xref: /openbmc/linux/net/ipv4/tcp_output.c (revision ac8b6f14)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45 
46 #include <trace/events/tcp.h>
47 
48 /* Refresh clocks of a TCP socket,
49  * ensuring monotically increasing values.
50  */
51 void tcp_mstamp_refresh(struct tcp_sock *tp)
52 {
53 	u64 val = tcp_clock_ns();
54 
55 	if (val > tp->tcp_clock_cache)
56 		tp->tcp_clock_cache = val;
57 
58 	val = div_u64(val, NSEC_PER_USEC);
59 	if (val > tp->tcp_mstamp)
60 		tp->tcp_mstamp = val;
61 }
62 
63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
64 			   int push_one, gfp_t gfp);
65 
66 /* Account for new data that has been sent to the network. */
67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
68 {
69 	struct inet_connection_sock *icsk = inet_csk(sk);
70 	struct tcp_sock *tp = tcp_sk(sk);
71 	unsigned int prior_packets = tp->packets_out;
72 
73 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
74 
75 	__skb_unlink(skb, &sk->sk_write_queue);
76 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 		tcp_rearm_rto(sk);
81 
82 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 		      tcp_skb_pcount(skb));
84 }
85 
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87  * window scaling factor due to loss of precision.
88  * If window has been shrunk, what should we make? It is not clear at all.
89  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91  * invalid. OK, let's make this for now:
92  */
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 	const struct tcp_sock *tp = tcp_sk(sk);
96 
97 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 	    (tp->rx_opt.wscale_ok &&
99 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 		return tp->snd_nxt;
101 	else
102 		return tcp_wnd_end(tp);
103 }
104 
105 /* Calculate mss to advertise in SYN segment.
106  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107  *
108  * 1. It is independent of path mtu.
109  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111  *    attached devices, because some buggy hosts are confused by
112  *    large MSS.
113  * 4. We do not make 3, we advertise MSS, calculated from first
114  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
115  *    This may be overridden via information stored in routing table.
116  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117  *    probably even Jumbo".
118  */
119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 	struct tcp_sock *tp = tcp_sk(sk);
122 	const struct dst_entry *dst = __sk_dst_get(sk);
123 	int mss = tp->advmss;
124 
125 	if (dst) {
126 		unsigned int metric = dst_metric_advmss(dst);
127 
128 		if (metric < mss) {
129 			mss = metric;
130 			tp->advmss = mss;
131 		}
132 	}
133 
134 	return (__u16)mss;
135 }
136 
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138  * This is the first part of cwnd validation mechanism.
139  */
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 	struct tcp_sock *tp = tcp_sk(sk);
143 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 	u32 cwnd = tp->snd_cwnd;
145 
146 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147 
148 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 	restart_cwnd = min(restart_cwnd, cwnd);
150 
151 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 		cwnd >>= 1;
153 	tp->snd_cwnd = max(cwnd, restart_cwnd);
154 	tp->snd_cwnd_stamp = tcp_jiffies32;
155 	tp->snd_cwnd_used = 0;
156 }
157 
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 				struct sock *sk)
161 {
162 	struct inet_connection_sock *icsk = inet_csk(sk);
163 	const u32 now = tcp_jiffies32;
164 
165 	if (tcp_packets_in_flight(tp) == 0)
166 		tcp_ca_event(sk, CA_EVENT_TX_START);
167 
168 	tp->lsndtime = now;
169 
170 	/* If it is a reply for ato after last received
171 	 * packet, enter pingpong mode.
172 	 */
173 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 		icsk->icsk_ack.pingpong = 1;
175 }
176 
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
179 				      u32 rcv_nxt)
180 {
181 	struct tcp_sock *tp = tcp_sk(sk);
182 
183 	if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
184 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
185 			      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
186 		tp->compressed_ack = TCP_FASTRETRANS_THRESH;
187 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
188 			__sock_put(sk);
189 	}
190 
191 	if (unlikely(rcv_nxt != tp->rcv_nxt))
192 		return;  /* Special ACK sent by DCTCP to reflect ECN */
193 	tcp_dec_quickack_mode(sk, pkts);
194 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
195 }
196 
197 /* Determine a window scaling and initial window to offer.
198  * Based on the assumption that the given amount of space
199  * will be offered. Store the results in the tp structure.
200  * NOTE: for smooth operation initial space offering should
201  * be a multiple of mss if possible. We assume here that mss >= 1.
202  * This MUST be enforced by all callers.
203  */
204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
205 			       __u32 *rcv_wnd, __u32 *window_clamp,
206 			       int wscale_ok, __u8 *rcv_wscale,
207 			       __u32 init_rcv_wnd)
208 {
209 	unsigned int space = (__space < 0 ? 0 : __space);
210 
211 	/* If no clamp set the clamp to the max possible scaled window */
212 	if (*window_clamp == 0)
213 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
214 	space = min(*window_clamp, space);
215 
216 	/* Quantize space offering to a multiple of mss if possible. */
217 	if (space > mss)
218 		space = rounddown(space, mss);
219 
220 	/* NOTE: offering an initial window larger than 32767
221 	 * will break some buggy TCP stacks. If the admin tells us
222 	 * it is likely we could be speaking with such a buggy stack
223 	 * we will truncate our initial window offering to 32K-1
224 	 * unless the remote has sent us a window scaling option,
225 	 * which we interpret as a sign the remote TCP is not
226 	 * misinterpreting the window field as a signed quantity.
227 	 */
228 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
229 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
230 	else
231 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
232 
233 	if (init_rcv_wnd)
234 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
235 
236 	(*rcv_wscale) = 0;
237 	if (wscale_ok) {
238 		/* Set window scaling on max possible window */
239 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
240 		space = max_t(u32, space, sysctl_rmem_max);
241 		space = min_t(u32, space, *window_clamp);
242 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
243 			space >>= 1;
244 			(*rcv_wscale)++;
245 		}
246 	}
247 	/* Set the clamp no higher than max representable value */
248 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
249 }
250 EXPORT_SYMBOL(tcp_select_initial_window);
251 
252 /* Chose a new window to advertise, update state in tcp_sock for the
253  * socket, and return result with RFC1323 scaling applied.  The return
254  * value can be stuffed directly into th->window for an outgoing
255  * frame.
256  */
257 static u16 tcp_select_window(struct sock *sk)
258 {
259 	struct tcp_sock *tp = tcp_sk(sk);
260 	u32 old_win = tp->rcv_wnd;
261 	u32 cur_win = tcp_receive_window(tp);
262 	u32 new_win = __tcp_select_window(sk);
263 
264 	/* Never shrink the offered window */
265 	if (new_win < cur_win) {
266 		/* Danger Will Robinson!
267 		 * Don't update rcv_wup/rcv_wnd here or else
268 		 * we will not be able to advertise a zero
269 		 * window in time.  --DaveM
270 		 *
271 		 * Relax Will Robinson.
272 		 */
273 		if (new_win == 0)
274 			NET_INC_STATS(sock_net(sk),
275 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
276 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
277 	}
278 	tp->rcv_wnd = new_win;
279 	tp->rcv_wup = tp->rcv_nxt;
280 
281 	/* Make sure we do not exceed the maximum possible
282 	 * scaled window.
283 	 */
284 	if (!tp->rx_opt.rcv_wscale &&
285 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
286 		new_win = min(new_win, MAX_TCP_WINDOW);
287 	else
288 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
289 
290 	/* RFC1323 scaling applied */
291 	new_win >>= tp->rx_opt.rcv_wscale;
292 
293 	/* If we advertise zero window, disable fast path. */
294 	if (new_win == 0) {
295 		tp->pred_flags = 0;
296 		if (old_win)
297 			NET_INC_STATS(sock_net(sk),
298 				      LINUX_MIB_TCPTOZEROWINDOWADV);
299 	} else if (old_win == 0) {
300 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
301 	}
302 
303 	return new_win;
304 }
305 
306 /* Packet ECN state for a SYN-ACK */
307 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
308 {
309 	const struct tcp_sock *tp = tcp_sk(sk);
310 
311 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
312 	if (!(tp->ecn_flags & TCP_ECN_OK))
313 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
314 	else if (tcp_ca_needs_ecn(sk) ||
315 		 tcp_bpf_ca_needs_ecn(sk))
316 		INET_ECN_xmit(sk);
317 }
318 
319 /* Packet ECN state for a SYN.  */
320 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
321 {
322 	struct tcp_sock *tp = tcp_sk(sk);
323 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
324 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
325 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
326 
327 	if (!use_ecn) {
328 		const struct dst_entry *dst = __sk_dst_get(sk);
329 
330 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
331 			use_ecn = true;
332 	}
333 
334 	tp->ecn_flags = 0;
335 
336 	if (use_ecn) {
337 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
338 		tp->ecn_flags = TCP_ECN_OK;
339 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
340 			INET_ECN_xmit(sk);
341 	}
342 }
343 
344 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
345 {
346 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
347 		/* tp->ecn_flags are cleared at a later point in time when
348 		 * SYN ACK is ultimatively being received.
349 		 */
350 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
351 }
352 
353 static void
354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
355 {
356 	if (inet_rsk(req)->ecn_ok)
357 		th->ece = 1;
358 }
359 
360 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
361  * be sent.
362  */
363 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
364 			 struct tcphdr *th, int tcp_header_len)
365 {
366 	struct tcp_sock *tp = tcp_sk(sk);
367 
368 	if (tp->ecn_flags & TCP_ECN_OK) {
369 		/* Not-retransmitted data segment: set ECT and inject CWR. */
370 		if (skb->len != tcp_header_len &&
371 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
372 			INET_ECN_xmit(sk);
373 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
374 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
375 				th->cwr = 1;
376 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
377 			}
378 		} else if (!tcp_ca_needs_ecn(sk)) {
379 			/* ACK or retransmitted segment: clear ECT|CE */
380 			INET_ECN_dontxmit(sk);
381 		}
382 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
383 			th->ece = 1;
384 	}
385 }
386 
387 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
388  * auto increment end seqno.
389  */
390 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
391 {
392 	skb->ip_summed = CHECKSUM_PARTIAL;
393 
394 	TCP_SKB_CB(skb)->tcp_flags = flags;
395 	TCP_SKB_CB(skb)->sacked = 0;
396 
397 	tcp_skb_pcount_set(skb, 1);
398 
399 	TCP_SKB_CB(skb)->seq = seq;
400 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
401 		seq++;
402 	TCP_SKB_CB(skb)->end_seq = seq;
403 }
404 
405 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
406 {
407 	return tp->snd_una != tp->snd_up;
408 }
409 
410 #define OPTION_SACK_ADVERTISE	(1 << 0)
411 #define OPTION_TS		(1 << 1)
412 #define OPTION_MD5		(1 << 2)
413 #define OPTION_WSCALE		(1 << 3)
414 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
415 #define OPTION_SMC		(1 << 9)
416 
417 static void smc_options_write(__be32 *ptr, u16 *options)
418 {
419 #if IS_ENABLED(CONFIG_SMC)
420 	if (static_branch_unlikely(&tcp_have_smc)) {
421 		if (unlikely(OPTION_SMC & *options)) {
422 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
423 				       (TCPOPT_NOP  << 16) |
424 				       (TCPOPT_EXP <<  8) |
425 				       (TCPOLEN_EXP_SMC_BASE));
426 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
427 		}
428 	}
429 #endif
430 }
431 
432 struct tcp_out_options {
433 	u16 options;		/* bit field of OPTION_* */
434 	u16 mss;		/* 0 to disable */
435 	u8 ws;			/* window scale, 0 to disable */
436 	u8 num_sack_blocks;	/* number of SACK blocks to include */
437 	u8 hash_size;		/* bytes in hash_location */
438 	__u8 *hash_location;	/* temporary pointer, overloaded */
439 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
440 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
441 };
442 
443 /* Write previously computed TCP options to the packet.
444  *
445  * Beware: Something in the Internet is very sensitive to the ordering of
446  * TCP options, we learned this through the hard way, so be careful here.
447  * Luckily we can at least blame others for their non-compliance but from
448  * inter-operability perspective it seems that we're somewhat stuck with
449  * the ordering which we have been using if we want to keep working with
450  * those broken things (not that it currently hurts anybody as there isn't
451  * particular reason why the ordering would need to be changed).
452  *
453  * At least SACK_PERM as the first option is known to lead to a disaster
454  * (but it may well be that other scenarios fail similarly).
455  */
456 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
457 			      struct tcp_out_options *opts)
458 {
459 	u16 options = opts->options;	/* mungable copy */
460 
461 	if (unlikely(OPTION_MD5 & options)) {
462 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
463 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
464 		/* overload cookie hash location */
465 		opts->hash_location = (__u8 *)ptr;
466 		ptr += 4;
467 	}
468 
469 	if (unlikely(opts->mss)) {
470 		*ptr++ = htonl((TCPOPT_MSS << 24) |
471 			       (TCPOLEN_MSS << 16) |
472 			       opts->mss);
473 	}
474 
475 	if (likely(OPTION_TS & options)) {
476 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
477 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
478 				       (TCPOLEN_SACK_PERM << 16) |
479 				       (TCPOPT_TIMESTAMP << 8) |
480 				       TCPOLEN_TIMESTAMP);
481 			options &= ~OPTION_SACK_ADVERTISE;
482 		} else {
483 			*ptr++ = htonl((TCPOPT_NOP << 24) |
484 				       (TCPOPT_NOP << 16) |
485 				       (TCPOPT_TIMESTAMP << 8) |
486 				       TCPOLEN_TIMESTAMP);
487 		}
488 		*ptr++ = htonl(opts->tsval);
489 		*ptr++ = htonl(opts->tsecr);
490 	}
491 
492 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
493 		*ptr++ = htonl((TCPOPT_NOP << 24) |
494 			       (TCPOPT_NOP << 16) |
495 			       (TCPOPT_SACK_PERM << 8) |
496 			       TCPOLEN_SACK_PERM);
497 	}
498 
499 	if (unlikely(OPTION_WSCALE & options)) {
500 		*ptr++ = htonl((TCPOPT_NOP << 24) |
501 			       (TCPOPT_WINDOW << 16) |
502 			       (TCPOLEN_WINDOW << 8) |
503 			       opts->ws);
504 	}
505 
506 	if (unlikely(opts->num_sack_blocks)) {
507 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
508 			tp->duplicate_sack : tp->selective_acks;
509 		int this_sack;
510 
511 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
512 			       (TCPOPT_NOP  << 16) |
513 			       (TCPOPT_SACK <<  8) |
514 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
515 						     TCPOLEN_SACK_PERBLOCK)));
516 
517 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
518 		     ++this_sack) {
519 			*ptr++ = htonl(sp[this_sack].start_seq);
520 			*ptr++ = htonl(sp[this_sack].end_seq);
521 		}
522 
523 		tp->rx_opt.dsack = 0;
524 	}
525 
526 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
527 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
528 		u8 *p = (u8 *)ptr;
529 		u32 len; /* Fast Open option length */
530 
531 		if (foc->exp) {
532 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
533 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
534 				     TCPOPT_FASTOPEN_MAGIC);
535 			p += TCPOLEN_EXP_FASTOPEN_BASE;
536 		} else {
537 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
538 			*p++ = TCPOPT_FASTOPEN;
539 			*p++ = len;
540 		}
541 
542 		memcpy(p, foc->val, foc->len);
543 		if ((len & 3) == 2) {
544 			p[foc->len] = TCPOPT_NOP;
545 			p[foc->len + 1] = TCPOPT_NOP;
546 		}
547 		ptr += (len + 3) >> 2;
548 	}
549 
550 	smc_options_write(ptr, &options);
551 }
552 
553 static void smc_set_option(const struct tcp_sock *tp,
554 			   struct tcp_out_options *opts,
555 			   unsigned int *remaining)
556 {
557 #if IS_ENABLED(CONFIG_SMC)
558 	if (static_branch_unlikely(&tcp_have_smc)) {
559 		if (tp->syn_smc) {
560 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
561 				opts->options |= OPTION_SMC;
562 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
563 			}
564 		}
565 	}
566 #endif
567 }
568 
569 static void smc_set_option_cond(const struct tcp_sock *tp,
570 				const struct inet_request_sock *ireq,
571 				struct tcp_out_options *opts,
572 				unsigned int *remaining)
573 {
574 #if IS_ENABLED(CONFIG_SMC)
575 	if (static_branch_unlikely(&tcp_have_smc)) {
576 		if (tp->syn_smc && ireq->smc_ok) {
577 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
578 				opts->options |= OPTION_SMC;
579 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
580 			}
581 		}
582 	}
583 #endif
584 }
585 
586 /* Compute TCP options for SYN packets. This is not the final
587  * network wire format yet.
