xref: /openbmc/linux/net/ipv4/tcp_output.c (revision afc98d90)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64 
65 /* By default, RFC2861 behavior.  */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67 
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70 
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 			   int push_one, gfp_t gfp);
73 
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 	struct inet_connection_sock *icsk = inet_csk(sk);
78 	struct tcp_sock *tp = tcp_sk(sk);
79 	unsigned int prior_packets = tp->packets_out;
80 
81 	tcp_advance_send_head(sk, skb);
82 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83 
84 	tp->packets_out += tcp_skb_pcount(skb);
85 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 		tcp_rearm_rto(sk);
88 	}
89 }
90 
91 /* SND.NXT, if window was not shrunk.
92  * If window has been shrunk, what should we make? It is not clear at all.
93  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95  * invalid. OK, let's make this for now:
96  */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 	const struct tcp_sock *tp = tcp_sk(sk);
100 
101 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism. */
141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
142 {
143 	struct tcp_sock *tp = tcp_sk(sk);
144 	s32 delta = tcp_time_stamp - tp->lsndtime;
145 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
146 	u32 cwnd = tp->snd_cwnd;
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tp->snd_cwnd = max(cwnd, restart_cwnd);
156 	tp->snd_cwnd_stamp = tcp_time_stamp;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_time_stamp;
166 	const struct dst_entry *dst = __sk_dst_get(sk);
167 
168 	if (sysctl_tcp_slow_start_after_idle &&
169 	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
171 
172 	tp->lsndtime = now;
173 
174 	/* If it is a reply for ato after last received
175 	 * packet, enter pingpong mode.
176 	 */
177 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
178 	    (!dst || !dst_metric(dst, RTAX_QUICKACK)))
179 			icsk->icsk_ack.pingpong = 1;
180 }
181 
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
184 {
185 	tcp_dec_quickack_mode(sk, pkts);
186 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
187 }
188 
189 
190 u32 tcp_default_init_rwnd(u32 mss)
191 {
192 	/* Initial receive window should be twice of TCP_INIT_CWND to
193 	 * enable proper sending of new unsent data during fast recovery
194 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 	 * limit when mss is larger than 1460.
196 	 */
197 	u32 init_rwnd = TCP_INIT_CWND * 2;
198 
199 	if (mss > 1460)
200 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201 	return init_rwnd;
202 }
203 
204 /* Determine a window scaling and initial window to offer.
205  * Based on the assumption that the given amount of space
206  * will be offered. Store the results in the tp structure.
207  * NOTE: for smooth operation initial space offering should
208  * be a multiple of mss if possible. We assume here that mss >= 1.
209  * This MUST be enforced by all callers.
210  */
211 void tcp_select_initial_window(int __space, __u32 mss,
212 			       __u32 *rcv_wnd, __u32 *window_clamp,
213 			       int wscale_ok, __u8 *rcv_wscale,
214 			       __u32 init_rcv_wnd)
215 {
216 	unsigned int space = (__space < 0 ? 0 : __space);
217 
218 	/* If no clamp set the clamp to the max possible scaled window */
219 	if (*window_clamp == 0)
220 		(*window_clamp) = (65535 << 14);
221 	space = min(*window_clamp, space);
222 
223 	/* Quantize space offering to a multiple of mss if possible. */
224 	if (space > mss)
225 		space = (space / mss) * mss;
226 
227 	/* NOTE: offering an initial window larger than 32767
228 	 * will break some buggy TCP stacks. If the admin tells us
229 	 * it is likely we could be speaking with such a buggy stack
230 	 * we will truncate our initial window offering to 32K-1
231 	 * unless the remote has sent us a window scaling option,
232 	 * which we interpret as a sign the remote TCP is not
233 	 * misinterpreting the window field as a signed quantity.
234 	 */
235 	if (sysctl_tcp_workaround_signed_windows)
236 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 	else
238 		(*rcv_wnd) = space;
239 
240 	(*rcv_wscale) = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window
243 		 * See RFC1323 for an explanation of the limit to 14
244 		 */
245 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
246 		space = min_t(u32, space, *window_clamp);
247 		while (space > 65535 && (*rcv_wscale) < 14) {
248 			space >>= 1;
249 			(*rcv_wscale)++;
250 		}
251 	}
252 
253 	if (mss > (1 << *rcv_wscale)) {
254 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
255 			init_rcv_wnd = tcp_default_init_rwnd(mss);
256 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
257 	}
258 
259 	/* Set the clamp no higher than max representable value */
260 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
261 }
262 EXPORT_SYMBOL(tcp_select_initial_window);
263 
264 /* Chose a new window to advertise, update state in tcp_sock for the
265  * socket, and return result with RFC1323 scaling applied.  The return
266  * value can be stuffed directly into th->window for an outgoing
267  * frame.
268  */
269 static u16 tcp_select_window(struct sock *sk)
270 {
271 	struct tcp_sock *tp = tcp_sk(sk);
272 	u32 cur_win = tcp_receive_window(tp);
273 	u32 new_win = __tcp_select_window(sk);
274 
275 	/* Never shrink the offered window */
276 	if (new_win < cur_win) {
277 		/* Danger Will Robinson!
278 		 * Don't update rcv_wup/rcv_wnd here or else
279 		 * we will not be able to advertise a zero
280 		 * window in time.  --DaveM
281 		 *
282 		 * Relax Will Robinson.
283 		 */
284 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
285 	}
286 	tp->rcv_wnd = new_win;
287 	tp->rcv_wup = tp->rcv_nxt;
288 
289 	/* Make sure we do not exceed the maximum possible
290 	 * scaled window.
291 	 */
292 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
293 		new_win = min(new_win, MAX_TCP_WINDOW);
294 	else
295 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
296 
297 	/* RFC1323 scaling applied */
298 	new_win >>= tp->rx_opt.rcv_wscale;
299 
300 	/* If we advertise zero window, disable fast path. */
301 	if (new_win == 0)
302 		tp->pred_flags = 0;
303 
304 	return new_win;
305 }
306 
307 /* Packet ECN state for a SYN-ACK */
308 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
309 {
310 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
311 	if (!(tp->ecn_flags & TCP_ECN_OK))
312 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
313 }
314 
315 /* Packet ECN state for a SYN.  */
316 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
317 {
318 	struct tcp_sock *tp = tcp_sk(sk);
319 
320 	tp->ecn_flags = 0;
321 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
322 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
323 		tp->ecn_flags = TCP_ECN_OK;
324 	}
325 }
326 
327 static __inline__ void
328 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
329 {
330 	if (inet_rsk(req)->ecn_ok)
331 		th->ece = 1;
332 }
333 
334 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
335  * be sent.
336  */
337 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
338 				int tcp_header_len)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 
342 	if (tp->ecn_flags & TCP_ECN_OK) {
343 		/* Not-retransmitted data segment: set ECT and inject CWR. */
344 		if (skb->len != tcp_header_len &&
345 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
346 			INET_ECN_xmit(sk);
347 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
348 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
349 				tcp_hdr(skb)->cwr = 1;
350 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
351 			}
352 		} else {
353 			/* ACK or retransmitted segment: clear ECT|CE */
354 			INET_ECN_dontxmit(sk);
355 		}
356 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
357 			tcp_hdr(skb)->ece = 1;
358 	}
359 }
360 
361 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
362  * auto increment end seqno.
363  */
364 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
365 {
366 	struct skb_shared_info *shinfo = skb_shinfo(skb);
367 
368 	skb->ip_summed = CHECKSUM_PARTIAL;
369 	skb->csum = 0;
370 
371 	TCP_SKB_CB(skb)->tcp_flags = flags;
372 	TCP_SKB_CB(skb)->sacked = 0;
373 
374 	shinfo->gso_segs = 1;
375 	shinfo->gso_size = 0;
376 	shinfo->gso_type = 0;
377 
378 	TCP_SKB_CB(skb)->seq = seq;
379 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
380 		seq++;
381 	TCP_SKB_CB(skb)->end_seq = seq;
382 }
383 
384 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
385 {
386 	return tp->snd_una != tp->snd_up;
387 }
388 
389 #define OPTION_SACK_ADVERTISE	(1 << 0)
390 #define OPTION_TS		(1 << 1)
391 #define OPTION_MD5		(1 << 2)
392 #define OPTION_WSCALE		(1 << 3)
393 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
394 
395 struct tcp_out_options {
396 	u16 options;		/* bit field of OPTION_* */
397 	u16 mss;		/* 0 to disable */
398 	u8 ws;			/* window scale, 0 to disable */
399 	u8 num_sack_blocks;	/* number of SACK blocks to include */
400 	u8 hash_size;		/* bytes in hash_location */
401 	__u8 *hash_location;	/* temporary pointer, overloaded */
402 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
403 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
404 };
405 
406 /* Write previously computed TCP options to the packet.
407  *
408  * Beware: Something in the Internet is very sensitive to the ordering of
409  * TCP options, we learned this through the hard way, so be careful here.
410  * Luckily we can at least blame others for their non-compliance but from
411  * inter-operability perspective it seems that we're somewhat stuck with
412  * the ordering which we have been using if we want to keep working with
413  * those broken things (not that it currently hurts anybody as there isn't
414  * particular reason why the ordering would need to be changed).
415  *
416  * At least SACK_PERM as the first option is known to lead to a disaster
417  * (but it may well be that other scenarios fail similarly).
418  */
419 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
420 			      struct tcp_out_options *opts)
421 {
422 	u16 options = opts->options;	/* mungable copy */
423 
424 	if (unlikely(OPTION_MD5 & options)) {
425 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
426 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
427 		/* overload cookie hash location */
428 		opts->hash_location = (__u8 *)ptr;
429 		ptr += 4;
430 	}
431 
432 	if (unlikely(opts->mss)) {
433 		*ptr++ = htonl((TCPOPT_MSS << 24) |
434 			       (TCPOLEN_MSS << 16) |
435 			       opts->mss);
436 	}
437 
438 	if (likely(OPTION_TS & options)) {
439 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
440 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
441 				       (TCPOLEN_SACK_PERM << 16) |
442 				       (TCPOPT_TIMESTAMP << 8) |
443 				       TCPOLEN_TIMESTAMP);
444 			options &= ~OPTION_SACK_ADVERTISE;
445 		} else {
446 			*ptr++ = htonl((TCPOPT_NOP << 24) |
447 				       (TCPOPT_NOP << 16) |
448 				       (TCPOPT_TIMESTAMP << 8) |
449 				       TCPOLEN_TIMESTAMP);
450 		}
451 		*ptr++ = htonl(opts->tsval);
452 		*ptr++ = htonl(opts->tsecr);
453 	}
454 
455 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
456 		*ptr++ = htonl((TCPOPT_NOP << 24) |
457 			       (TCPOPT_NOP << 16) |
458 			       (TCPOPT_SACK_PERM << 8) |
459 			       TCPOLEN_SACK_PERM);
460 	}
461 
462 	if (unlikely(OPTION_WSCALE & options)) {
463 		*ptr++ = htonl((TCPOPT_NOP << 24) |
464 			       (TCPOPT_WINDOW << 16) |
465 			       (TCPOLEN_WINDOW << 8) |
466 			       opts->ws);
467 	}
468 
469 	if (unlikely(opts->num_sack_blocks)) {
470 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
471 			tp->duplicate_sack : tp->selective_acks;
472 		int this_sack;
473 
474 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
475 			       (TCPOPT_NOP  << 16) |
476 			       (TCPOPT_SACK <<  8) |
477 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
478 						     TCPOLEN_SACK_PERBLOCK)));
479 
480 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
481 		     ++this_sack) {
482 			*ptr++ = htonl(sp[this_sack].start_seq);
483 			*ptr++ = htonl(sp[this_sack].end_seq);
484 		}
485 
486 		tp->rx_opt.dsack = 0;
487 	}
488 
489 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
490 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
491 
492 		*ptr++ = htonl((TCPOPT_EXP << 24) |
493 			       ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
494 			       TCPOPT_FASTOPEN_MAGIC);
495 
496 		memcpy(ptr, foc->val, foc->len);
497 		if ((foc->len & 3) == 2) {
498 			u8 *align = ((u8 *)ptr) + foc->len;
499 			align[0] = align[1] = TCPOPT_NOP;
500 		}
501 		ptr += (foc->len + 3) >> 2;
502 	}
503 }
504 
505 /* Compute TCP options for SYN packets. This is not the final
506  * network wire format yet.
