1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 } 86 87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 88 * window scaling factor due to loss of precision. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 99 (tp->rx_opt.wscale_ok && 100 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 101 return tp->snd_nxt; 102 else 103 return tcp_wnd_end(tp); 104 } 105 106 /* Calculate mss to advertise in SYN segment. 107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 108 * 109 * 1. It is independent of path mtu. 110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 112 * attached devices, because some buggy hosts are confused by 113 * large MSS. 114 * 4. We do not make 3, we advertise MSS, calculated from first 115 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 116 * This may be overridden via information stored in routing table. 117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 118 * probably even Jumbo". 119 */ 120 static __u16 tcp_advertise_mss(struct sock *sk) 121 { 122 struct tcp_sock *tp = tcp_sk(sk); 123 const struct dst_entry *dst = __sk_dst_get(sk); 124 int mss = tp->advmss; 125 126 if (dst) { 127 unsigned int metric = dst_metric_advmss(dst); 128 129 if (metric < mss) { 130 mss = metric; 131 tp->advmss = mss; 132 } 133 } 134 135 return (__u16)mss; 136 } 137 138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 139 * This is the first part of cwnd validation mechanism. 140 */ 141 void tcp_cwnd_restart(struct sock *sk, s32 delta) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 145 u32 cwnd = tp->snd_cwnd; 146 147 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 148 149 tp->snd_ssthresh = tcp_current_ssthresh(sk); 150 restart_cwnd = min(restart_cwnd, cwnd); 151 152 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 153 cwnd >>= 1; 154 tp->snd_cwnd = max(cwnd, restart_cwnd); 155 tp->snd_cwnd_stamp = tcp_jiffies32; 156 tp->snd_cwnd_used = 0; 157 } 158 159 /* Congestion state accounting after a packet has been sent. */ 160 static void tcp_event_data_sent(struct tcp_sock *tp, 161 struct sock *sk) 162 { 163 struct inet_connection_sock *icsk = inet_csk(sk); 164 const u32 now = tcp_jiffies32; 165 166 if (tcp_packets_in_flight(tp) == 0) 167 tcp_ca_event(sk, CA_EVENT_TX_START); 168 169 /* If this is the first data packet sent in response to the 170 * previous received data, 171 * and it is a reply for ato after last received packet, 172 * increase pingpong count. 173 */ 174 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) && 175 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_inc_pingpong_cnt(sk); 177 178 tp->lsndtime = now; 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 183 u32 rcv_nxt) 184 { 185 struct tcp_sock *tp = tcp_sk(sk); 186 187 if (unlikely(tp->compressed_ack)) { 188 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 189 tp->compressed_ack); 190 tp->compressed_ack = 0; 191 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 192 __sock_put(sk); 193 } 194 195 if (unlikely(rcv_nxt != tp->rcv_nxt)) 196 return; /* Special ACK sent by DCTCP to reflect ECN */ 197 tcp_dec_quickack_mode(sk, pkts); 198 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 199 } 200 201 /* Determine a window scaling and initial window to offer. 202 * Based on the assumption that the given amount of space 203 * will be offered. Store the results in the tp structure. 204 * NOTE: for smooth operation initial space offering should 205 * be a multiple of mss if possible. We assume here that mss >= 1. 206 * This MUST be enforced by all callers. 207 */ 208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 209 __u32 *rcv_wnd, __u32 *window_clamp, 210 int wscale_ok, __u8 *rcv_wscale, 211 __u32 init_rcv_wnd) 212 { 213 unsigned int space = (__space < 0 ? 0 : __space); 214 215 /* If no clamp set the clamp to the max possible scaled window */ 216 if (*window_clamp == 0) 217 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 218 space = min(*window_clamp, space); 219 220 /* Quantize space offering to a multiple of mss if possible. */ 221 if (space > mss) 222 space = rounddown(space, mss); 223 224 /* NOTE: offering an initial window larger than 32767 225 * will break some buggy TCP stacks. If the admin tells us 226 * it is likely we could be speaking with such a buggy stack 227 * we will truncate our initial window offering to 32K-1 228 * unless the remote has sent us a window scaling option, 229 * which we interpret as a sign the remote TCP is not 230 * misinterpreting the window field as a signed quantity. 231 */ 232 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 234 else 235 (*rcv_wnd) = min_t(u32, space, U16_MAX); 236 237 if (init_rcv_wnd) 238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 239 240 *rcv_wscale = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window */ 243 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 244 space = max_t(u32, space, sysctl_rmem_max); 245 space = min_t(u32, space, *window_clamp); 246 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 247 0, TCP_MAX_WSCALE); 248 } 249 /* Set the clamp no higher than max representable value */ 250 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 251 } 252 EXPORT_SYMBOL(tcp_select_initial_window); 253 254 /* Chose a new window to advertise, update state in tcp_sock for the 255 * socket, and return result with RFC1323 scaling applied. The return 256 * value can be stuffed directly into th->window for an outgoing 257 * frame. 258 */ 259 static u16 tcp_select_window(struct sock *sk) 260 { 261 struct tcp_sock *tp = tcp_sk(sk); 262 u32 old_win = tp->rcv_wnd; 263 u32 cur_win = tcp_receive_window(tp); 264 u32 new_win = __tcp_select_window(sk); 265 266 /* Never shrink the offered window */ 267 if (new_win < cur_win) { 268 /* Danger Will Robinson! 269 * Don't update rcv_wup/rcv_wnd here or else 270 * we will not be able to advertise a zero 271 * window in time. --DaveM 272 * 273 * Relax Will Robinson. 274 */ 275 if (new_win == 0) 276 NET_INC_STATS(sock_net(sk), 277 LINUX_MIB_TCPWANTZEROWINDOWADV); 278 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 279 } 280 tp->rcv_wnd = new_win; 281 tp->rcv_wup = tp->rcv_nxt; 282 283 /* Make sure we do not exceed the maximum possible 284 * scaled window. 285 */ 286 if (!tp->rx_opt.rcv_wscale && 287 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 288 new_win = min(new_win, MAX_TCP_WINDOW); 289 else 290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 291 292 /* RFC1323 scaling applied */ 293 new_win >>= tp->rx_opt.rcv_wscale; 294 295 /* If we advertise zero window, disable fast path. */ 296 if (new_win == 0) { 297 tp->pred_flags = 0; 298 if (old_win) 299 NET_INC_STATS(sock_net(sk), 300 LINUX_MIB_TCPTOZEROWINDOWADV); 301 } else if (old_win == 0) { 302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 303 } 304 305 return new_win; 306 } 307 308 /* Packet ECN state for a SYN-ACK */ 309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 314 if (!(tp->ecn_flags & TCP_ECN_OK)) 315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 316 else if (tcp_ca_needs_ecn(sk) || 317 tcp_bpf_ca_needs_ecn(sk)) 318 INET_ECN_xmit(sk); 319 } 320 321 /* Packet ECN state for a SYN. */ 322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 323 { 324 struct tcp_sock *tp = tcp_sk(sk); 325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 328 329 if (!use_ecn) { 330 const struct dst_entry *dst = __sk_dst_get(sk); 331 332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 333 use_ecn = true; 334 } 335 336 tp->ecn_flags = 0; 337 338 if (use_ecn) { 339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 340 tp->ecn_flags = TCP_ECN_OK; 341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 342 INET_ECN_xmit(sk); 343 } 344 } 345 346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 347 { 348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 349 /* tp->ecn_flags are cleared at a later point in time when 350 * SYN ACK is ultimatively being received. 351 */ 352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 353 } 354 355 static void 356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 357 { 358 if (inet_rsk(req)->ecn_ok) 359 th->ece = 1; 360 } 361 362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 363 * be sent. 364 */ 365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 366 struct tcphdr *th, int tcp_header_len) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 370 if (tp->ecn_flags & TCP_ECN_OK) { 371 /* Not-retransmitted data segment: set ECT and inject CWR. */ 372 if (skb->len != tcp_header_len && 373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 374 INET_ECN_xmit(sk); 375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 377 th->cwr = 1; 378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 379 } 380 } else if (!tcp_ca_needs_ecn(sk)) { 381 /* ACK or retransmitted segment: clear ECT|CE */ 382 INET_ECN_dontxmit(sk); 383 } 384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 385 th->ece = 1; 386 } 387 } 388 389 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 390 * auto increment end seqno. 391 */ 392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 393 { 394 skb->ip_summed = CHECKSUM_PARTIAL; 395 396 TCP_SKB_CB(skb)->tcp_flags = flags; 397 TCP_SKB_CB(skb)->sacked = 0; 398 399 tcp_skb_pcount_set(skb, 1); 400 401 TCP_SKB_CB(skb)->seq = seq; 402 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 403 seq++; 404 TCP_SKB_CB(skb)->end_seq = seq; 405 } 406 407 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 408 { 409 return tp->snd_una != tp->snd_up; 410 } 411 412 #define OPTION_SACK_ADVERTISE (1 << 0) 413 #define OPTION_TS (1 << 1) 414 #define OPTION_MD5 (1 << 2) 415 #define OPTION_WSCALE (1 << 3) 416 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 417 #define OPTION_SMC (1 << 9) 418 #define OPTION_MPTCP (1 << 10) 419 420 static void smc_options_write(__be32 *ptr, u16 *options) 421 { 422 #if IS_ENABLED(CONFIG_SMC) 423 if (static_branch_unlikely(&tcp_have_smc)) { 424 if (unlikely(OPTION_SMC & *options)) { 425 *ptr++ = htonl((TCPOPT_NOP << 24) | 426 (TCPOPT_NOP << 16) | 427 (TCPOPT_EXP << 8) | 428 (TCPOLEN_EXP_SMC_BASE)); 429 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 430 } 431 } 432 #endif 433 } 434 435 struct tcp_out_options { 436 u16 options; /* bit field of OPTION_* */ 437 u16 mss; /* 0 to disable */ 438 u8 ws; /* window scale, 0 to disable */ 439 u8 num_sack_blocks; /* number of SACK blocks to include */ 440 u8 hash_size; /* bytes in hash_location */ 441 __u8 *hash_location; /* temporary pointer, overloaded */ 442 __u32 tsval, tsecr; /* need to include OPTION_TS */ 443 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 444 struct mptcp_out_options mptcp; 445 }; 446 447 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts) 448 { 449 #if IS_ENABLED(CONFIG_MPTCP) 450 if (unlikely(OPTION_MPTCP & opts->options)) 451 mptcp_write_options(ptr, &opts->mptcp); 452 #endif 453 } 454 455 /* Write previously computed TCP options to the packet. 456 * 457 * Beware: Something in the Internet is very sensitive to the ordering of 458 * TCP options, we learned this through the hard way, so be careful here. 459 * Luckily we can at least blame others for their non-compliance but from 460 * inter-operability perspective it seems that we're somewhat stuck with 461 * the ordering which we have been using if we want to keep working with 462 * those broken things (not that it currently hurts anybody as there isn't 463 * particular reason why the ordering would need to be changed). 464 * 465 * At least SACK_PERM as the first option is known to lead to a disaster 466 * (but it may well be that other scenarios fail similarly). 467 */ 468 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 469 struct tcp_out_options *opts) 470 { 471 u16 options = opts->options; /* mungable copy */ 472 473 if (unlikely(OPTION_MD5 & options)) { 474 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 475 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 476 /* overload cookie hash location */ 477 opts->hash_location = (__u8 *)ptr; 478 ptr += 4; 479 } 480 481 if (unlikely(opts->mss)) { 482 *ptr++ = htonl((TCPOPT_MSS << 24) | 483 (TCPOLEN_MSS << 16) | 484 opts->mss); 485 } 486 487 if (likely(OPTION_TS & options)) { 488 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 489 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 490 (TCPOLEN_SACK_PERM << 16) | 491 (TCPOPT_TIMESTAMP << 8) | 492 TCPOLEN_TIMESTAMP); 493 options &= ~OPTION_SACK_ADVERTISE; 494 } else { 495 *ptr++ = htonl((TCPOPT_NOP << 24) | 496 (TCPOPT_NOP << 16) | 497 (TCPOPT_TIMESTAMP << 8) | 498 TCPOLEN_TIMESTAMP); 499 } 500 *ptr++ = htonl(opts->tsval); 501 *ptr++ = htonl(opts->tsecr); 502 } 503 504 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 505 *ptr++ = htonl((TCPOPT_NOP << 24) | 506 (TCPOPT_NOP << 16) | 507 (TCPOPT_SACK_PERM << 8) | 508 TCPOLEN_SACK_PERM); 509 } 510 511 if (unlikely(OPTION_WSCALE & options)) { 512 *ptr++ = htonl((TCPOPT_NOP << 24) | 513 (TCPOPT_WINDOW << 16) | 514 (TCPOLEN_WINDOW << 8) | 515 opts->ws); 516 } 517 518 if (unlikely(opts->num_sack_blocks)) { 519 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 520 tp->duplicate_sack : tp->selective_acks; 521 int this_sack; 522 523 *ptr++ = htonl((TCPOPT_NOP << 24) | 524 (TCPOPT_NOP << 16) | 525 (TCPOPT_SACK << 8) | 526 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 527 TCPOLEN_SACK_PERBLOCK))); 528 529 for (this_sack = 0; this_sack < opts->num_sack_blocks; 530 ++this_sack) { 531 *ptr++ = htonl(sp[this_sack].start_seq); 532 *ptr++ = htonl(sp[this_sack].end_seq); 533 } 534 535 tp->rx_opt.dsack = 0; 536 } 537 538 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 539 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 540 u8 *p = (u8 *)ptr; 541 u32 len; /* Fast Open option length */ 542 543 if (foc->exp) { 544 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 545 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 546 TCPOPT_FASTOPEN_MAGIC); 547 p += TCPOLEN_EXP_FASTOPEN_BASE; 548 } else { 549 len = TCPOLEN_FASTOPEN_BASE + foc->len; 550 *p++ = TCPOPT_FASTOPEN; 551 *p++ = len; 552 } 553 554 memcpy(p, foc->val, foc->len); 555 if ((len & 3) == 2) { 556 p[foc->len] = TCPOPT_NOP; 557 p[foc->len + 1] = TCPOPT_NOP; 558 } 559 ptr += (len + 3) >> 2; 560 } 561 562 smc_options_write(ptr, &options); 563 564 mptcp_options_write(ptr, opts); 565 } 566 567 static void smc_set_option(const struct tcp_sock *tp, 568 struct tcp_out_options *opts, 569 unsigned int *remaining) 570 { 571 #if IS_ENABLED(CONFIG_SMC) 572 if (static_branch_unlikely(&tcp_have_smc)) { 573 if (tp->syn_smc) { 574 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 575 opts->options |= OPTION_SMC; 576 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 577 } 578 } 579 } 580 #endif 581 } 582 583 static void smc_set_option_cond(const struct tcp_sock *tp, 584 const struct inet_request_sock *ireq, 585 struct tcp_out_options *opts, 586 unsigned int *remaining) 587 { 588 #if IS_ENABLED(CONFIG_SMC) 589 if (static_branch_unlikely(&tcp_have_smc)) { 590 if (tp->syn_smc && ireq->smc_ok) { 591 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 592 opts->options |= OPTION_SMC; 593 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 594 } 595 } 596 } 597 #endif 598 } 599 600 static void mptcp_set_option_cond(const struct request_sock *req, 601 struct tcp_out_options *opts, 602 unsigned int *remaining) 603 { 604 if (rsk_is_mptcp(req)) { 605 unsigned int size; 606 607 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 608 if (*remaining >= size) { 609 opts->options |= OPTION_MPTCP; 610 *remaining -= size; 611 } 612 } 613 } 614 } 615 616 /* Compute TCP options for SYN packets. This is not the final 617 * network wire format yet. 618 */ 619 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 620 struct tcp_out_options *opts, 621 struct tcp_md5sig_key **md5) 622 { 623 struct tcp_sock *tp = tcp_sk(sk); 624 unsigned int remaining = MAX_TCP_OPTION_SPACE; 625 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 626 627 *md5 = NULL; 628 #ifdef CONFIG_TCP_MD5SIG 629 if (static_branch_unlikely(&tcp_md5_needed) && 630 rcu_access_pointer(tp->md5sig_info)) { 631 *md5 = tp->af_specific->md5_lookup(sk, sk); 632 if (*md5) { 633 opts->options |= OPTION_MD5; 634 remaining -= TCPOLEN_MD5SIG_ALIGNED; 635 } 636 } 637 #endif 638 639 /* We always get an MSS option. The option bytes which will be seen in 640 * normal data packets should timestamps be used, must be in the MSS 641 * advertised. But we subtract them from tp->mss_cache so that 642 * calculations in tcp_sendmsg are simpler etc. So account for this 643 * fact here if necessary. If we don't do this correctly, as a 644 * receiver we won't recognize data packets as being full sized when we 645 * should, and thus we won't abide by the delayed ACK rules correctly. 