTOZEROWINDOWADV); 297 } else if (old_win == 0) { 298 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 299 } 300 301 return new_win; 302 } 303 304 /* Packet ECN state for a SYN-ACK */ 305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 306 { 307 const struct tcp_sock *tp = tcp_sk(sk); 308 309 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 310 if (!(tp->ecn_flags & TCP_ECN_OK)) 311 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 312 else if (tcp_ca_needs_ecn(sk) || 313 tcp_bpf_ca_needs_ecn(sk)) 314 INET_ECN_xmit(sk); 315 } 316 317 /* Packet ECN state for a SYN. */ 318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 319 { 320 struct tcp_sock *tp = tcp_sk(sk); 321 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 322 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 323 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 324 325 if (!use_ecn) { 326 const struct dst_entry *dst = __sk_dst_get(sk); 327 328 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 329 use_ecn = true; 330 } 331 332 tp->ecn_flags = 0; 333 334 if (use_ecn) { 335 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 336 tp->ecn_flags = TCP_ECN_OK; 337 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 338 INET_ECN_xmit(sk); 339 } 340 } 341 342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 343 { 344 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 345 /* tp->ecn_flags are cleared at a later point in time when 346 * SYN ACK is ultimatively being received. 347 */ 348 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 349 } 350 351 static void 352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 353 { 354 if (inet_rsk(req)->ecn_ok) 355 th->ece = 1; 356 } 357 358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 359 * be sent. 360 */ 361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 362 struct tcphdr *th, int tcp_header_len) 363 { 364 struct tcp_sock *tp = tcp_sk(sk); 365 366 if (tp->ecn_flags & TCP_ECN_OK) { 367 /* Not-retransmitted data segment: set ECT and inject CWR. */ 368 if (skb->len != tcp_header_len && 369 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 370 INET_ECN_xmit(sk); 371 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 372 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 373 th->cwr = 1; 374 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 375 } 376 } else if (!tcp_ca_needs_ecn(sk)) { 377 /* ACK or retransmitted segment: clear ECT|CE */ 378 INET_ECN_dontxmit(sk); 379 } 380 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 381 th->ece = 1; 382 } 383 } 384 385 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 386 * auto increment end seqno. 387 */ 388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 389 { 390 skb->ip_summed = CHECKSUM_PARTIAL; 391 392 TCP_SKB_CB(skb)->tcp_flags = flags; 393 TCP_SKB_CB(skb)->sacked = 0; 394 395 tcp_skb_pcount_set(skb, 1); 396 397 TCP_SKB_CB(skb)->seq = seq; 398 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 399 seq++; 400 TCP_SKB_CB(skb)->end_seq = seq; 401 } 402 403 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 404 { 405 return tp->snd_una != tp->snd_up; 406 } 407 408 #define OPTION_SACK_ADVERTISE (1 << 0) 409 #define OPTION_TS (1 << 1) 410 #define OPTION_MD5 (1 << 2) 411 #define OPTION_WSCALE (1 << 3) 412 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 413 #define OPTION_SMC (1 << 9) 414 415 static void smc_options_write(__be32 *ptr, u16 *options) 416 { 417 #if IS_ENABLED(CONFIG_SMC) 418 if (static_branch_unlikely(&tcp_have_smc)) { 419 if (unlikely(OPTION_SMC & *options)) { 420 *ptr++ = htonl((TCPOPT_NOP << 24) | 421 (TCPOPT_NOP << 16) | 422 (TCPOPT_EXP << 8) | 423 (TCPOLEN_EXP_SMC_BASE)); 424 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 425 } 426 } 427 #endif 428 } 429 430 struct tcp_out_options { 431 u16 options; /* bit field of OPTION_* */ 432 u16 mss; /* 0 to disable */ 433 u8 ws; /* window scale, 0 to disable */ 434 u8 num_sack_blocks; /* number of SACK blocks to include */ 435 u8 hash_size; /* bytes in hash_location */ 436 __u8 *hash_location; /* temporary pointer, overloaded */ 437 __u32 tsval, tsecr; /* need to include OPTION_TS */ 438 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 439 }; 440 441 /* Write previously computed TCP options to the packet. 442 * 443 * Beware: Something in the Internet is very sensitive to the ordering of 444 * TCP options, we learned this through the hard way, so be careful here. 445 * Luckily we can at least blame others for their non-compliance but from 446 * inter-operability perspective it seems that we're somewhat stuck with 447 * the ordering which we have been using if we want to keep working with 448 * those broken things (not that it currently hurts anybody as there isn't 449 * particular reason why the ordering would need to be changed). 450 * 451 * At least SACK_PERM as the first option is known to lead to a disaster 452 * (but it may well be that other scenarios fail similarly). 453 */ 454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 455 struct tcp_out_options *opts) 456 { 457 u16 options = opts->options; /* mungable copy */ 458 459 if (unlikely(OPTION_MD5 & options)) { 460 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 461 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 462 /* overload cookie hash location */ 463 opts->hash_location = (__u8 *)ptr; 464 ptr += 4; 465 } 466 467 if (unlikely(opts->mss)) { 468 *ptr++ = htonl((TCPOPT_MSS << 24) | 469 (TCPOLEN_MSS << 16) | 470 opts->mss); 471 } 472 473 if (likely(OPTION_TS & options)) { 474 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 475 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 476 (TCPOLEN_SACK_PERM << 16) | 477 (TCPOPT_TIMESTAMP << 8) | 478 TCPOLEN_TIMESTAMP); 479 options &= ~OPTION_SACK_ADVERTISE; 480 } else { 481 *ptr++ = htonl((TCPOPT_NOP << 24) | 482 (TCPOPT_NOP << 16) | 483 (TCPOPT_TIMESTAMP << 8) | 484 TCPOLEN_TIMESTAMP); 485 } 486 *ptr++ = htonl(opts->tsval); 487 *ptr++ = htonl(opts->tsecr); 488 } 489 490 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 491 *ptr++ = htonl((TCPOPT_NOP << 24) | 492 (TCPOPT_NOP << 16) | 493 (TCPOPT_SACK_PERM << 8) | 494 TCPOLEN_SACK_PERM); 495 } 496 497 if (unlikely(OPTION_WSCALE & options)) { 498 *ptr++ = htonl((TCPOPT_NOP << 24) | 499 (TCPOPT_WINDOW << 16) | 500 (TCPOLEN_WINDOW << 8) | 501 opts->ws); 502 } 503 504 if (unlikely(opts->num_sack_blocks)) { 505 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 506 tp->duplicate_sack : tp->selective_acks; 507 int this_sack; 508 509 *ptr++ = htonl((TCPOPT_NOP << 24) | 510 (TCPOPT_NOP << 16) | 511 (TCPOPT_SACK << 8) | 512 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 513 TCPOLEN_SACK_PERBLOCK))); 514 515 for (this_sack = 0; this_sack < opts->num_sack_blocks; 516 ++this_sack) { 517 *ptr++ = htonl(sp[this_sack].start_seq); 518 *ptr++ = htonl(sp[this_sack].end_seq); 519 } 520 521 tp->rx_opt.dsack = 0; 522 } 523 524 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 525 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 526 u8 *p = (u8 *)ptr; 527 u32 len; /* Fast Open option length */ 528 529 if (foc->exp) { 530 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 531 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 532 TCPOPT_FASTOPEN_MAGIC); 533 p += TCPOLEN_EXP_FASTOPEN_BASE; 534 } else { 535 len = TCPOLEN_FASTOPEN_BASE + foc->len; 536 *p++ = TCPOPT_FASTOPEN; 537 *p++ = len; 538 } 539 540 memcpy(p, foc->val, foc->len); 541 if ((len & 3) == 2) { 542 p[foc->len] = TCPOPT_NOP; 543 p[foc->len + 1] = TCPOPT_NOP; 544 } 545 ptr += (len + 3) >> 2; 546 } 547 548 smc_options_write(ptr, &options); 549 } 550 551 static void smc_set_option(const struct tcp_sock *tp, 552 struct tcp_out_options *opts, 553 unsigned int *remaining) 554 { 555 #if IS_ENABLED(CONFIG_SMC) 556 if (static_branch_unlikely(&tcp_have_smc)) { 557 if (tp->syn_smc) { 558 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 559 opts->options |= OPTION_SMC; 560 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 561 } 562 } 563 } 564 #endif 565 } 566 567 static void smc_set_option_cond(const struct tcp_sock *tp, 568 const struct inet_request_sock *ireq, 569 struct tcp_out_options *opts, 570 unsigned int *remaining) 571 { 572 #if IS_ENABLED(CONFIG_SMC) 573 if (static_branch_unlikely(&tcp_have_smc)) { 574 if (tp->syn_smc && ireq->smc_ok) { 575 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 576 opts->options |= OPTION_SMC; 577 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 578 } 579 } 580 } 581 #endif 582 } 583 584 /* Compute TCP options for SYN packets. This is not the final 585 * network wire format yet. 586 */ 587 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 588 struct tcp_out_options *opts, 589 struct tcp_md5sig_key **md5) 590 { 591 struct tcp_sock *tp = tcp_sk(sk); 592 unsigned int remaining = MAX_TCP_OPTION_SPACE; 593 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 594 595 *md5 = NULL; 596 #ifdef CONFIG_TCP_MD5SIG 597 if (static_branch_unlikely(&tcp_md5_needed) && 598 rcu_access_pointer(tp->md5sig_info)) { 599 *md5 = tp->af_specific->md5_lookup(sk, sk); 600 if (*md5) { 601 opts->options |= OPTION_MD5; 602 remaining -= TCPOLEN_MD5SIG_ALIGNED; 603 } 604 } 605 #endif 606 607 /* We always get an MSS option. The option bytes which will be seen in 608 * normal data packets should timestamps be used, must be in the MSS 609 * advertised. But we subtract them from tp->mss_cache so that 610 * calculations in tcp_sendmsg are simpler etc. So account for this 611 * fact here if necessary. If we don't do this correctly, as a 612 * receiver we won't recognize data packets as being full sized when we 613 * should, and thus we won't abide by the delayed ACK rules correctly. 614 * SACKs don't matter, we never delay an ACK when we have any of those 615 * going out. */ 616 opts->mss = tcp_advertise_mss(sk); 617 remaining -= TCPOLEN_MSS_ALIGNED; 618 619 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 620 opts->options |= OPTION_TS; 621 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 622 opts->tsecr = tp->rx_opt.ts_recent; 623 remaining -= TCPOLEN_TSTAMP_ALIGNED; 624 } 625 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 626 opts->ws = tp->rx_opt.rcv_wscale; 627 opts->options |= OPTION_WSCALE; 628 remaining -= TCPOLEN_WSCALE_ALIGNED; 629 } 630 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 631 opts->options |= OPTION_SACK_ADVERTISE; 632 if (unlikely(!(OPTION_TS & opts->options))) 633 remaining -= TCPOLEN_SACKPERM_ALIGNED; 634 } 635 636 if (fastopen && fastopen->cookie.len >= 0) { 637 u32 need = fastopen->cookie.len; 638 639 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 640 TCPOLEN_FASTOPEN_BASE; 641 need = (need + 3) & ~3U; /* Align to 32 bits */ 642 if (remaining >= need) { 643 opts->options |= OPTION_FAST_OPEN_COOKIE; 644 opts->fastopen_cookie = &fastopen->cookie; 645 remaining -= need; 646 tp->syn_fastopen = 1; 647 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 648 } 649 } 650 651 smc_set_option(tp, opts, &remaining); 652 653 return MAX_TCP_OPTION_SPACE - remaining; 654 } 655 656 /* Set up TCP options for SYN-ACKs. */ 657 static unsigned int tcp_synack_options(const struct sock *sk, 658 struct request_sock *req, 659 unsigned int mss, struct sk_buff *skb, 660 struct tcp_out_options *opts, 661 const struct tcp_md5sig_key *md5, 662 struct tcp_fastopen_cookie *foc) 663 { 664 struct inet_request_sock *ireq = inet_rsk(req); 665 unsigned int remaining = MAX_TCP_OPTION_SPACE; 666 667 #ifdef CONFIG_TCP_MD5SIG 668 if (md5) { 669 opts->options |= OPTION_MD5; 670 remaining -= TCPOLEN_MD5SIG_ALIGNED; 671 672 /* We can't fit any SACK blocks in a packet with MD5 + TS 673 * options. There was discussion about disabling SACK 674 * rather than TS in order to fit in better with old, 675 * buggy kernels, but that was deemed to be unnecessary. 676 */ 677 ireq->tstamp_ok &= !ireq->sack_ok; 678 } 679 #endif 680 681 /* We always send an MSS option. */ 682 opts->mss = mss; 683 remaining -= TCPOLEN_MSS_ALIGNED; 684 685 if (likely(ireq->wscale_ok)) { 686 opts->ws = ireq->rcv_wscale; 687 opts->options |= OPTION_WSCALE; 688 remaining -= TCPOLEN_WSCALE_ALIGNED; 689 } 690 if (likely(ireq->tstamp_ok)) { 691 opts->options |= OPTION_TS; 692 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 693 opts->tsecr = req->ts_recent; 694 remaining -= TCPOLEN_TSTAMP_ALIGNED; 695 } 696 if (likely(ireq->sack_ok)) { 697 opts->options |= OPTION_SACK_ADVERTISE; 698 if (unlikely(!ireq->tstamp_ok)) 699 remaining -= TCPOLEN_SACKPERM_ALIGNED; 700 } 701 if (foc != NULL && foc->len >= 0) { 702 u32 need = foc->len; 703 704 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 705 TCPOLEN_FASTOPEN_BASE; 706 need = (need + 3) & ~3U; /* Align to 32 bits */ 707 if (remaining >= need) { 708 opts->options |= OPTION_FAST_OPEN_COOKIE; 709 opts->fastopen_cookie = foc; 710 remaining -= need; 711 } 712 } 713 714 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 715 716 return MAX_TCP_OPTION_SPACE - remaining; 717 } 718 719 /* Compute TCP options for ESTABLISHED sockets. This is not the 720 * final wire format yet. 721 */ 722 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 723 struct tcp_out_options *opts, 724 struct tcp_md5sig_key **md5) 725 { 726 struct tcp_sock *tp = tcp_sk(sk); 727 unsigned int size = 0; 728 unsigned int eff_sacks; 729 730 opts->options = 0; 731 732 *md5 = NULL; 733 #ifdef CONFIG_TCP_MD5SIG 734 if (static_branch_unlikely(&tcp_md5_needed) && 735 rcu_access_pointer(tp->md5sig_info)) { 736 *md5 = tp->af_specific->md5_lookup(sk, sk); 737 if (*md5) { 738 opts->options |= OPTION_MD5; 739 size += TCPOLEN_MD5SIG_ALIGNED; 740 } 741 } 742 #endif 743 744 if (likely(tp->rx_opt.tstamp_ok)) { 745 opts->options |= OPTION_TS; 746 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 747 opts->tsecr = tp->rx_opt.ts_recent; 748 size += TCPOLEN_TSTAMP_ALIGNED; 749 } 750 751 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 752 if (unlikely(eff_sacks)) { 753 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 754 opts->num_sack_blocks = 755 min_t(unsigned int, eff_sacks, 756 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 757 TCPOLEN_SACK_PERBLOCK); 758 size += TCPOLEN_SACK_BASE_ALIGNED + 759 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 760 } 761 762 return size; 763 } 764 765 766 /* TCP SMALL QUEUES (TSQ) 767 * 768 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 769 * to reduce RTT and bufferbloat. 