1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of two TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 int sysctl_tcp_mtu_probing __read_mostly = 0; 63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS; 64 65 /* By default, RFC2861 behavior. */ 66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 67 68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX; 69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat); 70 71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 72 int push_one, gfp_t gfp); 73 74 /* Account for new data that has been sent to the network. */ 75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 76 { 77 struct inet_connection_sock *icsk = inet_csk(sk); 78 struct tcp_sock *tp = tcp_sk(sk); 79 unsigned int prior_packets = tp->packets_out; 80 81 tcp_advance_send_head(sk, skb); 82 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 83 84 tp->packets_out += tcp_skb_pcount(skb); 85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 86 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 87 tcp_rearm_rto(sk); 88 } 89 } 90 91 /* SND.NXT, if window was not shrunk. 92 * If window has been shrunk, what should we make? It is not clear at all. 93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 95 * invalid. OK, let's make this for now: 96 */ 97 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 98 { 99 const struct tcp_sock *tp = tcp_sk(sk); 100 101 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. */ 141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 s32 delta = tcp_time_stamp - tp->lsndtime; 145 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 146 u32 cwnd = tp->snd_cwnd; 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tp->snd_cwnd = max(cwnd, restart_cwnd); 156 tp->snd_cwnd_stamp = tcp_time_stamp; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_time_stamp; 166 const struct dst_entry *dst = __sk_dst_get(sk); 167 168 if (sysctl_tcp_slow_start_after_idle && 169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 170 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 171 172 tp->lsndtime = now; 173 174 /* If it is a reply for ato after last received 175 * packet, enter pingpong mode. 176 */ 177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato && 178 (!dst || !dst_metric(dst, RTAX_QUICKACK))) 179 icsk->icsk_ack.pingpong = 1; 180 } 181 182 /* Account for an ACK we sent. */ 183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 184 { 185 tcp_dec_quickack_mode(sk, pkts); 186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 187 } 188 189 190 u32 tcp_default_init_rwnd(u32 mss) 191 { 192 /* Initial receive window should be twice of TCP_INIT_CWND to 193 * enable proper sending of new unsent data during fast recovery 194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 195 * limit when mss is larger than 1460. 196 */ 197 u32 init_rwnd = TCP_INIT_CWND * 2; 198 199 if (mss > 1460) 200 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 201 return init_rwnd; 202 } 203 204 /* Determine a window scaling and initial window to offer. 205 * Based on the assumption that the given amount of space 206 * will be offered. Store the results in the tp structure. 207 * NOTE: for smooth operation initial space offering should 208 * be a multiple of mss if possible. We assume here that mss >= 1. 209 * This MUST be enforced by all callers. 210 */ 211 void tcp_select_initial_window(int __space, __u32 mss, 212 __u32 *rcv_wnd, __u32 *window_clamp, 213 int wscale_ok, __u8 *rcv_wscale, 214 __u32 init_rcv_wnd) 215 { 216 unsigned int space = (__space < 0 ? 0 : __space); 217 218 /* If no clamp set the clamp to the max possible scaled window */ 219 if (*window_clamp == 0) 220 (*window_clamp) = (65535 << 14); 221 space = min(*window_clamp, space); 222 223 /* Quantize space offering to a multiple of mss if possible. */ 224 if (space > mss) 225 space = (space / mss) * mss; 226 227 /* NOTE: offering an initial window larger than 32767 228 * will break some buggy TCP stacks. If the admin tells us 229 * it is likely we could be speaking with such a buggy stack 230 * we will truncate our initial window offering to 32K-1 231 * unless the remote has sent us a window scaling option, 232 * which we interpret as a sign the remote TCP is not 233 * misinterpreting the window field as a signed quantity. 234 */ 235 if (sysctl_tcp_workaround_signed_windows) 236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 237 else 238 (*rcv_wnd) = space; 239 240 (*rcv_wscale) = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window 243 * See RFC1323 for an explanation of the limit to 14 244 */ 245 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 246 space = min_t(u32, space, *window_clamp); 247 while (space > 65535 && (*rcv_wscale) < 14) { 248 space >>= 1; 249 (*rcv_wscale)++; 250 } 251 } 252 253 if (mss > (1 << *rcv_wscale)) { 254 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 255 init_rcv_wnd = tcp_default_init_rwnd(mss); 256 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 257 } 258 259 /* Set the clamp no higher than max representable value */ 260 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 261 } 262 EXPORT_SYMBOL(tcp_select_initial_window); 263 264 /* Chose a new window to advertise, update state in tcp_sock for the 265 * socket, and return result with RFC1323 scaling applied. The return 266 * value can be stuffed directly into th->window for an outgoing 267 * frame. 268 */ 269 static u16 tcp_select_window(struct sock *sk) 270 { 271 struct tcp_sock *tp = tcp_sk(sk); 272 u32 cur_win = tcp_receive_window(tp); 273 u32 new_win = __tcp_select_window(sk); 274 275 /* Never shrink the offered window */ 276 if (new_win < cur_win) { 277 /* Danger Will Robinson! 278 * Don't update rcv_wup/rcv_wnd here or else 279 * we will not be able to advertise a zero 280 * window in time. --DaveM 281 * 282 * Relax Will Robinson. 283 */ 284 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 285 } 286 tp->rcv_wnd = new_win; 287 tp->rcv_wup = tp->rcv_nxt; 288 289 /* Make sure we do not exceed the maximum possible 290 * scaled window. 291 */ 292 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 293 new_win = min(new_win, MAX_TCP_WINDOW); 294 else 295 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 296 297 /* RFC1323 scaling applied */ 298 new_win >>= tp->rx_opt.rcv_wscale; 299 300 /* If we advertise zero window, disable fast path. */ 301 if (new_win == 0) 302 tp->pred_flags = 0; 303 304 return new_win; 305 } 306 307 /* Packet ECN state for a SYN-ACK */ 308 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb) 309 { 310 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 311 if (!(tp->ecn_flags & TCP_ECN_OK)) 312 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 313 } 314 315 /* Packet ECN state for a SYN. */ 316 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb) 317 { 318 struct tcp_sock *tp = tcp_sk(sk); 319 320 tp->ecn_flags = 0; 321 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) { 322 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 323 tp->ecn_flags = TCP_ECN_OK; 324 } 325 } 326 327 static __inline__ void 328 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th) 329 { 330 if (inet_rsk(req)->ecn_ok) 331 th->ece = 1; 332 } 333 334 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 335 * be sent. 336 */ 337 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb, 338 int tcp_header_len) 339 { 340 struct tcp_sock *tp = tcp_sk(sk); 341 342 if (tp->ecn_flags & TCP_ECN_OK) { 343 /* Not-retransmitted data segment: set ECT and inject CWR. */ 344 if (skb->len != tcp_header_len && 345 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 346 INET_ECN_xmit(sk); 347 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 348 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 349 tcp_hdr(skb)->cwr = 1; 350 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 351 } 352 } else { 353 /* ACK or retransmitted segment: clear ECT|CE */ 354 INET_ECN_dontxmit(sk); 355 } 356 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 357 tcp_hdr(skb)->ece = 1; 358 } 359 } 360 361 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 362 * auto increment end seqno. 363 */ 364 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 365 { 366 struct skb_shared_info *shinfo = skb_shinfo(skb); 367 368 skb->ip_summed = CHECKSUM_PARTIAL; 369 skb->csum = 0; 370 371 TCP_SKB_CB(skb)->tcp_flags = flags; 372 TCP_SKB_CB(skb)->sacked = 0; 373 374 shinfo->gso_segs = 1; 375 shinfo->gso_size = 0; 376 shinfo->gso_type = 0; 377 378 TCP_SKB_CB(skb)->seq = seq; 379 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 380 seq++; 381 TCP_SKB_CB(skb)->end_seq = seq; 382 } 383 384 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 385 { 386 return tp->snd_una != tp->snd_up; 387 } 388 389 #define OPTION_SACK_ADVERTISE (1 << 0) 390 #define OPTION_TS (1 << 1) 391 #define OPTION_MD5 (1 << 2) 392 #define OPTION_WSCALE (1 << 3) 393 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 394 395 struct tcp_out_options { 396 u16 options; /* bit field of OPTION_* */ 397 u16 mss; /* 0 to disable */ 398 u8 ws; /* window scale, 0 to disable */ 399 u8 num_sack_blocks; /* number of SACK blocks to include */ 400 u8 hash_size; /* bytes in hash_location */ 401 __u8 *hash_location; /* temporary pointer, overloaded */ 402 __u32 tsval, tsecr; /* need to include OPTION_TS */ 403 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 404 }; 405 406 /* Write previously computed TCP options to the packet. 407 * 408 * Beware: Something in the Internet is very sensitive to the ordering of 409 * TCP options, we learned this through the hard way, so be careful here. 410 * Luckily we can at least blame others for their non-compliance but from 411 * inter-operability perspective it seems that we're somewhat stuck with 412 * the ordering which we have been using if we want to keep working with 413 * those broken things (not that it currently hurts anybody as there isn't 414 * particular reason why the ordering would need to be changed). 415 * 416 * At least SACK_PERM as the first option is known to lead to a disaster 417 * (but it may well be that other scenarios fail similarly). 418 */ 419 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 420 struct tcp_out_options *opts) 421 { 422 u16 options = opts->options; /* mungable copy */ 423 424 if (unlikely(OPTION_MD5 & options)) { 425 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 426 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 427 /* overload cookie hash location */ 428 opts->hash_location = (__u8 *)ptr; 429 ptr += 4; 430 } 431 432 if (unlikely(opts->mss)) { 433 *ptr++ = htonl((TCPOPT_MSS << 24) | 434 (TCPOLEN_MSS << 16) | 435 opts->mss); 436 } 437 438 if (likely(OPTION_TS & options)) { 439 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 440 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 441 (TCPOLEN_SACK_PERM << 16) | 442 (TCPOPT_TIMESTAMP << 8) | 443 TCPOLEN_TIMESTAMP); 444 options &= ~OPTION_SACK_ADVERTISE; 445 } else { 446 *ptr++ = htonl((TCPOPT_NOP << 24) | 447 (TCPOPT_NOP << 16) | 448 (TCPOPT_TIMESTAMP << 8) | 449 TCPOLEN_TIMESTAMP); 450 } 451 *ptr++ = htonl(opts->tsval); 452 *ptr++ = htonl(opts->tsecr); 453 } 454 455 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 456 *ptr++ = htonl((TCPOPT_NOP << 24) | 457 (TCPOPT_NOP << 16) | 458 (TCPOPT_SACK_PERM << 8) | 459 TCPOLEN_SACK_PERM); 460 } 461 462 if (unlikely(OPTION_WSCALE & options)) { 463 *ptr++ = htonl((TCPOPT_NOP << 24) | 464 (TCPOPT_WINDOW << 16) | 465 (TCPOLEN_WINDOW << 8) | 466 opts->ws); 467 } 468 469 if (unlikely(opts->num_sack_blocks)) { 470 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 471 tp->duplicate_sack : tp->selective_acks; 472 int this_sack; 473 474 *ptr++ = htonl((TCPOPT_NOP << 24) | 475 (TCPOPT_NOP << 16) | 476 (TCPOPT_SACK << 8) | 477 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 478 TCPOLEN_SACK_PERBLOCK))); 479 480 for (this_sack = 0; this_sack < opts->num_sack_blocks; 481 ++this_sack) { 482 *ptr++ = htonl(sp[this_sack].start_seq); 483 *ptr++ = htonl(sp[this_sack].end_seq); 484 } 485 486 tp->rx_opt.dsack = 0; 487 } 488 489 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 490 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 491 492 *ptr++ = htonl((TCPOPT_EXP << 24) | 493 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) | 494 TCPOPT_FASTOPEN_MAGIC); 495 496 memcpy(ptr, foc->val, foc->len); 497 if ((foc->len & 3) == 2) { 498 u8 *align = ((u8 *)ptr) + foc->len; 499 align[0] = align[1] = TCPOPT_NOP; 500 } 501 ptr += (foc->len + 3) >> 2; 502 } 503 } 504 505 /* Compute TCP options for SYN packets. This is not the final 506 * network wire format yet. 507 */ 508 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 509 struct tcp_out_options *opts, 510 struct tcp_md5sig_key **md5) 511 { 512 struct tcp_sock *tp = tcp_sk(sk); 513 unsigned int remaining = MAX_TCP_OPTION_SPACE; 514 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 515 516 #ifdef CONFIG_TCP_MD5SIG 517 *md5 = tp->af_specific->md5_lookup(sk, sk); 518 if (*md5) { 519 opts->options |= OPTION_MD5; 520 remaining -= TCPOLEN_MD5SIG_ALIGNED; 521 } 522 #else 523 *md5 = NULL; 524 #endif 525 526 /* We always get an MSS option. The option bytes which will be seen in 527 * normal data packets should timestamps be used, must be in the MSS 528 * advertised. But we subtract them from tp->mss_cache so that 529 * calculations in tcp_sendmsg are simpler etc. So account for this 530 * fact here if necessary. If we don't do this correctly, as a 531 * receiver we won't recognize data packets as being full sized when we 532 * should, and thus we won't abide by the delayed ACK rules correctly. 