507  */
508 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
509 				struct tcp_out_options *opts,
510 				struct tcp_md5sig_key **md5)
511 {
512 	struct tcp_sock *tp = tcp_sk(sk);
513 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
514 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
515 
516 #ifdef CONFIG_TCP_MD5SIG
517 	*md5 = tp->af_specific->md5_lookup(sk, sk);
518 	if (*md5) {
519 		opts->options |= OPTION_MD5;
520 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
521 	}
522 #else
523 	*md5 = NULL;
524 #endif
525 
526 	/* We always get an MSS option.  The option bytes which will be seen in
527 	 * normal data packets should timestamps be used, must be in the MSS
528 	 * advertised.  But we subtract them from tp->mss_cache so that
529 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
530 	 * fact here if necessary.  If we don't do this correctly, as a
531 	 * receiver we won't recognize data packets as being full sized when we
532 	 * should, and thus we won't abide by the delayed ACK rules correctly.
533 	 * SACKs don't matter, we never delay an ACK when we have any of those
534 	 * going out.  */
535 	opts->mss = tcp_advertise_mss(sk);
536 	remaining -= TCPOLEN_MSS_ALIGNED;
537 
538 	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
539 		opts->options |= OPTION_TS;
540 		opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
541 		opts->tsecr = tp->rx_opt.ts_recent;
542 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
543 	}
544 	if (likely(sysctl_tcp_window_scaling)) {
545 		opts->ws = tp->rx_opt.rcv_wscale;
546 		opts->options |= OPTION_WSCALE;
547 		remaining -= TCPOLEN_WSCALE_ALIGNED;
548 	}
549 	if (likely(sysctl_tcp_sack)) {
550 		opts->options |= OPTION_SACK_ADVERTISE;
551 		if (unlikely(!(OPTION_TS & opts->options)))
552 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
553 	}
554 
555 	if (fastopen && fastopen->cookie.len >= 0) {
556 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
557 		need = (need + 3) & ~3U;  /* Align to 32 bits */
558 		if (remaining >= need) {
559 			opts->options |= OPTION_FAST_OPEN_COOKIE;
560 			opts->fastopen_cookie = &fastopen->cookie;
561 			remaining -= need;
562 			tp->syn_fastopen = 1;
563 		}
564 	}
565 
566 	return MAX_TCP_OPTION_SPACE - remaining;
567 }
568 
569 /* Set up TCP options for SYN-ACKs. */
570 static unsigned int tcp_synack_options(struct sock *sk,
571 				   struct request_sock *req,
572 				   unsigned int mss, struct sk_buff *skb,
573 				   struct tcp_out_options *opts,
574 				   struct tcp_md5sig_key **md5,
575 				   struct tcp_fastopen_cookie *foc)
576 {
577 	struct inet_request_sock *ireq = inet_rsk(req);
578 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
579 
580 #ifdef CONFIG_TCP_MD5SIG
581 	*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
582 	if (*md5) {
583 		opts->options |= OPTION_MD5;
584 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
585 
586 		/* We can't fit any SACK blocks in a packet with MD5 + TS
587 		 * options. There was discussion about disabling SACK
588 		 * rather than TS in order to fit in better with old,
589 		 * buggy kernels, but that was deemed to be unnecessary.
590 		 */
591 		ireq->tstamp_ok &= !ireq->sack_ok;
592 	}
593 #else
594 	*md5 = NULL;
595 #endif
596 
597 	/* We always send an MSS option. */
598 	opts->mss = mss;
599 	remaining -= TCPOLEN_MSS_ALIGNED;
600 
601 	if (likely(ireq->wscale_ok)) {
602 		opts->ws = ireq->rcv_wscale;
603 		opts->options |= OPTION_WSCALE;
604 		remaining -= TCPOLEN_WSCALE_ALIGNED;
605 	}
606 	if (likely(ireq->tstamp_ok)) {
607 		opts->options |= OPTION_TS;
608 		opts->tsval = TCP_SKB_CB(skb)->when;
609 		opts->tsecr = req->ts_recent;
610 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
611 	}
612 	if (likely(ireq->sack_ok)) {
613 		opts->options |= OPTION_SACK_ADVERTISE;
614 		if (unlikely(!ireq->tstamp_ok))
615 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
616 	}
617 	if (foc != NULL) {
618 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
619 		need = (need + 3) & ~3U;  /* Align to 32 bits */
620 		if (remaining >= need) {
621 			opts->options |= OPTION_FAST_OPEN_COOKIE;
622 			opts->fastopen_cookie = foc;
623 			remaining -= need;
624 		}
625 	}
626 
627 	return MAX_TCP_OPTION_SPACE - remaining;
628 }
629 
630 /* Compute TCP options for ESTABLISHED sockets. This is not the
631  * final wire format yet.
632  */
633 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
634 					struct tcp_out_options *opts,
635 					struct tcp_md5sig_key **md5)
636 {
637 	struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
638 	struct tcp_sock *tp = tcp_sk(sk);
639 	unsigned int size = 0;
640 	unsigned int eff_sacks;
641 
642 	opts->options = 0;
643 
644 #ifdef CONFIG_TCP_MD5SIG
645 	*md5 = tp->af_specific->md5_lookup(sk, sk);
646 	if (unlikely(*md5)) {
647 		opts->options |= OPTION_MD5;
648 		size += TCPOLEN_MD5SIG_ALIGNED;
649 	}
650 #else
651 	*md5 = NULL;
652 #endif
653 
654 	if (likely(tp->rx_opt.tstamp_ok)) {
655 		opts->options |= OPTION_TS;
656 		opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
657 		opts->tsecr = tp->rx_opt.ts_recent;
658 		size += TCPOLEN_TSTAMP_ALIGNED;
659 	}
660 
661 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
662 	if (unlikely(eff_sacks)) {
663 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
664 		opts->num_sack_blocks =
665 			min_t(unsigned int, eff_sacks,
666 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
667 			      TCPOLEN_SACK_PERBLOCK);
668 		size += TCPOLEN_SACK_BASE_ALIGNED +
669 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
670 	}
671 
672 	return size;
673 }
674 
675 
676 /* TCP SMALL QUEUES (TSQ)
677  *
678  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
679  * to reduce RTT and bufferbloat.
680  * We do this using a special skb destructor (tcp_wfree).
681  *
682  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
683  * needs to be reallocated in a driver.
684  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
685  *
686  * Since transmit from skb destructor is forbidden, we use a tasklet
687  * to process all sockets that eventually need to send more skbs.
688  * We use one tasklet per cpu, with its own queue of sockets.
689  */
690 struct tsq_tasklet {
691 	struct tasklet_struct	tasklet;
692 	struct list_head	head; /* queue of tcp sockets */
693 };
694 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
695 
696 static void tcp_tsq_handler(struct sock *sk)
697 {
698 	if ((1 << sk->sk_state) &
699 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
700 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
701 		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
702 			       0, GFP_ATOMIC);
703 }
704 /*
705  * One tasklet per cpu tries to send more skbs.
706  * We run in tasklet context but need to disable irqs when
707  * transferring tsq->head because tcp_wfree() might
708  * interrupt us (non NAPI drivers)
709  */
710 static void tcp_tasklet_func(unsigned long data)
711 {
712 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
713 	LIST_HEAD(list);
714 	unsigned long flags;
715 	struct list_head *q, *n;
716 	struct tcp_sock *tp;
717 	struct sock *sk;
718 
719 	local_irq_save(flags);
720 	list_splice_init(&tsq->head, &list);
721 	local_irq_restore(flags);
722 
723 	list_for_each_safe(q, n, &list) {
724 		tp = list_entry(q, struct tcp_sock, tsq_node);
725 		list_del(&tp->tsq_node);
726 
727 		sk = (struct sock *)tp;
728 		bh_lock_sock(sk);
729 
730 		if (!sock_owned_by_user(sk)) {
731 			tcp_tsq_handler(sk);
732 		} else {
733 			/* defer the work to tcp_release_cb() */
734 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
735 		}
736 		bh_unlock_sock(sk);
737 
738 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
739 		sk_free(sk);
740 	}
741 }
742 
743 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
744 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
745 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
746 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
747 /**
748  * tcp_release_cb - tcp release_sock() callback
749  * @sk: socket
750  *
751  * called from release_sock() to perform protocol dependent
752  * actions before socket release.
753  */
754 void tcp_release_cb(struct sock *sk)
755 {
756 	struct tcp_sock *tp = tcp_sk(sk);
757 	unsigned long flags, nflags;
758 
759 	/* perform an atomic operation only if at least one flag is set */
760 	do {
761 		flags = tp->tsq_flags;
762 		if (!(flags & TCP_DEFERRED_ALL))
763 			return;
764 		nflags = flags & ~TCP_DEFERRED_ALL;
765 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
766 
767 	if (flags & (1UL << TCP_TSQ_DEFERRED))
768 		tcp_tsq_handler(sk);
769 
770 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
771 		tcp_write_timer_handler(sk);
772 		__sock_put(sk);
773 	}
774 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
775 		tcp_delack_timer_handler(sk);
776 		__sock_put(sk);
777 	}
778 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
779 		sk->sk_prot->mtu_reduced(sk);
780 		__sock_put(sk);
781 	}
782 }
783 EXPORT_SYMBOL(tcp_release_cb);
784 
785 void __init tcp_tasklet_init(void)
786 {
787 	int i;
788 
789 	for_each_possible_cpu(i) {
790 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
791 
792 		INIT_LIST_HEAD(&tsq->head);
793 		tasklet_init(&tsq->tasklet,
794 			     tcp_tasklet_func,
795 			     (unsigned long)tsq);
796 	}
797 }
798 
799 /*
800  * Write buffer destructor automatically called from kfree_skb.
801  * We can't xmit new skbs from this context, as we might already
802  * hold qdisc lock.
803  */
804 void tcp_wfree(struct sk_buff *skb)
805 {
806 	struct sock *sk = skb->sk;
807 	struct tcp_sock *tp = tcp_sk(sk);
808 
809 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
810 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
811 		unsigned long flags;
812 		struct tsq_tasklet *tsq;
813 
814 		/* Keep a ref on socket.
815 		 * This last ref will be released in tcp_tasklet_func()
816 		 */
817 		atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
818 
819 		/* queue this socket to tasklet queue */
820 		local_irq_save(flags);
821 		tsq = &__get_cpu_var(tsq_tasklet);
822 		list_add(&tp->tsq_node, &tsq->head);
823 		tasklet_schedule(&tsq->tasklet);
824 		local_irq_restore(flags);
825 	} else {
826 		sock_wfree(skb);
827 	}
828 }
829 
830 /* This routine actually transmits TCP packets queued in by
831  * tcp_do_sendmsg().  This is used by both the initial
832  * transmission and possible later retransmissions.
833  * All SKB's seen here are completely headerless.  It is our
834  * job to build the TCP header, and pass the packet down to
835  * IP so it can do the same plus pass the packet off to the
836  * device.
837  *
838  * We are working here with either a clone of the original
839  * SKB, or a fresh unique copy made by the retransmit engine.
840  */
841 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
842 			    gfp_t gfp_mask)
843 {
844 	const struct inet_connection_sock *icsk = inet_csk(sk);
845 	struct inet_sock *inet;
846 	struct tcp_sock *tp;
847 	struct tcp_skb_cb *tcb;
848 	struct tcp_out_options opts;
849 	unsigned int tcp_options_size, tcp_header_size;
850 	struct tcp_md5sig_key *md5;
851 	struct tcphdr *th;
852 	int err;
853 
854 	BUG_ON(!skb || !tcp_skb_pcount(skb));
855 
856 	if (clone_it) {
857 		const struct sk_buff *fclone = skb + 1;
858 
859 		/* If congestion control is doing timestamping, we must
860 		 * take such a timestamp before we potentially clone/copy.
861 		 */
862 		if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
863 			__net_timestamp(skb);
864 
865 		if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
866 			     fclone->fclone == SKB_FCLONE_CLONE))
867 			NET_INC_STATS_BH(sock_net(sk),
868 					 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
869 
870 		if (unlikely(skb_cloned(skb)))
871 			skb = pskb_copy(skb, gfp_mask);
872 		else
873 			skb = skb_clone(skb, gfp_mask);
874 		if (unlikely(!skb))
875 			return -ENOBUFS;
876 	}
877 
878 	inet = inet_sk(sk);
879 	tp = tcp_sk(sk);
880 	tcb = TCP_SKB_CB(skb);
881 	memset(&opts, 0, sizeof(opts));
882 
883 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
884 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
885 	else
886 		tcp_options_size = tcp_established_options(sk, skb, &opts,
887 							   &md5);
888 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
889 
890 	if (tcp_packets_in_flight(tp) == 0)
891 		tcp_ca_event(sk, CA_EVENT_TX_START);
892 
893 	/* if no packet is in qdisc/device queue, then allow XPS to select
894 	 * another queue.
