1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of two TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 int sysctl_tcp_mtu_probing __read_mostly = 0; 63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS; 64 65 /* By default, RFC2861 behavior. */ 66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 67 68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX; 69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat); 70 71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 72 int push_one, gfp_t gfp); 73 74 /* Account for new data that has been sent to the network. */ 75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 76 { 77 struct inet_connection_sock *icsk = inet_csk(sk); 78 struct tcp_sock *tp = tcp_sk(sk); 79 unsigned int prior_packets = tp->packets_out; 80 81 tcp_advance_send_head(sk, skb); 82 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 83 84 tp->packets_out += tcp_skb_pcount(skb); 85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 86 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 87 tcp_rearm_rto(sk); 88 } 89 90 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 91 tcp_skb_pcount(skb)); 92 } 93 94 /* SND.NXT, if window was not shrunk. 95 * If window has been shrunk, what should we make? It is not clear at all. 96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 98 * invalid. OK, let's make this for now: 99 */ 100 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 101 { 102 const struct tcp_sock *tp = tcp_sk(sk); 103 104 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 105 return tp->snd_nxt; 106 else 107 return tcp_wnd_end(tp); 108 } 109 110 /* Calculate mss to advertise in SYN segment. 111 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 112 * 113 * 1. It is independent of path mtu. 114 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 115 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 116 * attached devices, because some buggy hosts are confused by 117 * large MSS. 118 * 4. We do not make 3, we advertise MSS, calculated from first 119 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 120 * This may be overridden via information stored in routing table. 121 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 122 * probably even Jumbo". 123 */ 124 static __u16 tcp_advertise_mss(struct sock *sk) 125 { 126 struct tcp_sock *tp = tcp_sk(sk); 127 const struct dst_entry *dst = __sk_dst_get(sk); 128 int mss = tp->advmss; 129 130 if (dst) { 131 unsigned int metric = dst_metric_advmss(dst); 132 133 if (metric < mss) { 134 mss = metric; 135 tp->advmss = mss; 136 } 137 } 138 139 return (__u16)mss; 140 } 141 142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 143 * This is the first part of cwnd validation mechanism. */ 144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 145 { 146 struct tcp_sock *tp = tcp_sk(sk); 147 s32 delta = tcp_time_stamp - tp->lsndtime; 148 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 149 u32 cwnd = tp->snd_cwnd; 150 151 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 152 153 tp->snd_ssthresh = tcp_current_ssthresh(sk); 154 restart_cwnd = min(restart_cwnd, cwnd); 155 156 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 157 cwnd >>= 1; 158 tp->snd_cwnd = max(cwnd, restart_cwnd); 159 tp->snd_cwnd_stamp = tcp_time_stamp; 160 tp->snd_cwnd_used = 0; 161 } 162 163 /* Congestion state accounting after a packet has been sent. */ 164 static void tcp_event_data_sent(struct tcp_sock *tp, 165 struct sock *sk) 166 { 167 struct inet_connection_sock *icsk = inet_csk(sk); 168 const u32 now = tcp_time_stamp; 169 const struct dst_entry *dst = __sk_dst_get(sk); 170 171 if (sysctl_tcp_slow_start_after_idle && 172 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 173 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 174 175 tp->lsndtime = now; 176 177 /* If it is a reply for ato after last received 178 * packet, enter pingpong mode. 179 */ 180 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato && 181 (!dst || !dst_metric(dst, RTAX_QUICKACK))) 182 icsk->icsk_ack.pingpong = 1; 183 } 184 185 /* Account for an ACK we sent. */ 186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 187 { 188 tcp_dec_quickack_mode(sk, pkts); 189 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 190 } 191 192 193 u32 tcp_default_init_rwnd(u32 mss) 194 { 195 /* Initial receive window should be twice of TCP_INIT_CWND to 196 * enable proper sending of new unsent data during fast recovery 197 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 198 * limit when mss is larger than 1460. 199 */ 200 u32 init_rwnd = TCP_INIT_CWND * 2; 201 202 if (mss > 1460) 203 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 204 return init_rwnd; 205 } 206 207 /* Determine a window scaling and initial window to offer. 208 * Based on the assumption that the given amount of space 209 * will be offered. Store the results in the tp structure. 210 * NOTE: for smooth operation initial space offering should 211 * be a multiple of mss if possible. We assume here that mss >= 1. 212 * This MUST be enforced by all callers. 213 */ 214 void tcp_select_initial_window(int __space, __u32 mss, 215 __u32 *rcv_wnd, __u32 *window_clamp, 216 int wscale_ok, __u8 *rcv_wscale, 217 __u32 init_rcv_wnd) 218 { 219 unsigned int space = (__space < 0 ? 0 : __space); 220 221 /* If no clamp set the clamp to the max possible scaled window */ 222 if (*window_clamp == 0) 223 (*window_clamp) = (65535 << 14); 224 space = min(*window_clamp, space); 225 226 /* Quantize space offering to a multiple of mss if possible. */ 227 if (space > mss) 228 space = (space / mss) * mss; 229 230 /* NOTE: offering an initial window larger than 32767 231 * will break some buggy TCP stacks. If the admin tells us 232 * it is likely we could be speaking with such a buggy stack 233 * we will truncate our initial window offering to 32K-1 234 * unless the remote has sent us a window scaling option, 235 * which we interpret as a sign the remote TCP is not 236 * misinterpreting the window field as a signed quantity. 237 */ 238 if (sysctl_tcp_workaround_signed_windows) 239 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 240 else 241 (*rcv_wnd) = space; 242 243 (*rcv_wscale) = 0; 244 if (wscale_ok) { 245 /* Set window scaling on max possible window 246 * See RFC1323 for an explanation of the limit to 14 247 */ 248 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 249 space = min_t(u32, space, *window_clamp); 250 while (space > 65535 && (*rcv_wscale) < 14) { 251 space >>= 1; 252 (*rcv_wscale)++; 253 } 254 } 255 256 if (mss > (1 << *rcv_wscale)) { 257 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 258 init_rcv_wnd = tcp_default_init_rwnd(mss); 259 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 260 } 261 262 /* Set the clamp no higher than max representable value */ 263 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 264 } 265 EXPORT_SYMBOL(tcp_select_initial_window); 266 267 /* Chose a new window to advertise, update state in tcp_sock for the 268 * socket, and return result with RFC1323 scaling applied. The return 269 * value can be stuffed directly into th->window for an outgoing 270 * frame. 271 */ 272 static u16 tcp_select_window(struct sock *sk) 273 { 274 struct tcp_sock *tp = tcp_sk(sk); 275 u32 old_win = tp->rcv_wnd; 276 u32 cur_win = tcp_receive_window(tp); 277 u32 new_win = __tcp_select_window(sk); 278 279 /* Never shrink the offered window */ 280 if (new_win < cur_win) { 281 /* Danger Will Robinson! 282 * Don't update rcv_wup/rcv_wnd here or else 283 * we will not be able to advertise a zero 284 * window in time. --DaveM 285 * 286 * Relax Will Robinson. 287 */ 288 if (new_win == 0) 289 NET_INC_STATS(sock_net(sk), 290 LINUX_MIB_TCPWANTZEROWINDOWADV); 291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 292 } 293 tp->rcv_wnd = new_win; 294 tp->rcv_wup = tp->rcv_nxt; 295 296 /* Make sure we do not exceed the maximum possible 297 * scaled window. 298 */ 299 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 300 new_win = min(new_win, MAX_TCP_WINDOW); 301 else 302 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 303 304 /* RFC1323 scaling applied */ 305 new_win >>= tp->rx_opt.rcv_wscale; 306 307 /* If we advertise zero window, disable fast path. */ 308 if (new_win == 0) { 309 tp->pred_flags = 0; 310 if (old_win) 311 NET_INC_STATS(sock_net(sk), 312 LINUX_MIB_TCPTOZEROWINDOWADV); 313 } else if (old_win == 0) { 314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 315 } 316 317 return new_win; 318 } 319 320 /* Packet ECN state for a SYN-ACK */ 321 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb) 322 { 323 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 324 if (!(tp->ecn_flags & TCP_ECN_OK)) 325 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 326 } 327 328 /* Packet ECN state for a SYN. */ 329 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb) 330 { 331 struct tcp_sock *tp = tcp_sk(sk); 332 333 tp->ecn_flags = 0; 334 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) { 335 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 336 tp->ecn_flags = TCP_ECN_OK; 337 } 338 } 339 340 static __inline__ void 341 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th) 342 { 343 if (inet_rsk(req)->ecn_ok) 344 th->ece = 1; 345 } 346 347 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 348 * be sent. 349 */ 350 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb, 351 int tcp_header_len) 352 { 353 struct tcp_sock *tp = tcp_sk(sk); 354 355 if (tp->ecn_flags & TCP_ECN_OK) { 356 /* Not-retransmitted data segment: set ECT and inject CWR. */ 357 if (skb->len != tcp_header_len && 358 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 359 INET_ECN_xmit(sk); 360 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 361 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 362 tcp_hdr(skb)->cwr = 1; 363 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 364 } 365 } else { 366 /* ACK or retransmitted segment: clear ECT|CE */ 367 INET_ECN_dontxmit(sk); 368 } 369 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 370 tcp_hdr(skb)->ece = 1; 371 } 372 } 373 374 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 375 * auto increment end seqno. 376 */ 377 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 378 { 379 struct skb_shared_info *shinfo = skb_shinfo(skb); 380 381 skb->ip_summed = CHECKSUM_PARTIAL; 382 skb->csum = 0; 383 384 TCP_SKB_CB(skb)->tcp_flags = flags; 385 TCP_SKB_CB(skb)->sacked = 0; 386 387 shinfo->gso_segs = 1; 388 shinfo->gso_size = 0; 389 shinfo->gso_type = 0; 390 391 TCP_SKB_CB(skb)->seq = seq; 392 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 393 seq++; 394 TCP_SKB_CB(skb)->end_seq = seq; 395 } 396 397 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 398 { 399 return tp->snd_una != tp->snd_up; 400 } 401 402 #define OPTION_SACK_ADVERTISE (1 << 0) 403 #define OPTION_TS (1 << 1) 404 #define OPTION_MD5 (1 << 2) 405 #define OPTION_WSCALE (1 << 3) 406 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 407 408 struct tcp_out_options { 409 u16 options; /* bit field of OPTION_* */ 410 u16 mss; /* 0 to disable */ 411 u8 ws; /* window scale, 0 to disable */ 412 u8 num_sack_blocks; /* number of SACK blocks to include */ 413 u8 hash_size; /* bytes in hash_location */ 414 __u8 *hash_location; /* temporary pointer, overloaded */ 415 __u32 tsval, tsecr; /* need to include OPTION_TS */ 416 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 417 }; 418 419 /* Write previously computed TCP options to the packet. 420 * 421 * Beware: Something in the Internet is very sensitive to the ordering of 422 * TCP options, we learned this through the hard way, so be careful here. 423 * Luckily we can at least blame others for their non-compliance but from 424 * inter-operability perspective it seems that we're somewhat stuck with 425 * the ordering which we have been using if we want to keep working with 426 * those broken things (not that it currently hurts anybody as there isn't 427 * particular reason why the ordering would need to be changed). 428 * 429 * At least SACK_PERM as the first option is known to lead to a disaster 430 * (but it may well be that other scenarios fail similarly). 