646 * SACKs don't matter, we never delay an ACK when we have any of those 647 * going out. */ 648 opts->mss = tcp_advertise_mss(sk); 649 remaining -= TCPOLEN_MSS_ALIGNED; 650 651 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 652 opts->options |= OPTION_TS; 653 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 654 opts->tsecr = tp->rx_opt.ts_recent; 655 remaining -= TCPOLEN_TSTAMP_ALIGNED; 656 } 657 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 658 opts->ws = tp->rx_opt.rcv_wscale; 659 opts->options |= OPTION_WSCALE; 660 remaining -= TCPOLEN_WSCALE_ALIGNED; 661 } 662 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 663 opts->options |= OPTION_SACK_ADVERTISE; 664 if (unlikely(!(OPTION_TS & opts->options))) 665 remaining -= TCPOLEN_SACKPERM_ALIGNED; 666 } 667 668 if (fastopen && fastopen->cookie.len >= 0) { 669 u32 need = fastopen->cookie.len; 670 671 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 672 TCPOLEN_FASTOPEN_BASE; 673 need = (need + 3) & ~3U; /* Align to 32 bits */ 674 if (remaining >= need) { 675 opts->options |= OPTION_FAST_OPEN_COOKIE; 676 opts->fastopen_cookie = &fastopen->cookie; 677 remaining -= need; 678 tp->syn_fastopen = 1; 679 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 680 } 681 } 682 683 smc_set_option(tp, opts, &remaining); 684 685 if (sk_is_mptcp(sk)) { 686 unsigned int size; 687 688 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 689 opts->options |= OPTION_MPTCP; 690 remaining -= size; 691 } 692 } 693 694 return MAX_TCP_OPTION_SPACE - remaining; 695 } 696 697 /* Set up TCP options for SYN-ACKs. */ 698 static unsigned int tcp_synack_options(const struct sock *sk, 699 struct request_sock *req, 700 unsigned int mss, struct sk_buff *skb, 701 struct tcp_out_options *opts, 702 const struct tcp_md5sig_key *md5, 703 struct tcp_fastopen_cookie *foc, 704 enum tcp_synack_type synack_type) 705 { 706 struct inet_request_sock *ireq = inet_rsk(req); 707 unsigned int remaining = MAX_TCP_OPTION_SPACE; 708 709 #ifdef CONFIG_TCP_MD5SIG 710 if (md5) { 711 opts->options |= OPTION_MD5; 712 remaining -= TCPOLEN_MD5SIG_ALIGNED; 713 714 /* We can't fit any SACK blocks in a packet with MD5 + TS 715 * options. There was discussion about disabling SACK 716 * rather than TS in order to fit in better with old, 717 * buggy kernels, but that was deemed to be unnecessary. 718 */ 719 if (synack_type != TCP_SYNACK_COOKIE) 720 ireq->tstamp_ok &= !ireq->sack_ok; 721 } 722 #endif 723 724 /* We always send an MSS option. */ 725 opts->mss = mss; 726 remaining -= TCPOLEN_MSS_ALIGNED; 727 728 if (likely(ireq->wscale_ok)) { 729 opts->ws = ireq->rcv_wscale; 730 opts->options |= OPTION_WSCALE; 731 remaining -= TCPOLEN_WSCALE_ALIGNED; 732 } 733 if (likely(ireq->tstamp_ok)) { 734 opts->options |= OPTION_TS; 735 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 736 opts->tsecr = req->ts_recent; 737 remaining -= TCPOLEN_TSTAMP_ALIGNED; 738 } 739 if (likely(ireq->sack_ok)) { 740 opts->options |= OPTION_SACK_ADVERTISE; 741 if (unlikely(!ireq->tstamp_ok)) 742 remaining -= TCPOLEN_SACKPERM_ALIGNED; 743 } 744 if (foc != NULL && foc->len >= 0) { 745 u32 need = foc->len; 746 747 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 748 TCPOLEN_FASTOPEN_BASE; 749 need = (need + 3) & ~3U; /* Align to 32 bits */ 750 if (remaining >= need) { 751 opts->options |= OPTION_FAST_OPEN_COOKIE; 752 opts->fastopen_cookie = foc; 753 remaining -= need; 754 } 755 } 756 757 mptcp_set_option_cond(req, opts, &remaining); 758 759 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 760 761 return MAX_TCP_OPTION_SPACE - remaining; 762 } 763 764 /* Compute TCP options for ESTABLISHED sockets. This is not the 765 * final wire format yet. 766 */ 767 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 768 struct tcp_out_options *opts, 769 struct tcp_md5sig_key **md5) 770 { 771 struct tcp_sock *tp = tcp_sk(sk); 772 unsigned int size = 0; 773 unsigned int eff_sacks; 774 775 opts->options = 0; 776 777 *md5 = NULL; 778 #ifdef CONFIG_TCP_MD5SIG 779 if (static_branch_unlikely(&tcp_md5_needed) && 780 rcu_access_pointer(tp->md5sig_info)) { 781 *md5 = tp->af_specific->md5_lookup(sk, sk); 782 if (*md5) { 783 opts->options |= OPTION_MD5; 784 size += TCPOLEN_MD5SIG_ALIGNED; 785 } 786 } 787 #endif 788 789 if (likely(tp->rx_opt.tstamp_ok)) { 790 opts->options |= OPTION_TS; 791 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 792 opts->tsecr = tp->rx_opt.ts_recent; 793 size += TCPOLEN_TSTAMP_ALIGNED; 794 } 795 796 /* MPTCP options have precedence over SACK for the limited TCP 797 * option space because a MPTCP connection would be forced to 798 * fall back to regular TCP if a required multipath option is 799 * missing. SACK still gets a chance to use whatever space is 800 * left. 801 */ 802 if (sk_is_mptcp(sk)) { 803 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 804 unsigned int opt_size = 0; 805 806 if (mptcp_established_options(sk, skb, &opt_size, remaining, 807 &opts->mptcp)) { 808 opts->options |= OPTION_MPTCP; 809 size += opt_size; 810 } 811 } 812 813 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 814 if (unlikely(eff_sacks)) { 815 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 816 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 817 TCPOLEN_SACK_PERBLOCK)) 818 return size; 819 820 opts->num_sack_blocks = 821 min_t(unsigned int, eff_sacks, 822 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 823 TCPOLEN_SACK_PERBLOCK); 824 825 size += TCPOLEN_SACK_BASE_ALIGNED + 826 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 827 } 828 829 return size; 830 } 831 832 833 /* TCP SMALL QUEUES (TSQ) 834 * 835 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 836 * to reduce RTT and bufferbloat. 837 * We do this using a special skb destructor (tcp_wfree). 838 * 839 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 840 * needs to be reallocated in a driver. 841 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 842 * 843 * Since transmit from skb destructor is forbidden, we use a tasklet 844 * to process all sockets that eventually need to send more skbs. 845 * We use one tasklet per cpu, with its own queue of sockets. 846 */ 847 struct tsq_tasklet { 848 struct tasklet_struct tasklet; 849 struct list_head head; /* queue of tcp sockets */ 850 }; 851 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 852 853 static void tcp_tsq_write(struct sock *sk) 854 { 855 if ((1 << sk->sk_state) & 856 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 857 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 858 struct tcp_sock *tp = tcp_sk(sk); 859 860 if (tp->lost_out > tp->retrans_out && 861 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 862 tcp_mstamp_refresh(tp); 863 tcp_xmit_retransmit_queue(sk); 864 } 865 866 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 867 0, GFP_ATOMIC); 868 } 869 } 870 871 static void tcp_tsq_handler(struct sock *sk) 872 { 873 bh_lock_sock(sk); 874 if (!sock_owned_by_user(sk)) 875 tcp_tsq_write(sk); 876 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 877 sock_hold(sk); 878 bh_unlock_sock(sk); 879 } 880 /* 881 * One tasklet per cpu tries to send more skbs. 882 * We run in tasklet context but need to disable irqs when 883 * transferring tsq->head because tcp_wfree() might 884 * interrupt us (non NAPI drivers) 885 */ 886 static void tcp_tasklet_func(unsigned long data) 887 { 888 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 889 LIST_HEAD(list); 890 unsigned long flags; 891 struct list_head *q, *n; 892 struct tcp_sock *tp; 893 struct sock *sk; 894 895 local_irq_save(flags); 896 list_splice_init(&tsq->head, &list); 897 local_irq_restore(flags); 898 899 list_for_each_safe(q, n, &list) { 900 tp = list_entry(q, struct tcp_sock, tsq_node); 901 list_del(&tp->tsq_node); 902 903 sk = (struct sock *)tp; 904 smp_mb__before_atomic(); 905 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 906 907 tcp_tsq_handler(sk); 908 sk_free(sk); 909 } 910 } 911 912 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 913 TCPF_WRITE_TIMER_DEFERRED | \ 914 TCPF_DELACK_TIMER_DEFERRED | \ 915 TCPF_MTU_REDUCED_DEFERRED) 916 /** 917 * tcp_release_cb - tcp release_sock() callback 918 * @sk: socket 919 * 920 * called from release_sock() to perform protocol dependent 921 * actions before socket release. 922 */ 923 void tcp_release_cb(struct sock *sk) 924 { 925 unsigned long flags, nflags; 926 927 /* perform an atomic operation only if at least one flag is set */ 928 do { 929 flags = sk->sk_tsq_flags; 930 if (!(flags & TCP_DEFERRED_ALL)) 931 return; 932 nflags = flags & ~TCP_DEFERRED_ALL; 933 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 934 935 if (flags & TCPF_TSQ_DEFERRED) { 936 tcp_tsq_write(sk); 937 __sock_put(sk); 938 } 939 /* Here begins the tricky part : 940 * We are called from release_sock() with : 941 * 1) BH disabled 942 * 2) sk_lock.slock spinlock held 943 * 3) socket owned by us (sk->sk_lock.owned == 1) 944 * 945 * But following code is meant to be called from BH handlers, 946 * so we should keep BH disabled, but early release socket ownership 947 */ 948 sock_release_ownership(sk); 949 950 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 951 tcp_write_timer_handler(sk); 952 __sock_put(sk); 953 } 954 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 955 tcp_delack_timer_handler(sk); 956 __sock_put(sk); 957 } 958 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 959 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 960 __sock_put(sk); 961 } 962 } 963 EXPORT_SYMBOL(tcp_release_cb); 964 965 void __init tcp_tasklet_init(void) 966 { 967 int i; 968 969 for_each_possible_cpu(i) { 970 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 971 972 INIT_LIST_HEAD(&tsq->head); 973 tasklet_init(&tsq->tasklet, 974 tcp_tasklet_func, 975 (unsigned long)tsq); 976 } 977 } 978 979 /* 980 * Write buffer destructor automatically called from kfree_skb. 981 * We can't xmit new skbs from this context, as we might already 982 * hold qdisc lock. 983 */ 984 void tcp_wfree(struct sk_buff *skb) 985 { 986 struct sock *sk = skb->sk; 987 struct tcp_sock *tp = tcp_sk(sk); 988 unsigned long flags, nval, oval; 989 990 /* Keep one reference on sk_wmem_alloc. 991 * Will be released by sk_free() from here or tcp_tasklet_func() 992 */ 993 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 994 995 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 996 * Wait until our queues (qdisc + devices) are drained. 997 * This gives : 998 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 999 * - chance for incoming ACK (processed by another cpu maybe) 1000 * to migrate this flow (skb->ooo_okay will be eventually set) 1001 */ 1002 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1003 goto out; 1004 1005 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 1006 struct tsq_tasklet *tsq; 1007 bool empty; 1008 1009 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1010 goto out; 1011 1012 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1013 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 1014 if (nval != oval) 1015 continue; 1016 1017 /* queue this socket to tasklet queue */ 1018 local_irq_save(flags); 1019 tsq = this_cpu_ptr(&tsq_tasklet); 1020 empty = list_empty(&tsq->head); 1021 list_add(&tp->tsq_node, &tsq->head); 1022 if (empty) 1023 tasklet_schedule(&tsq->tasklet); 1024 local_irq_restore(flags); 1025 return; 1026 } 1027 out: 1028 sk_free(sk); 1029 } 1030 1031 /* Note: Called under soft irq. 1032 * We can call TCP stack right away, unless socket is owned by user. 1033 */ 1034 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1035 { 1036 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1037 struct sock *sk = (struct sock *)tp; 1038 1039 tcp_tsq_handler(sk); 1040 sock_put(sk); 1041 1042 return HRTIMER_NORESTART; 1043 } 1044 1045 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1046 u64 prior_wstamp) 1047 { 1048 struct tcp_sock *tp = tcp_sk(sk); 1049 1050 if (sk->sk_pacing_status != SK_PACING_NONE) { 1051 unsigned long rate = sk->sk_pacing_rate; 1052 1053 /* Original sch_fq does not pace first 10 MSS 1054 * Note that tp->data_segs_out overflows after 2^32 packets, 1055 * this is a minor annoyance. 1056 */ 1057 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1058 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1059 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1060 1061 /* take into account OS jitter */ 1062 len_ns -= min_t(u64, len_ns / 2, credit); 1063 tp->tcp_wstamp_ns += len_ns; 1064 } 1065 } 1066 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1067 } 1068 1069 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1070 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1071 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1072 1073 /* This routine actually transmits TCP packets queued in by 1074 * tcp_do_sendmsg(). This is used by both the initial 1075 * transmission and possible later retransmissions. 1076 * All SKB's seen here are completely headerless. It is our 1077 * job to build the TCP header, and pass the packet down to 1078 * IP so it can do the same plus pass the packet off to the 1079 * device. 1080 * 1081 * We are working here with either a clone of the original 1082 * SKB, or a fresh unique copy made by the retransmit engine. 