895 	 */
896 	skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
897 
898 	skb_push(skb, tcp_header_size);
899 	skb_reset_transport_header(skb);
900 
901 	skb_orphan(skb);
902 	skb->sk = sk;
903 	skb->destructor = tcp_wfree;
904 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
905 
906 	/* Build TCP header and checksum it. */
907 	th = tcp_hdr(skb);
908 	th->source		= inet->inet_sport;
909 	th->dest		= inet->inet_dport;
910 	th->seq			= htonl(tcb->seq);
911 	th->ack_seq		= htonl(tp->rcv_nxt);
912 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
913 					tcb->tcp_flags);
914 
915 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
916 		/* RFC1323: The window in SYN & SYN/ACK segments
917 		 * is never scaled.
918 		 */
919 		th->window	= htons(min(tp->rcv_wnd, 65535U));
920 	} else {
921 		th->window	= htons(tcp_select_window(sk));
922 	}
923 	th->check		= 0;
924 	th->urg_ptr		= 0;
925 
926 	/* The urg_mode check is necessary during a below snd_una win probe */
927 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
928 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
929 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
930 			th->urg = 1;
931 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
932 			th->urg_ptr = htons(0xFFFF);
933 			th->urg = 1;
934 		}
935 	}
936 
937 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
938 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
939 		TCP_ECN_send(sk, skb, tcp_header_size);
940 
941 #ifdef CONFIG_TCP_MD5SIG
942 	/* Calculate the MD5 hash, as we have all we need now */
943 	if (md5) {
944 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
945 		tp->af_specific->calc_md5_hash(opts.hash_location,
946 					       md5, sk, NULL, skb);
947 	}
948 #endif
949 
950 	icsk->icsk_af_ops->send_check(sk, skb);
951 
952 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
953 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
954 
955 	if (skb->len != tcp_header_size)
956 		tcp_event_data_sent(tp, sk);
957 
958 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
959 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
960 			      tcp_skb_pcount(skb));
961 
962 	err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
963 	if (likely(err <= 0))
964 		return err;
965 
966 	tcp_enter_cwr(sk, 1);
967 
968 	return net_xmit_eval(err);
969 }
970 
971 /* This routine just queues the buffer for sending.
972  *
973  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
974  * otherwise socket can stall.
975  */
976 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
977 {
978 	struct tcp_sock *tp = tcp_sk(sk);
979 
980 	/* Advance write_seq and place onto the write_queue. */
981 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
982 	skb_header_release(skb);
983 	tcp_add_write_queue_tail(sk, skb);
984 	sk->sk_wmem_queued += skb->truesize;
985 	sk_mem_charge(sk, skb->truesize);
986 }
987 
988 /* Initialize TSO segments for a packet. */
989 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
990 				 unsigned int mss_now)
991 {
992 	struct skb_shared_info *shinfo = skb_shinfo(skb);
993 
994 	/* Make sure we own this skb before messing gso_size/gso_segs */
995 	WARN_ON_ONCE(skb_cloned(skb));
996 
997 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
998 		/* Avoid the costly divide in the normal
999 		 * non-TSO case.
1000 		 */
1001 		shinfo->gso_segs = 1;
1002 		shinfo->gso_size = 0;
1003 		shinfo->gso_type = 0;
1004 	} else {
1005 		shinfo->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1006 		shinfo->gso_size = mss_now;
1007 		shinfo->gso_type = sk->sk_gso_type;
1008 	}
1009 }
1010 
1011 /* When a modification to fackets out becomes necessary, we need to check
1012  * skb is counted to fackets_out or not.
1013  */
1014 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1015 				   int decr)
1016 {
1017 	struct tcp_sock *tp = tcp_sk(sk);
1018 
1019 	if (!tp->sacked_out || tcp_is_reno(tp))
1020 		return;
1021 
1022 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1023 		tp->fackets_out -= decr;
1024 }
1025 
1026 /* Pcount in the middle of the write queue got changed, we need to do various
1027  * tweaks to fix counters
1028  */
1029 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1030 {
1031 	struct tcp_sock *tp = tcp_sk(sk);
1032 
1033 	tp->packets_out -= decr;
1034 
1035 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1036 		tp->sacked_out -= decr;
1037 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1038 		tp->retrans_out -= decr;
1039 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1040 		tp->lost_out -= decr;
1041 
1042 	/* Reno case is special. Sigh... */
1043 	if (tcp_is_reno(tp) && decr > 0)
1044 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1045 
1046 	tcp_adjust_fackets_out(sk, skb, decr);
1047 
1048 	if (tp->lost_skb_hint &&
1049 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1050 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1051 		tp->lost_cnt_hint -= decr;
1052 
1053 	tcp_verify_left_out(tp);
1054 }
1055 
1056 /* Function to create two new TCP segments.  Shrinks the given segment
1057  * to the specified size and appends a new segment with the rest of the
1058  * packet to the list.  This won't be called frequently, I hope.
1059  * Remember, these are still headerless SKBs at this point.
1060  */
1061 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1062 		 unsigned int mss_now)
1063 {
1064 	struct tcp_sock *tp = tcp_sk(sk);
1065 	struct sk_buff *buff;
1066 	int nsize, old_factor;
1067 	int nlen;
1068 	u8 flags;
1069 
1070 	if (WARN_ON(len > skb->len))
1071 		return -EINVAL;
1072 
1073 	nsize = skb_headlen(skb) - len;
1074 	if (nsize < 0)
1075 		nsize = 0;
1076 
1077 	if (skb_unclone(skb, GFP_ATOMIC))
1078 		return -ENOMEM;
1079 
1080 	/* Get a new skb... force flag on. */
1081 	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1082 	if (buff == NULL)
1083 		return -ENOMEM; /* We'll just try again later. */
1084 
1085 	sk->sk_wmem_queued += buff->truesize;
1086 	sk_mem_charge(sk, buff->truesize);
1087 	nlen = skb->len - len - nsize;
1088 	buff->truesize += nlen;
1089 	skb->truesize -= nlen;
1090 
1091 	/* Correct the sequence numbers. */
1092 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1093 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1094 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1095 
1096 	/* PSH and FIN should only be set in the second packet. */
1097 	flags = TCP_SKB_CB(skb)->tcp_flags;
1098 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1099 	TCP_SKB_CB(buff)->tcp_flags = flags;
1100 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1101 
1102 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1103 		/* Copy and checksum data tail into the new buffer. */
1104 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1105 						       skb_put(buff, nsize),
1106 						       nsize, 0);
1107 
1108 		skb_trim(skb, len);
1109 
1110 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1111 	} else {
1112 		skb->ip_summed = CHECKSUM_PARTIAL;
1113 		skb_split(skb, buff, len);
1114 	}
1115 
1116 	buff->ip_summed = skb->ip_summed;
1117 
1118 	/* Looks stupid, but our code really uses when of
1119 	 * skbs, which it never sent before. --ANK
1120 	 */
1121 	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1122 	buff->tstamp = skb->tstamp;
1123 
1124 	old_factor = tcp_skb_pcount(skb);
1125 
1126 	/* Fix up tso_factor for both original and new SKB.  */
1127 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1128 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1129 
1130 	/* If this packet has been sent out already, we must
1131 	 * adjust the various packet counters.
1132 	 */
1133 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1134 		int diff = old_factor - tcp_skb_pcount(skb) -
1135 			tcp_skb_pcount(buff);
1136 
1137 		if (diff)
1138 			tcp_adjust_pcount(sk, skb, diff);
1139 	}
1140 
1141 	/* Link BUFF into the send queue. */
1142 	skb_header_release(buff);
1143 	tcp_insert_write_queue_after(skb, buff, sk);
1144 
1145 	return 0;
1146 }
1147 
1148 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1149  * eventually). The difference is that pulled data not copied, but
1150  * immediately discarded.
1151  */
1152 static void __pskb_trim_head(struct sk_buff *skb, int len)
1153 {
1154 	struct skb_shared_info *shinfo;
1155 	int i, k, eat;
1156 
1157 	eat = min_t(int, len, skb_headlen(skb));
1158 	if (eat) {
1159 		__skb_pull(skb, eat);
1160 		len -= eat;
1161 		if (!len)
1162 			return;
1163 	}
1164 	eat = len;
1165 	k = 0;
1166 	shinfo = skb_shinfo(skb);
1167 	for (i = 0; i < shinfo->nr_frags; i++) {
1168 		int size = skb_frag_size(&shinfo->frags[i]);
1169 
1170 		if (size <= eat) {
1171 			skb_frag_unref(skb, i);
1172 			eat -= size;
1173 		} else {
1174 			shinfo->frags[k] = shinfo->frags[i];
1175 			if (eat) {
1176 				shinfo->frags[k].page_offset += eat;
1177 				skb_frag_size_sub(&shinfo->frags[k], eat);
1178 				eat = 0;
1179 			}
1180 			k++;
1181 		}
1182 	}
1183 	shinfo->nr_frags = k;
1184 
1185 	skb_reset_tail_pointer(skb);
1186 	skb->data_len -= len;
1187 	skb->len = skb->data_len;
1188 }
1189 
1190 /* Remove acked data from a packet in the transmit queue. */
1191 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1192 {
1193 	if (skb_unclone(skb, GFP_ATOMIC))
1194 		return -ENOMEM;
1195 
1196 	__pskb_trim_head(skb, len);
1197 
1198 	TCP_SKB_CB(skb)->seq += len;
1199 	skb->ip_summed = CHECKSUM_PARTIAL;
1200 
1201 	skb->truesize	     -= len;
1202 	sk->sk_wmem_queued   -= len;
1203 	sk_mem_uncharge(sk, len);
1204 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1205 
1206 	/* Any change of skb->len requires recalculation of tso factor. */
1207 	if (tcp_skb_pcount(skb) > 1)
1208 		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1209 
1210 	return 0;
1211 }
1212 
1213 /* Calculate MSS not accounting any TCP options.  */
1214 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1215 {
1216 	const struct tcp_sock *tp = tcp_sk(sk);
1217 	const struct inet_connection_sock *icsk = inet_csk(sk);
1218 	int mss_now;
1219 
1220 	/* Calculate base mss without TCP options:
1221 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1222 	 */
1223 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1224 
1225 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1226 	if (icsk->icsk_af_ops->net_frag_header_len) {
1227 		const struct dst_entry *dst = __sk_dst_get(sk);
1228 
1229 		if (dst && dst_allfrag(dst))
1230 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1231 	}
1232 
1233 	/* Clamp it (mss_clamp does not include tcp options) */
1234 	if (mss_now > tp->rx_opt.mss_clamp)
1235 		mss_now = tp->rx_opt.mss_clamp;
1236 
1237 	/* Now subtract optional transport overhead */
1238 	mss_now -= icsk->icsk_ext_hdr_len;
1239 
1240 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1241 	if (mss_now < 48)
1242 		mss_now = 48;
1243 	return mss_now;
1244 }
1245 
1246 /* Calculate MSS. Not accounting for SACKs here.  */
1247 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1248 {
1249 	/* Subtract TCP options size, not including SACKs */
1250 	return __tcp_mtu_to_mss(sk, pmtu) -
1251 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1252 }
1253 
1254 /* Inverse of above */
1255 int tcp_mss_to_mtu(struct sock *sk, int mss)
1256 {
1257 	const struct tcp_sock *tp = tcp_sk(sk);
1258 	const struct inet_connection_sock *icsk = inet_csk(sk);
1259 	int mtu;
1260 
1261 	mtu = mss +
1262 	      tp->tcp_header_len +
1263 	      icsk->icsk_ext_hdr_len +
1264 	      icsk->icsk_af_ops->net_header_len;
1265 
1266 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1267 	if (icsk->icsk_af_ops->net_frag_header_len) {
1268 		const struct dst_entry *dst = __sk_dst_get(sk);
1269 
1270 		if (dst && dst_allfrag(dst))
1271 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1272 	}
1273 	return mtu;
1274 }
1275 
1276 /* MTU probing init per socket */
1277 void tcp_mtup_init(struct sock *sk)
1278 {
1279 	struct tcp_sock *tp = tcp_sk(sk);
1280 	struct inet_connection_sock *icsk = inet_csk(sk);
1281 
1282 	icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1283 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1284 			       icsk->icsk_af_ops->net_header_len;
1285 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1286 	icsk->icsk_mtup.probe_size = 0;
1287 }
1288 EXPORT_SYMBOL(tcp_mtup_init);
1289 
1290 /* This function synchronize snd mss to current pmtu/exthdr set.
1291 
1292    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1293    for TCP options, but includes only bare TCP header.