770 * We do this using a special skb destructor (tcp_wfree). 771 * 772 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 773 * needs to be reallocated in a driver. 774 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 775 * 776 * Since transmit from skb destructor is forbidden, we use a tasklet 777 * to process all sockets that eventually need to send more skbs. 778 * We use one tasklet per cpu, with its own queue of sockets. 779 */ 780 struct tsq_tasklet { 781 struct tasklet_struct tasklet; 782 struct list_head head; /* queue of tcp sockets */ 783 }; 784 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 785 786 static void tcp_tsq_write(struct sock *sk) 787 { 788 if ((1 << sk->sk_state) & 789 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 790 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 791 struct tcp_sock *tp = tcp_sk(sk); 792 793 if (tp->lost_out > tp->retrans_out && 794 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 795 tcp_mstamp_refresh(tp); 796 tcp_xmit_retransmit_queue(sk); 797 } 798 799 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 800 0, GFP_ATOMIC); 801 } 802 } 803 804 static void tcp_tsq_handler(struct sock *sk) 805 { 806 bh_lock_sock(sk); 807 if (!sock_owned_by_user(sk)) 808 tcp_tsq_write(sk); 809 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 810 sock_hold(sk); 811 bh_unlock_sock(sk); 812 } 813 /* 814 * One tasklet per cpu tries to send more skbs. 815 * We run in tasklet context but need to disable irqs when 816 * transferring tsq->head because tcp_wfree() might 817 * interrupt us (non NAPI drivers) 818 */ 819 static void tcp_tasklet_func(unsigned long data) 820 { 821 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 822 LIST_HEAD(list); 823 unsigned long flags; 824 struct list_head *q, *n; 825 struct tcp_sock *tp; 826 struct sock *sk; 827 828 local_irq_save(flags); 829 list_splice_init(&tsq->head, &list); 830 local_irq_restore(flags); 831 832 list_for_each_safe(q, n, &list) { 833 tp = list_entry(q, struct tcp_sock, tsq_node); 834 list_del(&tp->tsq_node); 835 836 sk = (struct sock *)tp; 837 smp_mb__before_atomic(); 838 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 839 840 tcp_tsq_handler(sk); 841 sk_free(sk); 842 } 843 } 844 845 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 846 TCPF_WRITE_TIMER_DEFERRED | \ 847 TCPF_DELACK_TIMER_DEFERRED | \ 848 TCPF_MTU_REDUCED_DEFERRED) 849 /** 850 * tcp_release_cb - tcp release_sock() callback 851 * @sk: socket 852 * 853 * called from release_sock() to perform protocol dependent 854 * actions before socket release. 855 */ 856 void tcp_release_cb(struct sock *sk) 857 { 858 unsigned long flags, nflags; 859 860 /* perform an atomic operation only if at least one flag is set */ 861 do { 862 flags = sk->sk_tsq_flags; 863 if (!(flags & TCP_DEFERRED_ALL)) 864 return; 865 nflags = flags & ~TCP_DEFERRED_ALL; 866 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 867 868 if (flags & TCPF_TSQ_DEFERRED) { 869 tcp_tsq_write(sk); 870 __sock_put(sk); 871 } 872 /* Here begins the tricky part : 873 * We are called from release_sock() with : 874 * 1) BH disabled 875 * 2) sk_lock.slock spinlock held 876 * 3) socket owned by us (sk->sk_lock.owned == 1) 877 * 878 * But following code is meant to be called from BH handlers, 879 * so we should keep BH disabled, but early release socket ownership 880 */ 881 sock_release_ownership(sk); 882 883 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 884 tcp_write_timer_handler(sk); 885 __sock_put(sk); 886 } 887 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 888 tcp_delack_timer_handler(sk); 889 __sock_put(sk); 890 } 891 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 892 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 893 __sock_put(sk); 894 } 895 } 896 EXPORT_SYMBOL(tcp_release_cb); 897 898 void __init tcp_tasklet_init(void) 899 { 900 int i; 901 902 for_each_possible_cpu(i) { 903 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 904 905 INIT_LIST_HEAD(&tsq->head); 906 tasklet_init(&tsq->tasklet, 907 tcp_tasklet_func, 908 (unsigned long)tsq); 909 } 910 } 911 912 /* 913 * Write buffer destructor automatically called from kfree_skb. 914 * We can't xmit new skbs from this context, as we might already 915 * hold qdisc lock. 916 */ 917 void tcp_wfree(struct sk_buff *skb) 918 { 919 struct sock *sk = skb->sk; 920 struct tcp_sock *tp = tcp_sk(sk); 921 unsigned long flags, nval, oval; 922 923 /* Keep one reference on sk_wmem_alloc. 924 * Will be released by sk_free() from here or tcp_tasklet_func() 925 */ 926 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 927 928 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 929 * Wait until our queues (qdisc + devices) are drained. 930 * This gives : 931 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 932 * - chance for incoming ACK (processed by another cpu maybe) 933 * to migrate this flow (skb->ooo_okay will be eventually set) 934 */ 935 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 936 goto out; 937 938 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 939 struct tsq_tasklet *tsq; 940 bool empty; 941 942 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 943 goto out; 944 945 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 946 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 947 if (nval != oval) 948 continue; 949 950 /* queue this socket to tasklet queue */ 951 local_irq_save(flags); 952 tsq = this_cpu_ptr(&tsq_tasklet); 953 empty = list_empty(&tsq->head); 954 list_add(&tp->tsq_node, &tsq->head); 955 if (empty) 956 tasklet_schedule(&tsq->tasklet); 957 local_irq_restore(flags); 958 return; 959 } 960 out: 961 sk_free(sk); 962 } 963 964 /* Note: Called under soft irq. 965 * We can call TCP stack right away, unless socket is owned by user. 966 */ 967 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 968 { 969 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 970 struct sock *sk = (struct sock *)tp; 971 972 tcp_tsq_handler(sk); 973 sock_put(sk); 974 975 return HRTIMER_NORESTART; 976 } 977 978 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 979 u64 prior_wstamp) 980 { 981 struct tcp_sock *tp = tcp_sk(sk); 982 983 if (sk->sk_pacing_status != SK_PACING_NONE) { 984 unsigned long rate = sk->sk_pacing_rate; 985 986 /* Original sch_fq does not pace first 10 MSS 987 * Note that tp->data_segs_out overflows after 2^32 packets, 988 * this is a minor annoyance. 989 */ 990 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 991 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 992 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 993 994 /* take into account OS jitter */ 995 len_ns -= min_t(u64, len_ns / 2, credit); 996 tp->tcp_wstamp_ns += len_ns; 997 } 998 } 999 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1000 } 1001 1002 /* This routine actually transmits TCP packets queued in by 1003 * tcp_do_sendmsg(). This is used by both the initial 1004 * transmission and possible later retransmissions. 1005 * All SKB's seen here are completely headerless. It is our 1006 * job to build the TCP header, and pass the packet down to 1007 * IP so it can do the same plus pass the packet off to the 1008 * device. 1009 * 1010 * We are working here with either a clone of the original 1011 * SKB, or a fresh unique copy made by the retransmit engine. 1012 */ 1013 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1014 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1015 { 1016 const struct inet_connection_sock *icsk = inet_csk(sk); 1017 struct inet_sock *inet; 1018 struct tcp_sock *tp; 1019 struct tcp_skb_cb *tcb; 1020 struct tcp_out_options opts; 1021 unsigned int tcp_options_size, tcp_header_size; 1022 struct sk_buff *oskb = NULL; 1023 struct tcp_md5sig_key *md5; 1024 struct tcphdr *th; 1025 u64 prior_wstamp; 1026 int err; 1027 1028 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1029 tp = tcp_sk(sk); 1030 prior_wstamp = tp->tcp_wstamp_ns; 1031 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1032 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1033 if (clone_it) { 1034 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1035 - tp->snd_una; 1036 oskb = skb; 1037 1038 tcp_skb_tsorted_save(oskb) { 1039 if (unlikely(skb_cloned(oskb))) 1040 skb = pskb_copy(oskb, gfp_mask); 1041 else 1042 skb = skb_clone(oskb, gfp_mask); 1043 } tcp_skb_tsorted_restore(oskb); 1044 1045 if (unlikely(!skb)) 1046 return -ENOBUFS; 1047 } 1048 1049 inet = inet_sk(sk); 1050 tcb = TCP_SKB_CB(skb); 1051 memset(&opts, 0, sizeof(opts)); 1052 1053 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1054 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1055 else 1056 tcp_options_size = tcp_established_options(sk, skb, &opts, 1057 &md5); 1058 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1059 1060 /* if no packet is in qdisc/device queue, then allow XPS to select 1061 * another queue. We can be called from tcp_tsq_handler() 1062 * which holds one reference to sk. 1063 * 1064 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1065 * One way to get this would be to set skb->truesize = 2 on them. 1066 */ 1067 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1068 1069 /* If we had to use memory reserve to allocate this skb, 1070 * this might cause drops if packet is looped back : 1071 * Other socket might not have SOCK_MEMALLOC. 1072 * Packets not looped back do not care about pfmemalloc. 1073 */ 1074 skb->pfmemalloc = 0; 1075 1076 skb_push(skb, tcp_header_size); 1077 skb_reset_transport_header(skb); 1078 1079 skb_orphan(skb); 1080 skb->sk = sk; 1081 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1082 skb_set_hash_from_sk(skb, sk); 1083 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1084 1085 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1086 1087 /* Build TCP header and checksum it. */ 1088 th = (struct tcphdr *)skb->data; 1089 th->source = inet->inet_sport; 1090 th->dest = inet->inet_dport; 1091 th->seq = htonl(tcb->seq); 1092 th->ack_seq = htonl(rcv_nxt); 1093 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1094 tcb->tcp_flags); 1095 1096 th->check = 0; 1097 th->urg_ptr = 0; 1098 1099 /* The urg_mode check is necessary during a below snd_una win probe */ 1100 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1101 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1102 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1103 th->urg = 1; 1104 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1105 th->urg_ptr = htons(0xFFFF); 1106 th->urg = 1; 1107 } 1108 } 1109 1110 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1111 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1112 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1113 th->window = htons(tcp_select_window(sk)); 1114 tcp_ecn_send(sk, skb, th, tcp_header_size); 1115 } else { 1116 /* RFC1323: The window in SYN & SYN/ACK segments 1117 * is never scaled. 1118 */ 1119 th->window = htons(min(tp->rcv_wnd, 65535U)); 1120 } 1121 #ifdef CONFIG_TCP_MD5SIG 1122 /* Calculate the MD5 hash, as we have all we need now */ 1123 if (md5) { 1124 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1125 tp->af_specific->calc_md5_hash(opts.hash_location, 1126 md5, sk, skb); 1127 } 1128 #endif 1129 1130 icsk->icsk_af_ops->send_check(sk, skb); 1131 1132 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1133 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1134 1135 if (skb->len != tcp_header_size) { 1136 tcp_event_data_sent(tp, sk); 1137 tp->data_segs_out += tcp_skb_pcount(skb); 1138 tp->bytes_sent += skb->len - tcp_header_size; 1139 } 1140 1141 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1142 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1143 tcp_skb_pcount(skb)); 1144 1145 tp->segs_out += tcp_skb_pcount(skb); 1146 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1147 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1148 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1149 1150 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1151 1152 /* Cleanup our debris for IP stacks */ 1153 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1154 sizeof(struct inet6_skb_parm))); 1155 1156 tcp_add_tx_delay(skb, tp); 1157 1158 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1159 1160 if (unlikely(err > 0)) { 1161 tcp_enter_cwr(sk); 1162 err = net_xmit_eval(err); 1163 } 1164 if (!err && oskb) { 1165 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1166 tcp_rate_skb_sent(sk, oskb); 1167 } 1168 return err; 1169 } 1170 1171 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1172 gfp_t gfp_mask) 1173 { 1174 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1175 tcp_sk(sk)->rcv_nxt); 1176 } 1177 1178 /* This routine just queues the buffer for sending. 1179 * 1180 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1181 * otherwise socket can stall. 