1083 */ 1084 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1085 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1086 { 1087 const struct inet_connection_sock *icsk = inet_csk(sk); 1088 struct inet_sock *inet; 1089 struct tcp_sock *tp; 1090 struct tcp_skb_cb *tcb; 1091 struct tcp_out_options opts; 1092 unsigned int tcp_options_size, tcp_header_size; 1093 struct sk_buff *oskb = NULL; 1094 struct tcp_md5sig_key *md5; 1095 struct tcphdr *th; 1096 u64 prior_wstamp; 1097 int err; 1098 1099 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1100 tp = tcp_sk(sk); 1101 prior_wstamp = tp->tcp_wstamp_ns; 1102 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1103 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1104 if (clone_it) { 1105 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1106 - tp->snd_una; 1107 oskb = skb; 1108 1109 tcp_skb_tsorted_save(oskb) { 1110 if (unlikely(skb_cloned(oskb))) 1111 skb = pskb_copy(oskb, gfp_mask); 1112 else 1113 skb = skb_clone(oskb, gfp_mask); 1114 } tcp_skb_tsorted_restore(oskb); 1115 1116 if (unlikely(!skb)) 1117 return -ENOBUFS; 1118 /* retransmit skbs might have a non zero value in skb->dev 1119 * because skb->dev is aliased with skb->rbnode.rb_left 1120 */ 1121 skb->dev = NULL; 1122 } 1123 1124 inet = inet_sk(sk); 1125 tcb = TCP_SKB_CB(skb); 1126 memset(&opts, 0, sizeof(opts)); 1127 1128 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1129 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1130 } else { 1131 tcp_options_size = tcp_established_options(sk, skb, &opts, 1132 &md5); 1133 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1134 * at receiver : This slightly improve GRO performance. 1135 * Note that we do not force the PSH flag for non GSO packets, 1136 * because they might be sent under high congestion events, 1137 * and in this case it is better to delay the delivery of 1-MSS 1138 * packets and thus the corresponding ACK packet that would 1139 * release the following packet. 1140 */ 1141 if (tcp_skb_pcount(skb) > 1) 1142 tcb->tcp_flags |= TCPHDR_PSH; 1143 } 1144 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1145 1146 /* if no packet is in qdisc/device queue, then allow XPS to select 1147 * another queue. We can be called from tcp_tsq_handler() 1148 * which holds one reference to sk. 1149 * 1150 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1151 * One way to get this would be to set skb->truesize = 2 on them. 1152 */ 1153 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1154 1155 /* If we had to use memory reserve to allocate this skb, 1156 * this might cause drops if packet is looped back : 1157 * Other socket might not have SOCK_MEMALLOC. 1158 * Packets not looped back do not care about pfmemalloc. 1159 */ 1160 skb->pfmemalloc = 0; 1161 1162 skb_push(skb, tcp_header_size); 1163 skb_reset_transport_header(skb); 1164 1165 skb_orphan(skb); 1166 skb->sk = sk; 1167 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1168 skb_set_hash_from_sk(skb, sk); 1169 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1170 1171 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1172 1173 /* Build TCP header and checksum it. */ 1174 th = (struct tcphdr *)skb->data; 1175 th->source = inet->inet_sport; 1176 th->dest = inet->inet_dport; 1177 th->seq = htonl(tcb->seq); 1178 th->ack_seq = htonl(rcv_nxt); 1179 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1180 tcb->tcp_flags); 1181 1182 th->check = 0; 1183 th->urg_ptr = 0; 1184 1185 /* The urg_mode check is necessary during a below snd_una win probe */ 1186 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1187 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1188 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1189 th->urg = 1; 1190 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1191 th->urg_ptr = htons(0xFFFF); 1192 th->urg = 1; 1193 } 1194 } 1195 1196 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1197 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1198 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1199 th->window = htons(tcp_select_window(sk)); 1200 tcp_ecn_send(sk, skb, th, tcp_header_size); 1201 } else { 1202 /* RFC1323: The window in SYN & SYN/ACK segments 1203 * is never scaled. 1204 */ 1205 th->window = htons(min(tp->rcv_wnd, 65535U)); 1206 } 1207 #ifdef CONFIG_TCP_MD5SIG 1208 /* Calculate the MD5 hash, as we have all we need now */ 1209 if (md5) { 1210 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1211 tp->af_specific->calc_md5_hash(opts.hash_location, 1212 md5, sk, skb); 1213 } 1214 #endif 1215 1216 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1217 tcp_v6_send_check, tcp_v4_send_check, 1218 sk, skb); 1219 1220 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1221 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1222 1223 if (skb->len != tcp_header_size) { 1224 tcp_event_data_sent(tp, sk); 1225 tp->data_segs_out += tcp_skb_pcount(skb); 1226 tp->bytes_sent += skb->len - tcp_header_size; 1227 } 1228 1229 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1230 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1231 tcp_skb_pcount(skb)); 1232 1233 tp->segs_out += tcp_skb_pcount(skb); 1234 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1235 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1236 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1237 1238 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1239 1240 /* Cleanup our debris for IP stacks */ 1241 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1242 sizeof(struct inet6_skb_parm))); 1243 1244 tcp_add_tx_delay(skb, tp); 1245 1246 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1247 inet6_csk_xmit, ip_queue_xmit, 1248 sk, skb, &inet->cork.fl); 1249 1250 if (unlikely(err > 0)) { 1251 tcp_enter_cwr(sk); 1252 err = net_xmit_eval(err); 1253 } 1254 if (!err && oskb) { 1255 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1256 tcp_rate_skb_sent(sk, oskb); 1257 } 1258 return err; 1259 } 1260 1261 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1262 gfp_t gfp_mask) 1263 { 1264 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1265 tcp_sk(sk)->rcv_nxt); 1266 } 1267 1268 /* This routine just queues the buffer for sending. 1269 * 1270 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1271 * otherwise socket can stall. 1272 */ 1273 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1274 { 1275 struct tcp_sock *tp = tcp_sk(sk); 1276 1277 /* Advance write_seq and place onto the write_queue. */ 1278 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1279 __skb_header_release(skb); 1280 tcp_add_write_queue_tail(sk, skb); 1281 sk_wmem_queued_add(sk, skb->truesize); 1282 sk_mem_charge(sk, skb->truesize); 1283 } 1284 1285 /* Initialize TSO segments for a packet. */ 1286 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1287 { 1288 if (skb->len <= mss_now) { 1289 /* Avoid the costly divide in the normal 1290 * non-TSO case. 1291 */ 1292 tcp_skb_pcount_set(skb, 1); 1293 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1294 } else { 1295 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1296 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1297 } 1298 } 1299 1300 /* Pcount in the middle of the write queue got changed, we need to do various 1301 * tweaks to fix counters 1302 */ 1303 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1304 { 1305 struct tcp_sock *tp = tcp_sk(sk); 1306 1307 tp->packets_out -= decr; 1308 1309 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1310 tp->sacked_out -= decr; 1311 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1312 tp->retrans_out -= decr; 1313 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1314 tp->lost_out -= decr; 1315 1316 /* Reno case is special. Sigh... */ 1317 if (tcp_is_reno(tp) && decr > 0) 1318 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1319 1320 if (tp->lost_skb_hint && 1321 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1322 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1323 tp->lost_cnt_hint -= decr; 1324 1325 tcp_verify_left_out(tp); 1326 } 1327 1328 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1329 { 1330 return TCP_SKB_CB(skb)->txstamp_ack || 1331 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1332 } 1333 1334 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1335 { 1336 struct skb_shared_info *shinfo = skb_shinfo(skb); 1337 1338 if (unlikely(tcp_has_tx_tstamp(skb)) && 1339 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1340 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1341 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1342 1343 shinfo->tx_flags &= ~tsflags; 1344 shinfo2->tx_flags |= tsflags; 1345 swap(shinfo->tskey, shinfo2->tskey); 1346 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1347 TCP_SKB_CB(skb)->txstamp_ack = 0; 1348 } 1349 } 1350 1351 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1352 { 1353 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1354 TCP_SKB_CB(skb)->eor = 0; 1355 } 1356 1357 /* Insert buff after skb on the write or rtx queue of sk. */ 1358 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1359 struct sk_buff *buff, 1360 struct sock *sk, 1361 enum tcp_queue tcp_queue) 1362 { 1363 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1364 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1365 else 1366 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1367 } 1368 1369 /* Function to create two new TCP segments. Shrinks the given segment 1370 * to the specified size and appends a new segment with the rest of the 1371 * packet to the list. This won't be called frequently, I hope. 1372 * Remember, these are still headerless SKBs at this point. 1373 */ 1374 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1375 struct sk_buff *skb, u32 len, 1376 unsigned int mss_now, gfp_t gfp) 1377 { 1378 struct tcp_sock *tp = tcp_sk(sk); 1379 struct sk_buff *buff; 1380 int nsize, old_factor; 1381 long limit; 1382 int nlen; 1383 u8 flags; 1384 1385 if (WARN_ON(len > skb->len)) 1386 return -EINVAL; 1387 1388 nsize = skb_headlen(skb) - len; 1389 if (nsize < 0) 1390 nsize = 0; 1391 1392 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1393 * We need some allowance to not penalize applications setting small 1394 * SO_SNDBUF values. 1395 * Also allow first and last skb in retransmit queue to be split. 1396 */ 1397 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE); 1398 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1399 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1400 skb != tcp_rtx_queue_head(sk) && 1401 skb != tcp_rtx_queue_tail(sk))) { 1402 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1403 return -ENOMEM; 1404 } 1405 1406 if (skb_unclone(skb, gfp)) 1407 return -ENOMEM; 1408 1409 /* Get a new skb... force flag on. */ 1410 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1411 if (!buff) 1412 return -ENOMEM; /* We'll just try again later. */ 1413 skb_copy_decrypted(buff, skb); 1414 1415 sk_wmem_queued_add(sk, buff->truesize); 1416 sk_mem_charge(sk, buff->truesize); 1417 nlen = skb->len - len - nsize; 1418 buff->truesize += nlen; 1419 skb->truesize -= nlen; 1420 1421 /* Correct the sequence numbers. */ 1422 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1423 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1424 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1425 1426 /* PSH and FIN should only be set in the second packet. */ 1427 flags = TCP_SKB_CB(skb)->tcp_flags; 1428 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1429 TCP_SKB_CB(buff)->tcp_flags = flags; 1430 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1431 tcp_skb_fragment_eor(skb, buff); 1432 1433 skb_split(skb, buff, len); 1434 1435 buff->ip_summed = CHECKSUM_PARTIAL; 1436 1437 buff->tstamp = skb->tstamp; 1438 tcp_fragment_tstamp(skb, buff); 1439 1440 old_factor = tcp_skb_pcount(skb); 1441 1442 /* Fix up tso_factor for both original and new SKB. */ 1443 tcp_set_skb_tso_segs(skb, mss_now); 1444 tcp_set_skb_tso_segs(buff, mss_now); 1445 1446 /* Update delivered info for the new segment */ 1447 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1448 1449 /* If this packet has been sent out already, we must 1450 * adjust the various packet counters. 1451 */ 1452 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1453 int diff = old_factor - tcp_skb_pcount(skb) - 1454 tcp_skb_pcount(buff); 1455 1456 if (diff) 1457 tcp_adjust_pcount(sk, skb, diff); 1458 } 1459 1460 /* Link BUFF into the send queue. */ 1461 __skb_header_release(buff); 1462 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1463 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1464 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1465 1466 return 0; 1467 } 1468 1469 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1470 * data is not copied, but immediately discarded. 1471 */ 1472 static int __pskb_trim_head(struct sk_buff *skb, int len) 1473 { 1474 struct skb_shared_info *shinfo; 1475 int i, k, eat; 1476 1477 eat = min_t(int, len, skb_headlen(skb)); 1478 if (eat) { 1479 __skb_pull(skb, eat); 1480 len -= eat; 1481 if (!len) 1482 return 0; 1483 } 1484 eat = len; 1485 k = 0; 1486 shinfo = skb_shinfo(skb); 1487 for (i = 0; i < shinfo->nr_frags; i++) { 1488 int size = skb_frag_size(&shinfo->frags[i]); 1489 1490 if (size <= eat) { 1491 skb_frag_unref(skb, i); 1492 eat -= size; 1493 } else { 1494 shinfo->frags[k] = shinfo->frags[i]; 1495 if (eat) { 1496 skb_frag_off_add(&shinfo->frags[k], eat); 1497 skb_frag_size_sub(&shinfo->frags[k], eat); 1498 eat = 0; 1499 } 1500 k++; 1501 } 1502 } 1503 shinfo->nr_frags = k; 1504 1505 skb->data_len -= len; 1506 skb->len = skb->data_len; 1507 return len; 1508 } 1509 1510 /* Remove acked data from a packet in the transmit queue. */ 1511 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1512 { 1513 u32 delta_truesize; 1514 1515 if (skb_unclone(skb, GFP_ATOMIC)) 1516 return -ENOMEM; 1517 1518 delta_truesize = __pskb_trim_head(skb, len); 1519 1520 TCP_SKB_CB(skb)->seq += len; 1521 skb->ip_summed = CHECKSUM_PARTIAL; 1522 1523 if (delta_truesize) { 1524 skb->truesize -= delta_truesize; 1525 sk_wmem_queued_add(sk, -delta_truesize); 1526 sk_mem_uncharge(sk, delta_truesize); 1527 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1528 } 1529 1530 /* Any change of skb->len requires recalculation of tso factor. */ 1531 if (tcp_skb_pcount(skb) > 1) 1532 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1533 1534 return 0; 1535 } 1536 1537 /* Calculate MSS not accounting any TCP options. */ 1538 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1539 { 1540 const struct tcp_sock *tp = tcp_sk(sk); 1541 const struct inet_connection_sock *icsk = inet_csk(sk); 1542 int mss_now; 1543 1544 /* Calculate base mss without TCP options: 1545 It is MMS_S - sizeof(tcphdr) of rfc1122 1546 */ 1547 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1548 1549 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1550 if (icsk->icsk_af_ops->net_frag_header_len) { 1551 const struct dst_entry *dst = __sk_dst_get(sk); 1552 1553 if (dst && dst_allfrag(dst)) 1554 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1555 } 1556 1557 /* Clamp it (mss_clamp does not include tcp options) */ 1558 if (mss_now > tp->rx_opt.mss_clamp) 1559 mss_now = tp->rx_opt.mss_clamp; 1560 1561 /* Now subtract optional transport overhead */ 1562 mss_now -= icsk->icsk_ext_hdr_len; 1563 1564 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1565 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss); 1566 return mss_now; 1567 } 1568 1569 /* Calculate MSS. Not accounting for SACKs here. */ 1570 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1571 { 1572 /* Subtract TCP options size, not including SACKs */ 1573 return __tcp_mtu_to_mss(sk, pmtu) - 1574 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1575 } 1576 1577 /* Inverse of above */ 1578 int tcp_mss_to_mtu(struct sock *sk, int mss) 1579 { 1580 const struct tcp_sock *tp = tcp_sk(sk); 1581 const struct inet_connection_sock *icsk = inet_csk(sk); 1582 int mtu; 1583 1584 mtu = mss + 1585 tp->tcp_header_len + 1586 icsk->icsk_ext_hdr_len + 1587 icsk->icsk_af_ops->net_header_len; 1588 1589 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1590 if (icsk->icsk_af_ops->net_frag_header_len) { 1591 const struct dst_entry *dst = __sk_dst_get(sk); 1592 1593 if (dst && dst_allfrag(dst)) 1594 mtu += icsk->icsk_af_ops->net_frag_header_len; 1595 } 1596 return mtu; 1597 } 1598 EXPORT_SYMBOL(tcp_mss_to_mtu); 1599 1600 /* MTU probing init per socket */ 1601 void tcp_mtup_init(struct sock *sk) 1602 { 1603 struct tcp_sock *tp = tcp_sk(sk); 1604 struct inet_connection_sock *icsk = inet_csk(sk); 1605 struct net *net = sock_net(sk); 1606 1607 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1608 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1609 icsk->icsk_af_ops->net_header_len; 1610 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1611 icsk->icsk_mtup.probe_size = 0; 1612 if (icsk->icsk_mtup.enabled) 1613 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1614 } 1615 EXPORT_SYMBOL(tcp_mtup_init); 1616 1617 /* This function synchronize snd mss to current pmtu/exthdr set. 1618 1619 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1620 for TCP options, but includes only bare TCP header. 