1294 
1295    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1296    It is minimum of user_mss and mss received with SYN.
1297    It also does not include TCP options.
1298 
1299    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1300 
1301    tp->mss_cache is current effective sending mss, including
1302    all tcp options except for SACKs. It is evaluated,
1303    taking into account current pmtu, but never exceeds
1304    tp->rx_opt.mss_clamp.
1305 
1306    NOTE1. rfc1122 clearly states that advertised MSS
1307    DOES NOT include either tcp or ip options.
1308 
1309    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1310    are READ ONLY outside this function.		--ANK (980731)
1311  */
1312 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1313 {
1314 	struct tcp_sock *tp = tcp_sk(sk);
1315 	struct inet_connection_sock *icsk = inet_csk(sk);
1316 	int mss_now;
1317 
1318 	if (icsk->icsk_mtup.search_high > pmtu)
1319 		icsk->icsk_mtup.search_high = pmtu;
1320 
1321 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1322 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1323 
1324 	/* And store cached results */
1325 	icsk->icsk_pmtu_cookie = pmtu;
1326 	if (icsk->icsk_mtup.enabled)
1327 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1328 	tp->mss_cache = mss_now;
1329 
1330 	return mss_now;
1331 }
1332 EXPORT_SYMBOL(tcp_sync_mss);
1333 
1334 /* Compute the current effective MSS, taking SACKs and IP options,
1335  * and even PMTU discovery events into account.
1336  */
1337 unsigned int tcp_current_mss(struct sock *sk)
1338 {
1339 	const struct tcp_sock *tp = tcp_sk(sk);
1340 	const struct dst_entry *dst = __sk_dst_get(sk);
1341 	u32 mss_now;
1342 	unsigned int header_len;
1343 	struct tcp_out_options opts;
1344 	struct tcp_md5sig_key *md5;
1345 
1346 	mss_now = tp->mss_cache;
1347 
1348 	if (dst) {
1349 		u32 mtu = dst_mtu(dst);
1350 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1351 			mss_now = tcp_sync_mss(sk, mtu);
1352 	}
1353 
1354 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1355 		     sizeof(struct tcphdr);
1356 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1357 	 * some common options. If this is an odd packet (because we have SACK
1358 	 * blocks etc) then our calculated header_len will be different, and
1359 	 * we have to adjust mss_now correspondingly */
1360 	if (header_len != tp->tcp_header_len) {
1361 		int delta = (int) header_len - tp->tcp_header_len;
1362 		mss_now -= delta;
1363 	}
1364 
1365 	return mss_now;
1366 }
1367 
1368 /* Congestion window validation. (RFC2861) */
1369 static void tcp_cwnd_validate(struct sock *sk)
1370 {
1371 	struct tcp_sock *tp = tcp_sk(sk);
1372 
1373 	if (tp->packets_out >= tp->snd_cwnd) {
1374 		/* Network is feed fully. */
1375 		tp->snd_cwnd_used = 0;
1376 		tp->snd_cwnd_stamp = tcp_time_stamp;
1377 	} else {
1378 		/* Network starves. */
1379 		if (tp->packets_out > tp->snd_cwnd_used)
1380 			tp->snd_cwnd_used = tp->packets_out;
1381 
1382 		if (sysctl_tcp_slow_start_after_idle &&
1383 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1384 			tcp_cwnd_application_limited(sk);
1385 	}
1386 }
1387 
1388 /* Minshall's variant of the Nagle send check. */
1389 static bool tcp_minshall_check(const struct tcp_sock *tp)
1390 {
1391 	return after(tp->snd_sml, tp->snd_una) &&
1392 		!after(tp->snd_sml, tp->snd_nxt);
1393 }
1394 
1395 /* Update snd_sml if this skb is under mss
1396  * Note that a TSO packet might end with a sub-mss segment
1397  * The test is really :
1398  * if ((skb->len % mss) != 0)
1399  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1400  * But we can avoid doing the divide again given we already have
1401  *  skb_pcount = skb->len / mss_now
1402  */
1403 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1404 				const struct sk_buff *skb)
1405 {
1406 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1407 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1408 }
1409 
1410 /* Return false, if packet can be sent now without violation Nagle's rules:
1411  * 1. It is full sized. (provided by caller in %partial bool)
1412  * 2. Or it contains FIN. (already checked by caller)
1413  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1414  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1415  *    With Minshall's modification: all sent small packets are ACKed.
1416  */
1417 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1418 			    unsigned int mss_now, int nonagle)
1419 {
1420 	return partial &&
1421 		((nonagle & TCP_NAGLE_CORK) ||
1422 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1423 }
1424 /* Returns the portion of skb which can be sent right away */
1425 static unsigned int tcp_mss_split_point(const struct sock *sk,
1426 					const struct sk_buff *skb,
1427 					unsigned int mss_now,
1428 					unsigned int max_segs,
1429 					int nonagle)
1430 {
1431 	const struct tcp_sock *tp = tcp_sk(sk);
1432 	u32 partial, needed, window, max_len;
1433 
1434 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1435 	max_len = mss_now * max_segs;
1436 
1437 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1438 		return max_len;
1439 
1440 	needed = min(skb->len, window);
1441 
1442 	if (max_len <= needed)
1443 		return max_len;
1444 
1445 	partial = needed % mss_now;
1446 	/* If last segment is not a full MSS, check if Nagle rules allow us
1447 	 * to include this last segment in this skb.
1448 	 * Otherwise, we'll split the skb at last MSS boundary
1449 	 */
1450 	if (tcp_nagle_check(partial != 0, tp, mss_now, nonagle))
1451 		return needed - partial;
1452 
1453 	return needed;
1454 }
1455 
1456 /* Can at least one segment of SKB be sent right now, according to the
1457  * congestion window rules?  If so, return how many segments are allowed.
1458  */
1459 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1460 					 const struct sk_buff *skb)
1461 {
1462 	u32 in_flight, cwnd;
1463 
1464 	/* Don't be strict about the congestion window for the final FIN.  */
1465 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1466 	    tcp_skb_pcount(skb) == 1)
1467 		return 1;
1468 
1469 	in_flight = tcp_packets_in_flight(tp);
1470 	cwnd = tp->snd_cwnd;
1471 	if (in_flight < cwnd)
1472 		return (cwnd - in_flight);
1473 
1474 	return 0;
1475 }
1476 
1477 /* Initialize TSO state of a skb.
1478  * This must be invoked the first time we consider transmitting
1479  * SKB onto the wire.
1480  */
1481 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1482 			     unsigned int mss_now)
1483 {
1484 	int tso_segs = tcp_skb_pcount(skb);
1485 
1486 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1487 		tcp_set_skb_tso_segs(sk, skb, mss_now);
1488 		tso_segs = tcp_skb_pcount(skb);
1489 	}
1490 	return tso_segs;
1491 }
1492 
1493 
1494 /* Return true if the Nagle test allows this packet to be
1495  * sent now.
1496  */
1497 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1498 				  unsigned int cur_mss, int nonagle)
1499 {
1500 	/* Nagle rule does not apply to frames, which sit in the middle of the
1501 	 * write_queue (they have no chances to get new data).
1502 	 *
1503 	 * This is implemented in the callers, where they modify the 'nonagle'
1504 	 * argument based upon the location of SKB in the send queue.
1505 	 */
1506 	if (nonagle & TCP_NAGLE_PUSH)
1507 		return true;
1508 
1509 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1510 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1511 		return true;
1512 
1513 	if (!tcp_nagle_check(skb->len < cur_mss, tp, cur_mss, nonagle))
1514 		return true;
1515 
1516 	return false;
1517 }
1518 
1519 /* Does at least the first segment of SKB fit into the send window? */
1520 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1521 			     const struct sk_buff *skb,
1522 			     unsigned int cur_mss)
1523 {
1524 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1525 
1526 	if (skb->len > cur_mss)
1527 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1528 
1529 	return !after(end_seq, tcp_wnd_end(tp));
1530 }
1531 
1532 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1533  * should be put on the wire right now.  If so, it returns the number of
1534  * packets allowed by the congestion window.
1535  */
1536 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1537 				 unsigned int cur_mss, int nonagle)
1538 {
1539 	const struct tcp_sock *tp = tcp_sk(sk);
1540 	unsigned int cwnd_quota;
1541 
1542 	tcp_init_tso_segs(sk, skb, cur_mss);
1543 
1544 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1545 		return 0;
1546 
1547 	cwnd_quota = tcp_cwnd_test(tp, skb);
1548 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1549 		cwnd_quota = 0;
1550 
1551 	return cwnd_quota;
1552 }
1553 
1554 /* Test if sending is allowed right now. */
1555 bool tcp_may_send_now(struct sock *sk)
1556 {
1557 	const struct tcp_sock *tp = tcp_sk(sk);
1558 	struct sk_buff *skb = tcp_send_head(sk);
1559 
1560 	return skb &&
1561 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1562 			     (tcp_skb_is_last(sk, skb) ?
1563 			      tp->nonagle : TCP_NAGLE_PUSH));
1564 }
1565 
1566 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1567  * which is put after SKB on the list.  It is very much like
1568  * tcp_fragment() except that it may make several kinds of assumptions
1569  * in order to speed up the splitting operation.  In particular, we
1570  * know that all the data is in scatter-gather pages, and that the
1571  * packet has never been sent out before (and thus is not cloned).
1572  */
1573 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1574 			unsigned int mss_now, gfp_t gfp)
1575 {
1576 	struct sk_buff *buff;
1577 	int nlen = skb->len - len;
1578 	u8 flags;
1579 
1580 	/* All of a TSO frame must be composed of paged data.  */
1581 	if (skb->len != skb->data_len)
1582 		return tcp_fragment(sk, skb, len, mss_now);
1583 
1584 	buff = sk_stream_alloc_skb(sk, 0, gfp);
1585 	if (unlikely(buff == NULL))
1586 		return -ENOMEM;
1587 
1588 	sk->sk_wmem_queued += buff->truesize;
1589 	sk_mem_charge(sk, buff->truesize);
1590 	buff->truesize += nlen;
1591 	skb->truesize -= nlen;
1592 
1593 	/* Correct the sequence numbers. */
1594 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1595 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1596 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1597 
1598 	/* PSH and FIN should only be set in the second packet. */
1599 	flags = TCP_SKB_CB(skb)->tcp_flags;
1600 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1601 	TCP_SKB_CB(buff)->tcp_flags = flags;
1602 
1603 	/* This packet was never sent out yet, so no SACK bits. */
1604 	TCP_SKB_CB(buff)->sacked = 0;
1605 
1606 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1607 	skb_split(skb, buff, len);
1608 
1609 	/* Fix up tso_factor for both original and new SKB.  */
1610 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1611 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1612 
1613 	/* Link BUFF into the send queue. */
1614 	skb_header_release(buff);
1615 	tcp_insert_write_queue_after(skb, buff, sk);
1616 
1617 	return 0;
1618 }
1619 
1620 /* Try to defer sending, if possible, in order to minimize the amount
1621  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1622  *
1623  * This algorithm is from John Heffner.
1624  */
1625 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1626 {
1627 	struct tcp_sock *tp = tcp_sk(sk);
1628 	const struct inet_connection_sock *icsk = inet_csk(sk);
1629 	u32 send_win, cong_win, limit, in_flight;
1630 	int win_divisor;
1631 
1632 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1633 		goto send_now;
1634 
1635 	if (icsk->icsk_ca_state != TCP_CA_Open)
1636 		goto send_now;
1637 
1638 	/* Defer for less than two clock ticks. */
1639 	if (tp->tso_deferred &&
1640 	    (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1641 		goto send_now;
1642 
1643 	in_flight = tcp_packets_in_flight(tp);
1644 
1645 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1646 
1647 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1648 
1649 	/* From in_flight test above, we know that cwnd > in_flight.  */
1650 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1651 
1652 	limit = min(send_win, cong_win);
1653 
1654 	/* If a full-sized TSO skb can be sent, do it. */
1655 	if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1656 			   tp->xmit_size_goal_segs * tp->mss_cache))
1657 		goto send_now;
1658 
1659 	/* Middle in queue won't get any more data, full sendable already? */
1660 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1661 		goto send_now;
1662 
1663 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1664 	if (win_divisor) {
1665 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1666 
1667 		/* If at least some fraction of a window is available,
1668 		 * just use it.
1669 		 */
1670 		chunk /= win_divisor;
1671 		if (limit >= chunk)
1672 			goto send_now;
1673 	} else {
1674 		/* Different approach, try not to defer past a single
1675 		 * ACK.  Receiver should ACK every other full sized
1676 		 * frame, so if we have space for more than 3 frames
1677 		 * then send now.