1182 */ 1183 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1184 { 1185 struct tcp_sock *tp = tcp_sk(sk); 1186 1187 /* Advance write_seq and place onto the write_queue. */ 1188 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1189 __skb_header_release(skb); 1190 tcp_add_write_queue_tail(sk, skb); 1191 sk->sk_wmem_queued += skb->truesize; 1192 sk_mem_charge(sk, skb->truesize); 1193 } 1194 1195 /* Initialize TSO segments for a packet. */ 1196 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1197 { 1198 if (skb->len <= mss_now) { 1199 /* Avoid the costly divide in the normal 1200 * non-TSO case. 1201 */ 1202 tcp_skb_pcount_set(skb, 1); 1203 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1204 } else { 1205 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1206 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1207 } 1208 } 1209 1210 /* Pcount in the middle of the write queue got changed, we need to do various 1211 * tweaks to fix counters 1212 */ 1213 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1214 { 1215 struct tcp_sock *tp = tcp_sk(sk); 1216 1217 tp->packets_out -= decr; 1218 1219 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1220 tp->sacked_out -= decr; 1221 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1222 tp->retrans_out -= decr; 1223 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1224 tp->lost_out -= decr; 1225 1226 /* Reno case is special. Sigh... */ 1227 if (tcp_is_reno(tp) && decr > 0) 1228 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1229 1230 if (tp->lost_skb_hint && 1231 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1232 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1233 tp->lost_cnt_hint -= decr; 1234 1235 tcp_verify_left_out(tp); 1236 } 1237 1238 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1239 { 1240 return TCP_SKB_CB(skb)->txstamp_ack || 1241 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1242 } 1243 1244 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1245 { 1246 struct skb_shared_info *shinfo = skb_shinfo(skb); 1247 1248 if (unlikely(tcp_has_tx_tstamp(skb)) && 1249 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1250 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1251 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1252 1253 shinfo->tx_flags &= ~tsflags; 1254 shinfo2->tx_flags |= tsflags; 1255 swap(shinfo->tskey, shinfo2->tskey); 1256 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1257 TCP_SKB_CB(skb)->txstamp_ack = 0; 1258 } 1259 } 1260 1261 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1262 { 1263 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1264 TCP_SKB_CB(skb)->eor = 0; 1265 } 1266 1267 /* Insert buff after skb on the write or rtx queue of sk. */ 1268 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1269 struct sk_buff *buff, 1270 struct sock *sk, 1271 enum tcp_queue tcp_queue) 1272 { 1273 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1274 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1275 else 1276 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1277 } 1278 1279 /* Function to create two new TCP segments. Shrinks the given segment 1280 * to the specified size and appends a new segment with the rest of the 1281 * packet to the list. This won't be called frequently, I hope. 1282 * Remember, these are still headerless SKBs at this point. 1283 */ 1284 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1285 struct sk_buff *skb, u32 len, 1286 unsigned int mss_now, gfp_t gfp) 1287 { 1288 struct tcp_sock *tp = tcp_sk(sk); 1289 struct sk_buff *buff; 1290 int nsize, old_factor; 1291 long limit; 1292 int nlen; 1293 u8 flags; 1294 1295 if (WARN_ON(len > skb->len)) 1296 return -EINVAL; 1297 1298 nsize = skb_headlen(skb) - len; 1299 if (nsize < 0) 1300 nsize = 0; 1301 1302 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1303 * We need some allowance to not penalize applications setting small 1304 * SO_SNDBUF values. 1305 * Also allow first and last skb in retransmit queue to be split. 1306 */ 1307 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE); 1308 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1309 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1310 skb != tcp_rtx_queue_head(sk) && 1311 skb != tcp_rtx_queue_tail(sk))) { 1312 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1313 return -ENOMEM; 1314 } 1315 1316 if (skb_unclone(skb, gfp)) 1317 return -ENOMEM; 1318 1319 /* Get a new skb... force flag on. */ 1320 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1321 if (!buff) 1322 return -ENOMEM; /* We'll just try again later. */ 1323 1324 sk->sk_wmem_queued += buff->truesize; 1325 sk_mem_charge(sk, buff->truesize); 1326 nlen = skb->len - len - nsize; 1327 buff->truesize += nlen; 1328 skb->truesize -= nlen; 1329 1330 /* Correct the sequence numbers. */ 1331 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1332 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1333 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1334 1335 /* PSH and FIN should only be set in the second packet. */ 1336 flags = TCP_SKB_CB(skb)->tcp_flags; 1337 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1338 TCP_SKB_CB(buff)->tcp_flags = flags; 1339 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1340 tcp_skb_fragment_eor(skb, buff); 1341 1342 skb_split(skb, buff, len); 1343 1344 buff->ip_summed = CHECKSUM_PARTIAL; 1345 1346 buff->tstamp = skb->tstamp; 1347 tcp_fragment_tstamp(skb, buff); 1348 1349 old_factor = tcp_skb_pcount(skb); 1350 1351 /* Fix up tso_factor for both original and new SKB. */ 1352 tcp_set_skb_tso_segs(skb, mss_now); 1353 tcp_set_skb_tso_segs(buff, mss_now); 1354 1355 /* Update delivered info for the new segment */ 1356 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1357 1358 /* If this packet has been sent out already, we must 1359 * adjust the various packet counters. 1360 */ 1361 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1362 int diff = old_factor - tcp_skb_pcount(skb) - 1363 tcp_skb_pcount(buff); 1364 1365 if (diff) 1366 tcp_adjust_pcount(sk, skb, diff); 1367 } 1368 1369 /* Link BUFF into the send queue. */ 1370 __skb_header_release(buff); 1371 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1372 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1373 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1374 1375 return 0; 1376 } 1377 1378 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1379 * data is not copied, but immediately discarded. 1380 */ 1381 static int __pskb_trim_head(struct sk_buff *skb, int len) 1382 { 1383 struct skb_shared_info *shinfo; 1384 int i, k, eat; 1385 1386 eat = min_t(int, len, skb_headlen(skb)); 1387 if (eat) { 1388 __skb_pull(skb, eat); 1389 len -= eat; 1390 if (!len) 1391 return 0; 1392 } 1393 eat = len; 1394 k = 0; 1395 shinfo = skb_shinfo(skb); 1396 for (i = 0; i < shinfo->nr_frags; i++) { 1397 int size = skb_frag_size(&shinfo->frags[i]); 1398 1399 if (size <= eat) { 1400 skb_frag_unref(skb, i); 1401 eat -= size; 1402 } else { 1403 shinfo->frags[k] = shinfo->frags[i]; 1404 if (eat) { 1405 shinfo->frags[k].page_offset += eat; 1406 skb_frag_size_sub(&shinfo->frags[k], eat); 1407 eat = 0; 1408 } 1409 k++; 1410 } 1411 } 1412 shinfo->nr_frags = k; 1413 1414 skb->data_len -= len; 1415 skb->len = skb->data_len; 1416 return len; 1417 } 1418 1419 /* Remove acked data from a packet in the transmit queue. */ 1420 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1421 { 1422 u32 delta_truesize; 1423 1424 if (skb_unclone(skb, GFP_ATOMIC)) 1425 return -ENOMEM; 1426 1427 delta_truesize = __pskb_trim_head(skb, len); 1428 1429 TCP_SKB_CB(skb)->seq += len; 1430 skb->ip_summed = CHECKSUM_PARTIAL; 1431 1432 if (delta_truesize) { 1433 skb->truesize -= delta_truesize; 1434 sk->sk_wmem_queued -= delta_truesize; 1435 sk_mem_uncharge(sk, delta_truesize); 1436 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1437 } 1438 1439 /* Any change of skb->len requires recalculation of tso factor. */ 1440 if (tcp_skb_pcount(skb) > 1) 1441 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1442 1443 return 0; 1444 } 1445 1446 /* Calculate MSS not accounting any TCP options. */ 1447 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1448 { 1449 const struct tcp_sock *tp = tcp_sk(sk); 1450 const struct inet_connection_sock *icsk = inet_csk(sk); 1451 int mss_now; 1452 1453 /* Calculate base mss without TCP options: 1454 It is MMS_S - sizeof(tcphdr) of rfc1122 1455 */ 1456 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1457 1458 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1459 if (icsk->icsk_af_ops->net_frag_header_len) { 1460 const struct dst_entry *dst = __sk_dst_get(sk); 1461 1462 if (dst && dst_allfrag(dst)) 1463 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1464 } 1465 1466 /* Clamp it (mss_clamp does not include tcp options) */ 1467 if (mss_now > tp->rx_opt.mss_clamp) 1468 mss_now = tp->rx_opt.mss_clamp; 1469 1470 /* Now subtract optional transport overhead */ 1471 mss_now -= icsk->icsk_ext_hdr_len; 1472 1473 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1474 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss); 1475 return mss_now; 1476 } 1477 1478 /* Calculate MSS. Not accounting for SACKs here. */ 1479 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1480 { 1481 /* Subtract TCP options size, not including SACKs */ 1482 return __tcp_mtu_to_mss(sk, pmtu) - 1483 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1484 } 1485 1486 /* Inverse of above */ 1487 int tcp_mss_to_mtu(struct sock *sk, int mss) 1488 { 1489 const struct tcp_sock *tp = tcp_sk(sk); 1490 const struct inet_connection_sock *icsk = inet_csk(sk); 1491 int mtu; 1492 1493 mtu = mss + 1494 tp->tcp_header_len + 1495 icsk->icsk_ext_hdr_len + 1496 icsk->icsk_af_ops->net_header_len; 1497 1498 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1499 if (icsk->icsk_af_ops->net_frag_header_len) { 1500 const struct dst_entry *dst = __sk_dst_get(sk); 1501 1502 if (dst && dst_allfrag(dst)) 1503 mtu += icsk->icsk_af_ops->net_frag_header_len; 1504 } 1505 return mtu; 1506 } 1507 EXPORT_SYMBOL(tcp_mss_to_mtu); 1508 1509 /* MTU probing init per socket */ 1510 void tcp_mtup_init(struct sock *sk) 1511 { 1512 struct tcp_sock *tp = tcp_sk(sk); 1513 struct inet_connection_sock *icsk = inet_csk(sk); 1514 struct net *net = sock_net(sk); 1515 1516 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1517 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1518 icsk->icsk_af_ops->net_header_len; 1519 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1520 icsk->icsk_mtup.probe_size = 0; 1521 if (icsk->icsk_mtup.enabled) 1522 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1523 } 1524 EXPORT_SYMBOL(tcp_mtup_init); 1525 1526 /* This function synchronize snd mss to current pmtu/exthdr set. 1527 1528 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1529 for TCP options, but includes only bare TCP header. 1530 1531 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1532 It is minimum of user_mss and mss received with SYN. 1533 It also does not include TCP options. 1534 1535 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1536 1537 tp->mss_cache is current effective sending mss, including 1538 all tcp options except for SACKs. It is evaluated, 1539 taking into account current pmtu, but never exceeds 1540 tp->rx_opt.mss_clamp. 1541 1542 NOTE1. rfc1122 clearly states that advertised MSS 1543 DOES NOT include either tcp or ip options. 1544 1545 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1546 are READ ONLY outside this function. --ANK (980731) 1547 */ 1548 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1549 { 1550 struct tcp_sock *tp = tcp_sk(sk); 1551 struct inet_connection_sock *icsk = inet_csk(sk); 1552 int mss_now; 1553 1554 if (icsk->icsk_mtup.search_high > pmtu) 1555 icsk->icsk_mtup.search_high = pmtu; 1556 1557 mss_now = tcp_mtu_to_mss(sk, pmtu); 1558 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1559 1560 /* And store cached results */ 1561 icsk->icsk_pmtu_cookie = pmtu; 1562 if (icsk->icsk_mtup.enabled) 1563 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1564 tp->mss_cache = mss_now; 1565 1566 return mss_now; 1567 } 1568 EXPORT_SYMBOL(tcp_sync_mss); 1569 1570 /* Compute the current effective MSS, taking SACKs and IP options, 1571 * and even PMTU discovery events into account. 1572 */ 1573 unsigned int tcp_current_mss(struct sock *sk) 1574 { 1575 const struct tcp_sock *tp = tcp_sk(sk); 1576 const struct dst_entry *dst = __sk_dst_get(sk); 1577 u32 mss_now; 1578 unsigned int header_len; 1579 struct tcp_out_options opts; 1580 struct tcp_md5sig_key *md5; 1581 1582 mss_now = tp->mss_cache; 1583 1584 if (dst) { 1585 u32 mtu = dst_mtu(dst); 1586 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1587 mss_now = tcp_sync_mss(sk, mtu); 1588 } 1589 1590 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1591 sizeof(struct tcphdr); 1592 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1593 * some common options. If this is an odd packet (because we have SACK 1594 * blocks etc) then our calculated header_len will be different, and 1595 * we have to adjust mss_now correspondingly */ 1596 if (header_len != tp->tcp_header_len) { 1597 int delta = (int) header_len - tp->tcp_header_len; 1598 mss_now -= delta; 1599 } 1600 1601 return mss_now; 1602 } 1603 1604 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1605 * As additional protections, we do not touch cwnd in retransmission phases, 1606 * and if application hit its sndbuf limit recently. 