431 */ 432 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 433 struct tcp_out_options *opts) 434 { 435 u16 options = opts->options; /* mungable copy */ 436 437 if (unlikely(OPTION_MD5 & options)) { 438 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 439 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 440 /* overload cookie hash location */ 441 opts->hash_location = (__u8 *)ptr; 442 ptr += 4; 443 } 444 445 if (unlikely(opts->mss)) { 446 *ptr++ = htonl((TCPOPT_MSS << 24) | 447 (TCPOLEN_MSS << 16) | 448 opts->mss); 449 } 450 451 if (likely(OPTION_TS & options)) { 452 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 453 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 454 (TCPOLEN_SACK_PERM << 16) | 455 (TCPOPT_TIMESTAMP << 8) | 456 TCPOLEN_TIMESTAMP); 457 options &= ~OPTION_SACK_ADVERTISE; 458 } else { 459 *ptr++ = htonl((TCPOPT_NOP << 24) | 460 (TCPOPT_NOP << 16) | 461 (TCPOPT_TIMESTAMP << 8) | 462 TCPOLEN_TIMESTAMP); 463 } 464 *ptr++ = htonl(opts->tsval); 465 *ptr++ = htonl(opts->tsecr); 466 } 467 468 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 469 *ptr++ = htonl((TCPOPT_NOP << 24) | 470 (TCPOPT_NOP << 16) | 471 (TCPOPT_SACK_PERM << 8) | 472 TCPOLEN_SACK_PERM); 473 } 474 475 if (unlikely(OPTION_WSCALE & options)) { 476 *ptr++ = htonl((TCPOPT_NOP << 24) | 477 (TCPOPT_WINDOW << 16) | 478 (TCPOLEN_WINDOW << 8) | 479 opts->ws); 480 } 481 482 if (unlikely(opts->num_sack_blocks)) { 483 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 484 tp->duplicate_sack : tp->selective_acks; 485 int this_sack; 486 487 *ptr++ = htonl((TCPOPT_NOP << 24) | 488 (TCPOPT_NOP << 16) | 489 (TCPOPT_SACK << 8) | 490 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 491 TCPOLEN_SACK_PERBLOCK))); 492 493 for (this_sack = 0; this_sack < opts->num_sack_blocks; 494 ++this_sack) { 495 *ptr++ = htonl(sp[this_sack].start_seq); 496 *ptr++ = htonl(sp[this_sack].end_seq); 497 } 498 499 tp->rx_opt.dsack = 0; 500 } 501 502 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 503 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 504 505 *ptr++ = htonl((TCPOPT_EXP << 24) | 506 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) | 507 TCPOPT_FASTOPEN_MAGIC); 508 509 memcpy(ptr, foc->val, foc->len); 510 if ((foc->len & 3) == 2) { 511 u8 *align = ((u8 *)ptr) + foc->len; 512 align[0] = align[1] = TCPOPT_NOP; 513 } 514 ptr += (foc->len + 3) >> 2; 515 } 516 } 517 518 /* Compute TCP options for SYN packets. This is not the final 519 * network wire format yet. 520 */ 521 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 522 struct tcp_out_options *opts, 523 struct tcp_md5sig_key **md5) 524 { 525 struct tcp_sock *tp = tcp_sk(sk); 526 unsigned int remaining = MAX_TCP_OPTION_SPACE; 527 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 528 529 #ifdef CONFIG_TCP_MD5SIG 530 *md5 = tp->af_specific->md5_lookup(sk, sk); 531 if (*md5) { 532 opts->options |= OPTION_MD5; 533 remaining -= TCPOLEN_MD5SIG_ALIGNED; 534 } 535 #else 536 *md5 = NULL; 537 #endif 538 539 /* We always get an MSS option. The option bytes which will be seen in 540 * normal data packets should timestamps be used, must be in the MSS 541 * advertised. But we subtract them from tp->mss_cache so that 542 * calculations in tcp_sendmsg are simpler etc. So account for this 543 * fact here if necessary. If we don't do this correctly, as a 544 * receiver we won't recognize data packets as being full sized when we 545 * should, and thus we won't abide by the delayed ACK rules correctly. 546 * SACKs don't matter, we never delay an ACK when we have any of those 547 * going out. */ 548 opts->mss = tcp_advertise_mss(sk); 549 remaining -= TCPOLEN_MSS_ALIGNED; 550 551 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 552 opts->options |= OPTION_TS; 553 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset; 554 opts->tsecr = tp->rx_opt.ts_recent; 555 remaining -= TCPOLEN_TSTAMP_ALIGNED; 556 } 557 if (likely(sysctl_tcp_window_scaling)) { 558 opts->ws = tp->rx_opt.rcv_wscale; 559 opts->options |= OPTION_WSCALE; 560 remaining -= TCPOLEN_WSCALE_ALIGNED; 561 } 562 if (likely(sysctl_tcp_sack)) { 563 opts->options |= OPTION_SACK_ADVERTISE; 564 if (unlikely(!(OPTION_TS & opts->options))) 565 remaining -= TCPOLEN_SACKPERM_ALIGNED; 566 } 567 568 if (fastopen && fastopen->cookie.len >= 0) { 569 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len; 570 need = (need + 3) & ~3U; /* Align to 32 bits */ 571 if (remaining >= need) { 572 opts->options |= OPTION_FAST_OPEN_COOKIE; 573 opts->fastopen_cookie = &fastopen->cookie; 574 remaining -= need; 575 tp->syn_fastopen = 1; 576 } 577 } 578 579 return MAX_TCP_OPTION_SPACE - remaining; 580 } 581 582 /* Set up TCP options for SYN-ACKs. */ 583 static unsigned int tcp_synack_options(struct sock *sk, 584 struct request_sock *req, 585 unsigned int mss, struct sk_buff *skb, 586 struct tcp_out_options *opts, 587 struct tcp_md5sig_key **md5, 588 struct tcp_fastopen_cookie *foc) 589 { 590 struct inet_request_sock *ireq = inet_rsk(req); 591 unsigned int remaining = MAX_TCP_OPTION_SPACE; 592 593 #ifdef CONFIG_TCP_MD5SIG 594 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 595 if (*md5) { 596 opts->options |= OPTION_MD5; 597 remaining -= TCPOLEN_MD5SIG_ALIGNED; 598 599 /* We can't fit any SACK blocks in a packet with MD5 + TS 600 * options. There was discussion about disabling SACK 601 * rather than TS in order to fit in better with old, 602 * buggy kernels, but that was deemed to be unnecessary. 603 */ 604 ireq->tstamp_ok &= !ireq->sack_ok; 605 } 606 #else 607 *md5 = NULL; 608 #endif 609 610 /* We always send an MSS option. */ 611 opts->mss = mss; 612 remaining -= TCPOLEN_MSS_ALIGNED; 613 614 if (likely(ireq->wscale_ok)) { 615 opts->ws = ireq->rcv_wscale; 616 opts->options |= OPTION_WSCALE; 617 remaining -= TCPOLEN_WSCALE_ALIGNED; 618 } 619 if (likely(ireq->tstamp_ok)) { 620 opts->options |= OPTION_TS; 621 opts->tsval = TCP_SKB_CB(skb)->when; 622 opts->tsecr = req->ts_recent; 623 remaining -= TCPOLEN_TSTAMP_ALIGNED; 624 } 625 if (likely(ireq->sack_ok)) { 626 opts->options |= OPTION_SACK_ADVERTISE; 627 if (unlikely(!ireq->tstamp_ok)) 628 remaining -= TCPOLEN_SACKPERM_ALIGNED; 629 } 630 if (foc != NULL && foc->len >= 0) { 631 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 632 need = (need + 3) & ~3U; /* Align to 32 bits */ 633 if (remaining >= need) { 634 opts->options |= OPTION_FAST_OPEN_COOKIE; 635 opts->fastopen_cookie = foc; 636 remaining -= need; 637 } 638 } 639 640 return MAX_TCP_OPTION_SPACE - remaining; 641 } 642 643 /* Compute TCP options for ESTABLISHED sockets. This is not the 644 * final wire format yet. 645 */ 646 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 647 struct tcp_out_options *opts, 648 struct tcp_md5sig_key **md5) 649 { 650 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL; 651 struct tcp_sock *tp = tcp_sk(sk); 652 unsigned int size = 0; 653 unsigned int eff_sacks; 654 655 opts->options = 0; 656 657 #ifdef CONFIG_TCP_MD5SIG 658 *md5 = tp->af_specific->md5_lookup(sk, sk); 659 if (unlikely(*md5)) { 660 opts->options |= OPTION_MD5; 661 size += TCPOLEN_MD5SIG_ALIGNED; 662 } 663 #else 664 *md5 = NULL; 665 #endif 666 667 if (likely(tp->rx_opt.tstamp_ok)) { 668 opts->options |= OPTION_TS; 669 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0; 670 opts->tsecr = tp->rx_opt.ts_recent; 671 size += TCPOLEN_TSTAMP_ALIGNED; 672 } 673 674 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 675 if (unlikely(eff_sacks)) { 676 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 677 opts->num_sack_blocks = 678 min_t(unsigned int, eff_sacks, 679 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 680 TCPOLEN_SACK_PERBLOCK); 681 size += TCPOLEN_SACK_BASE_ALIGNED + 682 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 683 } 684 685 return size; 686 } 687 688 689 /* TCP SMALL QUEUES (TSQ) 690 * 691 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 692 * to reduce RTT and bufferbloat. 693 * We do this using a special skb destructor (tcp_wfree). 694 * 695 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 696 * needs to be reallocated in a driver. 697 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 698 * 699 * Since transmit from skb destructor is forbidden, we use a tasklet 700 * to process all sockets that eventually need to send more skbs. 701 * We use one tasklet per cpu, with its own queue of sockets. 702 */ 703 struct tsq_tasklet { 704 struct tasklet_struct tasklet; 705 struct list_head head; /* queue of tcp sockets */ 706 }; 707 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 708 709 static void tcp_tsq_handler(struct sock *sk) 710 { 711 if ((1 << sk->sk_state) & 712 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 713 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 714 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle, 715 0, GFP_ATOMIC); 716 } 717 /* 718 * One tasklet per cpu tries to send more skbs. 719 * We run in tasklet context but need to disable irqs when 720 * transferring tsq->head because tcp_wfree() might 721 * interrupt us (non NAPI drivers) 722 */ 723 static void tcp_tasklet_func(unsigned long data) 724 { 725 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 726 LIST_HEAD(list); 727 unsigned long flags; 728 struct list_head *q, *n; 729 struct tcp_sock *tp; 730 struct sock *sk; 731 732 local_irq_save(flags); 733 list_splice_init(&tsq->head, &list); 734 local_irq_restore(flags); 735 736 list_for_each_safe(q, n, &list) { 737 tp = list_entry(q, struct tcp_sock, tsq_node); 738 list_del(&tp->tsq_node); 739 740 sk = (struct sock *)tp; 741 bh_lock_sock(sk); 742 743 if (!sock_owned_by_user(sk)) { 744 tcp_tsq_handler(sk); 745 } else { 746 /* defer the work to tcp_release_cb() */ 747 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 748 } 749 bh_unlock_sock(sk); 750 751 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 752 sk_free(sk); 753 } 754 } 755 756 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 757 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 758 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 759 (1UL << TCP_MTU_REDUCED_DEFERRED)) 760 /** 761 * tcp_release_cb - tcp release_sock() callback 762 * @sk: socket 763 * 764 * called from release_sock() to perform protocol dependent 765 * actions before socket release. 766 */ 767 void tcp_release_cb(struct sock *sk) 768 { 769 struct tcp_sock *tp = tcp_sk(sk); 770 unsigned long flags, nflags; 771 772 /* perform an atomic operation only if at least one flag is set */ 773 do { 774 flags = tp->tsq_flags; 775 if (!(flags & TCP_DEFERRED_ALL)) 776 return; 777 nflags = flags & ~TCP_DEFERRED_ALL; 778 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 779 780 if (flags & (1UL << TCP_TSQ_DEFERRED)) 781 tcp_tsq_handler(sk); 782 783 /* Here begins the tricky part : 784 * We are called from release_sock() with : 785 * 1) BH disabled 786 * 2) sk_lock.slock spinlock held 787 * 3) socket owned by us (sk->sk_lock.owned == 1) 788 * 789 * But following code is meant to be called from BH handlers, 790 * so we should keep BH disabled, but early release socket ownership 791 */ 792 sock_release_ownership(sk); 793 794 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 795 tcp_write_timer_handler(sk); 796 __sock_put(sk); 797 } 798 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 799 tcp_delack_timer_handler(sk); 800 __sock_put(sk); 801 } 802 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 803 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 804 __sock_put(sk); 805 } 806 } 807 EXPORT_SYMBOL(tcp_release_cb); 808 809 void __init tcp_tasklet_init(void) 810 { 811 int i; 812 813 for_each_possible_cpu(i) { 814 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 815 816 INIT_LIST_HEAD(&tsq->head); 817 tasklet_init(&tsq->tasklet, 818 tcp_tasklet_func, 819 (unsigned long)tsq); 820 } 821 } 822 823 /* 824 * Write buffer destructor automatically called from kfree_skb. 825 * We can't xmit new skbs from this context, as we might already 826 * hold qdisc lock. 827 */ 828 void tcp_wfree(struct sk_buff *skb) 829 { 830 struct sock *sk = skb->sk; 831 struct tcp_sock *tp = tcp_sk(sk); 832 833 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 834 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 835 unsigned long flags; 836 struct tsq_tasklet *tsq; 837 838 /* Keep a ref on socket. 839 * This last ref will be released in tcp_tasklet_func() 840 */ 841 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc); 842 843 /* queue this socket to tasklet queue */ 844 local_irq_save(flags); 845 tsq = &__get_cpu_var(tsq_tasklet); 846 list_add(&tp->tsq_node, &tsq->head); 847 tasklet_schedule(&tsq->tasklet); 848 local_irq_restore(flags); 849 } else { 850 sock_wfree(skb); 851 } 852 } 853 854 /* This routine actually transmits TCP packets queued in by 855 * tcp_do_sendmsg(). This is used by both the initial 856 * transmission and possible later retransmissions. 857 * All SKB's seen here are completely headerless. It is our 858 * job to build the TCP header, and pass the packet down to 859 * IP so it can do the same plus pass the packet off to the 860 * device. 861 * 862 * We are working here with either a clone of the original 863 * SKB, or a fresh unique copy made by the retransmit engine. 864 */ 865 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 866 gfp_t gfp_mask) 867 { 868 const struct inet_connection_sock *icsk = inet_csk(sk); 869 struct inet_sock *inet; 870 struct tcp_sock *tp; 871 struct tcp_skb_cb *tcb; 872 struct tcp_out_options opts; 873 unsigned int tcp_options_size, tcp_header_size; 874 struct tcp_md5sig_key *md5; 875 struct tcphdr *th; 876 int err; 877 878 BUG_ON(!skb || !tcp_skb_pcount(skb)); 879 880 if (clone_it) { 881 skb_mstamp_get(&skb->skb_mstamp); 882 883 if (unlikely(skb_cloned(skb))) 884 skb = pskb_copy(skb, gfp_mask); 885 else 886 skb = skb_clone(skb, gfp_mask); 887 if (unlikely(!skb)) 888 return -ENOBUFS; 889 /* Our usage of tstamp should remain private */ 890 skb->tstamp.tv64 = 0; 891 } 892 893 inet = inet_sk(sk); 894 tp = tcp_sk(sk); 895 tcb = TCP_SKB_CB(skb); 896 memset(&opts, 0, sizeof(opts)); 897 898 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 899 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 900 else 901 tcp_options_size = tcp_established_options(sk, skb, &opts, 902 &md5); 903 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 904 905 if (tcp_packets_in_flight(tp) == 0) 906 tcp_ca_event(sk, CA_EVENT_TX_START); 907 908 /* if no packet is in qdisc/device queue, then allow XPS to select 909 * another queue. 