xref: /openbmc/linux/net/ipv4/tcp_output.c (revision abe9af53)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 }
86 
87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
88  * window scaling factor due to loss of precision.
89  * If window has been shrunk, what should we make? It is not clear at all.
90  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92  * invalid. OK, let's make this for now:
93  */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 	const struct tcp_sock *tp = tcp_sk(sk);
97 
98 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
99 	    (tp->rx_opt.wscale_ok &&
100 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
101 		return tp->snd_nxt;
102 	else
103 		return tcp_wnd_end(tp);
104 }
105 
106 /* Calculate mss to advertise in SYN segment.
107  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108  *
109  * 1. It is independent of path mtu.
110  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
111  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
112  *    attached devices, because some buggy hosts are confused by
113  *    large MSS.
114  * 4. We do not make 3, we advertise MSS, calculated from first
115  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
116  *    This may be overridden via information stored in routing table.
117  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
118  *    probably even Jumbo".
119  */
120 static __u16 tcp_advertise_mss(struct sock *sk)
121 {
122 	struct tcp_sock *tp = tcp_sk(sk);
123 	const struct dst_entry *dst = __sk_dst_get(sk);
124 	int mss = tp->advmss;
125 
126 	if (dst) {
127 		unsigned int metric = dst_metric_advmss(dst);
128 
129 		if (metric < mss) {
130 			mss = metric;
131 			tp->advmss = mss;
132 		}
133 	}
134 
135 	return (__u16)mss;
136 }
137 
138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
139  * This is the first part of cwnd validation mechanism.
140  */
141 void tcp_cwnd_restart(struct sock *sk, s32 delta)
142 {
143 	struct tcp_sock *tp = tcp_sk(sk);
144 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
145 	u32 cwnd = tp->snd_cwnd;
146 
147 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
148 
149 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
150 	restart_cwnd = min(restart_cwnd, cwnd);
151 
152 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
153 		cwnd >>= 1;
154 	tp->snd_cwnd = max(cwnd, restart_cwnd);
155 	tp->snd_cwnd_stamp = tcp_jiffies32;
156 	tp->snd_cwnd_used = 0;
157 }
158 
159 /* Congestion state accounting after a packet has been sent. */
160 static void tcp_event_data_sent(struct tcp_sock *tp,
161 				struct sock *sk)
162 {
163 	struct inet_connection_sock *icsk = inet_csk(sk);
164 	const u32 now = tcp_jiffies32;
165 
166 	if (tcp_packets_in_flight(tp) == 0)
167 		tcp_ca_event(sk, CA_EVENT_TX_START);
168 
169 	/* If this is the first data packet sent in response to the
170 	 * previous received data,
171 	 * and it is a reply for ato after last received packet,
172 	 * increase pingpong count.
173 	 */
174 	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
175 	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_inc_pingpong_cnt(sk);
177 
178 	tp->lsndtime = now;
179 }
180 
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
183 				      u32 rcv_nxt)
184 {
185 	struct tcp_sock *tp = tcp_sk(sk);
186 
187 	if (unlikely(tp->compressed_ack)) {
188 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
189 			      tp->compressed_ack);
190 		tp->compressed_ack = 0;
191 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
192 			__sock_put(sk);
193 	}
194 
195 	if (unlikely(rcv_nxt != tp->rcv_nxt))
196 		return;  /* Special ACK sent by DCTCP to reflect ECN */
197 	tcp_dec_quickack_mode(sk, pkts);
198 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
199 }
200 
201 /* Determine a window scaling and initial window to offer.
202  * Based on the assumption that the given amount of space
203  * will be offered. Store the results in the tp structure.
204  * NOTE: for smooth operation initial space offering should
205  * be a multiple of mss if possible. We assume here that mss >= 1.
206  * This MUST be enforced by all callers.
207  */
208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
209 			       __u32 *rcv_wnd, __u32 *window_clamp,
210 			       int wscale_ok, __u8 *rcv_wscale,
211 			       __u32 init_rcv_wnd)
212 {
213 	unsigned int space = (__space < 0 ? 0 : __space);
214 
215 	/* If no clamp set the clamp to the max possible scaled window */
216 	if (*window_clamp == 0)
217 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
218 	space = min(*window_clamp, space);
219 
220 	/* Quantize space offering to a multiple of mss if possible. */
221 	if (space > mss)
222 		space = rounddown(space, mss);
223 
224 	/* NOTE: offering an initial window larger than 32767
225 	 * will break some buggy TCP stacks. If the admin tells us
226 	 * it is likely we could be speaking with such a buggy stack
227 	 * we will truncate our initial window offering to 32K-1
228 	 * unless the remote has sent us a window scaling option,
229 	 * which we interpret as a sign the remote TCP is not
230 	 * misinterpreting the window field as a signed quantity.
231 	 */
232 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
233 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 	else
235 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
236 
237 	if (init_rcv_wnd)
238 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239 
240 	*rcv_wscale = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window */
243 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
244 		space = max_t(u32, space, sysctl_rmem_max);
245 		space = min_t(u32, space, *window_clamp);
246 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
247 				      0, TCP_MAX_WSCALE);
248 	}
249 	/* Set the clamp no higher than max representable value */
250 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
251 }
252 EXPORT_SYMBOL(tcp_select_initial_window);
253 
254 /* Chose a new window to advertise, update state in tcp_sock for the
255  * socket, and return result with RFC1323 scaling applied.  The return
256  * value can be stuffed directly into th->window for an outgoing
257  * frame.
258  */
259 static u16 tcp_select_window(struct sock *sk)
260 {
261 	struct tcp_sock *tp = tcp_sk(sk);
262 	u32 old_win = tp->rcv_wnd;
263 	u32 cur_win = tcp_receive_window(tp);
264 	u32 new_win = __tcp_select_window(sk);
265 
266 	/* Never shrink the offered window */
267 	if (new_win < cur_win) {
268 		/* Danger Will Robinson!
269 		 * Don't update rcv_wup/rcv_wnd here or else
270 		 * we will not be able to advertise a zero
271 		 * window in time.  --DaveM
272 		 *
273 		 * Relax Will Robinson.
274 		 */
275 		if (new_win == 0)
276 			NET_INC_STATS(sock_net(sk),
277 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
278 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
279 	}
280 	tp->rcv_wnd = new_win;
281 	tp->rcv_wup = tp->rcv_nxt;
282 
283 	/* Make sure we do not exceed the maximum possible
284 	 * scaled window.
285 	 */
286 	if (!tp->rx_opt.rcv_wscale &&
287 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
288 		new_win = min(new_win, MAX_TCP_WINDOW);
289 	else
290 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
291 
292 	/* RFC1323 scaling applied */
293 	new_win >>= tp->rx_opt.rcv_wscale;
294 
295 	/* If we advertise zero window, disable fast path. */
296 	if (new_win == 0) {
297 		tp->pred_flags = 0;
298 		if (old_win)
299 			NET_INC_STATS(sock_net(sk),
300 				      LINUX_MIB_TCPTOZEROWINDOWADV);
301 	} else if (old_win == 0) {
302 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
303 	}
304 
305 	return new_win;
306 }
307 
308 /* Packet ECN state for a SYN-ACK */
309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
310 {
311 	const struct tcp_sock *tp = tcp_sk(sk);
312 
313 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
314 	if (!(tp->ecn_flags & TCP_ECN_OK))
315 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
316 	else if (tcp_ca_needs_ecn(sk) ||
317 		 tcp_bpf_ca_needs_ecn(sk))
318 		INET_ECN_xmit(sk);
319 }
320 
321 /* Packet ECN state for a SYN.  */
322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
323 {
324 	struct tcp_sock *tp = tcp_sk(sk);
325 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
326 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
327 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
328 
329 	if (!use_ecn) {
330 		const struct dst_entry *dst = __sk_dst_get(sk);
331 
332 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
333 			use_ecn = true;
334 	}
335 
336 	tp->ecn_flags = 0;
337 
338 	if (use_ecn) {
339 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
340 		tp->ecn_flags = TCP_ECN_OK;
341 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
342 			INET_ECN_xmit(sk);
343 	}
344 }
345 
346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
347 {
348 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
349 		/* tp->ecn_flags are cleared at a later point in time when
350 		 * SYN ACK is ultimatively being received.
351 		 */
352 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
353 }
354 
355 static void
356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
357 {
358 	if (inet_rsk(req)->ecn_ok)
359 		th->ece = 1;
360 }
361 
362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
363  * be sent.
364  */
365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
366 			 struct tcphdr *th, int tcp_header_len)
367 {
368 	struct tcp_sock *tp = tcp_sk(sk);
369 
370 	if (tp->ecn_flags & TCP_ECN_OK) {
371 		/* Not-retransmitted data segment: set ECT and inject CWR. */
372 		if (skb->len != tcp_header_len &&
373 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
374 			INET_ECN_xmit(sk);
375 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
376 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
377 				th->cwr = 1;
378 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
379 			}
380 		} else if (!tcp_ca_needs_ecn(sk)) {
381 			/* ACK or retransmitted segment: clear ECT|CE */
382 			INET_ECN_dontxmit(sk);
383 		}
384 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
385 			th->ece = 1;
386 	}
387 }
388 
389 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390  * auto increment end seqno.
391  */
392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
393 {
394 	skb->ip_summed = CHECKSUM_PARTIAL;
395 
396 	TCP_SKB_CB(skb)->tcp_flags = flags;
397 	TCP_SKB_CB(skb)->sacked = 0;
398 
399 	tcp_skb_pcount_set(skb, 1);
400 
401 	TCP_SKB_CB(skb)->seq = seq;
402 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
403 		seq++;
404 	TCP_SKB_CB(skb)->end_seq = seq;
405 }
406 
407 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
408 {
409 	return tp->snd_una != tp->snd_up;
410 }
411 
412 #define OPTION_SACK_ADVERTISE	(1 << 0)
413 #define OPTION_TS		(1 << 1)
414 #define OPTION_MD5		(1 << 2)
415 #define OPTION_WSCALE		(1 << 3)
416 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
417 #define OPTION_SMC		(1 << 9)
418 #define OPTION_MPTCP		(1 << 10)
419 
420 static void smc_options_write(__be32 *ptr, u16 *options)
421 {
422 #if IS_ENABLED(CONFIG_SMC)
423 	if (static_branch_unlikely(&tcp_have_smc)) {
424 		if (unlikely(OPTION_SMC & *options)) {
425 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
426 				       (TCPOPT_NOP  << 16) |
427 				       (TCPOPT_EXP <<  8) |
428 				       (TCPOLEN_EXP_SMC_BASE));
429 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
430 		}
431 	}
432 #endif
433 }
434 
435 struct tcp_out_options {
436 	u16 options;		/* bit field of OPTION_* */
437 	u16 mss;		/* 0 to disable */
438 	u8 ws;			/* window scale, 0 to disable */
439 	u8 num_sack_blocks;	/* number of SACK blocks to include */
440 	u8 hash_size;		/* bytes in hash_location */
441 	u8 bpf_opt_len;		/* length of BPF hdr option */
442 	__u8 *hash_location;	/* temporary pointer, overloaded */
443 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
444 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
445 	struct mptcp_out_options mptcp;
446 };
447 
448 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
449 {
450 #if IS_ENABLED(CONFIG_MPTCP)
451 	if (unlikely(OPTION_MPTCP & opts->options))
452 		mptcp_write_options(ptr, &opts->mptcp);
453 #endif
454 }
455 
456 #ifdef CONFIG_CGROUP_BPF
457 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
458 					enum tcp_synack_type synack_type)
459 {
460 	if (unlikely(!skb))
461 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
462 
463 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
464 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
465 
466 	return 0;
467 }
468 
469 /* req, syn_skb and synack_type are used when writing synack */
470 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
471 				  struct request_sock *req,
472 				  struct sk_buff *syn_skb,
473 				  enum tcp_synack_type synack_type,
474 				  struct tcp_out_options *opts,
475 				  unsigned int *remaining)
476 {
477 	struct bpf_sock_ops_kern sock_ops;
478 	int err;
479 
480 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
481 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
482 	    !*remaining)
483 		return;
484 
485 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
486 
487 	/* init sock_ops */
488 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
489 
490 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
491 
492 	if (req) {
493 		/* The listen "sk" cannot be passed here because
494 		 * it is not locked.  It would not make too much
495 		 * sense to do bpf_setsockopt(listen_sk) based
496 		 * on individual connection request also.
497 		 *
498 		 * Thus, "req" is passed here and the cgroup-bpf-progs
499 		 * of the listen "sk" will be run.
500 		 *
501 		 * "req" is also used here for fastopen even the "sk" here is
502 		 * a fullsock "child" sk.  It is to keep the behavior
503 		 * consistent between fastopen and non-fastopen on
504 		 * the bpf programming side.
505 		 */
506 		sock_ops.sk = (struct sock *)req;
507 		sock_ops.syn_skb = syn_skb;
508 	} else {
509 		sock_owned_by_me(sk);
510 
511 		sock_ops.is_fullsock = 1;
512 		sock_ops.sk = sk;
513 	}
514 
515 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
516 	sock_ops.remaining_opt_len = *remaining;
517 	/* tcp_current_mss() does not pass a skb */
518 	if (skb)
519 		bpf_skops_init_skb(&sock_ops, skb, 0);
520 
521 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
522 
523 	if (err || sock_ops.remaining_opt_len == *remaining)
524 		return;
525 
526 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
527 	/* round up to 4 bytes */
528 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
529 
530 	*remaining -= opts->bpf_opt_len;
531 }
532 
533 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
534 				    struct request_sock *req,
535 				    struct sk_buff *syn_skb,
536 				    enum tcp_synack_type synack_type,
537 				    struct tcp_out_options *opts)
538 {
539 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
540 	struct bpf_sock_ops_kern sock_ops;
541 	int err;
542 
543 	if (likely(!max_opt_len))
544 		return;
545 
546 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
547 
548 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
549 
550 	if (req) {
551 		sock_ops.sk = (struct sock *)req;
552 		sock_ops.syn_skb = syn_skb;
553 	} else {
554 		sock_owned_by_me(sk);
555 
556 		sock_ops.is_fullsock = 1;
557 		sock_ops.sk = sk;
558 	}
559 
560 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
561 	sock_ops.remaining_opt_len = max_opt_len;
562 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
563 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
564 
565 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
566 
567 	if (err)
568 		nr_written = 0;
569 	else
570 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
571 
572 	if (nr_written < max_opt_len)
573 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
574 		       max_opt_len - nr_written);
575 }
576 #else
577 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
578 				  struct request_sock *req,
579 				  struct sk_buff *syn_skb,
580 				  enum tcp_synack_type synack_type,
581 				  struct tcp_out_options *opts,
582 				  unsigned int *remaining)
583 {
584 }
585 
586 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
587 				    struct request_sock *req,
588 				    struct sk_buff *syn_skb,
589 				    enum tcp_synack_type synack_type,
590 				    struct tcp_out_options *opts)
591 {
592 }
593 #endif
594 
595 /* Write previously computed TCP options to the packet.
596  *
597  * Beware: Something in the Internet is very sensitive to the ordering of
598  * TCP options, we learned this through the hard way, so be careful here.
599  * Luckily we can at least blame others for their non-compliance but from
600  * inter-operability perspective it seems that we're somewhat stuck with
601  * the ordering which we have been using if we want to keep working with
602  * those broken things (not that it currently hurts anybody as there isn't
603  * particular reason why the ordering would need to be changed).
604  *
605  * At least SACK_PERM as the first option is known to lead to a disaster
606  * (but it may well be that other scenarios fail similarly).