1607 */ 1608 static void tcp_cwnd_application_limited(struct sock *sk) 1609 { 1610 struct tcp_sock *tp = tcp_sk(sk); 1611 1612 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1613 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1614 /* Limited by application or receiver window. */ 1615 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1616 u32 win_used = max(tp->snd_cwnd_used, init_win); 1617 if (win_used < tp->snd_cwnd) { 1618 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1619 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1620 } 1621 tp->snd_cwnd_used = 0; 1622 } 1623 tp->snd_cwnd_stamp = tcp_jiffies32; 1624 } 1625 1626 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1627 { 1628 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1629 struct tcp_sock *tp = tcp_sk(sk); 1630 1631 /* Track the maximum number of outstanding packets in each 1632 * window, and remember whether we were cwnd-limited then. 1633 */ 1634 if (!before(tp->snd_una, tp->max_packets_seq) || 1635 tp->packets_out > tp->max_packets_out) { 1636 tp->max_packets_out = tp->packets_out; 1637 tp->max_packets_seq = tp->snd_nxt; 1638 tp->is_cwnd_limited = is_cwnd_limited; 1639 } 1640 1641 if (tcp_is_cwnd_limited(sk)) { 1642 /* Network is feed fully. */ 1643 tp->snd_cwnd_used = 0; 1644 tp->snd_cwnd_stamp = tcp_jiffies32; 1645 } else { 1646 /* Network starves. */ 1647 if (tp->packets_out > tp->snd_cwnd_used) 1648 tp->snd_cwnd_used = tp->packets_out; 1649 1650 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1651 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1652 !ca_ops->cong_control) 1653 tcp_cwnd_application_limited(sk); 1654 1655 /* The following conditions together indicate the starvation 1656 * is caused by insufficient sender buffer: 1657 * 1) just sent some data (see tcp_write_xmit) 1658 * 2) not cwnd limited (this else condition) 1659 * 3) no more data to send (tcp_write_queue_empty()) 1660 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1661 */ 1662 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1663 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1664 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1665 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1666 } 1667 } 1668 1669 /* Minshall's variant of the Nagle send check. */ 1670 static bool tcp_minshall_check(const struct tcp_sock *tp) 1671 { 1672 return after(tp->snd_sml, tp->snd_una) && 1673 !after(tp->snd_sml, tp->snd_nxt); 1674 } 1675 1676 /* Update snd_sml if this skb is under mss 1677 * Note that a TSO packet might end with a sub-mss segment 1678 * The test is really : 1679 * if ((skb->len % mss) != 0) 1680 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1681 * But we can avoid doing the divide again given we already have 1682 * skb_pcount = skb->len / mss_now 1683 */ 1684 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1685 const struct sk_buff *skb) 1686 { 1687 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1688 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1689 } 1690 1691 /* Return false, if packet can be sent now without violation Nagle's rules: 1692 * 1. It is full sized. (provided by caller in %partial bool) 1693 * 2. Or it contains FIN. (already checked by caller) 1694 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1695 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1696 * With Minshall's modification: all sent small packets are ACKed. 1697 */ 1698 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1699 int nonagle) 1700 { 1701 return partial && 1702 ((nonagle & TCP_NAGLE_CORK) || 1703 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1704 } 1705 1706 /* Return how many segs we'd like on a TSO packet, 1707 * to send one TSO packet per ms 1708 */ 1709 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1710 int min_tso_segs) 1711 { 1712 u32 bytes, segs; 1713 1714 bytes = min_t(unsigned long, 1715 sk->sk_pacing_rate >> sk->sk_pacing_shift, 1716 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1717 1718 /* Goal is to send at least one packet per ms, 1719 * not one big TSO packet every 100 ms. 1720 * This preserves ACK clocking and is consistent 1721 * with tcp_tso_should_defer() heuristic. 1722 */ 1723 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1724 1725 return segs; 1726 } 1727 1728 /* Return the number of segments we want in the skb we are transmitting. 1729 * See if congestion control module wants to decide; otherwise, autosize. 1730 */ 1731 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1732 { 1733 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1734 u32 min_tso, tso_segs; 1735 1736 min_tso = ca_ops->min_tso_segs ? 1737 ca_ops->min_tso_segs(sk) : 1738 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1739 1740 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1741 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1742 } 1743 1744 /* Returns the portion of skb which can be sent right away */ 1745 static unsigned int tcp_mss_split_point(const struct sock *sk, 1746 const struct sk_buff *skb, 1747 unsigned int mss_now, 1748 unsigned int max_segs, 1749 int nonagle) 1750 { 1751 const struct tcp_sock *tp = tcp_sk(sk); 1752 u32 partial, needed, window, max_len; 1753 1754 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1755 max_len = mss_now * max_segs; 1756 1757 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1758 return max_len; 1759 1760 needed = min(skb->len, window); 1761 1762 if (max_len <= needed) 1763 return max_len; 1764 1765 partial = needed % mss_now; 1766 /* If last segment is not a full MSS, check if Nagle rules allow us 1767 * to include this last segment in this skb. 1768 * Otherwise, we'll split the skb at last MSS boundary 1769 */ 1770 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1771 return needed - partial; 1772 1773 return needed; 1774 } 1775 1776 /* Can at least one segment of SKB be sent right now, according to the 1777 * congestion window rules? If so, return how many segments are allowed. 1778 */ 1779 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1780 const struct sk_buff *skb) 1781 { 1782 u32 in_flight, cwnd, halfcwnd; 1783 1784 /* Don't be strict about the congestion window for the final FIN. */ 1785 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1786 tcp_skb_pcount(skb) == 1) 1787 return 1; 1788 1789 in_flight = tcp_packets_in_flight(tp); 1790 cwnd = tp->snd_cwnd; 1791 if (in_flight >= cwnd) 1792 return 0; 1793 1794 /* For better scheduling, ensure we have at least 1795 * 2 GSO packets in flight. 1796 */ 1797 halfcwnd = max(cwnd >> 1, 1U); 1798 return min(halfcwnd, cwnd - in_flight); 1799 } 1800 1801 /* Initialize TSO state of a skb. 1802 * This must be invoked the first time we consider transmitting 1803 * SKB onto the wire. 1804 */ 1805 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1806 { 1807 int tso_segs = tcp_skb_pcount(skb); 1808 1809 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1810 tcp_set_skb_tso_segs(skb, mss_now); 1811 tso_segs = tcp_skb_pcount(skb); 1812 } 1813 return tso_segs; 1814 } 1815 1816 1817 /* Return true if the Nagle test allows this packet to be 1818 * sent now. 1819 */ 1820 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1821 unsigned int cur_mss, int nonagle) 1822 { 1823 /* Nagle rule does not apply to frames, which sit in the middle of the 1824 * write_queue (they have no chances to get new data). 1825 * 1826 * This is implemented in the callers, where they modify the 'nonagle' 1827 * argument based upon the location of SKB in the send queue. 1828 */ 1829 if (nonagle & TCP_NAGLE_PUSH) 1830 return true; 1831 1832 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1833 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1834 return true; 1835 1836 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1837 return true; 1838 1839 return false; 1840 } 1841 1842 /* Does at least the first segment of SKB fit into the send window? */ 1843 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1844 const struct sk_buff *skb, 1845 unsigned int cur_mss) 1846 { 1847 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1848 1849 if (skb->len > cur_mss) 1850 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1851 1852 return !after(end_seq, tcp_wnd_end(tp)); 1853 } 1854 1855 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1856 * which is put after SKB on the list. It is very much like 1857 * tcp_fragment() except that it may make several kinds of assumptions 1858 * in order to speed up the splitting operation. In particular, we 1859 * know that all the data is in scatter-gather pages, and that the 1860 * packet has never been sent out before (and thus is not cloned). 1861 */ 1862 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1863 unsigned int mss_now, gfp_t gfp) 1864 { 1865 int nlen = skb->len - len; 1866 struct sk_buff *buff; 1867 u8 flags; 1868 1869 /* All of a TSO frame must be composed of paged data. */ 1870 if (skb->len != skb->data_len) 1871 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 1872 skb, len, mss_now, gfp); 1873 1874 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1875 if (unlikely(!buff)) 1876 return -ENOMEM; 1877 1878 sk->sk_wmem_queued += buff->truesize; 1879 sk_mem_charge(sk, buff->truesize); 1880 buff->truesize += nlen; 1881 skb->truesize -= nlen; 1882 1883 /* Correct the sequence numbers. */ 1884 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1885 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1886 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1887 1888 /* PSH and FIN should only be set in the second packet. */ 1889 flags = TCP_SKB_CB(skb)->tcp_flags; 1890 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1891 TCP_SKB_CB(buff)->tcp_flags = flags; 1892 1893 /* This packet was never sent out yet, so no SACK bits. */ 1894 TCP_SKB_CB(buff)->sacked = 0; 1895 1896 tcp_skb_fragment_eor(skb, buff); 1897 1898 buff->ip_summed = CHECKSUM_PARTIAL; 1899 skb_split(skb, buff, len); 1900 tcp_fragment_tstamp(skb, buff); 1901 1902 /* Fix up tso_factor for both original and new SKB. */ 1903 tcp_set_skb_tso_segs(skb, mss_now); 1904 tcp_set_skb_tso_segs(buff, mss_now); 1905 1906 /* Link BUFF into the send queue. */ 1907 __skb_header_release(buff); 1908 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 1909 1910 return 0; 1911 } 1912 1913 /* Try to defer sending, if possible, in order to minimize the amount 1914 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1915 * 1916 * This algorithm is from John Heffner. 1917 */ 1918 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1919 bool *is_cwnd_limited, 1920 bool *is_rwnd_limited, 1921 u32 max_segs) 1922 { 1923 const struct inet_connection_sock *icsk = inet_csk(sk); 1924 u32 send_win, cong_win, limit, in_flight; 1925 struct tcp_sock *tp = tcp_sk(sk); 1926 struct sk_buff *head; 1927 int win_divisor; 1928 s64 delta; 1929 1930 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1931 goto send_now; 1932 1933 /* Avoid bursty behavior by allowing defer 1934 * only if the last write was recent (1 ms). 1935 * Note that tp->tcp_wstamp_ns can be in the future if we have 1936 * packets waiting in a qdisc or device for EDT delivery. 1937 */ 1938 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 1939 if (delta > 0) 1940 goto send_now; 1941 1942 in_flight = tcp_packets_in_flight(tp); 1943 1944 BUG_ON(tcp_skb_pcount(skb) <= 1); 1945 BUG_ON(tp->snd_cwnd <= in_flight); 1946 1947 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1948 1949 /* From in_flight test above, we know that cwnd > in_flight. */ 1950 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1951 1952 limit = min(send_win, cong_win); 1953 1954 /* If a full-sized TSO skb can be sent, do it. */ 1955 if (limit >= max_segs * tp->mss_cache) 1956 goto send_now; 1957 1958 /* Middle in queue won't get any more data, full sendable already? */ 1959 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1960 goto send_now; 1961 1962 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1963 if (win_divisor) { 1964 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1965 1966 /* If at least some fraction of a window is available, 1967 * just use it. 1968 */ 1969 chunk /= win_divisor; 1970 if (limit >= chunk) 1971 goto send_now; 1972 } else { 1973 /* Different approach, try not to defer past a single 1974 * ACK. Receiver should ACK every other full sized 1975 * frame, so if we have space for more than 3 frames 1976 * then send now. 1977 */ 1978 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1979 goto send_now; 1980 } 1981 1982 /* TODO : use tsorted_sent_queue ? */ 1983 head = tcp_rtx_queue_head(sk); 1984 if (!head) 1985 goto send_now; 1986 delta = tp->tcp_clock_cache - head->tstamp; 1987 /* If next ACK is likely to come too late (half srtt), do not defer */ 1988 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 1989 goto send_now; 1990 1991 /* Ok, it looks like it is advisable to defer. 1992 * Three cases are tracked : 1993 * 1) We are cwnd-limited 1994 * 2) We are rwnd-limited 1995 * 3) We are application limited. 1996 */ 1997 if (cong_win < send_win) { 1998 if (cong_win <= skb->len) { 1999 *is_cwnd_limited = true; 2000 return true; 2001 } 2002 } else { 2003 if (send_win <= skb->len) { 2004 *is_rwnd_limited = true; 2005 return true; 2006 } 2007 } 2008 2009 /* If this packet won't get more data, do not wait. */ 2010 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2011 TCP_SKB_CB(skb)->eor) 2012 goto send_now; 2013 2014 return true; 2015 2016 send_now: 2017 return false; 2018 } 2019 2020 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2021 { 2022 struct inet_connection_sock *icsk = inet_csk(sk); 2023 struct tcp_sock *tp = tcp_sk(sk); 2024 struct net *net = sock_net(sk); 2025 u32 interval; 2026 s32 delta; 2027 2028 interval = net->ipv4.sysctl_tcp_probe_interval; 2029 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2030 if (unlikely(delta >= interval * HZ)) { 2031 int mss = tcp_current_mss(sk); 2032 2033 /* Update current search range */ 2034 icsk->icsk_mtup.probe_size = 0; 2035 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2036 sizeof(struct tcphdr) + 2037 icsk->icsk_af_ops->net_header_len; 2038 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2039 2040 /* Update probe time stamp */ 2041 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2042 } 2043 } 2044 2045 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2046 { 2047 struct sk_buff *skb, *next; 2048 2049 skb = tcp_send_head(sk); 2050 tcp_for_write_queue_from_safe(skb, next, sk) { 2051 if (len <= skb->len) 2052 break; 2053 2054 if (unlikely(TCP_SKB_CB(skb)->eor)) 2055 return false; 2056 2057 len -= skb->len; 2058 } 2059 2060 return true; 2061 } 2062 2063 /* Create a new MTU probe if we are ready. 2064 * MTU probe is regularly attempting to increase the path MTU by 2065 * deliberately sending larger packets. This discovers routing 2066 * changes resulting in larger path MTUs. 2067 * 2068 * Returns 0 if we should wait to probe (no cwnd available), 2069 * 1 if a probe was sent, 2070 * -1 otherwise 2071 */ 2072 static int tcp_mtu_probe(struct sock *sk) 2073 { 2074 struct inet_connection_sock *icsk = inet_csk(sk); 2075 struct tcp_sock *tp = tcp_sk(sk); 2076 struct sk_buff *skb, *nskb, *next; 2077 struct net *net = sock_net(sk); 2078 int probe_size; 2079 int size_needed; 2080 int copy, len; 2081 int mss_now; 2082 int interval; 2083 2084 /* Not currently probing/verifying, 2085 * not in recovery, 2086 * have enough cwnd, and 2087 * not SACKing (the variable headers throw things off) 2088 */ 2089 if (likely(!icsk->icsk_mtup.enabled || 2090 icsk->icsk_mtup.probe_size || 2091 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2092 tp->snd_cwnd < 11 || 2093 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2094 return -1; 2095 2096 /* Use binary search for probe_size between tcp_mss_base, 2097 * and current mss_clamp. if (search_high - search_low) 2098 * smaller than a threshold, backoff from probing. 