588  */
589 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
590 				struct tcp_out_options *opts,
591 				struct tcp_md5sig_key **md5)
592 {
593 	struct tcp_sock *tp = tcp_sk(sk);
594 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
595 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
596 
597 	*md5 = NULL;
598 #ifdef CONFIG_TCP_MD5SIG
599 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
600 		*md5 = tp->af_specific->md5_lookup(sk, sk);
601 		if (*md5) {
602 			opts->options |= OPTION_MD5;
603 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
604 		}
605 	}
606 #endif
607 
608 	/* We always get an MSS option.  The option bytes which will be seen in
609 	 * normal data packets should timestamps be used, must be in the MSS
610 	 * advertised.  But we subtract them from tp->mss_cache so that
611 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
612 	 * fact here if necessary.  If we don't do this correctly, as a
613 	 * receiver we won't recognize data packets as being full sized when we
614 	 * should, and thus we won't abide by the delayed ACK rules correctly.
615 	 * SACKs don't matter, we never delay an ACK when we have any of those
616 	 * going out.  */
617 	opts->mss = tcp_advertise_mss(sk);
618 	remaining -= TCPOLEN_MSS_ALIGNED;
619 
620 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
621 		opts->options |= OPTION_TS;
622 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
623 		opts->tsecr = tp->rx_opt.ts_recent;
624 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
625 	}
626 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
627 		opts->ws = tp->rx_opt.rcv_wscale;
628 		opts->options |= OPTION_WSCALE;
629 		remaining -= TCPOLEN_WSCALE_ALIGNED;
630 	}
631 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
632 		opts->options |= OPTION_SACK_ADVERTISE;
633 		if (unlikely(!(OPTION_TS & opts->options)))
634 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
635 	}
636 
637 	if (fastopen && fastopen->cookie.len >= 0) {
638 		u32 need = fastopen->cookie.len;
639 
640 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
641 					       TCPOLEN_FASTOPEN_BASE;
642 		need = (need + 3) & ~3U;  /* Align to 32 bits */
643 		if (remaining >= need) {
644 			opts->options |= OPTION_FAST_OPEN_COOKIE;
645 			opts->fastopen_cookie = &fastopen->cookie;
646 			remaining -= need;
647 			tp->syn_fastopen = 1;
648 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
649 		}
650 	}
651 
652 	smc_set_option(tp, opts, &remaining);
653 
654 	return MAX_TCP_OPTION_SPACE - remaining;
655 }
656 
657 /* Set up TCP options for SYN-ACKs. */
658 static unsigned int tcp_synack_options(const struct sock *sk,
659 				       struct request_sock *req,
660 				       unsigned int mss, struct sk_buff *skb,
661 				       struct tcp_out_options *opts,
662 				       const struct tcp_md5sig_key *md5,
663 				       struct tcp_fastopen_cookie *foc)
664 {
665 	struct inet_request_sock *ireq = inet_rsk(req);
666 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
667 
668 #ifdef CONFIG_TCP_MD5SIG
669 	if (md5) {
670 		opts->options |= OPTION_MD5;
671 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
672 
673 		/* We can't fit any SACK blocks in a packet with MD5 + TS
674 		 * options. There was discussion about disabling SACK
675 		 * rather than TS in order to fit in better with old,
676 		 * buggy kernels, but that was deemed to be unnecessary.
677 		 */
678 		ireq->tstamp_ok &= !ireq->sack_ok;
679 	}
680 #endif
681 
682 	/* We always send an MSS option. */
683 	opts->mss = mss;
684 	remaining -= TCPOLEN_MSS_ALIGNED;
685 
686 	if (likely(ireq->wscale_ok)) {
687 		opts->ws = ireq->rcv_wscale;
688 		opts->options |= OPTION_WSCALE;
689 		remaining -= TCPOLEN_WSCALE_ALIGNED;
690 	}
691 	if (likely(ireq->tstamp_ok)) {
692 		opts->options |= OPTION_TS;
693 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
694 		opts->tsecr = req->ts_recent;
695 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
696 	}
697 	if (likely(ireq->sack_ok)) {
698 		opts->options |= OPTION_SACK_ADVERTISE;
699 		if (unlikely(!ireq->tstamp_ok))
700 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
701 	}
702 	if (foc != NULL && foc->len >= 0) {
703 		u32 need = foc->len;
704 
705 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
706 				   TCPOLEN_FASTOPEN_BASE;
707 		need = (need + 3) & ~3U;  /* Align to 32 bits */
708 		if (remaining >= need) {
709 			opts->options |= OPTION_FAST_OPEN_COOKIE;
710 			opts->fastopen_cookie = foc;
711 			remaining -= need;
712 		}
713 	}
714 
715 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
716 
717 	return MAX_TCP_OPTION_SPACE - remaining;
718 }
719 
720 /* Compute TCP options for ESTABLISHED sockets. This is not the
721  * final wire format yet.
722  */
723 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
724 					struct tcp_out_options *opts,
725 					struct tcp_md5sig_key **md5)
726 {
727 	struct tcp_sock *tp = tcp_sk(sk);
728 	unsigned int size = 0;
729 	unsigned int eff_sacks;
730 
731 	opts->options = 0;
732 
733 	*md5 = NULL;
734 #ifdef CONFIG_TCP_MD5SIG
735 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
736 		*md5 = tp->af_specific->md5_lookup(sk, sk);
737 		if (*md5) {
738 			opts->options |= OPTION_MD5;
739 			size += TCPOLEN_MD5SIG_ALIGNED;
740 		}
741 	}
742 #endif
743 
744 	if (likely(tp->rx_opt.tstamp_ok)) {
745 		opts->options |= OPTION_TS;
746 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
747 		opts->tsecr = tp->rx_opt.ts_recent;
748 		size += TCPOLEN_TSTAMP_ALIGNED;
749 	}
750 
751 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
752 	if (unlikely(eff_sacks)) {
753 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
754 		opts->num_sack_blocks =
755 			min_t(unsigned int, eff_sacks,
756 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
757 			      TCPOLEN_SACK_PERBLOCK);
758 		size += TCPOLEN_SACK_BASE_ALIGNED +
759 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
760 	}
761 
762 	return size;
763 }
764 
765 
766 /* TCP SMALL QUEUES (TSQ)
767  *
768  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
769  * to reduce RTT and bufferbloat.
770  * We do this using a special skb destructor (tcp_wfree).
771  *
772  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
773  * needs to be reallocated in a driver.
774  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
775  *
776  * Since transmit from skb destructor is forbidden, we use a tasklet
777  * to process all sockets that eventually need to send more skbs.
778  * We use one tasklet per cpu, with its own queue of sockets.
779  */
780 struct tsq_tasklet {
781 	struct tasklet_struct	tasklet;
782 	struct list_head	head; /* queue of tcp sockets */
783 };
784 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
785 
786 static void tcp_tsq_write(struct sock *sk)
787 {
788 	if ((1 << sk->sk_state) &
789 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
790 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
791 		struct tcp_sock *tp = tcp_sk(sk);
792 
793 		if (tp->lost_out > tp->retrans_out &&
794 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
795 			tcp_mstamp_refresh(tp);
796 			tcp_xmit_retransmit_queue(sk);
797 		}
798 
799 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
800 			       0, GFP_ATOMIC);
801 	}
802 }
803 
804 static void tcp_tsq_handler(struct sock *sk)
805 {
806 	bh_lock_sock(sk);
807 	if (!sock_owned_by_user(sk))
808 		tcp_tsq_write(sk);
809 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
810 		sock_hold(sk);
811 	bh_unlock_sock(sk);
812 }
813 /*
814  * One tasklet per cpu tries to send more skbs.
815  * We run in tasklet context but need to disable irqs when
816  * transferring tsq->head because tcp_wfree() might
817  * interrupt us (non NAPI drivers)
818  */
819 static void tcp_tasklet_func(unsigned long data)
820 {
821 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
822 	LIST_HEAD(list);
823 	unsigned long flags;
824 	struct list_head *q, *n;
825 	struct tcp_sock *tp;
826 	struct sock *sk;
827 
828 	local_irq_save(flags);
829 	list_splice_init(&tsq->head, &list);
830 	local_irq_restore(flags);
831 
832 	list_for_each_safe(q, n, &list) {
833 		tp = list_entry(q, struct tcp_sock, tsq_node);
834 		list_del(&tp->tsq_node);
835 
836 		sk = (struct sock *)tp;
837 		smp_mb__before_atomic();
838 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
839 
840 		tcp_tsq_handler(sk);
841 		sk_free(sk);
842 	}
843 }
844 
845 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
846 			  TCPF_WRITE_TIMER_DEFERRED |	\
847 			  TCPF_DELACK_TIMER_DEFERRED |	\
848 			  TCPF_MTU_REDUCED_DEFERRED)
849 /**
850  * tcp_release_cb - tcp release_sock() callback
851  * @sk: socket
852  *
853  * called from release_sock() to perform protocol dependent
854  * actions before socket release.
855  */
856 void tcp_release_cb(struct sock *sk)
857 {
858 	unsigned long flags, nflags;
859 
860 	/* perform an atomic operation only if at least one flag is set */
861 	do {
862 		flags = sk->sk_tsq_flags;
863 		if (!(flags & TCP_DEFERRED_ALL))
864 			return;
865 		nflags = flags & ~TCP_DEFERRED_ALL;
866 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
867 
868 	if (flags & TCPF_TSQ_DEFERRED) {
869 		tcp_tsq_write(sk);
870 		__sock_put(sk);
871 	}
872 	/* Here begins the tricky part :
873 	 * We are called from release_sock() with :
874 	 * 1) BH disabled
875 	 * 2) sk_lock.slock spinlock held
876 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
877 	 *
878 	 * But following code is meant to be called from BH handlers,
879 	 * so we should keep BH disabled, but early release socket ownership
880 	 */
881 	sock_release_ownership(sk);
882 
883 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
884 		tcp_write_timer_handler(sk);
885 		__sock_put(sk);
886 	}
887 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
888 		tcp_delack_timer_handler(sk);
889 		__sock_put(sk);
890 	}
891 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
892 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
893 		__sock_put(sk);
894 	}
895 }
896 EXPORT_SYMBOL(tcp_release_cb);
897 
898 void __init tcp_tasklet_init(void)
899 {
900 	int i;
901 
902 	for_each_possible_cpu(i) {
903 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
904 
905 		INIT_LIST_HEAD(&tsq->head);
906 		tasklet_init(&tsq->tasklet,
907 			     tcp_tasklet_func,
908 			     (unsigned long)tsq);
909 	}
910 }
911 
912 /*
913  * Write buffer destructor automatically called from kfree_skb.
914  * We can't xmit new skbs from this context, as we might already
915  * hold qdisc lock.
916  */
917 void tcp_wfree(struct sk_buff *skb)
918 {
919 	struct sock *sk = skb->sk;
920 	struct tcp_sock *tp = tcp_sk(sk);
921 	unsigned long flags, nval, oval;
922 
923 	/* Keep one reference on sk_wmem_alloc.
924 	 * Will be released by sk_free() from here or tcp_tasklet_func()
925 	 */
926 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
927 
928 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
929 	 * Wait until our queues (qdisc + devices) are drained.
930 	 * This gives :
931 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
932 	 * - chance for incoming ACK (processed by another cpu maybe)
933 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
934 	 */
935 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
936 		goto out;
937 
938 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
939 		struct tsq_tasklet *tsq;
940 		bool empty;
941 
942 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
943 			goto out;
944 
945 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
946 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
947 		if (nval != oval)
948 			continue;
949 
950 		/* queue this socket to tasklet queue */
951 		local_irq_save(flags);
952 		tsq = this_cpu_ptr(&tsq_tasklet);
953 		empty = list_empty(&tsq->head);
954 		list_add(&tp->tsq_node, &tsq->head);
955 		if (empty)
956 			tasklet_schedule(&tsq->tasklet);
957 		local_irq_restore(flags);
958 		return;
959 	}
960 out:
961 	sk_free(sk);
962 }
963 
964 /* Note: Called under soft irq.
965  * We can call TCP stack right away, unless socket is owned by user.
966  */
967 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
968 {
969 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
970 	struct sock *sk = (struct sock *)tp;
971 
972 	tcp_tsq_handler(sk);
973 	sock_put(sk);
974 
975 	return HRTIMER_NORESTART;
976 }
977 
978 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
979 				      u64 prior_wstamp)
980 {
981 	struct tcp_sock *tp = tcp_sk(sk);
982 
983 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
984 	if (sk->sk_pacing_status != SK_PACING_NONE) {
985 		unsigned long rate = sk->sk_pacing_rate;
986 
987 		/* Original sch_fq does not pace first 10 MSS
988 		 * Note that tp->data_segs_out overflows after 2^32 packets,
989 		 * this is a minor annoyance.