607  */
608 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
609 			      struct tcp_out_options *opts)
610 {
611 	u16 options = opts->options;	/* mungable copy */
612 
613 	if (unlikely(OPTION_MD5 & options)) {
614 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
615 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
616 		/* overload cookie hash location */
617 		opts->hash_location = (__u8 *)ptr;
618 		ptr += 4;
619 	}
620 
621 	if (unlikely(opts->mss)) {
622 		*ptr++ = htonl((TCPOPT_MSS << 24) |
623 			       (TCPOLEN_MSS << 16) |
624 			       opts->mss);
625 	}
626 
627 	if (likely(OPTION_TS & options)) {
628 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
629 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
630 				       (TCPOLEN_SACK_PERM << 16) |
631 				       (TCPOPT_TIMESTAMP << 8) |
632 				       TCPOLEN_TIMESTAMP);
633 			options &= ~OPTION_SACK_ADVERTISE;
634 		} else {
635 			*ptr++ = htonl((TCPOPT_NOP << 24) |
636 				       (TCPOPT_NOP << 16) |
637 				       (TCPOPT_TIMESTAMP << 8) |
638 				       TCPOLEN_TIMESTAMP);
639 		}
640 		*ptr++ = htonl(opts->tsval);
641 		*ptr++ = htonl(opts->tsecr);
642 	}
643 
644 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
645 		*ptr++ = htonl((TCPOPT_NOP << 24) |
646 			       (TCPOPT_NOP << 16) |
647 			       (TCPOPT_SACK_PERM << 8) |
648 			       TCPOLEN_SACK_PERM);
649 	}
650 
651 	if (unlikely(OPTION_WSCALE & options)) {
652 		*ptr++ = htonl((TCPOPT_NOP << 24) |
653 			       (TCPOPT_WINDOW << 16) |
654 			       (TCPOLEN_WINDOW << 8) |
655 			       opts->ws);
656 	}
657 
658 	if (unlikely(opts->num_sack_blocks)) {
659 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
660 			tp->duplicate_sack : tp->selective_acks;
661 		int this_sack;
662 
663 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
664 			       (TCPOPT_NOP  << 16) |
665 			       (TCPOPT_SACK <<  8) |
666 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
667 						     TCPOLEN_SACK_PERBLOCK)));
668 
669 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
670 		     ++this_sack) {
671 			*ptr++ = htonl(sp[this_sack].start_seq);
672 			*ptr++ = htonl(sp[this_sack].end_seq);
673 		}
674 
675 		tp->rx_opt.dsack = 0;
676 	}
677 
678 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
679 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
680 		u8 *p = (u8 *)ptr;
681 		u32 len; /* Fast Open option length */
682 
683 		if (foc->exp) {
684 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
685 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
686 				     TCPOPT_FASTOPEN_MAGIC);
687 			p += TCPOLEN_EXP_FASTOPEN_BASE;
688 		} else {
689 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
690 			*p++ = TCPOPT_FASTOPEN;
691 			*p++ = len;
692 		}
693 
694 		memcpy(p, foc->val, foc->len);
695 		if ((len & 3) == 2) {
696 			p[foc->len] = TCPOPT_NOP;
697 			p[foc->len + 1] = TCPOPT_NOP;
698 		}
699 		ptr += (len + 3) >> 2;
700 	}
701 
702 	smc_options_write(ptr, &options);
703 
704 	mptcp_options_write(ptr, opts);
705 }
706 
707 static void smc_set_option(const struct tcp_sock *tp,
708 			   struct tcp_out_options *opts,
709 			   unsigned int *remaining)
710 {
711 #if IS_ENABLED(CONFIG_SMC)
712 	if (static_branch_unlikely(&tcp_have_smc)) {
713 		if (tp->syn_smc) {
714 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
715 				opts->options |= OPTION_SMC;
716 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
717 			}
718 		}
719 	}
720 #endif
721 }
722 
723 static void smc_set_option_cond(const struct tcp_sock *tp,
724 				const struct inet_request_sock *ireq,
725 				struct tcp_out_options *opts,
726 				unsigned int *remaining)
727 {
728 #if IS_ENABLED(CONFIG_SMC)
729 	if (static_branch_unlikely(&tcp_have_smc)) {
730 		if (tp->syn_smc && ireq->smc_ok) {
731 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
732 				opts->options |= OPTION_SMC;
733 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
734 			}
735 		}
736 	}
737 #endif
738 }
739 
740 static void mptcp_set_option_cond(const struct request_sock *req,
741 				  struct tcp_out_options *opts,
742 				  unsigned int *remaining)
743 {
744 	if (rsk_is_mptcp(req)) {
745 		unsigned int size;
746 
747 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
748 			if (*remaining >= size) {
749 				opts->options |= OPTION_MPTCP;
750 				*remaining -= size;
751 			}
752 		}
753 	}
754 }
755 
756 /* Compute TCP options for SYN packets. This is not the final
757  * network wire format yet.
758  */
759 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
760 				struct tcp_out_options *opts,
761 				struct tcp_md5sig_key **md5)
762 {
763 	struct tcp_sock *tp = tcp_sk(sk);
764 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
765 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
766 
767 	*md5 = NULL;
768 #ifdef CONFIG_TCP_MD5SIG
769 	if (static_branch_unlikely(&tcp_md5_needed) &&
770 	    rcu_access_pointer(tp->md5sig_info)) {
771 		*md5 = tp->af_specific->md5_lookup(sk, sk);
772 		if (*md5) {
773 			opts->options |= OPTION_MD5;
774 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
775 		}
776 	}
777 #endif
778 
779 	/* We always get an MSS option.  The option bytes which will be seen in
780 	 * normal data packets should timestamps be used, must be in the MSS
781 	 * advertised.  But we subtract them from tp->mss_cache so that
782 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
783 	 * fact here if necessary.  If we don't do this correctly, as a
784 	 * receiver we won't recognize data packets as being full sized when we
785 	 * should, and thus we won't abide by the delayed ACK rules correctly.
786 	 * SACKs don't matter, we never delay an ACK when we have any of those
787 	 * going out.  */
788 	opts->mss = tcp_advertise_mss(sk);
789 	remaining -= TCPOLEN_MSS_ALIGNED;
790 
791 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
792 		opts->options |= OPTION_TS;
793 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
794 		opts->tsecr = tp->rx_opt.ts_recent;
795 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
796 	}
797 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
798 		opts->ws = tp->rx_opt.rcv_wscale;
799 		opts->options |= OPTION_WSCALE;
800 		remaining -= TCPOLEN_WSCALE_ALIGNED;
801 	}
802 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
803 		opts->options |= OPTION_SACK_ADVERTISE;
804 		if (unlikely(!(OPTION_TS & opts->options)))
805 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
806 	}
807 
808 	if (fastopen && fastopen->cookie.len >= 0) {
809 		u32 need = fastopen->cookie.len;
810 
811 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
812 					       TCPOLEN_FASTOPEN_BASE;
813 		need = (need + 3) & ~3U;  /* Align to 32 bits */
814 		if (remaining >= need) {
815 			opts->options |= OPTION_FAST_OPEN_COOKIE;
816 			opts->fastopen_cookie = &fastopen->cookie;
817 			remaining -= need;
818 			tp->syn_fastopen = 1;
819 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
820 		}
821 	}
822 
823 	smc_set_option(tp, opts, &remaining);
824 
825 	if (sk_is_mptcp(sk)) {
826 		unsigned int size;
827 
828 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
829 			opts->options |= OPTION_MPTCP;
830 			remaining -= size;
831 		}
832 	}
833 
834 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
835 
836 	return MAX_TCP_OPTION_SPACE - remaining;
837 }
838 
839 /* Set up TCP options for SYN-ACKs. */
840 static unsigned int tcp_synack_options(const struct sock *sk,
841 				       struct request_sock *req,
842 				       unsigned int mss, struct sk_buff *skb,
843 				       struct tcp_out_options *opts,
844 				       const struct tcp_md5sig_key *md5,
845 				       struct tcp_fastopen_cookie *foc,
846 				       enum tcp_synack_type synack_type,
847 				       struct sk_buff *syn_skb)
848 {
849 	struct inet_request_sock *ireq = inet_rsk(req);
850 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
851 
852 #ifdef CONFIG_TCP_MD5SIG
853 	if (md5) {
854 		opts->options |= OPTION_MD5;
855 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
856 
857 		/* We can't fit any SACK blocks in a packet with MD5 + TS
858 		 * options. There was discussion about disabling SACK
859 		 * rather than TS in order to fit in better with old,
860 		 * buggy kernels, but that was deemed to be unnecessary.
861 		 */
862 		if (synack_type != TCP_SYNACK_COOKIE)
863 			ireq->tstamp_ok &= !ireq->sack_ok;
864 	}
865 #endif
866 
867 	/* We always send an MSS option. */
868 	opts->mss = mss;
869 	remaining -= TCPOLEN_MSS_ALIGNED;
870 
871 	if (likely(ireq->wscale_ok)) {
872 		opts->ws = ireq->rcv_wscale;
873 		opts->options |= OPTION_WSCALE;
874 		remaining -= TCPOLEN_WSCALE_ALIGNED;
875 	}
876 	if (likely(ireq->tstamp_ok)) {
877 		opts->options |= OPTION_TS;
878 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
879 		opts->tsecr = req->ts_recent;
880 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
881 	}
882 	if (likely(ireq->sack_ok)) {
883 		opts->options |= OPTION_SACK_ADVERTISE;
884 		if (unlikely(!ireq->tstamp_ok))
885 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
886 	}
887 	if (foc != NULL && foc->len >= 0) {
888 		u32 need = foc->len;
889 
890 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
891 				   TCPOLEN_FASTOPEN_BASE;
892 		need = (need + 3) & ~3U;  /* Align to 32 bits */
893 		if (remaining >= need) {
894 			opts->options |= OPTION_FAST_OPEN_COOKIE;
895 			opts->fastopen_cookie = foc;
896 			remaining -= need;
897 		}
898 	}
899 
900 	mptcp_set_option_cond(req, opts, &remaining);
901 
902 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
903 
904 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
905 			      synack_type, opts, &remaining);
906 
907 	return MAX_TCP_OPTION_SPACE - remaining;
908 }
909 
910 /* Compute TCP options for ESTABLISHED sockets. This is not the
911  * final wire format yet.
912  */
913 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
914 					struct tcp_out_options *opts,
915 					struct tcp_md5sig_key **md5)
916 {
917 	struct tcp_sock *tp = tcp_sk(sk);
918 	unsigned int size = 0;
919 	unsigned int eff_sacks;
920 
921 	opts->options = 0;
922 
923 	*md5 = NULL;
924 #ifdef CONFIG_TCP_MD5SIG
925 	if (static_branch_unlikely(&tcp_md5_needed) &&
926 	    rcu_access_pointer(tp->md5sig_info)) {
927 		*md5 = tp->af_specific->md5_lookup(sk, sk);
928 		if (*md5) {
929 			opts->options |= OPTION_MD5;
930 			size += TCPOLEN_MD5SIG_ALIGNED;
931 		}
932 	}
933 #endif
934 
935 	if (likely(tp->rx_opt.tstamp_ok)) {
936 		opts->options |= OPTION_TS;
937 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
938 		opts->tsecr = tp->rx_opt.ts_recent;
939 		size += TCPOLEN_TSTAMP_ALIGNED;
940 	}
941 
942 	/* MPTCP options have precedence over SACK for the limited TCP
943 	 * option space because a MPTCP connection would be forced to
944 	 * fall back to regular TCP if a required multipath option is
945 	 * missing. SACK still gets a chance to use whatever space is
946 	 * left.
947 	 */
948 	if (sk_is_mptcp(sk)) {
949 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
950 		unsigned int opt_size = 0;
951 
952 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
953 					      &opts->mptcp)) {
954 			opts->options |= OPTION_MPTCP;
955 			size += opt_size;
956 		}
957 	}
958 
959 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
960 	if (unlikely(eff_sacks)) {
961 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
962 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
963 					 TCPOLEN_SACK_PERBLOCK))
964 			return size;
965 
966 		opts->num_sack_blocks =
967 			min_t(unsigned int, eff_sacks,
968 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
969 			      TCPOLEN_SACK_PERBLOCK);
970 
971 		size += TCPOLEN_SACK_BASE_ALIGNED +
972 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
973 	}
974 
975 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
976 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
977 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
978 
979 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
980 
981 		size = MAX_TCP_OPTION_SPACE - remaining;
982 	}
983 
984 	return size;
985 }
986 
987 
988 /* TCP SMALL QUEUES (TSQ)
989  *
990  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
991  * to reduce RTT and bufferbloat.
992  * We do this using a special skb destructor (tcp_wfree).
993  *
994  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
995  * needs to be reallocated in a driver.
996  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
997  *
998  * Since transmit from skb destructor is forbidden, we use a tasklet
999  * to process all sockets that eventually need to send more skbs.
1000  * We use one tasklet per cpu, with its own queue of sockets.
1001  */
1002 struct tsq_tasklet {
1003 	struct tasklet_struct	tasklet;
1004 	struct list_head	head; /* queue of tcp sockets */
1005 };
1006 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1007 
1008 static void tcp_tsq_write(struct sock *sk)
1009 {
1010 	if ((1 << sk->sk_state) &
1011 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1012 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1013 		struct tcp_sock *tp = tcp_sk(sk);
1014 
1015 		if (tp->lost_out > tp->retrans_out &&
1016 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
1017 			tcp_mstamp_refresh(tp);
1018 			tcp_xmit_retransmit_queue(sk);
1019 		}
1020 
1021 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1022 			       0, GFP_ATOMIC);
1023 	}
1024 }
1025 
1026 static void tcp_tsq_handler(struct sock *sk)
1027 {
1028 	bh_lock_sock(sk);
1029 	if (!sock_owned_by_user(sk))
1030 		tcp_tsq_write(sk);
1031 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1032 		sock_hold(sk);
1033 	bh_unlock_sock(sk);
1034 }
1035 /*
1036  * One tasklet per cpu tries to send more skbs.
1037  * We run in tasklet context but need to disable irqs when
1038  * transferring tsq->head because tcp_wfree() might
1039  * interrupt us (non NAPI drivers)
1040  */
1041 static void tcp_tasklet_func(unsigned long data)
1042 {
1043 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
1044 	LIST_HEAD(list);
1045 	unsigned long flags;
1046 	struct list_head *q, *n;
1047 	struct tcp_sock *tp;
1048 	struct sock *sk;
1049 
1050 	local_irq_save(flags);
1051 	list_splice_init(&tsq->head, &list);
1052 	local_irq_restore(flags);
1053 
1054 	list_for_each_safe(q, n, &list) {
1055 		tp = list_entry(q, struct tcp_sock, tsq_node);
1056 		list_del(&tp->tsq_node);
1057 
1058 		sk = (struct sock *)tp;
1059 		smp_mb__before_atomic();
1060 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1061 
1062 		tcp_tsq_handler(sk);
1063 		sk_free(sk);
1064 	}
1065 }
1066 
1067 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1068 			  TCPF_WRITE_TIMER_DEFERRED |	\
1069 			  TCPF_DELACK_TIMER_DEFERRED |	\
1070 			  TCPF_MTU_REDUCED_DEFERRED)
1071 /**
1072  * tcp_release_cb - tcp release_sock() callback
1073  * @sk: socket
1074  *
1075  * called from release_sock() to perform protocol dependent
1076  * actions before socket release.