910 */ 911 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0; 912 913 skb_push(skb, tcp_header_size); 914 skb_reset_transport_header(skb); 915 916 skb_orphan(skb); 917 skb->sk = sk; 918 skb->destructor = tcp_wfree; 919 skb_set_hash_from_sk(skb, sk); 920 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 921 922 /* Build TCP header and checksum it. */ 923 th = tcp_hdr(skb); 924 th->source = inet->inet_sport; 925 th->dest = inet->inet_dport; 926 th->seq = htonl(tcb->seq); 927 th->ack_seq = htonl(tp->rcv_nxt); 928 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 929 tcb->tcp_flags); 930 931 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 932 /* RFC1323: The window in SYN & SYN/ACK segments 933 * is never scaled. 934 */ 935 th->window = htons(min(tp->rcv_wnd, 65535U)); 936 } else { 937 th->window = htons(tcp_select_window(sk)); 938 } 939 th->check = 0; 940 th->urg_ptr = 0; 941 942 /* The urg_mode check is necessary during a below snd_una win probe */ 943 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 944 if (before(tp->snd_up, tcb->seq + 0x10000)) { 945 th->urg_ptr = htons(tp->snd_up - tcb->seq); 946 th->urg = 1; 947 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 948 th->urg_ptr = htons(0xFFFF); 949 th->urg = 1; 950 } 951 } 952 953 tcp_options_write((__be32 *)(th + 1), tp, &opts); 954 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 955 TCP_ECN_send(sk, skb, tcp_header_size); 956 957 #ifdef CONFIG_TCP_MD5SIG 958 /* Calculate the MD5 hash, as we have all we need now */ 959 if (md5) { 960 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 961 tp->af_specific->calc_md5_hash(opts.hash_location, 962 md5, sk, NULL, skb); 963 } 964 #endif 965 966 icsk->icsk_af_ops->send_check(sk, skb); 967 968 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 969 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 970 971 if (skb->len != tcp_header_size) 972 tcp_event_data_sent(tp, sk); 973 974 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 975 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 976 tcp_skb_pcount(skb)); 977 978 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 979 if (likely(err <= 0)) 980 return err; 981 982 tcp_enter_cwr(sk); 983 984 return net_xmit_eval(err); 985 } 986 987 /* This routine just queues the buffer for sending. 988 * 989 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 990 * otherwise socket can stall. 991 */ 992 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 993 { 994 struct tcp_sock *tp = tcp_sk(sk); 995 996 /* Advance write_seq and place onto the write_queue. */ 997 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 998 skb_header_release(skb); 999 tcp_add_write_queue_tail(sk, skb); 1000 sk->sk_wmem_queued += skb->truesize; 1001 sk_mem_charge(sk, skb->truesize); 1002 } 1003 1004 /* Initialize TSO segments for a packet. */ 1005 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 1006 unsigned int mss_now) 1007 { 1008 struct skb_shared_info *shinfo = skb_shinfo(skb); 1009 1010 /* Make sure we own this skb before messing gso_size/gso_segs */ 1011 WARN_ON_ONCE(skb_cloned(skb)); 1012 1013 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1014 /* Avoid the costly divide in the normal 1015 * non-TSO case. 1016 */ 1017 shinfo->gso_segs = 1; 1018 shinfo->gso_size = 0; 1019 shinfo->gso_type = 0; 1020 } else { 1021 shinfo->gso_segs = DIV_ROUND_UP(skb->len, mss_now); 1022 shinfo->gso_size = mss_now; 1023 shinfo->gso_type = sk->sk_gso_type; 1024 } 1025 } 1026 1027 /* When a modification to fackets out becomes necessary, we need to check 1028 * skb is counted to fackets_out or not. 1029 */ 1030 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1031 int decr) 1032 { 1033 struct tcp_sock *tp = tcp_sk(sk); 1034 1035 if (!tp->sacked_out || tcp_is_reno(tp)) 1036 return; 1037 1038 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1039 tp->fackets_out -= decr; 1040 } 1041 1042 /* Pcount in the middle of the write queue got changed, we need to do various 1043 * tweaks to fix counters 1044 */ 1045 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1046 { 1047 struct tcp_sock *tp = tcp_sk(sk); 1048 1049 tp->packets_out -= decr; 1050 1051 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1052 tp->sacked_out -= decr; 1053 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1054 tp->retrans_out -= decr; 1055 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1056 tp->lost_out -= decr; 1057 1058 /* Reno case is special. Sigh... */ 1059 if (tcp_is_reno(tp) && decr > 0) 1060 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1061 1062 tcp_adjust_fackets_out(sk, skb, decr); 1063 1064 if (tp->lost_skb_hint && 1065 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1066 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1067 tp->lost_cnt_hint -= decr; 1068 1069 tcp_verify_left_out(tp); 1070 } 1071 1072 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1073 { 1074 struct skb_shared_info *shinfo = skb_shinfo(skb); 1075 1076 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) && 1077 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1078 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1079 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1080 1081 shinfo->tx_flags &= ~tsflags; 1082 shinfo2->tx_flags |= tsflags; 1083 swap(shinfo->tskey, shinfo2->tskey); 1084 } 1085 } 1086 1087 /* Function to create two new TCP segments. Shrinks the given segment 1088 * to the specified size and appends a new segment with the rest of the 1089 * packet to the list. This won't be called frequently, I hope. 1090 * Remember, these are still headerless SKBs at this point. 1091 */ 1092 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1093 unsigned int mss_now, gfp_t gfp) 1094 { 1095 struct tcp_sock *tp = tcp_sk(sk); 1096 struct sk_buff *buff; 1097 int nsize, old_factor; 1098 int nlen; 1099 u8 flags; 1100 1101 if (WARN_ON(len > skb->len)) 1102 return -EINVAL; 1103 1104 nsize = skb_headlen(skb) - len; 1105 if (nsize < 0) 1106 nsize = 0; 1107 1108 if (skb_unclone(skb, gfp)) 1109 return -ENOMEM; 1110 1111 /* Get a new skb... force flag on. */ 1112 buff = sk_stream_alloc_skb(sk, nsize, gfp); 1113 if (buff == NULL) 1114 return -ENOMEM; /* We'll just try again later. */ 1115 1116 sk->sk_wmem_queued += buff->truesize; 1117 sk_mem_charge(sk, buff->truesize); 1118 nlen = skb->len - len - nsize; 1119 buff->truesize += nlen; 1120 skb->truesize -= nlen; 1121 1122 /* Correct the sequence numbers. */ 1123 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1124 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1125 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1126 1127 /* PSH and FIN should only be set in the second packet. */ 1128 flags = TCP_SKB_CB(skb)->tcp_flags; 1129 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1130 TCP_SKB_CB(buff)->tcp_flags = flags; 1131 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1132 1133 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1134 /* Copy and checksum data tail into the new buffer. */ 1135 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1136 skb_put(buff, nsize), 1137 nsize, 0); 1138 1139 skb_trim(skb, len); 1140 1141 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1142 } else { 1143 skb->ip_summed = CHECKSUM_PARTIAL; 1144 skb_split(skb, buff, len); 1145 } 1146 1147 buff->ip_summed = skb->ip_summed; 1148 1149 /* Looks stupid, but our code really uses when of 1150 * skbs, which it never sent before. --ANK 1151 */ 1152 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 1153 buff->tstamp = skb->tstamp; 1154 tcp_fragment_tstamp(skb, buff); 1155 1156 old_factor = tcp_skb_pcount(skb); 1157 1158 /* Fix up tso_factor for both original and new SKB. */ 1159 tcp_set_skb_tso_segs(sk, skb, mss_now); 1160 tcp_set_skb_tso_segs(sk, buff, mss_now); 1161 1162 /* If this packet has been sent out already, we must 1163 * adjust the various packet counters. 1164 */ 1165 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1166 int diff = old_factor - tcp_skb_pcount(skb) - 1167 tcp_skb_pcount(buff); 1168 1169 if (diff) 1170 tcp_adjust_pcount(sk, skb, diff); 1171 } 1172 1173 /* Link BUFF into the send queue. */ 1174 skb_header_release(buff); 1175 tcp_insert_write_queue_after(skb, buff, sk); 1176 1177 return 0; 1178 } 1179 1180 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1181 * eventually). The difference is that pulled data not copied, but 1182 * immediately discarded. 1183 */ 1184 static void __pskb_trim_head(struct sk_buff *skb, int len) 1185 { 1186 struct skb_shared_info *shinfo; 1187 int i, k, eat; 1188 1189 eat = min_t(int, len, skb_headlen(skb)); 1190 if (eat) { 1191 __skb_pull(skb, eat); 1192 len -= eat; 1193 if (!len) 1194 return; 1195 } 1196 eat = len; 1197 k = 0; 1198 shinfo = skb_shinfo(skb); 1199 for (i = 0; i < shinfo->nr_frags; i++) { 1200 int size = skb_frag_size(&shinfo->frags[i]); 1201 1202 if (size <= eat) { 1203 skb_frag_unref(skb, i); 1204 eat -= size; 1205 } else { 1206 shinfo->frags[k] = shinfo->frags[i]; 1207 if (eat) { 1208 shinfo->frags[k].page_offset += eat; 1209 skb_frag_size_sub(&shinfo->frags[k], eat); 1210 eat = 0; 1211 } 1212 k++; 1213 } 1214 } 1215 shinfo->nr_frags = k; 1216 1217 skb_reset_tail_pointer(skb); 1218 skb->data_len -= len; 1219 skb->len = skb->data_len; 1220 } 1221 1222 /* Remove acked data from a packet in the transmit queue. */ 1223 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1224 { 1225 if (skb_unclone(skb, GFP_ATOMIC)) 1226 return -ENOMEM; 1227 1228 __pskb_trim_head(skb, len); 1229 1230 TCP_SKB_CB(skb)->seq += len; 1231 skb->ip_summed = CHECKSUM_PARTIAL; 1232 1233 skb->truesize -= len; 1234 sk->sk_wmem_queued -= len; 1235 sk_mem_uncharge(sk, len); 1236 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1237 1238 /* Any change of skb->len requires recalculation of tso factor. */ 1239 if (tcp_skb_pcount(skb) > 1) 1240 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1241 1242 return 0; 1243 } 1244 1245 /* Calculate MSS not accounting any TCP options. */ 1246 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1247 { 1248 const struct tcp_sock *tp = tcp_sk(sk); 1249 const struct inet_connection_sock *icsk = inet_csk(sk); 1250 int mss_now; 1251 1252 /* Calculate base mss without TCP options: 1253 It is MMS_S - sizeof(tcphdr) of rfc1122 1254 */ 1255 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1256 1257 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1258 if (icsk->icsk_af_ops->net_frag_header_len) { 1259 const struct dst_entry *dst = __sk_dst_get(sk); 1260 1261 if (dst && dst_allfrag(dst)) 1262 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1263 } 1264 1265 /* Clamp it (mss_clamp does not include tcp options) */ 1266 if (mss_now > tp->rx_opt.mss_clamp) 1267 mss_now = tp->rx_opt.mss_clamp; 1268 1269 /* Now subtract optional transport overhead */ 1270 mss_now -= icsk->icsk_ext_hdr_len; 1271 1272 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1273 if (mss_now < 48) 1274 mss_now = 48; 1275 return mss_now; 1276 } 1277 1278 /* Calculate MSS. Not accounting for SACKs here. */ 1279 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1280 { 1281 /* Subtract TCP options size, not including SACKs */ 1282 return __tcp_mtu_to_mss(sk, pmtu) - 1283 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1284 } 1285 1286 /* Inverse of above */ 1287 int tcp_mss_to_mtu(struct sock *sk, int mss) 1288 { 1289 const struct tcp_sock *tp = tcp_sk(sk); 1290 const struct inet_connection_sock *icsk = inet_csk(sk); 1291 int mtu; 1292 1293 mtu = mss + 1294 tp->tcp_header_len + 1295 icsk->icsk_ext_hdr_len + 1296 icsk->icsk_af_ops->net_header_len; 1297 1298 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1299 if (icsk->icsk_af_ops->net_frag_header_len) { 1300 const struct dst_entry *dst = __sk_dst_get(sk); 1301 1302 if (dst && dst_allfrag(dst)) 1303 mtu += icsk->icsk_af_ops->net_frag_header_len; 1304 } 1305 return mtu; 1306 } 1307 1308 /* MTU probing init per socket */ 1309 void tcp_mtup_init(struct sock *sk) 1310 { 1311 struct tcp_sock *tp = tcp_sk(sk); 1312 struct inet_connection_sock *icsk = inet_csk(sk); 1313 1314 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 1315 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1316 icsk->icsk_af_ops->net_header_len; 1317 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 1318 icsk->icsk_mtup.probe_size = 0; 1319 } 1320 EXPORT_SYMBOL(tcp_mtup_init); 1321 1322 /* This function synchronize snd mss to current pmtu/exthdr set. 1323 1324 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1325 for TCP options, but includes only bare TCP header. 