533 * SACKs don't matter, we never delay an ACK when we have any of those 534 * going out. */ 535 opts->mss = tcp_advertise_mss(sk); 536 remaining -= TCPOLEN_MSS_ALIGNED; 537 538 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 539 opts->options |= OPTION_TS; 540 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset; 541 opts->tsecr = tp->rx_opt.ts_recent; 542 remaining -= TCPOLEN_TSTAMP_ALIGNED; 543 } 544 if (likely(sysctl_tcp_window_scaling)) { 545 opts->ws = tp->rx_opt.rcv_wscale; 546 opts->options |= OPTION_WSCALE; 547 remaining -= TCPOLEN_WSCALE_ALIGNED; 548 } 549 if (likely(sysctl_tcp_sack)) { 550 opts->options |= OPTION_SACK_ADVERTISE; 551 if (unlikely(!(OPTION_TS & opts->options))) 552 remaining -= TCPOLEN_SACKPERM_ALIGNED; 553 } 554 555 if (fastopen && fastopen->cookie.len >= 0) { 556 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len; 557 need = (need + 3) & ~3U; /* Align to 32 bits */ 558 if (remaining >= need) { 559 opts->options |= OPTION_FAST_OPEN_COOKIE; 560 opts->fastopen_cookie = &fastopen->cookie; 561 remaining -= need; 562 tp->syn_fastopen = 1; 563 } 564 } 565 566 return MAX_TCP_OPTION_SPACE - remaining; 567 } 568 569 /* Set up TCP options for SYN-ACKs. */ 570 static unsigned int tcp_synack_options(struct sock *sk, 571 struct request_sock *req, 572 unsigned int mss, struct sk_buff *skb, 573 struct tcp_out_options *opts, 574 struct tcp_md5sig_key **md5, 575 struct tcp_fastopen_cookie *foc) 576 { 577 struct inet_request_sock *ireq = inet_rsk(req); 578 unsigned int remaining = MAX_TCP_OPTION_SPACE; 579 580 #ifdef CONFIG_TCP_MD5SIG 581 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 582 if (*md5) { 583 opts->options |= OPTION_MD5; 584 remaining -= TCPOLEN_MD5SIG_ALIGNED; 585 586 /* We can't fit any SACK blocks in a packet with MD5 + TS 587 * options. There was discussion about disabling SACK 588 * rather than TS in order to fit in better with old, 589 * buggy kernels, but that was deemed to be unnecessary. 590 */ 591 ireq->tstamp_ok &= !ireq->sack_ok; 592 } 593 #else 594 *md5 = NULL; 595 #endif 596 597 /* We always send an MSS option. */ 598 opts->mss = mss; 599 remaining -= TCPOLEN_MSS_ALIGNED; 600 601 if (likely(ireq->wscale_ok)) { 602 opts->ws = ireq->rcv_wscale; 603 opts->options |= OPTION_WSCALE; 604 remaining -= TCPOLEN_WSCALE_ALIGNED; 605 } 606 if (likely(ireq->tstamp_ok)) { 607 opts->options |= OPTION_TS; 608 opts->tsval = TCP_SKB_CB(skb)->when; 609 opts->tsecr = req->ts_recent; 610 remaining -= TCPOLEN_TSTAMP_ALIGNED; 611 } 612 if (likely(ireq->sack_ok)) { 613 opts->options |= OPTION_SACK_ADVERTISE; 614 if (unlikely(!ireq->tstamp_ok)) 615 remaining -= TCPOLEN_SACKPERM_ALIGNED; 616 } 617 if (foc != NULL) { 618 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 619 need = (need + 3) & ~3U; /* Align to 32 bits */ 620 if (remaining >= need) { 621 opts->options |= OPTION_FAST_OPEN_COOKIE; 622 opts->fastopen_cookie = foc; 623 remaining -= need; 624 } 625 } 626 627 return MAX_TCP_OPTION_SPACE - remaining; 628 } 629 630 /* Compute TCP options for ESTABLISHED sockets. This is not the 631 * final wire format yet. 632 */ 633 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 634 struct tcp_out_options *opts, 635 struct tcp_md5sig_key **md5) 636 { 637 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL; 638 struct tcp_sock *tp = tcp_sk(sk); 639 unsigned int size = 0; 640 unsigned int eff_sacks; 641 642 opts->options = 0; 643 644 #ifdef CONFIG_TCP_MD5SIG 645 *md5 = tp->af_specific->md5_lookup(sk, sk); 646 if (unlikely(*md5)) { 647 opts->options |= OPTION_MD5; 648 size += TCPOLEN_MD5SIG_ALIGNED; 649 } 650 #else 651 *md5 = NULL; 652 #endif 653 654 if (likely(tp->rx_opt.tstamp_ok)) { 655 opts->options |= OPTION_TS; 656 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0; 657 opts->tsecr = tp->rx_opt.ts_recent; 658 size += TCPOLEN_TSTAMP_ALIGNED; 659 } 660 661 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 662 if (unlikely(eff_sacks)) { 663 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 664 opts->num_sack_blocks = 665 min_t(unsigned int, eff_sacks, 666 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 667 TCPOLEN_SACK_PERBLOCK); 668 size += TCPOLEN_SACK_BASE_ALIGNED + 669 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 670 } 671 672 return size; 673 } 674 675 676 /* TCP SMALL QUEUES (TSQ) 677 * 678 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 679 * to reduce RTT and bufferbloat. 680 * We do this using a special skb destructor (tcp_wfree). 681 * 682 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 683 * needs to be reallocated in a driver. 684 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 685 * 686 * Since transmit from skb destructor is forbidden, we use a tasklet 687 * to process all sockets that eventually need to send more skbs. 688 * We use one tasklet per cpu, with its own queue of sockets. 689 */ 690 struct tsq_tasklet { 691 struct tasklet_struct tasklet; 692 struct list_head head; /* queue of tcp sockets */ 693 }; 694 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 695 696 static void tcp_tsq_handler(struct sock *sk) 697 { 698 if ((1 << sk->sk_state) & 699 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 700 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 701 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle, 702 0, GFP_ATOMIC); 703 } 704 /* 705 * One tasklet per cpu tries to send more skbs. 706 * We run in tasklet context but need to disable irqs when 707 * transferring tsq->head because tcp_wfree() might 708 * interrupt us (non NAPI drivers) 709 */ 710 static void tcp_tasklet_func(unsigned long data) 711 { 712 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 713 LIST_HEAD(list); 714 unsigned long flags; 715 struct list_head *q, *n; 716 struct tcp_sock *tp; 717 struct sock *sk; 718 719 local_irq_save(flags); 720 list_splice_init(&tsq->head, &list); 721 local_irq_restore(flags); 722 723 list_for_each_safe(q, n, &list) { 724 tp = list_entry(q, struct tcp_sock, tsq_node); 725 list_del(&tp->tsq_node); 726 727 sk = (struct sock *)tp; 728 bh_lock_sock(sk); 729 730 if (!sock_owned_by_user(sk)) { 731 tcp_tsq_handler(sk); 732 } else { 733 /* defer the work to tcp_release_cb() */ 734 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 735 } 736 bh_unlock_sock(sk); 737 738 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 739 sk_free(sk); 740 } 741 } 742 743 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 744 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 745 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 746 (1UL << TCP_MTU_REDUCED_DEFERRED)) 747 /** 748 * tcp_release_cb - tcp release_sock() callback 749 * @sk: socket 750 * 751 * called from release_sock() to perform protocol dependent 752 * actions before socket release. 753 */ 754 void tcp_release_cb(struct sock *sk) 755 { 756 struct tcp_sock *tp = tcp_sk(sk); 757 unsigned long flags, nflags; 758 759 /* perform an atomic operation only if at least one flag is set */ 760 do { 761 flags = tp->tsq_flags; 762 if (!(flags & TCP_DEFERRED_ALL)) 763 return; 764 nflags = flags & ~TCP_DEFERRED_ALL; 765 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 766 767 if (flags & (1UL << TCP_TSQ_DEFERRED)) 768 tcp_tsq_handler(sk); 769 770 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 771 tcp_write_timer_handler(sk); 772 __sock_put(sk); 773 } 774 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 775 tcp_delack_timer_handler(sk); 776 __sock_put(sk); 777 } 778 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 779 sk->sk_prot->mtu_reduced(sk); 780 __sock_put(sk); 781 } 782 } 783 EXPORT_SYMBOL(tcp_release_cb); 784 785 void __init tcp_tasklet_init(void) 786 { 787 int i; 788 789 for_each_possible_cpu(i) { 790 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 791 792 INIT_LIST_HEAD(&tsq->head); 793 tasklet_init(&tsq->tasklet, 794 tcp_tasklet_func, 795 (unsigned long)tsq); 796 } 797 } 798 799 /* 800 * Write buffer destructor automatically called from kfree_skb. 801 * We can't xmit new skbs from this context, as we might already 802 * hold qdisc lock. 803 */ 804 void tcp_wfree(struct sk_buff *skb) 805 { 806 struct sock *sk = skb->sk; 807 struct tcp_sock *tp = tcp_sk(sk); 808 809 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 810 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 811 unsigned long flags; 812 struct tsq_tasklet *tsq; 813 814 /* Keep a ref on socket. 815 * This last ref will be released in tcp_tasklet_func() 816 */ 817 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc); 818 819 /* queue this socket to tasklet queue */ 820 local_irq_save(flags); 821 tsq = &__get_cpu_var(tsq_tasklet); 822 list_add(&tp->tsq_node, &tsq->head); 823 tasklet_schedule(&tsq->tasklet); 824 local_irq_restore(flags); 825 } else { 826 sock_wfree(skb); 827 } 828 } 829 830 /* This routine actually transmits TCP packets queued in by 831 * tcp_do_sendmsg(). This is used by both the initial 832 * transmission and possible later retransmissions. 833 * All SKB's seen here are completely headerless. It is our 834 * job to build the TCP header, and pass the packet down to 835 * IP so it can do the same plus pass the packet off to the 836 * device. 837 * 838 * We are working here with either a clone of the original 839 * SKB, or a fresh unique copy made by the retransmit engine. 840 */ 841 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 842 gfp_t gfp_mask) 843 { 844 const struct inet_connection_sock *icsk = inet_csk(sk); 845 struct inet_sock *inet; 846 struct tcp_sock *tp; 847 struct tcp_skb_cb *tcb; 848 struct tcp_out_options opts; 849 unsigned int tcp_options_size, tcp_header_size; 850 struct tcp_md5sig_key *md5; 851 struct tcphdr *th; 852 int err; 853 854 BUG_ON(!skb || !tcp_skb_pcount(skb)); 855 856 if (clone_it) { 857 const struct sk_buff *fclone = skb + 1; 858 859 /* If congestion control is doing timestamping, we must 860 * take such a timestamp before we potentially clone/copy. 861 */ 862 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP) 863 __net_timestamp(skb); 864 865 if (unlikely(skb->fclone == SKB_FCLONE_ORIG && 866 fclone->fclone == SKB_FCLONE_CLONE)) 867 NET_INC_STATS_BH(sock_net(sk), 868 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 869 870 if (unlikely(skb_cloned(skb))) 871 skb = pskb_copy(skb, gfp_mask); 872 else 873 skb = skb_clone(skb, gfp_mask); 874 if (unlikely(!skb)) 875 return -ENOBUFS; 876 } 877 878 inet = inet_sk(sk); 879 tp = tcp_sk(sk); 880 tcb = TCP_SKB_CB(skb); 881 memset(&opts, 0, sizeof(opts)); 882 883 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 884 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 885 else 886 tcp_options_size = tcp_established_options(sk, skb, &opts, 887 &md5); 888 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 889 890 if (tcp_packets_in_flight(tp) == 0) 891 tcp_ca_event(sk, CA_EVENT_TX_START); 892 893 /* if no packet is in qdisc/device queue, then allow XPS to select 894 * another queue. 