990 		 */
991 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
992 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
993 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
994 
995 			/* take into account OS jitter */
996 			len_ns -= min_t(u64, len_ns / 2, credit);
997 			tp->tcp_wstamp_ns += len_ns;
998 		}
999 	}
1000 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1001 }
1002 
1003 /* This routine actually transmits TCP packets queued in by
1004  * tcp_do_sendmsg().  This is used by both the initial
1005  * transmission and possible later retransmissions.
1006  * All SKB's seen here are completely headerless.  It is our
1007  * job to build the TCP header, and pass the packet down to
1008  * IP so it can do the same plus pass the packet off to the
1009  * device.
1010  *
1011  * We are working here with either a clone of the original
1012  * SKB, or a fresh unique copy made by the retransmit engine.
1013  */
1014 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1015 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1016 {
1017 	const struct inet_connection_sock *icsk = inet_csk(sk);
1018 	struct inet_sock *inet;
1019 	struct tcp_sock *tp;
1020 	struct tcp_skb_cb *tcb;
1021 	struct tcp_out_options opts;
1022 	unsigned int tcp_options_size, tcp_header_size;
1023 	struct sk_buff *oskb = NULL;
1024 	struct tcp_md5sig_key *md5;
1025 	struct tcphdr *th;
1026 	u64 prior_wstamp;
1027 	int err;
1028 
1029 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1030 	tp = tcp_sk(sk);
1031 
1032 	if (clone_it) {
1033 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1034 			- tp->snd_una;
1035 		oskb = skb;
1036 
1037 		tcp_skb_tsorted_save(oskb) {
1038 			if (unlikely(skb_cloned(oskb)))
1039 				skb = pskb_copy(oskb, gfp_mask);
1040 			else
1041 				skb = skb_clone(oskb, gfp_mask);
1042 		} tcp_skb_tsorted_restore(oskb);
1043 
1044 		if (unlikely(!skb))
1045 			return -ENOBUFS;
1046 	}
1047 
1048 	prior_wstamp = tp->tcp_wstamp_ns;
1049 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1050 
1051 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1052 
1053 	inet = inet_sk(sk);
1054 	tcb = TCP_SKB_CB(skb);
1055 	memset(&opts, 0, sizeof(opts));
1056 
1057 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1058 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1059 	else
1060 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1061 							   &md5);
1062 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1063 
1064 	/* if no packet is in qdisc/device queue, then allow XPS to select
1065 	 * another queue. We can be called from tcp_tsq_handler()
1066 	 * which holds one reference to sk.
1067 	 *
1068 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1069 	 * One way to get this would be to set skb->truesize = 2 on them.
1070 	 */
1071 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1072 
1073 	/* If we had to use memory reserve to allocate this skb,
1074 	 * this might cause drops if packet is looped back :
1075 	 * Other socket might not have SOCK_MEMALLOC.
1076 	 * Packets not looped back do not care about pfmemalloc.
1077 	 */
1078 	skb->pfmemalloc = 0;
1079 
1080 	skb_push(skb, tcp_header_size);
1081 	skb_reset_transport_header(skb);
1082 
1083 	skb_orphan(skb);
1084 	skb->sk = sk;
1085 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1086 	skb_set_hash_from_sk(skb, sk);
1087 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1088 
1089 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1090 
1091 	/* Build TCP header and checksum it. */
1092 	th = (struct tcphdr *)skb->data;
1093 	th->source		= inet->inet_sport;
1094 	th->dest		= inet->inet_dport;
1095 	th->seq			= htonl(tcb->seq);
1096 	th->ack_seq		= htonl(rcv_nxt);
1097 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1098 					tcb->tcp_flags);
1099 
1100 	th->check		= 0;
1101 	th->urg_ptr		= 0;
1102 
1103 	/* The urg_mode check is necessary during a below snd_una win probe */
1104 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1105 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1106 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1107 			th->urg = 1;
1108 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1109 			th->urg_ptr = htons(0xFFFF);
1110 			th->urg = 1;
1111 		}
1112 	}
1113 
1114 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1115 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1116 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1117 		th->window      = htons(tcp_select_window(sk));
1118 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1119 	} else {
1120 		/* RFC1323: The window in SYN & SYN/ACK segments
1121 		 * is never scaled.
1122 		 */
1123 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1124 	}
1125 #ifdef CONFIG_TCP_MD5SIG
1126 	/* Calculate the MD5 hash, as we have all we need now */
1127 	if (md5) {
1128 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1129 		tp->af_specific->calc_md5_hash(opts.hash_location,
1130 					       md5, sk, skb);
1131 	}
1132 #endif
1133 
1134 	icsk->icsk_af_ops->send_check(sk, skb);
1135 
1136 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1137 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1138 
1139 	if (skb->len != tcp_header_size) {
1140 		tcp_event_data_sent(tp, sk);
1141 		tp->data_segs_out += tcp_skb_pcount(skb);
1142 		tp->bytes_sent += skb->len - tcp_header_size;
1143 	}
1144 
1145 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1146 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1147 			      tcp_skb_pcount(skb));
1148 
1149 	tp->segs_out += tcp_skb_pcount(skb);
1150 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1151 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1152 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1153 
1154 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1155 
1156 	/* Cleanup our debris for IP stacks */
1157 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1158 			       sizeof(struct inet6_skb_parm)));
1159 
1160 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1161 
1162 	if (unlikely(err > 0)) {
1163 		tcp_enter_cwr(sk);
1164 		err = net_xmit_eval(err);
1165 	}
1166 	if (!err && oskb) {
1167 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1168 		tcp_rate_skb_sent(sk, oskb);
1169 	}
1170 	return err;
1171 }
1172 
1173 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1174 			    gfp_t gfp_mask)
1175 {
1176 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1177 				  tcp_sk(sk)->rcv_nxt);
1178 }
1179 
1180 /* This routine just queues the buffer for sending.
1181  *
1182  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1183  * otherwise socket can stall.
1184  */
1185 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1186 {
1187 	struct tcp_sock *tp = tcp_sk(sk);
1188 
1189 	/* Advance write_seq and place onto the write_queue. */
1190 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1191 	__skb_header_release(skb);
1192 	tcp_add_write_queue_tail(sk, skb);
1193 	sk->sk_wmem_queued += skb->truesize;
1194 	sk_mem_charge(sk, skb->truesize);
1195 }
1196 
1197 /* Initialize TSO segments for a packet. */
1198 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1199 {
1200 	if (skb->len <= mss_now) {
1201 		/* Avoid the costly divide in the normal
1202 		 * non-TSO case.
1203 		 */
1204 		tcp_skb_pcount_set(skb, 1);
1205 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1206 	} else {
1207 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1208 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1209 	}
1210 }
1211 
1212 /* Pcount in the middle of the write queue got changed, we need to do various
1213  * tweaks to fix counters
1214  */
1215 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1216 {
1217 	struct tcp_sock *tp = tcp_sk(sk);
1218 
1219 	tp->packets_out -= decr;
1220 
1221 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1222 		tp->sacked_out -= decr;
1223 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1224 		tp->retrans_out -= decr;
1225 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1226 		tp->lost_out -= decr;
1227 
1228 	/* Reno case is special. Sigh... */
1229 	if (tcp_is_reno(tp) && decr > 0)
1230 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1231 
1232 	if (tp->lost_skb_hint &&
1233 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1234 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1235 		tp->lost_cnt_hint -= decr;
1236 
1237 	tcp_verify_left_out(tp);
1238 }
1239 
1240 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1241 {
1242 	return TCP_SKB_CB(skb)->txstamp_ack ||
1243 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1244 }
1245 
1246 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1247 {
1248 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1249 
1250 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1251 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1252 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1253 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1254 
1255 		shinfo->tx_flags &= ~tsflags;
1256 		shinfo2->tx_flags |= tsflags;
1257 		swap(shinfo->tskey, shinfo2->tskey);
1258 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1259 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1260 	}
1261 }
1262 
1263 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1264 {
1265 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1266 	TCP_SKB_CB(skb)->eor = 0;
1267 }
1268 
1269 /* Insert buff after skb on the write or rtx queue of sk.  */
1270 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1271 					 struct sk_buff *buff,
1272 					 struct sock *sk,
1273 					 enum tcp_queue tcp_queue)
1274 {
1275 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1276 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1277 	else
1278 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1279 }
1280 
1281 /* Function to create two new TCP segments.  Shrinks the given segment
1282  * to the specified size and appends a new segment with the rest of the
1283  * packet to the list.  This won't be called frequently, I hope.
1284  * Remember, these are still headerless SKBs at this point.
1285  */
1286 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1287 		 struct sk_buff *skb, u32 len,
1288 		 unsigned int mss_now, gfp_t gfp)
1289 {
1290 	struct tcp_sock *tp = tcp_sk(sk);
1291 	struct sk_buff *buff;
1292 	int nsize, old_factor;
1293 	int nlen;
1294 	u8 flags;
1295 
1296 	if (WARN_ON(len > skb->len))
1297 		return -EINVAL;
1298 
1299 	nsize = skb_headlen(skb) - len;
1300 	if (nsize < 0)
1301 		nsize = 0;
1302 
1303 	if (skb_unclone(skb, gfp))
1304 		return -ENOMEM;
1305 
1306 	/* Get a new skb... force flag on. */
1307 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1308 	if (!buff)
1309 		return -ENOMEM; /* We'll just try again later. */
1310 
1311 	sk->sk_wmem_queued += buff->truesize;
1312 	sk_mem_charge(sk, buff->truesize);
1313 	nlen = skb->len - len - nsize;
1314 	buff->truesize += nlen;
1315 	skb->truesize -= nlen;
1316 
1317 	/* Correct the sequence numbers. */
1318 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1319 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1320 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1321 
1322 	/* PSH and FIN should only be set in the second packet. */
1323 	flags = TCP_SKB_CB(skb)->tcp_flags;
1324 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1325 	TCP_SKB_CB(buff)->tcp_flags = flags;
1326 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1327 	tcp_skb_fragment_eor(skb, buff);
1328 
1329 	skb_split(skb, buff, len);
1330 
1331 	buff->ip_summed = CHECKSUM_PARTIAL;
1332 
1333 	buff->tstamp = skb->tstamp;
1334 	tcp_fragment_tstamp(skb, buff);
1335 
1336 	old_factor = tcp_skb_pcount(skb);
1337 
1338 	/* Fix up tso_factor for both original and new SKB.  */
1339 	tcp_set_skb_tso_segs(skb, mss_now);
1340 	tcp_set_skb_tso_segs(buff, mss_now);
1341 
1342 	/* Update delivered info for the new segment */
1343 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1344 
1345 	/* If this packet has been sent out already, we must
1346 	 * adjust the various packet counters.
1347 	 */
1348 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1349 		int diff = old_factor - tcp_skb_pcount(skb) -
1350 			tcp_skb_pcount(buff);
1351 
1352 		if (diff)
1353 			tcp_adjust_pcount(sk, skb, diff);
1354 	}
1355 
1356 	/* Link BUFF into the send queue. */
1357 	__skb_header_release(buff);
1358 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1359 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1360 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1361 
1362 	return 0;
1363 }
1364 
1365 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1366  * data is not copied, but immediately discarded.
1367  */
1368 static int __pskb_trim_head(struct sk_buff *skb, int len)
1369 {
1370 	struct skb_shared_info *shinfo;
1371 	int i, k, eat;
1372 
1373 	eat = min_t(int, len, skb_headlen(skb));
1374 	if (eat) {
1375 		__skb_pull(skb, eat);
1376 		len -= eat;
1377 		if (!len)
1378 			return 0;
1379 	}
1380 	eat = len;
1381 	k = 0;
1382 	shinfo = skb_shinfo(skb);
1383 	for (i = 0; i < shinfo->nr_frags; i++) {
1384 		int size = skb_frag_size(&shinfo->frags[i]);
1385 
1386 		if (size <= eat) {
1387 			skb_frag_unref(skb, i);
1388 			eat -= size;
1389 		} else {
1390 			shinfo->frags[k] = shinfo->frags[i];
1391 			if (eat) {
1392 				shinfo->frags[k].page_offset += eat;
1393 				skb_frag_size_sub(&shinfo->frags[k], eat);
1394 				eat = 0;
1395 			}
1396 			k++;
1397 		}
1398 	}
1399 	shinfo->nr_frags = k;
1400 
1401 	skb->data_len -= len;
1402 	skb->len = skb->data_len;
1403 	return len;
1404 }
1405 
1406 /* Remove acked data from a packet in the transmit queue. */
1407 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1408 {
1409 	u32 delta_truesize;
1410 
1411 	if (skb_unclone(skb, GFP_ATOMIC))
1412 		return -ENOMEM;
1413 
1414 	delta_truesize = __pskb_trim_head(skb, len);
1415 
1416 	TCP_SKB_CB(skb)->seq += len;
1417 	skb->ip_summed = CHECKSUM_PARTIAL;
1418 
1419 	if (delta_truesize) {
1420 		skb->truesize	   -= delta_truesize;
1421 		sk->sk_wmem_queued -= delta_truesize;
1422 		sk_mem_uncharge(sk, delta_truesize);
1423 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1424 	}
1425 
1426 	/* Any change of skb->len requires recalculation of tso factor. */
1427 	if (tcp_skb_pcount(skb) > 1)
1428 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1429 
1430 	return 0;
1431 }
1432 
1433 /* Calculate MSS not accounting any TCP options.  */
1434 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1435 {
1436 	const struct tcp_sock *tp = tcp_sk(sk);
1437 	const struct inet_connection_sock *icsk = inet_csk(sk);
1438 	int mss_now;
1439 
1440 	/* Calculate base mss without TCP options:
1441 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1442 	 */
1443 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1444 
1445 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1446 	if (icsk->icsk_af_ops->net_frag_header_len) {
1447 		const struct dst_entry *dst = __sk_dst_get(sk);
1448 
1449 		if (dst && dst_allfrag(dst))
1450 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1451 	}
1452 
1453 	/* Clamp it (mss_clamp does not include tcp options) */
1454 	if (mss_now > tp->rx_opt.mss_clamp)
1455 		mss_now = tp->rx_opt.mss_clamp;
1456 
1457 	/* Now subtract optional transport overhead */
1458 	mss_now -= icsk->icsk_ext_hdr_len;
1459 
1460 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1461 	if (mss_now < 48)
1462 		mss_now = 48;
1463 	return mss_now;
1464 }
1465 
1466 /* Calculate MSS. Not accounting for SACKs here.  */
1467 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1468 {
1469 	/* Subtract TCP options size, not including SACKs */
1470 	return __tcp_mtu_to_mss(sk, pmtu) -
1471 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1472 }
1473 
1474 /* Inverse of above */
1475 int tcp_mss_to_mtu(struct sock *sk, int mss)
1476 {
1477 	const struct tcp_sock *tp = tcp_sk(sk);
1478 	const struct inet_connection_sock *icsk = inet_csk(sk);
1479 	int mtu;
1480 
1481 	mtu = mss +
1482 	      tp->tcp_header_len +
1483 	      icsk->icsk_ext_hdr_len +
1484 	      icsk->icsk_af_ops->net_header_len;
1485 
1486 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1487 	if (icsk->icsk_af_ops->net_frag_header_len) {
1488 		const struct dst_entry *dst = __sk_dst_get(sk);
1489 
1490 		if (dst && dst_allfrag(dst))
1491 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1492 	}
1493 	return mtu;
1494 }
1495 EXPORT_SYMBOL(tcp_mss_to_mtu);
1496 
1497 /* MTU probing init per socket */
1498 void tcp_mtup_init(struct sock *sk)
1499 {
1500 	struct tcp_sock *tp = tcp_sk(sk);
1501 	struct inet_connection_sock *icsk = inet_csk(sk);
1502 	struct net *net = sock_net(sk);
1503 
1504 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1505 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1506 			       icsk->icsk_af_ops->net_header_len;
1507 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1508 	icsk->icsk_mtup.probe_size = 0;
1509 	if (icsk->icsk_mtup.enabled)
1510 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1511 }
1512 EXPORT_SYMBOL(tcp_mtup_init);
1513 
1514 /* This function synchronize snd mss to current pmtu/exthdr set.