1077  */
1078 void tcp_release_cb(struct sock *sk)
1079 {
1080 	unsigned long flags, nflags;
1081 
1082 	/* perform an atomic operation only if at least one flag is set */
1083 	do {
1084 		flags = sk->sk_tsq_flags;
1085 		if (!(flags & TCP_DEFERRED_ALL))
1086 			return;
1087 		nflags = flags & ~TCP_DEFERRED_ALL;
1088 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1089 
1090 	if (flags & TCPF_TSQ_DEFERRED) {
1091 		tcp_tsq_write(sk);
1092 		__sock_put(sk);
1093 	}
1094 	/* Here begins the tricky part :
1095 	 * We are called from release_sock() with :
1096 	 * 1) BH disabled
1097 	 * 2) sk_lock.slock spinlock held
1098 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1099 	 *
1100 	 * But following code is meant to be called from BH handlers,
1101 	 * so we should keep BH disabled, but early release socket ownership
1102 	 */
1103 	sock_release_ownership(sk);
1104 
1105 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1106 		tcp_write_timer_handler(sk);
1107 		__sock_put(sk);
1108 	}
1109 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1110 		tcp_delack_timer_handler(sk);
1111 		__sock_put(sk);
1112 	}
1113 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1114 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1115 		__sock_put(sk);
1116 	}
1117 }
1118 EXPORT_SYMBOL(tcp_release_cb);
1119 
1120 void __init tcp_tasklet_init(void)
1121 {
1122 	int i;
1123 
1124 	for_each_possible_cpu(i) {
1125 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1126 
1127 		INIT_LIST_HEAD(&tsq->head);
1128 		tasklet_init(&tsq->tasklet,
1129 			     tcp_tasklet_func,
1130 			     (unsigned long)tsq);
1131 	}
1132 }
1133 
1134 /*
1135  * Write buffer destructor automatically called from kfree_skb.
1136  * We can't xmit new skbs from this context, as we might already
1137  * hold qdisc lock.
1138  */
1139 void tcp_wfree(struct sk_buff *skb)
1140 {
1141 	struct sock *sk = skb->sk;
1142 	struct tcp_sock *tp = tcp_sk(sk);
1143 	unsigned long flags, nval, oval;
1144 
1145 	/* Keep one reference on sk_wmem_alloc.
1146 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1147 	 */
1148 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1149 
1150 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1151 	 * Wait until our queues (qdisc + devices) are drained.
1152 	 * This gives :
1153 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1154 	 * - chance for incoming ACK (processed by another cpu maybe)
1155 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1156 	 */
1157 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1158 		goto out;
1159 
1160 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1161 		struct tsq_tasklet *tsq;
1162 		bool empty;
1163 
1164 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1165 			goto out;
1166 
1167 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1168 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1169 		if (nval != oval)
1170 			continue;
1171 
1172 		/* queue this socket to tasklet queue */
1173 		local_irq_save(flags);
1174 		tsq = this_cpu_ptr(&tsq_tasklet);
1175 		empty = list_empty(&tsq->head);
1176 		list_add(&tp->tsq_node, &tsq->head);
1177 		if (empty)
1178 			tasklet_schedule(&tsq->tasklet);
1179 		local_irq_restore(flags);
1180 		return;
1181 	}
1182 out:
1183 	sk_free(sk);
1184 }
1185 
1186 /* Note: Called under soft irq.
1187  * We can call TCP stack right away, unless socket is owned by user.
1188  */
1189 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1190 {
1191 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1192 	struct sock *sk = (struct sock *)tp;
1193 
1194 	tcp_tsq_handler(sk);
1195 	sock_put(sk);
1196 
1197 	return HRTIMER_NORESTART;
1198 }
1199 
1200 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1201 				      u64 prior_wstamp)
1202 {
1203 	struct tcp_sock *tp = tcp_sk(sk);
1204 
1205 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1206 		unsigned long rate = sk->sk_pacing_rate;
1207 
1208 		/* Original sch_fq does not pace first 10 MSS
1209 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1210 		 * this is a minor annoyance.
1211 		 */
1212 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1213 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1214 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1215 
1216 			/* take into account OS jitter */
1217 			len_ns -= min_t(u64, len_ns / 2, credit);
1218 			tp->tcp_wstamp_ns += len_ns;
1219 		}
1220 	}
1221 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1222 }
1223 
1224 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1225 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1226 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1227 
1228 /* This routine actually transmits TCP packets queued in by
1229  * tcp_do_sendmsg().  This is used by both the initial
1230  * transmission and possible later retransmissions.
1231  * All SKB's seen here are completely headerless.  It is our
1232  * job to build the TCP header, and pass the packet down to
1233  * IP so it can do the same plus pass the packet off to the
1234  * device.
1235  *
1236  * We are working here with either a clone of the original
1237  * SKB, or a fresh unique copy made by the retransmit engine.
1238  */
1239 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1240 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1241 {
1242 	const struct inet_connection_sock *icsk = inet_csk(sk);
1243 	struct inet_sock *inet;
1244 	struct tcp_sock *tp;
1245 	struct tcp_skb_cb *tcb;
1246 	struct tcp_out_options opts;
1247 	unsigned int tcp_options_size, tcp_header_size;
1248 	struct sk_buff *oskb = NULL;
1249 	struct tcp_md5sig_key *md5;
1250 	struct tcphdr *th;
1251 	u64 prior_wstamp;
1252 	int err;
1253 
1254 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1255 	tp = tcp_sk(sk);
1256 	prior_wstamp = tp->tcp_wstamp_ns;
1257 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1258 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1259 	if (clone_it) {
1260 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1261 			- tp->snd_una;
1262 		oskb = skb;
1263 
1264 		tcp_skb_tsorted_save(oskb) {
1265 			if (unlikely(skb_cloned(oskb)))
1266 				skb = pskb_copy(oskb, gfp_mask);
1267 			else
1268 				skb = skb_clone(oskb, gfp_mask);
1269 		} tcp_skb_tsorted_restore(oskb);
1270 
1271 		if (unlikely(!skb))
1272 			return -ENOBUFS;
1273 		/* retransmit skbs might have a non zero value in skb->dev
1274 		 * because skb->dev is aliased with skb->rbnode.rb_left
1275 		 */
1276 		skb->dev = NULL;
1277 	}
1278 
1279 	inet = inet_sk(sk);
1280 	tcb = TCP_SKB_CB(skb);
1281 	memset(&opts, 0, sizeof(opts));
1282 
1283 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1284 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1285 	} else {
1286 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1287 							   &md5);
1288 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1289 		 * at receiver : This slightly improve GRO performance.
1290 		 * Note that we do not force the PSH flag for non GSO packets,
1291 		 * because they might be sent under high congestion events,
1292 		 * and in this case it is better to delay the delivery of 1-MSS
1293 		 * packets and thus the corresponding ACK packet that would
1294 		 * release the following packet.
1295 		 */
1296 		if (tcp_skb_pcount(skb) > 1)
1297 			tcb->tcp_flags |= TCPHDR_PSH;
1298 	}
1299 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1300 
1301 	/* if no packet is in qdisc/device queue, then allow XPS to select
1302 	 * another queue. We can be called from tcp_tsq_handler()
1303 	 * which holds one reference to sk.
1304 	 *
1305 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1306 	 * One way to get this would be to set skb->truesize = 2 on them.
1307 	 */
1308 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1309 
1310 	/* If we had to use memory reserve to allocate this skb,
1311 	 * this might cause drops if packet is looped back :
1312 	 * Other socket might not have SOCK_MEMALLOC.
1313 	 * Packets not looped back do not care about pfmemalloc.
1314 	 */
1315 	skb->pfmemalloc = 0;
1316 
1317 	skb_push(skb, tcp_header_size);
1318 	skb_reset_transport_header(skb);
1319 
1320 	skb_orphan(skb);
1321 	skb->sk = sk;
1322 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1323 	skb_set_hash_from_sk(skb, sk);
1324 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1325 
1326 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1327 
1328 	/* Build TCP header and checksum it. */
1329 	th = (struct tcphdr *)skb->data;
1330 	th->source		= inet->inet_sport;
1331 	th->dest		= inet->inet_dport;
1332 	th->seq			= htonl(tcb->seq);
1333 	th->ack_seq		= htonl(rcv_nxt);
1334 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1335 					tcb->tcp_flags);
1336 
1337 	th->check		= 0;
1338 	th->urg_ptr		= 0;
1339 
1340 	/* The urg_mode check is necessary during a below snd_una win probe */
1341 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1342 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1343 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1344 			th->urg = 1;
1345 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1346 			th->urg_ptr = htons(0xFFFF);
1347 			th->urg = 1;
1348 		}
1349 	}
1350 
1351 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1352 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1353 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1354 		th->window      = htons(tcp_select_window(sk));
1355 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1356 	} else {
1357 		/* RFC1323: The window in SYN & SYN/ACK segments
1358 		 * is never scaled.
1359 		 */
1360 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1361 	}
1362 #ifdef CONFIG_TCP_MD5SIG
1363 	/* Calculate the MD5 hash, as we have all we need now */
1364 	if (md5) {
1365 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1366 		tp->af_specific->calc_md5_hash(opts.hash_location,
1367 					       md5, sk, skb);
1368 	}
1369 #endif
1370 
1371 	/* BPF prog is the last one writing header option */
1372 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1373 
1374 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1375 			   tcp_v6_send_check, tcp_v4_send_check,
1376 			   sk, skb);
1377 
1378 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1379 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1380 
1381 	if (skb->len != tcp_header_size) {
1382 		tcp_event_data_sent(tp, sk);
1383 		tp->data_segs_out += tcp_skb_pcount(skb);
1384 		tp->bytes_sent += skb->len - tcp_header_size;
1385 	}
1386 
1387 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1388 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1389 			      tcp_skb_pcount(skb));
1390 
1391 	tp->segs_out += tcp_skb_pcount(skb);
1392 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1393 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1394 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1395 
1396 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1397 
1398 	/* Cleanup our debris for IP stacks */
1399 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1400 			       sizeof(struct inet6_skb_parm)));
1401 
1402 	tcp_add_tx_delay(skb, tp);
1403 
1404 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1405 				 inet6_csk_xmit, ip_queue_xmit,
1406 				 sk, skb, &inet->cork.fl);
1407 
1408 	if (unlikely(err > 0)) {
1409 		tcp_enter_cwr(sk);
1410 		err = net_xmit_eval(err);
1411 	}
1412 	if (!err && oskb) {
1413 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1414 		tcp_rate_skb_sent(sk, oskb);
1415 	}
1416 	return err;
1417 }
1418 
1419 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1420 			    gfp_t gfp_mask)
1421 {
1422 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1423 				  tcp_sk(sk)->rcv_nxt);
1424 }
1425 
1426 /* This routine just queues the buffer for sending.
1427  *
1428  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1429  * otherwise socket can stall.
1430  */
1431 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1432 {
1433 	struct tcp_sock *tp = tcp_sk(sk);
1434 
1435 	/* Advance write_seq and place onto the write_queue. */
1436 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1437 	__skb_header_release(skb);
1438 	tcp_add_write_queue_tail(sk, skb);
1439 	sk_wmem_queued_add(sk, skb->truesize);
1440 	sk_mem_charge(sk, skb->truesize);
1441 }
1442 
1443 /* Initialize TSO segments for a packet. */
1444 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1445 {
1446 	if (skb->len <= mss_now) {
1447 		/* Avoid the costly divide in the normal
1448 		 * non-TSO case.
1449 		 */
1450 		tcp_skb_pcount_set(skb, 1);
1451 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1452 	} else {
1453 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1454 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1455 	}
1456 }
1457 
1458 /* Pcount in the middle of the write queue got changed, we need to do various
1459  * tweaks to fix counters
1460  */
1461 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1462 {
1463 	struct tcp_sock *tp = tcp_sk(sk);
1464 
1465 	tp->packets_out -= decr;
1466 
1467 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1468 		tp->sacked_out -= decr;
1469 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1470 		tp->retrans_out -= decr;
1471 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1472 		tp->lost_out -= decr;
1473 
1474 	/* Reno case is special. Sigh... */
1475 	if (tcp_is_reno(tp) && decr > 0)
1476 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1477 
1478 	if (tp->lost_skb_hint &&
1479 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1480 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1481 		tp->lost_cnt_hint -= decr;
1482 
1483 	tcp_verify_left_out(tp);
1484 }
1485 
1486 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1487 {
1488 	return TCP_SKB_CB(skb)->txstamp_ack ||
1489 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1490 }
1491 
1492 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1493 {
1494 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1495 
1496 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1497 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1498 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1499 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1500 
1501 		shinfo->tx_flags &= ~tsflags;
1502 		shinfo2->tx_flags |= tsflags;
1503 		swap(shinfo->tskey, shinfo2->tskey);
1504 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1505 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1506 	}
1507 }
1508 
1509 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1510 {
1511 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1512 	TCP_SKB_CB(skb)->eor = 0;
1513 }
1514 
1515 /* Insert buff after skb on the write or rtx queue of sk.  */
1516 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1517 					 struct sk_buff *buff,
1518 					 struct sock *sk,
1519 					 enum tcp_queue tcp_queue)
1520 {
1521 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1522 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1523 	else
1524 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1525 }
1526 
1527 /* Function to create two new TCP segments.  Shrinks the given segment
1528  * to the specified size and appends a new segment with the rest of the
1529  * packet to the list.  This won't be called frequently, I hope.
1530  * Remember, these are still headerless SKBs at this point.
1531  */
1532 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1533 		 struct sk_buff *skb, u32 len,
1534 		 unsigned int mss_now, gfp_t gfp)
1535 {
1536 	struct tcp_sock *tp = tcp_sk(sk);
1537 	struct sk_buff *buff;
1538 	int nsize, old_factor;
1539 	long limit;
1540 	int nlen;
1541 	u8 flags;
1542 
1543 	if (WARN_ON(len > skb->len))
1544 		return -EINVAL;
1545 
1546 	nsize = skb_headlen(skb) - len;
1547 	if (nsize < 0)
1548 		nsize = 0;
1549 
1550 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1551 	 * We need some allowance to not penalize applications setting small
1552 	 * SO_SNDBUF values.
1553 	 * Also allow first and last skb in retransmit queue to be split.
1554 	 */
1555 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1556 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1557 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1558 		     skb != tcp_rtx_queue_head(sk) &&
1559 		     skb != tcp_rtx_queue_tail(sk))) {
1560 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1561 		return -ENOMEM;
1562 	}
1563 
1564 	if (skb_unclone(skb, gfp))
1565 		return -ENOMEM;
1566 
1567 	/* Get a new skb... force flag on. */
1568 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1569 	if (!buff)
1570 		return -ENOMEM; /* We'll just try again later. */
1571 	skb_copy_decrypted(buff, skb);
1572 
1573 	sk_wmem_queued_add(sk, buff->truesize);
1574 	sk_mem_charge(sk, buff->truesize);
1575 	nlen = skb->len - len - nsize;
1576 	buff->truesize += nlen;
1577 	skb->truesize -= nlen;
1578 
1579 	/* Correct the sequence numbers. */
1580 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1581 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1582 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1583 
1584 	/* PSH and FIN should only be set in the second packet. */
1585 	flags = TCP_SKB_CB(skb)->tcp_flags;
1586 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1587 	TCP_SKB_CB(buff)->tcp_flags = flags;
1588 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1589 	tcp_skb_fragment_eor(skb, buff);
1590 
1591 	skb_split(skb, buff, len);
1592 
1593 	buff->ip_summed = CHECKSUM_PARTIAL;
1594 
1595 	buff->tstamp = skb->tstamp;
1596 	tcp_fragment_tstamp(skb, buff);
1597 
1598 	old_factor = tcp_skb_pcount(skb);
1599 
1600 	/* Fix up tso_factor for both original and new SKB.  */
1601 	tcp_set_skb_tso_segs(skb, mss_now);
1602 	tcp_set_skb_tso_segs(buff, mss_now);
1603 
1604 	/* Update delivered info for the new segment */
1605 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1606 
1607 	/* If this packet has been sent out already, we must
1608 	 * adjust the various packet counters.
1609 	 */
1610 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1611 		int diff = old_factor - tcp_skb_pcount(skb) -
1612 			tcp_skb_pcount(buff);
1613 
1614 		if (diff)
1615 			tcp_adjust_pcount(sk, skb, diff);
1616 	}
1617 
1618 	/* Link BUFF into the send queue. */
1619 	__skb_header_release(buff);
1620 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1621 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1622 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1623 
1624 	return 0;
1625 }
1626 
1627 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1628  * data is not copied, but immediately discarded.