895 */ 896 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0; 897 898 skb_push(skb, tcp_header_size); 899 skb_reset_transport_header(skb); 900 901 skb_orphan(skb); 902 skb->sk = sk; 903 skb->destructor = tcp_wfree; 904 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 905 906 /* Build TCP header and checksum it. */ 907 th = tcp_hdr(skb); 908 th->source = inet->inet_sport; 909 th->dest = inet->inet_dport; 910 th->seq = htonl(tcb->seq); 911 th->ack_seq = htonl(tp->rcv_nxt); 912 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 913 tcb->tcp_flags); 914 915 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 916 /* RFC1323: The window in SYN & SYN/ACK segments 917 * is never scaled. 918 */ 919 th->window = htons(min(tp->rcv_wnd, 65535U)); 920 } else { 921 th->window = htons(tcp_select_window(sk)); 922 } 923 th->check = 0; 924 th->urg_ptr = 0; 925 926 /* The urg_mode check is necessary during a below snd_una win probe */ 927 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 928 if (before(tp->snd_up, tcb->seq + 0x10000)) { 929 th->urg_ptr = htons(tp->snd_up - tcb->seq); 930 th->urg = 1; 931 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 932 th->urg_ptr = htons(0xFFFF); 933 th->urg = 1; 934 } 935 } 936 937 tcp_options_write((__be32 *)(th + 1), tp, &opts); 938 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 939 TCP_ECN_send(sk, skb, tcp_header_size); 940 941 #ifdef CONFIG_TCP_MD5SIG 942 /* Calculate the MD5 hash, as we have all we need now */ 943 if (md5) { 944 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 945 tp->af_specific->calc_md5_hash(opts.hash_location, 946 md5, sk, NULL, skb); 947 } 948 #endif 949 950 icsk->icsk_af_ops->send_check(sk, skb); 951 952 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 953 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 954 955 if (skb->len != tcp_header_size) 956 tcp_event_data_sent(tp, sk); 957 958 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 959 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 960 tcp_skb_pcount(skb)); 961 962 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl); 963 if (likely(err <= 0)) 964 return err; 965 966 tcp_enter_cwr(sk, 1); 967 968 return net_xmit_eval(err); 969 } 970 971 /* This routine just queues the buffer for sending. 972 * 973 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 974 * otherwise socket can stall. 975 */ 976 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 977 { 978 struct tcp_sock *tp = tcp_sk(sk); 979 980 /* Advance write_seq and place onto the write_queue. */ 981 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 982 skb_header_release(skb); 983 tcp_add_write_queue_tail(sk, skb); 984 sk->sk_wmem_queued += skb->truesize; 985 sk_mem_charge(sk, skb->truesize); 986 } 987 988 /* Initialize TSO segments for a packet. */ 989 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 990 unsigned int mss_now) 991 { 992 struct skb_shared_info *shinfo = skb_shinfo(skb); 993 994 /* Make sure we own this skb before messing gso_size/gso_segs */ 995 WARN_ON_ONCE(skb_cloned(skb)); 996 997 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 998 /* Avoid the costly divide in the normal 999 * non-TSO case. 1000 */ 1001 shinfo->gso_segs = 1; 1002 shinfo->gso_size = 0; 1003 shinfo->gso_type = 0; 1004 } else { 1005 shinfo->gso_segs = DIV_ROUND_UP(skb->len, mss_now); 1006 shinfo->gso_size = mss_now; 1007 shinfo->gso_type = sk->sk_gso_type; 1008 } 1009 } 1010 1011 /* When a modification to fackets out becomes necessary, we need to check 1012 * skb is counted to fackets_out or not. 1013 */ 1014 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1015 int decr) 1016 { 1017 struct tcp_sock *tp = tcp_sk(sk); 1018 1019 if (!tp->sacked_out || tcp_is_reno(tp)) 1020 return; 1021 1022 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1023 tp->fackets_out -= decr; 1024 } 1025 1026 /* Pcount in the middle of the write queue got changed, we need to do various 1027 * tweaks to fix counters 1028 */ 1029 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1030 { 1031 struct tcp_sock *tp = tcp_sk(sk); 1032 1033 tp->packets_out -= decr; 1034 1035 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1036 tp->sacked_out -= decr; 1037 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1038 tp->retrans_out -= decr; 1039 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1040 tp->lost_out -= decr; 1041 1042 /* Reno case is special. Sigh... */ 1043 if (tcp_is_reno(tp) && decr > 0) 1044 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1045 1046 tcp_adjust_fackets_out(sk, skb, decr); 1047 1048 if (tp->lost_skb_hint && 1049 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1050 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1051 tp->lost_cnt_hint -= decr; 1052 1053 tcp_verify_left_out(tp); 1054 } 1055 1056 /* Function to create two new TCP segments. Shrinks the given segment 1057 * to the specified size and appends a new segment with the rest of the 1058 * packet to the list. This won't be called frequently, I hope. 1059 * Remember, these are still headerless SKBs at this point. 1060 */ 1061 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1062 unsigned int mss_now) 1063 { 1064 struct tcp_sock *tp = tcp_sk(sk); 1065 struct sk_buff *buff; 1066 int nsize, old_factor; 1067 int nlen; 1068 u8 flags; 1069 1070 if (WARN_ON(len > skb->len)) 1071 return -EINVAL; 1072 1073 nsize = skb_headlen(skb) - len; 1074 if (nsize < 0) 1075 nsize = 0; 1076 1077 if (skb_unclone(skb, GFP_ATOMIC)) 1078 return -ENOMEM; 1079 1080 /* Get a new skb... force flag on. */ 1081 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 1082 if (buff == NULL) 1083 return -ENOMEM; /* We'll just try again later. */ 1084 1085 sk->sk_wmem_queued += buff->truesize; 1086 sk_mem_charge(sk, buff->truesize); 1087 nlen = skb->len - len - nsize; 1088 buff->truesize += nlen; 1089 skb->truesize -= nlen; 1090 1091 /* Correct the sequence numbers. */ 1092 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1093 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1094 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1095 1096 /* PSH and FIN should only be set in the second packet. */ 1097 flags = TCP_SKB_CB(skb)->tcp_flags; 1098 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1099 TCP_SKB_CB(buff)->tcp_flags = flags; 1100 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1101 1102 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1103 /* Copy and checksum data tail into the new buffer. */ 1104 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1105 skb_put(buff, nsize), 1106 nsize, 0); 1107 1108 skb_trim(skb, len); 1109 1110 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1111 } else { 1112 skb->ip_summed = CHECKSUM_PARTIAL; 1113 skb_split(skb, buff, len); 1114 } 1115 1116 buff->ip_summed = skb->ip_summed; 1117 1118 /* Looks stupid, but our code really uses when of 1119 * skbs, which it never sent before. --ANK 1120 */ 1121 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 1122 buff->tstamp = skb->tstamp; 1123 1124 old_factor = tcp_skb_pcount(skb); 1125 1126 /* Fix up tso_factor for both original and new SKB. */ 1127 tcp_set_skb_tso_segs(sk, skb, mss_now); 1128 tcp_set_skb_tso_segs(sk, buff, mss_now); 1129 1130 /* If this packet has been sent out already, we must 1131 * adjust the various packet counters. 1132 */ 1133 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1134 int diff = old_factor - tcp_skb_pcount(skb) - 1135 tcp_skb_pcount(buff); 1136 1137 if (diff) 1138 tcp_adjust_pcount(sk, skb, diff); 1139 } 1140 1141 /* Link BUFF into the send queue. */ 1142 skb_header_release(buff); 1143 tcp_insert_write_queue_after(skb, buff, sk); 1144 1145 return 0; 1146 } 1147 1148 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1149 * eventually). The difference is that pulled data not copied, but 1150 * immediately discarded. 1151 */ 1152 static void __pskb_trim_head(struct sk_buff *skb, int len) 1153 { 1154 struct skb_shared_info *shinfo; 1155 int i, k, eat; 1156 1157 eat = min_t(int, len, skb_headlen(skb)); 1158 if (eat) { 1159 __skb_pull(skb, eat); 1160 len -= eat; 1161 if (!len) 1162 return; 1163 } 1164 eat = len; 1165 k = 0; 1166 shinfo = skb_shinfo(skb); 1167 for (i = 0; i < shinfo->nr_frags; i++) { 1168 int size = skb_frag_size(&shinfo->frags[i]); 1169 1170 if (size <= eat) { 1171 skb_frag_unref(skb, i); 1172 eat -= size; 1173 } else { 1174 shinfo->frags[k] = shinfo->frags[i]; 1175 if (eat) { 1176 shinfo->frags[k].page_offset += eat; 1177 skb_frag_size_sub(&shinfo->frags[k], eat); 1178 eat = 0; 1179 } 1180 k++; 1181 } 1182 } 1183 shinfo->nr_frags = k; 1184 1185 skb_reset_tail_pointer(skb); 1186 skb->data_len -= len; 1187 skb->len = skb->data_len; 1188 } 1189 1190 /* Remove acked data from a packet in the transmit queue. */ 1191 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1192 { 1193 if (skb_unclone(skb, GFP_ATOMIC)) 1194 return -ENOMEM; 1195 1196 __pskb_trim_head(skb, len); 1197 1198 TCP_SKB_CB(skb)->seq += len; 1199 skb->ip_summed = CHECKSUM_PARTIAL; 1200 1201 skb->truesize -= len; 1202 sk->sk_wmem_queued -= len; 1203 sk_mem_uncharge(sk, len); 1204 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1205 1206 /* Any change of skb->len requires recalculation of tso factor. */ 1207 if (tcp_skb_pcount(skb) > 1) 1208 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1209 1210 return 0; 1211 } 1212 1213 /* Calculate MSS not accounting any TCP options. */ 1214 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1215 { 1216 const struct tcp_sock *tp = tcp_sk(sk); 1217 const struct inet_connection_sock *icsk = inet_csk(sk); 1218 int mss_now; 1219 1220 /* Calculate base mss without TCP options: 1221 It is MMS_S - sizeof(tcphdr) of rfc1122 1222 */ 1223 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1224 1225 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1226 if (icsk->icsk_af_ops->net_frag_header_len) { 1227 const struct dst_entry *dst = __sk_dst_get(sk); 1228 1229 if (dst && dst_allfrag(dst)) 1230 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1231 } 1232 1233 /* Clamp it (mss_clamp does not include tcp options) */ 1234 if (mss_now > tp->rx_opt.mss_clamp) 1235 mss_now = tp->rx_opt.mss_clamp; 1236 1237 /* Now subtract optional transport overhead */ 1238 mss_now -= icsk->icsk_ext_hdr_len; 1239 1240 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1241 if (mss_now < 48) 1242 mss_now = 48; 1243 return mss_now; 1244 } 1245 1246 /* Calculate MSS. Not accounting for SACKs here. */ 1247 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1248 { 1249 /* Subtract TCP options size, not including SACKs */ 1250 return __tcp_mtu_to_mss(sk, pmtu) - 1251 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1252 } 1253 1254 /* Inverse of above */ 1255 int tcp_mss_to_mtu(struct sock *sk, int mss) 1256 { 1257 const struct tcp_sock *tp = tcp_sk(sk); 1258 const struct inet_connection_sock *icsk = inet_csk(sk); 1259 int mtu; 1260 1261 mtu = mss + 1262 tp->tcp_header_len + 1263 icsk->icsk_ext_hdr_len + 1264 icsk->icsk_af_ops->net_header_len; 1265 1266 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1267 if (icsk->icsk_af_ops->net_frag_header_len) { 1268 const struct dst_entry *dst = __sk_dst_get(sk); 1269 1270 if (dst && dst_allfrag(dst)) 1271 mtu += icsk->icsk_af_ops->net_frag_header_len; 1272 } 1273 return mtu; 1274 } 1275 1276 /* MTU probing init per socket */ 1277 void tcp_mtup_init(struct sock *sk) 1278 { 1279 struct tcp_sock *tp = tcp_sk(sk); 1280 struct inet_connection_sock *icsk = inet_csk(sk); 1281 1282 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 1283 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1284 icsk->icsk_af_ops->net_header_len; 1285 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 1286 icsk->icsk_mtup.probe_size = 0; 1287 } 1288 EXPORT_SYMBOL(tcp_mtup_init); 1289 1290 /* This function synchronize snd mss to current pmtu/exthdr set. 1291 1292 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1293 for TCP options, but includes only bare TCP header. 1294 1295 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1296 It is minimum of user_mss and mss received with SYN. 1297 It also does not include TCP options. 1298 1299 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1300 1301 tp->mss_cache is current effective sending mss, including 1302 all tcp options except for SACKs. It is evaluated, 1303 taking into account current pmtu, but never exceeds 1304 tp->rx_opt.mss_clamp. 