1621 1622 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1623 It is minimum of user_mss and mss received with SYN. 1624 It also does not include TCP options. 1625 1626 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1627 1628 tp->mss_cache is current effective sending mss, including 1629 all tcp options except for SACKs. It is evaluated, 1630 taking into account current pmtu, but never exceeds 1631 tp->rx_opt.mss_clamp. 1632 1633 NOTE1. rfc1122 clearly states that advertised MSS 1634 DOES NOT include either tcp or ip options. 1635 1636 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1637 are READ ONLY outside this function. --ANK (980731) 1638 */ 1639 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1640 { 1641 struct tcp_sock *tp = tcp_sk(sk); 1642 struct inet_connection_sock *icsk = inet_csk(sk); 1643 int mss_now; 1644 1645 if (icsk->icsk_mtup.search_high > pmtu) 1646 icsk->icsk_mtup.search_high = pmtu; 1647 1648 mss_now = tcp_mtu_to_mss(sk, pmtu); 1649 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1650 1651 /* And store cached results */ 1652 icsk->icsk_pmtu_cookie = pmtu; 1653 if (icsk->icsk_mtup.enabled) 1654 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1655 tp->mss_cache = mss_now; 1656 1657 return mss_now; 1658 } 1659 EXPORT_SYMBOL(tcp_sync_mss); 1660 1661 /* Compute the current effective MSS, taking SACKs and IP options, 1662 * and even PMTU discovery events into account. 1663 */ 1664 unsigned int tcp_current_mss(struct sock *sk) 1665 { 1666 const struct tcp_sock *tp = tcp_sk(sk); 1667 const struct dst_entry *dst = __sk_dst_get(sk); 1668 u32 mss_now; 1669 unsigned int header_len; 1670 struct tcp_out_options opts; 1671 struct tcp_md5sig_key *md5; 1672 1673 mss_now = tp->mss_cache; 1674 1675 if (dst) { 1676 u32 mtu = dst_mtu(dst); 1677 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1678 mss_now = tcp_sync_mss(sk, mtu); 1679 } 1680 1681 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1682 sizeof(struct tcphdr); 1683 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1684 * some common options. If this is an odd packet (because we have SACK 1685 * blocks etc) then our calculated header_len will be different, and 1686 * we have to adjust mss_now correspondingly */ 1687 if (header_len != tp->tcp_header_len) { 1688 int delta = (int) header_len - tp->tcp_header_len; 1689 mss_now -= delta; 1690 } 1691 1692 return mss_now; 1693 } 1694 1695 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1696 * As additional protections, we do not touch cwnd in retransmission phases, 1697 * and if application hit its sndbuf limit recently. 1698 */ 1699 static void tcp_cwnd_application_limited(struct sock *sk) 1700 { 1701 struct tcp_sock *tp = tcp_sk(sk); 1702 1703 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1704 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1705 /* Limited by application or receiver window. */ 1706 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1707 u32 win_used = max(tp->snd_cwnd_used, init_win); 1708 if (win_used < tp->snd_cwnd) { 1709 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1710 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1711 } 1712 tp->snd_cwnd_used = 0; 1713 } 1714 tp->snd_cwnd_stamp = tcp_jiffies32; 1715 } 1716 1717 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1718 { 1719 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1720 struct tcp_sock *tp = tcp_sk(sk); 1721 1722 /* Track the maximum number of outstanding packets in each 1723 * window, and remember whether we were cwnd-limited then. 1724 */ 1725 if (!before(tp->snd_una, tp->max_packets_seq) || 1726 tp->packets_out > tp->max_packets_out) { 1727 tp->max_packets_out = tp->packets_out; 1728 tp->max_packets_seq = tp->snd_nxt; 1729 tp->is_cwnd_limited = is_cwnd_limited; 1730 } 1731 1732 if (tcp_is_cwnd_limited(sk)) { 1733 /* Network is feed fully. */ 1734 tp->snd_cwnd_used = 0; 1735 tp->snd_cwnd_stamp = tcp_jiffies32; 1736 } else { 1737 /* Network starves. */ 1738 if (tp->packets_out > tp->snd_cwnd_used) 1739 tp->snd_cwnd_used = tp->packets_out; 1740 1741 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1742 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1743 !ca_ops->cong_control) 1744 tcp_cwnd_application_limited(sk); 1745 1746 /* The following conditions together indicate the starvation 1747 * is caused by insufficient sender buffer: 1748 * 1) just sent some data (see tcp_write_xmit) 1749 * 2) not cwnd limited (this else condition) 1750 * 3) no more data to send (tcp_write_queue_empty()) 1751 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1752 */ 1753 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1754 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1755 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1756 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1757 } 1758 } 1759 1760 /* Minshall's variant of the Nagle send check. */ 1761 static bool tcp_minshall_check(const struct tcp_sock *tp) 1762 { 1763 return after(tp->snd_sml, tp->snd_una) && 1764 !after(tp->snd_sml, tp->snd_nxt); 1765 } 1766 1767 /* Update snd_sml if this skb is under mss 1768 * Note that a TSO packet might end with a sub-mss segment 1769 * The test is really : 1770 * if ((skb->len % mss) != 0) 1771 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1772 * But we can avoid doing the divide again given we already have 1773 * skb_pcount = skb->len / mss_now 1774 */ 1775 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1776 const struct sk_buff *skb) 1777 { 1778 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1779 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1780 } 1781 1782 /* Return false, if packet can be sent now without violation Nagle's rules: 1783 * 1. It is full sized. (provided by caller in %partial bool) 1784 * 2. Or it contains FIN. (already checked by caller) 1785 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1786 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1787 * With Minshall's modification: all sent small packets are ACKed. 1788 */ 1789 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1790 int nonagle) 1791 { 1792 return partial && 1793 ((nonagle & TCP_NAGLE_CORK) || 1794 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1795 } 1796 1797 /* Return how many segs we'd like on a TSO packet, 1798 * to send one TSO packet per ms 1799 */ 1800 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1801 int min_tso_segs) 1802 { 1803 u32 bytes, segs; 1804 1805 bytes = min_t(unsigned long, 1806 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift), 1807 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1808 1809 /* Goal is to send at least one packet per ms, 1810 * not one big TSO packet every 100 ms. 1811 * This preserves ACK clocking and is consistent 1812 * with tcp_tso_should_defer() heuristic. 1813 */ 1814 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1815 1816 return segs; 1817 } 1818 1819 /* Return the number of segments we want in the skb we are transmitting. 1820 * See if congestion control module wants to decide; otherwise, autosize. 1821 */ 1822 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1823 { 1824 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1825 u32 min_tso, tso_segs; 1826 1827 min_tso = ca_ops->min_tso_segs ? 1828 ca_ops->min_tso_segs(sk) : 1829 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1830 1831 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1832 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1833 } 1834 1835 /* Returns the portion of skb which can be sent right away */ 1836 static unsigned int tcp_mss_split_point(const struct sock *sk, 1837 const struct sk_buff *skb, 1838 unsigned int mss_now, 1839 unsigned int max_segs, 1840 int nonagle) 1841 { 1842 const struct tcp_sock *tp = tcp_sk(sk); 1843 u32 partial, needed, window, max_len; 1844 1845 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1846 max_len = mss_now * max_segs; 1847 1848 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1849 return max_len; 1850 1851 needed = min(skb->len, window); 1852 1853 if (max_len <= needed) 1854 return max_len; 1855 1856 partial = needed % mss_now; 1857 /* If last segment is not a full MSS, check if Nagle rules allow us 1858 * to include this last segment in this skb. 1859 * Otherwise, we'll split the skb at last MSS boundary 1860 */ 1861 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1862 return needed - partial; 1863 1864 return needed; 1865 } 1866 1867 /* Can at least one segment of SKB be sent right now, according to the 1868 * congestion window rules? If so, return how many segments are allowed. 1869 */ 1870 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1871 const struct sk_buff *skb) 1872 { 1873 u32 in_flight, cwnd, halfcwnd; 1874 1875 /* Don't be strict about the congestion window for the final FIN. */ 1876 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1877 tcp_skb_pcount(skb) == 1) 1878 return 1; 1879 1880 in_flight = tcp_packets_in_flight(tp); 1881 cwnd = tp->snd_cwnd; 1882 if (in_flight >= cwnd) 1883 return 0; 1884 1885 /* For better scheduling, ensure we have at least 1886 * 2 GSO packets in flight. 1887 */ 1888 halfcwnd = max(cwnd >> 1, 1U); 1889 return min(halfcwnd, cwnd - in_flight); 1890 } 1891 1892 /* Initialize TSO state of a skb. 1893 * This must be invoked the first time we consider transmitting 1894 * SKB onto the wire. 1895 */ 1896 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1897 { 1898 int tso_segs = tcp_skb_pcount(skb); 1899 1900 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1901 tcp_set_skb_tso_segs(skb, mss_now); 1902 tso_segs = tcp_skb_pcount(skb); 1903 } 1904 return tso_segs; 1905 } 1906 1907 1908 /* Return true if the Nagle test allows this packet to be 1909 * sent now. 1910 */ 1911 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1912 unsigned int cur_mss, int nonagle) 1913 { 1914 /* Nagle rule does not apply to frames, which sit in the middle of the 1915 * write_queue (they have no chances to get new data). 1916 * 1917 * This is implemented in the callers, where they modify the 'nonagle' 1918 * argument based upon the location of SKB in the send queue. 1919 */ 1920 if (nonagle & TCP_NAGLE_PUSH) 1921 return true; 1922 1923 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1924 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1925 return true; 1926 1927 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1928 return true; 1929 1930 return false; 1931 } 1932 1933 /* Does at least the first segment of SKB fit into the send window? */ 1934 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1935 const struct sk_buff *skb, 1936 unsigned int cur_mss) 1937 { 1938 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1939 1940 if (skb->len > cur_mss) 1941 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1942 1943 return !after(end_seq, tcp_wnd_end(tp)); 1944 } 1945 1946 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1947 * which is put after SKB on the list. It is very much like 1948 * tcp_fragment() except that it may make several kinds of assumptions 1949 * in order to speed up the splitting operation. In particular, we 1950 * know that all the data is in scatter-gather pages, and that the 1951 * packet has never been sent out before (and thus is not cloned). 1952 */ 1953 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1954 unsigned int mss_now, gfp_t gfp) 1955 { 1956 int nlen = skb->len - len; 1957 struct sk_buff *buff; 1958 u8 flags; 1959 1960 /* All of a TSO frame must be composed of paged data. */ 1961 if (skb->len != skb->data_len) 1962 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 1963 skb, len, mss_now, gfp); 1964 1965 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1966 if (unlikely(!buff)) 1967 return -ENOMEM; 1968 skb_copy_decrypted(buff, skb); 1969 1970 sk_wmem_queued_add(sk, buff->truesize); 1971 sk_mem_charge(sk, buff->truesize); 1972 buff->truesize += nlen; 1973 skb->truesize -= nlen; 1974 1975 /* Correct the sequence numbers. */ 1976 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1977 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1978 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1979 1980 /* PSH and FIN should only be set in the second packet. */ 1981 flags = TCP_SKB_CB(skb)->tcp_flags; 1982 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1983 TCP_SKB_CB(buff)->tcp_flags = flags; 1984 1985 /* This packet was never sent out yet, so no SACK bits. */ 1986 TCP_SKB_CB(buff)->sacked = 0; 1987 1988 tcp_skb_fragment_eor(skb, buff); 1989 1990 buff->ip_summed = CHECKSUM_PARTIAL; 1991 skb_split(skb, buff, len); 1992 tcp_fragment_tstamp(skb, buff); 1993 1994 /* Fix up tso_factor for both original and new SKB. */ 1995 tcp_set_skb_tso_segs(skb, mss_now); 1996 tcp_set_skb_tso_segs(buff, mss_now); 1997 1998 /* Link BUFF into the send queue. */ 1999 __skb_header_release(buff); 2000 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2001 2002 return 0; 2003 } 2004 2005 /* Try to defer sending, if possible, in order to minimize the amount 2006 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2007 * 2008 * This algorithm is from John Heffner. 2009 */ 2010 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2011 bool *is_cwnd_limited, 2012 bool *is_rwnd_limited, 2013 u32 max_segs) 2014 { 2015 const struct inet_connection_sock *icsk = inet_csk(sk); 2016 u32 send_win, cong_win, limit, in_flight; 2017 struct tcp_sock *tp = tcp_sk(sk); 2018 struct sk_buff *head; 2019 int win_divisor; 2020 s64 delta; 2021 2022 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2023 goto send_now; 2024 2025 /* Avoid bursty behavior by allowing defer 2026 * only if the last write was recent (1 ms). 2027 * Note that tp->tcp_wstamp_ns can be in the future if we have 2028 * packets waiting in a qdisc or device for EDT delivery. 