1326 1327 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1328 It is minimum of user_mss and mss received with SYN. 1329 It also does not include TCP options. 1330 1331 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1332 1333 tp->mss_cache is current effective sending mss, including 1334 all tcp options except for SACKs. It is evaluated, 1335 taking into account current pmtu, but never exceeds 1336 tp->rx_opt.mss_clamp. 1337 1338 NOTE1. rfc1122 clearly states that advertised MSS 1339 DOES NOT include either tcp or ip options. 1340 1341 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1342 are READ ONLY outside this function. --ANK (980731) 1343 */ 1344 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1345 { 1346 struct tcp_sock *tp = tcp_sk(sk); 1347 struct inet_connection_sock *icsk = inet_csk(sk); 1348 int mss_now; 1349 1350 if (icsk->icsk_mtup.search_high > pmtu) 1351 icsk->icsk_mtup.search_high = pmtu; 1352 1353 mss_now = tcp_mtu_to_mss(sk, pmtu); 1354 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1355 1356 /* And store cached results */ 1357 icsk->icsk_pmtu_cookie = pmtu; 1358 if (icsk->icsk_mtup.enabled) 1359 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1360 tp->mss_cache = mss_now; 1361 1362 return mss_now; 1363 } 1364 EXPORT_SYMBOL(tcp_sync_mss); 1365 1366 /* Compute the current effective MSS, taking SACKs and IP options, 1367 * and even PMTU discovery events into account. 1368 */ 1369 unsigned int tcp_current_mss(struct sock *sk) 1370 { 1371 const struct tcp_sock *tp = tcp_sk(sk); 1372 const struct dst_entry *dst = __sk_dst_get(sk); 1373 u32 mss_now; 1374 unsigned int header_len; 1375 struct tcp_out_options opts; 1376 struct tcp_md5sig_key *md5; 1377 1378 mss_now = tp->mss_cache; 1379 1380 if (dst) { 1381 u32 mtu = dst_mtu(dst); 1382 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1383 mss_now = tcp_sync_mss(sk, mtu); 1384 } 1385 1386 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1387 sizeof(struct tcphdr); 1388 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1389 * some common options. If this is an odd packet (because we have SACK 1390 * blocks etc) then our calculated header_len will be different, and 1391 * we have to adjust mss_now correspondingly */ 1392 if (header_len != tp->tcp_header_len) { 1393 int delta = (int) header_len - tp->tcp_header_len; 1394 mss_now -= delta; 1395 } 1396 1397 return mss_now; 1398 } 1399 1400 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1401 * As additional protections, we do not touch cwnd in retransmission phases, 1402 * and if application hit its sndbuf limit recently. 1403 */ 1404 static void tcp_cwnd_application_limited(struct sock *sk) 1405 { 1406 struct tcp_sock *tp = tcp_sk(sk); 1407 1408 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1409 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1410 /* Limited by application or receiver window. */ 1411 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1412 u32 win_used = max(tp->snd_cwnd_used, init_win); 1413 if (win_used < tp->snd_cwnd) { 1414 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1415 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1416 } 1417 tp->snd_cwnd_used = 0; 1418 } 1419 tp->snd_cwnd_stamp = tcp_time_stamp; 1420 } 1421 1422 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1423 { 1424 struct tcp_sock *tp = tcp_sk(sk); 1425 1426 /* Track the maximum number of outstanding packets in each 1427 * window, and remember whether we were cwnd-limited then. 1428 */ 1429 if (!before(tp->snd_una, tp->max_packets_seq) || 1430 tp->packets_out > tp->max_packets_out) { 1431 tp->max_packets_out = tp->packets_out; 1432 tp->max_packets_seq = tp->snd_nxt; 1433 tp->is_cwnd_limited = is_cwnd_limited; 1434 } 1435 1436 if (tcp_is_cwnd_limited(sk)) { 1437 /* Network is feed fully. */ 1438 tp->snd_cwnd_used = 0; 1439 tp->snd_cwnd_stamp = tcp_time_stamp; 1440 } else { 1441 /* Network starves. */ 1442 if (tp->packets_out > tp->snd_cwnd_used) 1443 tp->snd_cwnd_used = tp->packets_out; 1444 1445 if (sysctl_tcp_slow_start_after_idle && 1446 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1447 tcp_cwnd_application_limited(sk); 1448 } 1449 } 1450 1451 /* Minshall's variant of the Nagle send check. */ 1452 static bool tcp_minshall_check(const struct tcp_sock *tp) 1453 { 1454 return after(tp->snd_sml, tp->snd_una) && 1455 !after(tp->snd_sml, tp->snd_nxt); 1456 } 1457 1458 /* Update snd_sml if this skb is under mss 1459 * Note that a TSO packet might end with a sub-mss segment 1460 * The test is really : 1461 * if ((skb->len % mss) != 0) 1462 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1463 * But we can avoid doing the divide again given we already have 1464 * skb_pcount = skb->len / mss_now 1465 */ 1466 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1467 const struct sk_buff *skb) 1468 { 1469 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1470 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1471 } 1472 1473 /* Return false, if packet can be sent now without violation Nagle's rules: 1474 * 1. It is full sized. (provided by caller in %partial bool) 1475 * 2. Or it contains FIN. (already checked by caller) 1476 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1477 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1478 * With Minshall's modification: all sent small packets are ACKed. 1479 */ 1480 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1481 int nonagle) 1482 { 1483 return partial && 1484 ((nonagle & TCP_NAGLE_CORK) || 1485 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1486 } 1487 /* Returns the portion of skb which can be sent right away */ 1488 static unsigned int tcp_mss_split_point(const struct sock *sk, 1489 const struct sk_buff *skb, 1490 unsigned int mss_now, 1491 unsigned int max_segs, 1492 int nonagle) 1493 { 1494 const struct tcp_sock *tp = tcp_sk(sk); 1495 u32 partial, needed, window, max_len; 1496 1497 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1498 max_len = mss_now * max_segs; 1499 1500 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1501 return max_len; 1502 1503 needed = min(skb->len, window); 1504 1505 if (max_len <= needed) 1506 return max_len; 1507 1508 partial = needed % mss_now; 1509 /* If last segment is not a full MSS, check if Nagle rules allow us 1510 * to include this last segment in this skb. 1511 * Otherwise, we'll split the skb at last MSS boundary 1512 */ 1513 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1514 return needed - partial; 1515 1516 return needed; 1517 } 1518 1519 /* Can at least one segment of SKB be sent right now, according to the 1520 * congestion window rules? If so, return how many segments are allowed. 1521 */ 1522 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1523 const struct sk_buff *skb) 1524 { 1525 u32 in_flight, cwnd; 1526 1527 /* Don't be strict about the congestion window for the final FIN. */ 1528 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1529 tcp_skb_pcount(skb) == 1) 1530 return 1; 1531 1532 in_flight = tcp_packets_in_flight(tp); 1533 cwnd = tp->snd_cwnd; 1534 if (in_flight < cwnd) 1535 return (cwnd - in_flight); 1536 1537 return 0; 1538 } 1539 1540 /* Initialize TSO state of a skb. 1541 * This must be invoked the first time we consider transmitting 1542 * SKB onto the wire. 1543 */ 1544 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1545 unsigned int mss_now) 1546 { 1547 int tso_segs = tcp_skb_pcount(skb); 1548 1549 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1550 tcp_set_skb_tso_segs(sk, skb, mss_now); 1551 tso_segs = tcp_skb_pcount(skb); 1552 } 1553 return tso_segs; 1554 } 1555 1556 1557 /* Return true if the Nagle test allows this packet to be 1558 * sent now. 1559 */ 1560 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1561 unsigned int cur_mss, int nonagle) 1562 { 1563 /* Nagle rule does not apply to frames, which sit in the middle of the 1564 * write_queue (they have no chances to get new data). 1565 * 1566 * This is implemented in the callers, where they modify the 'nonagle' 1567 * argument based upon the location of SKB in the send queue. 1568 */ 1569 if (nonagle & TCP_NAGLE_PUSH) 1570 return true; 1571 1572 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1573 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1574 return true; 1575 1576 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1577 return true; 1578 1579 return false; 1580 } 1581 1582 /* Does at least the first segment of SKB fit into the send window? */ 1583 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1584 const struct sk_buff *skb, 1585 unsigned int cur_mss) 1586 { 1587 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1588 1589 if (skb->len > cur_mss) 1590 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1591 1592 return !after(end_seq, tcp_wnd_end(tp)); 1593 } 1594 1595 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1596 * should be put on the wire right now. If so, it returns the number of 1597 * packets allowed by the congestion window. 1598 */ 1599 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1600 unsigned int cur_mss, int nonagle) 1601 { 1602 const struct tcp_sock *tp = tcp_sk(sk); 1603 unsigned int cwnd_quota; 1604 1605 tcp_init_tso_segs(sk, skb, cur_mss); 1606 1607 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1608 return 0; 1609 1610 cwnd_quota = tcp_cwnd_test(tp, skb); 1611 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1612 cwnd_quota = 0; 1613 1614 return cwnd_quota; 1615 } 1616 1617 /* Test if sending is allowed right now. */ 1618 bool tcp_may_send_now(struct sock *sk) 1619 { 1620 const struct tcp_sock *tp = tcp_sk(sk); 1621 struct sk_buff *skb = tcp_send_head(sk); 1622 1623 return skb && 1624 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1625 (tcp_skb_is_last(sk, skb) ? 1626 tp->nonagle : TCP_NAGLE_PUSH)); 1627 } 1628 1629 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1630 * which is put after SKB on the list. It is very much like 1631 * tcp_fragment() except that it may make several kinds of assumptions 1632 * in order to speed up the splitting operation. In particular, we 1633 * know that all the data is in scatter-gather pages, and that the 1634 * packet has never been sent out before (and thus is not cloned). 1635 */ 1636 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1637 unsigned int mss_now, gfp_t gfp) 1638 { 1639 struct sk_buff *buff; 1640 int nlen = skb->len - len; 1641 u8 flags; 1642 1643 /* All of a TSO frame must be composed of paged data. */ 1644 if (skb->len != skb->data_len) 1645 return tcp_fragment(sk, skb, len, mss_now, gfp); 1646 1647 buff = sk_stream_alloc_skb(sk, 0, gfp); 1648 if (unlikely(buff == NULL)) 1649 return -ENOMEM; 1650 1651 sk->sk_wmem_queued += buff->truesize; 1652 sk_mem_charge(sk, buff->truesize); 1653 buff->truesize += nlen; 1654 skb->truesize -= nlen; 1655 1656 /* Correct the sequence numbers. */ 1657 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1658 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1659 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1660 1661 /* PSH and FIN should only be set in the second packet. */ 1662 flags = TCP_SKB_CB(skb)->tcp_flags; 1663 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1664 TCP_SKB_CB(buff)->tcp_flags = flags; 1665 1666 /* This packet was never sent out yet, so no SACK bits. */ 1667 TCP_SKB_CB(buff)->sacked = 0; 1668 1669 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1670 skb_split(skb, buff, len); 1671 tcp_fragment_tstamp(skb, buff); 1672 1673 /* Fix up tso_factor for both original and new SKB. */ 1674 tcp_set_skb_tso_segs(sk, skb, mss_now); 1675 tcp_set_skb_tso_segs(sk, buff, mss_now); 1676 1677 /* Link BUFF into the send queue. */ 1678 skb_header_release(buff); 1679 tcp_insert_write_queue_after(skb, buff, sk); 1680 1681 return 0; 1682 } 1683 1684 /* Try to defer sending, if possible, in order to minimize the amount 1685 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1686 * 1687 * This algorithm is from John Heffner. 1688 */ 1689 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1690 bool *is_cwnd_limited) 1691 { 1692 struct tcp_sock *tp = tcp_sk(sk); 1693 const struct inet_connection_sock *icsk = inet_csk(sk); 1694 u32 send_win, cong_win, limit, in_flight; 1695 int win_divisor; 1696 1697 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1698 goto send_now; 1699 1700 if (icsk->icsk_ca_state != TCP_CA_Open) 1701 goto send_now; 1702 1703 /* Defer for less than two clock ticks. */ 1704 if (tp->tso_deferred && 1705 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1706 goto send_now; 1707 1708 in_flight = tcp_packets_in_flight(tp); 1709 1710 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1711 1712 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1713 1714 /* From in_flight test above, we know that cwnd > in_flight. */ 1715 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1716 1717 limit = min(send_win, cong_win); 1718 1719 /* If a full-sized TSO skb can be sent, do it. */ 1720 if (limit >= min_t(unsigned int, sk->sk_gso_max_size, 1721 tp->xmit_size_goal_segs * tp->mss_cache)) 1722 goto send_now; 1723 1724 /* Middle in queue won't get any more data, full sendable already? */ 1725 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1726 goto send_now; 1727 1728 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1729 if (win_divisor) { 1730 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1731 1732 /* If at least some fraction of a window is available, 1733 * just use it. 1734 */ 1735 chunk /= win_divisor; 1736 if (limit >= chunk) 1737 goto send_now; 1738 } else { 1739 /* Different approach, try not to defer past a single 1740 * ACK. Receiver should ACK every other full sized 1741 * frame, so if we have space for more than 3 frames 1742 * then send now. 1743 */ 1744 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1745 goto send_now; 1746 } 1747 1748 /* Ok, it looks like it is advisable to defer. 