1678 		 */
1679 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1680 			goto send_now;
1681 	}
1682 
1683 	/* Ok, it looks like it is advisable to defer.
1684 	 * Do not rearm the timer if already set to not break TCP ACK clocking.
1685 	 */
1686 	if (!tp->tso_deferred)
1687 		tp->tso_deferred = 1 | (jiffies << 1);
1688 
1689 	return true;
1690 
1691 send_now:
1692 	tp->tso_deferred = 0;
1693 	return false;
1694 }
1695 
1696 /* Create a new MTU probe if we are ready.
1697  * MTU probe is regularly attempting to increase the path MTU by
1698  * deliberately sending larger packets.  This discovers routing
1699  * changes resulting in larger path MTUs.
1700  *
1701  * Returns 0 if we should wait to probe (no cwnd available),
1702  *         1 if a probe was sent,
1703  *         -1 otherwise
1704  */
1705 static int tcp_mtu_probe(struct sock *sk)
1706 {
1707 	struct tcp_sock *tp = tcp_sk(sk);
1708 	struct inet_connection_sock *icsk = inet_csk(sk);
1709 	struct sk_buff *skb, *nskb, *next;
1710 	int len;
1711 	int probe_size;
1712 	int size_needed;
1713 	int copy;
1714 	int mss_now;
1715 
1716 	/* Not currently probing/verifying,
1717 	 * not in recovery,
1718 	 * have enough cwnd, and
1719 	 * not SACKing (the variable headers throw things off) */
1720 	if (!icsk->icsk_mtup.enabled ||
1721 	    icsk->icsk_mtup.probe_size ||
1722 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1723 	    tp->snd_cwnd < 11 ||
1724 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1725 		return -1;
1726 
1727 	/* Very simple search strategy: just double the MSS. */
1728 	mss_now = tcp_current_mss(sk);
1729 	probe_size = 2 * tp->mss_cache;
1730 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1731 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1732 		/* TODO: set timer for probe_converge_event */
1733 		return -1;
1734 	}
1735 
1736 	/* Have enough data in the send queue to probe? */
1737 	if (tp->write_seq - tp->snd_nxt < size_needed)
1738 		return -1;
1739 
1740 	if (tp->snd_wnd < size_needed)
1741 		return -1;
1742 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1743 		return 0;
1744 
1745 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1746 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1747 		if (!tcp_packets_in_flight(tp))
1748 			return -1;
1749 		else
1750 			return 0;
1751 	}
1752 
1753 	/* We're allowed to probe.  Build it now. */
1754 	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1755 		return -1;
1756 	sk->sk_wmem_queued += nskb->truesize;
1757 	sk_mem_charge(sk, nskb->truesize);
1758 
1759 	skb = tcp_send_head(sk);
1760 
1761 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1762 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1763 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1764 	TCP_SKB_CB(nskb)->sacked = 0;
1765 	nskb->csum = 0;
1766 	nskb->ip_summed = skb->ip_summed;
1767 
1768 	tcp_insert_write_queue_before(nskb, skb, sk);
1769 
1770 	len = 0;
1771 	tcp_for_write_queue_from_safe(skb, next, sk) {
1772 		copy = min_t(int, skb->len, probe_size - len);
1773 		if (nskb->ip_summed)
1774 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1775 		else
1776 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1777 							    skb_put(nskb, copy),
1778 							    copy, nskb->csum);
1779 
1780 		if (skb->len <= copy) {
1781 			/* We've eaten all the data from this skb.
1782 			 * Throw it away. */
1783 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1784 			tcp_unlink_write_queue(skb, sk);
1785 			sk_wmem_free_skb(sk, skb);
1786 		} else {
1787 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1788 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1789 			if (!skb_shinfo(skb)->nr_frags) {
1790 				skb_pull(skb, copy);
1791 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1792 					skb->csum = csum_partial(skb->data,
1793 								 skb->len, 0);
1794 			} else {
1795 				__pskb_trim_head(skb, copy);
1796 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1797 			}
1798 			TCP_SKB_CB(skb)->seq += copy;
1799 		}
1800 
1801 		len += copy;
1802 
1803 		if (len >= probe_size)
1804 			break;
1805 	}
1806 	tcp_init_tso_segs(sk, nskb, nskb->len);
1807 
1808 	/* We're ready to send.  If this fails, the probe will
1809 	 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1810 	TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1811 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1812 		/* Decrement cwnd here because we are sending
1813 		 * effectively two packets. */
1814 		tp->snd_cwnd--;
1815 		tcp_event_new_data_sent(sk, nskb);
1816 
1817 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1818 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1819 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1820 
1821 		return 1;
1822 	}
1823 
1824 	return -1;
1825 }
1826 
1827 /* This routine writes packets to the network.  It advances the
1828  * send_head.  This happens as incoming acks open up the remote
1829  * window for us.
1830  *
1831  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1832  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1833  * account rare use of URG, this is not a big flaw.
1834  *
1835  * Send at most one packet when push_one > 0. Temporarily ignore
1836  * cwnd limit to force at most one packet out when push_one == 2.
1837 
1838  * Returns true, if no segments are in flight and we have queued segments,
1839  * but cannot send anything now because of SWS or another problem.
1840  */
1841 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1842 			   int push_one, gfp_t gfp)
1843 {
1844 	struct tcp_sock *tp = tcp_sk(sk);
1845 	struct sk_buff *skb;
1846 	unsigned int tso_segs, sent_pkts;
1847 	int cwnd_quota;
1848 	int result;
1849 
1850 	sent_pkts = 0;
1851 
1852 	if (!push_one) {
1853 		/* Do MTU probing. */
1854 		result = tcp_mtu_probe(sk);
1855 		if (!result) {
1856 			return false;
1857 		} else if (result > 0) {
1858 			sent_pkts = 1;
1859 		}
1860 	}
1861 
1862 	while ((skb = tcp_send_head(sk))) {
1863 		unsigned int limit;
1864 
1865 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1866 		BUG_ON(!tso_segs);
1867 
1868 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1869 			goto repair; /* Skip network transmission */
1870 
1871 		cwnd_quota = tcp_cwnd_test(tp, skb);
1872 		if (!cwnd_quota) {
1873 			if (push_one == 2)
1874 				/* Force out a loss probe pkt. */
1875 				cwnd_quota = 1;
1876 			else
1877 				break;
1878 		}
1879 
1880 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1881 			break;
1882 
1883 		if (tso_segs == 1) {
1884 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1885 						     (tcp_skb_is_last(sk, skb) ?
1886 						      nonagle : TCP_NAGLE_PUSH))))
1887 				break;
1888 		} else {
1889 			if (!push_one && tcp_tso_should_defer(sk, skb))
1890 				break;
1891 		}
1892 
1893 		/* TCP Small Queues :
1894 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1895 		 * This allows for :
1896 		 *  - better RTT estimation and ACK scheduling
1897 		 *  - faster recovery
1898 		 *  - high rates
1899 		 * Alas, some drivers / subsystems require a fair amount
1900 		 * of queued bytes to ensure line rate.
1901 		 * One example is wifi aggregation (802.11 AMPDU)
1902 		 */
1903 		limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
1904 			      sk->sk_pacing_rate >> 10);
1905 
1906 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1907 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1908 			/* It is possible TX completion already happened
1909 			 * before we set TSQ_THROTTLED, so we must
1910 			 * test again the condition.
1911 			 * We abuse smp_mb__after_clear_bit() because
1912 			 * there is no smp_mb__after_set_bit() yet
1913 			 */
1914 			smp_mb__after_clear_bit();
1915 			if (atomic_read(&sk->sk_wmem_alloc) > limit)
1916 				break;
1917 		}
1918 
1919 		limit = mss_now;
1920 		if (tso_segs > 1 && !tcp_urg_mode(tp))
1921 			limit = tcp_mss_split_point(sk, skb, mss_now,
1922 						    min_t(unsigned int,
1923 							  cwnd_quota,
1924 							  sk->sk_gso_max_segs),
1925 						    nonagle);
1926 
1927 		if (skb->len > limit &&
1928 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1929 			break;
1930 
1931 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1932 
1933 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1934 			break;
1935 
1936 repair:
1937 		/* Advance the send_head.  This one is sent out.
1938 		 * This call will increment packets_out.
1939 		 */
1940 		tcp_event_new_data_sent(sk, skb);
1941 
1942 		tcp_minshall_update(tp, mss_now, skb);
1943 		sent_pkts += tcp_skb_pcount(skb);
1944 
1945 		if (push_one)
1946 			break;
1947 	}
1948 
1949 	if (likely(sent_pkts)) {
1950 		if (tcp_in_cwnd_reduction(sk))
1951 			tp->prr_out += sent_pkts;
1952 
1953 		/* Send one loss probe per tail loss episode. */
1954 		if (push_one != 2)
1955 			tcp_schedule_loss_probe(sk);
1956 		tcp_cwnd_validate(sk);
1957 		return false;
1958 	}
1959 	return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1960 }
1961 
1962 bool tcp_schedule_loss_probe(struct sock *sk)
1963 {
1964 	struct inet_connection_sock *icsk = inet_csk(sk);
1965 	struct tcp_sock *tp = tcp_sk(sk);
1966 	u32 timeout, tlp_time_stamp, rto_time_stamp;
1967 	u32 rtt = tp->srtt >> 3;
1968 
1969 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
1970 		return false;
1971 	/* No consecutive loss probes. */
1972 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
1973 		tcp_rearm_rto(sk);
1974 		return false;
1975 	}
1976 	/* Don't do any loss probe on a Fast Open connection before 3WHS
1977 	 * finishes.
1978 	 */
1979 	if (sk->sk_state == TCP_SYN_RECV)
1980 		return false;
1981 
1982 	/* TLP is only scheduled when next timer event is RTO. */
1983 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
1984 		return false;
1985 
1986 	/* Schedule a loss probe in 2*RTT for SACK capable connections
1987 	 * in Open state, that are either limited by cwnd or application.
1988 	 */
1989 	if (sysctl_tcp_early_retrans < 3 || !tp->srtt || !tp->packets_out ||
1990 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
1991 		return false;
1992 
1993 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
1994 	     tcp_send_head(sk))
1995 		return false;
1996 
1997 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
1998 	 * for delayed ack when there's one outstanding packet.
1999 	 */
2000 	timeout = rtt << 1;
2001 	if (tp->packets_out == 1)
2002 		timeout = max_t(u32, timeout,
2003 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2004 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2005 
2006 	/* If RTO is shorter, just schedule TLP in its place. */
2007 	tlp_time_stamp = tcp_time_stamp + timeout;
2008 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2009 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2010 		s32 delta = rto_time_stamp - tcp_time_stamp;
2011 		if (delta > 0)
2012 			timeout = delta;
2013 	}
2014 
2015 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2016 				  TCP_RTO_MAX);
2017 	return true;
2018 }
2019 
2020 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2021  * retransmit the last segment.
2022  */
2023 void tcp_send_loss_probe(struct sock *sk)
2024 {
2025 	struct tcp_sock *tp = tcp_sk(sk);
2026 	struct sk_buff *skb;
2027 	int pcount;
2028 	int mss = tcp_current_mss(sk);
2029 	int err = -1;
2030 
2031 	if (tcp_send_head(sk) != NULL) {
2032 		err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2033 		goto rearm_timer;
2034 	}
2035 
2036 	/* At most one outstanding TLP retransmission. */
2037 	if (tp->tlp_high_seq)
2038 		goto rearm_timer;
2039 
2040 	/* Retransmit last segment. */
2041 	skb = tcp_write_queue_tail(sk);
2042 	if (WARN_ON(!skb))
2043 		goto rearm_timer;
2044 
2045 	pcount = tcp_skb_pcount(skb);
2046 	if (WARN_ON(!pcount))
2047 		goto rearm_timer;
2048 
2049 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2050 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
2051 			goto rearm_timer;
2052 		skb = tcp_write_queue_tail(sk);
2053 	}
2054 
2055 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2056 		goto rearm_timer;
2057 
2058 	/* Probe with zero data doesn't trigger fast recovery. */
2059 	if (skb->len > 0)
2060 		err = __tcp_retransmit_skb(sk, skb);
2061 
2062 	/* Record snd_nxt for loss detection. */
2063 	if (likely(!err))
2064 		tp->tlp_high_seq = tp->snd_nxt;
2065 
2066 rearm_timer:
2067 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2068 				  inet_csk(sk)->icsk_rto,
2069 				  TCP_RTO_MAX);
2070 
2071 	if (likely(!err))
2072 		NET_INC_STATS_BH(sock_net(sk),
2073 				 LINUX_MIB_TCPLOSSPROBES);
2074 	return;
2075 }
2076 
2077 /* Push out any pending frames which were held back due to
2078  * TCP_CORK or attempt at coalescing tiny packets.