1515 
1516    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1517    for TCP options, but includes only bare TCP header.
1518 
1519    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1520    It is minimum of user_mss and mss received with SYN.
1521    It also does not include TCP options.
1522 
1523    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1524 
1525    tp->mss_cache is current effective sending mss, including
1526    all tcp options except for SACKs. It is evaluated,
1527    taking into account current pmtu, but never exceeds
1528    tp->rx_opt.mss_clamp.
1529 
1530    NOTE1. rfc1122 clearly states that advertised MSS
1531    DOES NOT include either tcp or ip options.
1532 
1533    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1534    are READ ONLY outside this function.		--ANK (980731)
1535  */
1536 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1537 {
1538 	struct tcp_sock *tp = tcp_sk(sk);
1539 	struct inet_connection_sock *icsk = inet_csk(sk);
1540 	int mss_now;
1541 
1542 	if (icsk->icsk_mtup.search_high > pmtu)
1543 		icsk->icsk_mtup.search_high = pmtu;
1544 
1545 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1546 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1547 
1548 	/* And store cached results */
1549 	icsk->icsk_pmtu_cookie = pmtu;
1550 	if (icsk->icsk_mtup.enabled)
1551 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1552 	tp->mss_cache = mss_now;
1553 
1554 	return mss_now;
1555 }
1556 EXPORT_SYMBOL(tcp_sync_mss);
1557 
1558 /* Compute the current effective MSS, taking SACKs and IP options,
1559  * and even PMTU discovery events into account.
1560  */
1561 unsigned int tcp_current_mss(struct sock *sk)
1562 {
1563 	const struct tcp_sock *tp = tcp_sk(sk);
1564 	const struct dst_entry *dst = __sk_dst_get(sk);
1565 	u32 mss_now;
1566 	unsigned int header_len;
1567 	struct tcp_out_options opts;
1568 	struct tcp_md5sig_key *md5;
1569 
1570 	mss_now = tp->mss_cache;
1571 
1572 	if (dst) {
1573 		u32 mtu = dst_mtu(dst);
1574 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1575 			mss_now = tcp_sync_mss(sk, mtu);
1576 	}
1577 
1578 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1579 		     sizeof(struct tcphdr);
1580 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1581 	 * some common options. If this is an odd packet (because we have SACK
1582 	 * blocks etc) then our calculated header_len will be different, and
1583 	 * we have to adjust mss_now correspondingly */
1584 	if (header_len != tp->tcp_header_len) {
1585 		int delta = (int) header_len - tp->tcp_header_len;
1586 		mss_now -= delta;
1587 	}
1588 
1589 	return mss_now;
1590 }
1591 
1592 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1593  * As additional protections, we do not touch cwnd in retransmission phases,
1594  * and if application hit its sndbuf limit recently.
1595  */
1596 static void tcp_cwnd_application_limited(struct sock *sk)
1597 {
1598 	struct tcp_sock *tp = tcp_sk(sk);
1599 
1600 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1601 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1602 		/* Limited by application or receiver window. */
1603 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1604 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1605 		if (win_used < tp->snd_cwnd) {
1606 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1607 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1608 		}
1609 		tp->snd_cwnd_used = 0;
1610 	}
1611 	tp->snd_cwnd_stamp = tcp_jiffies32;
1612 }
1613 
1614 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1615 {
1616 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1617 	struct tcp_sock *tp = tcp_sk(sk);
1618 
1619 	/* Track the maximum number of outstanding packets in each
1620 	 * window, and remember whether we were cwnd-limited then.
1621 	 */
1622 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1623 	    tp->packets_out > tp->max_packets_out) {
1624 		tp->max_packets_out = tp->packets_out;
1625 		tp->max_packets_seq = tp->snd_nxt;
1626 		tp->is_cwnd_limited = is_cwnd_limited;
1627 	}
1628 
1629 	if (tcp_is_cwnd_limited(sk)) {
1630 		/* Network is feed fully. */
1631 		tp->snd_cwnd_used = 0;
1632 		tp->snd_cwnd_stamp = tcp_jiffies32;
1633 	} else {
1634 		/* Network starves. */
1635 		if (tp->packets_out > tp->snd_cwnd_used)
1636 			tp->snd_cwnd_used = tp->packets_out;
1637 
1638 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1639 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1640 		    !ca_ops->cong_control)
1641 			tcp_cwnd_application_limited(sk);
1642 
1643 		/* The following conditions together indicate the starvation
1644 		 * is caused by insufficient sender buffer:
1645 		 * 1) just sent some data (see tcp_write_xmit)
1646 		 * 2) not cwnd limited (this else condition)
1647 		 * 3) no more data to send (tcp_write_queue_empty())
1648 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1649 		 */
1650 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1651 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1652 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1653 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1654 	}
1655 }
1656 
1657 /* Minshall's variant of the Nagle send check. */
1658 static bool tcp_minshall_check(const struct tcp_sock *tp)
1659 {
1660 	return after(tp->snd_sml, tp->snd_una) &&
1661 		!after(tp->snd_sml, tp->snd_nxt);
1662 }
1663 
1664 /* Update snd_sml if this skb is under mss
1665  * Note that a TSO packet might end with a sub-mss segment
1666  * The test is really :
1667  * if ((skb->len % mss) != 0)
1668  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1669  * But we can avoid doing the divide again given we already have
1670  *  skb_pcount = skb->len / mss_now
1671  */
1672 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1673 				const struct sk_buff *skb)
1674 {
1675 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1676 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1677 }
1678 
1679 /* Return false, if packet can be sent now without violation Nagle's rules:
1680  * 1. It is full sized. (provided by caller in %partial bool)
1681  * 2. Or it contains FIN. (already checked by caller)
1682  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1683  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1684  *    With Minshall's modification: all sent small packets are ACKed.
1685  */
1686 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1687 			    int nonagle)
1688 {
1689 	return partial &&
1690 		((nonagle & TCP_NAGLE_CORK) ||
1691 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1692 }
1693 
1694 /* Return how many segs we'd like on a TSO packet,
1695  * to send one TSO packet per ms
1696  */
1697 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1698 			    int min_tso_segs)
1699 {
1700 	u32 bytes, segs;
1701 
1702 	bytes = min_t(unsigned long,
1703 		      sk->sk_pacing_rate >> sk->sk_pacing_shift,
1704 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1705 
1706 	/* Goal is to send at least one packet per ms,
1707 	 * not one big TSO packet every 100 ms.
1708 	 * This preserves ACK clocking and is consistent
1709 	 * with tcp_tso_should_defer() heuristic.
1710 	 */
1711 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1712 
1713 	return segs;
1714 }
1715 
1716 /* Return the number of segments we want in the skb we are transmitting.
1717  * See if congestion control module wants to decide; otherwise, autosize.
1718  */
1719 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1720 {
1721 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1722 	u32 min_tso, tso_segs;
1723 
1724 	min_tso = ca_ops->min_tso_segs ?
1725 			ca_ops->min_tso_segs(sk) :
1726 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1727 
1728 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1729 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1730 }
1731 
1732 /* Returns the portion of skb which can be sent right away */
1733 static unsigned int tcp_mss_split_point(const struct sock *sk,
1734 					const struct sk_buff *skb,
1735 					unsigned int mss_now,
1736 					unsigned int max_segs,
1737 					int nonagle)
1738 {
1739 	const struct tcp_sock *tp = tcp_sk(sk);
1740 	u32 partial, needed, window, max_len;
1741 
1742 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1743 	max_len = mss_now * max_segs;
1744 
1745 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1746 		return max_len;
1747 
1748 	needed = min(skb->len, window);
1749 
1750 	if (max_len <= needed)
1751 		return max_len;
1752 
1753 	partial = needed % mss_now;
1754 	/* If last segment is not a full MSS, check if Nagle rules allow us
1755 	 * to include this last segment in this skb.
1756 	 * Otherwise, we'll split the skb at last MSS boundary
1757 	 */
1758 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1759 		return needed - partial;
1760 
1761 	return needed;
1762 }
1763 
1764 /* Can at least one segment of SKB be sent right now, according to the
1765  * congestion window rules?  If so, return how many segments are allowed.
1766  */
1767 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1768 					 const struct sk_buff *skb)
1769 {
1770 	u32 in_flight, cwnd, halfcwnd;
1771 
1772 	/* Don't be strict about the congestion window for the final FIN.  */
1773 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1774 	    tcp_skb_pcount(skb) == 1)
1775 		return 1;
1776 
1777 	in_flight = tcp_packets_in_flight(tp);
1778 	cwnd = tp->snd_cwnd;
1779 	if (in_flight >= cwnd)
1780 		return 0;
1781 
1782 	/* For better scheduling, ensure we have at least
1783 	 * 2 GSO packets in flight.
1784 	 */
1785 	halfcwnd = max(cwnd >> 1, 1U);
1786 	return min(halfcwnd, cwnd - in_flight);
1787 }
1788 
1789 /* Initialize TSO state of a skb.
1790  * This must be invoked the first time we consider transmitting
1791  * SKB onto the wire.
1792  */
1793 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1794 {
1795 	int tso_segs = tcp_skb_pcount(skb);
1796 
1797 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1798 		tcp_set_skb_tso_segs(skb, mss_now);
1799 		tso_segs = tcp_skb_pcount(skb);
1800 	}
1801 	return tso_segs;
1802 }
1803 
1804 
1805 /* Return true if the Nagle test allows this packet to be
1806  * sent now.
1807  */
1808 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1809 				  unsigned int cur_mss, int nonagle)
1810 {
1811 	/* Nagle rule does not apply to frames, which sit in the middle of the
1812 	 * write_queue (they have no chances to get new data).
1813 	 *
1814 	 * This is implemented in the callers, where they modify the 'nonagle'
1815 	 * argument based upon the location of SKB in the send queue.
1816 	 */
1817 	if (nonagle & TCP_NAGLE_PUSH)
1818 		return true;
1819 
1820 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1821 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1822 		return true;
1823 
1824 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1825 		return true;
1826 
1827 	return false;
1828 }
1829 
1830 /* Does at least the first segment of SKB fit into the send window? */
1831 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1832 			     const struct sk_buff *skb,
1833 			     unsigned int cur_mss)
1834 {
1835 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1836 
1837 	if (skb->len > cur_mss)
1838 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1839 
1840 	return !after(end_seq, tcp_wnd_end(tp));
1841 }
1842 
1843 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1844  * which is put after SKB on the list.  It is very much like
1845  * tcp_fragment() except that it may make several kinds of assumptions
1846  * in order to speed up the splitting operation.  In particular, we
1847  * know that all the data is in scatter-gather pages, and that the
1848  * packet has never been sent out before (and thus is not cloned).
1849  */
1850 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1851 			struct sk_buff *skb, unsigned int len,
1852 			unsigned int mss_now, gfp_t gfp)
1853 {
1854 	struct sk_buff *buff;
1855 	int nlen = skb->len - len;
1856 	u8 flags;
1857 
1858 	/* All of a TSO frame must be composed of paged data.  */
1859 	if (skb->len != skb->data_len)
1860 		return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1861 
1862 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1863 	if (unlikely(!buff))
1864 		return -ENOMEM;
1865 
1866 	sk->sk_wmem_queued += buff->truesize;
1867 	sk_mem_charge(sk, buff->truesize);
1868 	buff->truesize += nlen;
1869 	skb->truesize -= nlen;
1870 
1871 	/* Correct the sequence numbers. */
1872 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1873 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1874 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1875 
1876 	/* PSH and FIN should only be set in the second packet. */
1877 	flags = TCP_SKB_CB(skb)->tcp_flags;
1878 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1879 	TCP_SKB_CB(buff)->tcp_flags = flags;
1880 
1881 	/* This packet was never sent out yet, so no SACK bits. */
1882 	TCP_SKB_CB(buff)->sacked = 0;
1883 
1884 	tcp_skb_fragment_eor(skb, buff);
1885 
1886 	buff->ip_summed = CHECKSUM_PARTIAL;
1887 	skb_split(skb, buff, len);
1888 	tcp_fragment_tstamp(skb, buff);
1889 
1890 	/* Fix up tso_factor for both original and new SKB.  */
1891 	tcp_set_skb_tso_segs(skb, mss_now);
1892 	tcp_set_skb_tso_segs(buff, mss_now);
1893 
1894 	/* Link BUFF into the send queue. */
1895 	__skb_header_release(buff);
1896 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1897 
1898 	return 0;
1899 }
1900 
1901 /* Try to defer sending, if possible, in order to minimize the amount
1902  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1903  *
1904  * This algorithm is from John Heffner.
1905  */
1906 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1907 				 bool *is_cwnd_limited,
1908 				 bool *is_rwnd_limited,
1909 				 u32 max_segs)
1910 {
1911 	const struct inet_connection_sock *icsk = inet_csk(sk);
1912 	u32 age, send_win, cong_win, limit, in_flight;
1913 	struct tcp_sock *tp = tcp_sk(sk);
1914 	struct sk_buff *head;
1915 	int win_divisor;
1916 
1917 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1918 		goto send_now;
1919 
1920 	/* Avoid bursty behavior by allowing defer
1921 	 * only if the last write was recent.
1922 	 */
1923 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1924 		goto send_now;
1925 
1926 	in_flight = tcp_packets_in_flight(tp);
1927 
1928 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1929 	BUG_ON(tp->snd_cwnd <= in_flight);
1930 
1931 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1932 
1933 	/* From in_flight test above, we know that cwnd > in_flight.  */
1934 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1935 
1936 	limit = min(send_win, cong_win);
1937 
1938 	/* If a full-sized TSO skb can be sent, do it. */
1939 	if (limit >= max_segs * tp->mss_cache)
1940 		goto send_now;
1941 
1942 	/* Middle in queue won't get any more data, full sendable already? */
1943 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1944 		goto send_now;
1945 
1946 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1947 	if (win_divisor) {
1948 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1949 
1950 		/* If at least some fraction of a window is available,
1951 		 * just use it.