1749 * Do not rearm the timer if already set to not break TCP ACK clocking. 1750 */ 1751 if (!tp->tso_deferred) 1752 tp->tso_deferred = 1 | (jiffies << 1); 1753 1754 if (cong_win < send_win && cong_win < skb->len) 1755 *is_cwnd_limited = true; 1756 1757 return true; 1758 1759 send_now: 1760 tp->tso_deferred = 0; 1761 return false; 1762 } 1763 1764 /* Create a new MTU probe if we are ready. 1765 * MTU probe is regularly attempting to increase the path MTU by 1766 * deliberately sending larger packets. This discovers routing 1767 * changes resulting in larger path MTUs. 1768 * 1769 * Returns 0 if we should wait to probe (no cwnd available), 1770 * 1 if a probe was sent, 1771 * -1 otherwise 1772 */ 1773 static int tcp_mtu_probe(struct sock *sk) 1774 { 1775 struct tcp_sock *tp = tcp_sk(sk); 1776 struct inet_connection_sock *icsk = inet_csk(sk); 1777 struct sk_buff *skb, *nskb, *next; 1778 int len; 1779 int probe_size; 1780 int size_needed; 1781 int copy; 1782 int mss_now; 1783 1784 /* Not currently probing/verifying, 1785 * not in recovery, 1786 * have enough cwnd, and 1787 * not SACKing (the variable headers throw things off) */ 1788 if (!icsk->icsk_mtup.enabled || 1789 icsk->icsk_mtup.probe_size || 1790 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1791 tp->snd_cwnd < 11 || 1792 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1793 return -1; 1794 1795 /* Very simple search strategy: just double the MSS. */ 1796 mss_now = tcp_current_mss(sk); 1797 probe_size = 2 * tp->mss_cache; 1798 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1799 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1800 /* TODO: set timer for probe_converge_event */ 1801 return -1; 1802 } 1803 1804 /* Have enough data in the send queue to probe? */ 1805 if (tp->write_seq - tp->snd_nxt < size_needed) 1806 return -1; 1807 1808 if (tp->snd_wnd < size_needed) 1809 return -1; 1810 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1811 return 0; 1812 1813 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1814 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1815 if (!tcp_packets_in_flight(tp)) 1816 return -1; 1817 else 1818 return 0; 1819 } 1820 1821 /* We're allowed to probe. Build it now. */ 1822 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1823 return -1; 1824 sk->sk_wmem_queued += nskb->truesize; 1825 sk_mem_charge(sk, nskb->truesize); 1826 1827 skb = tcp_send_head(sk); 1828 1829 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1830 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1831 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1832 TCP_SKB_CB(nskb)->sacked = 0; 1833 nskb->csum = 0; 1834 nskb->ip_summed = skb->ip_summed; 1835 1836 tcp_insert_write_queue_before(nskb, skb, sk); 1837 1838 len = 0; 1839 tcp_for_write_queue_from_safe(skb, next, sk) { 1840 copy = min_t(int, skb->len, probe_size - len); 1841 if (nskb->ip_summed) 1842 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1843 else 1844 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1845 skb_put(nskb, copy), 1846 copy, nskb->csum); 1847 1848 if (skb->len <= copy) { 1849 /* We've eaten all the data from this skb. 1850 * Throw it away. */ 1851 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1852 tcp_unlink_write_queue(skb, sk); 1853 sk_wmem_free_skb(sk, skb); 1854 } else { 1855 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1856 ~(TCPHDR_FIN|TCPHDR_PSH); 1857 if (!skb_shinfo(skb)->nr_frags) { 1858 skb_pull(skb, copy); 1859 if (skb->ip_summed != CHECKSUM_PARTIAL) 1860 skb->csum = csum_partial(skb->data, 1861 skb->len, 0); 1862 } else { 1863 __pskb_trim_head(skb, copy); 1864 tcp_set_skb_tso_segs(sk, skb, mss_now); 1865 } 1866 TCP_SKB_CB(skb)->seq += copy; 1867 } 1868 1869 len += copy; 1870 1871 if (len >= probe_size) 1872 break; 1873 } 1874 tcp_init_tso_segs(sk, nskb, nskb->len); 1875 1876 /* We're ready to send. If this fails, the probe will 1877 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1878 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1879 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1880 /* Decrement cwnd here because we are sending 1881 * effectively two packets. */ 1882 tp->snd_cwnd--; 1883 tcp_event_new_data_sent(sk, nskb); 1884 1885 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1886 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1887 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1888 1889 return 1; 1890 } 1891 1892 return -1; 1893 } 1894 1895 /* This routine writes packets to the network. It advances the 1896 * send_head. This happens as incoming acks open up the remote 1897 * window for us. 1898 * 1899 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1900 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1901 * account rare use of URG, this is not a big flaw. 1902 * 1903 * Send at most one packet when push_one > 0. Temporarily ignore 1904 * cwnd limit to force at most one packet out when push_one == 2. 1905 1906 * Returns true, if no segments are in flight and we have queued segments, 1907 * but cannot send anything now because of SWS or another problem. 1908 */ 1909 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1910 int push_one, gfp_t gfp) 1911 { 1912 struct tcp_sock *tp = tcp_sk(sk); 1913 struct sk_buff *skb; 1914 unsigned int tso_segs, sent_pkts; 1915 int cwnd_quota; 1916 int result; 1917 bool is_cwnd_limited = false; 1918 1919 sent_pkts = 0; 1920 1921 if (!push_one) { 1922 /* Do MTU probing. */ 1923 result = tcp_mtu_probe(sk); 1924 if (!result) { 1925 return false; 1926 } else if (result > 0) { 1927 sent_pkts = 1; 1928 } 1929 } 1930 1931 while ((skb = tcp_send_head(sk))) { 1932 unsigned int limit; 1933 1934 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1935 BUG_ON(!tso_segs); 1936 1937 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 1938 /* "when" is used as a start point for the retransmit timer */ 1939 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1940 goto repair; /* Skip network transmission */ 1941 } 1942 1943 cwnd_quota = tcp_cwnd_test(tp, skb); 1944 if (!cwnd_quota) { 1945 is_cwnd_limited = true; 1946 if (push_one == 2) 1947 /* Force out a loss probe pkt. */ 1948 cwnd_quota = 1; 1949 else 1950 break; 1951 } 1952 1953 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1954 break; 1955 1956 if (tso_segs == 1) { 1957 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1958 (tcp_skb_is_last(sk, skb) ? 1959 nonagle : TCP_NAGLE_PUSH)))) 1960 break; 1961 } else { 1962 if (!push_one && 1963 tcp_tso_should_defer(sk, skb, &is_cwnd_limited)) 1964 break; 1965 } 1966 1967 /* TCP Small Queues : 1968 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 1969 * This allows for : 1970 * - better RTT estimation and ACK scheduling 1971 * - faster recovery 1972 * - high rates 1973 * Alas, some drivers / subsystems require a fair amount 1974 * of queued bytes to ensure line rate. 1975 * One example is wifi aggregation (802.11 AMPDU) 1976 */ 1977 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes, 1978 sk->sk_pacing_rate >> 10); 1979 1980 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 1981 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 1982 /* It is possible TX completion already happened 1983 * before we set TSQ_THROTTLED, so we must 1984 * test again the condition. 1985 */ 1986 smp_mb__after_atomic(); 1987 if (atomic_read(&sk->sk_wmem_alloc) > limit) 1988 break; 1989 } 1990 1991 limit = mss_now; 1992 if (tso_segs > 1 && !tcp_urg_mode(tp)) 1993 limit = tcp_mss_split_point(sk, skb, mss_now, 1994 min_t(unsigned int, 1995 cwnd_quota, 1996 sk->sk_gso_max_segs), 1997 nonagle); 1998 1999 if (skb->len > limit && 2000 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2001 break; 2002 2003 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2004 2005 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2006 break; 2007 2008 repair: 2009 /* Advance the send_head. This one is sent out. 2010 * This call will increment packets_out. 2011 */ 2012 tcp_event_new_data_sent(sk, skb); 2013 2014 tcp_minshall_update(tp, mss_now, skb); 2015 sent_pkts += tcp_skb_pcount(skb); 2016 2017 if (push_one) 2018 break; 2019 } 2020 2021 if (likely(sent_pkts)) { 2022 if (tcp_in_cwnd_reduction(sk)) 2023 tp->prr_out += sent_pkts; 2024 2025 /* Send one loss probe per tail loss episode. */ 2026 if (push_one != 2) 2027 tcp_schedule_loss_probe(sk); 2028 tcp_cwnd_validate(sk, is_cwnd_limited); 2029 return false; 2030 } 2031 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk)); 2032 } 2033 2034 bool tcp_schedule_loss_probe(struct sock *sk) 2035 { 2036 struct inet_connection_sock *icsk = inet_csk(sk); 2037 struct tcp_sock *tp = tcp_sk(sk); 2038 u32 timeout, tlp_time_stamp, rto_time_stamp; 2039 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2040 2041 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 2042 return false; 2043 /* No consecutive loss probes. */ 2044 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2045 tcp_rearm_rto(sk); 2046 return false; 2047 } 2048 /* Don't do any loss probe on a Fast Open connection before 3WHS 2049 * finishes. 2050 */ 2051 if (sk->sk_state == TCP_SYN_RECV) 2052 return false; 2053 2054 /* TLP is only scheduled when next timer event is RTO. */ 2055 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2056 return false; 2057 2058 /* Schedule a loss probe in 2*RTT for SACK capable connections 2059 * in Open state, that are either limited by cwnd or application. 2060 */ 2061 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out || 2062 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2063 return false; 2064 2065 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2066 tcp_send_head(sk)) 2067 return false; 2068 2069 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2070 * for delayed ack when there's one outstanding packet. 2071 */ 2072 timeout = rtt << 1; 2073 if (tp->packets_out == 1) 2074 timeout = max_t(u32, timeout, 2075 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2076 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2077 2078 /* If RTO is shorter, just schedule TLP in its place. */ 2079 tlp_time_stamp = tcp_time_stamp + timeout; 2080 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2081 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2082 s32 delta = rto_time_stamp - tcp_time_stamp; 2083 if (delta > 0) 2084 timeout = delta; 2085 } 2086 2087 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2088 TCP_RTO_MAX); 2089 return true; 2090 } 2091 2092 /* Thanks to skb fast clones, we can detect if a prior transmit of 2093 * a packet is still in a qdisc or driver queue. 2094 * In this case, there is very little point doing a retransmit ! 2095 * Note: This is called from BH context only. 2096 */ 2097 static bool skb_still_in_host_queue(const struct sock *sk, 2098 const struct sk_buff *skb) 2099 { 2100 const struct sk_buff *fclone = skb + 1; 2101 2102 if (unlikely(skb->fclone == SKB_FCLONE_ORIG && 2103 fclone->fclone == SKB_FCLONE_CLONE)) { 2104 NET_INC_STATS_BH(sock_net(sk), 2105 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2106 return true; 2107 } 2108 return false; 2109 } 2110 2111 /* When probe timeout (PTO) fires, send a new segment if one exists, else 2112 * retransmit the last segment. 2113 */ 2114 void tcp_send_loss_probe(struct sock *sk) 2115 { 2116 struct tcp_sock *tp = tcp_sk(sk); 2117 struct sk_buff *skb; 2118 int pcount; 2119 int mss = tcp_current_mss(sk); 2120 int err = -1; 2121 2122 if (tcp_send_head(sk) != NULL) { 2123 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2124 goto rearm_timer; 2125 } 2126 2127 /* At most one outstanding TLP retransmission. */ 2128 if (tp->tlp_high_seq) 2129 goto rearm_timer; 2130 2131 /* Retransmit last segment. */ 2132 skb = tcp_write_queue_tail(sk); 2133 if (WARN_ON(!skb)) 2134 goto rearm_timer; 2135 2136 if (skb_still_in_host_queue(sk, skb)) 2137 goto rearm_timer; 2138 2139 pcount = tcp_skb_pcount(skb); 2140 if (WARN_ON(!pcount)) 2141 goto rearm_timer; 2142 2143 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2144 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2145 GFP_ATOMIC))) 2146 goto rearm_timer; 2147 skb = tcp_write_queue_tail(sk); 2148 } 2149 2150 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2151 goto rearm_timer; 2152 2153 err = __tcp_retransmit_skb(sk, skb); 2154 2155 /* Record snd_nxt for loss detection. */ 2156 if (likely(!err)) 2157 tp->tlp_high_seq = tp->snd_nxt; 2158 2159 rearm_timer: 2160 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2161 inet_csk(sk)->icsk_rto, 2162 TCP_RTO_MAX); 2163 2164 if (likely(!err)) 2165 NET_INC_STATS_BH(sock_net(sk), 2166 LINUX_MIB_TCPLOSSPROBES); 2167 } 2168 2169 /* Push out any pending frames which were held back due to 2170 * TCP_CORK or attempt at coalescing tiny packets. 