2079  * The socket must be locked by the caller.
2080  */
2081 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2082 			       int nonagle)
2083 {
2084 	/* If we are closed, the bytes will have to remain here.
2085 	 * In time closedown will finish, we empty the write queue and
2086 	 * all will be happy.
2087 	 */
2088 	if (unlikely(sk->sk_state == TCP_CLOSE))
2089 		return;
2090 
2091 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2092 			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2093 		tcp_check_probe_timer(sk);
2094 }
2095 
2096 /* Send _single_ skb sitting at the send head. This function requires
2097  * true push pending frames to setup probe timer etc.
2098  */
2099 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2100 {
2101 	struct sk_buff *skb = tcp_send_head(sk);
2102 
2103 	BUG_ON(!skb || skb->len < mss_now);
2104 
2105 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2106 }
2107 
2108 /* This function returns the amount that we can raise the
2109  * usable window based on the following constraints
2110  *
2111  * 1. The window can never be shrunk once it is offered (RFC 793)
2112  * 2. We limit memory per socket
2113  *
2114  * RFC 1122:
2115  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2116  *  RECV.NEXT + RCV.WIN fixed until:
2117  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2118  *
2119  * i.e. don't raise the right edge of the window until you can raise
2120  * it at least MSS bytes.
2121  *
2122  * Unfortunately, the recommended algorithm breaks header prediction,
2123  * since header prediction assumes th->window stays fixed.
2124  *
2125  * Strictly speaking, keeping th->window fixed violates the receiver
2126  * side SWS prevention criteria. The problem is that under this rule
2127  * a stream of single byte packets will cause the right side of the
2128  * window to always advance by a single byte.
2129  *
2130  * Of course, if the sender implements sender side SWS prevention
2131  * then this will not be a problem.
2132  *
2133  * BSD seems to make the following compromise:
2134  *
2135  *	If the free space is less than the 1/4 of the maximum
2136  *	space available and the free space is less than 1/2 mss,
2137  *	then set the window to 0.
2138  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2139  *	Otherwise, just prevent the window from shrinking
2140  *	and from being larger than the largest representable value.
2141  *
2142  * This prevents incremental opening of the window in the regime
2143  * where TCP is limited by the speed of the reader side taking
2144  * data out of the TCP receive queue. It does nothing about
2145  * those cases where the window is constrained on the sender side
2146  * because the pipeline is full.
2147  *
2148  * BSD also seems to "accidentally" limit itself to windows that are a
2149  * multiple of MSS, at least until the free space gets quite small.
2150  * This would appear to be a side effect of the mbuf implementation.
2151  * Combining these two algorithms results in the observed behavior
2152  * of having a fixed window size at almost all times.
2153  *
2154  * Below we obtain similar behavior by forcing the offered window to
2155  * a multiple of the mss when it is feasible to do so.
2156  *
2157  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2158  * Regular options like TIMESTAMP are taken into account.
2159  */
2160 u32 __tcp_select_window(struct sock *sk)
2161 {
2162 	struct inet_connection_sock *icsk = inet_csk(sk);
2163 	struct tcp_sock *tp = tcp_sk(sk);
2164 	/* MSS for the peer's data.  Previous versions used mss_clamp
2165 	 * here.  I don't know if the value based on our guesses
2166 	 * of peer's MSS is better for the performance.  It's more correct
2167 	 * but may be worse for the performance because of rcv_mss
2168 	 * fluctuations.  --SAW  1998/11/1
2169 	 */
2170 	int mss = icsk->icsk_ack.rcv_mss;
2171 	int free_space = tcp_space(sk);
2172 	int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2173 	int window;
2174 
2175 	if (mss > full_space)
2176 		mss = full_space;
2177 
2178 	if (free_space < (full_space >> 1)) {
2179 		icsk->icsk_ack.quick = 0;
2180 
2181 		if (sk_under_memory_pressure(sk))
2182 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2183 					       4U * tp->advmss);
2184 
2185 		if (free_space < mss)
2186 			return 0;
2187 	}
2188 
2189 	if (free_space > tp->rcv_ssthresh)
2190 		free_space = tp->rcv_ssthresh;
2191 
2192 	/* Don't do rounding if we are using window scaling, since the
2193 	 * scaled window will not line up with the MSS boundary anyway.
2194 	 */
2195 	window = tp->rcv_wnd;
2196 	if (tp->rx_opt.rcv_wscale) {
2197 		window = free_space;
2198 
2199 		/* Advertise enough space so that it won't get scaled away.
2200 		 * Import case: prevent zero window announcement if
2201 		 * 1<<rcv_wscale > mss.
2202 		 */
2203 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2204 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2205 				  << tp->rx_opt.rcv_wscale);
2206 	} else {
2207 		/* Get the largest window that is a nice multiple of mss.
2208 		 * Window clamp already applied above.
2209 		 * If our current window offering is within 1 mss of the
2210 		 * free space we just keep it. This prevents the divide
2211 		 * and multiply from happening most of the time.
2212 		 * We also don't do any window rounding when the free space
2213 		 * is too small.
2214 		 */
2215 		if (window <= free_space - mss || window > free_space)
2216 			window = (free_space / mss) * mss;
2217 		else if (mss == full_space &&
2218 			 free_space > window + (full_space >> 1))
2219 			window = free_space;
2220 	}
2221 
2222 	return window;
2223 }
2224 
2225 /* Collapses two adjacent SKB's during retransmission. */
2226 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2227 {
2228 	struct tcp_sock *tp = tcp_sk(sk);
2229 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2230 	int skb_size, next_skb_size;
2231 
2232 	skb_size = skb->len;
2233 	next_skb_size = next_skb->len;
2234 
2235 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2236 
2237 	tcp_highest_sack_combine(sk, next_skb, skb);
2238 
2239 	tcp_unlink_write_queue(next_skb, sk);
2240 
2241 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2242 				  next_skb_size);
2243 
2244 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2245 		skb->ip_summed = CHECKSUM_PARTIAL;
2246 
2247 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2248 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2249 
2250 	/* Update sequence range on original skb. */
2251 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2252 
2253 	/* Merge over control information. This moves PSH/FIN etc. over */
2254 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2255 
2256 	/* All done, get rid of second SKB and account for it so
2257 	 * packet counting does not break.
2258 	 */
2259 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2260 
2261 	/* changed transmit queue under us so clear hints */
2262 	tcp_clear_retrans_hints_partial(tp);
2263 	if (next_skb == tp->retransmit_skb_hint)
2264 		tp->retransmit_skb_hint = skb;
2265 
2266 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2267 
2268 	sk_wmem_free_skb(sk, next_skb);
2269 }
2270 
2271 /* Check if coalescing SKBs is legal. */
2272 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2273 {
2274 	if (tcp_skb_pcount(skb) > 1)
2275 		return false;
2276 	/* TODO: SACK collapsing could be used to remove this condition */
2277 	if (skb_shinfo(skb)->nr_frags != 0)
2278 		return false;
2279 	if (skb_cloned(skb))
2280 		return false;
2281 	if (skb == tcp_send_head(sk))
2282 		return false;
2283 	/* Some heurestics for collapsing over SACK'd could be invented */
2284 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2285 		return false;
2286 
2287 	return true;
2288 }
2289 
2290 /* Collapse packets in the retransmit queue to make to create
2291  * less packets on the wire. This is only done on retransmission.
2292  */
2293 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2294 				     int space)
2295 {
2296 	struct tcp_sock *tp = tcp_sk(sk);
2297 	struct sk_buff *skb = to, *tmp;
2298 	bool first = true;
2299 
2300 	if (!sysctl_tcp_retrans_collapse)
2301 		return;
2302 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2303 		return;
2304 
2305 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2306 		if (!tcp_can_collapse(sk, skb))
2307 			break;
2308 
2309 		space -= skb->len;
2310 
2311 		if (first) {
2312 			first = false;
2313 			continue;
2314 		}
2315 
2316 		if (space < 0)
2317 			break;
2318 		/* Punt if not enough space exists in the first SKB for
2319 		 * the data in the second
2320 		 */
2321 		if (skb->len > skb_availroom(to))
2322 			break;
2323 
2324 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2325 			break;
2326 
2327 		tcp_collapse_retrans(sk, to);
2328 	}
2329 }
2330 
2331 /* This retransmits one SKB.  Policy decisions and retransmit queue
2332  * state updates are done by the caller.  Returns non-zero if an
2333  * error occurred which prevented the send.
2334  */
2335 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2336 {
2337 	struct tcp_sock *tp = tcp_sk(sk);
2338 	struct inet_connection_sock *icsk = inet_csk(sk);
2339 	unsigned int cur_mss;
2340 
2341 	/* Inconslusive MTU probe */
2342 	if (icsk->icsk_mtup.probe_size) {
2343 		icsk->icsk_mtup.probe_size = 0;
2344 	}
2345 
2346 	/* Do not sent more than we queued. 1/4 is reserved for possible
2347 	 * copying overhead: fragmentation, tunneling, mangling etc.
2348 	 */
2349 	if (atomic_read(&sk->sk_wmem_alloc) >
2350 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2351 		return -EAGAIN;
2352 
2353 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2354 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2355 			BUG();
2356 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2357 			return -ENOMEM;
2358 	}
2359 
2360 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2361 		return -EHOSTUNREACH; /* Routing failure or similar. */
2362 
2363 	cur_mss = tcp_current_mss(sk);
2364 
2365 	/* If receiver has shrunk his window, and skb is out of
2366 	 * new window, do not retransmit it. The exception is the
2367 	 * case, when window is shrunk to zero. In this case
2368 	 * our retransmit serves as a zero window probe.
2369 	 */
2370 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2371 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2372 		return -EAGAIN;
2373 
2374 	if (skb->len > cur_mss) {
2375 		if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2376 			return -ENOMEM; /* We'll try again later. */
2377 	} else {
2378 		int oldpcount = tcp_skb_pcount(skb);
2379 
2380 		if (unlikely(oldpcount > 1)) {
2381 			if (skb_unclone(skb, GFP_ATOMIC))
2382 				return -ENOMEM;
2383 			tcp_init_tso_segs(sk, skb, cur_mss);
2384 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2385 		}
2386 	}
2387 
2388 	tcp_retrans_try_collapse(sk, skb, cur_mss);
2389 
2390 	/* Make a copy, if the first transmission SKB clone we made
2391 	 * is still in somebody's hands, else make a clone.
2392 	 */
2393 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2394 
2395 	/* make sure skb->data is aligned on arches that require it
2396 	 * and check if ack-trimming & collapsing extended the headroom
2397 	 * beyond what csum_start can cover.
2398 	 */
2399 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2400 		     skb_headroom(skb) >= 0xFFFF)) {
2401 		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2402 						   GFP_ATOMIC);
2403 		return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2404 			      -ENOBUFS;
2405 	} else {
2406 		return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2407 	}
2408 }
2409 
2410 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2411 {
2412 	struct tcp_sock *tp = tcp_sk(sk);
2413 	int err = __tcp_retransmit_skb(sk, skb);
2414 
2415 	if (err == 0) {
2416 		/* Update global TCP statistics. */
2417 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2418 
2419 		tp->total_retrans++;
2420 
2421 #if FASTRETRANS_DEBUG > 0
2422 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2423 			net_dbg_ratelimited("retrans_out leaked\n");
2424 		}
2425 #endif
2426 		if (!tp->retrans_out)
2427 			tp->lost_retrans_low = tp->snd_nxt;
2428 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2429 		tp->retrans_out += tcp_skb_pcount(skb);
2430 
2431 		/* Save stamp of the first retransmit. */
2432 		if (!tp->retrans_stamp)
2433 			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2434 
2435 		tp->undo_retrans += tcp_skb_pcount(skb);
2436 
2437 		/* snd_nxt is stored to detect loss of retransmitted segment,
2438 		 * see tcp_input.c tcp_sacktag_write_queue().
2439 		 */
2440 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2441 	} else {
2442 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2443 	}
2444 	return err;
2445 }
2446 
2447 /* Check if we forward retransmits are possible in the current
2448  * window/congestion state.
2449  */
2450 static bool tcp_can_forward_retransmit(struct sock *sk)
2451 {
2452 	const struct inet_connection_sock *icsk = inet_csk(sk);
2453 	const struct tcp_sock *tp = tcp_sk(sk);
2454 
2455 	/* Forward retransmissions are possible only during Recovery. */
2456 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2457 		return false;
2458 
2459 	/* No forward retransmissions in Reno are possible. */
2460 	if (tcp_is_reno(tp))
2461 		return false;
2462 
2463 	/* Yeah, we have to make difficult choice between forward transmission
2464 	 * and retransmission... Both ways have their merits...