1952 		 */
1953 		chunk /= win_divisor;
1954 		if (limit >= chunk)
1955 			goto send_now;
1956 	} else {
1957 		/* Different approach, try not to defer past a single
1958 		 * ACK.  Receiver should ACK every other full sized
1959 		 * frame, so if we have space for more than 3 frames
1960 		 * then send now.
1961 		 */
1962 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1963 			goto send_now;
1964 	}
1965 
1966 	/* TODO : use tsorted_sent_queue ? */
1967 	head = tcp_rtx_queue_head(sk);
1968 	if (!head)
1969 		goto send_now;
1970 	age = tcp_stamp_us_delta(tp->tcp_mstamp, tcp_skb_timestamp_us(head));
1971 	/* If next ACK is likely to come too late (half srtt), do not defer */
1972 	if (age < (tp->srtt_us >> 4))
1973 		goto send_now;
1974 
1975 	/* Ok, it looks like it is advisable to defer.
1976 	 * Three cases are tracked :
1977 	 * 1) We are cwnd-limited
1978 	 * 2) We are rwnd-limited
1979 	 * 3) We are application limited.
1980 	 */
1981 	if (cong_win < send_win) {
1982 		if (cong_win <= skb->len) {
1983 			*is_cwnd_limited = true;
1984 			return true;
1985 		}
1986 	} else {
1987 		if (send_win <= skb->len) {
1988 			*is_rwnd_limited = true;
1989 			return true;
1990 		}
1991 	}
1992 
1993 	/* If this packet won't get more data, do not wait. */
1994 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1995 		goto send_now;
1996 
1997 	return true;
1998 
1999 send_now:
2000 	return false;
2001 }
2002 
2003 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2004 {
2005 	struct inet_connection_sock *icsk = inet_csk(sk);
2006 	struct tcp_sock *tp = tcp_sk(sk);
2007 	struct net *net = sock_net(sk);
2008 	u32 interval;
2009 	s32 delta;
2010 
2011 	interval = net->ipv4.sysctl_tcp_probe_interval;
2012 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2013 	if (unlikely(delta >= interval * HZ)) {
2014 		int mss = tcp_current_mss(sk);
2015 
2016 		/* Update current search range */
2017 		icsk->icsk_mtup.probe_size = 0;
2018 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2019 			sizeof(struct tcphdr) +
2020 			icsk->icsk_af_ops->net_header_len;
2021 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2022 
2023 		/* Update probe time stamp */
2024 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2025 	}
2026 }
2027 
2028 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2029 {
2030 	struct sk_buff *skb, *next;
2031 
2032 	skb = tcp_send_head(sk);
2033 	tcp_for_write_queue_from_safe(skb, next, sk) {
2034 		if (len <= skb->len)
2035 			break;
2036 
2037 		if (unlikely(TCP_SKB_CB(skb)->eor))
2038 			return false;
2039 
2040 		len -= skb->len;
2041 	}
2042 
2043 	return true;
2044 }
2045 
2046 /* Create a new MTU probe if we are ready.
2047  * MTU probe is regularly attempting to increase the path MTU by
2048  * deliberately sending larger packets.  This discovers routing
2049  * changes resulting in larger path MTUs.
2050  *
2051  * Returns 0 if we should wait to probe (no cwnd available),
2052  *         1 if a probe was sent,
2053  *         -1 otherwise
2054  */
2055 static int tcp_mtu_probe(struct sock *sk)
2056 {
2057 	struct inet_connection_sock *icsk = inet_csk(sk);
2058 	struct tcp_sock *tp = tcp_sk(sk);
2059 	struct sk_buff *skb, *nskb, *next;
2060 	struct net *net = sock_net(sk);
2061 	int probe_size;
2062 	int size_needed;
2063 	int copy, len;
2064 	int mss_now;
2065 	int interval;
2066 
2067 	/* Not currently probing/verifying,
2068 	 * not in recovery,
2069 	 * have enough cwnd, and
2070 	 * not SACKing (the variable headers throw things off)
2071 	 */
2072 	if (likely(!icsk->icsk_mtup.enabled ||
2073 		   icsk->icsk_mtup.probe_size ||
2074 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2075 		   tp->snd_cwnd < 11 ||
2076 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2077 		return -1;
2078 
2079 	/* Use binary search for probe_size between tcp_mss_base,
2080 	 * and current mss_clamp. if (search_high - search_low)
2081 	 * smaller than a threshold, backoff from probing.
2082 	 */
2083 	mss_now = tcp_current_mss(sk);
2084 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2085 				    icsk->icsk_mtup.search_low) >> 1);
2086 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2087 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2088 	/* When misfortune happens, we are reprobing actively,
2089 	 * and then reprobe timer has expired. We stick with current
2090 	 * probing process by not resetting search range to its orignal.
2091 	 */
2092 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2093 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2094 		/* Check whether enough time has elaplased for
2095 		 * another round of probing.
2096 		 */
2097 		tcp_mtu_check_reprobe(sk);
2098 		return -1;
2099 	}
2100 
2101 	/* Have enough data in the send queue to probe? */
2102 	if (tp->write_seq - tp->snd_nxt < size_needed)
2103 		return -1;
2104 
2105 	if (tp->snd_wnd < size_needed)
2106 		return -1;
2107 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2108 		return 0;
2109 
2110 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2111 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2112 		if (!tcp_packets_in_flight(tp))
2113 			return -1;
2114 		else
2115 			return 0;
2116 	}
2117 
2118 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2119 		return -1;
2120 
2121 	/* We're allowed to probe.  Build it now. */
2122 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2123 	if (!nskb)
2124 		return -1;
2125 	sk->sk_wmem_queued += nskb->truesize;
2126 	sk_mem_charge(sk, nskb->truesize);
2127 
2128 	skb = tcp_send_head(sk);
2129 
2130 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2131 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2132 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2133 	TCP_SKB_CB(nskb)->sacked = 0;
2134 	nskb->csum = 0;
2135 	nskb->ip_summed = CHECKSUM_PARTIAL;
2136 
2137 	tcp_insert_write_queue_before(nskb, skb, sk);
2138 	tcp_highest_sack_replace(sk, skb, nskb);
2139 
2140 	len = 0;
2141 	tcp_for_write_queue_from_safe(skb, next, sk) {
2142 		copy = min_t(int, skb->len, probe_size - len);
2143 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2144 
2145 		if (skb->len <= copy) {
2146 			/* We've eaten all the data from this skb.
2147 			 * Throw it away. */
2148 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2149 			/* If this is the last SKB we copy and eor is set
2150 			 * we need to propagate it to the new skb.
2151 			 */
2152 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2153 			tcp_unlink_write_queue(skb, sk);
2154 			sk_wmem_free_skb(sk, skb);
2155 		} else {
2156 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2157 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2158 			if (!skb_shinfo(skb)->nr_frags) {
2159 				skb_pull(skb, copy);
2160 			} else {
2161 				__pskb_trim_head(skb, copy);
2162 				tcp_set_skb_tso_segs(skb, mss_now);
2163 			}
2164 			TCP_SKB_CB(skb)->seq += copy;
2165 		}
2166 
2167 		len += copy;
2168 
2169 		if (len >= probe_size)
2170 			break;
2171 	}
2172 	tcp_init_tso_segs(nskb, nskb->len);
2173 
2174 	/* We're ready to send.  If this fails, the probe will
2175 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2176 	 */
2177 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2178 		/* Decrement cwnd here because we are sending
2179 		 * effectively two packets. */
2180 		tp->snd_cwnd--;
2181 		tcp_event_new_data_sent(sk, nskb);
2182 
2183 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2184 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2185 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2186 
2187 		return 1;
2188 	}
2189 
2190 	return -1;
2191 }
2192 
2193 static bool tcp_pacing_check(struct sock *sk)
2194 {
2195 	struct tcp_sock *tp = tcp_sk(sk);
2196 
2197 	if (!tcp_needs_internal_pacing(sk))
2198 		return false;
2199 
2200 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2201 		return false;
2202 
2203 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2204 		hrtimer_start(&tp->pacing_timer,
2205 			      ns_to_ktime(tp->tcp_wstamp_ns),
2206 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2207 		sock_hold(sk);
2208 	}
2209 	return true;
2210 }
2211 
2212 /* TCP Small Queues :
2213  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2214  * (These limits are doubled for retransmits)
2215  * This allows for :
2216  *  - better RTT estimation and ACK scheduling
2217  *  - faster recovery
2218  *  - high rates
2219  * Alas, some drivers / subsystems require a fair amount
2220  * of queued bytes to ensure line rate.
2221  * One example is wifi aggregation (802.11 AMPDU)
2222  */
2223 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2224 				  unsigned int factor)
2225 {
2226 	unsigned long limit;
2227 
2228 	limit = max_t(unsigned long,
2229 		      2 * skb->truesize,
2230 		      sk->sk_pacing_rate >> sk->sk_pacing_shift);
2231 	limit = min_t(unsigned long, limit,
2232 		      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2233 	limit <<= factor;
2234 
2235 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2236 		/* Always send skb if rtx queue is empty.
2237 		 * No need to wait for TX completion to call us back,
2238 		 * after softirq/tasklet schedule.
2239 		 * This helps when TX completions are delayed too much.
2240 		 */
2241 		if (tcp_rtx_queue_empty(sk))
2242 			return false;
2243 
2244 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2245 		/* It is possible TX completion already happened
2246 		 * before we set TSQ_THROTTLED, so we must
2247 		 * test again the condition.
2248 		 */
2249 		smp_mb__after_atomic();
2250 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2251 			return true;
2252 	}
2253 	return false;
2254 }
2255 
2256 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2257 {
2258 	const u32 now = tcp_jiffies32;
2259 	enum tcp_chrono old = tp->chrono_type;
2260 
2261 	if (old > TCP_CHRONO_UNSPEC)
2262 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2263 	tp->chrono_start = now;
2264 	tp->chrono_type = new;
2265 }
2266 
2267 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2268 {
2269 	struct tcp_sock *tp = tcp_sk(sk);
2270 
2271 	/* If there are multiple conditions worthy of tracking in a
2272 	 * chronograph then the highest priority enum takes precedence
2273 	 * over the other conditions. So that if something "more interesting"
2274 	 * starts happening, stop the previous chrono and start a new one.
2275 	 */
2276 	if (type > tp->chrono_type)
2277 		tcp_chrono_set(tp, type);
2278 }
2279 
2280 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2281 {
2282 	struct tcp_sock *tp = tcp_sk(sk);
2283 
2284 
2285 	/* There are multiple conditions worthy of tracking in a
2286 	 * chronograph, so that the highest priority enum takes
2287 	 * precedence over the other conditions (see tcp_chrono_start).
2288 	 * If a condition stops, we only stop chrono tracking if
2289 	 * it's the "most interesting" or current chrono we are
2290 	 * tracking and starts busy chrono if we have pending data.
2291 	 */
2292 	if (tcp_rtx_and_write_queues_empty(sk))
2293 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2294 	else if (type == tp->chrono_type)
2295 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2296 }
2297 
2298 /* This routine writes packets to the network.  It advances the
2299  * send_head.  This happens as incoming acks open up the remote
2300  * window for us.
2301  *
2302  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2303  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2304  * account rare use of URG, this is not a big flaw.
2305  *
2306  * Send at most one packet when push_one > 0. Temporarily ignore
2307  * cwnd limit to force at most one packet out when push_one == 2.
2308 
2309  * Returns true, if no segments are in flight and we have queued segments,
2310  * but cannot send anything now because of SWS or another problem.
2311  */
2312 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2313 			   int push_one, gfp_t gfp)
2314 {
2315 	struct tcp_sock *tp = tcp_sk(sk);
2316 	struct sk_buff *skb;
2317 	unsigned int tso_segs, sent_pkts;
2318 	int cwnd_quota;
2319 	int result;
2320 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2321 	u32 max_segs;
2322 
2323 	sent_pkts = 0;
2324 
2325 	tcp_mstamp_refresh(tp);
2326 	if (!push_one) {
2327 		/* Do MTU probing. */
2328 		result = tcp_mtu_probe(sk);
2329 		if (!result) {
2330 			return false;
2331 		} else if (result > 0) {
2332 			sent_pkts = 1;
2333 		}
2334 	}
2335 
2336 	max_segs = tcp_tso_segs(sk, mss_now);
2337 	while ((skb = tcp_send_head(sk))) {
2338 		unsigned int limit;
2339 
2340 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2341 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2342 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2343 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2344 			goto repair; /* Skip network transmission */
2345 		}
2346 
2347 		if (tcp_pacing_check(sk))
2348 			break;
2349 
2350 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2351 		BUG_ON(!tso_segs);
2352 
2353 		cwnd_quota = tcp_cwnd_test(tp, skb);
2354 		if (!cwnd_quota) {
2355 			if (push_one == 2)
2356 				/* Force out a loss probe pkt. */
2357 				cwnd_quota = 1;
2358 			else
2359 				break;
2360 		}
2361 
2362 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2363 			is_rwnd_limited = true;
2364 			break;
2365 		}
2366 
2367 		if (tso_segs == 1) {
2368 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2369 						     (tcp_skb_is_last(sk, skb) ?
2370 						      nonagle : TCP_NAGLE_PUSH))))
2371 				break;
2372 		} else {
2373 			if (!push_one &&
2374 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2375 						 &is_rwnd_limited, max_segs))
2376 				break;
2377 		}
2378 
2379 		limit = mss_now;
2380 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2381 			limit = tcp_mss_split_point(sk, skb, mss_now,
2382 						    min_t(unsigned int,
2383 							  cwnd_quota,
2384 							  max_segs),
2385 						    nonagle);
2386 
2387 		if (skb->len > limit &&
2388 		    unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2389 					  skb, limit, mss_now, gfp)))
2390 			break;
2391 
2392 		if (tcp_small_queue_check(sk, skb, 0))
2393 			break;
2394 
2395 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2396 			break;
2397 
2398 repair:
2399 		/* Advance the send_head.  This one is sent out.
2400 		 * This call will increment packets_out.