2099 */ 2100 mss_now = tcp_current_mss(sk); 2101 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2102 icsk->icsk_mtup.search_low) >> 1); 2103 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2104 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2105 /* When misfortune happens, we are reprobing actively, 2106 * and then reprobe timer has expired. We stick with current 2107 * probing process by not resetting search range to its orignal. 2108 */ 2109 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2110 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2111 /* Check whether enough time has elaplased for 2112 * another round of probing. 2113 */ 2114 tcp_mtu_check_reprobe(sk); 2115 return -1; 2116 } 2117 2118 /* Have enough data in the send queue to probe? */ 2119 if (tp->write_seq - tp->snd_nxt < size_needed) 2120 return -1; 2121 2122 if (tp->snd_wnd < size_needed) 2123 return -1; 2124 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2125 return 0; 2126 2127 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2128 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2129 if (!tcp_packets_in_flight(tp)) 2130 return -1; 2131 else 2132 return 0; 2133 } 2134 2135 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2136 return -1; 2137 2138 /* We're allowed to probe. Build it now. */ 2139 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2140 if (!nskb) 2141 return -1; 2142 sk->sk_wmem_queued += nskb->truesize; 2143 sk_mem_charge(sk, nskb->truesize); 2144 2145 skb = tcp_send_head(sk); 2146 2147 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2148 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2149 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2150 TCP_SKB_CB(nskb)->sacked = 0; 2151 nskb->csum = 0; 2152 nskb->ip_summed = CHECKSUM_PARTIAL; 2153 2154 tcp_insert_write_queue_before(nskb, skb, sk); 2155 tcp_highest_sack_replace(sk, skb, nskb); 2156 2157 len = 0; 2158 tcp_for_write_queue_from_safe(skb, next, sk) { 2159 copy = min_t(int, skb->len, probe_size - len); 2160 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2161 2162 if (skb->len <= copy) { 2163 /* We've eaten all the data from this skb. 2164 * Throw it away. */ 2165 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2166 /* If this is the last SKB we copy and eor is set 2167 * we need to propagate it to the new skb. 2168 */ 2169 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2170 tcp_unlink_write_queue(skb, sk); 2171 sk_wmem_free_skb(sk, skb); 2172 } else { 2173 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2174 ~(TCPHDR_FIN|TCPHDR_PSH); 2175 if (!skb_shinfo(skb)->nr_frags) { 2176 skb_pull(skb, copy); 2177 } else { 2178 __pskb_trim_head(skb, copy); 2179 tcp_set_skb_tso_segs(skb, mss_now); 2180 } 2181 TCP_SKB_CB(skb)->seq += copy; 2182 } 2183 2184 len += copy; 2185 2186 if (len >= probe_size) 2187 break; 2188 } 2189 tcp_init_tso_segs(nskb, nskb->len); 2190 2191 /* We're ready to send. If this fails, the probe will 2192 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2193 */ 2194 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2195 /* Decrement cwnd here because we are sending 2196 * effectively two packets. */ 2197 tp->snd_cwnd--; 2198 tcp_event_new_data_sent(sk, nskb); 2199 2200 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2201 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2202 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2203 2204 return 1; 2205 } 2206 2207 return -1; 2208 } 2209 2210 static bool tcp_pacing_check(struct sock *sk) 2211 { 2212 struct tcp_sock *tp = tcp_sk(sk); 2213 2214 if (!tcp_needs_internal_pacing(sk)) 2215 return false; 2216 2217 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2218 return false; 2219 2220 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2221 hrtimer_start(&tp->pacing_timer, 2222 ns_to_ktime(tp->tcp_wstamp_ns), 2223 HRTIMER_MODE_ABS_PINNED_SOFT); 2224 sock_hold(sk); 2225 } 2226 return true; 2227 } 2228 2229 /* TCP Small Queues : 2230 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2231 * (These limits are doubled for retransmits) 2232 * This allows for : 2233 * - better RTT estimation and ACK scheduling 2234 * - faster recovery 2235 * - high rates 2236 * Alas, some drivers / subsystems require a fair amount 2237 * of queued bytes to ensure line rate. 2238 * One example is wifi aggregation (802.11 AMPDU) 2239 */ 2240 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2241 unsigned int factor) 2242 { 2243 unsigned long limit; 2244 2245 limit = max_t(unsigned long, 2246 2 * skb->truesize, 2247 sk->sk_pacing_rate >> sk->sk_pacing_shift); 2248 if (sk->sk_pacing_status == SK_PACING_NONE) 2249 limit = min_t(unsigned long, limit, 2250 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2251 limit <<= factor; 2252 2253 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2254 tcp_sk(sk)->tcp_tx_delay) { 2255 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2256 2257 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2258 * approximate our needs assuming an ~100% skb->truesize overhead. 2259 * USEC_PER_SEC is approximated by 2^20. 2260 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2261 */ 2262 extra_bytes >>= (20 - 1); 2263 limit += extra_bytes; 2264 } 2265 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2266 /* Always send skb if rtx queue is empty. 2267 * No need to wait for TX completion to call us back, 2268 * after softirq/tasklet schedule. 2269 * This helps when TX completions are delayed too much. 2270 */ 2271 if (tcp_rtx_queue_empty(sk)) 2272 return false; 2273 2274 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2275 /* It is possible TX completion already happened 2276 * before we set TSQ_THROTTLED, so we must 2277 * test again the condition. 2278 */ 2279 smp_mb__after_atomic(); 2280 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2281 return true; 2282 } 2283 return false; 2284 } 2285 2286 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2287 { 2288 const u32 now = tcp_jiffies32; 2289 enum tcp_chrono old = tp->chrono_type; 2290 2291 if (old > TCP_CHRONO_UNSPEC) 2292 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2293 tp->chrono_start = now; 2294 tp->chrono_type = new; 2295 } 2296 2297 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2298 { 2299 struct tcp_sock *tp = tcp_sk(sk); 2300 2301 /* If there are multiple conditions worthy of tracking in a 2302 * chronograph then the highest priority enum takes precedence 2303 * over the other conditions. So that if something "more interesting" 2304 * starts happening, stop the previous chrono and start a new one. 2305 */ 2306 if (type > tp->chrono_type) 2307 tcp_chrono_set(tp, type); 2308 } 2309 2310 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2311 { 2312 struct tcp_sock *tp = tcp_sk(sk); 2313 2314 2315 /* There are multiple conditions worthy of tracking in a 2316 * chronograph, so that the highest priority enum takes 2317 * precedence over the other conditions (see tcp_chrono_start). 2318 * If a condition stops, we only stop chrono tracking if 2319 * it's the "most interesting" or current chrono we are 2320 * tracking and starts busy chrono if we have pending data. 2321 */ 2322 if (tcp_rtx_and_write_queues_empty(sk)) 2323 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2324 else if (type == tp->chrono_type) 2325 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2326 } 2327 2328 /* This routine writes packets to the network. It advances the 2329 * send_head. This happens as incoming acks open up the remote 2330 * window for us. 2331 * 2332 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2333 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2334 * account rare use of URG, this is not a big flaw. 2335 * 2336 * Send at most one packet when push_one > 0. Temporarily ignore 2337 * cwnd limit to force at most one packet out when push_one == 2. 2338 2339 * Returns true, if no segments are in flight and we have queued segments, 2340 * but cannot send anything now because of SWS or another problem. 2341 */ 2342 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2343 int push_one, gfp_t gfp) 2344 { 2345 struct tcp_sock *tp = tcp_sk(sk); 2346 struct sk_buff *skb; 2347 unsigned int tso_segs, sent_pkts; 2348 int cwnd_quota; 2349 int result; 2350 bool is_cwnd_limited = false, is_rwnd_limited = false; 2351 u32 max_segs; 2352 2353 sent_pkts = 0; 2354 2355 tcp_mstamp_refresh(tp); 2356 if (!push_one) { 2357 /* Do MTU probing. */ 2358 result = tcp_mtu_probe(sk); 2359 if (!result) { 2360 return false; 2361 } else if (result > 0) { 2362 sent_pkts = 1; 2363 } 2364 } 2365 2366 max_segs = tcp_tso_segs(sk, mss_now); 2367 while ((skb = tcp_send_head(sk))) { 2368 unsigned int limit; 2369 2370 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2371 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2372 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2373 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2374 tcp_init_tso_segs(skb, mss_now); 2375 goto repair; /* Skip network transmission */ 2376 } 2377 2378 if (tcp_pacing_check(sk)) 2379 break; 2380 2381 tso_segs = tcp_init_tso_segs(skb, mss_now); 2382 BUG_ON(!tso_segs); 2383 2384 cwnd_quota = tcp_cwnd_test(tp, skb); 2385 if (!cwnd_quota) { 2386 if (push_one == 2) 2387 /* Force out a loss probe pkt. */ 2388 cwnd_quota = 1; 2389 else 2390 break; 2391 } 2392 2393 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2394 is_rwnd_limited = true; 2395 break; 2396 } 2397 2398 if (tso_segs == 1) { 2399 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2400 (tcp_skb_is_last(sk, skb) ? 2401 nonagle : TCP_NAGLE_PUSH)))) 2402 break; 2403 } else { 2404 if (!push_one && 2405 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2406 &is_rwnd_limited, max_segs)) 2407 break; 2408 } 2409 2410 limit = mss_now; 2411 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2412 limit = tcp_mss_split_point(sk, skb, mss_now, 2413 min_t(unsigned int, 2414 cwnd_quota, 2415 max_segs), 2416 nonagle); 2417 2418 if (skb->len > limit && 2419 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2420 break; 2421 2422 if (tcp_small_queue_check(sk, skb, 0)) 2423 break; 2424 2425 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2426 break; 2427 2428 repair: 2429 /* Advance the send_head. This one is sent out. 2430 * This call will increment packets_out. 2431 */ 2432 tcp_event_new_data_sent(sk, skb); 2433 2434 tcp_minshall_update(tp, mss_now, skb); 2435 sent_pkts += tcp_skb_pcount(skb); 2436 2437 if (push_one) 2438 break; 2439 } 2440 2441 if (is_rwnd_limited) 2442 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2443 else 2444 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2445 2446 if (likely(sent_pkts)) { 2447 if (tcp_in_cwnd_reduction(sk)) 2448 tp->prr_out += sent_pkts; 2449 2450 /* Send one loss probe per tail loss episode. */ 2451 if (push_one != 2) 2452 tcp_schedule_loss_probe(sk, false); 2453 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2454 tcp_cwnd_validate(sk, is_cwnd_limited); 2455 return false; 2456 } 2457 return !tp->packets_out && !tcp_write_queue_empty(sk); 2458 } 2459 2460 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2461 { 2462 struct inet_connection_sock *icsk = inet_csk(sk); 2463 struct tcp_sock *tp = tcp_sk(sk); 2464 u32 timeout, rto_delta_us; 2465 int early_retrans; 2466 2467 /* Don't do any loss probe on a Fast Open connection before 3WHS 2468 * finishes. 2469 */ 2470 if (tp->fastopen_rsk) 2471 return false; 2472 2473 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2474 /* Schedule a loss probe in 2*RTT for SACK capable connections 2475 * not in loss recovery, that are either limited by cwnd or application. 2476 */ 2477 if ((early_retrans != 3 && early_retrans != 4) || 2478 !tp->packets_out || !tcp_is_sack(tp) || 2479 (icsk->icsk_ca_state != TCP_CA_Open && 2480 icsk->icsk_ca_state != TCP_CA_CWR)) 2481 return false; 2482 2483 /* Probe timeout is 2*rtt. Add minimum RTO to account 2484 * for delayed ack when there's one outstanding packet. If no RTT 2485 * sample is available then probe after TCP_TIMEOUT_INIT. 2486 */ 2487 if (tp->srtt_us) { 2488 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2489 if (tp->packets_out == 1) 2490 timeout += TCP_RTO_MIN; 2491 else 2492 timeout += TCP_TIMEOUT_MIN; 2493 } else { 2494 timeout = TCP_TIMEOUT_INIT; 2495 } 2496 2497 /* If the RTO formula yields an earlier time, then use that time. */ 2498 rto_delta_us = advancing_rto ? 2499 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2500 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2501 if (rto_delta_us > 0) 2502 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2503 2504 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2505 TCP_RTO_MAX, NULL); 2506 return true; 2507 } 2508 2509 /* Thanks to skb fast clones, we can detect if a prior transmit of 2510 * a packet is still in a qdisc or driver queue. 2511 * In this case, there is very little point doing a retransmit ! 2512 */ 2513 static bool skb_still_in_host_queue(const struct sock *sk, 2514 const struct sk_buff *skb) 2515 { 2516 if (unlikely(skb_fclone_busy(sk, skb))) { 2517 NET_INC_STATS(sock_net(sk), 2518 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2519 return true; 2520 } 2521 return false; 2522 } 2523 2524 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2525 * retransmit the last segment. 