2465 	 *
2466 	 * For now we do not retransmit anything, while we have some new
2467 	 * segments to send. In the other cases, follow rule 3 for
2468 	 * NextSeg() specified in RFC3517.
2469 	 */
2470 
2471 	if (tcp_may_send_now(sk))
2472 		return false;
2473 
2474 	return true;
2475 }
2476 
2477 /* This gets called after a retransmit timeout, and the initially
2478  * retransmitted data is acknowledged.  It tries to continue
2479  * resending the rest of the retransmit queue, until either
2480  * we've sent it all or the congestion window limit is reached.
2481  * If doing SACK, the first ACK which comes back for a timeout
2482  * based retransmit packet might feed us FACK information again.
2483  * If so, we use it to avoid unnecessarily retransmissions.
2484  */
2485 void tcp_xmit_retransmit_queue(struct sock *sk)
2486 {
2487 	const struct inet_connection_sock *icsk = inet_csk(sk);
2488 	struct tcp_sock *tp = tcp_sk(sk);
2489 	struct sk_buff *skb;
2490 	struct sk_buff *hole = NULL;
2491 	u32 last_lost;
2492 	int mib_idx;
2493 	int fwd_rexmitting = 0;
2494 
2495 	if (!tp->packets_out)
2496 		return;
2497 
2498 	if (!tp->lost_out)
2499 		tp->retransmit_high = tp->snd_una;
2500 
2501 	if (tp->retransmit_skb_hint) {
2502 		skb = tp->retransmit_skb_hint;
2503 		last_lost = TCP_SKB_CB(skb)->end_seq;
2504 		if (after(last_lost, tp->retransmit_high))
2505 			last_lost = tp->retransmit_high;
2506 	} else {
2507 		skb = tcp_write_queue_head(sk);
2508 		last_lost = tp->snd_una;
2509 	}
2510 
2511 	tcp_for_write_queue_from(skb, sk) {
2512 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2513 
2514 		if (skb == tcp_send_head(sk))
2515 			break;
2516 		/* we could do better than to assign each time */
2517 		if (hole == NULL)
2518 			tp->retransmit_skb_hint = skb;
2519 
2520 		/* Assume this retransmit will generate
2521 		 * only one packet for congestion window
2522 		 * calculation purposes.  This works because
2523 		 * tcp_retransmit_skb() will chop up the
2524 		 * packet to be MSS sized and all the
2525 		 * packet counting works out.
2526 		 */
2527 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2528 			return;
2529 
2530 		if (fwd_rexmitting) {
2531 begin_fwd:
2532 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2533 				break;
2534 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2535 
2536 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2537 			tp->retransmit_high = last_lost;
2538 			if (!tcp_can_forward_retransmit(sk))
2539 				break;
2540 			/* Backtrack if necessary to non-L'ed skb */
2541 			if (hole != NULL) {
2542 				skb = hole;
2543 				hole = NULL;
2544 			}
2545 			fwd_rexmitting = 1;
2546 			goto begin_fwd;
2547 
2548 		} else if (!(sacked & TCPCB_LOST)) {
2549 			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2550 				hole = skb;
2551 			continue;
2552 
2553 		} else {
2554 			last_lost = TCP_SKB_CB(skb)->end_seq;
2555 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2556 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2557 			else
2558 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2559 		}
2560 
2561 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2562 			continue;
2563 
2564 		if (tcp_retransmit_skb(sk, skb))
2565 			return;
2566 
2567 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2568 
2569 		if (tcp_in_cwnd_reduction(sk))
2570 			tp->prr_out += tcp_skb_pcount(skb);
2571 
2572 		if (skb == tcp_write_queue_head(sk))
2573 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2574 						  inet_csk(sk)->icsk_rto,
2575 						  TCP_RTO_MAX);
2576 	}
2577 }
2578 
2579 /* Send a fin.  The caller locks the socket for us.  This cannot be
2580  * allowed to fail queueing a FIN frame under any circumstances.
2581  */
2582 void tcp_send_fin(struct sock *sk)
2583 {
2584 	struct tcp_sock *tp = tcp_sk(sk);
2585 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2586 	int mss_now;
2587 
2588 	/* Optimization, tack on the FIN if we have a queue of
2589 	 * unsent frames.  But be careful about outgoing SACKS
2590 	 * and IP options.
2591 	 */
2592 	mss_now = tcp_current_mss(sk);
2593 
2594 	if (tcp_send_head(sk) != NULL) {
2595 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2596 		TCP_SKB_CB(skb)->end_seq++;
2597 		tp->write_seq++;
2598 	} else {
2599 		/* Socket is locked, keep trying until memory is available. */
2600 		for (;;) {
2601 			skb = alloc_skb_fclone(MAX_TCP_HEADER,
2602 					       sk->sk_allocation);
2603 			if (skb)
2604 				break;
2605 			yield();
2606 		}
2607 
2608 		/* Reserve space for headers and prepare control bits. */
2609 		skb_reserve(skb, MAX_TCP_HEADER);
2610 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2611 		tcp_init_nondata_skb(skb, tp->write_seq,
2612 				     TCPHDR_ACK | TCPHDR_FIN);
2613 		tcp_queue_skb(sk, skb);
2614 	}
2615 	__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2616 }
2617 
2618 /* We get here when a process closes a file descriptor (either due to
2619  * an explicit close() or as a byproduct of exit()'ing) and there
2620  * was unread data in the receive queue.  This behavior is recommended
2621  * by RFC 2525, section 2.17.  -DaveM
2622  */
2623 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2624 {
2625 	struct sk_buff *skb;
2626 
2627 	/* NOTE: No TCP options attached and we never retransmit this. */
2628 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2629 	if (!skb) {
2630 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2631 		return;
2632 	}
2633 
2634 	/* Reserve space for headers and prepare control bits. */
2635 	skb_reserve(skb, MAX_TCP_HEADER);
2636 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2637 			     TCPHDR_ACK | TCPHDR_RST);
2638 	/* Send it off. */
2639 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2640 	if (tcp_transmit_skb(sk, skb, 0, priority))
2641 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2642 
2643 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2644 }
2645 
2646 /* Send a crossed SYN-ACK during socket establishment.
2647  * WARNING: This routine must only be called when we have already sent
2648  * a SYN packet that crossed the incoming SYN that caused this routine
2649  * to get called. If this assumption fails then the initial rcv_wnd
2650  * and rcv_wscale values will not be correct.
2651  */
2652 int tcp_send_synack(struct sock *sk)
2653 {
2654 	struct sk_buff *skb;
2655 
2656 	skb = tcp_write_queue_head(sk);
2657 	if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2658 		pr_debug("%s: wrong queue state\n", __func__);
2659 		return -EFAULT;
2660 	}
2661 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2662 		if (skb_cloned(skb)) {
2663 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2664 			if (nskb == NULL)
2665 				return -ENOMEM;
2666 			tcp_unlink_write_queue(skb, sk);
2667 			skb_header_release(nskb);
2668 			__tcp_add_write_queue_head(sk, nskb);
2669 			sk_wmem_free_skb(sk, skb);
2670 			sk->sk_wmem_queued += nskb->truesize;
2671 			sk_mem_charge(sk, nskb->truesize);
2672 			skb = nskb;
2673 		}
2674 
2675 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2676 		TCP_ECN_send_synack(tcp_sk(sk), skb);
2677 	}
2678 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2679 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2680 }
2681 
2682 /**
2683  * tcp_make_synack - Prepare a SYN-ACK.
2684  * sk: listener socket
2685  * dst: dst entry attached to the SYNACK
2686  * req: request_sock pointer
2687  *
2688  * Allocate one skb and build a SYNACK packet.
2689  * @dst is consumed : Caller should not use it again.
2690  */
2691 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2692 				struct request_sock *req,
2693 				struct tcp_fastopen_cookie *foc)
2694 {
2695 	struct tcp_out_options opts;
2696 	struct inet_request_sock *ireq = inet_rsk(req);
2697 	struct tcp_sock *tp = tcp_sk(sk);
2698 	struct tcphdr *th;
2699 	struct sk_buff *skb;
2700 	struct tcp_md5sig_key *md5;
2701 	int tcp_header_size;
2702 	int mss;
2703 
2704 	skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2705 	if (unlikely(!skb)) {
2706 		dst_release(dst);
2707 		return NULL;
2708 	}
2709 	/* Reserve space for headers. */
2710 	skb_reserve(skb, MAX_TCP_HEADER);
2711 
2712 	skb_dst_set(skb, dst);
2713 	security_skb_owned_by(skb, sk);
2714 
2715 	mss = dst_metric_advmss(dst);
2716 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2717 		mss = tp->rx_opt.user_mss;
2718 
2719 	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2720 		__u8 rcv_wscale;
2721 		/* Set this up on the first call only */
2722 		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2723 
2724 		/* limit the window selection if the user enforce a smaller rx buffer */
2725 		if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2726 		    (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2727 			req->window_clamp = tcp_full_space(sk);
2728 
2729 		/* tcp_full_space because it is guaranteed to be the first packet */
2730 		tcp_select_initial_window(tcp_full_space(sk),
2731 			mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2732 			&req->rcv_wnd,
2733 			&req->window_clamp,
2734 			ireq->wscale_ok,
2735 			&rcv_wscale,
2736 			dst_metric(dst, RTAX_INITRWND));
2737 		ireq->rcv_wscale = rcv_wscale;
2738 	}
2739 
2740 	memset(&opts, 0, sizeof(opts));
2741 #ifdef CONFIG_SYN_COOKIES
2742 	if (unlikely(req->cookie_ts))
2743 		TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2744 	else
2745 #endif
2746 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2747 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2748 					     foc) + sizeof(*th);
2749 
2750 	skb_push(skb, tcp_header_size);
2751 	skb_reset_transport_header(skb);
2752 
2753 	th = tcp_hdr(skb);
2754 	memset(th, 0, sizeof(struct tcphdr));
2755 	th->syn = 1;
2756 	th->ack = 1;
2757 	TCP_ECN_make_synack(req, th);
2758 	th->source = htons(ireq->ir_num);
2759 	th->dest = ireq->ir_rmt_port;
2760 	/* Setting of flags are superfluous here for callers (and ECE is
2761 	 * not even correctly set)
2762 	 */
2763 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2764 			     TCPHDR_SYN | TCPHDR_ACK);
2765 
2766 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2767 	/* XXX data is queued and acked as is. No buffer/window check */
2768 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2769 
2770 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2771 	th->window = htons(min(req->rcv_wnd, 65535U));
2772 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
2773 	th->doff = (tcp_header_size >> 2);
2774 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2775 
2776 #ifdef CONFIG_TCP_MD5SIG
2777 	/* Okay, we have all we need - do the md5 hash if needed */
2778 	if (md5) {
2779 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2780 					       md5, NULL, req, skb);
2781 	}
2782 #endif
2783 
2784 	return skb;
2785 }
2786 EXPORT_SYMBOL(tcp_make_synack);
2787 
2788 /* Do all connect socket setups that can be done AF independent. */
2789 static void tcp_connect_init(struct sock *sk)
2790 {
2791 	const struct dst_entry *dst = __sk_dst_get(sk);
2792 	struct tcp_sock *tp = tcp_sk(sk);
2793 	__u8 rcv_wscale;
2794 
2795 	/* We'll fix this up when we get a response from the other end.