1629  */
1630 static int __pskb_trim_head(struct sk_buff *skb, int len)
1631 {
1632 	struct skb_shared_info *shinfo;
1633 	int i, k, eat;
1634 
1635 	eat = min_t(int, len, skb_headlen(skb));
1636 	if (eat) {
1637 		__skb_pull(skb, eat);
1638 		len -= eat;
1639 		if (!len)
1640 			return 0;
1641 	}
1642 	eat = len;
1643 	k = 0;
1644 	shinfo = skb_shinfo(skb);
1645 	for (i = 0; i < shinfo->nr_frags; i++) {
1646 		int size = skb_frag_size(&shinfo->frags[i]);
1647 
1648 		if (size <= eat) {
1649 			skb_frag_unref(skb, i);
1650 			eat -= size;
1651 		} else {
1652 			shinfo->frags[k] = shinfo->frags[i];
1653 			if (eat) {
1654 				skb_frag_off_add(&shinfo->frags[k], eat);
1655 				skb_frag_size_sub(&shinfo->frags[k], eat);
1656 				eat = 0;
1657 			}
1658 			k++;
1659 		}
1660 	}
1661 	shinfo->nr_frags = k;
1662 
1663 	skb->data_len -= len;
1664 	skb->len = skb->data_len;
1665 	return len;
1666 }
1667 
1668 /* Remove acked data from a packet in the transmit queue. */
1669 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1670 {
1671 	u32 delta_truesize;
1672 
1673 	if (skb_unclone(skb, GFP_ATOMIC))
1674 		return -ENOMEM;
1675 
1676 	delta_truesize = __pskb_trim_head(skb, len);
1677 
1678 	TCP_SKB_CB(skb)->seq += len;
1679 	skb->ip_summed = CHECKSUM_PARTIAL;
1680 
1681 	if (delta_truesize) {
1682 		skb->truesize	   -= delta_truesize;
1683 		sk_wmem_queued_add(sk, -delta_truesize);
1684 		sk_mem_uncharge(sk, delta_truesize);
1685 	}
1686 
1687 	/* Any change of skb->len requires recalculation of tso factor. */
1688 	if (tcp_skb_pcount(skb) > 1)
1689 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1690 
1691 	return 0;
1692 }
1693 
1694 /* Calculate MSS not accounting any TCP options.  */
1695 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1696 {
1697 	const struct tcp_sock *tp = tcp_sk(sk);
1698 	const struct inet_connection_sock *icsk = inet_csk(sk);
1699 	int mss_now;
1700 
1701 	/* Calculate base mss without TCP options:
1702 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1703 	 */
1704 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1705 
1706 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1707 	if (icsk->icsk_af_ops->net_frag_header_len) {
1708 		const struct dst_entry *dst = __sk_dst_get(sk);
1709 
1710 		if (dst && dst_allfrag(dst))
1711 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1712 	}
1713 
1714 	/* Clamp it (mss_clamp does not include tcp options) */
1715 	if (mss_now > tp->rx_opt.mss_clamp)
1716 		mss_now = tp->rx_opt.mss_clamp;
1717 
1718 	/* Now subtract optional transport overhead */
1719 	mss_now -= icsk->icsk_ext_hdr_len;
1720 
1721 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1722 	mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1723 	return mss_now;
1724 }
1725 
1726 /* Calculate MSS. Not accounting for SACKs here.  */
1727 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1728 {
1729 	/* Subtract TCP options size, not including SACKs */
1730 	return __tcp_mtu_to_mss(sk, pmtu) -
1731 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1732 }
1733 
1734 /* Inverse of above */
1735 int tcp_mss_to_mtu(struct sock *sk, int mss)
1736 {
1737 	const struct tcp_sock *tp = tcp_sk(sk);
1738 	const struct inet_connection_sock *icsk = inet_csk(sk);
1739 	int mtu;
1740 
1741 	mtu = mss +
1742 	      tp->tcp_header_len +
1743 	      icsk->icsk_ext_hdr_len +
1744 	      icsk->icsk_af_ops->net_header_len;
1745 
1746 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1747 	if (icsk->icsk_af_ops->net_frag_header_len) {
1748 		const struct dst_entry *dst = __sk_dst_get(sk);
1749 
1750 		if (dst && dst_allfrag(dst))
1751 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1752 	}
1753 	return mtu;
1754 }
1755 EXPORT_SYMBOL(tcp_mss_to_mtu);
1756 
1757 /* MTU probing init per socket */
1758 void tcp_mtup_init(struct sock *sk)
1759 {
1760 	struct tcp_sock *tp = tcp_sk(sk);
1761 	struct inet_connection_sock *icsk = inet_csk(sk);
1762 	struct net *net = sock_net(sk);
1763 
1764 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1765 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1766 			       icsk->icsk_af_ops->net_header_len;
1767 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1768 	icsk->icsk_mtup.probe_size = 0;
1769 	if (icsk->icsk_mtup.enabled)
1770 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1771 }
1772 EXPORT_SYMBOL(tcp_mtup_init);
1773 
1774 /* This function synchronize snd mss to current pmtu/exthdr set.
1775 
1776    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1777    for TCP options, but includes only bare TCP header.
1778 
1779    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1780    It is minimum of user_mss and mss received with SYN.
1781    It also does not include TCP options.
1782 
1783    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1784 
1785    tp->mss_cache is current effective sending mss, including
1786    all tcp options except for SACKs. It is evaluated,
1787    taking into account current pmtu, but never exceeds
1788    tp->rx_opt.mss_clamp.
1789 
1790    NOTE1. rfc1122 clearly states that advertised MSS
1791    DOES NOT include either tcp or ip options.
1792 
1793    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1794    are READ ONLY outside this function.		--ANK (980731)
1795  */
1796 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1797 {
1798 	struct tcp_sock *tp = tcp_sk(sk);
1799 	struct inet_connection_sock *icsk = inet_csk(sk);
1800 	int mss_now;
1801 
1802 	if (icsk->icsk_mtup.search_high > pmtu)
1803 		icsk->icsk_mtup.search_high = pmtu;
1804 
1805 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1806 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1807 
1808 	/* And store cached results */
1809 	icsk->icsk_pmtu_cookie = pmtu;
1810 	if (icsk->icsk_mtup.enabled)
1811 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1812 	tp->mss_cache = mss_now;
1813 
1814 	return mss_now;
1815 }
1816 EXPORT_SYMBOL(tcp_sync_mss);
1817 
1818 /* Compute the current effective MSS, taking SACKs and IP options,
1819  * and even PMTU discovery events into account.
1820  */
1821 unsigned int tcp_current_mss(struct sock *sk)
1822 {
1823 	const struct tcp_sock *tp = tcp_sk(sk);
1824 	const struct dst_entry *dst = __sk_dst_get(sk);
1825 	u32 mss_now;
1826 	unsigned int header_len;
1827 	struct tcp_out_options opts;
1828 	struct tcp_md5sig_key *md5;
1829 
1830 	mss_now = tp->mss_cache;
1831 
1832 	if (dst) {
1833 		u32 mtu = dst_mtu(dst);
1834 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1835 			mss_now = tcp_sync_mss(sk, mtu);
1836 	}
1837 
1838 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1839 		     sizeof(struct tcphdr);
1840 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1841 	 * some common options. If this is an odd packet (because we have SACK
1842 	 * blocks etc) then our calculated header_len will be different, and
1843 	 * we have to adjust mss_now correspondingly */
1844 	if (header_len != tp->tcp_header_len) {
1845 		int delta = (int) header_len - tp->tcp_header_len;
1846 		mss_now -= delta;
1847 	}
1848 
1849 	return mss_now;
1850 }
1851 
1852 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1853  * As additional protections, we do not touch cwnd in retransmission phases,
1854  * and if application hit its sndbuf limit recently.
1855  */
1856 static void tcp_cwnd_application_limited(struct sock *sk)
1857 {
1858 	struct tcp_sock *tp = tcp_sk(sk);
1859 
1860 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1861 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1862 		/* Limited by application or receiver window. */
1863 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1864 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1865 		if (win_used < tp->snd_cwnd) {
1866 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1867 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1868 		}
1869 		tp->snd_cwnd_used = 0;
1870 	}
1871 	tp->snd_cwnd_stamp = tcp_jiffies32;
1872 }
1873 
1874 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1875 {
1876 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1877 	struct tcp_sock *tp = tcp_sk(sk);
1878 
1879 	/* Track the maximum number of outstanding packets in each
1880 	 * window, and remember whether we were cwnd-limited then.
1881 	 */
1882 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1883 	    tp->packets_out > tp->max_packets_out) {
1884 		tp->max_packets_out = tp->packets_out;
1885 		tp->max_packets_seq = tp->snd_nxt;
1886 		tp->is_cwnd_limited = is_cwnd_limited;
1887 	}
1888 
1889 	if (tcp_is_cwnd_limited(sk)) {
1890 		/* Network is feed fully. */
1891 		tp->snd_cwnd_used = 0;
1892 		tp->snd_cwnd_stamp = tcp_jiffies32;
1893 	} else {
1894 		/* Network starves. */
1895 		if (tp->packets_out > tp->snd_cwnd_used)
1896 			tp->snd_cwnd_used = tp->packets_out;
1897 
1898 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1899 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1900 		    !ca_ops->cong_control)
1901 			tcp_cwnd_application_limited(sk);
1902 
1903 		/* The following conditions together indicate the starvation
1904 		 * is caused by insufficient sender buffer:
1905 		 * 1) just sent some data (see tcp_write_xmit)
1906 		 * 2) not cwnd limited (this else condition)
1907 		 * 3) no more data to send (tcp_write_queue_empty())
1908 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1909 		 */
1910 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1911 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1912 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1913 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1914 	}
1915 }
1916 
1917 /* Minshall's variant of the Nagle send check. */
1918 static bool tcp_minshall_check(const struct tcp_sock *tp)
1919 {
1920 	return after(tp->snd_sml, tp->snd_una) &&
1921 		!after(tp->snd_sml, tp->snd_nxt);
1922 }
1923 
1924 /* Update snd_sml if this skb is under mss
1925  * Note that a TSO packet might end with a sub-mss segment
1926  * The test is really :
1927  * if ((skb->len % mss) != 0)
1928  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1929  * But we can avoid doing the divide again given we already have
1930  *  skb_pcount = skb->len / mss_now
1931  */
1932 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1933 				const struct sk_buff *skb)
1934 {
1935 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1936 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1937 }
1938 
1939 /* Return false, if packet can be sent now without violation Nagle's rules:
1940  * 1. It is full sized. (provided by caller in %partial bool)
1941  * 2. Or it contains FIN. (already checked by caller)
1942  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1943  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1944  *    With Minshall's modification: all sent small packets are ACKed.
1945  */
1946 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1947 			    int nonagle)
1948 {
1949 	return partial &&
1950 		((nonagle & TCP_NAGLE_CORK) ||
1951 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1952 }
1953 
1954 /* Return how many segs we'd like on a TSO packet,
1955  * to send one TSO packet per ms
1956  */
1957 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1958 			    int min_tso_segs)
1959 {
1960 	u32 bytes, segs;
1961 
1962 	bytes = min_t(unsigned long,
1963 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1964 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1965 
1966 	/* Goal is to send at least one packet per ms,
1967 	 * not one big TSO packet every 100 ms.
1968 	 * This preserves ACK clocking and is consistent
1969 	 * with tcp_tso_should_defer() heuristic.
1970 	 */
1971 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1972 
1973 	return segs;
1974 }
1975 
1976 /* Return the number of segments we want in the skb we are transmitting.
1977  * See if congestion control module wants to decide; otherwise, autosize.
1978  */
1979 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1980 {
1981 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1982 	u32 min_tso, tso_segs;
1983 
1984 	min_tso = ca_ops->min_tso_segs ?
1985 			ca_ops->min_tso_segs(sk) :
1986 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1987 
1988 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1989 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1990 }
1991 
1992 /* Returns the portion of skb which can be sent right away */
1993 static unsigned int tcp_mss_split_point(const struct sock *sk,
1994 					const struct sk_buff *skb,
1995 					unsigned int mss_now,
1996 					unsigned int max_segs,
1997 					int nonagle)
1998 {
1999 	const struct tcp_sock *tp = tcp_sk(sk);
2000 	u32 partial, needed, window, max_len;
2001 
2002 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2003 	max_len = mss_now * max_segs;
2004 
2005 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2006 		return max_len;
2007 
2008 	needed = min(skb->len, window);
2009 
2010 	if (max_len <= needed)
2011 		return max_len;
2012 
2013 	partial = needed % mss_now;
2014 	/* If last segment is not a full MSS, check if Nagle rules allow us
2015 	 * to include this last segment in this skb.
2016 	 * Otherwise, we'll split the skb at last MSS boundary
2017 	 */
2018 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2019 		return needed - partial;
2020 
2021 	return needed;
2022 }
2023 
2024 /* Can at least one segment of SKB be sent right now, according to the
2025  * congestion window rules?  If so, return how many segments are allowed.
2026  */
2027 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2028 					 const struct sk_buff *skb)
2029 {
2030 	u32 in_flight, cwnd, halfcwnd;
2031 
2032 	/* Don't be strict about the congestion window for the final FIN.  */
2033 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2034 	    tcp_skb_pcount(skb) == 1)
2035 		return 1;
2036 
2037 	in_flight = tcp_packets_in_flight(tp);
2038 	cwnd = tp->snd_cwnd;
2039 	if (in_flight >= cwnd)
2040 		return 0;
2041 
2042 	/* For better scheduling, ensure we have at least
2043 	 * 2 GSO packets in flight.
2044 	 */
2045 	halfcwnd = max(cwnd >> 1, 1U);
2046 	return min(halfcwnd, cwnd - in_flight);
2047 }
2048 
2049 /* Initialize TSO state of a skb.
2050  * This must be invoked the first time we consider transmitting
2051  * SKB onto the wire.
2052  */
2053 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2054 {
2055 	int tso_segs = tcp_skb_pcount(skb);
2056 
2057 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2058 		tcp_set_skb_tso_segs(skb, mss_now);
2059 		tso_segs = tcp_skb_pcount(skb);
2060 	}
2061 	return tso_segs;
2062 }
2063 
2064 
2065 /* Return true if the Nagle test allows this packet to be
2066  * sent now.
2067  */
2068 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2069 				  unsigned int cur_mss, int nonagle)
2070 {
2071 	/* Nagle rule does not apply to frames, which sit in the middle of the
2072 	 * write_queue (they have no chances to get new data).
2073 	 *
2074 	 * This is implemented in the callers, where they modify the 'nonagle'
2075 	 * argument based upon the location of SKB in the send queue.
2076 	 */
2077 	if (nonagle & TCP_NAGLE_PUSH)
2078 		return true;
2079 
2080 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2081 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2082 		return true;
2083 
2084 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2085 		return true;
2086 
2087 	return false;
2088 }
2089 
2090 /* Does at least the first segment of SKB fit into the send window? */
2091 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2092 			     const struct sk_buff *skb,
2093 			     unsigned int cur_mss)
2094 {
2095 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2096 
2097 	if (skb->len > cur_mss)
2098 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2099 
2100 	return !after(end_seq, tcp_wnd_end(tp));
2101 }
2102 
2103 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2104  * which is put after SKB on the list.  It is very much like
2105  * tcp_fragment() except that it may make several kinds of assumptions
2106  * in order to speed up the splitting operation.  In particular, we
2107  * know that all the data is in scatter-gather pages, and that the
2108  * packet has never been sent out before (and thus is not cloned).