2526 */ 2527 void tcp_send_loss_probe(struct sock *sk) 2528 { 2529 struct tcp_sock *tp = tcp_sk(sk); 2530 struct sk_buff *skb; 2531 int pcount; 2532 int mss = tcp_current_mss(sk); 2533 2534 skb = tcp_send_head(sk); 2535 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2536 pcount = tp->packets_out; 2537 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2538 if (tp->packets_out > pcount) 2539 goto probe_sent; 2540 goto rearm_timer; 2541 } 2542 skb = skb_rb_last(&sk->tcp_rtx_queue); 2543 if (unlikely(!skb)) { 2544 WARN_ONCE(tp->packets_out, 2545 "invalid inflight: %u state %u cwnd %u mss %d\n", 2546 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); 2547 inet_csk(sk)->icsk_pending = 0; 2548 return; 2549 } 2550 2551 /* At most one outstanding TLP retransmission. */ 2552 if (tp->tlp_high_seq) 2553 goto rearm_timer; 2554 2555 if (skb_still_in_host_queue(sk, skb)) 2556 goto rearm_timer; 2557 2558 pcount = tcp_skb_pcount(skb); 2559 if (WARN_ON(!pcount)) 2560 goto rearm_timer; 2561 2562 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2563 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2564 (pcount - 1) * mss, mss, 2565 GFP_ATOMIC))) 2566 goto rearm_timer; 2567 skb = skb_rb_next(skb); 2568 } 2569 2570 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2571 goto rearm_timer; 2572 2573 if (__tcp_retransmit_skb(sk, skb, 1)) 2574 goto rearm_timer; 2575 2576 /* Record snd_nxt for loss detection. */ 2577 tp->tlp_high_seq = tp->snd_nxt; 2578 2579 probe_sent: 2580 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2581 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2582 inet_csk(sk)->icsk_pending = 0; 2583 rearm_timer: 2584 tcp_rearm_rto(sk); 2585 } 2586 2587 /* Push out any pending frames which were held back due to 2588 * TCP_CORK or attempt at coalescing tiny packets. 2589 * The socket must be locked by the caller. 2590 */ 2591 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2592 int nonagle) 2593 { 2594 /* If we are closed, the bytes will have to remain here. 2595 * In time closedown will finish, we empty the write queue and 2596 * all will be happy. 2597 */ 2598 if (unlikely(sk->sk_state == TCP_CLOSE)) 2599 return; 2600 2601 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2602 sk_gfp_mask(sk, GFP_ATOMIC))) 2603 tcp_check_probe_timer(sk); 2604 } 2605 2606 /* Send _single_ skb sitting at the send head. This function requires 2607 * true push pending frames to setup probe timer etc. 2608 */ 2609 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2610 { 2611 struct sk_buff *skb = tcp_send_head(sk); 2612 2613 BUG_ON(!skb || skb->len < mss_now); 2614 2615 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2616 } 2617 2618 /* This function returns the amount that we can raise the 2619 * usable window based on the following constraints 2620 * 2621 * 1. The window can never be shrunk once it is offered (RFC 793) 2622 * 2. We limit memory per socket 2623 * 2624 * RFC 1122: 2625 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2626 * RECV.NEXT + RCV.WIN fixed until: 2627 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2628 * 2629 * i.e. don't raise the right edge of the window until you can raise 2630 * it at least MSS bytes. 2631 * 2632 * Unfortunately, the recommended algorithm breaks header prediction, 2633 * since header prediction assumes th->window stays fixed. 2634 * 2635 * Strictly speaking, keeping th->window fixed violates the receiver 2636 * side SWS prevention criteria. The problem is that under this rule 2637 * a stream of single byte packets will cause the right side of the 2638 * window to always advance by a single byte. 2639 * 2640 * Of course, if the sender implements sender side SWS prevention 2641 * then this will not be a problem. 2642 * 2643 * BSD seems to make the following compromise: 2644 * 2645 * If the free space is less than the 1/4 of the maximum 2646 * space available and the free space is less than 1/2 mss, 2647 * then set the window to 0. 2648 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2649 * Otherwise, just prevent the window from shrinking 2650 * and from being larger than the largest representable value. 2651 * 2652 * This prevents incremental opening of the window in the regime 2653 * where TCP is limited by the speed of the reader side taking 2654 * data out of the TCP receive queue. It does nothing about 2655 * those cases where the window is constrained on the sender side 2656 * because the pipeline is full. 2657 * 2658 * BSD also seems to "accidentally" limit itself to windows that are a 2659 * multiple of MSS, at least until the free space gets quite small. 2660 * This would appear to be a side effect of the mbuf implementation. 2661 * Combining these two algorithms results in the observed behavior 2662 * of having a fixed window size at almost all times. 2663 * 2664 * Below we obtain similar behavior by forcing the offered window to 2665 * a multiple of the mss when it is feasible to do so. 2666 * 2667 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2668 * Regular options like TIMESTAMP are taken into account. 2669 */ 2670 u32 __tcp_select_window(struct sock *sk) 2671 { 2672 struct inet_connection_sock *icsk = inet_csk(sk); 2673 struct tcp_sock *tp = tcp_sk(sk); 2674 /* MSS for the peer's data. Previous versions used mss_clamp 2675 * here. I don't know if the value based on our guesses 2676 * of peer's MSS is better for the performance. It's more correct 2677 * but may be worse for the performance because of rcv_mss 2678 * fluctuations. --SAW 1998/11/1 2679 */ 2680 int mss = icsk->icsk_ack.rcv_mss; 2681 int free_space = tcp_space(sk); 2682 int allowed_space = tcp_full_space(sk); 2683 int full_space = min_t(int, tp->window_clamp, allowed_space); 2684 int window; 2685 2686 if (unlikely(mss > full_space)) { 2687 mss = full_space; 2688 if (mss <= 0) 2689 return 0; 2690 } 2691 if (free_space < (full_space >> 1)) { 2692 icsk->icsk_ack.quick = 0; 2693 2694 if (tcp_under_memory_pressure(sk)) 2695 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2696 4U * tp->advmss); 2697 2698 /* free_space might become our new window, make sure we don't 2699 * increase it due to wscale. 2700 */ 2701 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2702 2703 /* if free space is less than mss estimate, or is below 1/16th 2704 * of the maximum allowed, try to move to zero-window, else 2705 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2706 * new incoming data is dropped due to memory limits. 2707 * With large window, mss test triggers way too late in order 2708 * to announce zero window in time before rmem limit kicks in. 2709 */ 2710 if (free_space < (allowed_space >> 4) || free_space < mss) 2711 return 0; 2712 } 2713 2714 if (free_space > tp->rcv_ssthresh) 2715 free_space = tp->rcv_ssthresh; 2716 2717 /* Don't do rounding if we are using window scaling, since the 2718 * scaled window will not line up with the MSS boundary anyway. 2719 */ 2720 if (tp->rx_opt.rcv_wscale) { 2721 window = free_space; 2722 2723 /* Advertise enough space so that it won't get scaled away. 2724 * Import case: prevent zero window announcement if 2725 * 1<<rcv_wscale > mss. 2726 */ 2727 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2728 } else { 2729 window = tp->rcv_wnd; 2730 /* Get the largest window that is a nice multiple of mss. 2731 * Window clamp already applied above. 2732 * If our current window offering is within 1 mss of the 2733 * free space we just keep it. This prevents the divide 2734 * and multiply from happening most of the time. 2735 * We also don't do any window rounding when the free space 2736 * is too small. 2737 */ 2738 if (window <= free_space - mss || window > free_space) 2739 window = rounddown(free_space, mss); 2740 else if (mss == full_space && 2741 free_space > window + (full_space >> 1)) 2742 window = free_space; 2743 } 2744 2745 return window; 2746 } 2747 2748 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2749 const struct sk_buff *next_skb) 2750 { 2751 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2752 const struct skb_shared_info *next_shinfo = 2753 skb_shinfo(next_skb); 2754 struct skb_shared_info *shinfo = skb_shinfo(skb); 2755 2756 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2757 shinfo->tskey = next_shinfo->tskey; 2758 TCP_SKB_CB(skb)->txstamp_ack |= 2759 TCP_SKB_CB(next_skb)->txstamp_ack; 2760 } 2761 } 2762 2763 /* Collapses two adjacent SKB's during retransmission. */ 2764 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2765 { 2766 struct tcp_sock *tp = tcp_sk(sk); 2767 struct sk_buff *next_skb = skb_rb_next(skb); 2768 int next_skb_size; 2769 2770 next_skb_size = next_skb->len; 2771 2772 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2773 2774 if (next_skb_size) { 2775 if (next_skb_size <= skb_availroom(skb)) 2776 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2777 next_skb_size); 2778 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 2779 return false; 2780 } 2781 tcp_highest_sack_replace(sk, next_skb, skb); 2782 2783 /* Update sequence range on original skb. */ 2784 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2785 2786 /* Merge over control information. This moves PSH/FIN etc. over */ 2787 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2788 2789 /* All done, get rid of second SKB and account for it so 2790 * packet counting does not break. 2791 */ 2792 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2793 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2794 2795 /* changed transmit queue under us so clear hints */ 2796 tcp_clear_retrans_hints_partial(tp); 2797 if (next_skb == tp->retransmit_skb_hint) 2798 tp->retransmit_skb_hint = skb; 2799 2800 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2801 2802 tcp_skb_collapse_tstamp(skb, next_skb); 2803 2804 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2805 return true; 2806 } 2807 2808 /* Check if coalescing SKBs is legal. */ 2809 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2810 { 2811 if (tcp_skb_pcount(skb) > 1) 2812 return false; 2813 if (skb_cloned(skb)) 2814 return false; 2815 /* Some heuristics for collapsing over SACK'd could be invented */ 2816 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2817 return false; 2818 2819 return true; 2820 } 2821 2822 /* Collapse packets in the retransmit queue to make to create 2823 * less packets on the wire. This is only done on retransmission. 2824 */ 2825 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2826 int space) 2827 { 2828 struct tcp_sock *tp = tcp_sk(sk); 2829 struct sk_buff *skb = to, *tmp; 2830 bool first = true; 2831 2832 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2833 return; 2834 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2835 return; 2836 2837 skb_rbtree_walk_from_safe(skb, tmp) { 2838 if (!tcp_can_collapse(sk, skb)) 2839 break; 2840 2841 if (!tcp_skb_can_collapse_to(to)) 2842 break; 2843 2844 space -= skb->len; 2845 2846 if (first) { 2847 first = false; 2848 continue; 2849 } 2850 2851 if (space < 0) 2852 break; 2853 2854 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2855 break; 2856 2857 if (!tcp_collapse_retrans(sk, to)) 2858 break; 2859 } 2860 } 2861 2862 /* This retransmits one SKB. Policy decisions and retransmit queue 2863 * state updates are done by the caller. Returns non-zero if an 2864 * error occurred which prevented the send. 2865 */ 2866 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2867 { 2868 struct inet_connection_sock *icsk = inet_csk(sk); 2869 struct tcp_sock *tp = tcp_sk(sk); 2870 unsigned int cur_mss; 2871 int diff, len, err; 2872 2873 2874 /* Inconclusive MTU probe */ 2875 if (icsk->icsk_mtup.probe_size) 2876 icsk->icsk_mtup.probe_size = 0; 2877 2878 /* Do not sent more than we queued. 1/4 is reserved for possible 2879 * copying overhead: fragmentation, tunneling, mangling etc. 2880 */ 2881 if (refcount_read(&sk->sk_wmem_alloc) > 2882 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2883 sk->sk_sndbuf)) 2884 return -EAGAIN; 2885 2886 if (skb_still_in_host_queue(sk, skb)) 2887 return -EBUSY; 2888 2889 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2890 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2891 WARN_ON_ONCE(1); 2892 return -EINVAL; 2893 } 2894 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2895 return -ENOMEM; 2896 } 2897 2898 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2899 return -EHOSTUNREACH; /* Routing failure or similar. */ 2900 2901 cur_mss = tcp_current_mss(sk); 2902 2903 /* If receiver has shrunk his window, and skb is out of 2904 * new window, do not retransmit it. The exception is the 2905 * case, when window is shrunk to zero. In this case 2906 * our retransmit serves as a zero window probe. 2907 */ 2908 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2909 TCP_SKB_CB(skb)->seq != tp->snd_una) 2910 return -EAGAIN; 2911 2912 len = cur_mss * segs; 2913 if (skb->len > len) { 2914 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2915 cur_mss, GFP_ATOMIC)) 2916 return -ENOMEM; /* We'll try again later. */ 2917 } else { 2918 if (skb_unclone(skb, GFP_ATOMIC)) 2919 return -ENOMEM; 2920 2921 diff = tcp_skb_pcount(skb); 2922 tcp_set_skb_tso_segs(skb, cur_mss); 2923 diff -= tcp_skb_pcount(skb); 2924 if (diff) 2925 tcp_adjust_pcount(sk, skb, diff); 2926 if (skb->len < cur_mss) 2927 tcp_retrans_try_collapse(sk, skb, cur_mss); 2928 } 2929 2930 /* RFC3168, section 6.1.1.1. ECN fallback */ 2931 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2932 tcp_ecn_clear_syn(sk, skb); 2933 2934 /* Update global and local TCP statistics. */ 2935 segs = tcp_skb_pcount(skb); 2936 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2937 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2938 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2939 tp->total_retrans += segs; 2940 tp->bytes_retrans += skb->len; 2941 2942 /* make sure skb->data is aligned on arches that require it 2943 * and check if ack-trimming & collapsing extended the headroom 2944 * beyond what csum_start can cover. 