1305 1306 NOTE1. rfc1122 clearly states that advertised MSS 1307 DOES NOT include either tcp or ip options. 1308 1309 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1310 are READ ONLY outside this function. --ANK (980731) 1311 */ 1312 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1313 { 1314 struct tcp_sock *tp = tcp_sk(sk); 1315 struct inet_connection_sock *icsk = inet_csk(sk); 1316 int mss_now; 1317 1318 if (icsk->icsk_mtup.search_high > pmtu) 1319 icsk->icsk_mtup.search_high = pmtu; 1320 1321 mss_now = tcp_mtu_to_mss(sk, pmtu); 1322 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1323 1324 /* And store cached results */ 1325 icsk->icsk_pmtu_cookie = pmtu; 1326 if (icsk->icsk_mtup.enabled) 1327 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1328 tp->mss_cache = mss_now; 1329 1330 return mss_now; 1331 } 1332 EXPORT_SYMBOL(tcp_sync_mss); 1333 1334 /* Compute the current effective MSS, taking SACKs and IP options, 1335 * and even PMTU discovery events into account. 1336 */ 1337 unsigned int tcp_current_mss(struct sock *sk) 1338 { 1339 const struct tcp_sock *tp = tcp_sk(sk); 1340 const struct dst_entry *dst = __sk_dst_get(sk); 1341 u32 mss_now; 1342 unsigned int header_len; 1343 struct tcp_out_options opts; 1344 struct tcp_md5sig_key *md5; 1345 1346 mss_now = tp->mss_cache; 1347 1348 if (dst) { 1349 u32 mtu = dst_mtu(dst); 1350 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1351 mss_now = tcp_sync_mss(sk, mtu); 1352 } 1353 1354 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1355 sizeof(struct tcphdr); 1356 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1357 * some common options. If this is an odd packet (because we have SACK 1358 * blocks etc) then our calculated header_len will be different, and 1359 * we have to adjust mss_now correspondingly */ 1360 if (header_len != tp->tcp_header_len) { 1361 int delta = (int) header_len - tp->tcp_header_len; 1362 mss_now -= delta; 1363 } 1364 1365 return mss_now; 1366 } 1367 1368 /* Congestion window validation. (RFC2861) */ 1369 static void tcp_cwnd_validate(struct sock *sk) 1370 { 1371 struct tcp_sock *tp = tcp_sk(sk); 1372 1373 if (tp->packets_out >= tp->snd_cwnd) { 1374 /* Network is feed fully. */ 1375 tp->snd_cwnd_used = 0; 1376 tp->snd_cwnd_stamp = tcp_time_stamp; 1377 } else { 1378 /* Network starves. */ 1379 if (tp->packets_out > tp->snd_cwnd_used) 1380 tp->snd_cwnd_used = tp->packets_out; 1381 1382 if (sysctl_tcp_slow_start_after_idle && 1383 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1384 tcp_cwnd_application_limited(sk); 1385 } 1386 } 1387 1388 /* Minshall's variant of the Nagle send check. */ 1389 static bool tcp_minshall_check(const struct tcp_sock *tp) 1390 { 1391 return after(tp->snd_sml, tp->snd_una) && 1392 !after(tp->snd_sml, tp->snd_nxt); 1393 } 1394 1395 /* Update snd_sml if this skb is under mss 1396 * Note that a TSO packet might end with a sub-mss segment 1397 * The test is really : 1398 * if ((skb->len % mss) != 0) 1399 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1400 * But we can avoid doing the divide again given we already have 1401 * skb_pcount = skb->len / mss_now 1402 */ 1403 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1404 const struct sk_buff *skb) 1405 { 1406 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1407 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1408 } 1409 1410 /* Return false, if packet can be sent now without violation Nagle's rules: 1411 * 1. It is full sized. (provided by caller in %partial bool) 1412 * 2. Or it contains FIN. (already checked by caller) 1413 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1414 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1415 * With Minshall's modification: all sent small packets are ACKed. 1416 */ 1417 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1418 unsigned int mss_now, int nonagle) 1419 { 1420 return partial && 1421 ((nonagle & TCP_NAGLE_CORK) || 1422 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1423 } 1424 /* Returns the portion of skb which can be sent right away */ 1425 static unsigned int tcp_mss_split_point(const struct sock *sk, 1426 const struct sk_buff *skb, 1427 unsigned int mss_now, 1428 unsigned int max_segs, 1429 int nonagle) 1430 { 1431 const struct tcp_sock *tp = tcp_sk(sk); 1432 u32 partial, needed, window, max_len; 1433 1434 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1435 max_len = mss_now * max_segs; 1436 1437 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1438 return max_len; 1439 1440 needed = min(skb->len, window); 1441 1442 if (max_len <= needed) 1443 return max_len; 1444 1445 partial = needed % mss_now; 1446 /* If last segment is not a full MSS, check if Nagle rules allow us 1447 * to include this last segment in this skb. 1448 * Otherwise, we'll split the skb at last MSS boundary 1449 */ 1450 if (tcp_nagle_check(partial != 0, tp, mss_now, nonagle)) 1451 return needed - partial; 1452 1453 return needed; 1454 } 1455 1456 /* Can at least one segment of SKB be sent right now, according to the 1457 * congestion window rules? If so, return how many segments are allowed. 1458 */ 1459 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1460 const struct sk_buff *skb) 1461 { 1462 u32 in_flight, cwnd; 1463 1464 /* Don't be strict about the congestion window for the final FIN. */ 1465 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1466 tcp_skb_pcount(skb) == 1) 1467 return 1; 1468 1469 in_flight = tcp_packets_in_flight(tp); 1470 cwnd = tp->snd_cwnd; 1471 if (in_flight < cwnd) 1472 return (cwnd - in_flight); 1473 1474 return 0; 1475 } 1476 1477 /* Initialize TSO state of a skb. 1478 * This must be invoked the first time we consider transmitting 1479 * SKB onto the wire. 1480 */ 1481 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1482 unsigned int mss_now) 1483 { 1484 int tso_segs = tcp_skb_pcount(skb); 1485 1486 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1487 tcp_set_skb_tso_segs(sk, skb, mss_now); 1488 tso_segs = tcp_skb_pcount(skb); 1489 } 1490 return tso_segs; 1491 } 1492 1493 1494 /* Return true if the Nagle test allows this packet to be 1495 * sent now. 1496 */ 1497 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1498 unsigned int cur_mss, int nonagle) 1499 { 1500 /* Nagle rule does not apply to frames, which sit in the middle of the 1501 * write_queue (they have no chances to get new data). 1502 * 1503 * This is implemented in the callers, where they modify the 'nonagle' 1504 * argument based upon the location of SKB in the send queue. 1505 */ 1506 if (nonagle & TCP_NAGLE_PUSH) 1507 return true; 1508 1509 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1510 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1511 return true; 1512 1513 if (!tcp_nagle_check(skb->len < cur_mss, tp, cur_mss, nonagle)) 1514 return true; 1515 1516 return false; 1517 } 1518 1519 /* Does at least the first segment of SKB fit into the send window? */ 1520 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1521 const struct sk_buff *skb, 1522 unsigned int cur_mss) 1523 { 1524 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1525 1526 if (skb->len > cur_mss) 1527 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1528 1529 return !after(end_seq, tcp_wnd_end(tp)); 1530 } 1531 1532 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1533 * should be put on the wire right now. If so, it returns the number of 1534 * packets allowed by the congestion window. 1535 */ 1536 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1537 unsigned int cur_mss, int nonagle) 1538 { 1539 const struct tcp_sock *tp = tcp_sk(sk); 1540 unsigned int cwnd_quota; 1541 1542 tcp_init_tso_segs(sk, skb, cur_mss); 1543 1544 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1545 return 0; 1546 1547 cwnd_quota = tcp_cwnd_test(tp, skb); 1548 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1549 cwnd_quota = 0; 1550 1551 return cwnd_quota; 1552 } 1553 1554 /* Test if sending is allowed right now. */ 1555 bool tcp_may_send_now(struct sock *sk) 1556 { 1557 const struct tcp_sock *tp = tcp_sk(sk); 1558 struct sk_buff *skb = tcp_send_head(sk); 1559 1560 return skb && 1561 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1562 (tcp_skb_is_last(sk, skb) ? 1563 tp->nonagle : TCP_NAGLE_PUSH)); 1564 } 1565 1566 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1567 * which is put after SKB on the list. It is very much like 1568 * tcp_fragment() except that it may make several kinds of assumptions 1569 * in order to speed up the splitting operation. In particular, we 1570 * know that all the data is in scatter-gather pages, and that the 1571 * packet has never been sent out before (and thus is not cloned). 1572 */ 1573 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1574 unsigned int mss_now, gfp_t gfp) 1575 { 1576 struct sk_buff *buff; 1577 int nlen = skb->len - len; 1578 u8 flags; 1579 1580 /* All of a TSO frame must be composed of paged data. */ 1581 if (skb->len != skb->data_len) 1582 return tcp_fragment(sk, skb, len, mss_now); 1583 1584 buff = sk_stream_alloc_skb(sk, 0, gfp); 1585 if (unlikely(buff == NULL)) 1586 return -ENOMEM; 1587 1588 sk->sk_wmem_queued += buff->truesize; 1589 sk_mem_charge(sk, buff->truesize); 1590 buff->truesize += nlen; 1591 skb->truesize -= nlen; 1592 1593 /* Correct the sequence numbers. */ 1594 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1595 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1596 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1597 1598 /* PSH and FIN should only be set in the second packet. */ 1599 flags = TCP_SKB_CB(skb)->tcp_flags; 1600 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1601 TCP_SKB_CB(buff)->tcp_flags = flags; 1602 1603 /* This packet was never sent out yet, so no SACK bits. */ 1604 TCP_SKB_CB(buff)->sacked = 0; 1605 1606 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1607 skb_split(skb, buff, len); 1608 1609 /* Fix up tso_factor for both original and new SKB. */ 1610 tcp_set_skb_tso_segs(sk, skb, mss_now); 1611 tcp_set_skb_tso_segs(sk, buff, mss_now); 1612 1613 /* Link BUFF into the send queue. */ 1614 skb_header_release(buff); 1615 tcp_insert_write_queue_after(skb, buff, sk); 1616 1617 return 0; 1618 } 1619 1620 /* Try to defer sending, if possible, in order to minimize the amount 1621 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1622 * 1623 * This algorithm is from John Heffner. 1624 */ 1625 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb) 1626 { 1627 struct tcp_sock *tp = tcp_sk(sk); 1628 const struct inet_connection_sock *icsk = inet_csk(sk); 1629 u32 send_win, cong_win, limit, in_flight; 1630 int win_divisor; 1631 1632 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1633 goto send_now; 1634 1635 if (icsk->icsk_ca_state != TCP_CA_Open) 1636 goto send_now; 1637 1638 /* Defer for less than two clock ticks. */ 1639 if (tp->tso_deferred && 1640 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1641 goto send_now; 1642 1643 in_flight = tcp_packets_in_flight(tp); 1644 1645 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1646 1647 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1648 1649 /* From in_flight test above, we know that cwnd > in_flight. */ 1650 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1651 1652 limit = min(send_win, cong_win); 1653 1654 /* If a full-sized TSO skb can be sent, do it. */ 1655 if (limit >= min_t(unsigned int, sk->sk_gso_max_size, 1656 tp->xmit_size_goal_segs * tp->mss_cache)) 1657 goto send_now; 1658 1659 /* Middle in queue won't get any more data, full sendable already? */ 1660 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1661 goto send_now; 1662 1663 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1664 if (win_divisor) { 1665 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1666 1667 /* If at least some fraction of a window is available, 1668 * just use it. 1669 */ 1670 chunk /= win_divisor; 1671 if (limit >= chunk) 1672 goto send_now; 1673 } else { 1674 /* Different approach, try not to defer past a single 1675 * ACK. Receiver should ACK every other full sized 1676 * frame, so if we have space for more than 3 frames 1677 * then send now. 1678 */ 1679 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1680 goto send_now; 1681 } 1682 1683 /* Ok, it looks like it is advisable to defer. 1684 * Do not rearm the timer if already set to not break TCP ACK clocking. 