2109  */
2110 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2111 			unsigned int mss_now, gfp_t gfp)
2112 {
2113 	int nlen = skb->len - len;
2114 	struct sk_buff *buff;
2115 	u8 flags;
2116 
2117 	/* All of a TSO frame must be composed of paged data.  */
2118 	if (skb->len != skb->data_len)
2119 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2120 				    skb, len, mss_now, gfp);
2121 
2122 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
2123 	if (unlikely(!buff))
2124 		return -ENOMEM;
2125 	skb_copy_decrypted(buff, skb);
2126 
2127 	sk_wmem_queued_add(sk, buff->truesize);
2128 	sk_mem_charge(sk, buff->truesize);
2129 	buff->truesize += nlen;
2130 	skb->truesize -= nlen;
2131 
2132 	/* Correct the sequence numbers. */
2133 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2134 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2135 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2136 
2137 	/* PSH and FIN should only be set in the second packet. */
2138 	flags = TCP_SKB_CB(skb)->tcp_flags;
2139 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2140 	TCP_SKB_CB(buff)->tcp_flags = flags;
2141 
2142 	/* This packet was never sent out yet, so no SACK bits. */
2143 	TCP_SKB_CB(buff)->sacked = 0;
2144 
2145 	tcp_skb_fragment_eor(skb, buff);
2146 
2147 	buff->ip_summed = CHECKSUM_PARTIAL;
2148 	skb_split(skb, buff, len);
2149 	tcp_fragment_tstamp(skb, buff);
2150 
2151 	/* Fix up tso_factor for both original and new SKB.  */
2152 	tcp_set_skb_tso_segs(skb, mss_now);
2153 	tcp_set_skb_tso_segs(buff, mss_now);
2154 
2155 	/* Link BUFF into the send queue. */
2156 	__skb_header_release(buff);
2157 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2158 
2159 	return 0;
2160 }
2161 
2162 /* Try to defer sending, if possible, in order to minimize the amount
2163  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2164  *
2165  * This algorithm is from John Heffner.
2166  */
2167 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2168 				 bool *is_cwnd_limited,
2169 				 bool *is_rwnd_limited,
2170 				 u32 max_segs)
2171 {
2172 	const struct inet_connection_sock *icsk = inet_csk(sk);
2173 	u32 send_win, cong_win, limit, in_flight;
2174 	struct tcp_sock *tp = tcp_sk(sk);
2175 	struct sk_buff *head;
2176 	int win_divisor;
2177 	s64 delta;
2178 
2179 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2180 		goto send_now;
2181 
2182 	/* Avoid bursty behavior by allowing defer
2183 	 * only if the last write was recent (1 ms).
2184 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2185 	 * packets waiting in a qdisc or device for EDT delivery.
2186 	 */
2187 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2188 	if (delta > 0)
2189 		goto send_now;
2190 
2191 	in_flight = tcp_packets_in_flight(tp);
2192 
2193 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2194 	BUG_ON(tp->snd_cwnd <= in_flight);
2195 
2196 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2197 
2198 	/* From in_flight test above, we know that cwnd > in_flight.  */
2199 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2200 
2201 	limit = min(send_win, cong_win);
2202 
2203 	/* If a full-sized TSO skb can be sent, do it. */
2204 	if (limit >= max_segs * tp->mss_cache)
2205 		goto send_now;
2206 
2207 	/* Middle in queue won't get any more data, full sendable already? */
2208 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2209 		goto send_now;
2210 
2211 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2212 	if (win_divisor) {
2213 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2214 
2215 		/* If at least some fraction of a window is available,
2216 		 * just use it.
2217 		 */
2218 		chunk /= win_divisor;
2219 		if (limit >= chunk)
2220 			goto send_now;
2221 	} else {
2222 		/* Different approach, try not to defer past a single
2223 		 * ACK.  Receiver should ACK every other full sized
2224 		 * frame, so if we have space for more than 3 frames
2225 		 * then send now.
2226 		 */
2227 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2228 			goto send_now;
2229 	}
2230 
2231 	/* TODO : use tsorted_sent_queue ? */
2232 	head = tcp_rtx_queue_head(sk);
2233 	if (!head)
2234 		goto send_now;
2235 	delta = tp->tcp_clock_cache - head->tstamp;
2236 	/* If next ACK is likely to come too late (half srtt), do not defer */
2237 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2238 		goto send_now;
2239 
2240 	/* Ok, it looks like it is advisable to defer.
2241 	 * Three cases are tracked :
2242 	 * 1) We are cwnd-limited
2243 	 * 2) We are rwnd-limited
2244 	 * 3) We are application limited.
2245 	 */
2246 	if (cong_win < send_win) {
2247 		if (cong_win <= skb->len) {
2248 			*is_cwnd_limited = true;
2249 			return true;
2250 		}
2251 	} else {
2252 		if (send_win <= skb->len) {
2253 			*is_rwnd_limited = true;
2254 			return true;
2255 		}
2256 	}
2257 
2258 	/* If this packet won't get more data, do not wait. */
2259 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2260 	    TCP_SKB_CB(skb)->eor)
2261 		goto send_now;
2262 
2263 	return true;
2264 
2265 send_now:
2266 	return false;
2267 }
2268 
2269 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2270 {
2271 	struct inet_connection_sock *icsk = inet_csk(sk);
2272 	struct tcp_sock *tp = tcp_sk(sk);
2273 	struct net *net = sock_net(sk);
2274 	u32 interval;
2275 	s32 delta;
2276 
2277 	interval = net->ipv4.sysctl_tcp_probe_interval;
2278 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2279 	if (unlikely(delta >= interval * HZ)) {
2280 		int mss = tcp_current_mss(sk);
2281 
2282 		/* Update current search range */
2283 		icsk->icsk_mtup.probe_size = 0;
2284 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2285 			sizeof(struct tcphdr) +
2286 			icsk->icsk_af_ops->net_header_len;
2287 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2288 
2289 		/* Update probe time stamp */
2290 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2291 	}
2292 }
2293 
2294 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2295 {
2296 	struct sk_buff *skb, *next;
2297 
2298 	skb = tcp_send_head(sk);
2299 	tcp_for_write_queue_from_safe(skb, next, sk) {
2300 		if (len <= skb->len)
2301 			break;
2302 
2303 		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2304 			return false;
2305 
2306 		len -= skb->len;
2307 	}
2308 
2309 	return true;
2310 }
2311 
2312 /* Create a new MTU probe if we are ready.
2313  * MTU probe is regularly attempting to increase the path MTU by
2314  * deliberately sending larger packets.  This discovers routing
2315  * changes resulting in larger path MTUs.
2316  *
2317  * Returns 0 if we should wait to probe (no cwnd available),
2318  *         1 if a probe was sent,
2319  *         -1 otherwise
2320  */
2321 static int tcp_mtu_probe(struct sock *sk)
2322 {
2323 	struct inet_connection_sock *icsk = inet_csk(sk);
2324 	struct tcp_sock *tp = tcp_sk(sk);
2325 	struct sk_buff *skb, *nskb, *next;
2326 	struct net *net = sock_net(sk);
2327 	int probe_size;
2328 	int size_needed;
2329 	int copy, len;
2330 	int mss_now;
2331 	int interval;
2332 
2333 	/* Not currently probing/verifying,
2334 	 * not in recovery,
2335 	 * have enough cwnd, and
2336 	 * not SACKing (the variable headers throw things off)
2337 	 */
2338 	if (likely(!icsk->icsk_mtup.enabled ||
2339 		   icsk->icsk_mtup.probe_size ||
2340 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2341 		   tp->snd_cwnd < 11 ||
2342 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2343 		return -1;
2344 
2345 	/* Use binary search for probe_size between tcp_mss_base,
2346 	 * and current mss_clamp. if (search_high - search_low)
2347 	 * smaller than a threshold, backoff from probing.
2348 	 */
2349 	mss_now = tcp_current_mss(sk);
2350 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2351 				    icsk->icsk_mtup.search_low) >> 1);
2352 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2353 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2354 	/* When misfortune happens, we are reprobing actively,
2355 	 * and then reprobe timer has expired. We stick with current
2356 	 * probing process by not resetting search range to its orignal.
2357 	 */
2358 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2359 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2360 		/* Check whether enough time has elaplased for
2361 		 * another round of probing.
2362 		 */
2363 		tcp_mtu_check_reprobe(sk);
2364 		return -1;
2365 	}
2366 
2367 	/* Have enough data in the send queue to probe? */
2368 	if (tp->write_seq - tp->snd_nxt < size_needed)
2369 		return -1;
2370 
2371 	if (tp->snd_wnd < size_needed)
2372 		return -1;
2373 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2374 		return 0;
2375 
2376 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2377 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2378 		if (!tcp_packets_in_flight(tp))
2379 			return -1;
2380 		else
2381 			return 0;
2382 	}
2383 
2384 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2385 		return -1;
2386 
2387 	/* We're allowed to probe.  Build it now. */
2388 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2389 	if (!nskb)
2390 		return -1;
2391 	sk_wmem_queued_add(sk, nskb->truesize);
2392 	sk_mem_charge(sk, nskb->truesize);
2393 
2394 	skb = tcp_send_head(sk);
2395 	skb_copy_decrypted(nskb, skb);
2396 
2397 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2398 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2399 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2400 	TCP_SKB_CB(nskb)->sacked = 0;
2401 	nskb->csum = 0;
2402 	nskb->ip_summed = CHECKSUM_PARTIAL;
2403 
2404 	tcp_insert_write_queue_before(nskb, skb, sk);
2405 	tcp_highest_sack_replace(sk, skb, nskb);
2406 
2407 	len = 0;
2408 	tcp_for_write_queue_from_safe(skb, next, sk) {
2409 		copy = min_t(int, skb->len, probe_size - len);
2410 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2411 
2412 		if (skb->len <= copy) {
2413 			/* We've eaten all the data from this skb.
2414 			 * Throw it away. */
2415 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2416 			/* If this is the last SKB we copy and eor is set
2417 			 * we need to propagate it to the new skb.
2418 			 */
2419 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2420 			tcp_skb_collapse_tstamp(nskb, skb);
2421 			tcp_unlink_write_queue(skb, sk);
2422 			sk_wmem_free_skb(sk, skb);
2423 		} else {
2424 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2425 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2426 			if (!skb_shinfo(skb)->nr_frags) {
2427 				skb_pull(skb, copy);
2428 			} else {
2429 				__pskb_trim_head(skb, copy);
2430 				tcp_set_skb_tso_segs(skb, mss_now);
2431 			}
2432 			TCP_SKB_CB(skb)->seq += copy;
2433 		}
2434 
2435 		len += copy;
2436 
2437 		if (len >= probe_size)
2438 			break;
2439 	}
2440 	tcp_init_tso_segs(nskb, nskb->len);
2441 
2442 	/* We're ready to send.  If this fails, the probe will
2443 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2444 	 */
2445 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2446 		/* Decrement cwnd here because we are sending
2447 		 * effectively two packets. */
2448 		tp->snd_cwnd--;
2449 		tcp_event_new_data_sent(sk, nskb);
2450 
2451 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2452 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2453 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2454 
2455 		return 1;
2456 	}
2457 
2458 	return -1;
2459 }
2460 
2461 static bool tcp_pacing_check(struct sock *sk)
2462 {
2463 	struct tcp_sock *tp = tcp_sk(sk);
2464 
2465 	if (!tcp_needs_internal_pacing(sk))
2466 		return false;
2467 
2468 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2469 		return false;
2470 
2471 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2472 		hrtimer_start(&tp->pacing_timer,
2473 			      ns_to_ktime(tp->tcp_wstamp_ns),
2474 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2475 		sock_hold(sk);
2476 	}
2477 	return true;
2478 }
2479 
2480 /* TCP Small Queues :
2481  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2482  * (These limits are doubled for retransmits)
2483  * This allows for :
2484  *  - better RTT estimation and ACK scheduling
2485  *  - faster recovery
2486  *  - high rates
2487  * Alas, some drivers / subsystems require a fair amount
2488  * of queued bytes to ensure line rate.
2489  * One example is wifi aggregation (802.11 AMPDU)
2490  */
2491 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2492 				  unsigned int factor)
2493 {
2494 	unsigned long limit;
2495 
2496 	limit = max_t(unsigned long,
2497 		      2 * skb->truesize,
2498 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2499 	if (sk->sk_pacing_status == SK_PACING_NONE)
2500 		limit = min_t(unsigned long, limit,
2501 			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2502 	limit <<= factor;
2503 
2504 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2505 	    tcp_sk(sk)->tcp_tx_delay) {
2506 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2507 
2508 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2509 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2510 		 * USEC_PER_SEC is approximated by 2^20.
2511 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2512 		 */
2513 		extra_bytes >>= (20 - 1);
2514 		limit += extra_bytes;
2515 	}
2516 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2517 		/* Always send skb if rtx queue is empty.
2518 		 * No need to wait for TX completion to call us back,
2519 		 * after softirq/tasklet schedule.
2520 		 * This helps when TX completions are delayed too much.
2521 		 */
2522 		if (tcp_rtx_queue_empty(sk))
2523 			return false;
2524 
2525 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2526 		/* It is possible TX completion already happened
2527 		 * before we set TSQ_THROTTLED, so we must
2528 		 * test again the condition.
2529 		 */
2530 		smp_mb__after_atomic();
2531 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2532 			return true;
2533 	}
2534 	return false;
2535 }
2536 
2537 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2538 {
2539 	const u32 now = tcp_jiffies32;
2540 	enum tcp_chrono old = tp->chrono_type;
2541 
2542 	if (old > TCP_CHRONO_UNSPEC)
2543 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2544 	tp->chrono_start = now;
2545 	tp->chrono_type = new;
2546 }
2547 
2548 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2549 {
2550 	struct tcp_sock *tp = tcp_sk(sk);
2551 
2552 	/* If there are multiple conditions worthy of tracking in a
2553 	 * chronograph then the highest priority enum takes precedence
2554 	 * over the other conditions. So that if something "more interesting"
2555 	 * starts happening, stop the previous chrono and start a new one.
2556 	 */
2557 	if (type > tp->chrono_type)
2558 		tcp_chrono_set(tp, type);
2559 }
2560 
2561 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2562 {
2563 	struct tcp_sock *tp = tcp_sk(sk);
2564 
2565 
2566 	/* There are multiple conditions worthy of tracking in a
2567 	 * chronograph, so that the highest priority enum takes
2568 	 * precedence over the other conditions (see tcp_chrono_start).
2569 	 * If a condition stops, we only stop chrono tracking if
2570 	 * it's the "most interesting" or current chrono we are
2571 	 * tracking and starts busy chrono if we have pending data.
2572 	 */
2573 	if (tcp_rtx_and_write_queues_empty(sk))
2574 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2575 	else if (type == tp->chrono_type)
2576 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2577 }
2578 
2579 /* This routine writes packets to the network.  It advances the
2580  * send_head.  This happens as incoming acks open up the remote
2581  * window for us.
2582  *
2583  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2584  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2585  * account rare use of URG, this is not a big flaw.
2586  *
2587  * Send at most one packet when push_one > 0. Temporarily ignore
2588  * cwnd limit to force at most one packet out when push_one == 2.
2589 
2590  * Returns true, if no segments are in flight and we have queued segments,
2591  * but cannot send anything now because of SWS or another problem.