2945 */ 2946 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2947 skb_headroom(skb) >= 0xFFFF)) { 2948 struct sk_buff *nskb; 2949 2950 tcp_skb_tsorted_save(skb) { 2951 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2952 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2953 -ENOBUFS; 2954 } tcp_skb_tsorted_restore(skb); 2955 2956 if (!err) { 2957 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 2958 tcp_rate_skb_sent(sk, skb); 2959 } 2960 } else { 2961 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2962 } 2963 2964 /* To avoid taking spuriously low RTT samples based on a timestamp 2965 * for a transmit that never happened, always mark EVER_RETRANS 2966 */ 2967 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2968 2969 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2970 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2971 TCP_SKB_CB(skb)->seq, segs, err); 2972 2973 if (likely(!err)) { 2974 trace_tcp_retransmit_skb(sk, skb); 2975 } else if (err != -EBUSY) { 2976 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 2977 } 2978 return err; 2979 } 2980 2981 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2982 { 2983 struct tcp_sock *tp = tcp_sk(sk); 2984 int err = __tcp_retransmit_skb(sk, skb, segs); 2985 2986 if (err == 0) { 2987 #if FASTRETRANS_DEBUG > 0 2988 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2989 net_dbg_ratelimited("retrans_out leaked\n"); 2990 } 2991 #endif 2992 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2993 tp->retrans_out += tcp_skb_pcount(skb); 2994 } 2995 2996 /* Save stamp of the first (attempted) retransmit. */ 2997 if (!tp->retrans_stamp) 2998 tp->retrans_stamp = tcp_skb_timestamp(skb); 2999 3000 if (tp->undo_retrans < 0) 3001 tp->undo_retrans = 0; 3002 tp->undo_retrans += tcp_skb_pcount(skb); 3003 return err; 3004 } 3005 3006 /* This gets called after a retransmit timeout, and the initially 3007 * retransmitted data is acknowledged. It tries to continue 3008 * resending the rest of the retransmit queue, until either 3009 * we've sent it all or the congestion window limit is reached. 3010 */ 3011 void tcp_xmit_retransmit_queue(struct sock *sk) 3012 { 3013 const struct inet_connection_sock *icsk = inet_csk(sk); 3014 struct sk_buff *skb, *rtx_head, *hole = NULL; 3015 struct tcp_sock *tp = tcp_sk(sk); 3016 u32 max_segs; 3017 int mib_idx; 3018 3019 if (!tp->packets_out) 3020 return; 3021 3022 rtx_head = tcp_rtx_queue_head(sk); 3023 skb = tp->retransmit_skb_hint ?: rtx_head; 3024 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3025 skb_rbtree_walk_from(skb) { 3026 __u8 sacked; 3027 int segs; 3028 3029 if (tcp_pacing_check(sk)) 3030 break; 3031 3032 /* we could do better than to assign each time */ 3033 if (!hole) 3034 tp->retransmit_skb_hint = skb; 3035 3036 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 3037 if (segs <= 0) 3038 return; 3039 sacked = TCP_SKB_CB(skb)->sacked; 3040 /* In case tcp_shift_skb_data() have aggregated large skbs, 3041 * we need to make sure not sending too bigs TSO packets 3042 */ 3043 segs = min_t(int, segs, max_segs); 3044 3045 if (tp->retrans_out >= tp->lost_out) { 3046 break; 3047 } else if (!(sacked & TCPCB_LOST)) { 3048 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3049 hole = skb; 3050 continue; 3051 3052 } else { 3053 if (icsk->icsk_ca_state != TCP_CA_Loss) 3054 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3055 else 3056 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3057 } 3058 3059 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3060 continue; 3061 3062 if (tcp_small_queue_check(sk, skb, 1)) 3063 return; 3064 3065 if (tcp_retransmit_skb(sk, skb, segs)) 3066 return; 3067 3068 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3069 3070 if (tcp_in_cwnd_reduction(sk)) 3071 tp->prr_out += tcp_skb_pcount(skb); 3072 3073 if (skb == rtx_head && 3074 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3075 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3076 inet_csk(sk)->icsk_rto, 3077 TCP_RTO_MAX, 3078 skb); 3079 } 3080 } 3081 3082 /* We allow to exceed memory limits for FIN packets to expedite 3083 * connection tear down and (memory) recovery. 3084 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3085 * or even be forced to close flow without any FIN. 3086 * In general, we want to allow one skb per socket to avoid hangs 3087 * with edge trigger epoll() 3088 */ 3089 void sk_forced_mem_schedule(struct sock *sk, int size) 3090 { 3091 int amt; 3092 3093 if (size <= sk->sk_forward_alloc) 3094 return; 3095 amt = sk_mem_pages(size); 3096 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3097 sk_memory_allocated_add(sk, amt); 3098 3099 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3100 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3101 } 3102 3103 /* Send a FIN. The caller locks the socket for us. 3104 * We should try to send a FIN packet really hard, but eventually give up. 3105 */ 3106 void tcp_send_fin(struct sock *sk) 3107 { 3108 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3109 struct tcp_sock *tp = tcp_sk(sk); 3110 3111 /* Optimization, tack on the FIN if we have one skb in write queue and 3112 * this skb was not yet sent, or we are under memory pressure. 3113 * Note: in the latter case, FIN packet will be sent after a timeout, 3114 * as TCP stack thinks it has already been transmitted. 3115 */ 3116 if (!tskb && tcp_under_memory_pressure(sk)) 3117 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3118 3119 if (tskb) { 3120 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3121 TCP_SKB_CB(tskb)->end_seq++; 3122 tp->write_seq++; 3123 if (tcp_write_queue_empty(sk)) { 3124 /* This means tskb was already sent. 3125 * Pretend we included the FIN on previous transmit. 3126 * We need to set tp->snd_nxt to the value it would have 3127 * if FIN had been sent. This is because retransmit path 3128 * does not change tp->snd_nxt. 3129 */ 3130 tp->snd_nxt++; 3131 return; 3132 } 3133 } else { 3134 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3135 if (unlikely(!skb)) 3136 return; 3137 3138 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3139 skb_reserve(skb, MAX_TCP_HEADER); 3140 sk_forced_mem_schedule(sk, skb->truesize); 3141 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3142 tcp_init_nondata_skb(skb, tp->write_seq, 3143 TCPHDR_ACK | TCPHDR_FIN); 3144 tcp_queue_skb(sk, skb); 3145 } 3146 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3147 } 3148 3149 /* We get here when a process closes a file descriptor (either due to 3150 * an explicit close() or as a byproduct of exit()'ing) and there 3151 * was unread data in the receive queue. This behavior is recommended 3152 * by RFC 2525, section 2.17. -DaveM 3153 */ 3154 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3155 { 3156 struct sk_buff *skb; 3157 3158 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3159 3160 /* NOTE: No TCP options attached and we never retransmit this. */ 3161 skb = alloc_skb(MAX_TCP_HEADER, priority); 3162 if (!skb) { 3163 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3164 return; 3165 } 3166 3167 /* Reserve space for headers and prepare control bits. */ 3168 skb_reserve(skb, MAX_TCP_HEADER); 3169 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3170 TCPHDR_ACK | TCPHDR_RST); 3171 tcp_mstamp_refresh(tcp_sk(sk)); 3172 /* Send it off. */ 3173 if (tcp_transmit_skb(sk, skb, 0, priority)) 3174 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3175 3176 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3177 * skb here is different to the troublesome skb, so use NULL 3178 */ 3179 trace_tcp_send_reset(sk, NULL); 3180 } 3181 3182 /* Send a crossed SYN-ACK during socket establishment. 3183 * WARNING: This routine must only be called when we have already sent 3184 * a SYN packet that crossed the incoming SYN that caused this routine 3185 * to get called. If this assumption fails then the initial rcv_wnd 3186 * and rcv_wscale values will not be correct. 3187 */ 3188 int tcp_send_synack(struct sock *sk) 3189 { 3190 struct sk_buff *skb; 3191 3192 skb = tcp_rtx_queue_head(sk); 3193 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3194 pr_err("%s: wrong queue state\n", __func__); 3195 return -EFAULT; 3196 } 3197 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3198 if (skb_cloned(skb)) { 3199 struct sk_buff *nskb; 3200 3201 tcp_skb_tsorted_save(skb) { 3202 nskb = skb_copy(skb, GFP_ATOMIC); 3203 } tcp_skb_tsorted_restore(skb); 3204 if (!nskb) 3205 return -ENOMEM; 3206 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3207 tcp_rtx_queue_unlink_and_free(skb, sk); 3208 __skb_header_release(nskb); 3209 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3210 sk->sk_wmem_queued += nskb->truesize; 3211 sk_mem_charge(sk, nskb->truesize); 3212 skb = nskb; 3213 } 3214 3215 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3216 tcp_ecn_send_synack(sk, skb); 3217 } 3218 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3219 } 3220 3221 /** 3222 * tcp_make_synack - Prepare a SYN-ACK. 3223 * sk: listener socket 3224 * dst: dst entry attached to the SYNACK 3225 * req: request_sock pointer 3226 * 3227 * Allocate one skb and build a SYNACK packet. 3228 * @dst is consumed : Caller should not use it again. 3229 */ 3230 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3231 struct request_sock *req, 3232 struct tcp_fastopen_cookie *foc, 3233 enum tcp_synack_type synack_type) 3234 { 3235 struct inet_request_sock *ireq = inet_rsk(req); 3236 const struct tcp_sock *tp = tcp_sk(sk); 3237 struct tcp_md5sig_key *md5 = NULL; 3238 struct tcp_out_options opts; 3239 struct sk_buff *skb; 3240 int tcp_header_size; 3241 struct tcphdr *th; 3242 int mss; 3243 u64 now; 3244 3245 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3246 if (unlikely(!skb)) { 3247 dst_release(dst); 3248 return NULL; 3249 } 3250 /* Reserve space for headers. */ 3251 skb_reserve(skb, MAX_TCP_HEADER); 3252 3253 switch (synack_type) { 3254 case TCP_SYNACK_NORMAL: 3255 skb_set_owner_w(skb, req_to_sk(req)); 3256 break; 3257 case TCP_SYNACK_COOKIE: 3258 /* Under synflood, we do not attach skb to a socket, 3259 * to avoid false sharing. 3260 */ 3261 break; 3262 case TCP_SYNACK_FASTOPEN: 3263 /* sk is a const pointer, because we want to express multiple 3264 * cpu might call us concurrently. 3265 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3266 */ 3267 skb_set_owner_w(skb, (struct sock *)sk); 3268 break; 3269 } 3270 skb_dst_set(skb, dst); 3271 3272 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3273 3274 memset(&opts, 0, sizeof(opts)); 3275 now = tcp_clock_ns(); 3276 #ifdef CONFIG_SYN_COOKIES 3277 if (unlikely(req->cookie_ts)) 3278 skb->skb_mstamp_ns = cookie_init_timestamp(req); 3279 else 3280 #endif 3281 { 3282 skb->skb_mstamp_ns = now; 3283 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3284 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3285 } 3286 3287 #ifdef CONFIG_TCP_MD5SIG 3288 rcu_read_lock(); 3289 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3290 #endif 3291 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3292 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3293 foc) + sizeof(*th); 3294 3295 skb_push(skb, tcp_header_size); 3296 skb_reset_transport_header(skb); 3297 3298 th = (struct tcphdr *)skb->data; 3299 memset(th, 0, sizeof(struct tcphdr)); 3300 th->syn = 1; 3301 th->ack = 1; 3302 tcp_ecn_make_synack(req, th); 3303 th->source = htons(ireq->ir_num); 3304 th->dest = ireq->ir_rmt_port; 3305 skb->mark = ireq->ir_mark; 3306 skb->ip_summed = CHECKSUM_PARTIAL; 3307 th->seq = htonl(tcp_rsk(req)->snt_isn); 3308 /* XXX data is queued and acked as is. No buffer/window check */ 3309 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3310 3311 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3312 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3313 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3314 th->doff = (tcp_header_size >> 2); 3315 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3316 3317 #ifdef CONFIG_TCP_MD5SIG 3318 /* Okay, we have all we need - do the md5 hash if needed */ 3319 if (md5) 3320 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3321 md5, req_to_sk(req), skb); 3322 rcu_read_unlock(); 3323 #endif 3324 3325 skb->skb_mstamp_ns = now; 3326 tcp_add_tx_delay(skb, tp); 3327 3328 return skb; 3329 } 3330 EXPORT_SYMBOL(tcp_make_synack); 3331 3332 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3333 { 3334 struct inet_connection_sock *icsk = inet_csk(sk); 3335 const struct tcp_congestion_ops *ca; 3336 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3337 3338 if (ca_key == TCP_CA_UNSPEC) 3339 return; 3340 3341 rcu_read_lock(); 3342 ca = tcp_ca_find_key(ca_key); 3343 if (likely(ca && try_module_get(ca->owner))) { 3344 module_put(icsk->icsk_ca_ops->owner); 3345 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3346 icsk->icsk_ca_ops = ca; 3347 } 3348 rcu_read_unlock(); 3349 } 3350 3351 /* Do all connect socket setups that can be done AF independent. */ 3352 static void tcp_connect_init(struct sock *sk) 3353 { 3354 const struct dst_entry *dst = __sk_dst_get(sk); 3355 struct tcp_sock *tp = tcp_sk(sk); 3356 __u8 rcv_wscale; 3357 u32 rcv_wnd; 3358 3359 /* We'll fix this up when we get a response from the other end. 3360 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3361 */ 3362 tp->tcp_header_len = sizeof(struct tcphdr); 3363 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3364 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3365 3366 #ifdef CONFIG_TCP_MD5SIG 3367 if (tp->af_specific->md5_lookup(sk, sk)) 3368 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3369 #endif 3370 3371 /* If user gave his TCP_MAXSEG, record it to clamp */ 3372 if (tp->rx_opt.user_mss) 3373 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3374 tp->max_window = 0; 3375 tcp_mtup_init(sk); 3376 tcp_sync_mss(sk, dst_mtu(dst)); 3377 3378 tcp_ca_dst_init(sk, dst); 3379 3380 if (!tp->window_clamp) 3381 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3382 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3383 3384 tcp_initialize_rcv_mss(sk); 3385 3386 /* limit the window selection if the user enforce a smaller rx buffer */ 3387 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3388 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3389 tp->window_clamp = tcp_full_space(sk); 3390 3391 rcv_wnd = tcp_rwnd_init_bpf(sk); 3392 if (rcv_wnd == 0) 3393 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3394 3395 tcp_select_initial_window(sk, tcp_full_space(sk), 3396 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3397 &tp->rcv_wnd, 3398 &tp->window_clamp, 3399 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3400 &rcv_wscale, 3401 rcv_wnd); 3402 3403 tp->rx_opt.rcv_wscale = rcv_wscale; 3404 tp->rcv_ssthresh = tp->rcv_wnd; 3405 3406 sk->sk_err = 0; 3407 sock_reset_flag(sk, SOCK_DONE); 3408 tp->snd_wnd = 0; 3409 tcp_init_wl(tp, 0); 3410 tcp_write_queue_purge(sk); 3411 tp->snd_una = tp->write_seq; 3412 tp->snd_sml = tp->write_seq; 3413 tp->snd_up = tp->write_seq; 3414 tp->snd_nxt = tp->write_seq; 3415 3416 if (likely(!tp->repair)) 3417 tp->rcv_nxt = 0; 3418 else 3419 tp->rcv_tstamp = tcp_jiffies32; 3420 tp->rcv_wup = tp->rcv_nxt; 3421 tp->copied_seq = tp->rcv_nxt; 3422 3423 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3424 inet_csk(sk)->icsk_retransmits = 0; 3425 tcp_clear_retrans(tp); 3426 } 3427 3428 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3429 { 3430 struct tcp_sock *tp = tcp_sk(sk); 3431 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3432 3433 tcb->end_seq += skb->len; 3434 __skb_header_release(skb); 3435 sk->sk_wmem_queued += skb->truesize; 3436 sk_mem_charge(sk, skb->truesize); 3437 tp->write_seq = tcb->end_seq; 3438 tp->packets_out += tcp_skb_pcount(skb); 3439 } 3440 3441 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3442 * queue a data-only packet after the regular SYN, such that regular SYNs 3443 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3444 * only the SYN sequence, the data are retransmitted in the first ACK. 3445 * If cookie is not cached or other error occurs, falls back to send a 3446 * regular SYN with Fast Open cookie request option. 