2029 */ 2030 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2031 if (delta > 0) 2032 goto send_now; 2033 2034 in_flight = tcp_packets_in_flight(tp); 2035 2036 BUG_ON(tcp_skb_pcount(skb) <= 1); 2037 BUG_ON(tp->snd_cwnd <= in_flight); 2038 2039 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2040 2041 /* From in_flight test above, we know that cwnd > in_flight. */ 2042 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 2043 2044 limit = min(send_win, cong_win); 2045 2046 /* If a full-sized TSO skb can be sent, do it. */ 2047 if (limit >= max_segs * tp->mss_cache) 2048 goto send_now; 2049 2050 /* Middle in queue won't get any more data, full sendable already? */ 2051 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2052 goto send_now; 2053 2054 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2055 if (win_divisor) { 2056 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 2057 2058 /* If at least some fraction of a window is available, 2059 * just use it. 2060 */ 2061 chunk /= win_divisor; 2062 if (limit >= chunk) 2063 goto send_now; 2064 } else { 2065 /* Different approach, try not to defer past a single 2066 * ACK. Receiver should ACK every other full sized 2067 * frame, so if we have space for more than 3 frames 2068 * then send now. 2069 */ 2070 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2071 goto send_now; 2072 } 2073 2074 /* TODO : use tsorted_sent_queue ? */ 2075 head = tcp_rtx_queue_head(sk); 2076 if (!head) 2077 goto send_now; 2078 delta = tp->tcp_clock_cache - head->tstamp; 2079 /* If next ACK is likely to come too late (half srtt), do not defer */ 2080 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2081 goto send_now; 2082 2083 /* Ok, it looks like it is advisable to defer. 2084 * Three cases are tracked : 2085 * 1) We are cwnd-limited 2086 * 2) We are rwnd-limited 2087 * 3) We are application limited. 2088 */ 2089 if (cong_win < send_win) { 2090 if (cong_win <= skb->len) { 2091 *is_cwnd_limited = true; 2092 return true; 2093 } 2094 } else { 2095 if (send_win <= skb->len) { 2096 *is_rwnd_limited = true; 2097 return true; 2098 } 2099 } 2100 2101 /* If this packet won't get more data, do not wait. */ 2102 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2103 TCP_SKB_CB(skb)->eor) 2104 goto send_now; 2105 2106 return true; 2107 2108 send_now: 2109 return false; 2110 } 2111 2112 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2113 { 2114 struct inet_connection_sock *icsk = inet_csk(sk); 2115 struct tcp_sock *tp = tcp_sk(sk); 2116 struct net *net = sock_net(sk); 2117 u32 interval; 2118 s32 delta; 2119 2120 interval = net->ipv4.sysctl_tcp_probe_interval; 2121 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2122 if (unlikely(delta >= interval * HZ)) { 2123 int mss = tcp_current_mss(sk); 2124 2125 /* Update current search range */ 2126 icsk->icsk_mtup.probe_size = 0; 2127 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2128 sizeof(struct tcphdr) + 2129 icsk->icsk_af_ops->net_header_len; 2130 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2131 2132 /* Update probe time stamp */ 2133 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2134 } 2135 } 2136 2137 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2138 { 2139 struct sk_buff *skb, *next; 2140 2141 skb = tcp_send_head(sk); 2142 tcp_for_write_queue_from_safe(skb, next, sk) { 2143 if (len <= skb->len) 2144 break; 2145 2146 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb)) 2147 return false; 2148 2149 len -= skb->len; 2150 } 2151 2152 return true; 2153 } 2154 2155 /* Create a new MTU probe if we are ready. 2156 * MTU probe is regularly attempting to increase the path MTU by 2157 * deliberately sending larger packets. This discovers routing 2158 * changes resulting in larger path MTUs. 2159 * 2160 * Returns 0 if we should wait to probe (no cwnd available), 2161 * 1 if a probe was sent, 2162 * -1 otherwise 2163 */ 2164 static int tcp_mtu_probe(struct sock *sk) 2165 { 2166 struct inet_connection_sock *icsk = inet_csk(sk); 2167 struct tcp_sock *tp = tcp_sk(sk); 2168 struct sk_buff *skb, *nskb, *next; 2169 struct net *net = sock_net(sk); 2170 int probe_size; 2171 int size_needed; 2172 int copy, len; 2173 int mss_now; 2174 int interval; 2175 2176 /* Not currently probing/verifying, 2177 * not in recovery, 2178 * have enough cwnd, and 2179 * not SACKing (the variable headers throw things off) 2180 */ 2181 if (likely(!icsk->icsk_mtup.enabled || 2182 icsk->icsk_mtup.probe_size || 2183 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2184 tp->snd_cwnd < 11 || 2185 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2186 return -1; 2187 2188 /* Use binary search for probe_size between tcp_mss_base, 2189 * and current mss_clamp. if (search_high - search_low) 2190 * smaller than a threshold, backoff from probing. 2191 */ 2192 mss_now = tcp_current_mss(sk); 2193 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2194 icsk->icsk_mtup.search_low) >> 1); 2195 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2196 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2197 /* When misfortune happens, we are reprobing actively, 2198 * and then reprobe timer has expired. We stick with current 2199 * probing process by not resetting search range to its orignal. 2200 */ 2201 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2202 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2203 /* Check whether enough time has elaplased for 2204 * another round of probing. 2205 */ 2206 tcp_mtu_check_reprobe(sk); 2207 return -1; 2208 } 2209 2210 /* Have enough data in the send queue to probe? */ 2211 if (tp->write_seq - tp->snd_nxt < size_needed) 2212 return -1; 2213 2214 if (tp->snd_wnd < size_needed) 2215 return -1; 2216 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2217 return 0; 2218 2219 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2220 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2221 if (!tcp_packets_in_flight(tp)) 2222 return -1; 2223 else 2224 return 0; 2225 } 2226 2227 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2228 return -1; 2229 2230 /* We're allowed to probe. Build it now. */ 2231 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2232 if (!nskb) 2233 return -1; 2234 sk_wmem_queued_add(sk, nskb->truesize); 2235 sk_mem_charge(sk, nskb->truesize); 2236 2237 skb = tcp_send_head(sk); 2238 skb_copy_decrypted(nskb, skb); 2239 2240 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2241 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2242 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2243 TCP_SKB_CB(nskb)->sacked = 0; 2244 nskb->csum = 0; 2245 nskb->ip_summed = CHECKSUM_PARTIAL; 2246 2247 tcp_insert_write_queue_before(nskb, skb, sk); 2248 tcp_highest_sack_replace(sk, skb, nskb); 2249 2250 len = 0; 2251 tcp_for_write_queue_from_safe(skb, next, sk) { 2252 copy = min_t(int, skb->len, probe_size - len); 2253 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2254 2255 if (skb->len <= copy) { 2256 /* We've eaten all the data from this skb. 2257 * Throw it away. */ 2258 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2259 /* If this is the last SKB we copy and eor is set 2260 * we need to propagate it to the new skb. 2261 */ 2262 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2263 tcp_skb_collapse_tstamp(nskb, skb); 2264 tcp_unlink_write_queue(skb, sk); 2265 sk_wmem_free_skb(sk, skb); 2266 } else { 2267 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2268 ~(TCPHDR_FIN|TCPHDR_PSH); 2269 if (!skb_shinfo(skb)->nr_frags) { 2270 skb_pull(skb, copy); 2271 } else { 2272 __pskb_trim_head(skb, copy); 2273 tcp_set_skb_tso_segs(skb, mss_now); 2274 } 2275 TCP_SKB_CB(skb)->seq += copy; 2276 } 2277 2278 len += copy; 2279 2280 if (len >= probe_size) 2281 break; 2282 } 2283 tcp_init_tso_segs(nskb, nskb->len); 2284 2285 /* We're ready to send. If this fails, the probe will 2286 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2287 */ 2288 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2289 /* Decrement cwnd here because we are sending 2290 * effectively two packets. */ 2291 tp->snd_cwnd--; 2292 tcp_event_new_data_sent(sk, nskb); 2293 2294 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2295 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2296 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2297 2298 return 1; 2299 } 2300 2301 return -1; 2302 } 2303 2304 static bool tcp_pacing_check(struct sock *sk) 2305 { 2306 struct tcp_sock *tp = tcp_sk(sk); 2307 2308 if (!tcp_needs_internal_pacing(sk)) 2309 return false; 2310 2311 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2312 return false; 2313 2314 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2315 hrtimer_start(&tp->pacing_timer, 2316 ns_to_ktime(tp->tcp_wstamp_ns), 2317 HRTIMER_MODE_ABS_PINNED_SOFT); 2318 sock_hold(sk); 2319 } 2320 return true; 2321 } 2322 2323 /* TCP Small Queues : 2324 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2325 * (These limits are doubled for retransmits) 2326 * This allows for : 2327 * - better RTT estimation and ACK scheduling 2328 * - faster recovery 2329 * - high rates 2330 * Alas, some drivers / subsystems require a fair amount 2331 * of queued bytes to ensure line rate. 2332 * One example is wifi aggregation (802.11 AMPDU) 2333 */ 2334 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2335 unsigned int factor) 2336 { 2337 unsigned long limit; 2338 2339 limit = max_t(unsigned long, 2340 2 * skb->truesize, 2341 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift)); 2342 if (sk->sk_pacing_status == SK_PACING_NONE) 2343 limit = min_t(unsigned long, limit, 2344 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2345 limit <<= factor; 2346 2347 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2348 tcp_sk(sk)->tcp_tx_delay) { 2349 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2350 2351 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2352 * approximate our needs assuming an ~100% skb->truesize overhead. 2353 * USEC_PER_SEC is approximated by 2^20. 2354 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2355 */ 2356 extra_bytes >>= (20 - 1); 2357 limit += extra_bytes; 2358 } 2359 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2360 /* Always send skb if rtx queue is empty. 2361 * No need to wait for TX completion to call us back, 2362 * after softirq/tasklet schedule. 2363 * This helps when TX completions are delayed too much. 2364 */ 2365 if (tcp_rtx_queue_empty(sk)) 2366 return false; 2367 2368 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2369 /* It is possible TX completion already happened 2370 * before we set TSQ_THROTTLED, so we must 2371 * test again the condition. 2372 */ 2373 smp_mb__after_atomic(); 2374 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2375 return true; 2376 } 2377 return false; 2378 } 2379 2380 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2381 { 2382 const u32 now = tcp_jiffies32; 2383 enum tcp_chrono old = tp->chrono_type; 2384 2385 if (old > TCP_CHRONO_UNSPEC) 2386 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2387 tp->chrono_start = now; 2388 tp->chrono_type = new; 2389 } 2390 2391 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2392 { 2393 struct tcp_sock *tp = tcp_sk(sk); 2394 2395 /* If there are multiple conditions worthy of tracking in a 2396 * chronograph then the highest priority enum takes precedence 2397 * over the other conditions. So that if something "more interesting" 2398 * starts happening, stop the previous chrono and start a new one. 2399 */ 2400 if (type > tp->chrono_type) 2401 tcp_chrono_set(tp, type); 2402 } 2403 2404 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2405 { 2406 struct tcp_sock *tp = tcp_sk(sk); 2407 2408 2409 /* There are multiple conditions worthy of tracking in a 2410 * chronograph, so that the highest priority enum takes 2411 * precedence over the other conditions (see tcp_chrono_start). 2412 * If a condition stops, we only stop chrono tracking if 2413 * it's the "most interesting" or current chrono we are 2414 * tracking and starts busy chrono if we have pending data. 2415 */ 2416 if (tcp_rtx_and_write_queues_empty(sk)) 2417 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2418 else if (type == tp->chrono_type) 2419 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2420 } 2421 2422 /* This routine writes packets to the network. It advances the 2423 * send_head. This happens as incoming acks open up the remote 2424 * window for us. 2425 * 2426 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2427 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2428 * account rare use of URG, this is not a big flaw. 2429 * 2430 * Send at most one packet when push_one > 0. Temporarily ignore 2431 * cwnd limit to force at most one packet out when push_one == 2. 2432 2433 * Returns true, if no segments are in flight and we have queued segments, 2434 * but cannot send anything now because of SWS or another problem. 2435 */ 2436 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2437 int push_one, gfp_t gfp) 2438 { 2439 struct tcp_sock *tp = tcp_sk(sk); 2440 struct sk_buff *skb; 2441 unsigned int tso_segs, sent_pkts; 2442 int cwnd_quota; 2443 int result; 2444 bool is_cwnd_limited = false, is_rwnd_limited = false; 2445 u32 max_segs; 2446 2447 sent_pkts = 0; 2448 2449 tcp_mstamp_refresh(tp); 2450 if (!push_one) { 2451 /* Do MTU probing. */ 2452 result = tcp_mtu_probe(sk); 2453 if (!result) { 2454 return false; 2455 } else if (result > 0) { 2456 sent_pkts = 1; 2457 } 2458 } 2459 2460 max_segs = tcp_tso_segs(sk, mss_now); 2461 while ((skb = tcp_send_head(sk))) { 2462 unsigned int limit; 2463 2464 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2465 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2466 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2467 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2468 tcp_init_tso_segs(skb, mss_now); 2469 goto repair; /* Skip network transmission */ 2470 } 2471 2472 if (tcp_pacing_check(sk)) 2473 break; 2474 2475 tso_segs = tcp_init_tso_segs(skb, mss_now); 2476 BUG_ON(!tso_segs); 2477 2478 cwnd_quota = tcp_cwnd_test(tp, skb); 2479 if (!cwnd_quota) { 2480 if (push_one == 2) 2481 /* Force out a loss probe pkt. */ 2482 cwnd_quota = 1; 2483 else 2484 break; 2485 } 2486 2487 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2488 is_rwnd_limited = true; 2489 break; 2490 } 2491 2492 if (tso_segs == 1) { 2493 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2494 (tcp_skb_is_last(sk, skb) ? 2495 nonagle : TCP_NAGLE_PUSH)))) 2496 break; 2497 } else { 2498 if (!push_one && 2499 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2500 &is_rwnd_limited, max_segs)) 2501 break; 2502 } 2503 2504 limit = mss_now; 2505 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2506 limit = tcp_mss_split_point(sk, skb, mss_now, 2507 min_t(unsigned int, 2508 cwnd_quota, 2509 max_segs), 2510 nonagle); 2511 2512 if (skb->len > limit && 2513 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2514 break; 2515 2516 if (tcp_small_queue_check(sk, skb, 0)) 2517 break; 2518 2519 /* Argh, we hit an empty skb(), presumably a thread 2520 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2521 * We do not want to send a pure-ack packet and have 2522 * a strange looking rtx queue with empty packet(s). 