2401 		 */
2402 		tcp_event_new_data_sent(sk, skb);
2403 
2404 		tcp_minshall_update(tp, mss_now, skb);
2405 		sent_pkts += tcp_skb_pcount(skb);
2406 
2407 		if (push_one)
2408 			break;
2409 	}
2410 
2411 	if (is_rwnd_limited)
2412 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2413 	else
2414 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2415 
2416 	if (likely(sent_pkts)) {
2417 		if (tcp_in_cwnd_reduction(sk))
2418 			tp->prr_out += sent_pkts;
2419 
2420 		/* Send one loss probe per tail loss episode. */
2421 		if (push_one != 2)
2422 			tcp_schedule_loss_probe(sk, false);
2423 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2424 		tcp_cwnd_validate(sk, is_cwnd_limited);
2425 		return false;
2426 	}
2427 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2428 }
2429 
2430 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2431 {
2432 	struct inet_connection_sock *icsk = inet_csk(sk);
2433 	struct tcp_sock *tp = tcp_sk(sk);
2434 	u32 timeout, rto_delta_us;
2435 	int early_retrans;
2436 
2437 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2438 	 * finishes.
2439 	 */
2440 	if (tp->fastopen_rsk)
2441 		return false;
2442 
2443 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2444 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2445 	 * not in loss recovery, that are either limited by cwnd or application.
2446 	 */
2447 	if ((early_retrans != 3 && early_retrans != 4) ||
2448 	    !tp->packets_out || !tcp_is_sack(tp) ||
2449 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2450 	     icsk->icsk_ca_state != TCP_CA_CWR))
2451 		return false;
2452 
2453 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2454 	 * for delayed ack when there's one outstanding packet. If no RTT
2455 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2456 	 */
2457 	if (tp->srtt_us) {
2458 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2459 		if (tp->packets_out == 1)
2460 			timeout += TCP_RTO_MIN;
2461 		else
2462 			timeout += TCP_TIMEOUT_MIN;
2463 	} else {
2464 		timeout = TCP_TIMEOUT_INIT;
2465 	}
2466 
2467 	/* If the RTO formula yields an earlier time, then use that time. */
2468 	rto_delta_us = advancing_rto ?
2469 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2470 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2471 	if (rto_delta_us > 0)
2472 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2473 
2474 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2475 			     TCP_RTO_MAX, NULL);
2476 	return true;
2477 }
2478 
2479 /* Thanks to skb fast clones, we can detect if a prior transmit of
2480  * a packet is still in a qdisc or driver queue.
2481  * In this case, there is very little point doing a retransmit !
2482  */
2483 static bool skb_still_in_host_queue(const struct sock *sk,
2484 				    const struct sk_buff *skb)
2485 {
2486 	if (unlikely(skb_fclone_busy(sk, skb))) {
2487 		NET_INC_STATS(sock_net(sk),
2488 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2489 		return true;
2490 	}
2491 	return false;
2492 }
2493 
2494 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2495  * retransmit the last segment.
2496  */
2497 void tcp_send_loss_probe(struct sock *sk)
2498 {
2499 	struct tcp_sock *tp = tcp_sk(sk);
2500 	struct sk_buff *skb;
2501 	int pcount;
2502 	int mss = tcp_current_mss(sk);
2503 
2504 	skb = tcp_send_head(sk);
2505 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2506 		pcount = tp->packets_out;
2507 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2508 		if (tp->packets_out > pcount)
2509 			goto probe_sent;
2510 		goto rearm_timer;
2511 	}
2512 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2513 	if (unlikely(!skb)) {
2514 		WARN_ONCE(tp->packets_out,
2515 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2516 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2517 		inet_csk(sk)->icsk_pending = 0;
2518 		return;
2519 	}
2520 
2521 	/* At most one outstanding TLP retransmission. */
2522 	if (tp->tlp_high_seq)
2523 		goto rearm_timer;
2524 
2525 	if (skb_still_in_host_queue(sk, skb))
2526 		goto rearm_timer;
2527 
2528 	pcount = tcp_skb_pcount(skb);
2529 	if (WARN_ON(!pcount))
2530 		goto rearm_timer;
2531 
2532 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2533 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2534 					  (pcount - 1) * mss, mss,
2535 					  GFP_ATOMIC)))
2536 			goto rearm_timer;
2537 		skb = skb_rb_next(skb);
2538 	}
2539 
2540 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2541 		goto rearm_timer;
2542 
2543 	if (__tcp_retransmit_skb(sk, skb, 1))
2544 		goto rearm_timer;
2545 
2546 	/* Record snd_nxt for loss detection. */
2547 	tp->tlp_high_seq = tp->snd_nxt;
2548 
2549 probe_sent:
2550 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2551 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2552 	inet_csk(sk)->icsk_pending = 0;
2553 rearm_timer:
2554 	tcp_rearm_rto(sk);
2555 }
2556 
2557 /* Push out any pending frames which were held back due to
2558  * TCP_CORK or attempt at coalescing tiny packets.
2559  * The socket must be locked by the caller.
2560  */
2561 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2562 			       int nonagle)
2563 {
2564 	/* If we are closed, the bytes will have to remain here.
2565 	 * In time closedown will finish, we empty the write queue and
2566 	 * all will be happy.
2567 	 */
2568 	if (unlikely(sk->sk_state == TCP_CLOSE))
2569 		return;
2570 
2571 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2572 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2573 		tcp_check_probe_timer(sk);
2574 }
2575 
2576 /* Send _single_ skb sitting at the send head. This function requires
2577  * true push pending frames to setup probe timer etc.
2578  */
2579 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2580 {
2581 	struct sk_buff *skb = tcp_send_head(sk);
2582 
2583 	BUG_ON(!skb || skb->len < mss_now);
2584 
2585 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2586 }
2587 
2588 /* This function returns the amount that we can raise the
2589  * usable window based on the following constraints
2590  *
2591  * 1. The window can never be shrunk once it is offered (RFC 793)
2592  * 2. We limit memory per socket
2593  *
2594  * RFC 1122:
2595  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2596  *  RECV.NEXT + RCV.WIN fixed until:
2597  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2598  *
2599  * i.e. don't raise the right edge of the window until you can raise
2600  * it at least MSS bytes.
2601  *
2602  * Unfortunately, the recommended algorithm breaks header prediction,
2603  * since header prediction assumes th->window stays fixed.
2604  *
2605  * Strictly speaking, keeping th->window fixed violates the receiver
2606  * side SWS prevention criteria. The problem is that under this rule
2607  * a stream of single byte packets will cause the right side of the
2608  * window to always advance by a single byte.
2609  *
2610  * Of course, if the sender implements sender side SWS prevention
2611  * then this will not be a problem.
2612  *
2613  * BSD seems to make the following compromise:
2614  *
2615  *	If the free space is less than the 1/4 of the maximum
2616  *	space available and the free space is less than 1/2 mss,
2617  *	then set the window to 0.
2618  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2619  *	Otherwise, just prevent the window from shrinking
2620  *	and from being larger than the largest representable value.
2621  *
2622  * This prevents incremental opening of the window in the regime
2623  * where TCP is limited by the speed of the reader side taking
2624  * data out of the TCP receive queue. It does nothing about
2625  * those cases where the window is constrained on the sender side
2626  * because the pipeline is full.
2627  *
2628  * BSD also seems to "accidentally" limit itself to windows that are a
2629  * multiple of MSS, at least until the free space gets quite small.
2630  * This would appear to be a side effect of the mbuf implementation.
2631  * Combining these two algorithms results in the observed behavior
2632  * of having a fixed window size at almost all times.
2633  *
2634  * Below we obtain similar behavior by forcing the offered window to
2635  * a multiple of the mss when it is feasible to do so.
2636  *
2637  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2638  * Regular options like TIMESTAMP are taken into account.
2639  */
2640 u32 __tcp_select_window(struct sock *sk)
2641 {
2642 	struct inet_connection_sock *icsk = inet_csk(sk);
2643 	struct tcp_sock *tp = tcp_sk(sk);
2644 	/* MSS for the peer's data.  Previous versions used mss_clamp
2645 	 * here.  I don't know if the value based on our guesses
2646 	 * of peer's MSS is better for the performance.  It's more correct
2647 	 * but may be worse for the performance because of rcv_mss
2648 	 * fluctuations.  --SAW  1998/11/1
2649 	 */
2650 	int mss = icsk->icsk_ack.rcv_mss;
2651 	int free_space = tcp_space(sk);
2652 	int allowed_space = tcp_full_space(sk);
2653 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2654 	int window;
2655 
2656 	if (unlikely(mss > full_space)) {
2657 		mss = full_space;
2658 		if (mss <= 0)
2659 			return 0;
2660 	}
2661 	if (free_space < (full_space >> 1)) {
2662 		icsk->icsk_ack.quick = 0;
2663 
2664 		if (tcp_under_memory_pressure(sk))
2665 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2666 					       4U * tp->advmss);
2667 
2668 		/* free_space might become our new window, make sure we don't
2669 		 * increase it due to wscale.
2670 		 */
2671 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2672 
2673 		/* if free space is less than mss estimate, or is below 1/16th
2674 		 * of the maximum allowed, try to move to zero-window, else
2675 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2676 		 * new incoming data is dropped due to memory limits.
2677 		 * With large window, mss test triggers way too late in order
2678 		 * to announce zero window in time before rmem limit kicks in.
2679 		 */
2680 		if (free_space < (allowed_space >> 4) || free_space < mss)
2681 			return 0;
2682 	}
2683 
2684 	if (free_space > tp->rcv_ssthresh)
2685 		free_space = tp->rcv_ssthresh;
2686 
2687 	/* Don't do rounding if we are using window scaling, since the
2688 	 * scaled window will not line up with the MSS boundary anyway.
2689 	 */
2690 	if (tp->rx_opt.rcv_wscale) {
2691 		window = free_space;
2692 
2693 		/* Advertise enough space so that it won't get scaled away.
2694 		 * Import case: prevent zero window announcement if
2695 		 * 1<<rcv_wscale > mss.
2696 		 */
2697 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2698 	} else {
2699 		window = tp->rcv_wnd;
2700 		/* Get the largest window that is a nice multiple of mss.
2701 		 * Window clamp already applied above.
2702 		 * If our current window offering is within 1 mss of the
2703 		 * free space we just keep it. This prevents the divide
2704 		 * and multiply from happening most of the time.
2705 		 * We also don't do any window rounding when the free space
2706 		 * is too small.
2707 		 */
2708 		if (window <= free_space - mss || window > free_space)
2709 			window = rounddown(free_space, mss);
2710 		else if (mss == full_space &&
2711 			 free_space > window + (full_space >> 1))
2712 			window = free_space;
2713 	}
2714 
2715 	return window;
2716 }
2717 
2718 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2719 			     const struct sk_buff *next_skb)
2720 {
2721 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2722 		const struct skb_shared_info *next_shinfo =
2723 			skb_shinfo(next_skb);
2724 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2725 
2726 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2727 		shinfo->tskey = next_shinfo->tskey;
2728 		TCP_SKB_CB(skb)->txstamp_ack |=
2729 			TCP_SKB_CB(next_skb)->txstamp_ack;
2730 	}
2731 }
2732 
2733 /* Collapses two adjacent SKB's during retransmission. */
2734 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2735 {
2736 	struct tcp_sock *tp = tcp_sk(sk);
2737 	struct sk_buff *next_skb = skb_rb_next(skb);
2738 	int next_skb_size;
2739 
2740 	next_skb_size = next_skb->len;
2741 
2742 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2743 
2744 	if (next_skb_size) {
2745 		if (next_skb_size <= skb_availroom(skb))
2746 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2747 				      next_skb_size);
2748 		else if (!skb_shift(skb, next_skb, next_skb_size))
2749 			return false;
2750 	}
2751 	tcp_highest_sack_replace(sk, next_skb, skb);
2752 
2753 	/* Update sequence range on original skb. */
2754 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2755 
2756 	/* Merge over control information. This moves PSH/FIN etc. over */
2757 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2758 
2759 	/* All done, get rid of second SKB and account for it so
2760 	 * packet counting does not break.
2761 	 */
2762 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2763 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2764 
2765 	/* changed transmit queue under us so clear hints */
2766 	tcp_clear_retrans_hints_partial(tp);
2767 	if (next_skb == tp->retransmit_skb_hint)
2768 		tp->retransmit_skb_hint = skb;
2769 
2770 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2771 
2772 	tcp_skb_collapse_tstamp(skb, next_skb);
2773 
2774 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2775 	return true;
2776 }
2777 
2778 /* Check if coalescing SKBs is legal. */
2779 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2780 {
2781 	if (tcp_skb_pcount(skb) > 1)
2782 		return false;
2783 	if (skb_cloned(skb))
2784 		return false;
2785 	/* Some heuristics for collapsing over SACK'd could be invented */
2786 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2787 		return false;
2788 
2789 	return true;
2790 }
2791 
2792 /* Collapse packets in the retransmit queue to make to create
2793  * less packets on the wire. This is only done on retransmission.
2794  */
2795 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2796 				     int space)
2797 {
2798 	struct tcp_sock *tp = tcp_sk(sk);
2799 	struct sk_buff *skb = to, *tmp;
2800 	bool first = true;
2801 
2802 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2803 		return;
2804 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2805 		return;
2806 
2807 	skb_rbtree_walk_from_safe(skb, tmp) {
2808 		if (!tcp_can_collapse(sk, skb))
2809 			break;
2810 
2811 		if (!tcp_skb_can_collapse_to(to))
2812 			break;
2813 
2814 		space -= skb->len;
2815 
2816 		if (first) {
2817 			first = false;
2818 			continue;
2819 		}
2820 
2821 		if (space < 0)
2822 			break;
2823 
2824 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2825 			break;
2826 
2827 		if (!tcp_collapse_retrans(sk, to))
2828 			break;
2829 	}
2830 }
2831 
2832 /* This retransmits one SKB.  Policy decisions and retransmit queue
2833  * state updates are done by the caller.  Returns non-zero if an
2834  * error occurred which prevented the send.
2835  */
2836 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2837 {
2838 	struct inet_connection_sock *icsk = inet_csk(sk);
2839 	struct tcp_sock *tp = tcp_sk(sk);
2840 	unsigned int cur_mss;
2841 	int diff, len, err;
2842 
2843 
2844 	/* Inconclusive MTU probe */
2845 	if (icsk->icsk_mtup.probe_size)
2846 		icsk->icsk_mtup.probe_size = 0;
2847 
2848 	/* Do not sent more than we queued. 1/4 is reserved for possible
2849 	 * copying overhead: fragmentation, tunneling, mangling etc.
2850 	 */
2851 	if (refcount_read(&sk->sk_wmem_alloc) >
2852 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2853 		  sk->sk_sndbuf))
2854 		return -EAGAIN;
2855 
2856 	if (skb_still_in_host_queue(sk, skb))
2857 		return -EBUSY;
2858 
2859 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2860 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2861 			WARN_ON_ONCE(1);
2862 			return -EINVAL;
2863 		}
2864 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2865 			return -ENOMEM;
2866 	}
2867 
2868 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2869 		return -EHOSTUNREACH; /* Routing failure or similar. */
2870 
2871 	cur_mss = tcp_current_mss(sk);
2872 
2873 	/* If receiver has shrunk his window, and skb is out of
2874 	 * new window, do not retransmit it. The exception is the
2875 	 * case, when window is shrunk to zero. In this case
2876 	 * our retransmit serves as a zero window probe.