2171 * The socket must be locked by the caller. 2172 */ 2173 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2174 int nonagle) 2175 { 2176 /* If we are closed, the bytes will have to remain here. 2177 * In time closedown will finish, we empty the write queue and 2178 * all will be happy. 2179 */ 2180 if (unlikely(sk->sk_state == TCP_CLOSE)) 2181 return; 2182 2183 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2184 sk_gfp_atomic(sk, GFP_ATOMIC))) 2185 tcp_check_probe_timer(sk); 2186 } 2187 2188 /* Send _single_ skb sitting at the send head. This function requires 2189 * true push pending frames to setup probe timer etc. 2190 */ 2191 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2192 { 2193 struct sk_buff *skb = tcp_send_head(sk); 2194 2195 BUG_ON(!skb || skb->len < mss_now); 2196 2197 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2198 } 2199 2200 /* This function returns the amount that we can raise the 2201 * usable window based on the following constraints 2202 * 2203 * 1. The window can never be shrunk once it is offered (RFC 793) 2204 * 2. We limit memory per socket 2205 * 2206 * RFC 1122: 2207 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2208 * RECV.NEXT + RCV.WIN fixed until: 2209 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2210 * 2211 * i.e. don't raise the right edge of the window until you can raise 2212 * it at least MSS bytes. 2213 * 2214 * Unfortunately, the recommended algorithm breaks header prediction, 2215 * since header prediction assumes th->window stays fixed. 2216 * 2217 * Strictly speaking, keeping th->window fixed violates the receiver 2218 * side SWS prevention criteria. The problem is that under this rule 2219 * a stream of single byte packets will cause the right side of the 2220 * window to always advance by a single byte. 2221 * 2222 * Of course, if the sender implements sender side SWS prevention 2223 * then this will not be a problem. 2224 * 2225 * BSD seems to make the following compromise: 2226 * 2227 * If the free space is less than the 1/4 of the maximum 2228 * space available and the free space is less than 1/2 mss, 2229 * then set the window to 0. 2230 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2231 * Otherwise, just prevent the window from shrinking 2232 * and from being larger than the largest representable value. 2233 * 2234 * This prevents incremental opening of the window in the regime 2235 * where TCP is limited by the speed of the reader side taking 2236 * data out of the TCP receive queue. It does nothing about 2237 * those cases where the window is constrained on the sender side 2238 * because the pipeline is full. 2239 * 2240 * BSD also seems to "accidentally" limit itself to windows that are a 2241 * multiple of MSS, at least until the free space gets quite small. 2242 * This would appear to be a side effect of the mbuf implementation. 2243 * Combining these two algorithms results in the observed behavior 2244 * of having a fixed window size at almost all times. 2245 * 2246 * Below we obtain similar behavior by forcing the offered window to 2247 * a multiple of the mss when it is feasible to do so. 2248 * 2249 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2250 * Regular options like TIMESTAMP are taken into account. 2251 */ 2252 u32 __tcp_select_window(struct sock *sk) 2253 { 2254 struct inet_connection_sock *icsk = inet_csk(sk); 2255 struct tcp_sock *tp = tcp_sk(sk); 2256 /* MSS for the peer's data. Previous versions used mss_clamp 2257 * here. I don't know if the value based on our guesses 2258 * of peer's MSS is better for the performance. It's more correct 2259 * but may be worse for the performance because of rcv_mss 2260 * fluctuations. --SAW 1998/11/1 2261 */ 2262 int mss = icsk->icsk_ack.rcv_mss; 2263 int free_space = tcp_space(sk); 2264 int allowed_space = tcp_full_space(sk); 2265 int full_space = min_t(int, tp->window_clamp, allowed_space); 2266 int window; 2267 2268 if (mss > full_space) 2269 mss = full_space; 2270 2271 if (free_space < (full_space >> 1)) { 2272 icsk->icsk_ack.quick = 0; 2273 2274 if (sk_under_memory_pressure(sk)) 2275 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2276 4U * tp->advmss); 2277 2278 /* free_space might become our new window, make sure we don't 2279 * increase it due to wscale. 2280 */ 2281 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2282 2283 /* if free space is less than mss estimate, or is below 1/16th 2284 * of the maximum allowed, try to move to zero-window, else 2285 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2286 * new incoming data is dropped due to memory limits. 2287 * With large window, mss test triggers way too late in order 2288 * to announce zero window in time before rmem limit kicks in. 2289 */ 2290 if (free_space < (allowed_space >> 4) || free_space < mss) 2291 return 0; 2292 } 2293 2294 if (free_space > tp->rcv_ssthresh) 2295 free_space = tp->rcv_ssthresh; 2296 2297 /* Don't do rounding if we are using window scaling, since the 2298 * scaled window will not line up with the MSS boundary anyway. 2299 */ 2300 window = tp->rcv_wnd; 2301 if (tp->rx_opt.rcv_wscale) { 2302 window = free_space; 2303 2304 /* Advertise enough space so that it won't get scaled away. 2305 * Import case: prevent zero window announcement if 2306 * 1<<rcv_wscale > mss. 2307 */ 2308 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2309 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2310 << tp->rx_opt.rcv_wscale); 2311 } else { 2312 /* Get the largest window that is a nice multiple of mss. 2313 * Window clamp already applied above. 2314 * If our current window offering is within 1 mss of the 2315 * free space we just keep it. This prevents the divide 2316 * and multiply from happening most of the time. 2317 * We also don't do any window rounding when the free space 2318 * is too small. 2319 */ 2320 if (window <= free_space - mss || window > free_space) 2321 window = (free_space / mss) * mss; 2322 else if (mss == full_space && 2323 free_space > window + (full_space >> 1)) 2324 window = free_space; 2325 } 2326 2327 return window; 2328 } 2329 2330 /* Collapses two adjacent SKB's during retransmission. */ 2331 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2332 { 2333 struct tcp_sock *tp = tcp_sk(sk); 2334 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2335 int skb_size, next_skb_size; 2336 2337 skb_size = skb->len; 2338 next_skb_size = next_skb->len; 2339 2340 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2341 2342 tcp_highest_sack_combine(sk, next_skb, skb); 2343 2344 tcp_unlink_write_queue(next_skb, sk); 2345 2346 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2347 next_skb_size); 2348 2349 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2350 skb->ip_summed = CHECKSUM_PARTIAL; 2351 2352 if (skb->ip_summed != CHECKSUM_PARTIAL) 2353 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2354 2355 /* Update sequence range on original skb. */ 2356 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2357 2358 /* Merge over control information. This moves PSH/FIN etc. over */ 2359 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2360 2361 /* All done, get rid of second SKB and account for it so 2362 * packet counting does not break. 2363 */ 2364 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2365 2366 /* changed transmit queue under us so clear hints */ 2367 tcp_clear_retrans_hints_partial(tp); 2368 if (next_skb == tp->retransmit_skb_hint) 2369 tp->retransmit_skb_hint = skb; 2370 2371 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2372 2373 sk_wmem_free_skb(sk, next_skb); 2374 } 2375 2376 /* Check if coalescing SKBs is legal. */ 2377 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2378 { 2379 if (tcp_skb_pcount(skb) > 1) 2380 return false; 2381 /* TODO: SACK collapsing could be used to remove this condition */ 2382 if (skb_shinfo(skb)->nr_frags != 0) 2383 return false; 2384 if (skb_cloned(skb)) 2385 return false; 2386 if (skb == tcp_send_head(sk)) 2387 return false; 2388 /* Some heurestics for collapsing over SACK'd could be invented */ 2389 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2390 return false; 2391 2392 return true; 2393 } 2394 2395 /* Collapse packets in the retransmit queue to make to create 2396 * less packets on the wire. This is only done on retransmission. 2397 */ 2398 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2399 int space) 2400 { 2401 struct tcp_sock *tp = tcp_sk(sk); 2402 struct sk_buff *skb = to, *tmp; 2403 bool first = true; 2404 2405 if (!sysctl_tcp_retrans_collapse) 2406 return; 2407 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2408 return; 2409 2410 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2411 if (!tcp_can_collapse(sk, skb)) 2412 break; 2413 2414 space -= skb->len; 2415 2416 if (first) { 2417 first = false; 2418 continue; 2419 } 2420 2421 if (space < 0) 2422 break; 2423 /* Punt if not enough space exists in the first SKB for 2424 * the data in the second 2425 */ 2426 if (skb->len > skb_availroom(to)) 2427 break; 2428 2429 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2430 break; 2431 2432 tcp_collapse_retrans(sk, to); 2433 } 2434 } 2435 2436 /* This retransmits one SKB. Policy decisions and retransmit queue 2437 * state updates are done by the caller. Returns non-zero if an 2438 * error occurred which prevented the send. 2439 */ 2440 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2441 { 2442 struct tcp_sock *tp = tcp_sk(sk); 2443 struct inet_connection_sock *icsk = inet_csk(sk); 2444 unsigned int cur_mss; 2445 int err; 2446 2447 /* Inconslusive MTU probe */ 2448 if (icsk->icsk_mtup.probe_size) { 2449 icsk->icsk_mtup.probe_size = 0; 2450 } 2451 2452 /* Do not sent more than we queued. 1/4 is reserved for possible 2453 * copying overhead: fragmentation, tunneling, mangling etc. 2454 */ 2455 if (atomic_read(&sk->sk_wmem_alloc) > 2456 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2457 return -EAGAIN; 2458 2459 if (skb_still_in_host_queue(sk, skb)) 2460 return -EBUSY; 2461 2462 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2463 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2464 BUG(); 2465 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2466 return -ENOMEM; 2467 } 2468 2469 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2470 return -EHOSTUNREACH; /* Routing failure or similar. */ 2471 2472 cur_mss = tcp_current_mss(sk); 2473 2474 /* If receiver has shrunk his window, and skb is out of 2475 * new window, do not retransmit it. The exception is the 2476 * case, when window is shrunk to zero. In this case 2477 * our retransmit serves as a zero window probe. 2478 */ 2479 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2480 TCP_SKB_CB(skb)->seq != tp->snd_una) 2481 return -EAGAIN; 2482 2483 if (skb->len > cur_mss) { 2484 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC)) 2485 return -ENOMEM; /* We'll try again later. */ 2486 } else { 2487 int oldpcount = tcp_skb_pcount(skb); 2488 2489 if (unlikely(oldpcount > 1)) { 2490 if (skb_unclone(skb, GFP_ATOMIC)) 2491 return -ENOMEM; 2492 tcp_init_tso_segs(sk, skb, cur_mss); 2493 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2494 } 2495 } 2496 2497 tcp_retrans_try_collapse(sk, skb, cur_mss); 2498 2499 /* Make a copy, if the first transmission SKB clone we made 2500 * is still in somebody's hands, else make a clone. 2501 */ 2502 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2503 2504 /* make sure skb->data is aligned on arches that require it 2505 * and check if ack-trimming & collapsing extended the headroom 2506 * beyond what csum_start can cover. 2507 */ 2508 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2509 skb_headroom(skb) >= 0xFFFF)) { 2510 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2511 GFP_ATOMIC); 2512 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2513 -ENOBUFS; 2514 } else { 2515 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2516 } 2517 2518 if (likely(!err)) { 2519 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2520 /* Update global TCP statistics. */ 2521 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2522 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2523 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2524 tp->total_retrans++; 2525 } 2526 return err; 2527 } 2528 2529 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2530 { 2531 struct tcp_sock *tp = tcp_sk(sk); 2532 int err = __tcp_retransmit_skb(sk, skb); 2533 2534 if (err == 0) { 2535 #if FASTRETRANS_DEBUG > 0 2536 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2537 net_dbg_ratelimited("retrans_out leaked\n"); 2538 } 2539 #endif 2540 if (!tp->retrans_out) 2541 tp->lost_retrans_low = tp->snd_nxt; 2542 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2543 tp->retrans_out += tcp_skb_pcount(skb); 2544 2545 /* Save stamp of the first retransmit. */ 2546 if (!tp->retrans_stamp) 2547 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 2548 2549 /* snd_nxt is stored to detect loss of retransmitted segment, 2550 * see tcp_input.c tcp_sacktag_write_queue(). 