2523 */ 2524 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2525 break; 2526 2527 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2528 break; 2529 2530 repair: 2531 /* Advance the send_head. This one is sent out. 2532 * This call will increment packets_out. 2533 */ 2534 tcp_event_new_data_sent(sk, skb); 2535 2536 tcp_minshall_update(tp, mss_now, skb); 2537 sent_pkts += tcp_skb_pcount(skb); 2538 2539 if (push_one) 2540 break; 2541 } 2542 2543 if (is_rwnd_limited) 2544 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2545 else 2546 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2547 2548 if (likely(sent_pkts)) { 2549 if (tcp_in_cwnd_reduction(sk)) 2550 tp->prr_out += sent_pkts; 2551 2552 /* Send one loss probe per tail loss episode. */ 2553 if (push_one != 2) 2554 tcp_schedule_loss_probe(sk, false); 2555 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2556 tcp_cwnd_validate(sk, is_cwnd_limited); 2557 return false; 2558 } 2559 return !tp->packets_out && !tcp_write_queue_empty(sk); 2560 } 2561 2562 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2563 { 2564 struct inet_connection_sock *icsk = inet_csk(sk); 2565 struct tcp_sock *tp = tcp_sk(sk); 2566 u32 timeout, rto_delta_us; 2567 int early_retrans; 2568 2569 /* Don't do any loss probe on a Fast Open connection before 3WHS 2570 * finishes. 2571 */ 2572 if (rcu_access_pointer(tp->fastopen_rsk)) 2573 return false; 2574 2575 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2576 /* Schedule a loss probe in 2*RTT for SACK capable connections 2577 * not in loss recovery, that are either limited by cwnd or application. 2578 */ 2579 if ((early_retrans != 3 && early_retrans != 4) || 2580 !tp->packets_out || !tcp_is_sack(tp) || 2581 (icsk->icsk_ca_state != TCP_CA_Open && 2582 icsk->icsk_ca_state != TCP_CA_CWR)) 2583 return false; 2584 2585 /* Probe timeout is 2*rtt. Add minimum RTO to account 2586 * for delayed ack when there's one outstanding packet. If no RTT 2587 * sample is available then probe after TCP_TIMEOUT_INIT. 2588 */ 2589 if (tp->srtt_us) { 2590 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2591 if (tp->packets_out == 1) 2592 timeout += TCP_RTO_MIN; 2593 else 2594 timeout += TCP_TIMEOUT_MIN; 2595 } else { 2596 timeout = TCP_TIMEOUT_INIT; 2597 } 2598 2599 /* If the RTO formula yields an earlier time, then use that time. */ 2600 rto_delta_us = advancing_rto ? 2601 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2602 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2603 if (rto_delta_us > 0) 2604 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2605 2606 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2607 return true; 2608 } 2609 2610 /* Thanks to skb fast clones, we can detect if a prior transmit of 2611 * a packet is still in a qdisc or driver queue. 2612 * In this case, there is very little point doing a retransmit ! 2613 */ 2614 static bool skb_still_in_host_queue(const struct sock *sk, 2615 const struct sk_buff *skb) 2616 { 2617 if (unlikely(skb_fclone_busy(sk, skb))) { 2618 NET_INC_STATS(sock_net(sk), 2619 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2620 return true; 2621 } 2622 return false; 2623 } 2624 2625 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2626 * retransmit the last segment. 2627 */ 2628 void tcp_send_loss_probe(struct sock *sk) 2629 { 2630 struct tcp_sock *tp = tcp_sk(sk); 2631 struct sk_buff *skb; 2632 int pcount; 2633 int mss = tcp_current_mss(sk); 2634 2635 skb = tcp_send_head(sk); 2636 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2637 pcount = tp->packets_out; 2638 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2639 if (tp->packets_out > pcount) 2640 goto probe_sent; 2641 goto rearm_timer; 2642 } 2643 skb = skb_rb_last(&sk->tcp_rtx_queue); 2644 if (unlikely(!skb)) { 2645 WARN_ONCE(tp->packets_out, 2646 "invalid inflight: %u state %u cwnd %u mss %d\n", 2647 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); 2648 inet_csk(sk)->icsk_pending = 0; 2649 return; 2650 } 2651 2652 /* At most one outstanding TLP retransmission. */ 2653 if (tp->tlp_high_seq) 2654 goto rearm_timer; 2655 2656 if (skb_still_in_host_queue(sk, skb)) 2657 goto rearm_timer; 2658 2659 pcount = tcp_skb_pcount(skb); 2660 if (WARN_ON(!pcount)) 2661 goto rearm_timer; 2662 2663 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2664 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2665 (pcount - 1) * mss, mss, 2666 GFP_ATOMIC))) 2667 goto rearm_timer; 2668 skb = skb_rb_next(skb); 2669 } 2670 2671 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2672 goto rearm_timer; 2673 2674 if (__tcp_retransmit_skb(sk, skb, 1)) 2675 goto rearm_timer; 2676 2677 /* Record snd_nxt for loss detection. */ 2678 tp->tlp_high_seq = tp->snd_nxt; 2679 2680 probe_sent: 2681 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2682 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2683 inet_csk(sk)->icsk_pending = 0; 2684 rearm_timer: 2685 tcp_rearm_rto(sk); 2686 } 2687 2688 /* Push out any pending frames which were held back due to 2689 * TCP_CORK or attempt at coalescing tiny packets. 2690 * The socket must be locked by the caller. 2691 */ 2692 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2693 int nonagle) 2694 { 2695 /* If we are closed, the bytes will have to remain here. 2696 * In time closedown will finish, we empty the write queue and 2697 * all will be happy. 2698 */ 2699 if (unlikely(sk->sk_state == TCP_CLOSE)) 2700 return; 2701 2702 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2703 sk_gfp_mask(sk, GFP_ATOMIC))) 2704 tcp_check_probe_timer(sk); 2705 } 2706 2707 /* Send _single_ skb sitting at the send head. This function requires 2708 * true push pending frames to setup probe timer etc. 2709 */ 2710 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2711 { 2712 struct sk_buff *skb = tcp_send_head(sk); 2713 2714 BUG_ON(!skb || skb->len < mss_now); 2715 2716 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2717 } 2718 2719 /* This function returns the amount that we can raise the 2720 * usable window based on the following constraints 2721 * 2722 * 1. The window can never be shrunk once it is offered (RFC 793) 2723 * 2. We limit memory per socket 2724 * 2725 * RFC 1122: 2726 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2727 * RECV.NEXT + RCV.WIN fixed until: 2728 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2729 * 2730 * i.e. don't raise the right edge of the window until you can raise 2731 * it at least MSS bytes. 2732 * 2733 * Unfortunately, the recommended algorithm breaks header prediction, 2734 * since header prediction assumes th->window stays fixed. 2735 * 2736 * Strictly speaking, keeping th->window fixed violates the receiver 2737 * side SWS prevention criteria. The problem is that under this rule 2738 * a stream of single byte packets will cause the right side of the 2739 * window to always advance by a single byte. 2740 * 2741 * Of course, if the sender implements sender side SWS prevention 2742 * then this will not be a problem. 2743 * 2744 * BSD seems to make the following compromise: 2745 * 2746 * If the free space is less than the 1/4 of the maximum 2747 * space available and the free space is less than 1/2 mss, 2748 * then set the window to 0. 2749 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2750 * Otherwise, just prevent the window from shrinking 2751 * and from being larger than the largest representable value. 2752 * 2753 * This prevents incremental opening of the window in the regime 2754 * where TCP is limited by the speed of the reader side taking 2755 * data out of the TCP receive queue. It does nothing about 2756 * those cases where the window is constrained on the sender side 2757 * because the pipeline is full. 2758 * 2759 * BSD also seems to "accidentally" limit itself to windows that are a 2760 * multiple of MSS, at least until the free space gets quite small. 2761 * This would appear to be a side effect of the mbuf implementation. 2762 * Combining these two algorithms results in the observed behavior 2763 * of having a fixed window size at almost all times. 2764 * 2765 * Below we obtain similar behavior by forcing the offered window to 2766 * a multiple of the mss when it is feasible to do so. 2767 * 2768 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2769 * Regular options like TIMESTAMP are taken into account. 2770 */ 2771 u32 __tcp_select_window(struct sock *sk) 2772 { 2773 struct inet_connection_sock *icsk = inet_csk(sk); 2774 struct tcp_sock *tp = tcp_sk(sk); 2775 /* MSS for the peer's data. Previous versions used mss_clamp 2776 * here. I don't know if the value based on our guesses 2777 * of peer's MSS is better for the performance. It's more correct 2778 * but may be worse for the performance because of rcv_mss 2779 * fluctuations. --SAW 1998/11/1 2780 */ 2781 int mss = icsk->icsk_ack.rcv_mss; 2782 int free_space = tcp_space(sk); 2783 int allowed_space = tcp_full_space(sk); 2784 int full_space, window; 2785 2786 if (sk_is_mptcp(sk)) 2787 mptcp_space(sk, &free_space, &allowed_space); 2788 2789 full_space = min_t(int, tp->window_clamp, allowed_space); 2790 2791 if (unlikely(mss > full_space)) { 2792 mss = full_space; 2793 if (mss <= 0) 2794 return 0; 2795 } 2796 if (free_space < (full_space >> 1)) { 2797 icsk->icsk_ack.quick = 0; 2798 2799 if (tcp_under_memory_pressure(sk)) 2800 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2801 4U * tp->advmss); 2802 2803 /* free_space might become our new window, make sure we don't 2804 * increase it due to wscale. 2805 */ 2806 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2807 2808 /* if free space is less than mss estimate, or is below 1/16th 2809 * of the maximum allowed, try to move to zero-window, else 2810 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2811 * new incoming data is dropped due to memory limits. 2812 * With large window, mss test triggers way too late in order 2813 * to announce zero window in time before rmem limit kicks in. 2814 */ 2815 if (free_space < (allowed_space >> 4) || free_space < mss) 2816 return 0; 2817 } 2818 2819 if (free_space > tp->rcv_ssthresh) 2820 free_space = tp->rcv_ssthresh; 2821 2822 /* Don't do rounding if we are using window scaling, since the 2823 * scaled window will not line up with the MSS boundary anyway. 2824 */ 2825 if (tp->rx_opt.rcv_wscale) { 2826 window = free_space; 2827 2828 /* Advertise enough space so that it won't get scaled away. 2829 * Import case: prevent zero window announcement if 2830 * 1<<rcv_wscale > mss. 2831 */ 2832 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2833 } else { 2834 window = tp->rcv_wnd; 2835 /* Get the largest window that is a nice multiple of mss. 2836 * Window clamp already applied above. 2837 * If our current window offering is within 1 mss of the 2838 * free space we just keep it. This prevents the divide 2839 * and multiply from happening most of the time. 2840 * We also don't do any window rounding when the free space 2841 * is too small. 2842 */ 2843 if (window <= free_space - mss || window > free_space) 2844 window = rounddown(free_space, mss); 2845 else if (mss == full_space && 2846 free_space > window + (full_space >> 1)) 2847 window = free_space; 2848 } 2849 2850 return window; 2851 } 2852 2853 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2854 const struct sk_buff *next_skb) 2855 { 2856 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2857 const struct skb_shared_info *next_shinfo = 2858 skb_shinfo(next_skb); 2859 struct skb_shared_info *shinfo = skb_shinfo(skb); 2860 2861 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2862 shinfo->tskey = next_shinfo->tskey; 2863 TCP_SKB_CB(skb)->txstamp_ack |= 2864 TCP_SKB_CB(next_skb)->txstamp_ack; 2865 } 2866 } 2867 2868 /* Collapses two adjacent SKB's during retransmission. */ 2869 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2870 { 2871 struct tcp_sock *tp = tcp_sk(sk); 2872 struct sk_buff *next_skb = skb_rb_next(skb); 2873 int next_skb_size; 2874 2875 next_skb_size = next_skb->len; 2876 2877 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2878 2879 if (next_skb_size) { 2880 if (next_skb_size <= skb_availroom(skb)) 2881 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2882 next_skb_size); 2883 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 2884 return false; 2885 } 2886 tcp_highest_sack_replace(sk, next_skb, skb); 2887 2888 /* Update sequence range on original skb. */ 2889 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2890 2891 /* Merge over control information. This moves PSH/FIN etc. over */ 2892 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2893 2894 /* All done, get rid of second SKB and account for it so 2895 * packet counting does not break. 2896 */ 2897 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2898 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2899 2900 /* changed transmit queue under us so clear hints */ 2901 tcp_clear_retrans_hints_partial(tp); 2902 if (next_skb == tp->retransmit_skb_hint) 2903 tp->retransmit_skb_hint = skb; 2904 2905 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2906 2907 tcp_skb_collapse_tstamp(skb, next_skb); 2908 2909 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2910 return true; 2911 } 2912 2913 /* Check if coalescing SKBs is legal. */ 2914 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2915 { 2916 if (tcp_skb_pcount(skb) > 1) 2917 return false; 2918 if (skb_cloned(skb)) 2919 return false; 2920 /* Some heuristics for collapsing over SACK'd could be invented */ 2921 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2922 return false; 2923 2924 return true; 2925 } 2926 2927 /* Collapse packets in the retransmit queue to make to create 2928 * less packets on the wire. This is only done on retransmission. 2929 */ 2930 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2931 int space) 2932 { 2933 struct tcp_sock *tp = tcp_sk(sk); 2934 struct sk_buff *skb = to, *tmp; 2935 bool first = true; 2936 2937 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2938 return; 2939 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2940 return; 2941 2942 skb_rbtree_walk_from_safe(skb, tmp) { 2943 if (!tcp_can_collapse(sk, skb)) 2944 break; 2945 2946 if (!tcp_skb_can_collapse(to, skb)) 2947 break; 2948 2949 space -= skb->len; 2950 2951 if (first) { 2952 first = false; 2953 continue; 2954 } 2955 2956 if (space < 0) 2957 break; 2958 2959 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2960 break; 2961 2962 if (!tcp_collapse_retrans(sk, to)) 2963 break; 2964 } 2965 } 2966 2967 /* This retransmits one SKB. Policy decisions and retransmit queue 2968 * state updates are done by the caller. Returns non-zero if an 2969 * error occurred which prevented the send. 2970 */ 2971 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2972 { 2973 struct inet_connection_sock *icsk = inet_csk(sk); 2974 struct tcp_sock *tp = tcp_sk(sk); 2975 unsigned int cur_mss; 2976 int diff, len, err; 2977 2978 2979 /* Inconclusive MTU probe */ 2980 if (icsk->icsk_mtup.probe_size) 2981 icsk->icsk_mtup.probe_size = 0; 2982 2983 /* Do not sent more than we queued. 1/4 is reserved for possible 2984 * copying overhead: fragmentation, tunneling, mangling etc. 2985 */ 2986 if (refcount_read(&sk->sk_wmem_alloc) > 2987 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2988 sk->sk_sndbuf)) 2989 return -EAGAIN; 2990 2991 if (skb_still_in_host_queue(sk, skb)) 2992 return -EBUSY; 2993 2994 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2995 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2996 WARN_ON_ONCE(1); 2997 return -EINVAL; 2998 } 2999 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3000 return -ENOMEM; 3001 } 3002 3003 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3004 return -EHOSTUNREACH; /* Routing failure or similar. */ 3005 3006 cur_mss = tcp_current_mss(sk); 3007 3008 /* If receiver has shrunk his window, and skb is out of 3009 * new window, do not retransmit it. The exception is the 3010 * case, when window is shrunk to zero. In this case 3011 * our retransmit serves as a zero window probe. 