2592  */
2593 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2594 			   int push_one, gfp_t gfp)
2595 {
2596 	struct tcp_sock *tp = tcp_sk(sk);
2597 	struct sk_buff *skb;
2598 	unsigned int tso_segs, sent_pkts;
2599 	int cwnd_quota;
2600 	int result;
2601 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2602 	u32 max_segs;
2603 
2604 	sent_pkts = 0;
2605 
2606 	tcp_mstamp_refresh(tp);
2607 	if (!push_one) {
2608 		/* Do MTU probing. */
2609 		result = tcp_mtu_probe(sk);
2610 		if (!result) {
2611 			return false;
2612 		} else if (result > 0) {
2613 			sent_pkts = 1;
2614 		}
2615 	}
2616 
2617 	max_segs = tcp_tso_segs(sk, mss_now);
2618 	while ((skb = tcp_send_head(sk))) {
2619 		unsigned int limit;
2620 
2621 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2622 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2623 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2624 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2625 			tcp_init_tso_segs(skb, mss_now);
2626 			goto repair; /* Skip network transmission */
2627 		}
2628 
2629 		if (tcp_pacing_check(sk))
2630 			break;
2631 
2632 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2633 		BUG_ON(!tso_segs);
2634 
2635 		cwnd_quota = tcp_cwnd_test(tp, skb);
2636 		if (!cwnd_quota) {
2637 			if (push_one == 2)
2638 				/* Force out a loss probe pkt. */
2639 				cwnd_quota = 1;
2640 			else
2641 				break;
2642 		}
2643 
2644 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2645 			is_rwnd_limited = true;
2646 			break;
2647 		}
2648 
2649 		if (tso_segs == 1) {
2650 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2651 						     (tcp_skb_is_last(sk, skb) ?
2652 						      nonagle : TCP_NAGLE_PUSH))))
2653 				break;
2654 		} else {
2655 			if (!push_one &&
2656 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2657 						 &is_rwnd_limited, max_segs))
2658 				break;
2659 		}
2660 
2661 		limit = mss_now;
2662 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2663 			limit = tcp_mss_split_point(sk, skb, mss_now,
2664 						    min_t(unsigned int,
2665 							  cwnd_quota,
2666 							  max_segs),
2667 						    nonagle);
2668 
2669 		if (skb->len > limit &&
2670 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2671 			break;
2672 
2673 		if (tcp_small_queue_check(sk, skb, 0))
2674 			break;
2675 
2676 		/* Argh, we hit an empty skb(), presumably a thread
2677 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2678 		 * We do not want to send a pure-ack packet and have
2679 		 * a strange looking rtx queue with empty packet(s).
2680 		 */
2681 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2682 			break;
2683 
2684 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2685 			break;
2686 
2687 repair:
2688 		/* Advance the send_head.  This one is sent out.
2689 		 * This call will increment packets_out.
2690 		 */
2691 		tcp_event_new_data_sent(sk, skb);
2692 
2693 		tcp_minshall_update(tp, mss_now, skb);
2694 		sent_pkts += tcp_skb_pcount(skb);
2695 
2696 		if (push_one)
2697 			break;
2698 	}
2699 
2700 	if (is_rwnd_limited)
2701 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2702 	else
2703 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2704 
2705 	if (likely(sent_pkts)) {
2706 		if (tcp_in_cwnd_reduction(sk))
2707 			tp->prr_out += sent_pkts;
2708 
2709 		/* Send one loss probe per tail loss episode. */
2710 		if (push_one != 2)
2711 			tcp_schedule_loss_probe(sk, false);
2712 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2713 		tcp_cwnd_validate(sk, is_cwnd_limited);
2714 		return false;
2715 	}
2716 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2717 }
2718 
2719 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2720 {
2721 	struct inet_connection_sock *icsk = inet_csk(sk);
2722 	struct tcp_sock *tp = tcp_sk(sk);
2723 	u32 timeout, rto_delta_us;
2724 	int early_retrans;
2725 
2726 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2727 	 * finishes.
2728 	 */
2729 	if (rcu_access_pointer(tp->fastopen_rsk))
2730 		return false;
2731 
2732 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2733 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2734 	 * not in loss recovery, that are either limited by cwnd or application.
2735 	 */
2736 	if ((early_retrans != 3 && early_retrans != 4) ||
2737 	    !tp->packets_out || !tcp_is_sack(tp) ||
2738 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2739 	     icsk->icsk_ca_state != TCP_CA_CWR))
2740 		return false;
2741 
2742 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2743 	 * for delayed ack when there's one outstanding packet. If no RTT
2744 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2745 	 */
2746 	if (tp->srtt_us) {
2747 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2748 		if (tp->packets_out == 1)
2749 			timeout += TCP_RTO_MIN;
2750 		else
2751 			timeout += TCP_TIMEOUT_MIN;
2752 	} else {
2753 		timeout = TCP_TIMEOUT_INIT;
2754 	}
2755 
2756 	/* If the RTO formula yields an earlier time, then use that time. */
2757 	rto_delta_us = advancing_rto ?
2758 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2759 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2760 	if (rto_delta_us > 0)
2761 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2762 
2763 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2764 	return true;
2765 }
2766 
2767 /* Thanks to skb fast clones, we can detect if a prior transmit of
2768  * a packet is still in a qdisc or driver queue.
2769  * In this case, there is very little point doing a retransmit !
2770  */
2771 static bool skb_still_in_host_queue(const struct sock *sk,
2772 				    const struct sk_buff *skb)
2773 {
2774 	if (unlikely(skb_fclone_busy(sk, skb))) {
2775 		NET_INC_STATS(sock_net(sk),
2776 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2777 		return true;
2778 	}
2779 	return false;
2780 }
2781 
2782 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2783  * retransmit the last segment.
2784  */
2785 void tcp_send_loss_probe(struct sock *sk)
2786 {
2787 	struct tcp_sock *tp = tcp_sk(sk);
2788 	struct sk_buff *skb;
2789 	int pcount;
2790 	int mss = tcp_current_mss(sk);
2791 
2792 	/* At most one outstanding TLP */
2793 	if (tp->tlp_high_seq)
2794 		goto rearm_timer;
2795 
2796 	tp->tlp_retrans = 0;
2797 	skb = tcp_send_head(sk);
2798 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2799 		pcount = tp->packets_out;
2800 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2801 		if (tp->packets_out > pcount)
2802 			goto probe_sent;
2803 		goto rearm_timer;
2804 	}
2805 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2806 	if (unlikely(!skb)) {
2807 		WARN_ONCE(tp->packets_out,
2808 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2809 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2810 		inet_csk(sk)->icsk_pending = 0;
2811 		return;
2812 	}
2813 
2814 	if (skb_still_in_host_queue(sk, skb))
2815 		goto rearm_timer;
2816 
2817 	pcount = tcp_skb_pcount(skb);
2818 	if (WARN_ON(!pcount))
2819 		goto rearm_timer;
2820 
2821 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2822 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2823 					  (pcount - 1) * mss, mss,
2824 					  GFP_ATOMIC)))
2825 			goto rearm_timer;
2826 		skb = skb_rb_next(skb);
2827 	}
2828 
2829 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2830 		goto rearm_timer;
2831 
2832 	if (__tcp_retransmit_skb(sk, skb, 1))
2833 		goto rearm_timer;
2834 
2835 	tp->tlp_retrans = 1;
2836 
2837 probe_sent:
2838 	/* Record snd_nxt for loss detection. */
2839 	tp->tlp_high_seq = tp->snd_nxt;
2840 
2841 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2842 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2843 	inet_csk(sk)->icsk_pending = 0;
2844 rearm_timer:
2845 	tcp_rearm_rto(sk);
2846 }
2847 
2848 /* Push out any pending frames which were held back due to
2849  * TCP_CORK or attempt at coalescing tiny packets.
2850  * The socket must be locked by the caller.
2851  */
2852 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2853 			       int nonagle)
2854 {
2855 	/* If we are closed, the bytes will have to remain here.
2856 	 * In time closedown will finish, we empty the write queue and
2857 	 * all will be happy.
2858 	 */
2859 	if (unlikely(sk->sk_state == TCP_CLOSE))
2860 		return;
2861 
2862 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2863 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2864 		tcp_check_probe_timer(sk);
2865 }
2866 
2867 /* Send _single_ skb sitting at the send head. This function requires
2868  * true push pending frames to setup probe timer etc.
2869  */
2870 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2871 {
2872 	struct sk_buff *skb = tcp_send_head(sk);
2873 
2874 	BUG_ON(!skb || skb->len < mss_now);
2875 
2876 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2877 }
2878 
2879 /* This function returns the amount that we can raise the
2880  * usable window based on the following constraints
2881  *
2882  * 1. The window can never be shrunk once it is offered (RFC 793)
2883  * 2. We limit memory per socket
2884  *
2885  * RFC 1122:
2886  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2887  *  RECV.NEXT + RCV.WIN fixed until:
2888  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2889  *
2890  * i.e. don't raise the right edge of the window until you can raise
2891  * it at least MSS bytes.
2892  *
2893  * Unfortunately, the recommended algorithm breaks header prediction,
2894  * since header prediction assumes th->window stays fixed.
2895  *
2896  * Strictly speaking, keeping th->window fixed violates the receiver
2897  * side SWS prevention criteria. The problem is that under this rule
2898  * a stream of single byte packets will cause the right side of the
2899  * window to always advance by a single byte.
2900  *
2901  * Of course, if the sender implements sender side SWS prevention
2902  * then this will not be a problem.
2903  *
2904  * BSD seems to make the following compromise:
2905  *
2906  *	If the free space is less than the 1/4 of the maximum
2907  *	space available and the free space is less than 1/2 mss,
2908  *	then set the window to 0.
2909  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2910  *	Otherwise, just prevent the window from shrinking
2911  *	and from being larger than the largest representable value.
2912  *
2913  * This prevents incremental opening of the window in the regime
2914  * where TCP is limited by the speed of the reader side taking
2915  * data out of the TCP receive queue. It does nothing about
2916  * those cases where the window is constrained on the sender side
2917  * because the pipeline is full.
2918  *
2919  * BSD also seems to "accidentally" limit itself to windows that are a
2920  * multiple of MSS, at least until the free space gets quite small.
2921  * This would appear to be a side effect of the mbuf implementation.
2922  * Combining these two algorithms results in the observed behavior
2923  * of having a fixed window size at almost all times.
2924  *
2925  * Below we obtain similar behavior by forcing the offered window to
2926  * a multiple of the mss when it is feasible to do so.
2927  *
2928  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2929  * Regular options like TIMESTAMP are taken into account.
2930  */
2931 u32 __tcp_select_window(struct sock *sk)
2932 {
2933 	struct inet_connection_sock *icsk = inet_csk(sk);
2934 	struct tcp_sock *tp = tcp_sk(sk);
2935 	/* MSS for the peer's data.  Previous versions used mss_clamp
2936 	 * here.  I don't know if the value based on our guesses
2937 	 * of peer's MSS is better for the performance.  It's more correct
2938 	 * but may be worse for the performance because of rcv_mss
2939 	 * fluctuations.  --SAW  1998/11/1
2940 	 */
2941 	int mss = icsk->icsk_ack.rcv_mss;
2942 	int free_space = tcp_space(sk);
2943 	int allowed_space = tcp_full_space(sk);
2944 	int full_space, window;
2945 
2946 	if (sk_is_mptcp(sk))
2947 		mptcp_space(sk, &free_space, &allowed_space);
2948 
2949 	full_space = min_t(int, tp->window_clamp, allowed_space);
2950 
2951 	if (unlikely(mss > full_space)) {
2952 		mss = full_space;
2953 		if (mss <= 0)
2954 			return 0;
2955 	}
2956 	if (free_space < (full_space >> 1)) {
2957 		icsk->icsk_ack.quick = 0;
2958 
2959 		if (tcp_under_memory_pressure(sk))
2960 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2961 					       4U * tp->advmss);
2962 
2963 		/* free_space might become our new window, make sure we don't
2964 		 * increase it due to wscale.
2965 		 */
2966 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2967 
2968 		/* if free space is less than mss estimate, or is below 1/16th
2969 		 * of the maximum allowed, try to move to zero-window, else
2970 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2971 		 * new incoming data is dropped due to memory limits.
2972 		 * With large window, mss test triggers way too late in order
2973 		 * to announce zero window in time before rmem limit kicks in.
2974 		 */
2975 		if (free_space < (allowed_space >> 4) || free_space < mss)
2976 			return 0;
2977 	}
2978 
2979 	if (free_space > tp->rcv_ssthresh)
2980 		free_space = tp->rcv_ssthresh;
2981 
2982 	/* Don't do rounding if we are using window scaling, since the
2983 	 * scaled window will not line up with the MSS boundary anyway.
2984 	 */
2985 	if (tp->rx_opt.rcv_wscale) {
2986 		window = free_space;
2987 
2988 		/* Advertise enough space so that it won't get scaled away.
2989 		 * Import case: prevent zero window announcement if
2990 		 * 1<<rcv_wscale > mss.
2991 		 */
2992 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2993 	} else {
2994 		window = tp->rcv_wnd;
2995 		/* Get the largest window that is a nice multiple of mss.
2996 		 * Window clamp already applied above.
2997 		 * If our current window offering is within 1 mss of the
2998 		 * free space we just keep it. This prevents the divide
2999 		 * and multiply from happening most of the time.
3000 		 * We also don't do any window rounding when the free space
3001 		 * is too small.
3002 		 */
3003 		if (window <= free_space - mss || window > free_space)
3004 			window = rounddown(free_space, mss);
3005 		else if (mss == full_space &&
3006 			 free_space > window + (full_space >> 1))
3007 			window = free_space;
3008 	}
3009 
3010 	return window;
3011 }
3012 
3013 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3014 			     const struct sk_buff *next_skb)
3015 {
3016 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3017 		const struct skb_shared_info *next_shinfo =
3018 			skb_shinfo(next_skb);
3019 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3020 
3021 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3022 		shinfo->tskey = next_shinfo->tskey;
3023 		TCP_SKB_CB(skb)->txstamp_ack |=
3024 			TCP_SKB_CB(next_skb)->txstamp_ack;
3025 	}
3026 }
3027 
3028 /* Collapses two adjacent SKB's during retransmission. */
3029 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3030 {
3031 	struct tcp_sock *tp = tcp_sk(sk);
3032 	struct sk_buff *next_skb = skb_rb_next(skb);
3033 	int next_skb_size;
3034 
3035 	next_skb_size = next_skb->len;
3036 
3037 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3038 
3039 	if (next_skb_size) {
3040 		if (next_skb_size <= skb_availroom(skb))
3041 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
3042 				      next_skb_size);
3043 		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3044 			return false;
3045 	}
3046 	tcp_highest_sack_replace(sk, next_skb, skb);
3047 
3048 	/* Update sequence range on original skb. */
3049 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3050 
3051 	/* Merge over control information. This moves PSH/FIN etc. over */
3052 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3053 
3054 	/* All done, get rid of second SKB and account for it so
3055 	 * packet counting does not break.
3056 	 */
3057 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3058 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3059 
3060 	/* changed transmit queue under us so clear hints */
3061 	tcp_clear_retrans_hints_partial(tp);
3062 	if (next_skb == tp->retransmit_skb_hint)
3063 		tp->retransmit_skb_hint = skb;
3064 
3065 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3066 
3067 	tcp_skb_collapse_tstamp(skb, next_skb);
3068 
3069 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3070 	return true;
3071 }
3072 
3073 /* Check if coalescing SKBs is legal. */
3074 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3075 {
3076 	if (tcp_skb_pcount(skb) > 1)
3077 		return false;
3078 	if (skb_cloned(skb))
3079 		return false;
3080 	/* Some heuristics for collapsing over SACK'd could be invented */
3081 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3082 		return false;
3083 
3084 	return true;
3085 }
3086 
3087 /* Collapse packets in the retransmit queue to make to create
3088  * less packets on the wire. This is only done on retransmission.