1685 */ 1686 if (!tp->tso_deferred) 1687 tp->tso_deferred = 1 | (jiffies << 1); 1688 1689 return true; 1690 1691 send_now: 1692 tp->tso_deferred = 0; 1693 return false; 1694 } 1695 1696 /* Create a new MTU probe if we are ready. 1697 * MTU probe is regularly attempting to increase the path MTU by 1698 * deliberately sending larger packets. This discovers routing 1699 * changes resulting in larger path MTUs. 1700 * 1701 * Returns 0 if we should wait to probe (no cwnd available), 1702 * 1 if a probe was sent, 1703 * -1 otherwise 1704 */ 1705 static int tcp_mtu_probe(struct sock *sk) 1706 { 1707 struct tcp_sock *tp = tcp_sk(sk); 1708 struct inet_connection_sock *icsk = inet_csk(sk); 1709 struct sk_buff *skb, *nskb, *next; 1710 int len; 1711 int probe_size; 1712 int size_needed; 1713 int copy; 1714 int mss_now; 1715 1716 /* Not currently probing/verifying, 1717 * not in recovery, 1718 * have enough cwnd, and 1719 * not SACKing (the variable headers throw things off) */ 1720 if (!icsk->icsk_mtup.enabled || 1721 icsk->icsk_mtup.probe_size || 1722 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1723 tp->snd_cwnd < 11 || 1724 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1725 return -1; 1726 1727 /* Very simple search strategy: just double the MSS. */ 1728 mss_now = tcp_current_mss(sk); 1729 probe_size = 2 * tp->mss_cache; 1730 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1731 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1732 /* TODO: set timer for probe_converge_event */ 1733 return -1; 1734 } 1735 1736 /* Have enough data in the send queue to probe? */ 1737 if (tp->write_seq - tp->snd_nxt < size_needed) 1738 return -1; 1739 1740 if (tp->snd_wnd < size_needed) 1741 return -1; 1742 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1743 return 0; 1744 1745 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1746 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1747 if (!tcp_packets_in_flight(tp)) 1748 return -1; 1749 else 1750 return 0; 1751 } 1752 1753 /* We're allowed to probe. Build it now. */ 1754 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1755 return -1; 1756 sk->sk_wmem_queued += nskb->truesize; 1757 sk_mem_charge(sk, nskb->truesize); 1758 1759 skb = tcp_send_head(sk); 1760 1761 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1762 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1763 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1764 TCP_SKB_CB(nskb)->sacked = 0; 1765 nskb->csum = 0; 1766 nskb->ip_summed = skb->ip_summed; 1767 1768 tcp_insert_write_queue_before(nskb, skb, sk); 1769 1770 len = 0; 1771 tcp_for_write_queue_from_safe(skb, next, sk) { 1772 copy = min_t(int, skb->len, probe_size - len); 1773 if (nskb->ip_summed) 1774 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1775 else 1776 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1777 skb_put(nskb, copy), 1778 copy, nskb->csum); 1779 1780 if (skb->len <= copy) { 1781 /* We've eaten all the data from this skb. 1782 * Throw it away. */ 1783 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1784 tcp_unlink_write_queue(skb, sk); 1785 sk_wmem_free_skb(sk, skb); 1786 } else { 1787 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1788 ~(TCPHDR_FIN|TCPHDR_PSH); 1789 if (!skb_shinfo(skb)->nr_frags) { 1790 skb_pull(skb, copy); 1791 if (skb->ip_summed != CHECKSUM_PARTIAL) 1792 skb->csum = csum_partial(skb->data, 1793 skb->len, 0); 1794 } else { 1795 __pskb_trim_head(skb, copy); 1796 tcp_set_skb_tso_segs(sk, skb, mss_now); 1797 } 1798 TCP_SKB_CB(skb)->seq += copy; 1799 } 1800 1801 len += copy; 1802 1803 if (len >= probe_size) 1804 break; 1805 } 1806 tcp_init_tso_segs(sk, nskb, nskb->len); 1807 1808 /* We're ready to send. If this fails, the probe will 1809 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1810 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1811 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1812 /* Decrement cwnd here because we are sending 1813 * effectively two packets. */ 1814 tp->snd_cwnd--; 1815 tcp_event_new_data_sent(sk, nskb); 1816 1817 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1818 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1819 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1820 1821 return 1; 1822 } 1823 1824 return -1; 1825 } 1826 1827 /* This routine writes packets to the network. It advances the 1828 * send_head. This happens as incoming acks open up the remote 1829 * window for us. 1830 * 1831 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1832 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1833 * account rare use of URG, this is not a big flaw. 1834 * 1835 * Send at most one packet when push_one > 0. Temporarily ignore 1836 * cwnd limit to force at most one packet out when push_one == 2. 1837 1838 * Returns true, if no segments are in flight and we have queued segments, 1839 * but cannot send anything now because of SWS or another problem. 1840 */ 1841 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1842 int push_one, gfp_t gfp) 1843 { 1844 struct tcp_sock *tp = tcp_sk(sk); 1845 struct sk_buff *skb; 1846 unsigned int tso_segs, sent_pkts; 1847 int cwnd_quota; 1848 int result; 1849 1850 sent_pkts = 0; 1851 1852 if (!push_one) { 1853 /* Do MTU probing. */ 1854 result = tcp_mtu_probe(sk); 1855 if (!result) { 1856 return false; 1857 } else if (result > 0) { 1858 sent_pkts = 1; 1859 } 1860 } 1861 1862 while ((skb = tcp_send_head(sk))) { 1863 unsigned int limit; 1864 1865 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1866 BUG_ON(!tso_segs); 1867 1868 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) 1869 goto repair; /* Skip network transmission */ 1870 1871 cwnd_quota = tcp_cwnd_test(tp, skb); 1872 if (!cwnd_quota) { 1873 if (push_one == 2) 1874 /* Force out a loss probe pkt. */ 1875 cwnd_quota = 1; 1876 else 1877 break; 1878 } 1879 1880 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1881 break; 1882 1883 if (tso_segs == 1) { 1884 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1885 (tcp_skb_is_last(sk, skb) ? 1886 nonagle : TCP_NAGLE_PUSH)))) 1887 break; 1888 } else { 1889 if (!push_one && tcp_tso_should_defer(sk, skb)) 1890 break; 1891 } 1892 1893 /* TCP Small Queues : 1894 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 1895 * This allows for : 1896 * - better RTT estimation and ACK scheduling 1897 * - faster recovery 1898 * - high rates 1899 * Alas, some drivers / subsystems require a fair amount 1900 * of queued bytes to ensure line rate. 1901 * One example is wifi aggregation (802.11 AMPDU) 1902 */ 1903 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes, 1904 sk->sk_pacing_rate >> 10); 1905 1906 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 1907 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 1908 /* It is possible TX completion already happened 1909 * before we set TSQ_THROTTLED, so we must 1910 * test again the condition. 1911 * We abuse smp_mb__after_clear_bit() because 1912 * there is no smp_mb__after_set_bit() yet 1913 */ 1914 smp_mb__after_clear_bit(); 1915 if (atomic_read(&sk->sk_wmem_alloc) > limit) 1916 break; 1917 } 1918 1919 limit = mss_now; 1920 if (tso_segs > 1 && !tcp_urg_mode(tp)) 1921 limit = tcp_mss_split_point(sk, skb, mss_now, 1922 min_t(unsigned int, 1923 cwnd_quota, 1924 sk->sk_gso_max_segs), 1925 nonagle); 1926 1927 if (skb->len > limit && 1928 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 1929 break; 1930 1931 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1932 1933 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 1934 break; 1935 1936 repair: 1937 /* Advance the send_head. This one is sent out. 1938 * This call will increment packets_out. 1939 */ 1940 tcp_event_new_data_sent(sk, skb); 1941 1942 tcp_minshall_update(tp, mss_now, skb); 1943 sent_pkts += tcp_skb_pcount(skb); 1944 1945 if (push_one) 1946 break; 1947 } 1948 1949 if (likely(sent_pkts)) { 1950 if (tcp_in_cwnd_reduction(sk)) 1951 tp->prr_out += sent_pkts; 1952 1953 /* Send one loss probe per tail loss episode. */ 1954 if (push_one != 2) 1955 tcp_schedule_loss_probe(sk); 1956 tcp_cwnd_validate(sk); 1957 return false; 1958 } 1959 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk)); 1960 } 1961 1962 bool tcp_schedule_loss_probe(struct sock *sk) 1963 { 1964 struct inet_connection_sock *icsk = inet_csk(sk); 1965 struct tcp_sock *tp = tcp_sk(sk); 1966 u32 timeout, tlp_time_stamp, rto_time_stamp; 1967 u32 rtt = tp->srtt >> 3; 1968 1969 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 1970 return false; 1971 /* No consecutive loss probes. */ 1972 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 1973 tcp_rearm_rto(sk); 1974 return false; 1975 } 1976 /* Don't do any loss probe on a Fast Open connection before 3WHS 1977 * finishes. 1978 */ 1979 if (sk->sk_state == TCP_SYN_RECV) 1980 return false; 1981 1982 /* TLP is only scheduled when next timer event is RTO. */ 1983 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 1984 return false; 1985 1986 /* Schedule a loss probe in 2*RTT for SACK capable connections 1987 * in Open state, that are either limited by cwnd or application. 1988 */ 1989 if (sysctl_tcp_early_retrans < 3 || !tp->srtt || !tp->packets_out || 1990 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 1991 return false; 1992 1993 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 1994 tcp_send_head(sk)) 1995 return false; 1996 1997 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 1998 * for delayed ack when there's one outstanding packet. 1999 */ 2000 timeout = rtt << 1; 2001 if (tp->packets_out == 1) 2002 timeout = max_t(u32, timeout, 2003 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2004 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2005 2006 /* If RTO is shorter, just schedule TLP in its place. */ 2007 tlp_time_stamp = tcp_time_stamp + timeout; 2008 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2009 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2010 s32 delta = rto_time_stamp - tcp_time_stamp; 2011 if (delta > 0) 2012 timeout = delta; 2013 } 2014 2015 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2016 TCP_RTO_MAX); 2017 return true; 2018 } 2019 2020 /* When probe timeout (PTO) fires, send a new segment if one exists, else 2021 * retransmit the last segment. 2022 */ 2023 void tcp_send_loss_probe(struct sock *sk) 2024 { 2025 struct tcp_sock *tp = tcp_sk(sk); 2026 struct sk_buff *skb; 2027 int pcount; 2028 int mss = tcp_current_mss(sk); 2029 int err = -1; 2030 2031 if (tcp_send_head(sk) != NULL) { 2032 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2033 goto rearm_timer; 2034 } 2035 2036 /* At most one outstanding TLP retransmission. */ 2037 if (tp->tlp_high_seq) 2038 goto rearm_timer; 2039 2040 /* Retransmit last segment. */ 2041 skb = tcp_write_queue_tail(sk); 2042 if (WARN_ON(!skb)) 2043 goto rearm_timer; 2044 2045 pcount = tcp_skb_pcount(skb); 2046 if (WARN_ON(!pcount)) 2047 goto rearm_timer; 2048 2049 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2050 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss))) 2051 goto rearm_timer; 2052 skb = tcp_write_queue_tail(sk); 2053 } 2054 2055 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2056 goto rearm_timer; 2057 2058 /* Probe with zero data doesn't trigger fast recovery. */ 2059 if (skb->len > 0) 2060 err = __tcp_retransmit_skb(sk, skb); 2061 2062 /* Record snd_nxt for loss detection. */ 2063 if (likely(!err)) 2064 tp->tlp_high_seq = tp->snd_nxt; 2065 2066 rearm_timer: 2067 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2068 inet_csk(sk)->icsk_rto, 2069 TCP_RTO_MAX); 2070 2071 if (likely(!err)) 2072 NET_INC_STATS_BH(sock_net(sk), 2073 LINUX_MIB_TCPLOSSPROBES); 2074 return; 2075 } 2076 2077 /* Push out any pending frames which were held back due to 2078 * TCP_CORK or attempt at coalescing tiny packets. 2079 * The socket must be locked by the caller. 2080 */ 2081 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2082 int nonagle) 2083 { 2084 /* If we are closed, the bytes will have to remain here. 2085 * In time closedown will finish, we empty the write queue and 2086 * all will be happy. 