2551 */ 2552 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2553 } else if (err != -EBUSY) { 2554 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2555 } 2556 2557 if (tp->undo_retrans < 0) 2558 tp->undo_retrans = 0; 2559 tp->undo_retrans += tcp_skb_pcount(skb); 2560 return err; 2561 } 2562 2563 /* Check if we forward retransmits are possible in the current 2564 * window/congestion state. 2565 */ 2566 static bool tcp_can_forward_retransmit(struct sock *sk) 2567 { 2568 const struct inet_connection_sock *icsk = inet_csk(sk); 2569 const struct tcp_sock *tp = tcp_sk(sk); 2570 2571 /* Forward retransmissions are possible only during Recovery. */ 2572 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2573 return false; 2574 2575 /* No forward retransmissions in Reno are possible. */ 2576 if (tcp_is_reno(tp)) 2577 return false; 2578 2579 /* Yeah, we have to make difficult choice between forward transmission 2580 * and retransmission... Both ways have their merits... 2581 * 2582 * For now we do not retransmit anything, while we have some new 2583 * segments to send. In the other cases, follow rule 3 for 2584 * NextSeg() specified in RFC3517. 2585 */ 2586 2587 if (tcp_may_send_now(sk)) 2588 return false; 2589 2590 return true; 2591 } 2592 2593 /* This gets called after a retransmit timeout, and the initially 2594 * retransmitted data is acknowledged. It tries to continue 2595 * resending the rest of the retransmit queue, until either 2596 * we've sent it all or the congestion window limit is reached. 2597 * If doing SACK, the first ACK which comes back for a timeout 2598 * based retransmit packet might feed us FACK information again. 2599 * If so, we use it to avoid unnecessarily retransmissions. 2600 */ 2601 void tcp_xmit_retransmit_queue(struct sock *sk) 2602 { 2603 const struct inet_connection_sock *icsk = inet_csk(sk); 2604 struct tcp_sock *tp = tcp_sk(sk); 2605 struct sk_buff *skb; 2606 struct sk_buff *hole = NULL; 2607 u32 last_lost; 2608 int mib_idx; 2609 int fwd_rexmitting = 0; 2610 2611 if (!tp->packets_out) 2612 return; 2613 2614 if (!tp->lost_out) 2615 tp->retransmit_high = tp->snd_una; 2616 2617 if (tp->retransmit_skb_hint) { 2618 skb = tp->retransmit_skb_hint; 2619 last_lost = TCP_SKB_CB(skb)->end_seq; 2620 if (after(last_lost, tp->retransmit_high)) 2621 last_lost = tp->retransmit_high; 2622 } else { 2623 skb = tcp_write_queue_head(sk); 2624 last_lost = tp->snd_una; 2625 } 2626 2627 tcp_for_write_queue_from(skb, sk) { 2628 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2629 2630 if (skb == tcp_send_head(sk)) 2631 break; 2632 /* we could do better than to assign each time */ 2633 if (hole == NULL) 2634 tp->retransmit_skb_hint = skb; 2635 2636 /* Assume this retransmit will generate 2637 * only one packet for congestion window 2638 * calculation purposes. This works because 2639 * tcp_retransmit_skb() will chop up the 2640 * packet to be MSS sized and all the 2641 * packet counting works out. 2642 */ 2643 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2644 return; 2645 2646 if (fwd_rexmitting) { 2647 begin_fwd: 2648 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2649 break; 2650 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2651 2652 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2653 tp->retransmit_high = last_lost; 2654 if (!tcp_can_forward_retransmit(sk)) 2655 break; 2656 /* Backtrack if necessary to non-L'ed skb */ 2657 if (hole != NULL) { 2658 skb = hole; 2659 hole = NULL; 2660 } 2661 fwd_rexmitting = 1; 2662 goto begin_fwd; 2663 2664 } else if (!(sacked & TCPCB_LOST)) { 2665 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2666 hole = skb; 2667 continue; 2668 2669 } else { 2670 last_lost = TCP_SKB_CB(skb)->end_seq; 2671 if (icsk->icsk_ca_state != TCP_CA_Loss) 2672 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2673 else 2674 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2675 } 2676 2677 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2678 continue; 2679 2680 if (tcp_retransmit_skb(sk, skb)) 2681 return; 2682 2683 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2684 2685 if (tcp_in_cwnd_reduction(sk)) 2686 tp->prr_out += tcp_skb_pcount(skb); 2687 2688 if (skb == tcp_write_queue_head(sk)) 2689 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2690 inet_csk(sk)->icsk_rto, 2691 TCP_RTO_MAX); 2692 } 2693 } 2694 2695 /* Send a fin. The caller locks the socket for us. This cannot be 2696 * allowed to fail queueing a FIN frame under any circumstances. 2697 */ 2698 void tcp_send_fin(struct sock *sk) 2699 { 2700 struct tcp_sock *tp = tcp_sk(sk); 2701 struct sk_buff *skb = tcp_write_queue_tail(sk); 2702 int mss_now; 2703 2704 /* Optimization, tack on the FIN if we have a queue of 2705 * unsent frames. But be careful about outgoing SACKS 2706 * and IP options. 2707 */ 2708 mss_now = tcp_current_mss(sk); 2709 2710 if (tcp_send_head(sk) != NULL) { 2711 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN; 2712 TCP_SKB_CB(skb)->end_seq++; 2713 tp->write_seq++; 2714 } else { 2715 /* Socket is locked, keep trying until memory is available. */ 2716 for (;;) { 2717 skb = alloc_skb_fclone(MAX_TCP_HEADER, 2718 sk->sk_allocation); 2719 if (skb) 2720 break; 2721 yield(); 2722 } 2723 2724 /* Reserve space for headers and prepare control bits. */ 2725 skb_reserve(skb, MAX_TCP_HEADER); 2726 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2727 tcp_init_nondata_skb(skb, tp->write_seq, 2728 TCPHDR_ACK | TCPHDR_FIN); 2729 tcp_queue_skb(sk, skb); 2730 } 2731 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2732 } 2733 2734 /* We get here when a process closes a file descriptor (either due to 2735 * an explicit close() or as a byproduct of exit()'ing) and there 2736 * was unread data in the receive queue. This behavior is recommended 2737 * by RFC 2525, section 2.17. -DaveM 2738 */ 2739 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2740 { 2741 struct sk_buff *skb; 2742 2743 /* NOTE: No TCP options attached and we never retransmit this. */ 2744 skb = alloc_skb(MAX_TCP_HEADER, priority); 2745 if (!skb) { 2746 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2747 return; 2748 } 2749 2750 /* Reserve space for headers and prepare control bits. */ 2751 skb_reserve(skb, MAX_TCP_HEADER); 2752 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2753 TCPHDR_ACK | TCPHDR_RST); 2754 /* Send it off. */ 2755 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2756 if (tcp_transmit_skb(sk, skb, 0, priority)) 2757 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2758 2759 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2760 } 2761 2762 /* Send a crossed SYN-ACK during socket establishment. 2763 * WARNING: This routine must only be called when we have already sent 2764 * a SYN packet that crossed the incoming SYN that caused this routine 2765 * to get called. If this assumption fails then the initial rcv_wnd 2766 * and rcv_wscale values will not be correct. 2767 */ 2768 int tcp_send_synack(struct sock *sk) 2769 { 2770 struct sk_buff *skb; 2771 2772 skb = tcp_write_queue_head(sk); 2773 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2774 pr_debug("%s: wrong queue state\n", __func__); 2775 return -EFAULT; 2776 } 2777 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2778 if (skb_cloned(skb)) { 2779 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2780 if (nskb == NULL) 2781 return -ENOMEM; 2782 tcp_unlink_write_queue(skb, sk); 2783 skb_header_release(nskb); 2784 __tcp_add_write_queue_head(sk, nskb); 2785 sk_wmem_free_skb(sk, skb); 2786 sk->sk_wmem_queued += nskb->truesize; 2787 sk_mem_charge(sk, nskb->truesize); 2788 skb = nskb; 2789 } 2790 2791 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2792 TCP_ECN_send_synack(tcp_sk(sk), skb); 2793 } 2794 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2795 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2796 } 2797 2798 /** 2799 * tcp_make_synack - Prepare a SYN-ACK. 2800 * sk: listener socket 2801 * dst: dst entry attached to the SYNACK 2802 * req: request_sock pointer 2803 * 2804 * Allocate one skb and build a SYNACK packet. 2805 * @dst is consumed : Caller should not use it again. 2806 */ 2807 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2808 struct request_sock *req, 2809 struct tcp_fastopen_cookie *foc) 2810 { 2811 struct tcp_out_options opts; 2812 struct inet_request_sock *ireq = inet_rsk(req); 2813 struct tcp_sock *tp = tcp_sk(sk); 2814 struct tcphdr *th; 2815 struct sk_buff *skb; 2816 struct tcp_md5sig_key *md5; 2817 int tcp_header_size; 2818 int mss; 2819 2820 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC); 2821 if (unlikely(!skb)) { 2822 dst_release(dst); 2823 return NULL; 2824 } 2825 /* Reserve space for headers. */ 2826 skb_reserve(skb, MAX_TCP_HEADER); 2827 2828 skb_dst_set(skb, dst); 2829 security_skb_owned_by(skb, sk); 2830 2831 mss = dst_metric_advmss(dst); 2832 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2833 mss = tp->rx_opt.user_mss; 2834 2835 memset(&opts, 0, sizeof(opts)); 2836 #ifdef CONFIG_SYN_COOKIES 2837 if (unlikely(req->cookie_ts)) 2838 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req); 2839 else 2840 #endif 2841 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2842 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5, 2843 foc) + sizeof(*th); 2844 2845 skb_push(skb, tcp_header_size); 2846 skb_reset_transport_header(skb); 2847 2848 th = tcp_hdr(skb); 2849 memset(th, 0, sizeof(struct tcphdr)); 2850 th->syn = 1; 2851 th->ack = 1; 2852 TCP_ECN_make_synack(req, th); 2853 th->source = htons(ireq->ir_num); 2854 th->dest = ireq->ir_rmt_port; 2855 /* Setting of flags are superfluous here for callers (and ECE is 2856 * not even correctly set) 2857 */ 2858 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2859 TCPHDR_SYN | TCPHDR_ACK); 2860 2861 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2862 /* XXX data is queued and acked as is. No buffer/window check */ 2863 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 2864 2865 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2866 th->window = htons(min(req->rcv_wnd, 65535U)); 2867 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2868 th->doff = (tcp_header_size >> 2); 2869 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS); 2870 2871 #ifdef CONFIG_TCP_MD5SIG 2872 /* Okay, we have all we need - do the md5 hash if needed */ 2873 if (md5) { 2874 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2875 md5, NULL, req, skb); 2876 } 2877 #endif 2878 2879 return skb; 2880 } 2881 EXPORT_SYMBOL(tcp_make_synack); 2882 2883 /* Do all connect socket setups that can be done AF independent. */ 2884 static void tcp_connect_init(struct sock *sk) 2885 { 2886 const struct dst_entry *dst = __sk_dst_get(sk); 2887 struct tcp_sock *tp = tcp_sk(sk); 2888 __u8 rcv_wscale; 2889 2890 /* We'll fix this up when we get a response from the other end. 2891 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2892 */ 2893 tp->tcp_header_len = sizeof(struct tcphdr) + 2894 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2895 2896 #ifdef CONFIG_TCP_MD5SIG 2897 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2898 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2899 #endif 2900 2901 /* If user gave his TCP_MAXSEG, record it to clamp */ 2902 if (tp->rx_opt.user_mss) 2903 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2904 tp->max_window = 0; 2905 tcp_mtup_init(sk); 2906 tcp_sync_mss(sk, dst_mtu(dst)); 2907 2908 if (!tp->window_clamp) 2909 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2910 tp->advmss = dst_metric_advmss(dst); 2911 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2912 tp->advmss = tp->rx_opt.user_mss; 2913 2914 tcp_initialize_rcv_mss(sk); 2915 2916 /* limit the window selection if the user enforce a smaller rx buffer */ 2917 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2918 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 2919 tp->window_clamp = tcp_full_space(sk); 2920 2921 tcp_select_initial_window(tcp_full_space(sk), 2922 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2923 &tp->rcv_wnd, 2924 &tp->window_clamp, 2925 sysctl_tcp_window_scaling, 2926 &rcv_wscale, 2927 dst_metric(dst, RTAX_INITRWND)); 2928 2929 tp->rx_opt.rcv_wscale = rcv_wscale; 2930 tp->rcv_ssthresh = tp->rcv_wnd; 2931 2932 sk->sk_err = 0; 2933 sock_reset_flag(sk, SOCK_DONE); 2934 tp->snd_wnd = 0; 2935 tcp_init_wl(tp, 0); 2936 tp->snd_una = tp->write_seq; 2937 tp->snd_sml = tp->write_seq; 2938 tp->snd_up = tp->write_seq; 2939 tp->snd_nxt = tp->write_seq; 2940 2941 if (likely(!tp->repair)) 2942 tp->rcv_nxt = 0; 2943 else 2944 tp->rcv_tstamp = tcp_time_stamp; 2945 tp->rcv_wup = tp->rcv_nxt; 2946 tp->copied_seq = tp->rcv_nxt; 2947 2948 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2949 inet_csk(sk)->icsk_retransmits = 0; 2950 tcp_clear_retrans(tp); 2951 } 2952 2953 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 2954 { 2955 struct tcp_sock *tp = tcp_sk(sk); 2956 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 2957 2958 tcb->end_seq += skb->len; 2959 skb_header_release(skb); 2960 __tcp_add_write_queue_tail(sk, skb); 2961 sk->sk_wmem_queued += skb->truesize; 2962 sk_mem_charge(sk, skb->truesize); 2963 tp->write_seq = tcb->end_seq; 2964 tp->packets_out += tcp_skb_pcount(skb); 2965 } 2966 2967 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 2968 * queue a data-only packet after the regular SYN, such that regular SYNs 2969 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 2970 * only the SYN sequence, the data are retransmitted in the first ACK. 2971 * If cookie is not cached or other error occurs, falls back to send a 2972 * regular SYN with Fast Open cookie request option. 