3012 */ 3013 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 3014 TCP_SKB_CB(skb)->seq != tp->snd_una) 3015 return -EAGAIN; 3016 3017 len = cur_mss * segs; 3018 if (skb->len > len) { 3019 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3020 cur_mss, GFP_ATOMIC)) 3021 return -ENOMEM; /* We'll try again later. */ 3022 } else { 3023 if (skb_unclone(skb, GFP_ATOMIC)) 3024 return -ENOMEM; 3025 3026 diff = tcp_skb_pcount(skb); 3027 tcp_set_skb_tso_segs(skb, cur_mss); 3028 diff -= tcp_skb_pcount(skb); 3029 if (diff) 3030 tcp_adjust_pcount(sk, skb, diff); 3031 if (skb->len < cur_mss) 3032 tcp_retrans_try_collapse(sk, skb, cur_mss); 3033 } 3034 3035 /* RFC3168, section 6.1.1.1. ECN fallback */ 3036 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3037 tcp_ecn_clear_syn(sk, skb); 3038 3039 /* Update global and local TCP statistics. */ 3040 segs = tcp_skb_pcount(skb); 3041 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3042 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3043 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3044 tp->total_retrans += segs; 3045 tp->bytes_retrans += skb->len; 3046 3047 /* make sure skb->data is aligned on arches that require it 3048 * and check if ack-trimming & collapsing extended the headroom 3049 * beyond what csum_start can cover. 3050 */ 3051 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3052 skb_headroom(skb) >= 0xFFFF)) { 3053 struct sk_buff *nskb; 3054 3055 tcp_skb_tsorted_save(skb) { 3056 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3057 if (nskb) { 3058 nskb->dev = NULL; 3059 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3060 } else { 3061 err = -ENOBUFS; 3062 } 3063 } tcp_skb_tsorted_restore(skb); 3064 3065 if (!err) { 3066 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3067 tcp_rate_skb_sent(sk, skb); 3068 } 3069 } else { 3070 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3071 } 3072 3073 /* To avoid taking spuriously low RTT samples based on a timestamp 3074 * for a transmit that never happened, always mark EVER_RETRANS 3075 */ 3076 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3077 3078 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3079 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3080 TCP_SKB_CB(skb)->seq, segs, err); 3081 3082 if (likely(!err)) { 3083 trace_tcp_retransmit_skb(sk, skb); 3084 } else if (err != -EBUSY) { 3085 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3086 } 3087 return err; 3088 } 3089 3090 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3091 { 3092 struct tcp_sock *tp = tcp_sk(sk); 3093 int err = __tcp_retransmit_skb(sk, skb, segs); 3094 3095 if (err == 0) { 3096 #if FASTRETRANS_DEBUG > 0 3097 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3098 net_dbg_ratelimited("retrans_out leaked\n"); 3099 } 3100 #endif 3101 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3102 tp->retrans_out += tcp_skb_pcount(skb); 3103 } 3104 3105 /* Save stamp of the first (attempted) retransmit. */ 3106 if (!tp->retrans_stamp) 3107 tp->retrans_stamp = tcp_skb_timestamp(skb); 3108 3109 if (tp->undo_retrans < 0) 3110 tp->undo_retrans = 0; 3111 tp->undo_retrans += tcp_skb_pcount(skb); 3112 return err; 3113 } 3114 3115 /* This gets called after a retransmit timeout, and the initially 3116 * retransmitted data is acknowledged. It tries to continue 3117 * resending the rest of the retransmit queue, until either 3118 * we've sent it all or the congestion window limit is reached. 3119 */ 3120 void tcp_xmit_retransmit_queue(struct sock *sk) 3121 { 3122 const struct inet_connection_sock *icsk = inet_csk(sk); 3123 struct sk_buff *skb, *rtx_head, *hole = NULL; 3124 struct tcp_sock *tp = tcp_sk(sk); 3125 bool rearm_timer = false; 3126 u32 max_segs; 3127 int mib_idx; 3128 3129 if (!tp->packets_out) 3130 return; 3131 3132 rtx_head = tcp_rtx_queue_head(sk); 3133 skb = tp->retransmit_skb_hint ?: rtx_head; 3134 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3135 skb_rbtree_walk_from(skb) { 3136 __u8 sacked; 3137 int segs; 3138 3139 if (tcp_pacing_check(sk)) 3140 break; 3141 3142 /* we could do better than to assign each time */ 3143 if (!hole) 3144 tp->retransmit_skb_hint = skb; 3145 3146 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 3147 if (segs <= 0) 3148 break; 3149 sacked = TCP_SKB_CB(skb)->sacked; 3150 /* In case tcp_shift_skb_data() have aggregated large skbs, 3151 * we need to make sure not sending too bigs TSO packets 3152 */ 3153 segs = min_t(int, segs, max_segs); 3154 3155 if (tp->retrans_out >= tp->lost_out) { 3156 break; 3157 } else if (!(sacked & TCPCB_LOST)) { 3158 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3159 hole = skb; 3160 continue; 3161 3162 } else { 3163 if (icsk->icsk_ca_state != TCP_CA_Loss) 3164 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3165 else 3166 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3167 } 3168 3169 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3170 continue; 3171 3172 if (tcp_small_queue_check(sk, skb, 1)) 3173 break; 3174 3175 if (tcp_retransmit_skb(sk, skb, segs)) 3176 break; 3177 3178 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3179 3180 if (tcp_in_cwnd_reduction(sk)) 3181 tp->prr_out += tcp_skb_pcount(skb); 3182 3183 if (skb == rtx_head && 3184 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3185 rearm_timer = true; 3186 3187 } 3188 if (rearm_timer) 3189 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3190 inet_csk(sk)->icsk_rto, 3191 TCP_RTO_MAX); 3192 } 3193 3194 /* We allow to exceed memory limits for FIN packets to expedite 3195 * connection tear down and (memory) recovery. 3196 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3197 * or even be forced to close flow without any FIN. 3198 * In general, we want to allow one skb per socket to avoid hangs 3199 * with edge trigger epoll() 3200 */ 3201 void sk_forced_mem_schedule(struct sock *sk, int size) 3202 { 3203 int amt; 3204 3205 if (size <= sk->sk_forward_alloc) 3206 return; 3207 amt = sk_mem_pages(size); 3208 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3209 sk_memory_allocated_add(sk, amt); 3210 3211 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3212 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3213 } 3214 3215 /* Send a FIN. The caller locks the socket for us. 3216 * We should try to send a FIN packet really hard, but eventually give up. 3217 */ 3218 void tcp_send_fin(struct sock *sk) 3219 { 3220 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3221 struct tcp_sock *tp = tcp_sk(sk); 3222 3223 /* Optimization, tack on the FIN if we have one skb in write queue and 3224 * this skb was not yet sent, or we are under memory pressure. 3225 * Note: in the latter case, FIN packet will be sent after a timeout, 3226 * as TCP stack thinks it has already been transmitted. 3227 */ 3228 tskb = tail; 3229 if (!tskb && tcp_under_memory_pressure(sk)) 3230 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3231 3232 if (tskb) { 3233 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3234 TCP_SKB_CB(tskb)->end_seq++; 3235 tp->write_seq++; 3236 if (!tail) { 3237 /* This means tskb was already sent. 3238 * Pretend we included the FIN on previous transmit. 3239 * We need to set tp->snd_nxt to the value it would have 3240 * if FIN had been sent. This is because retransmit path 3241 * does not change tp->snd_nxt. 3242 */ 3243 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3244 return; 3245 } 3246 } else { 3247 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3248 if (unlikely(!skb)) 3249 return; 3250 3251 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3252 skb_reserve(skb, MAX_TCP_HEADER); 3253 sk_forced_mem_schedule(sk, skb->truesize); 3254 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3255 tcp_init_nondata_skb(skb, tp->write_seq, 3256 TCPHDR_ACK | TCPHDR_FIN); 3257 tcp_queue_skb(sk, skb); 3258 } 3259 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3260 } 3261 3262 /* We get here when a process closes a file descriptor (either due to 3263 * an explicit close() or as a byproduct of exit()'ing) and there 3264 * was unread data in the receive queue. This behavior is recommended 3265 * by RFC 2525, section 2.17. -DaveM 3266 */ 3267 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3268 { 3269 struct sk_buff *skb; 3270 3271 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3272 3273 /* NOTE: No TCP options attached and we never retransmit this. */ 3274 skb = alloc_skb(MAX_TCP_HEADER, priority); 3275 if (!skb) { 3276 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3277 return; 3278 } 3279 3280 /* Reserve space for headers and prepare control bits. */ 3281 skb_reserve(skb, MAX_TCP_HEADER); 3282 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3283 TCPHDR_ACK | TCPHDR_RST); 3284 tcp_mstamp_refresh(tcp_sk(sk)); 3285 /* Send it off. */ 3286 if (tcp_transmit_skb(sk, skb, 0, priority)) 3287 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3288 3289 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3290 * skb here is different to the troublesome skb, so use NULL 3291 */ 3292 trace_tcp_send_reset(sk, NULL); 3293 } 3294 3295 /* Send a crossed SYN-ACK during socket establishment. 3296 * WARNING: This routine must only be called when we have already sent 3297 * a SYN packet that crossed the incoming SYN that caused this routine 3298 * to get called. If this assumption fails then the initial rcv_wnd 3299 * and rcv_wscale values will not be correct. 3300 */ 3301 int tcp_send_synack(struct sock *sk) 3302 { 3303 struct sk_buff *skb; 3304 3305 skb = tcp_rtx_queue_head(sk); 3306 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3307 pr_err("%s: wrong queue state\n", __func__); 3308 return -EFAULT; 3309 } 3310 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3311 if (skb_cloned(skb)) { 3312 struct sk_buff *nskb; 3313 3314 tcp_skb_tsorted_save(skb) { 3315 nskb = skb_copy(skb, GFP_ATOMIC); 3316 } tcp_skb_tsorted_restore(skb); 3317 if (!nskb) 3318 return -ENOMEM; 3319 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3320 tcp_highest_sack_replace(sk, skb, nskb); 3321 tcp_rtx_queue_unlink_and_free(skb, sk); 3322 __skb_header_release(nskb); 3323 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3324 sk_wmem_queued_add(sk, nskb->truesize); 3325 sk_mem_charge(sk, nskb->truesize); 3326 skb = nskb; 3327 } 3328 3329 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3330 tcp_ecn_send_synack(sk, skb); 3331 } 3332 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3333 } 3334 3335 /** 3336 * tcp_make_synack - Prepare a SYN-ACK. 3337 * sk: listener socket 3338 * dst: dst entry attached to the SYNACK 3339 * req: request_sock pointer 3340 * foc: cookie for tcp fast open 3341 * synack_type: Type of synback to prepare 3342 * 3343 * Allocate one skb and build a SYNACK packet. 3344 * @dst is consumed : Caller should not use it again. 3345 */ 3346 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3347 struct request_sock *req, 3348 struct tcp_fastopen_cookie *foc, 3349 enum tcp_synack_type synack_type) 3350 { 3351 struct inet_request_sock *ireq = inet_rsk(req); 3352 const struct tcp_sock *tp = tcp_sk(sk); 3353 struct tcp_md5sig_key *md5 = NULL; 3354 struct tcp_out_options opts; 3355 struct sk_buff *skb; 3356 int tcp_header_size; 3357 struct tcphdr *th; 3358 int mss; 3359 u64 now; 3360 3361 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3362 if (unlikely(!skb)) { 3363 dst_release(dst); 3364 return NULL; 3365 } 3366 /* Reserve space for headers. */ 3367 skb_reserve(skb, MAX_TCP_HEADER); 3368 3369 switch (synack_type) { 3370 case TCP_SYNACK_NORMAL: 3371 skb_set_owner_w(skb, req_to_sk(req)); 3372 break; 3373 case TCP_SYNACK_COOKIE: 3374 /* Under synflood, we do not attach skb to a socket, 3375 * to avoid false sharing. 3376 */ 3377 break; 3378 case TCP_SYNACK_FASTOPEN: 3379 /* sk is a const pointer, because we want to express multiple 3380 * cpu might call us concurrently. 3381 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3382 */ 3383 skb_set_owner_w(skb, (struct sock *)sk); 3384 break; 3385 } 3386 skb_dst_set(skb, dst); 3387 3388 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3389 3390 memset(&opts, 0, sizeof(opts)); 3391 now = tcp_clock_ns(); 3392 #ifdef CONFIG_SYN_COOKIES 3393 if (unlikely(req->cookie_ts)) 3394 skb->skb_mstamp_ns = cookie_init_timestamp(req, now); 3395 else 3396 #endif 3397 { 3398 skb->skb_mstamp_ns = now; 3399 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3400 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3401 } 3402 3403 #ifdef CONFIG_TCP_MD5SIG 3404 rcu_read_lock(); 3405 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3406 #endif 3407 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3408 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3409 foc, synack_type) + sizeof(*th); 3410 3411 skb_push(skb, tcp_header_size); 3412 skb_reset_transport_header(skb); 3413 3414 th = (struct tcphdr *)skb->data; 3415 memset(th, 0, sizeof(struct tcphdr)); 3416 th->syn = 1; 3417 th->ack = 1; 3418 tcp_ecn_make_synack(req, th); 3419 th->source = htons(ireq->ir_num); 3420 th->dest = ireq->ir_rmt_port; 3421 skb->mark = ireq->ir_mark; 3422 skb->ip_summed = CHECKSUM_PARTIAL; 3423 th->seq = htonl(tcp_rsk(req)->snt_isn); 3424 /* XXX data is queued and acked as is. No buffer/window check */ 3425 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3426 3427 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3428 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3429 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3430 th->doff = (tcp_header_size >> 2); 3431 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3432 3433 #ifdef CONFIG_TCP_MD5SIG 3434 /* Okay, we have all we need - do the md5 hash if needed */ 3435 if (md5) 3436 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3437 md5, req_to_sk(req), skb); 3438 rcu_read_unlock(); 3439 #endif 3440 3441 skb->skb_mstamp_ns = now; 3442 tcp_add_tx_delay(skb, tp); 3443 3444 return skb; 3445 } 3446 EXPORT_SYMBOL(tcp_make_synack); 3447 3448 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3449 { 3450 struct inet_connection_sock *icsk = inet_csk(sk); 3451 const struct tcp_congestion_ops *ca; 3452 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3453 3454 if (ca_key == TCP_CA_UNSPEC) 3455 return; 3456 3457 rcu_read_lock(); 3458 ca = tcp_ca_find_key(ca_key); 3459 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3460 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3461 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3462 icsk->icsk_ca_ops = ca; 3463 } 3464 rcu_read_unlock(); 3465 } 3466 3467 /* Do all connect socket setups that can be done AF independent. */ 3468 static void tcp_connect_init(struct sock *sk) 3469 { 3470 const struct dst_entry *dst = __sk_dst_get(sk); 3471 struct tcp_sock *tp = tcp_sk(sk); 3472 __u8 rcv_wscale; 3473 u32 rcv_wnd; 3474 3475 /* We'll fix this up when we get a response from the other end. 3476 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3477 */ 3478 