2087 */ 2088 if (unlikely(sk->sk_state == TCP_CLOSE)) 2089 return; 2090 2091 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2092 sk_gfp_atomic(sk, GFP_ATOMIC))) 2093 tcp_check_probe_timer(sk); 2094 } 2095 2096 /* Send _single_ skb sitting at the send head. This function requires 2097 * true push pending frames to setup probe timer etc. 2098 */ 2099 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2100 { 2101 struct sk_buff *skb = tcp_send_head(sk); 2102 2103 BUG_ON(!skb || skb->len < mss_now); 2104 2105 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2106 } 2107 2108 /* This function returns the amount that we can raise the 2109 * usable window based on the following constraints 2110 * 2111 * 1. The window can never be shrunk once it is offered (RFC 793) 2112 * 2. We limit memory per socket 2113 * 2114 * RFC 1122: 2115 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2116 * RECV.NEXT + RCV.WIN fixed until: 2117 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2118 * 2119 * i.e. don't raise the right edge of the window until you can raise 2120 * it at least MSS bytes. 2121 * 2122 * Unfortunately, the recommended algorithm breaks header prediction, 2123 * since header prediction assumes th->window stays fixed. 2124 * 2125 * Strictly speaking, keeping th->window fixed violates the receiver 2126 * side SWS prevention criteria. The problem is that under this rule 2127 * a stream of single byte packets will cause the right side of the 2128 * window to always advance by a single byte. 2129 * 2130 * Of course, if the sender implements sender side SWS prevention 2131 * then this will not be a problem. 2132 * 2133 * BSD seems to make the following compromise: 2134 * 2135 * If the free space is less than the 1/4 of the maximum 2136 * space available and the free space is less than 1/2 mss, 2137 * then set the window to 0. 2138 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2139 * Otherwise, just prevent the window from shrinking 2140 * and from being larger than the largest representable value. 2141 * 2142 * This prevents incremental opening of the window in the regime 2143 * where TCP is limited by the speed of the reader side taking 2144 * data out of the TCP receive queue. It does nothing about 2145 * those cases where the window is constrained on the sender side 2146 * because the pipeline is full. 2147 * 2148 * BSD also seems to "accidentally" limit itself to windows that are a 2149 * multiple of MSS, at least until the free space gets quite small. 2150 * This would appear to be a side effect of the mbuf implementation. 2151 * Combining these two algorithms results in the observed behavior 2152 * of having a fixed window size at almost all times. 2153 * 2154 * Below we obtain similar behavior by forcing the offered window to 2155 * a multiple of the mss when it is feasible to do so. 2156 * 2157 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2158 * Regular options like TIMESTAMP are taken into account. 2159 */ 2160 u32 __tcp_select_window(struct sock *sk) 2161 { 2162 struct inet_connection_sock *icsk = inet_csk(sk); 2163 struct tcp_sock *tp = tcp_sk(sk); 2164 /* MSS for the peer's data. Previous versions used mss_clamp 2165 * here. I don't know if the value based on our guesses 2166 * of peer's MSS is better for the performance. It's more correct 2167 * but may be worse for the performance because of rcv_mss 2168 * fluctuations. --SAW 1998/11/1 2169 */ 2170 int mss = icsk->icsk_ack.rcv_mss; 2171 int free_space = tcp_space(sk); 2172 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 2173 int window; 2174 2175 if (mss > full_space) 2176 mss = full_space; 2177 2178 if (free_space < (full_space >> 1)) { 2179 icsk->icsk_ack.quick = 0; 2180 2181 if (sk_under_memory_pressure(sk)) 2182 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2183 4U * tp->advmss); 2184 2185 if (free_space < mss) 2186 return 0; 2187 } 2188 2189 if (free_space > tp->rcv_ssthresh) 2190 free_space = tp->rcv_ssthresh; 2191 2192 /* Don't do rounding if we are using window scaling, since the 2193 * scaled window will not line up with the MSS boundary anyway. 2194 */ 2195 window = tp->rcv_wnd; 2196 if (tp->rx_opt.rcv_wscale) { 2197 window = free_space; 2198 2199 /* Advertise enough space so that it won't get scaled away. 2200 * Import case: prevent zero window announcement if 2201 * 1<<rcv_wscale > mss. 2202 */ 2203 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2204 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2205 << tp->rx_opt.rcv_wscale); 2206 } else { 2207 /* Get the largest window that is a nice multiple of mss. 2208 * Window clamp already applied above. 2209 * If our current window offering is within 1 mss of the 2210 * free space we just keep it. This prevents the divide 2211 * and multiply from happening most of the time. 2212 * We also don't do any window rounding when the free space 2213 * is too small. 2214 */ 2215 if (window <= free_space - mss || window > free_space) 2216 window = (free_space / mss) * mss; 2217 else if (mss == full_space && 2218 free_space > window + (full_space >> 1)) 2219 window = free_space; 2220 } 2221 2222 return window; 2223 } 2224 2225 /* Collapses two adjacent SKB's during retransmission. */ 2226 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2227 { 2228 struct tcp_sock *tp = tcp_sk(sk); 2229 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2230 int skb_size, next_skb_size; 2231 2232 skb_size = skb->len; 2233 next_skb_size = next_skb->len; 2234 2235 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2236 2237 tcp_highest_sack_combine(sk, next_skb, skb); 2238 2239 tcp_unlink_write_queue(next_skb, sk); 2240 2241 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2242 next_skb_size); 2243 2244 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2245 skb->ip_summed = CHECKSUM_PARTIAL; 2246 2247 if (skb->ip_summed != CHECKSUM_PARTIAL) 2248 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2249 2250 /* Update sequence range on original skb. */ 2251 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2252 2253 /* Merge over control information. This moves PSH/FIN etc. over */ 2254 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2255 2256 /* All done, get rid of second SKB and account for it so 2257 * packet counting does not break. 2258 */ 2259 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2260 2261 /* changed transmit queue under us so clear hints */ 2262 tcp_clear_retrans_hints_partial(tp); 2263 if (next_skb == tp->retransmit_skb_hint) 2264 tp->retransmit_skb_hint = skb; 2265 2266 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2267 2268 sk_wmem_free_skb(sk, next_skb); 2269 } 2270 2271 /* Check if coalescing SKBs is legal. */ 2272 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2273 { 2274 if (tcp_skb_pcount(skb) > 1) 2275 return false; 2276 /* TODO: SACK collapsing could be used to remove this condition */ 2277 if (skb_shinfo(skb)->nr_frags != 0) 2278 return false; 2279 if (skb_cloned(skb)) 2280 return false; 2281 if (skb == tcp_send_head(sk)) 2282 return false; 2283 /* Some heurestics for collapsing over SACK'd could be invented */ 2284 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2285 return false; 2286 2287 return true; 2288 } 2289 2290 /* Collapse packets in the retransmit queue to make to create 2291 * less packets on the wire. This is only done on retransmission. 2292 */ 2293 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2294 int space) 2295 { 2296 struct tcp_sock *tp = tcp_sk(sk); 2297 struct sk_buff *skb = to, *tmp; 2298 bool first = true; 2299 2300 if (!sysctl_tcp_retrans_collapse) 2301 return; 2302 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2303 return; 2304 2305 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2306 if (!tcp_can_collapse(sk, skb)) 2307 break; 2308 2309 space -= skb->len; 2310 2311 if (first) { 2312 first = false; 2313 continue; 2314 } 2315 2316 if (space < 0) 2317 break; 2318 /* Punt if not enough space exists in the first SKB for 2319 * the data in the second 2320 */ 2321 if (skb->len > skb_availroom(to)) 2322 break; 2323 2324 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2325 break; 2326 2327 tcp_collapse_retrans(sk, to); 2328 } 2329 } 2330 2331 /* This retransmits one SKB. Policy decisions and retransmit queue 2332 * state updates are done by the caller. Returns non-zero if an 2333 * error occurred which prevented the send. 2334 */ 2335 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2336 { 2337 struct tcp_sock *tp = tcp_sk(sk); 2338 struct inet_connection_sock *icsk = inet_csk(sk); 2339 unsigned int cur_mss; 2340 2341 /* Inconslusive MTU probe */ 2342 if (icsk->icsk_mtup.probe_size) { 2343 icsk->icsk_mtup.probe_size = 0; 2344 } 2345 2346 /* Do not sent more than we queued. 1/4 is reserved for possible 2347 * copying overhead: fragmentation, tunneling, mangling etc. 2348 */ 2349 if (atomic_read(&sk->sk_wmem_alloc) > 2350 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2351 return -EAGAIN; 2352 2353 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2354 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2355 BUG(); 2356 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2357 return -ENOMEM; 2358 } 2359 2360 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2361 return -EHOSTUNREACH; /* Routing failure or similar. */ 2362 2363 cur_mss = tcp_current_mss(sk); 2364 2365 /* If receiver has shrunk his window, and skb is out of 2366 * new window, do not retransmit it. The exception is the 2367 * case, when window is shrunk to zero. In this case 2368 * our retransmit serves as a zero window probe. 2369 */ 2370 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2371 TCP_SKB_CB(skb)->seq != tp->snd_una) 2372 return -EAGAIN; 2373 2374 if (skb->len > cur_mss) { 2375 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 2376 return -ENOMEM; /* We'll try again later. */ 2377 } else { 2378 int oldpcount = tcp_skb_pcount(skb); 2379 2380 if (unlikely(oldpcount > 1)) { 2381 if (skb_unclone(skb, GFP_ATOMIC)) 2382 return -ENOMEM; 2383 tcp_init_tso_segs(sk, skb, cur_mss); 2384 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2385 } 2386 } 2387 2388 tcp_retrans_try_collapse(sk, skb, cur_mss); 2389 2390 /* Make a copy, if the first transmission SKB clone we made 2391 * is still in somebody's hands, else make a clone. 2392 */ 2393 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2394 2395 /* make sure skb->data is aligned on arches that require it 2396 * and check if ack-trimming & collapsing extended the headroom 2397 * beyond what csum_start can cover. 2398 */ 2399 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2400 skb_headroom(skb) >= 0xFFFF)) { 2401 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2402 GFP_ATOMIC); 2403 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2404 -ENOBUFS; 2405 } else { 2406 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2407 } 2408 } 2409 2410 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2411 { 2412 struct tcp_sock *tp = tcp_sk(sk); 2413 int err = __tcp_retransmit_skb(sk, skb); 2414 2415 if (err == 0) { 2416 /* Update global TCP statistics. */ 2417 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2418 2419 tp->total_retrans++; 2420 2421 #if FASTRETRANS_DEBUG > 0 2422 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2423 net_dbg_ratelimited("retrans_out leaked\n"); 2424 } 2425 #endif 2426 if (!tp->retrans_out) 2427 tp->lost_retrans_low = tp->snd_nxt; 2428 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2429 tp->retrans_out += tcp_skb_pcount(skb); 2430 2431 /* Save stamp of the first retransmit. */ 2432 if (!tp->retrans_stamp) 2433 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 2434 2435 tp->undo_retrans += tcp_skb_pcount(skb); 2436 2437 /* snd_nxt is stored to detect loss of retransmitted segment, 2438 * see tcp_input.c tcp_sacktag_write_queue(). 2439 */ 2440 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2441 } else { 2442 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2443 } 2444 return err; 2445 } 2446 2447 /* Check if we forward retransmits are possible in the current 2448 * window/congestion state. 2449 */ 2450 static bool tcp_can_forward_retransmit(struct sock *sk) 2451 { 2452 const struct inet_connection_sock *icsk = inet_csk(sk); 2453 const struct tcp_sock *tp = tcp_sk(sk); 2454 2455 /* Forward retransmissions are possible only during Recovery. */ 2456 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2457 return false; 2458 2459 /* No forward retransmissions in Reno are possible. */ 2460 if (tcp_is_reno(tp)) 2461 return false; 2462 2463 /* Yeah, we have to make difficult choice between forward transmission 2464 * and retransmission... Both ways have their merits... 