2973 */ 2974 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 2975 { 2976 struct tcp_sock *tp = tcp_sk(sk); 2977 struct tcp_fastopen_request *fo = tp->fastopen_req; 2978 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen; 2979 struct sk_buff *syn_data = NULL, *data; 2980 unsigned long last_syn_loss = 0; 2981 2982 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 2983 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 2984 &syn_loss, &last_syn_loss); 2985 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 2986 if (syn_loss > 1 && 2987 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 2988 fo->cookie.len = -1; 2989 goto fallback; 2990 } 2991 2992 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 2993 fo->cookie.len = -1; 2994 else if (fo->cookie.len <= 0) 2995 goto fallback; 2996 2997 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 2998 * user-MSS. Reserve maximum option space for middleboxes that add 2999 * private TCP options. The cost is reduced data space in SYN :( 3000 */ 3001 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 3002 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3003 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3004 MAX_TCP_OPTION_SPACE; 3005 3006 space = min_t(size_t, space, fo->size); 3007 3008 /* limit to order-0 allocations */ 3009 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3010 3011 syn_data = skb_copy_expand(syn, MAX_TCP_HEADER, space, 3012 sk->sk_allocation); 3013 if (syn_data == NULL) 3014 goto fallback; 3015 3016 for (i = 0; i < iovlen && syn_data->len < space; ++i) { 3017 struct iovec *iov = &fo->data->msg_iov[i]; 3018 unsigned char __user *from = iov->iov_base; 3019 int len = iov->iov_len; 3020 3021 if (syn_data->len + len > space) 3022 len = space - syn_data->len; 3023 else if (i + 1 == iovlen) 3024 /* No more data pending in inet_wait_for_connect() */ 3025 fo->data = NULL; 3026 3027 if (skb_add_data(syn_data, from, len)) 3028 goto fallback; 3029 } 3030 3031 /* Queue a data-only packet after the regular SYN for retransmission */ 3032 data = pskb_copy(syn_data, sk->sk_allocation); 3033 if (data == NULL) 3034 goto fallback; 3035 TCP_SKB_CB(data)->seq++; 3036 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN; 3037 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH); 3038 tcp_connect_queue_skb(sk, data); 3039 fo->copied = data->len; 3040 3041 /* syn_data is about to be sent, we need to take current time stamps 3042 * for the packets that are in write queue : SYN packet and DATA 3043 */ 3044 skb_mstamp_get(&syn->skb_mstamp); 3045 data->skb_mstamp = syn->skb_mstamp; 3046 3047 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) { 3048 tp->syn_data = (fo->copied > 0); 3049 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3050 goto done; 3051 } 3052 syn_data = NULL; 3053 3054 fallback: 3055 /* Send a regular SYN with Fast Open cookie request option */ 3056 if (fo->cookie.len > 0) 3057 fo->cookie.len = 0; 3058 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3059 if (err) 3060 tp->syn_fastopen = 0; 3061 kfree_skb(syn_data); 3062 done: 3063 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3064 return err; 3065 } 3066 3067 /* Build a SYN and send it off. */ 3068 int tcp_connect(struct sock *sk) 3069 { 3070 struct tcp_sock *tp = tcp_sk(sk); 3071 struct sk_buff *buff; 3072 int err; 3073 3074 tcp_connect_init(sk); 3075 3076 if (unlikely(tp->repair)) { 3077 tcp_finish_connect(sk, NULL); 3078 return 0; 3079 } 3080 3081 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 3082 if (unlikely(buff == NULL)) 3083 return -ENOBUFS; 3084 3085 /* Reserve space for headers. */ 3086 skb_reserve(buff, MAX_TCP_HEADER); 3087 3088 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3089 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp; 3090 tcp_connect_queue_skb(sk, buff); 3091 TCP_ECN_send_syn(sk, buff); 3092 3093 /* Send off SYN; include data in Fast Open. */ 3094 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3095 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3096 if (err == -ECONNREFUSED) 3097 return err; 3098 3099 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3100 * in order to make this packet get counted in tcpOutSegs. 3101 */ 3102 tp->snd_nxt = tp->write_seq; 3103 tp->pushed_seq = tp->write_seq; 3104 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3105 3106 /* Timer for repeating the SYN until an answer. */ 3107 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3108 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3109 return 0; 3110 } 3111 EXPORT_SYMBOL(tcp_connect); 3112 3113 /* Send out a delayed ack, the caller does the policy checking 3114 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3115 * for details. 3116 */ 3117 void tcp_send_delayed_ack(struct sock *sk) 3118 { 3119 struct inet_connection_sock *icsk = inet_csk(sk); 3120 int ato = icsk->icsk_ack.ato; 3121 unsigned long timeout; 3122 3123 if (ato > TCP_DELACK_MIN) { 3124 const struct tcp_sock *tp = tcp_sk(sk); 3125 int max_ato = HZ / 2; 3126 3127 if (icsk->icsk_ack.pingpong || 3128 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3129 max_ato = TCP_DELACK_MAX; 3130 3131 /* Slow path, intersegment interval is "high". */ 3132 3133 /* If some rtt estimate is known, use it to bound delayed ack. 3134 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3135 * directly. 3136 */ 3137 if (tp->srtt_us) { 3138 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3139 TCP_DELACK_MIN); 3140 3141 if (rtt < max_ato) 3142 max_ato = rtt; 3143 } 3144 3145 ato = min(ato, max_ato); 3146 } 3147 3148 /* Stay within the limit we were given */ 3149 timeout = jiffies + ato; 3150 3151 /* Use new timeout only if there wasn't a older one earlier. */ 3152 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3153 /* If delack timer was blocked or is about to expire, 3154 * send ACK now. 3155 */ 3156 if (icsk->icsk_ack.blocked || 3157 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3158 tcp_send_ack(sk); 3159 return; 3160 } 3161 3162 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3163 timeout = icsk->icsk_ack.timeout; 3164 } 3165 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3166 icsk->icsk_ack.timeout = timeout; 3167 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3168 } 3169 3170 /* This routine sends an ack and also updates the window. */ 3171 void tcp_send_ack(struct sock *sk) 3172 { 3173 struct sk_buff *buff; 3174 3175 /* If we have been reset, we may not send again. */ 3176 if (sk->sk_state == TCP_CLOSE) 3177 return; 3178 3179 /* We are not putting this on the write queue, so 3180 * tcp_transmit_skb() will set the ownership to this 3181 * sock. 3182 */ 3183 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3184 if (buff == NULL) { 3185 inet_csk_schedule_ack(sk); 3186 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3187 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3188 TCP_DELACK_MAX, TCP_RTO_MAX); 3189 return; 3190 } 3191 3192 /* Reserve space for headers and prepare control bits. */ 3193 skb_reserve(buff, MAX_TCP_HEADER); 3194 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3195 3196 /* Send it off, this clears delayed acks for us. */ 3197 TCP_SKB_CB(buff)->when = tcp_time_stamp; 3198 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC)); 3199 } 3200 3201 /* This routine sends a packet with an out of date sequence 3202 * number. It assumes the other end will try to ack it. 3203 * 3204 * Question: what should we make while urgent mode? 3205 * 4.4BSD forces sending single byte of data. We cannot send 3206 * out of window data, because we have SND.NXT==SND.MAX... 3207 * 3208 * Current solution: to send TWO zero-length segments in urgent mode: 3209 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3210 * out-of-date with SND.UNA-1 to probe window. 3211 */ 3212 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 3213 { 3214 struct tcp_sock *tp = tcp_sk(sk); 3215 struct sk_buff *skb; 3216 3217 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3218 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3219 if (skb == NULL) 3220 return -1; 3221 3222 /* Reserve space for headers and set control bits. */ 3223 skb_reserve(skb, MAX_TCP_HEADER); 3224 /* Use a previous sequence. This should cause the other 3225 * end to send an ack. Don't queue or clone SKB, just 3226 * send it. 3227 */ 3228 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3229 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3230 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3231 } 3232 3233 void tcp_send_window_probe(struct sock *sk) 3234 { 3235 if (sk->sk_state == TCP_ESTABLISHED) { 3236 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3237 tcp_xmit_probe_skb(sk, 0); 3238 } 3239 } 3240 3241 /* Initiate keepalive or window probe from timer. */ 3242 int tcp_write_wakeup(struct sock *sk) 3243 { 3244 struct tcp_sock *tp = tcp_sk(sk); 3245 struct sk_buff *skb; 3246 3247 if (sk->sk_state == TCP_CLOSE) 3248 return -1; 3249 3250 if ((skb = tcp_send_head(sk)) != NULL && 3251 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3252 int err; 3253 unsigned int mss = tcp_current_mss(sk); 3254 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3255 3256 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3257 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3258 3259 /* We are probing the opening of a window 3260 * but the window size is != 0 3261 * must have been a result SWS avoidance ( sender ) 3262 */ 3263 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3264 skb->len > mss) { 3265 seg_size = min(seg_size, mss); 3266 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3267 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3268 return -1; 3269 } else if (!tcp_skb_pcount(skb)) 3270 tcp_set_skb_tso_segs(sk, skb, mss); 3271 3272 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3273 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3274 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3275 if (!err) 3276 tcp_event_new_data_sent(sk, skb); 3277 return err; 3278 } else { 3279 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3280 tcp_xmit_probe_skb(sk, 1); 3281 return tcp_xmit_probe_skb(sk, 0); 3282 } 3283 } 3284 3285 /* A window probe timeout has occurred. If window is not closed send 3286 * a partial packet else a zero probe. 3287 */ 3288 void tcp_send_probe0(struct sock *sk) 3289 { 3290 struct inet_connection_sock *icsk = inet_csk(sk); 3291 struct tcp_sock *tp = tcp_sk(sk); 3292 int err; 3293 3294 err = tcp_write_wakeup(sk); 3295 3296 if (tp->packets_out || !tcp_send_head(sk)) { 3297 /* Cancel probe timer, if it is not required. */ 3298 icsk->icsk_probes_out = 0; 3299 icsk->icsk_backoff = 0; 3300 return; 3301 } 3302 3303 if (err <= 0) { 3304 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3305 icsk->icsk_backoff++; 3306 icsk->icsk_probes_out++; 3307 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3308 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3309 TCP_RTO_MAX); 3310 } else { 3311 /* If packet was not sent due to local congestion, 3312 * do not backoff and do not remember icsk_probes_out. 3313 * Let local senders to fight for local resources. 3314 * 3315 * Use accumulated backoff yet. 3316 */ 3317 if (!icsk->icsk_probes_out) 3318 icsk->icsk_probes_out = 1; 3319 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3320 min(icsk->icsk_rto << icsk->icsk_backoff, 3321 TCP_RESOURCE_PROBE_INTERVAL), 3322 TCP_RTO_MAX); 3323 } 3324 } 3325 3326 int tcp_rtx_synack(struct sock *sk, struct request_sock *req) 3327 { 3328 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3329 struct flowi fl; 3330 int res; 3331 3332 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL); 3333 if (!res) { 3334 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS); 3335 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3336 } 3337 return res; 3338 } 3339 EXPORT_SYMBOL(tcp_rtx_synack); 3340