3089  */
3090 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3091 				     int space)
3092 {
3093 	struct tcp_sock *tp = tcp_sk(sk);
3094 	struct sk_buff *skb = to, *tmp;
3095 	bool first = true;
3096 
3097 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
3098 		return;
3099 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3100 		return;
3101 
3102 	skb_rbtree_walk_from_safe(skb, tmp) {
3103 		if (!tcp_can_collapse(sk, skb))
3104 			break;
3105 
3106 		if (!tcp_skb_can_collapse(to, skb))
3107 			break;
3108 
3109 		space -= skb->len;
3110 
3111 		if (first) {
3112 			first = false;
3113 			continue;
3114 		}
3115 
3116 		if (space < 0)
3117 			break;
3118 
3119 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3120 			break;
3121 
3122 		if (!tcp_collapse_retrans(sk, to))
3123 			break;
3124 	}
3125 }
3126 
3127 /* This retransmits one SKB.  Policy decisions and retransmit queue
3128  * state updates are done by the caller.  Returns non-zero if an
3129  * error occurred which prevented the send.
3130  */
3131 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3132 {
3133 	struct inet_connection_sock *icsk = inet_csk(sk);
3134 	struct tcp_sock *tp = tcp_sk(sk);
3135 	unsigned int cur_mss;
3136 	int diff, len, err;
3137 
3138 
3139 	/* Inconclusive MTU probe */
3140 	if (icsk->icsk_mtup.probe_size)
3141 		icsk->icsk_mtup.probe_size = 0;
3142 
3143 	/* Do not sent more than we queued. 1/4 is reserved for possible
3144 	 * copying overhead: fragmentation, tunneling, mangling etc.
3145 	 */
3146 	if (refcount_read(&sk->sk_wmem_alloc) >
3147 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
3148 		  sk->sk_sndbuf))
3149 		return -EAGAIN;
3150 
3151 	if (skb_still_in_host_queue(sk, skb))
3152 		return -EBUSY;
3153 
3154 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3155 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3156 			WARN_ON_ONCE(1);
3157 			return -EINVAL;
3158 		}
3159 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3160 			return -ENOMEM;
3161 	}
3162 
3163 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3164 		return -EHOSTUNREACH; /* Routing failure or similar. */
3165 
3166 	cur_mss = tcp_current_mss(sk);
3167 
3168 	/* If receiver has shrunk his window, and skb is out of
3169 	 * new window, do not retransmit it. The exception is the
3170 	 * case, when window is shrunk to zero. In this case
3171 	 * our retransmit serves as a zero window probe.
3172 	 */
3173 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
3174 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
3175 		return -EAGAIN;
3176 
3177 	len = cur_mss * segs;
3178 	if (skb->len > len) {
3179 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3180 				 cur_mss, GFP_ATOMIC))
3181 			return -ENOMEM; /* We'll try again later. */
3182 	} else {
3183 		if (skb_unclone(skb, GFP_ATOMIC))
3184 			return -ENOMEM;
3185 
3186 		diff = tcp_skb_pcount(skb);
3187 		tcp_set_skb_tso_segs(skb, cur_mss);
3188 		diff -= tcp_skb_pcount(skb);
3189 		if (diff)
3190 			tcp_adjust_pcount(sk, skb, diff);
3191 		if (skb->len < cur_mss)
3192 			tcp_retrans_try_collapse(sk, skb, cur_mss);
3193 	}
3194 
3195 	/* RFC3168, section 6.1.1.1. ECN fallback */
3196 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3197 		tcp_ecn_clear_syn(sk, skb);
3198 
3199 	/* Update global and local TCP statistics. */
3200 	segs = tcp_skb_pcount(skb);
3201 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3202 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3203 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3204 	tp->total_retrans += segs;
3205 	tp->bytes_retrans += skb->len;
3206 
3207 	/* make sure skb->data is aligned on arches that require it
3208 	 * and check if ack-trimming & collapsing extended the headroom
3209 	 * beyond what csum_start can cover.
3210 	 */
3211 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3212 		     skb_headroom(skb) >= 0xFFFF)) {
3213 		struct sk_buff *nskb;
3214 
3215 		tcp_skb_tsorted_save(skb) {
3216 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3217 			if (nskb) {
3218 				nskb->dev = NULL;
3219 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3220 			} else {
3221 				err = -ENOBUFS;
3222 			}
3223 		} tcp_skb_tsorted_restore(skb);
3224 
3225 		if (!err) {
3226 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3227 			tcp_rate_skb_sent(sk, skb);
3228 		}
3229 	} else {
3230 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3231 	}
3232 
3233 	/* To avoid taking spuriously low RTT samples based on a timestamp
3234 	 * for a transmit that never happened, always mark EVER_RETRANS
3235 	 */
3236 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3237 
3238 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3239 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3240 				  TCP_SKB_CB(skb)->seq, segs, err);
3241 
3242 	if (likely(!err)) {
3243 		trace_tcp_retransmit_skb(sk, skb);
3244 	} else if (err != -EBUSY) {
3245 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3246 	}
3247 	return err;
3248 }
3249 
3250 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3251 {
3252 	struct tcp_sock *tp = tcp_sk(sk);
3253 	int err = __tcp_retransmit_skb(sk, skb, segs);
3254 
3255 	if (err == 0) {
3256 #if FASTRETRANS_DEBUG > 0
3257 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3258 			net_dbg_ratelimited("retrans_out leaked\n");
3259 		}
3260 #endif
3261 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3262 		tp->retrans_out += tcp_skb_pcount(skb);
3263 	}
3264 
3265 	/* Save stamp of the first (attempted) retransmit. */
3266 	if (!tp->retrans_stamp)
3267 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3268 
3269 	if (tp->undo_retrans < 0)
3270 		tp->undo_retrans = 0;
3271 	tp->undo_retrans += tcp_skb_pcount(skb);
3272 	return err;
3273 }
3274 
3275 /* This gets called after a retransmit timeout, and the initially
3276  * retransmitted data is acknowledged.  It tries to continue
3277  * resending the rest of the retransmit queue, until either
3278  * we've sent it all or the congestion window limit is reached.
3279  */
3280 void tcp_xmit_retransmit_queue(struct sock *sk)
3281 {
3282 	const struct inet_connection_sock *icsk = inet_csk(sk);
3283 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3284 	struct tcp_sock *tp = tcp_sk(sk);
3285 	bool rearm_timer = false;
3286 	u32 max_segs;
3287 	int mib_idx;
3288 
3289 	if (!tp->packets_out)
3290 		return;
3291 
3292 	rtx_head = tcp_rtx_queue_head(sk);
3293 	skb = tp->retransmit_skb_hint ?: rtx_head;
3294 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3295 	skb_rbtree_walk_from(skb) {
3296 		__u8 sacked;
3297 		int segs;
3298 
3299 		if (tcp_pacing_check(sk))
3300 			break;
3301 
3302 		/* we could do better than to assign each time */
3303 		if (!hole)
3304 			tp->retransmit_skb_hint = skb;
3305 
3306 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3307 		if (segs <= 0)
3308 			break;
3309 		sacked = TCP_SKB_CB(skb)->sacked;
3310 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3311 		 * we need to make sure not sending too bigs TSO packets
3312 		 */
3313 		segs = min_t(int, segs, max_segs);
3314 
3315 		if (tp->retrans_out >= tp->lost_out) {
3316 			break;
3317 		} else if (!(sacked & TCPCB_LOST)) {
3318 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3319 				hole = skb;
3320 			continue;
3321 
3322 		} else {
3323 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3324 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3325 			else
3326 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3327 		}
3328 
3329 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3330 			continue;
3331 
3332 		if (tcp_small_queue_check(sk, skb, 1))
3333 			break;
3334 
3335 		if (tcp_retransmit_skb(sk, skb, segs))
3336 			break;
3337 
3338 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3339 
3340 		if (tcp_in_cwnd_reduction(sk))
3341 			tp->prr_out += tcp_skb_pcount(skb);
3342 
3343 		if (skb == rtx_head &&
3344 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3345 			rearm_timer = true;
3346 
3347 	}
3348 	if (rearm_timer)
3349 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3350 				     inet_csk(sk)->icsk_rto,
3351 				     TCP_RTO_MAX);
3352 }
3353 
3354 /* We allow to exceed memory limits for FIN packets to expedite
3355  * connection tear down and (memory) recovery.
3356  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3357  * or even be forced to close flow without any FIN.
3358  * In general, we want to allow one skb per socket to avoid hangs
3359  * with edge trigger epoll()
3360  */
3361 void sk_forced_mem_schedule(struct sock *sk, int size)
3362 {
3363 	int amt;
3364 
3365 	if (size <= sk->sk_forward_alloc)
3366 		return;
3367 	amt = sk_mem_pages(size);
3368 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3369 	sk_memory_allocated_add(sk, amt);
3370 
3371 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3372 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3373 }
3374 
3375 /* Send a FIN. The caller locks the socket for us.
3376  * We should try to send a FIN packet really hard, but eventually give up.
3377  */
3378 void tcp_send_fin(struct sock *sk)
3379 {
3380 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3381 	struct tcp_sock *tp = tcp_sk(sk);
3382 
3383 	/* Optimization, tack on the FIN if we have one skb in write queue and
3384 	 * this skb was not yet sent, or we are under memory pressure.
3385 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3386 	 * as TCP stack thinks it has already been transmitted.
3387 	 */
3388 	tskb = tail;
3389 	if (!tskb && tcp_under_memory_pressure(sk))
3390 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3391 
3392 	if (tskb) {
3393 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3394 		TCP_SKB_CB(tskb)->end_seq++;
3395 		tp->write_seq++;
3396 		if (!tail) {
3397 			/* This means tskb was already sent.
3398 			 * Pretend we included the FIN on previous transmit.
3399 			 * We need to set tp->snd_nxt to the value it would have
3400 			 * if FIN had been sent. This is because retransmit path
3401 			 * does not change tp->snd_nxt.
3402 			 */
3403 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3404 			return;
3405 		}
3406 	} else {
3407 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3408 		if (unlikely(!skb))
3409 			return;
3410 
3411 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3412 		skb_reserve(skb, MAX_TCP_HEADER);
3413 		sk_forced_mem_schedule(sk, skb->truesize);
3414 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3415 		tcp_init_nondata_skb(skb, tp->write_seq,
3416 				     TCPHDR_ACK | TCPHDR_FIN);
3417 		tcp_queue_skb(sk, skb);
3418 	}
3419 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3420 }
3421 
3422 /* We get here when a process closes a file descriptor (either due to
3423  * an explicit close() or as a byproduct of exit()'ing) and there
3424  * was unread data in the receive queue.  This behavior is recommended
3425  * by RFC 2525, section 2.17.  -DaveM
3426  */
3427 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3428 {
3429 	struct sk_buff *skb;
3430 
3431 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3432 
3433 	/* NOTE: No TCP options attached and we never retransmit this. */
3434 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3435 	if (!skb) {
3436 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3437 		return;
3438 	}
3439 
3440 	/* Reserve space for headers and prepare control bits. */
3441 	skb_reserve(skb, MAX_TCP_HEADER);
3442 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3443 			     TCPHDR_ACK | TCPHDR_RST);
3444 	tcp_mstamp_refresh(tcp_sk(sk));
3445 	/* Send it off. */
3446 	if (tcp_transmit_skb(sk, skb, 0, priority))
3447 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3448 
3449 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3450 	 * skb here is different to the troublesome skb, so use NULL
3451 	 */
3452 	trace_tcp_send_reset(sk, NULL);
3453 }
3454 
3455 /* Send a crossed SYN-ACK during socket establishment.
3456  * WARNING: This routine must only be called when we have already sent
3457  * a SYN packet that crossed the incoming SYN that caused this routine
3458  * to get called. If this assumption fails then the initial rcv_wnd
3459  * and rcv_wscale values will not be correct.
3460  */
3461 int tcp_send_synack(struct sock *sk)
3462 {
3463 	struct sk_buff *skb;
3464 
3465 	skb = tcp_rtx_queue_head(sk);
3466 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3467 		pr_err("%s: wrong queue state\n", __func__);
3468 		return -EFAULT;
3469 	}
3470 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3471 		if (skb_cloned(skb)) {
3472 			struct sk_buff *nskb;
3473 
3474 			tcp_skb_tsorted_save(skb) {
3475 				nskb = skb_copy(skb, GFP_ATOMIC);
3476 			} tcp_skb_tsorted_restore(skb);
3477 			if (!nskb)
3478 				return -ENOMEM;
3479 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3480 			tcp_highest_sack_replace(sk, skb, nskb);
3481 			tcp_rtx_queue_unlink_and_free(skb, sk);
3482 			__skb_header_release(nskb);
3483 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3484 			sk_wmem_queued_add(sk, nskb->truesize);
3485 			sk_mem_charge(sk, nskb->truesize);
3486 			skb = nskb;
3487 		}
3488 
3489 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3490 		tcp_ecn_send_synack(sk, skb);
3491 	}
3492 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3493 }
3494 
3495 /**
3496  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3497  * @sk: listener socket
3498  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3499  *       should not use it again.
3500  * @req: request_sock pointer
3501  * @foc: cookie for tcp fast open
3502  * @synack_type: Type of synack to prepare
3503  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3504  */
3505 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3506 				struct request_sock *req,
3507 				struct tcp_fastopen_cookie *foc,
3508 				enum tcp_synack_type synack_type,
3509 				struct sk_buff *syn_skb)
3510 {
3511 	struct inet_request_sock *ireq = inet_rsk(req);
3512 	const struct tcp_sock *tp = tcp_sk(sk);
3513 	struct tcp_md5sig_key *md5 = NULL;
3514 	struct tcp_out_options opts;
3515 	struct sk_buff *skb;
3516 	int tcp_header_size;
3517 	struct tcphdr *th;
3518 	int mss;
3519 	u64 now;
3520 
3521 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3522 	if (unlikely(!skb)) {
3523 		dst_release(dst);
3524 		return NULL;
3525 	}
3526 	/* Reserve space for headers. */
3527 	skb_reserve(skb, MAX_TCP_HEADER);
3528 
3529 	switch (synack_type) {
3530 	case TCP_SYNACK_NORMAL:
3531 		skb_set_owner_w(skb, req_to_sk(req));
3532 		break;
3533 	case TCP_SYNACK_COOKIE:
3534 		/* Under synflood, we do not attach skb to a socket,
3535 		 * to avoid false sharing.
3536 		 */
3537 		break;
3538 	case TCP_SYNACK_FASTOPEN:
3539 		/* sk is a const pointer, because we want to express multiple
3540 		 * cpu might call us concurrently.
3541 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3542 		 */
3543 		skb_set_owner_w(skb, (struct sock *)sk);
3544 		break;
3545 	}
3546 	skb_dst_set(skb, dst);
3547 
3548 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3549 
3550 	memset(&opts, 0, sizeof(opts));
3551 	now = tcp_clock_ns();
3552 #ifdef CONFIG_SYN_COOKIES
3553 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3554 		skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3555 	else
3556 #endif
3557 	{
3558 		skb->skb_mstamp_ns = now;
3559 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3560 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3561 	}
3562 
3563 #ifdef CONFIG_TCP_MD5SIG
3564 	rcu_read_lock();
3565 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3566 #endif
3567 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3568 	/* bpf program will be interested in the tcp_flags */
3569 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3570 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3571 					     foc, synack_type,
3572 					     syn_skb) + sizeof(*th);
3573 
3574 	skb_push(skb, tcp_header_size);
3575 	skb_reset_transport_header(skb);
3576 
3577 	th = (struct tcphdr *)skb->data;
3578 	memset(th, 0, sizeof(struct tcphdr));
3579 	th->syn = 1;
3580 	th->ack = 1;
3581 	tcp_ecn_make_synack(req, th);
3582 	th->source = htons(ireq->ir_num);
3583 	th->dest = ireq->ir_rmt_port;
3584 	skb->mark = ireq->ir_mark;
3585 	skb->ip_summed = CHECKSUM_PARTIAL;
3586 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3587 	/* XXX data is queued and acked as is. No buffer/window check */
3588 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3589 
3590 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3591 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3592 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3593 	th->doff = (tcp_header_size >> 2);
3594 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3595 
3596 #ifdef CONFIG_TCP_MD5SIG
3597 	/* Okay, we have all we need - do the md5 hash if needed */
3598 	if (md5)
3599 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3600 					       md5, req_to_sk(req), skb);
3601 	rcu_read_unlock();
3602 #endif
3603 
3604 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3605 				synack_type, &opts);
3606 
3607 	skb->skb_mstamp_ns = now;
3608 	tcp_add_tx_delay(skb, tp);
3609 
3610 	return skb;
3611 }
3612 EXPORT_SYMBOL(tcp_make_synack);
3613 
3614 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3615 {
3616 	struct inet_connection_sock *icsk = inet_csk(sk);
3617 	const struct tcp_congestion_ops *ca;
3618 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3619 
3620 	if (ca_key == TCP_CA_UNSPEC)
3621 		return;
3622 
3623 	rcu_read_lock();
3624 	ca = tcp_ca_find_key(ca_key);
3625 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3626 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3627 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3628 		icsk->icsk_ca_ops = ca;
3629 	}
3630 	rcu_read_unlock();
3631 }
3632 
3633 /* Do all connect socket setups that can be done AF independent. */
3634 static void tcp_connect_init(struct sock *sk)
3635 {
3636 	const struct dst_entry *dst = __sk_dst_get(sk);
3637 	struct tcp_sock *tp = tcp_sk(sk);
3638 	__u8 rcv_wscale;
3639 	u32 rcv_wnd;
3640 
3641 	/* We'll fix this up when we get a response from the other end.