3447 */ 3448 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3449 { 3450 struct tcp_sock *tp = tcp_sk(sk); 3451 struct tcp_fastopen_request *fo = tp->fastopen_req; 3452 int space, err = 0; 3453 struct sk_buff *syn_data; 3454 3455 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3456 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3457 goto fallback; 3458 3459 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3460 * user-MSS. Reserve maximum option space for middleboxes that add 3461 * private TCP options. The cost is reduced data space in SYN :( 3462 */ 3463 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3464 3465 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3466 MAX_TCP_OPTION_SPACE; 3467 3468 space = min_t(size_t, space, fo->size); 3469 3470 /* limit to order-0 allocations */ 3471 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3472 3473 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3474 if (!syn_data) 3475 goto fallback; 3476 syn_data->ip_summed = CHECKSUM_PARTIAL; 3477 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3478 if (space) { 3479 int copied = copy_from_iter(skb_put(syn_data, space), space, 3480 &fo->data->msg_iter); 3481 if (unlikely(!copied)) { 3482 tcp_skb_tsorted_anchor_cleanup(syn_data); 3483 kfree_skb(syn_data); 3484 goto fallback; 3485 } 3486 if (copied != space) { 3487 skb_trim(syn_data, copied); 3488 space = copied; 3489 } 3490 skb_zcopy_set(syn_data, fo->uarg, NULL); 3491 } 3492 /* No more data pending in inet_wait_for_connect() */ 3493 if (space == fo->size) 3494 fo->data = NULL; 3495 fo->copied = space; 3496 3497 tcp_connect_queue_skb(sk, syn_data); 3498 if (syn_data->len) 3499 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3500 3501 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3502 3503 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3504 3505 /* Now full SYN+DATA was cloned and sent (or not), 3506 * remove the SYN from the original skb (syn_data) 3507 * we keep in write queue in case of a retransmit, as we 3508 * also have the SYN packet (with no data) in the same queue. 3509 */ 3510 TCP_SKB_CB(syn_data)->seq++; 3511 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3512 if (!err) { 3513 tp->syn_data = (fo->copied > 0); 3514 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3515 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3516 goto done; 3517 } 3518 3519 /* data was not sent, put it in write_queue */ 3520 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3521 tp->packets_out -= tcp_skb_pcount(syn_data); 3522 3523 fallback: 3524 /* Send a regular SYN with Fast Open cookie request option */ 3525 if (fo->cookie.len > 0) 3526 fo->cookie.len = 0; 3527 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3528 if (err) 3529 tp->syn_fastopen = 0; 3530 done: 3531 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3532 return err; 3533 } 3534 3535 /* Build a SYN and send it off. */ 3536 int tcp_connect(struct sock *sk) 3537 { 3538 struct tcp_sock *tp = tcp_sk(sk); 3539 struct sk_buff *buff; 3540 int err; 3541 3542 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3543 3544 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3545 return -EHOSTUNREACH; /* Routing failure or similar. */ 3546 3547 tcp_connect_init(sk); 3548 3549 if (unlikely(tp->repair)) { 3550 tcp_finish_connect(sk, NULL); 3551 return 0; 3552 } 3553 3554 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3555 if (unlikely(!buff)) 3556 return -ENOBUFS; 3557 3558 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3559 tcp_mstamp_refresh(tp); 3560 tp->retrans_stamp = tcp_time_stamp(tp); 3561 tcp_connect_queue_skb(sk, buff); 3562 tcp_ecn_send_syn(sk, buff); 3563 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3564 3565 /* Send off SYN; include data in Fast Open. */ 3566 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3567 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3568 if (err == -ECONNREFUSED) 3569 return err; 3570 3571 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3572 * in order to make this packet get counted in tcpOutSegs. 3573 */ 3574 tp->snd_nxt = tp->write_seq; 3575 tp->pushed_seq = tp->write_seq; 3576 buff = tcp_send_head(sk); 3577 if (unlikely(buff)) { 3578 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3579 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3580 } 3581 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3582 3583 /* Timer for repeating the SYN until an answer. */ 3584 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3585 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3586 return 0; 3587 } 3588 EXPORT_SYMBOL(tcp_connect); 3589 3590 /* Send out a delayed ack, the caller does the policy checking 3591 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3592 * for details. 3593 */ 3594 void tcp_send_delayed_ack(struct sock *sk) 3595 { 3596 struct inet_connection_sock *icsk = inet_csk(sk); 3597 int ato = icsk->icsk_ack.ato; 3598 unsigned long timeout; 3599 3600 if (ato > TCP_DELACK_MIN) { 3601 const struct tcp_sock *tp = tcp_sk(sk); 3602 int max_ato = HZ / 2; 3603 3604 if (inet_csk_in_pingpong_mode(sk) || 3605 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3606 max_ato = TCP_DELACK_MAX; 3607 3608 /* Slow path, intersegment interval is "high". */ 3609 3610 /* If some rtt estimate is known, use it to bound delayed ack. 3611 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3612 * directly. 3613 */ 3614 if (tp->srtt_us) { 3615 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3616 TCP_DELACK_MIN); 3617 3618 if (rtt < max_ato) 3619 max_ato = rtt; 3620 } 3621 3622 ato = min(ato, max_ato); 3623 } 3624 3625 /* Stay within the limit we were given */ 3626 timeout = jiffies + ato; 3627 3628 /* Use new timeout only if there wasn't a older one earlier. */ 3629 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3630 /* If delack timer was blocked or is about to expire, 3631 * send ACK now. 3632 */ 3633 if (icsk->icsk_ack.blocked || 3634 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3635 tcp_send_ack(sk); 3636 return; 3637 } 3638 3639 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3640 timeout = icsk->icsk_ack.timeout; 3641 } 3642 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3643 icsk->icsk_ack.timeout = timeout; 3644 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3645 } 3646 3647 /* This routine sends an ack and also updates the window. */ 3648 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3649 { 3650 struct sk_buff *buff; 3651 3652 /* If we have been reset, we may not send again. */ 3653 if (sk->sk_state == TCP_CLOSE) 3654 return; 3655 3656 /* We are not putting this on the write queue, so 3657 * tcp_transmit_skb() will set the ownership to this 3658 * sock. 3659 */ 3660 buff = alloc_skb(MAX_TCP_HEADER, 3661 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3662 if (unlikely(!buff)) { 3663 inet_csk_schedule_ack(sk); 3664 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3665 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3666 TCP_DELACK_MAX, TCP_RTO_MAX); 3667 return; 3668 } 3669 3670 /* Reserve space for headers and prepare control bits. */ 3671 skb_reserve(buff, MAX_TCP_HEADER); 3672 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3673 3674 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3675 * too much. 3676 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3677 */ 3678 skb_set_tcp_pure_ack(buff); 3679 3680 /* Send it off, this clears delayed acks for us. */ 3681 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3682 } 3683 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3684 3685 void tcp_send_ack(struct sock *sk) 3686 { 3687 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3688 } 3689 3690 /* This routine sends a packet with an out of date sequence 3691 * number. It assumes the other end will try to ack it. 3692 * 3693 * Question: what should we make while urgent mode? 3694 * 4.4BSD forces sending single byte of data. We cannot send 3695 * out of window data, because we have SND.NXT==SND.MAX... 3696 * 3697 * Current solution: to send TWO zero-length segments in urgent mode: 3698 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3699 * out-of-date with SND.UNA-1 to probe window. 3700 */ 3701 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3702 { 3703 struct tcp_sock *tp = tcp_sk(sk); 3704 struct sk_buff *skb; 3705 3706 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3707 skb = alloc_skb(MAX_TCP_HEADER, 3708 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3709 if (!skb) 3710 return -1; 3711 3712 /* Reserve space for headers and set control bits. */ 3713 skb_reserve(skb, MAX_TCP_HEADER); 3714 /* Use a previous sequence. This should cause the other 3715 * end to send an ack. Don't queue or clone SKB, just 3716 * send it. 3717 */ 3718 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3719 NET_INC_STATS(sock_net(sk), mib); 3720 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3721 } 3722 3723 /* Called from setsockopt( ... TCP_REPAIR ) */ 3724 void tcp_send_window_probe(struct sock *sk) 3725 { 3726 if (sk->sk_state == TCP_ESTABLISHED) { 3727 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3728 tcp_mstamp_refresh(tcp_sk(sk)); 3729 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3730 } 3731 } 3732 3733 /* Initiate keepalive or window probe from timer. */ 3734 int tcp_write_wakeup(struct sock *sk, int mib) 3735 { 3736 struct tcp_sock *tp = tcp_sk(sk); 3737 struct sk_buff *skb; 3738 3739 if (sk->sk_state == TCP_CLOSE) 3740 return -1; 3741 3742 skb = tcp_send_head(sk); 3743 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3744 int err; 3745 unsigned int mss = tcp_current_mss(sk); 3746 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3747 3748 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3749 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3750 3751 /* We are probing the opening of a window 3752 * but the window size is != 0 3753 * must have been a result SWS avoidance ( sender ) 3754 */ 3755 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3756 skb->len > mss) { 3757 seg_size = min(seg_size, mss); 3758 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3759 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3760 skb, seg_size, mss, GFP_ATOMIC)) 3761 return -1; 3762 } else if (!tcp_skb_pcount(skb)) 3763 tcp_set_skb_tso_segs(skb, mss); 3764 3765 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3766 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3767 if (!err) 3768 tcp_event_new_data_sent(sk, skb); 3769 return err; 3770 } else { 3771 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3772 tcp_xmit_probe_skb(sk, 1, mib); 3773 return tcp_xmit_probe_skb(sk, 0, mib); 3774 } 3775 } 3776 3777 /* A window probe timeout has occurred. If window is not closed send 3778 * a partial packet else a zero probe. 3779 */ 3780 void tcp_send_probe0(struct sock *sk) 3781 { 3782 struct inet_connection_sock *icsk = inet_csk(sk); 3783 struct tcp_sock *tp = tcp_sk(sk); 3784 struct net *net = sock_net(sk); 3785 unsigned long timeout; 3786 int err; 3787 3788 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3789 3790 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3791 /* Cancel probe timer, if it is not required. */ 3792 icsk->icsk_probes_out = 0; 3793 icsk->icsk_backoff = 0; 3794 return; 3795 } 3796 3797 icsk->icsk_probes_out++; 3798 if (err <= 0) { 3799 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3800 icsk->icsk_backoff++; 3801 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 3802 } else { 3803 /* If packet was not sent due to local congestion, 3804 * Let senders fight for local resources conservatively. 3805 */ 3806 timeout = TCP_RESOURCE_PROBE_INTERVAL; 3807 } 3808 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL); 3809 } 3810 3811 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3812 { 3813 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3814 struct flowi fl; 3815 int res; 3816 3817 tcp_rsk(req)->txhash = net_tx_rndhash(); 3818 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3819 if (!res) { 3820 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3821 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3822 if (unlikely(tcp_passive_fastopen(sk))) 3823 tcp_sk(sk)->total_retrans++; 3824 trace_tcp_retransmit_synack(sk, req); 3825 } 3826 return res; 3827 } 3828 EXPORT_SYMBOL(tcp_rtx_synack); 3829