2796 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2797 	 */
2798 	tp->tcp_header_len = sizeof(struct tcphdr) +
2799 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2800 
2801 #ifdef CONFIG_TCP_MD5SIG
2802 	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2803 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2804 #endif
2805 
2806 	/* If user gave his TCP_MAXSEG, record it to clamp */
2807 	if (tp->rx_opt.user_mss)
2808 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2809 	tp->max_window = 0;
2810 	tcp_mtup_init(sk);
2811 	tcp_sync_mss(sk, dst_mtu(dst));
2812 
2813 	if (!tp->window_clamp)
2814 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2815 	tp->advmss = dst_metric_advmss(dst);
2816 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2817 		tp->advmss = tp->rx_opt.user_mss;
2818 
2819 	tcp_initialize_rcv_mss(sk);
2820 
2821 	/* limit the window selection if the user enforce a smaller rx buffer */
2822 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2823 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2824 		tp->window_clamp = tcp_full_space(sk);
2825 
2826 	tcp_select_initial_window(tcp_full_space(sk),
2827 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2828 				  &tp->rcv_wnd,
2829 				  &tp->window_clamp,
2830 				  sysctl_tcp_window_scaling,
2831 				  &rcv_wscale,
2832 				  dst_metric(dst, RTAX_INITRWND));
2833 
2834 	tp->rx_opt.rcv_wscale = rcv_wscale;
2835 	tp->rcv_ssthresh = tp->rcv_wnd;
2836 
2837 	sk->sk_err = 0;
2838 	sock_reset_flag(sk, SOCK_DONE);
2839 	tp->snd_wnd = 0;
2840 	tcp_init_wl(tp, 0);
2841 	tp->snd_una = tp->write_seq;
2842 	tp->snd_sml = tp->write_seq;
2843 	tp->snd_up = tp->write_seq;
2844 	tp->snd_nxt = tp->write_seq;
2845 
2846 	if (likely(!tp->repair))
2847 		tp->rcv_nxt = 0;
2848 	else
2849 		tp->rcv_tstamp = tcp_time_stamp;
2850 	tp->rcv_wup = tp->rcv_nxt;
2851 	tp->copied_seq = tp->rcv_nxt;
2852 
2853 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2854 	inet_csk(sk)->icsk_retransmits = 0;
2855 	tcp_clear_retrans(tp);
2856 }
2857 
2858 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2859 {
2860 	struct tcp_sock *tp = tcp_sk(sk);
2861 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2862 
2863 	tcb->end_seq += skb->len;
2864 	skb_header_release(skb);
2865 	__tcp_add_write_queue_tail(sk, skb);
2866 	sk->sk_wmem_queued += skb->truesize;
2867 	sk_mem_charge(sk, skb->truesize);
2868 	tp->write_seq = tcb->end_seq;
2869 	tp->packets_out += tcp_skb_pcount(skb);
2870 }
2871 
2872 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2873  * queue a data-only packet after the regular SYN, such that regular SYNs
2874  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2875  * only the SYN sequence, the data are retransmitted in the first ACK.
2876  * If cookie is not cached or other error occurs, falls back to send a
2877  * regular SYN with Fast Open cookie request option.
2878  */
2879 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2880 {
2881 	struct tcp_sock *tp = tcp_sk(sk);
2882 	struct tcp_fastopen_request *fo = tp->fastopen_req;
2883 	int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2884 	struct sk_buff *syn_data = NULL, *data;
2885 	unsigned long last_syn_loss = 0;
2886 
2887 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
2888 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2889 			       &syn_loss, &last_syn_loss);
2890 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
2891 	if (syn_loss > 1 &&
2892 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2893 		fo->cookie.len = -1;
2894 		goto fallback;
2895 	}
2896 
2897 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2898 		fo->cookie.len = -1;
2899 	else if (fo->cookie.len <= 0)
2900 		goto fallback;
2901 
2902 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2903 	 * user-MSS. Reserve maximum option space for middleboxes that add
2904 	 * private TCP options. The cost is reduced data space in SYN :(
2905 	 */
2906 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2907 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2908 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2909 		MAX_TCP_OPTION_SPACE;
2910 
2911 	syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
2912 				   sk->sk_allocation);
2913 	if (syn_data == NULL)
2914 		goto fallback;
2915 
2916 	for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2917 		struct iovec *iov = &fo->data->msg_iov[i];
2918 		unsigned char __user *from = iov->iov_base;
2919 		int len = iov->iov_len;
2920 
2921 		if (syn_data->len + len > space)
2922 			len = space - syn_data->len;
2923 		else if (i + 1 == iovlen)
2924 			/* No more data pending in inet_wait_for_connect() */
2925 			fo->data = NULL;
2926 
2927 		if (skb_add_data(syn_data, from, len))
2928 			goto fallback;
2929 	}
2930 
2931 	/* Queue a data-only packet after the regular SYN for retransmission */
2932 	data = pskb_copy(syn_data, sk->sk_allocation);
2933 	if (data == NULL)
2934 		goto fallback;
2935 	TCP_SKB_CB(data)->seq++;
2936 	TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2937 	TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2938 	tcp_connect_queue_skb(sk, data);
2939 	fo->copied = data->len;
2940 
2941 	if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2942 		tp->syn_data = (fo->copied > 0);
2943 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2944 		goto done;
2945 	}
2946 	syn_data = NULL;
2947 
2948 fallback:
2949 	/* Send a regular SYN with Fast Open cookie request option */
2950 	if (fo->cookie.len > 0)
2951 		fo->cookie.len = 0;
2952 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2953 	if (err)
2954 		tp->syn_fastopen = 0;
2955 	kfree_skb(syn_data);
2956 done:
2957 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
2958 	return err;
2959 }
2960 
2961 /* Build a SYN and send it off. */
2962 int tcp_connect(struct sock *sk)
2963 {
2964 	struct tcp_sock *tp = tcp_sk(sk);
2965 	struct sk_buff *buff;
2966 	int err;
2967 
2968 	tcp_connect_init(sk);
2969 
2970 	if (unlikely(tp->repair)) {
2971 		tcp_finish_connect(sk, NULL);
2972 		return 0;
2973 	}
2974 
2975 	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2976 	if (unlikely(buff == NULL))
2977 		return -ENOBUFS;
2978 
2979 	/* Reserve space for headers. */
2980 	skb_reserve(buff, MAX_TCP_HEADER);
2981 
2982 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
2983 	tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
2984 	tcp_connect_queue_skb(sk, buff);
2985 	TCP_ECN_send_syn(sk, buff);
2986 
2987 	/* Send off SYN; include data in Fast Open. */
2988 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
2989 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2990 	if (err == -ECONNREFUSED)
2991 		return err;
2992 
2993 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
2994 	 * in order to make this packet get counted in tcpOutSegs.
2995 	 */
2996 	tp->snd_nxt = tp->write_seq;
2997 	tp->pushed_seq = tp->write_seq;
2998 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2999 
3000 	/* Timer for repeating the SYN until an answer. */
3001 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3002 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3003 	return 0;
3004 }
3005 EXPORT_SYMBOL(tcp_connect);
3006 
3007 /* Send out a delayed ack, the caller does the policy checking
3008  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3009  * for details.
3010  */
3011 void tcp_send_delayed_ack(struct sock *sk)
3012 {
3013 	struct inet_connection_sock *icsk = inet_csk(sk);
3014 	int ato = icsk->icsk_ack.ato;
3015 	unsigned long timeout;
3016 
3017 	if (ato > TCP_DELACK_MIN) {
3018 		const struct tcp_sock *tp = tcp_sk(sk);
3019 		int max_ato = HZ / 2;
3020 
3021 		if (icsk->icsk_ack.pingpong ||
3022 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3023 			max_ato = TCP_DELACK_MAX;
3024 
3025 		/* Slow path, intersegment interval is "high". */
3026 
3027 		/* If some rtt estimate is known, use it to bound delayed ack.
3028 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3029 		 * directly.
3030 		 */
3031 		if (tp->srtt) {
3032 			int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
3033 
3034 			if (rtt < max_ato)
3035 				max_ato = rtt;
3036 		}
3037 
3038 		ato = min(ato, max_ato);
3039 	}
3040 
3041 	/* Stay within the limit we were given */
3042 	timeout = jiffies + ato;
3043 
3044 	/* Use new timeout only if there wasn't a older one earlier. */
3045 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3046 		/* If delack timer was blocked or is about to expire,
3047 		 * send ACK now.
3048 		 */
3049 		if (icsk->icsk_ack.blocked ||
3050 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3051 			tcp_send_ack(sk);
3052 			return;
3053 		}
3054 
3055 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3056 			timeout = icsk->icsk_ack.timeout;
3057 	}
3058 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3059 	icsk->icsk_ack.timeout = timeout;
3060 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3061 }
3062 
3063 /* This routine sends an ack and also updates the window. */
3064 void tcp_send_ack(struct sock *sk)
3065 {
3066 	struct sk_buff *buff;
3067 
3068 	/* If we have been reset, we may not send again. */
3069 	if (sk->sk_state == TCP_CLOSE)
3070 		return;
3071 
3072 	/* We are not putting this on the write queue, so
3073 	 * tcp_transmit_skb() will set the ownership to this
3074 	 * sock.
3075 	 */
3076 	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3077 	if (buff == NULL) {
3078 		inet_csk_schedule_ack(sk);
3079 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3080 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3081 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3082 		return;
3083 	}
3084 
3085 	/* Reserve space for headers and prepare control bits. */
3086 	skb_reserve(buff, MAX_TCP_HEADER);
3087 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3088 
3089 	/* Send it off, this clears delayed acks for us. */
3090 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
3091 	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3092 }
3093 
3094 /* This routine sends a packet with an out of date sequence
3095  * number. It assumes the other end will try to ack it.
3096  *
3097  * Question: what should we make while urgent mode?
3098  * 4.4BSD forces sending single byte of data. We cannot send
3099  * out of window data, because we have SND.NXT==SND.MAX...
3100  *
3101  * Current solution: to send TWO zero-length segments in urgent mode:
3102  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3103  * out-of-date with SND.UNA-1 to probe window.
3104  */
3105 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3106 {
3107 	struct tcp_sock *tp = tcp_sk(sk);
3108 	struct sk_buff *skb;
3109 
3110 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3111 	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3112 	if (skb == NULL)
3113 		return -1;
3114 
3115 	/* Reserve space for headers and set control bits. */
3116 	skb_reserve(skb, MAX_TCP_HEADER);
3117 	/* Use a previous sequence.  This should cause the other
3118 	 * end to send an ack.  Don't queue or clone SKB, just
3119 	 * send it.
3120 	 */
3121 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3122 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
3123 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3124 }
3125 
3126 void tcp_send_window_probe(struct sock *sk)
3127 {
3128 	if (sk->sk_state == TCP_ESTABLISHED) {
3129 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3130 		tcp_xmit_probe_skb(sk, 0);
3131 	}
3132 }
3133 
3134 /* Initiate keepalive or window probe from timer. */
3135 int tcp_write_wakeup(struct sock *sk)
3136 {
3137 	struct tcp_sock *tp = tcp_sk(sk);
3138 	struct sk_buff *skb;
3139 
3140 	if (sk->sk_state == TCP_CLOSE)
3141 		return -1;
3142 
3143 	if ((skb = tcp_send_head(sk)) != NULL &&
3144 	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3145 		int err;
3146 		unsigned int mss = tcp_current_mss(sk);
3147 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3148 
3149 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3150 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3151 
3152 		/* We are probing the opening of a window
3153 		 * but the window size is != 0
3154 		 * must have been a result SWS avoidance ( sender )
3155 		 */
3156 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3157 		    skb->len > mss) {
3158 			seg_size = min(seg_size, mss);
3159 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3160 			if (tcp_fragment(sk, skb, seg_size, mss))
3161 				return -1;
3162 		} else if (!tcp_skb_pcount(skb))
3163 			tcp_set_skb_tso_segs(sk, skb, mss);
3164 
3165 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3166 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
3167 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3168 		if (!err)
3169 			tcp_event_new_data_sent(sk, skb);
3170 		return err;
3171 	} else {
3172 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3173 			tcp_xmit_probe_skb(sk, 1);
3174 		return tcp_xmit_probe_skb(sk, 0);
3175 	}
3176 }
3177 
3178 /* A window probe timeout has occurred.  If window is not closed send
3179  * a partial packet else a zero probe.
3180  */
3181 void tcp_send_probe0(struct sock *sk)
3182 {
3183 	struct inet_connection_sock *icsk = inet_csk(sk);
3184 	struct tcp_sock *tp = tcp_sk(sk);
3185 	int err;
3186 
3187 	err = tcp_write_wakeup(sk);
3188 
3189 	if (tp->packets_out || !tcp_send_head(sk)) {
3190 		/* Cancel probe timer, if it is not required. */
3191 		icsk->icsk_probes_out = 0;
3192 		icsk->icsk_backoff = 0;
3193 		return;
3194 	}
3195 
3196 	if (err <= 0) {
3197 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3198 			icsk->icsk_backoff++;
3199 		icsk->icsk_probes_out++;
3200 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3201 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3202 					  TCP_RTO_MAX);
3203 	} else {
3204 		/* If packet was not sent due to local congestion,
3205 		 * do not backoff and do not remember icsk_probes_out.
3206 		 * Let local senders to fight for local resources.
3207 		 *
3208 		 * Use accumulated backoff yet.
3209 		 */
3210 		if (!icsk->icsk_probes_out)
3211 			icsk->icsk_probes_out = 1;
3212 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3213 					  min(icsk->icsk_rto << icsk->icsk_backoff,
3214 					      TCP_RESOURCE_PROBE_INTERVAL),
3215 					  TCP_RTO_MAX);
3216 	}
3217 }
3218