2465 * 2466 * For now we do not retransmit anything, while we have some new 2467 * segments to send. In the other cases, follow rule 3 for 2468 * NextSeg() specified in RFC3517. 2469 */ 2470 2471 if (tcp_may_send_now(sk)) 2472 return false; 2473 2474 return true; 2475 } 2476 2477 /* This gets called after a retransmit timeout, and the initially 2478 * retransmitted data is acknowledged. It tries to continue 2479 * resending the rest of the retransmit queue, until either 2480 * we've sent it all or the congestion window limit is reached. 2481 * If doing SACK, the first ACK which comes back for a timeout 2482 * based retransmit packet might feed us FACK information again. 2483 * If so, we use it to avoid unnecessarily retransmissions. 2484 */ 2485 void tcp_xmit_retransmit_queue(struct sock *sk) 2486 { 2487 const struct inet_connection_sock *icsk = inet_csk(sk); 2488 struct tcp_sock *tp = tcp_sk(sk); 2489 struct sk_buff *skb; 2490 struct sk_buff *hole = NULL; 2491 u32 last_lost; 2492 int mib_idx; 2493 int fwd_rexmitting = 0; 2494 2495 if (!tp->packets_out) 2496 return; 2497 2498 if (!tp->lost_out) 2499 tp->retransmit_high = tp->snd_una; 2500 2501 if (tp->retransmit_skb_hint) { 2502 skb = tp->retransmit_skb_hint; 2503 last_lost = TCP_SKB_CB(skb)->end_seq; 2504 if (after(last_lost, tp->retransmit_high)) 2505 last_lost = tp->retransmit_high; 2506 } else { 2507 skb = tcp_write_queue_head(sk); 2508 last_lost = tp->snd_una; 2509 } 2510 2511 tcp_for_write_queue_from(skb, sk) { 2512 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2513 2514 if (skb == tcp_send_head(sk)) 2515 break; 2516 /* we could do better than to assign each time */ 2517 if (hole == NULL) 2518 tp->retransmit_skb_hint = skb; 2519 2520 /* Assume this retransmit will generate 2521 * only one packet for congestion window 2522 * calculation purposes. This works because 2523 * tcp_retransmit_skb() will chop up the 2524 * packet to be MSS sized and all the 2525 * packet counting works out. 2526 */ 2527 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2528 return; 2529 2530 if (fwd_rexmitting) { 2531 begin_fwd: 2532 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2533 break; 2534 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2535 2536 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2537 tp->retransmit_high = last_lost; 2538 if (!tcp_can_forward_retransmit(sk)) 2539 break; 2540 /* Backtrack if necessary to non-L'ed skb */ 2541 if (hole != NULL) { 2542 skb = hole; 2543 hole = NULL; 2544 } 2545 fwd_rexmitting = 1; 2546 goto begin_fwd; 2547 2548 } else if (!(sacked & TCPCB_LOST)) { 2549 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2550 hole = skb; 2551 continue; 2552 2553 } else { 2554 last_lost = TCP_SKB_CB(skb)->end_seq; 2555 if (icsk->icsk_ca_state != TCP_CA_Loss) 2556 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2557 else 2558 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2559 } 2560 2561 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2562 continue; 2563 2564 if (tcp_retransmit_skb(sk, skb)) 2565 return; 2566 2567 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2568 2569 if (tcp_in_cwnd_reduction(sk)) 2570 tp->prr_out += tcp_skb_pcount(skb); 2571 2572 if (skb == tcp_write_queue_head(sk)) 2573 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2574 inet_csk(sk)->icsk_rto, 2575 TCP_RTO_MAX); 2576 } 2577 } 2578 2579 /* Send a fin. The caller locks the socket for us. This cannot be 2580 * allowed to fail queueing a FIN frame under any circumstances. 2581 */ 2582 void tcp_send_fin(struct sock *sk) 2583 { 2584 struct tcp_sock *tp = tcp_sk(sk); 2585 struct sk_buff *skb = tcp_write_queue_tail(sk); 2586 int mss_now; 2587 2588 /* Optimization, tack on the FIN if we have a queue of 2589 * unsent frames. But be careful about outgoing SACKS 2590 * and IP options. 2591 */ 2592 mss_now = tcp_current_mss(sk); 2593 2594 if (tcp_send_head(sk) != NULL) { 2595 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN; 2596 TCP_SKB_CB(skb)->end_seq++; 2597 tp->write_seq++; 2598 } else { 2599 /* Socket is locked, keep trying until memory is available. */ 2600 for (;;) { 2601 skb = alloc_skb_fclone(MAX_TCP_HEADER, 2602 sk->sk_allocation); 2603 if (skb) 2604 break; 2605 yield(); 2606 } 2607 2608 /* Reserve space for headers and prepare control bits. */ 2609 skb_reserve(skb, MAX_TCP_HEADER); 2610 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2611 tcp_init_nondata_skb(skb, tp->write_seq, 2612 TCPHDR_ACK | TCPHDR_FIN); 2613 tcp_queue_skb(sk, skb); 2614 } 2615 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2616 } 2617 2618 /* We get here when a process closes a file descriptor (either due to 2619 * an explicit close() or as a byproduct of exit()'ing) and there 2620 * was unread data in the receive queue. This behavior is recommended 2621 * by RFC 2525, section 2.17. -DaveM 2622 */ 2623 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2624 { 2625 struct sk_buff *skb; 2626 2627 /* NOTE: No TCP options attached and we never retransmit this. */ 2628 skb = alloc_skb(MAX_TCP_HEADER, priority); 2629 if (!skb) { 2630 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2631 return; 2632 } 2633 2634 /* Reserve space for headers and prepare control bits. */ 2635 skb_reserve(skb, MAX_TCP_HEADER); 2636 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2637 TCPHDR_ACK | TCPHDR_RST); 2638 /* Send it off. */ 2639 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2640 if (tcp_transmit_skb(sk, skb, 0, priority)) 2641 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2642 2643 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2644 } 2645 2646 /* Send a crossed SYN-ACK during socket establishment. 2647 * WARNING: This routine must only be called when we have already sent 2648 * a SYN packet that crossed the incoming SYN that caused this routine 2649 * to get called. If this assumption fails then the initial rcv_wnd 2650 * and rcv_wscale values will not be correct. 2651 */ 2652 int tcp_send_synack(struct sock *sk) 2653 { 2654 struct sk_buff *skb; 2655 2656 skb = tcp_write_queue_head(sk); 2657 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2658 pr_debug("%s: wrong queue state\n", __func__); 2659 return -EFAULT; 2660 } 2661 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2662 if (skb_cloned(skb)) { 2663 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2664 if (nskb == NULL) 2665 return -ENOMEM; 2666 tcp_unlink_write_queue(skb, sk); 2667 skb_header_release(nskb); 2668 __tcp_add_write_queue_head(sk, nskb); 2669 sk_wmem_free_skb(sk, skb); 2670 sk->sk_wmem_queued += nskb->truesize; 2671 sk_mem_charge(sk, nskb->truesize); 2672 skb = nskb; 2673 } 2674 2675 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2676 TCP_ECN_send_synack(tcp_sk(sk), skb); 2677 } 2678 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2679 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2680 } 2681 2682 /** 2683 * tcp_make_synack - Prepare a SYN-ACK. 2684 * sk: listener socket 2685 * dst: dst entry attached to the SYNACK 2686 * req: request_sock pointer 2687 * 2688 * Allocate one skb and build a SYNACK packet. 2689 * @dst is consumed : Caller should not use it again. 2690 */ 2691 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2692 struct request_sock *req, 2693 struct tcp_fastopen_cookie *foc) 2694 { 2695 struct tcp_out_options opts; 2696 struct inet_request_sock *ireq = inet_rsk(req); 2697 struct tcp_sock *tp = tcp_sk(sk); 2698 struct tcphdr *th; 2699 struct sk_buff *skb; 2700 struct tcp_md5sig_key *md5; 2701 int tcp_header_size; 2702 int mss; 2703 2704 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); 2705 if (unlikely(!skb)) { 2706 dst_release(dst); 2707 return NULL; 2708 } 2709 /* Reserve space for headers. */ 2710 skb_reserve(skb, MAX_TCP_HEADER); 2711 2712 skb_dst_set(skb, dst); 2713 security_skb_owned_by(skb, sk); 2714 2715 mss = dst_metric_advmss(dst); 2716 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2717 mss = tp->rx_opt.user_mss; 2718 2719 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 2720 __u8 rcv_wscale; 2721 /* Set this up on the first call only */ 2722 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 2723 2724 /* limit the window selection if the user enforce a smaller rx buffer */ 2725 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2726 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0)) 2727 req->window_clamp = tcp_full_space(sk); 2728 2729 /* tcp_full_space because it is guaranteed to be the first packet */ 2730 tcp_select_initial_window(tcp_full_space(sk), 2731 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 2732 &req->rcv_wnd, 2733 &req->window_clamp, 2734 ireq->wscale_ok, 2735 &rcv_wscale, 2736 dst_metric(dst, RTAX_INITRWND)); 2737 ireq->rcv_wscale = rcv_wscale; 2738 } 2739 2740 memset(&opts, 0, sizeof(opts)); 2741 #ifdef CONFIG_SYN_COOKIES 2742 if (unlikely(req->cookie_ts)) 2743 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req); 2744 else 2745 #endif 2746 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2747 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5, 2748 foc) + sizeof(*th); 2749 2750 skb_push(skb, tcp_header_size); 2751 skb_reset_transport_header(skb); 2752 2753 th = tcp_hdr(skb); 2754 memset(th, 0, sizeof(struct tcphdr)); 2755 th->syn = 1; 2756 th->ack = 1; 2757 TCP_ECN_make_synack(req, th); 2758 th->source = htons(ireq->ir_num); 2759 th->dest = ireq->ir_rmt_port; 2760 /* Setting of flags are superfluous here for callers (and ECE is 2761 * not even correctly set) 2762 */ 2763 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2764 TCPHDR_SYN | TCPHDR_ACK); 2765 2766 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2767 /* XXX data is queued and acked as is. No buffer/window check */ 2768 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 2769 2770 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2771 th->window = htons(min(req->rcv_wnd, 65535U)); 2772 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2773 th->doff = (tcp_header_size >> 2); 2774 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb)); 2775 2776 #ifdef CONFIG_TCP_MD5SIG 2777 /* Okay, we have all we need - do the md5 hash if needed */ 2778 if (md5) { 2779 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2780 md5, NULL, req, skb); 2781 } 2782 #endif 2783 2784 return skb; 2785 } 2786 EXPORT_SYMBOL(tcp_make_synack); 2787 2788 /* Do all connect socket setups that can be done AF independent. */ 2789 static void tcp_connect_init(struct sock *sk) 2790 { 2791 const struct dst_entry *dst = __sk_dst_get(sk); 2792 struct tcp_sock *tp = tcp_sk(sk); 2793 __u8 rcv_wscale; 2794 2795 /* We'll fix this up when we get a response from the other end. 2796 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2797 */ 2798 tp->tcp_header_len = sizeof(struct tcphdr) + 2799 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2800 2801 #ifdef CONFIG_TCP_MD5SIG 2802 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2803 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2804 #endif 2805 2806 /* If user gave his TCP_MAXSEG, record it to clamp */ 2807 if (tp->rx_opt.user_mss) 2808 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2809 tp->max_window = 0; 2810 tcp_mtup_init(sk); 2811 tcp_sync_mss(sk, dst_mtu(dst)); 2812 2813 if (!tp->window_clamp) 2814 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2815 tp->advmss = dst_metric_advmss(dst); 2816 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2817 tp->advmss = tp->rx_opt.user_mss; 2818 2819 tcp_initialize_rcv_mss(sk); 2820 2821 /* limit the window selection if the user enforce a smaller rx buffer */ 2822 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2823 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 2824 tp->window_clamp = tcp_full_space(sk); 2825 2826 tcp_select_initial_window(tcp_full_space(sk), 2827 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2828 &tp->rcv_wnd, 2829 &tp->window_clamp, 2830 sysctl_tcp_window_scaling, 2831 &rcv_wscale, 2832 dst_metric(dst, RTAX_INITRWND)); 2833 2834 tp->rx_opt.rcv_wscale = rcv_wscale; 2835 tp->rcv_ssthresh = tp->rcv_wnd; 2836 2837 sk->sk_err = 0; 2838 sock_reset_flag(sk, SOCK_DONE); 2839 tp->snd_wnd = 0; 2840 tcp_init_wl(tp, 0); 2841 tp->snd_una = tp->write_seq; 2842 tp->snd_sml = tp->write_seq; 2843 tp->snd_up = tp->write_seq; 2844 tp->snd_nxt = tp->write_seq; 2845 2846 if (likely(!tp->repair)) 2847 tp->rcv_nxt = 0; 2848 else 2849 tp->rcv_tstamp = tcp_time_stamp; 2850 tp->rcv_wup = tp->rcv_nxt; 2851 tp->copied_seq = tp->rcv_nxt; 2852 2853 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2854 inet_csk(sk)->icsk_retransmits = 0; 2855 tcp_clear_retrans(tp); 2856 } 2857 2858 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 2859 { 2860 struct tcp_sock *tp = tcp_sk(sk); 2861 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 2862 2863 tcb->end_seq += skb->len; 2864 skb_header_release(skb); 2865 __tcp_add_write_queue_tail(sk, skb); 2866 sk->sk_wmem_queued += skb->truesize; 2867 sk_mem_charge(sk, skb->truesize); 2868 tp->write_seq = tcb->end_seq; 2869 tp->packets_out += tcp_skb_pcount(skb); 2870 } 2871 2872 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 2873 * queue a data-only packet after the regular SYN, such that regular SYNs 2874 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 2875 * only the SYN sequence, the data are retransmitted in the first ACK. 2876 * If cookie is not cached or other error occurs, falls back to send a 2877 * regular SYN with Fast Open cookie request option. 