2877 	 */
2878 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2879 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2880 		return -EAGAIN;
2881 
2882 	len = cur_mss * segs;
2883 	if (skb->len > len) {
2884 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2885 				 cur_mss, GFP_ATOMIC))
2886 			return -ENOMEM; /* We'll try again later. */
2887 	} else {
2888 		if (skb_unclone(skb, GFP_ATOMIC))
2889 			return -ENOMEM;
2890 
2891 		diff = tcp_skb_pcount(skb);
2892 		tcp_set_skb_tso_segs(skb, cur_mss);
2893 		diff -= tcp_skb_pcount(skb);
2894 		if (diff)
2895 			tcp_adjust_pcount(sk, skb, diff);
2896 		if (skb->len < cur_mss)
2897 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2898 	}
2899 
2900 	/* RFC3168, section 6.1.1.1. ECN fallback */
2901 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2902 		tcp_ecn_clear_syn(sk, skb);
2903 
2904 	/* Update global and local TCP statistics. */
2905 	segs = tcp_skb_pcount(skb);
2906 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2907 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2908 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2909 	tp->total_retrans += segs;
2910 	tp->bytes_retrans += skb->len;
2911 
2912 	/* make sure skb->data is aligned on arches that require it
2913 	 * and check if ack-trimming & collapsing extended the headroom
2914 	 * beyond what csum_start can cover.
2915 	 */
2916 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2917 		     skb_headroom(skb) >= 0xFFFF)) {
2918 		struct sk_buff *nskb;
2919 
2920 		tcp_skb_tsorted_save(skb) {
2921 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2922 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2923 				     -ENOBUFS;
2924 		} tcp_skb_tsorted_restore(skb);
2925 
2926 		if (!err) {
2927 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
2928 			tcp_rate_skb_sent(sk, skb);
2929 		}
2930 	} else {
2931 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2932 	}
2933 
2934 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2935 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2936 				  TCP_SKB_CB(skb)->seq, segs, err);
2937 
2938 	if (likely(!err)) {
2939 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2940 		trace_tcp_retransmit_skb(sk, skb);
2941 	} else if (err != -EBUSY) {
2942 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
2943 	}
2944 	return err;
2945 }
2946 
2947 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2948 {
2949 	struct tcp_sock *tp = tcp_sk(sk);
2950 	int err = __tcp_retransmit_skb(sk, skb, segs);
2951 
2952 	if (err == 0) {
2953 #if FASTRETRANS_DEBUG > 0
2954 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2955 			net_dbg_ratelimited("retrans_out leaked\n");
2956 		}
2957 #endif
2958 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2959 		tp->retrans_out += tcp_skb_pcount(skb);
2960 
2961 		/* Save stamp of the first retransmit. */
2962 		if (!tp->retrans_stamp)
2963 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2964 
2965 	}
2966 
2967 	if (tp->undo_retrans < 0)
2968 		tp->undo_retrans = 0;
2969 	tp->undo_retrans += tcp_skb_pcount(skb);
2970 	return err;
2971 }
2972 
2973 /* This gets called after a retransmit timeout, and the initially
2974  * retransmitted data is acknowledged.  It tries to continue
2975  * resending the rest of the retransmit queue, until either
2976  * we've sent it all or the congestion window limit is reached.
2977  */
2978 void tcp_xmit_retransmit_queue(struct sock *sk)
2979 {
2980 	const struct inet_connection_sock *icsk = inet_csk(sk);
2981 	struct sk_buff *skb, *rtx_head, *hole = NULL;
2982 	struct tcp_sock *tp = tcp_sk(sk);
2983 	u32 max_segs;
2984 	int mib_idx;
2985 
2986 	if (!tp->packets_out)
2987 		return;
2988 
2989 	rtx_head = tcp_rtx_queue_head(sk);
2990 	skb = tp->retransmit_skb_hint ?: rtx_head;
2991 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2992 	skb_rbtree_walk_from(skb) {
2993 		__u8 sacked;
2994 		int segs;
2995 
2996 		if (tcp_pacing_check(sk))
2997 			break;
2998 
2999 		/* we could do better than to assign each time */
3000 		if (!hole)
3001 			tp->retransmit_skb_hint = skb;
3002 
3003 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3004 		if (segs <= 0)
3005 			return;
3006 		sacked = TCP_SKB_CB(skb)->sacked;
3007 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3008 		 * we need to make sure not sending too bigs TSO packets
3009 		 */
3010 		segs = min_t(int, segs, max_segs);
3011 
3012 		if (tp->retrans_out >= tp->lost_out) {
3013 			break;
3014 		} else if (!(sacked & TCPCB_LOST)) {
3015 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3016 				hole = skb;
3017 			continue;
3018 
3019 		} else {
3020 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3021 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3022 			else
3023 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3024 		}
3025 
3026 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3027 			continue;
3028 
3029 		if (tcp_small_queue_check(sk, skb, 1))
3030 			return;
3031 
3032 		if (tcp_retransmit_skb(sk, skb, segs))
3033 			return;
3034 
3035 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3036 
3037 		if (tcp_in_cwnd_reduction(sk))
3038 			tp->prr_out += tcp_skb_pcount(skb);
3039 
3040 		if (skb == rtx_head &&
3041 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3042 			tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3043 					     inet_csk(sk)->icsk_rto,
3044 					     TCP_RTO_MAX,
3045 					     skb);
3046 	}
3047 }
3048 
3049 /* We allow to exceed memory limits for FIN packets to expedite
3050  * connection tear down and (memory) recovery.
3051  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3052  * or even be forced to close flow without any FIN.
3053  * In general, we want to allow one skb per socket to avoid hangs
3054  * with edge trigger epoll()
3055  */
3056 void sk_forced_mem_schedule(struct sock *sk, int size)
3057 {
3058 	int amt;
3059 
3060 	if (size <= sk->sk_forward_alloc)
3061 		return;
3062 	amt = sk_mem_pages(size);
3063 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3064 	sk_memory_allocated_add(sk, amt);
3065 
3066 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3067 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3068 }
3069 
3070 /* Send a FIN. The caller locks the socket for us.
3071  * We should try to send a FIN packet really hard, but eventually give up.
3072  */
3073 void tcp_send_fin(struct sock *sk)
3074 {
3075 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3076 	struct tcp_sock *tp = tcp_sk(sk);
3077 
3078 	/* Optimization, tack on the FIN if we have one skb in write queue and
3079 	 * this skb was not yet sent, or we are under memory pressure.
3080 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3081 	 * as TCP stack thinks it has already been transmitted.
3082 	 */
3083 	if (!tskb && tcp_under_memory_pressure(sk))
3084 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3085 
3086 	if (tskb) {
3087 coalesce:
3088 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3089 		TCP_SKB_CB(tskb)->end_seq++;
3090 		tp->write_seq++;
3091 		if (tcp_write_queue_empty(sk)) {
3092 			/* This means tskb was already sent.
3093 			 * Pretend we included the FIN on previous transmit.
3094 			 * We need to set tp->snd_nxt to the value it would have
3095 			 * if FIN had been sent. This is because retransmit path
3096 			 * does not change tp->snd_nxt.
3097 			 */
3098 			tp->snd_nxt++;
3099 			return;
3100 		}
3101 	} else {
3102 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3103 		if (unlikely(!skb)) {
3104 			if (tskb)
3105 				goto coalesce;
3106 			return;
3107 		}
3108 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3109 		skb_reserve(skb, MAX_TCP_HEADER);
3110 		sk_forced_mem_schedule(sk, skb->truesize);
3111 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3112 		tcp_init_nondata_skb(skb, tp->write_seq,
3113 				     TCPHDR_ACK | TCPHDR_FIN);
3114 		tcp_queue_skb(sk, skb);
3115 	}
3116 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3117 }
3118 
3119 /* We get here when a process closes a file descriptor (either due to
3120  * an explicit close() or as a byproduct of exit()'ing) and there
3121  * was unread data in the receive queue.  This behavior is recommended
3122  * by RFC 2525, section 2.17.  -DaveM
3123  */
3124 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3125 {
3126 	struct sk_buff *skb;
3127 
3128 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3129 
3130 	/* NOTE: No TCP options attached and we never retransmit this. */
3131 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3132 	if (!skb) {
3133 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3134 		return;
3135 	}
3136 
3137 	/* Reserve space for headers and prepare control bits. */
3138 	skb_reserve(skb, MAX_TCP_HEADER);
3139 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3140 			     TCPHDR_ACK | TCPHDR_RST);
3141 	tcp_mstamp_refresh(tcp_sk(sk));
3142 	/* Send it off. */
3143 	if (tcp_transmit_skb(sk, skb, 0, priority))
3144 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3145 
3146 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3147 	 * skb here is different to the troublesome skb, so use NULL
3148 	 */
3149 	trace_tcp_send_reset(sk, NULL);
3150 }
3151 
3152 /* Send a crossed SYN-ACK during socket establishment.
3153  * WARNING: This routine must only be called when we have already sent
3154  * a SYN packet that crossed the incoming SYN that caused this routine
3155  * to get called. If this assumption fails then the initial rcv_wnd
3156  * and rcv_wscale values will not be correct.
3157  */
3158 int tcp_send_synack(struct sock *sk)
3159 {
3160 	struct sk_buff *skb;
3161 
3162 	skb = tcp_rtx_queue_head(sk);
3163 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3164 		pr_err("%s: wrong queue state\n", __func__);
3165 		return -EFAULT;
3166 	}
3167 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3168 		if (skb_cloned(skb)) {
3169 			struct sk_buff *nskb;
3170 
3171 			tcp_skb_tsorted_save(skb) {
3172 				nskb = skb_copy(skb, GFP_ATOMIC);
3173 			} tcp_skb_tsorted_restore(skb);
3174 			if (!nskb)
3175 				return -ENOMEM;
3176 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3177 			tcp_rtx_queue_unlink_and_free(skb, sk);
3178 			__skb_header_release(nskb);
3179 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3180 			sk->sk_wmem_queued += nskb->truesize;
3181 			sk_mem_charge(sk, nskb->truesize);
3182 			skb = nskb;
3183 		}
3184 
3185 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3186 		tcp_ecn_send_synack(sk, skb);
3187 	}
3188 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3189 }
3190 
3191 /**
3192  * tcp_make_synack - Prepare a SYN-ACK.
3193  * sk: listener socket
3194  * dst: dst entry attached to the SYNACK
3195  * req: request_sock pointer
3196  *
3197  * Allocate one skb and build a SYNACK packet.
3198  * @dst is consumed : Caller should not use it again.
3199  */
3200 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3201 				struct request_sock *req,
3202 				struct tcp_fastopen_cookie *foc,
3203 				enum tcp_synack_type synack_type)
3204 {
3205 	struct inet_request_sock *ireq = inet_rsk(req);
3206 	const struct tcp_sock *tp = tcp_sk(sk);
3207 	struct tcp_md5sig_key *md5 = NULL;
3208 	struct tcp_out_options opts;
3209 	struct sk_buff *skb;
3210 	int tcp_header_size;
3211 	struct tcphdr *th;
3212 	int mss;
3213 
3214 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3215 	if (unlikely(!skb)) {
3216 		dst_release(dst);
3217 		return NULL;
3218 	}
3219 	/* Reserve space for headers. */
3220 	skb_reserve(skb, MAX_TCP_HEADER);
3221 
3222 	switch (synack_type) {
3223 	case TCP_SYNACK_NORMAL:
3224 		skb_set_owner_w(skb, req_to_sk(req));
3225 		break;
3226 	case TCP_SYNACK_COOKIE:
3227 		/* Under synflood, we do not attach skb to a socket,
3228 		 * to avoid false sharing.
3229 		 */
3230 		break;
3231 	case TCP_SYNACK_FASTOPEN:
3232 		/* sk is a const pointer, because we want to express multiple
3233 		 * cpu might call us concurrently.
3234 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3235 		 */
3236 		skb_set_owner_w(skb, (struct sock *)sk);
3237 		break;
3238 	}
3239 	skb_dst_set(skb, dst);
3240 
3241 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3242 
3243 	memset(&opts, 0, sizeof(opts));
3244 #ifdef CONFIG_SYN_COOKIES
3245 	if (unlikely(req->cookie_ts))
3246 		skb->skb_mstamp_ns = cookie_init_timestamp(req);
3247 	else
3248 #endif
3249 		skb->skb_mstamp_ns = tcp_clock_ns();
3250 
3251 #ifdef CONFIG_TCP_MD5SIG
3252 	rcu_read_lock();
3253 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3254 #endif
3255 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3256 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3257 					     foc) + sizeof(*th);
3258 
3259 	skb_push(skb, tcp_header_size);
3260 	skb_reset_transport_header(skb);
3261 
3262 	th = (struct tcphdr *)skb->data;
3263 	memset(th, 0, sizeof(struct tcphdr));
3264 	th->syn = 1;
3265 	th->ack = 1;
3266 	tcp_ecn_make_synack(req, th);
3267 	th->source = htons(ireq->ir_num);
3268 	th->dest = ireq->ir_rmt_port;
3269 	skb->mark = ireq->ir_mark;
3270 	skb->ip_summed = CHECKSUM_PARTIAL;
3271 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3272 	/* XXX data is queued and acked as is. No buffer/window check */
3273 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3274 
3275 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3276 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3277 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3278 	th->doff = (tcp_header_size >> 2);
3279 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3280 
3281 #ifdef CONFIG_TCP_MD5SIG
3282 	/* Okay, we have all we need - do the md5 hash if needed */
3283 	if (md5)
3284 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3285 					       md5, req_to_sk(req), skb);
3286 	rcu_read_unlock();
3287 #endif
3288 
3289 	/* Do not fool tcpdump (if any), clean our debris */
3290 	skb->tstamp = 0;
3291 	return skb;
3292 }
3293 EXPORT_SYMBOL(tcp_make_synack);
3294 
3295 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3296 {
3297 	struct inet_connection_sock *icsk = inet_csk(sk);
3298 	const struct tcp_congestion_ops *ca;
3299 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3300 
3301 	if (ca_key == TCP_CA_UNSPEC)
3302 		return;
3303 
3304 	rcu_read_lock();
3305 	ca = tcp_ca_find_key(ca_key);
3306 	if (likely(ca && try_module_get(ca->owner))) {
3307 		module_put(icsk->icsk_ca_ops->owner);
3308 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3309 		icsk->icsk_ca_ops = ca;
3310 	}
3311 	rcu_read_unlock();
3312 }
3313 
3314 /* Do all connect socket setups that can be done AF independent. */
3315 static void tcp_connect_init(struct sock *sk)
3316 {
3317 	const struct dst_entry *dst = __sk_dst_get(sk);
3318 	struct tcp_sock *tp = tcp_sk(sk);
3319 	__u8 rcv_wscale;
3320 	u32 rcv_wnd;
3321 
3322 	/* We'll fix this up when we get a response from the other end.