3642 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3643 	 */
3644 	tp->tcp_header_len = sizeof(struct tcphdr);
3645 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3646 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3647 
3648 #ifdef CONFIG_TCP_MD5SIG
3649 	if (tp->af_specific->md5_lookup(sk, sk))
3650 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3651 #endif
3652 
3653 	/* If user gave his TCP_MAXSEG, record it to clamp */
3654 	if (tp->rx_opt.user_mss)
3655 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3656 	tp->max_window = 0;
3657 	tcp_mtup_init(sk);
3658 	tcp_sync_mss(sk, dst_mtu(dst));
3659 
3660 	tcp_ca_dst_init(sk, dst);
3661 
3662 	if (!tp->window_clamp)
3663 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3664 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3665 
3666 	tcp_initialize_rcv_mss(sk);
3667 
3668 	/* limit the window selection if the user enforce a smaller rx buffer */
3669 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3670 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3671 		tp->window_clamp = tcp_full_space(sk);
3672 
3673 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3674 	if (rcv_wnd == 0)
3675 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3676 
3677 	tcp_select_initial_window(sk, tcp_full_space(sk),
3678 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3679 				  &tp->rcv_wnd,
3680 				  &tp->window_clamp,
3681 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3682 				  &rcv_wscale,
3683 				  rcv_wnd);
3684 
3685 	tp->rx_opt.rcv_wscale = rcv_wscale;
3686 	tp->rcv_ssthresh = tp->rcv_wnd;
3687 
3688 	sk->sk_err = 0;
3689 	sock_reset_flag(sk, SOCK_DONE);
3690 	tp->snd_wnd = 0;
3691 	tcp_init_wl(tp, 0);
3692 	tcp_write_queue_purge(sk);
3693 	tp->snd_una = tp->write_seq;
3694 	tp->snd_sml = tp->write_seq;
3695 	tp->snd_up = tp->write_seq;
3696 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3697 
3698 	if (likely(!tp->repair))
3699 		tp->rcv_nxt = 0;
3700 	else
3701 		tp->rcv_tstamp = tcp_jiffies32;
3702 	tp->rcv_wup = tp->rcv_nxt;
3703 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3704 
3705 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3706 	inet_csk(sk)->icsk_retransmits = 0;
3707 	tcp_clear_retrans(tp);
3708 }
3709 
3710 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3711 {
3712 	struct tcp_sock *tp = tcp_sk(sk);
3713 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3714 
3715 	tcb->end_seq += skb->len;
3716 	__skb_header_release(skb);
3717 	sk_wmem_queued_add(sk, skb->truesize);
3718 	sk_mem_charge(sk, skb->truesize);
3719 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3720 	tp->packets_out += tcp_skb_pcount(skb);
3721 }
3722 
3723 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3724  * queue a data-only packet after the regular SYN, such that regular SYNs
3725  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3726  * only the SYN sequence, the data are retransmitted in the first ACK.
3727  * If cookie is not cached or other error occurs, falls back to send a
3728  * regular SYN with Fast Open cookie request option.
3729  */
3730 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3731 {
3732 	struct tcp_sock *tp = tcp_sk(sk);
3733 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3734 	int space, err = 0;
3735 	struct sk_buff *syn_data;
3736 
3737 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3738 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3739 		goto fallback;
3740 
3741 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3742 	 * user-MSS. Reserve maximum option space for middleboxes that add
3743 	 * private TCP options. The cost is reduced data space in SYN :(
3744 	 */
3745 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3746 
3747 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3748 		MAX_TCP_OPTION_SPACE;
3749 
3750 	space = min_t(size_t, space, fo->size);
3751 
3752 	/* limit to order-0 allocations */
3753 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3754 
3755 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3756 	if (!syn_data)
3757 		goto fallback;
3758 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3759 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3760 	if (space) {
3761 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3762 					    &fo->data->msg_iter);
3763 		if (unlikely(!copied)) {
3764 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3765 			kfree_skb(syn_data);
3766 			goto fallback;
3767 		}
3768 		if (copied != space) {
3769 			skb_trim(syn_data, copied);
3770 			space = copied;
3771 		}
3772 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3773 	}
3774 	/* No more data pending in inet_wait_for_connect() */
3775 	if (space == fo->size)
3776 		fo->data = NULL;
3777 	fo->copied = space;
3778 
3779 	tcp_connect_queue_skb(sk, syn_data);
3780 	if (syn_data->len)
3781 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3782 
3783 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3784 
3785 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3786 
3787 	/* Now full SYN+DATA was cloned and sent (or not),
3788 	 * remove the SYN from the original skb (syn_data)
3789 	 * we keep in write queue in case of a retransmit, as we
3790 	 * also have the SYN packet (with no data) in the same queue.
3791 	 */
3792 	TCP_SKB_CB(syn_data)->seq++;
3793 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3794 	if (!err) {
3795 		tp->syn_data = (fo->copied > 0);
3796 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3797 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3798 		goto done;
3799 	}
3800 
3801 	/* data was not sent, put it in write_queue */
3802 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3803 	tp->packets_out -= tcp_skb_pcount(syn_data);
3804 
3805 fallback:
3806 	/* Send a regular SYN with Fast Open cookie request option */
3807 	if (fo->cookie.len > 0)
3808 		fo->cookie.len = 0;
3809 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3810 	if (err)
3811 		tp->syn_fastopen = 0;
3812 done:
3813 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3814 	return err;
3815 }
3816 
3817 /* Build a SYN and send it off. */
3818 int tcp_connect(struct sock *sk)
3819 {
3820 	struct tcp_sock *tp = tcp_sk(sk);
3821 	struct sk_buff *buff;
3822 	int err;
3823 
3824 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3825 
3826 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3827 		return -EHOSTUNREACH; /* Routing failure or similar. */
3828 
3829 	tcp_connect_init(sk);
3830 
3831 	if (unlikely(tp->repair)) {
3832 		tcp_finish_connect(sk, NULL);
3833 		return 0;
3834 	}
3835 
3836 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3837 	if (unlikely(!buff))
3838 		return -ENOBUFS;
3839 
3840 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3841 	tcp_mstamp_refresh(tp);
3842 	tp->retrans_stamp = tcp_time_stamp(tp);
3843 	tcp_connect_queue_skb(sk, buff);
3844 	tcp_ecn_send_syn(sk, buff);
3845 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3846 
3847 	/* Send off SYN; include data in Fast Open. */
3848 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3849 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3850 	if (err == -ECONNREFUSED)
3851 		return err;
3852 
3853 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3854 	 * in order to make this packet get counted in tcpOutSegs.
3855 	 */
3856 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3857 	tp->pushed_seq = tp->write_seq;
3858 	buff = tcp_send_head(sk);
3859 	if (unlikely(buff)) {
3860 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3861 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3862 	}
3863 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3864 
3865 	/* Timer for repeating the SYN until an answer. */
3866 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3867 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3868 	return 0;
3869 }
3870 EXPORT_SYMBOL(tcp_connect);
3871 
3872 /* Send out a delayed ack, the caller does the policy checking
3873  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3874  * for details.
3875  */
3876 void tcp_send_delayed_ack(struct sock *sk)
3877 {
3878 	struct inet_connection_sock *icsk = inet_csk(sk);
3879 	int ato = icsk->icsk_ack.ato;
3880 	unsigned long timeout;
3881 
3882 	if (ato > TCP_DELACK_MIN) {
3883 		const struct tcp_sock *tp = tcp_sk(sk);
3884 		int max_ato = HZ / 2;
3885 
3886 		if (inet_csk_in_pingpong_mode(sk) ||
3887 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3888 			max_ato = TCP_DELACK_MAX;
3889 
3890 		/* Slow path, intersegment interval is "high". */
3891 
3892 		/* If some rtt estimate is known, use it to bound delayed ack.
3893 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3894 		 * directly.
3895 		 */
3896 		if (tp->srtt_us) {
3897 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3898 					TCP_DELACK_MIN);
3899 
3900 			if (rtt < max_ato)
3901 				max_ato = rtt;
3902 		}
3903 
3904 		ato = min(ato, max_ato);
3905 	}
3906 
3907 	ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3908 
3909 	/* Stay within the limit we were given */
3910 	timeout = jiffies + ato;
3911 
3912 	/* Use new timeout only if there wasn't a older one earlier. */
3913 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3914 		/* If delack timer is about to expire, send ACK now. */
3915 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3916 			tcp_send_ack(sk);
3917 			return;
3918 		}
3919 
3920 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3921 			timeout = icsk->icsk_ack.timeout;
3922 	}
3923 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3924 	icsk->icsk_ack.timeout = timeout;
3925 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3926 }
3927 
3928 /* This routine sends an ack and also updates the window. */
3929 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3930 {
3931 	struct sk_buff *buff;
3932 
3933 	/* If we have been reset, we may not send again. */
3934 	if (sk->sk_state == TCP_CLOSE)
3935 		return;
3936 
3937 	/* We are not putting this on the write queue, so
3938 	 * tcp_transmit_skb() will set the ownership to this
3939 	 * sock.
3940 	 */
3941 	buff = alloc_skb(MAX_TCP_HEADER,
3942 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3943 	if (unlikely(!buff)) {
3944 		struct inet_connection_sock *icsk = inet_csk(sk);
3945 		unsigned long delay;
3946 
3947 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3948 		if (delay < TCP_RTO_MAX)
3949 			icsk->icsk_ack.retry++;
3950 		inet_csk_schedule_ack(sk);
3951 		icsk->icsk_ack.ato = TCP_ATO_MIN;
3952 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3953 		return;
3954 	}
3955 
3956 	/* Reserve space for headers and prepare control bits. */
3957 	skb_reserve(buff, MAX_TCP_HEADER);
3958 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3959 
3960 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3961 	 * too much.
3962 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3963 	 */
3964 	skb_set_tcp_pure_ack(buff);
3965 
3966 	/* Send it off, this clears delayed acks for us. */
3967 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3968 }
3969 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3970 
3971 void tcp_send_ack(struct sock *sk)
3972 {
3973 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3974 }
3975 
3976 /* This routine sends a packet with an out of date sequence
3977  * number. It assumes the other end will try to ack it.
3978  *
3979  * Question: what should we make while urgent mode?
3980  * 4.4BSD forces sending single byte of data. We cannot send
3981  * out of window data, because we have SND.NXT==SND.MAX...
3982  *
3983  * Current solution: to send TWO zero-length segments in urgent mode:
3984  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3985  * out-of-date with SND.UNA-1 to probe window.
3986  */
3987 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3988 {
3989 	struct tcp_sock *tp = tcp_sk(sk);
3990 	struct sk_buff *skb;
3991 
3992 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3993 	skb = alloc_skb(MAX_TCP_HEADER,
3994 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3995 	if (!skb)
3996 		return -1;
3997 
3998 	/* Reserve space for headers and set control bits. */
3999 	skb_reserve(skb, MAX_TCP_HEADER);
4000 	/* Use a previous sequence.  This should cause the other
4001 	 * end to send an ack.  Don't queue or clone SKB, just
4002 	 * send it.
4003 	 */
4004 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4005 	NET_INC_STATS(sock_net(sk), mib);
4006 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4007 }
4008 
4009 /* Called from setsockopt( ... TCP_REPAIR ) */
4010 void tcp_send_window_probe(struct sock *sk)
4011 {
4012 	if (sk->sk_state == TCP_ESTABLISHED) {
4013 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4014 		tcp_mstamp_refresh(tcp_sk(sk));
4015 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4016 	}
4017 }
4018 
4019 /* Initiate keepalive or window probe from timer. */
4020 int tcp_write_wakeup(struct sock *sk, int mib)
4021 {
4022 	struct tcp_sock *tp = tcp_sk(sk);
4023 	struct sk_buff *skb;
4024 
4025 	if (sk->sk_state == TCP_CLOSE)
4026 		return -1;
4027 
4028 	skb = tcp_send_head(sk);
4029 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4030 		int err;
4031 		unsigned int mss = tcp_current_mss(sk);
4032 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4033 
4034 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4035 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4036 
4037 		/* We are probing the opening of a window
4038 		 * but the window size is != 0
4039 		 * must have been a result SWS avoidance ( sender )
4040 		 */
4041 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4042 		    skb->len > mss) {
4043 			seg_size = min(seg_size, mss);
4044 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4045 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4046 					 skb, seg_size, mss, GFP_ATOMIC))
4047 				return -1;
4048 		} else if (!tcp_skb_pcount(skb))
4049 			tcp_set_skb_tso_segs(skb, mss);
4050 
4051 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4052 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4053 		if (!err)
4054 			tcp_event_new_data_sent(sk, skb);
4055 		return err;
4056 	} else {
4057 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4058 			tcp_xmit_probe_skb(sk, 1, mib);
4059 		return tcp_xmit_probe_skb(sk, 0, mib);
4060 	}
4061 }
4062 
4063 /* A window probe timeout has occurred.  If window is not closed send
4064  * a partial packet else a zero probe.
4065  */
4066 void tcp_send_probe0(struct sock *sk)
4067 {
4068 	struct inet_connection_sock *icsk = inet_csk(sk);
4069 	struct tcp_sock *tp = tcp_sk(sk);
4070 	struct net *net = sock_net(sk);
4071 	unsigned long timeout;
4072 	int err;
4073 
4074 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4075 
4076 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4077 		/* Cancel probe timer, if it is not required. */
4078 		icsk->icsk_probes_out = 0;
4079 		icsk->icsk_backoff = 0;
4080 		return;
4081 	}
4082 
4083 	icsk->icsk_probes_out++;
4084 	if (err <= 0) {
4085 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
4086 			icsk->icsk_backoff++;
4087 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4088 	} else {
4089 		/* If packet was not sent due to local congestion,
4090 		 * Let senders fight for local resources conservatively.
4091 		 */
4092 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4093 	}
4094 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4095 }
4096 
4097 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4098 {
4099 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4100 	struct flowi fl;
4101 	int res;
4102 
4103 	tcp_rsk(req)->txhash = net_tx_rndhash();
4104 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4105 				  NULL);
4106 	if (!res) {
4107 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4108 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4109 		if (unlikely(tcp_passive_fastopen(sk)))
4110 			tcp_sk(sk)->total_retrans++;
4111 		trace_tcp_retransmit_synack(sk, req);
4112 	}
4113 	return res;
4114 }
4115 EXPORT_SYMBOL(tcp_rtx_synack);
4116