2878 */ 2879 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 2880 { 2881 struct tcp_sock *tp = tcp_sk(sk); 2882 struct tcp_fastopen_request *fo = tp->fastopen_req; 2883 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen; 2884 struct sk_buff *syn_data = NULL, *data; 2885 unsigned long last_syn_loss = 0; 2886 2887 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 2888 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 2889 &syn_loss, &last_syn_loss); 2890 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 2891 if (syn_loss > 1 && 2892 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 2893 fo->cookie.len = -1; 2894 goto fallback; 2895 } 2896 2897 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 2898 fo->cookie.len = -1; 2899 else if (fo->cookie.len <= 0) 2900 goto fallback; 2901 2902 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 2903 * user-MSS. Reserve maximum option space for middleboxes that add 2904 * private TCP options. The cost is reduced data space in SYN :( 2905 */ 2906 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 2907 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2908 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 2909 MAX_TCP_OPTION_SPACE; 2910 2911 syn_data = skb_copy_expand(syn, skb_headroom(syn), space, 2912 sk->sk_allocation); 2913 if (syn_data == NULL) 2914 goto fallback; 2915 2916 for (i = 0; i < iovlen && syn_data->len < space; ++i) { 2917 struct iovec *iov = &fo->data->msg_iov[i]; 2918 unsigned char __user *from = iov->iov_base; 2919 int len = iov->iov_len; 2920 2921 if (syn_data->len + len > space) 2922 len = space - syn_data->len; 2923 else if (i + 1 == iovlen) 2924 /* No more data pending in inet_wait_for_connect() */ 2925 fo->data = NULL; 2926 2927 if (skb_add_data(syn_data, from, len)) 2928 goto fallback; 2929 } 2930 2931 /* Queue a data-only packet after the regular SYN for retransmission */ 2932 data = pskb_copy(syn_data, sk->sk_allocation); 2933 if (data == NULL) 2934 goto fallback; 2935 TCP_SKB_CB(data)->seq++; 2936 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN; 2937 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH); 2938 tcp_connect_queue_skb(sk, data); 2939 fo->copied = data->len; 2940 2941 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) { 2942 tp->syn_data = (fo->copied > 0); 2943 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 2944 goto done; 2945 } 2946 syn_data = NULL; 2947 2948 fallback: 2949 /* Send a regular SYN with Fast Open cookie request option */ 2950 if (fo->cookie.len > 0) 2951 fo->cookie.len = 0; 2952 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 2953 if (err) 2954 tp->syn_fastopen = 0; 2955 kfree_skb(syn_data); 2956 done: 2957 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 2958 return err; 2959 } 2960 2961 /* Build a SYN and send it off. */ 2962 int tcp_connect(struct sock *sk) 2963 { 2964 struct tcp_sock *tp = tcp_sk(sk); 2965 struct sk_buff *buff; 2966 int err; 2967 2968 tcp_connect_init(sk); 2969 2970 if (unlikely(tp->repair)) { 2971 tcp_finish_connect(sk, NULL); 2972 return 0; 2973 } 2974 2975 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 2976 if (unlikely(buff == NULL)) 2977 return -ENOBUFS; 2978 2979 /* Reserve space for headers. */ 2980 skb_reserve(buff, MAX_TCP_HEADER); 2981 2982 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 2983 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp; 2984 tcp_connect_queue_skb(sk, buff); 2985 TCP_ECN_send_syn(sk, buff); 2986 2987 /* Send off SYN; include data in Fast Open. */ 2988 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 2989 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 2990 if (err == -ECONNREFUSED) 2991 return err; 2992 2993 /* We change tp->snd_nxt after the tcp_transmit_skb() call 2994 * in order to make this packet get counted in tcpOutSegs. 2995 */ 2996 tp->snd_nxt = tp->write_seq; 2997 tp->pushed_seq = tp->write_seq; 2998 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 2999 3000 /* Timer for repeating the SYN until an answer. */ 3001 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3002 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3003 return 0; 3004 } 3005 EXPORT_SYMBOL(tcp_connect); 3006 3007 /* Send out a delayed ack, the caller does the policy checking 3008 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3009 * for details. 3010 */ 3011 void tcp_send_delayed_ack(struct sock *sk) 3012 { 3013 struct inet_connection_sock *icsk = inet_csk(sk); 3014 int ato = icsk->icsk_ack.ato; 3015 unsigned long timeout; 3016 3017 if (ato > TCP_DELACK_MIN) { 3018 const struct tcp_sock *tp = tcp_sk(sk); 3019 int max_ato = HZ / 2; 3020 3021 if (icsk->icsk_ack.pingpong || 3022 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3023 max_ato = TCP_DELACK_MAX; 3024 3025 /* Slow path, intersegment interval is "high". */ 3026 3027 /* If some rtt estimate is known, use it to bound delayed ack. 3028 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3029 * directly. 3030 */ 3031 if (tp->srtt) { 3032 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN); 3033 3034 if (rtt < max_ato) 3035 max_ato = rtt; 3036 } 3037 3038 ato = min(ato, max_ato); 3039 } 3040 3041 /* Stay within the limit we were given */ 3042 timeout = jiffies + ato; 3043 3044 /* Use new timeout only if there wasn't a older one earlier. */ 3045 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3046 /* If delack timer was blocked or is about to expire, 3047 * send ACK now. 3048 */ 3049 if (icsk->icsk_ack.blocked || 3050 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3051 tcp_send_ack(sk); 3052 return; 3053 } 3054 3055 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3056 timeout = icsk->icsk_ack.timeout; 3057 } 3058 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3059 icsk->icsk_ack.timeout = timeout; 3060 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3061 } 3062 3063 /* This routine sends an ack and also updates the window. */ 3064 void tcp_send_ack(struct sock *sk) 3065 { 3066 struct sk_buff *buff; 3067 3068 /* If we have been reset, we may not send again. */ 3069 if (sk->sk_state == TCP_CLOSE) 3070 return; 3071 3072 /* We are not putting this on the write queue, so 3073 * tcp_transmit_skb() will set the ownership to this 3074 * sock. 3075 */ 3076 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3077 if (buff == NULL) { 3078 inet_csk_schedule_ack(sk); 3079 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3080 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3081 TCP_DELACK_MAX, TCP_RTO_MAX); 3082 return; 3083 } 3084 3085 /* Reserve space for headers and prepare control bits. */ 3086 skb_reserve(buff, MAX_TCP_HEADER); 3087 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3088 3089 /* Send it off, this clears delayed acks for us. */ 3090 TCP_SKB_CB(buff)->when = tcp_time_stamp; 3091 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC)); 3092 } 3093 3094 /* This routine sends a packet with an out of date sequence 3095 * number. It assumes the other end will try to ack it. 3096 * 3097 * Question: what should we make while urgent mode? 3098 * 4.4BSD forces sending single byte of data. We cannot send 3099 * out of window data, because we have SND.NXT==SND.MAX... 3100 * 3101 * Current solution: to send TWO zero-length segments in urgent mode: 3102 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3103 * out-of-date with SND.UNA-1 to probe window. 3104 */ 3105 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 3106 { 3107 struct tcp_sock *tp = tcp_sk(sk); 3108 struct sk_buff *skb; 3109 3110 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3111 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3112 if (skb == NULL) 3113 return -1; 3114 3115 /* Reserve space for headers and set control bits. */ 3116 skb_reserve(skb, MAX_TCP_HEADER); 3117 /* Use a previous sequence. This should cause the other 3118 * end to send an ack. Don't queue or clone SKB, just 3119 * send it. 3120 */ 3121 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3122 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3123 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3124 } 3125 3126 void tcp_send_window_probe(struct sock *sk) 3127 { 3128 if (sk->sk_state == TCP_ESTABLISHED) { 3129 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3130 tcp_xmit_probe_skb(sk, 0); 3131 } 3132 } 3133 3134 /* Initiate keepalive or window probe from timer. */ 3135 int tcp_write_wakeup(struct sock *sk) 3136 { 3137 struct tcp_sock *tp = tcp_sk(sk); 3138 struct sk_buff *skb; 3139 3140 if (sk->sk_state == TCP_CLOSE) 3141 return -1; 3142 3143 if ((skb = tcp_send_head(sk)) != NULL && 3144 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3145 int err; 3146 unsigned int mss = tcp_current_mss(sk); 3147 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3148 3149 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3150 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3151 3152 /* We are probing the opening of a window 3153 * but the window size is != 0 3154 * must have been a result SWS avoidance ( sender ) 3155 */ 3156 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3157 skb->len > mss) { 3158 seg_size = min(seg_size, mss); 3159 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3160 if (tcp_fragment(sk, skb, seg_size, mss)) 3161 return -1; 3162 } else if (!tcp_skb_pcount(skb)) 3163 tcp_set_skb_tso_segs(sk, skb, mss); 3164 3165 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3166 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3167 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3168 if (!err) 3169 tcp_event_new_data_sent(sk, skb); 3170 return err; 3171 } else { 3172 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3173 tcp_xmit_probe_skb(sk, 1); 3174 return tcp_xmit_probe_skb(sk, 0); 3175 } 3176 } 3177 3178 /* A window probe timeout has occurred. If window is not closed send 3179 * a partial packet else a zero probe. 3180 */ 3181 void tcp_send_probe0(struct sock *sk) 3182 { 3183 struct inet_connection_sock *icsk = inet_csk(sk); 3184 struct tcp_sock *tp = tcp_sk(sk); 3185 int err; 3186 3187 err = tcp_write_wakeup(sk); 3188 3189 if (tp->packets_out || !tcp_send_head(sk)) { 3190 /* Cancel probe timer, if it is not required. */ 3191 icsk->icsk_probes_out = 0; 3192 icsk->icsk_backoff = 0; 3193 return; 3194 } 3195 3196 if (err <= 0) { 3197 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3198 icsk->icsk_backoff++; 3199 icsk->icsk_probes_out++; 3200 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3201 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3202 TCP_RTO_MAX); 3203 } else { 3204 /* If packet was not sent due to local congestion, 3205 * do not backoff and do not remember icsk_probes_out. 3206 * Let local senders to fight for local resources. 3207 * 3208 * Use accumulated backoff yet. 3209 */ 3210 if (!icsk->icsk_probes_out) 3211 icsk->icsk_probes_out = 1; 3212 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3213 min(icsk->icsk_rto << icsk->icsk_backoff, 3214 TCP_RESOURCE_PROBE_INTERVAL), 3215 TCP_RTO_MAX); 3216 } 3217 } 3218