3323 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3324 	 */
3325 	tp->tcp_header_len = sizeof(struct tcphdr);
3326 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3327 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3328 
3329 #ifdef CONFIG_TCP_MD5SIG
3330 	if (tp->af_specific->md5_lookup(sk, sk))
3331 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3332 #endif
3333 
3334 	/* If user gave his TCP_MAXSEG, record it to clamp */
3335 	if (tp->rx_opt.user_mss)
3336 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3337 	tp->max_window = 0;
3338 	tcp_mtup_init(sk);
3339 	tcp_sync_mss(sk, dst_mtu(dst));
3340 
3341 	tcp_ca_dst_init(sk, dst);
3342 
3343 	if (!tp->window_clamp)
3344 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3345 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3346 
3347 	tcp_initialize_rcv_mss(sk);
3348 
3349 	/* limit the window selection if the user enforce a smaller rx buffer */
3350 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3351 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3352 		tp->window_clamp = tcp_full_space(sk);
3353 
3354 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3355 	if (rcv_wnd == 0)
3356 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3357 
3358 	tcp_select_initial_window(sk, tcp_full_space(sk),
3359 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3360 				  &tp->rcv_wnd,
3361 				  &tp->window_clamp,
3362 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3363 				  &rcv_wscale,
3364 				  rcv_wnd);
3365 
3366 	tp->rx_opt.rcv_wscale = rcv_wscale;
3367 	tp->rcv_ssthresh = tp->rcv_wnd;
3368 
3369 	sk->sk_err = 0;
3370 	sock_reset_flag(sk, SOCK_DONE);
3371 	tp->snd_wnd = 0;
3372 	tcp_init_wl(tp, 0);
3373 	tcp_write_queue_purge(sk);
3374 	tp->snd_una = tp->write_seq;
3375 	tp->snd_sml = tp->write_seq;
3376 	tp->snd_up = tp->write_seq;
3377 	tp->snd_nxt = tp->write_seq;
3378 
3379 	if (likely(!tp->repair))
3380 		tp->rcv_nxt = 0;
3381 	else
3382 		tp->rcv_tstamp = tcp_jiffies32;
3383 	tp->rcv_wup = tp->rcv_nxt;
3384 	tp->copied_seq = tp->rcv_nxt;
3385 
3386 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3387 	inet_csk(sk)->icsk_retransmits = 0;
3388 	tcp_clear_retrans(tp);
3389 }
3390 
3391 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3392 {
3393 	struct tcp_sock *tp = tcp_sk(sk);
3394 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3395 
3396 	tcb->end_seq += skb->len;
3397 	__skb_header_release(skb);
3398 	sk->sk_wmem_queued += skb->truesize;
3399 	sk_mem_charge(sk, skb->truesize);
3400 	tp->write_seq = tcb->end_seq;
3401 	tp->packets_out += tcp_skb_pcount(skb);
3402 }
3403 
3404 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3405  * queue a data-only packet after the regular SYN, such that regular SYNs
3406  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3407  * only the SYN sequence, the data are retransmitted in the first ACK.
3408  * If cookie is not cached or other error occurs, falls back to send a
3409  * regular SYN with Fast Open cookie request option.
3410  */
3411 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3412 {
3413 	struct tcp_sock *tp = tcp_sk(sk);
3414 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3415 	int space, err = 0;
3416 	struct sk_buff *syn_data;
3417 
3418 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3419 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3420 		goto fallback;
3421 
3422 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3423 	 * user-MSS. Reserve maximum option space for middleboxes that add
3424 	 * private TCP options. The cost is reduced data space in SYN :(
3425 	 */
3426 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3427 
3428 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3429 		MAX_TCP_OPTION_SPACE;
3430 
3431 	space = min_t(size_t, space, fo->size);
3432 
3433 	/* limit to order-0 allocations */
3434 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3435 
3436 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3437 	if (!syn_data)
3438 		goto fallback;
3439 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3440 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3441 	if (space) {
3442 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3443 					    &fo->data->msg_iter);
3444 		if (unlikely(!copied)) {
3445 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3446 			kfree_skb(syn_data);
3447 			goto fallback;
3448 		}
3449 		if (copied != space) {
3450 			skb_trim(syn_data, copied);
3451 			space = copied;
3452 		}
3453 	}
3454 	/* No more data pending in inet_wait_for_connect() */
3455 	if (space == fo->size)
3456 		fo->data = NULL;
3457 	fo->copied = space;
3458 
3459 	tcp_connect_queue_skb(sk, syn_data);
3460 	if (syn_data->len)
3461 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3462 
3463 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3464 
3465 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3466 
3467 	/* Now full SYN+DATA was cloned and sent (or not),
3468 	 * remove the SYN from the original skb (syn_data)
3469 	 * we keep in write queue in case of a retransmit, as we
3470 	 * also have the SYN packet (with no data) in the same queue.
3471 	 */
3472 	TCP_SKB_CB(syn_data)->seq++;
3473 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3474 	if (!err) {
3475 		tp->syn_data = (fo->copied > 0);
3476 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3477 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3478 		goto done;
3479 	}
3480 
3481 	/* data was not sent, put it in write_queue */
3482 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3483 	tp->packets_out -= tcp_skb_pcount(syn_data);
3484 
3485 fallback:
3486 	/* Send a regular SYN with Fast Open cookie request option */
3487 	if (fo->cookie.len > 0)
3488 		fo->cookie.len = 0;
3489 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3490 	if (err)
3491 		tp->syn_fastopen = 0;
3492 done:
3493 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3494 	return err;
3495 }
3496 
3497 /* Build a SYN and send it off. */
3498 int tcp_connect(struct sock *sk)
3499 {
3500 	struct tcp_sock *tp = tcp_sk(sk);
3501 	struct sk_buff *buff;
3502 	int err;
3503 
3504 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3505 
3506 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3507 		return -EHOSTUNREACH; /* Routing failure or similar. */
3508 
3509 	tcp_connect_init(sk);
3510 
3511 	if (unlikely(tp->repair)) {
3512 		tcp_finish_connect(sk, NULL);
3513 		return 0;
3514 	}
3515 
3516 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3517 	if (unlikely(!buff))
3518 		return -ENOBUFS;
3519 
3520 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3521 	tcp_mstamp_refresh(tp);
3522 	tp->retrans_stamp = tcp_time_stamp(tp);
3523 	tcp_connect_queue_skb(sk, buff);
3524 	tcp_ecn_send_syn(sk, buff);
3525 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3526 
3527 	/* Send off SYN; include data in Fast Open. */
3528 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3529 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3530 	if (err == -ECONNREFUSED)
3531 		return err;
3532 
3533 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3534 	 * in order to make this packet get counted in tcpOutSegs.
3535 	 */
3536 	tp->snd_nxt = tp->write_seq;
3537 	tp->pushed_seq = tp->write_seq;
3538 	buff = tcp_send_head(sk);
3539 	if (unlikely(buff)) {
3540 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3541 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3542 	}
3543 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3544 
3545 	/* Timer for repeating the SYN until an answer. */
3546 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3547 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3548 	return 0;
3549 }
3550 EXPORT_SYMBOL(tcp_connect);
3551 
3552 /* Send out a delayed ack, the caller does the policy checking
3553  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3554  * for details.
3555  */
3556 void tcp_send_delayed_ack(struct sock *sk)
3557 {
3558 	struct inet_connection_sock *icsk = inet_csk(sk);
3559 	int ato = icsk->icsk_ack.ato;
3560 	unsigned long timeout;
3561 
3562 	if (ato > TCP_DELACK_MIN) {
3563 		const struct tcp_sock *tp = tcp_sk(sk);
3564 		int max_ato = HZ / 2;
3565 
3566 		if (icsk->icsk_ack.pingpong ||
3567 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3568 			max_ato = TCP_DELACK_MAX;
3569 
3570 		/* Slow path, intersegment interval is "high". */
3571 
3572 		/* If some rtt estimate is known, use it to bound delayed ack.
3573 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3574 		 * directly.
3575 		 */
3576 		if (tp->srtt_us) {
3577 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3578 					TCP_DELACK_MIN);
3579 
3580 			if (rtt < max_ato)
3581 				max_ato = rtt;
3582 		}
3583 
3584 		ato = min(ato, max_ato);
3585 	}
3586 
3587 	/* Stay within the limit we were given */
3588 	timeout = jiffies + ato;
3589 
3590 	/* Use new timeout only if there wasn't a older one earlier. */
3591 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3592 		/* If delack timer was blocked or is about to expire,
3593 		 * send ACK now.
3594 		 */
3595 		if (icsk->icsk_ack.blocked ||
3596 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3597 			tcp_send_ack(sk);
3598 			return;
3599 		}
3600 
3601 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3602 			timeout = icsk->icsk_ack.timeout;
3603 	}
3604 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3605 	icsk->icsk_ack.timeout = timeout;
3606 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3607 }
3608 
3609 /* This routine sends an ack and also updates the window. */
3610 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3611 {
3612 	struct sk_buff *buff;
3613 
3614 	/* If we have been reset, we may not send again. */
3615 	if (sk->sk_state == TCP_CLOSE)
3616 		return;
3617 
3618 	/* We are not putting this on the write queue, so
3619 	 * tcp_transmit_skb() will set the ownership to this
3620 	 * sock.
3621 	 */
3622 	buff = alloc_skb(MAX_TCP_HEADER,
3623 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3624 	if (unlikely(!buff)) {
3625 		inet_csk_schedule_ack(sk);
3626 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3627 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3628 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3629 		return;
3630 	}
3631 
3632 	/* Reserve space for headers and prepare control bits. */
3633 	skb_reserve(buff, MAX_TCP_HEADER);
3634 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3635 
3636 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3637 	 * too much.
3638 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3639 	 */
3640 	skb_set_tcp_pure_ack(buff);
3641 
3642 	/* Send it off, this clears delayed acks for us. */
3643 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3644 }
3645 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3646 
3647 void tcp_send_ack(struct sock *sk)
3648 {
3649 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3650 }
3651 
3652 /* This routine sends a packet with an out of date sequence
3653  * number. It assumes the other end will try to ack it.
3654  *
3655  * Question: what should we make while urgent mode?
3656  * 4.4BSD forces sending single byte of data. We cannot send
3657  * out of window data, because we have SND.NXT==SND.MAX...
3658  *
3659  * Current solution: to send TWO zero-length segments in urgent mode:
3660  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3661  * out-of-date with SND.UNA-1 to probe window.
3662  */
3663 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3664 {
3665 	struct tcp_sock *tp = tcp_sk(sk);
3666 	struct sk_buff *skb;
3667 
3668 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3669 	skb = alloc_skb(MAX_TCP_HEADER,
3670 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3671 	if (!skb)
3672 		return -1;
3673 
3674 	/* Reserve space for headers and set control bits. */
3675 	skb_reserve(skb, MAX_TCP_HEADER);
3676 	/* Use a previous sequence.  This should cause the other
3677 	 * end to send an ack.  Don't queue or clone SKB, just
3678 	 * send it.
3679 	 */
3680 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3681 	NET_INC_STATS(sock_net(sk), mib);
3682 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3683 }
3684 
3685 /* Called from setsockopt( ... TCP_REPAIR ) */
3686 void tcp_send_window_probe(struct sock *sk)
3687 {
3688 	if (sk->sk_state == TCP_ESTABLISHED) {
3689 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3690 		tcp_mstamp_refresh(tcp_sk(sk));
3691 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3692 	}
3693 }
3694 
3695 /* Initiate keepalive or window probe from timer. */
3696 int tcp_write_wakeup(struct sock *sk, int mib)
3697 {
3698 	struct tcp_sock *tp = tcp_sk(sk);
3699 	struct sk_buff *skb;
3700 
3701 	if (sk->sk_state == TCP_CLOSE)
3702 		return -1;
3703 
3704 	skb = tcp_send_head(sk);
3705 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3706 		int err;
3707 		unsigned int mss = tcp_current_mss(sk);
3708 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3709 
3710 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3711 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3712 
3713 		/* We are probing the opening of a window
3714 		 * but the window size is != 0
3715 		 * must have been a result SWS avoidance ( sender )
3716 		 */
3717 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3718 		    skb->len > mss) {
3719 			seg_size = min(seg_size, mss);
3720 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3721 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3722 					 skb, seg_size, mss, GFP_ATOMIC))
3723 				return -1;
3724 		} else if (!tcp_skb_pcount(skb))
3725 			tcp_set_skb_tso_segs(skb, mss);
3726 
3727 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3728 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3729 		if (!err)
3730 			tcp_event_new_data_sent(sk, skb);
3731 		return err;
3732 	} else {
3733 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3734 			tcp_xmit_probe_skb(sk, 1, mib);
3735 		return tcp_xmit_probe_skb(sk, 0, mib);
3736 	}
3737 }
3738 
3739 /* A window probe timeout has occurred.  If window is not closed send
3740  * a partial packet else a zero probe.
3741  */
3742 void tcp_send_probe0(struct sock *sk)
3743 {
3744 	struct inet_connection_sock *icsk = inet_csk(sk);
3745 	struct tcp_sock *tp = tcp_sk(sk);
3746 	struct net *net = sock_net(sk);
3747 	unsigned long probe_max;
3748 	int err;
3749 
3750 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3751 
3752 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3753 		/* Cancel probe timer, if it is not required. */
3754 		icsk->icsk_probes_out = 0;
3755 		icsk->icsk_backoff = 0;
3756 		return;
3757 	}
3758 
3759 	if (err <= 0) {
3760 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3761 			icsk->icsk_backoff++;
3762 		icsk->icsk_probes_out++;
3763 		probe_max = TCP_RTO_MAX;
3764 	} else {
3765 		/* If packet was not sent due to local congestion,
3766 		 * do not backoff and do not remember icsk_probes_out.
3767 		 * Let local senders to fight for local resources.
3768 		 *
3769 		 * Use accumulated backoff yet.
3770 		 */
3771 		if (!icsk->icsk_probes_out)
3772 			icsk->icsk_probes_out = 1;
3773 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3774 	}
3775 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3776 			     tcp_probe0_when(sk, probe_max),
3777 			     TCP_RTO_MAX,
3778 			     NULL);
3779 }
3780 
3781 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3782 {
3783 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3784 	struct flowi fl;
3785 	int res;
3786 
3787 	tcp_rsk(req)->txhash = net_tx_rndhash();
3788 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3789 	if (!res) {
3790 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3791 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3792 		if (unlikely(tcp_passive_fastopen(sk)))
3793 			tcp_sk(sk)->total_retrans++;
3794 		trace_tcp_retransmit_synack(sk, req);
3795 	}
3796 	return res;
3797 }
3798 EXPORT_SYMBOL(tcp_rtx_synack);
3799