tp->tcp_header_len = sizeof(struct tcphdr); 3479 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3480 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3481 3482 #ifdef CONFIG_TCP_MD5SIG 3483 if (tp->af_specific->md5_lookup(sk, sk)) 3484 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3485 #endif 3486 3487 /* If user gave his TCP_MAXSEG, record it to clamp */ 3488 if (tp->rx_opt.user_mss) 3489 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3490 tp->max_window = 0; 3491 tcp_mtup_init(sk); 3492 tcp_sync_mss(sk, dst_mtu(dst)); 3493 3494 tcp_ca_dst_init(sk, dst); 3495 3496 if (!tp->window_clamp) 3497 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3498 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3499 3500 tcp_initialize_rcv_mss(sk); 3501 3502 /* limit the window selection if the user enforce a smaller rx buffer */ 3503 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3504 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3505 tp->window_clamp = tcp_full_space(sk); 3506 3507 rcv_wnd = tcp_rwnd_init_bpf(sk); 3508 if (rcv_wnd == 0) 3509 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3510 3511 tcp_select_initial_window(sk, tcp_full_space(sk), 3512 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3513 &tp->rcv_wnd, 3514 &tp->window_clamp, 3515 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3516 &rcv_wscale, 3517 rcv_wnd); 3518 3519 tp->rx_opt.rcv_wscale = rcv_wscale; 3520 tp->rcv_ssthresh = tp->rcv_wnd; 3521 3522 sk->sk_err = 0; 3523 sock_reset_flag(sk, SOCK_DONE); 3524 tp->snd_wnd = 0; 3525 tcp_init_wl(tp, 0); 3526 tcp_write_queue_purge(sk); 3527 tp->snd_una = tp->write_seq; 3528 tp->snd_sml = tp->write_seq; 3529 tp->snd_up = tp->write_seq; 3530 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3531 3532 if (likely(!tp->repair)) 3533 tp->rcv_nxt = 0; 3534 else 3535 tp->rcv_tstamp = tcp_jiffies32; 3536 tp->rcv_wup = tp->rcv_nxt; 3537 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3538 3539 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3540 inet_csk(sk)->icsk_retransmits = 0; 3541 tcp_clear_retrans(tp); 3542 } 3543 3544 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3545 { 3546 struct tcp_sock *tp = tcp_sk(sk); 3547 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3548 3549 tcb->end_seq += skb->len; 3550 __skb_header_release(skb); 3551 sk_wmem_queued_add(sk, skb->truesize); 3552 sk_mem_charge(sk, skb->truesize); 3553 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3554 tp->packets_out += tcp_skb_pcount(skb); 3555 } 3556 3557 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3558 * queue a data-only packet after the regular SYN, such that regular SYNs 3559 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3560 * only the SYN sequence, the data are retransmitted in the first ACK. 3561 * If cookie is not cached or other error occurs, falls back to send a 3562 * regular SYN with Fast Open cookie request option. 3563 */ 3564 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3565 { 3566 struct tcp_sock *tp = tcp_sk(sk); 3567 struct tcp_fastopen_request *fo = tp->fastopen_req; 3568 int space, err = 0; 3569 struct sk_buff *syn_data; 3570 3571 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3572 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3573 goto fallback; 3574 3575 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3576 * user-MSS. Reserve maximum option space for middleboxes that add 3577 * private TCP options. The cost is reduced data space in SYN :( 3578 */ 3579 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3580 3581 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3582 MAX_TCP_OPTION_SPACE; 3583 3584 space = min_t(size_t, space, fo->size); 3585 3586 /* limit to order-0 allocations */ 3587 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3588 3589 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3590 if (!syn_data) 3591 goto fallback; 3592 syn_data->ip_summed = CHECKSUM_PARTIAL; 3593 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3594 if (space) { 3595 int copied = copy_from_iter(skb_put(syn_data, space), space, 3596 &fo->data->msg_iter); 3597 if (unlikely(!copied)) { 3598 tcp_skb_tsorted_anchor_cleanup(syn_data); 3599 kfree_skb(syn_data); 3600 goto fallback; 3601 } 3602 if (copied != space) { 3603 skb_trim(syn_data, copied); 3604 space = copied; 3605 } 3606 skb_zcopy_set(syn_data, fo->uarg, NULL); 3607 } 3608 /* No more data pending in inet_wait_for_connect() */ 3609 if (space == fo->size) 3610 fo->data = NULL; 3611 fo->copied = space; 3612 3613 tcp_connect_queue_skb(sk, syn_data); 3614 if (syn_data->len) 3615 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3616 3617 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3618 3619 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3620 3621 /* Now full SYN+DATA was cloned and sent (or not), 3622 * remove the SYN from the original skb (syn_data) 3623 * we keep in write queue in case of a retransmit, as we 3624 * also have the SYN packet (with no data) in the same queue. 3625 */ 3626 TCP_SKB_CB(syn_data)->seq++; 3627 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3628 if (!err) { 3629 tp->syn_data = (fo->copied > 0); 3630 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3631 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3632 goto done; 3633 } 3634 3635 /* data was not sent, put it in write_queue */ 3636 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3637 tp->packets_out -= tcp_skb_pcount(syn_data); 3638 3639 fallback: 3640 /* Send a regular SYN with Fast Open cookie request option */ 3641 if (fo->cookie.len > 0) 3642 fo->cookie.len = 0; 3643 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3644 if (err) 3645 tp->syn_fastopen = 0; 3646 done: 3647 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3648 return err; 3649 } 3650 3651 /* Build a SYN and send it off. */ 3652 int tcp_connect(struct sock *sk) 3653 { 3654 struct tcp_sock *tp = tcp_sk(sk); 3655 struct sk_buff *buff; 3656 int err; 3657 3658 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3659 3660 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3661 return -EHOSTUNREACH; /* Routing failure or similar. */ 3662 3663 tcp_connect_init(sk); 3664 3665 if (unlikely(tp->repair)) { 3666 tcp_finish_connect(sk, NULL); 3667 return 0; 3668 } 3669 3670 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3671 if (unlikely(!buff)) 3672 return -ENOBUFS; 3673 3674 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3675 tcp_mstamp_refresh(tp); 3676 tp->retrans_stamp = tcp_time_stamp(tp); 3677 tcp_connect_queue_skb(sk, buff); 3678 tcp_ecn_send_syn(sk, buff); 3679 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3680 3681 /* Send off SYN; include data in Fast Open. */ 3682 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3683 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3684 if (err == -ECONNREFUSED) 3685 return err; 3686 3687 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3688 * in order to make this packet get counted in tcpOutSegs. 3689 */ 3690 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3691 tp->pushed_seq = tp->write_seq; 3692 buff = tcp_send_head(sk); 3693 if (unlikely(buff)) { 3694 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3695 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3696 } 3697 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3698 3699 /* Timer for repeating the SYN until an answer. */ 3700 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3701 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3702 return 0; 3703 } 3704 EXPORT_SYMBOL(tcp_connect); 3705 3706 /* Send out a delayed ack, the caller does the policy checking 3707 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3708 * for details. 3709 */ 3710 void tcp_send_delayed_ack(struct sock *sk) 3711 { 3712 struct inet_connection_sock *icsk = inet_csk(sk); 3713 int ato = icsk->icsk_ack.ato; 3714 unsigned long timeout; 3715 3716 if (ato > TCP_DELACK_MIN) { 3717 const struct tcp_sock *tp = tcp_sk(sk); 3718 int max_ato = HZ / 2; 3719 3720 if (inet_csk_in_pingpong_mode(sk) || 3721 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3722 max_ato = TCP_DELACK_MAX; 3723 3724 /* Slow path, intersegment interval is "high". */ 3725 3726 /* If some rtt estimate is known, use it to bound delayed ack. 3727 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3728 * directly. 3729 */ 3730 if (tp->srtt_us) { 3731 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3732 TCP_DELACK_MIN); 3733 3734 if (rtt < max_ato) 3735 max_ato = rtt; 3736 } 3737 3738 ato = min(ato, max_ato); 3739 } 3740 3741 /* Stay within the limit we were given */ 3742 timeout = jiffies + ato; 3743 3744 /* Use new timeout only if there wasn't a older one earlier. */ 3745 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3746 /* If delack timer was blocked or is about to expire, 3747 * send ACK now. 3748 */ 3749 if (icsk->icsk_ack.blocked || 3750 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3751 tcp_send_ack(sk); 3752 return; 3753 } 3754 3755 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3756 timeout = icsk->icsk_ack.timeout; 3757 } 3758 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3759 icsk->icsk_ack.timeout = timeout; 3760 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3761 } 3762 3763 /* This routine sends an ack and also updates the window. */ 3764 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3765 { 3766 struct sk_buff *buff; 3767 3768 /* If we have been reset, we may not send again. */ 3769 if (sk->sk_state == TCP_CLOSE) 3770 return; 3771 3772 /* We are not putting this on the write queue, so 3773 * tcp_transmit_skb() will set the ownership to this 3774 * sock. 3775 */ 3776 buff = alloc_skb(MAX_TCP_HEADER, 3777 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3778 if (unlikely(!buff)) { 3779 inet_csk_schedule_ack(sk); 3780 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3781 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3782 TCP_DELACK_MAX, TCP_RTO_MAX); 3783 return; 3784 } 3785 3786 /* Reserve space for headers and prepare control bits. */ 3787 skb_reserve(buff, MAX_TCP_HEADER); 3788 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3789 3790 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3791 * too much. 3792 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3793 */ 3794 skb_set_tcp_pure_ack(buff); 3795 3796 /* Send it off, this clears delayed acks for us. */ 3797 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3798 } 3799 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3800 3801 void tcp_send_ack(struct sock *sk) 3802 { 3803 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3804 } 3805 3806 /* This routine sends a packet with an out of date sequence 3807 * number. It assumes the other end will try to ack it. 3808 * 3809 * Question: what should we make while urgent mode? 3810 * 4.4BSD forces sending single byte of data. We cannot send 3811 * out of window data, because we have SND.NXT==SND.MAX... 3812 * 3813 * Current solution: to send TWO zero-length segments in urgent mode: 3814 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3815 * out-of-date with SND.UNA-1 to probe window. 3816 */ 3817 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3818 { 3819 struct tcp_sock *tp = tcp_sk(sk); 3820 struct sk_buff *skb; 3821 3822 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3823 skb = alloc_skb(MAX_TCP_HEADER, 3824 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3825 if (!skb) 3826 return -1; 3827 3828 /* Reserve space for headers and set control bits. */ 3829 skb_reserve(skb, MAX_TCP_HEADER); 3830 /* Use a previous sequence. This should cause the other 3831 * end to send an ack. Don't queue or clone SKB, just 3832 * send it. 3833 */ 3834 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3835 NET_INC_STATS(sock_net(sk), mib); 3836 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3837 } 3838 3839 /* Called from setsockopt( ... TCP_REPAIR ) */ 3840 void tcp_send_window_probe(struct sock *sk) 3841 { 3842 if (sk->sk_state == TCP_ESTABLISHED) { 3843 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3844 tcp_mstamp_refresh(tcp_sk(sk)); 3845 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3846 } 3847 } 3848 3849 /* Initiate keepalive or window probe from timer. */ 3850 int tcp_write_wakeup(struct sock *sk, int mib) 3851 { 3852 struct tcp_sock *tp = tcp_sk(sk); 3853 struct sk_buff *skb; 3854 3855 if (sk->sk_state == TCP_CLOSE) 3856 return -1; 3857 3858 skb = tcp_send_head(sk); 3859 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3860 int err; 3861 unsigned int mss = tcp_current_mss(sk); 3862 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3863 3864 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3865 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3866 3867 /* We are probing the opening of a window 3868 * but the window size is != 0 3869 * must have been a result SWS avoidance ( sender ) 3870 */ 3871 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3872 skb->len > mss) { 3873 seg_size = min(seg_size, mss); 3874 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3875 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3876 skb, seg_size, mss, GFP_ATOMIC)) 3877 return -1; 3878 } else if (!tcp_skb_pcount(skb)) 3879 tcp_set_skb_tso_segs(skb, mss); 3880 3881 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3882 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3883 if (!err) 3884 tcp_event_new_data_sent(sk, skb); 3885 return err; 3886 } else { 3887 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3888 tcp_xmit_probe_skb(sk, 1, mib); 3889 return tcp_xmit_probe_skb(sk, 0, mib); 3890 } 3891 } 3892 3893 /* A window probe timeout has occurred. If window is not closed send 3894 * a partial packet else a zero probe. 3895 */ 3896 void tcp_send_probe0(struct sock *sk) 3897 { 3898 struct inet_connection_sock *icsk = inet_csk(sk); 3899 struct tcp_sock *tp = tcp_sk(sk); 3900 struct net *net = sock_net(sk); 3901 unsigned long timeout; 3902 int err; 3903 3904 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3905 3906 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3907 /* Cancel probe timer, if it is not required. */ 3908 icsk->icsk_probes_out = 0; 3909 icsk->icsk_backoff = 0; 3910 return; 3911 } 3912 3913 icsk->icsk_probes_out++; 3914 if (err <= 0) { 3915 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3916 icsk->icsk_backoff++; 3917 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 3918 } else { 3919 /* If packet was not sent due to local congestion, 3920 * Let senders fight for local resources conservatively. 3921 */ 3922 timeout = TCP_RESOURCE_PROBE_INTERVAL; 3923 } 3924 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 3925 } 3926 3927 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3928 { 3929 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3930 struct flowi fl; 3931 int res; 3932 3933 tcp_rsk(req)->txhash = net_tx_rndhash(); 3934 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3935 if (!res) { 3936 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3937 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3938 if (unlikely(tcp_passive_fastopen(sk))) 3939 tcp_sk(sk)->total_retrans++; 3940 trace_tcp_retransmit_synack(sk, req); 3941 } 3942 return res; 3943 } 3944 EXPORT_SYMBOL(tcp_rtx_synack); 3945