1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 } 86 87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 88 * window scaling factor due to loss of precision. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 99 (tp->rx_opt.wscale_ok && 100 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 101 return tp->snd_nxt; 102 else 103 return tcp_wnd_end(tp); 104 } 105 106 /* Calculate mss to advertise in SYN segment. 107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 108 * 109 * 1. It is independent of path mtu. 110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 112 * attached devices, because some buggy hosts are confused by 113 * large MSS. 114 * 4. We do not make 3, we advertise MSS, calculated from first 115 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 116 * This may be overridden via information stored in routing table. 117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 118 * probably even Jumbo". 119 */ 120 static __u16 tcp_advertise_mss(struct sock *sk) 121 { 122 struct tcp_sock *tp = tcp_sk(sk); 123 const struct dst_entry *dst = __sk_dst_get(sk); 124 int mss = tp->advmss; 125 126 if (dst) { 127 unsigned int metric = dst_metric_advmss(dst); 128 129 if (metric < mss) { 130 mss = metric; 131 tp->advmss = mss; 132 } 133 } 134 135 return (__u16)mss; 136 } 137 138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 139 * This is the first part of cwnd validation mechanism. 140 */ 141 void tcp_cwnd_restart(struct sock *sk, s32 delta) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 145 u32 cwnd = tp->snd_cwnd; 146 147 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 148 149 tp->snd_ssthresh = tcp_current_ssthresh(sk); 150 restart_cwnd = min(restart_cwnd, cwnd); 151 152 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 153 cwnd >>= 1; 154 tp->snd_cwnd = max(cwnd, restart_cwnd); 155 tp->snd_cwnd_stamp = tcp_jiffies32; 156 tp->snd_cwnd_used = 0; 157 } 158 159 /* Congestion state accounting after a packet has been sent. */ 160 static void tcp_event_data_sent(struct tcp_sock *tp, 161 struct sock *sk) 162 { 163 struct inet_connection_sock *icsk = inet_csk(sk); 164 const u32 now = tcp_jiffies32; 165 166 if (tcp_packets_in_flight(tp) == 0) 167 tcp_ca_event(sk, CA_EVENT_TX_START); 168 169 /* If this is the first data packet sent in response to the 170 * previous received data, 171 * and it is a reply for ato after last received packet, 172 * increase pingpong count. 173 */ 174 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) && 175 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_inc_pingpong_cnt(sk); 177 178 tp->lsndtime = now; 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 183 u32 rcv_nxt) 184 { 185 struct tcp_sock *tp = tcp_sk(sk); 186 187 if (unlikely(tp->compressed_ack)) { 188 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 189 tp->compressed_ack); 190 tp->compressed_ack = 0; 191 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 192 __sock_put(sk); 193 } 194 195 if (unlikely(rcv_nxt != tp->rcv_nxt)) 196 return; /* Special ACK sent by DCTCP to reflect ECN */ 197 tcp_dec_quickack_mode(sk, pkts); 198 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 199 } 200 201 /* Determine a window scaling and initial window to offer. 202 * Based on the assumption that the given amount of space 203 * will be offered. Store the results in the tp structure. 204 * NOTE: for smooth operation initial space offering should 205 * be a multiple of mss if possible. We assume here that mss >= 1. 206 * This MUST be enforced by all callers. 207 */ 208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 209 __u32 *rcv_wnd, __u32 *window_clamp, 210 int wscale_ok, __u8 *rcv_wscale, 211 __u32 init_rcv_wnd) 212 { 213 unsigned int space = (__space < 0 ? 0 : __space); 214 215 /* If no clamp set the clamp to the max possible scaled window */ 216 if (*window_clamp == 0) 217 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 218 space = min(*window_clamp, space); 219 220 /* Quantize space offering to a multiple of mss if possible. */ 221 if (space > mss) 222 space = rounddown(space, mss); 223 224 /* NOTE: offering an initial window larger than 32767 225 * will break some buggy TCP stacks. If the admin tells us 226 * it is likely we could be speaking with such a buggy stack 227 * we will truncate our initial window offering to 32K-1 228 * unless the remote has sent us a window scaling option, 229 * which we interpret as a sign the remote TCP is not 230 * misinterpreting the window field as a signed quantity. 231 */ 232 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 234 else 235 (*rcv_wnd) = min_t(u32, space, U16_MAX); 236 237 if (init_rcv_wnd) 238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 239 240 *rcv_wscale = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window */ 243 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 244 space = max_t(u32, space, sysctl_rmem_max); 245 space = min_t(u32, space, *window_clamp); 246 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 247 0, TCP_MAX_WSCALE); 248 } 249 /* Set the clamp no higher than max representable value */ 250 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 251 } 252 EXPORT_SYMBOL(tcp_select_initial_window); 253 254 /* Chose a new window to advertise, update state in tcp_sock for the 255 * socket, and return result with RFC1323 scaling applied. The return 256 * value can be stuffed directly into th->window for an outgoing 257 * frame. 258 */ 259 static u16 tcp_select_window(struct sock *sk) 260 { 261 struct tcp_sock *tp = tcp_sk(sk); 262 u32 old_win = tp->rcv_wnd; 263 u32 cur_win = tcp_receive_window(tp); 264 u32 new_win = __tcp_select_window(sk); 265 266 /* Never shrink the offered window */ 267 if (new_win < cur_win) { 268 /* Danger Will Robinson! 269 * Don't update rcv_wup/rcv_wnd here or else 270 * we will not be able to advertise a zero 271 * window in time. --DaveM 272 * 273 * Relax Will Robinson. 274 */ 275 if (new_win == 0) 276 NET_INC_STATS(sock_net(sk), 277 LINUX_MIB_TCPWANTZEROWINDOWADV); 278 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 279 } 280 tp->rcv_wnd = new_win; 281 tp->rcv_wup = tp->rcv_nxt; 282 283 /* Make sure we do not exceed the maximum possible 284 * scaled window. 285 */ 286 if (!tp->rx_opt.rcv_wscale && 287 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 288 new_win = min(new_win, MAX_TCP_WINDOW); 289 else 290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 291 292 /* RFC1323 scaling applied */ 293 new_win >>= tp->rx_opt.rcv_wscale; 294 295 /* If we advertise zero window, disable fast path. */ 296 if (new_win == 0) { 297 tp->pred_flags = 0; 298 if (old_win) 299 NET_INC_STATS(sock_net(sk), 300 LINUX_MIB_TCPTOZEROWINDOWADV); 301 } else if (old_win == 0) { 302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 303 } 304 305 return new_win; 306 } 307 308 /* Packet ECN state for a SYN-ACK */ 309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 314 if (!(tp->ecn_flags & TCP_ECN_OK)) 315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 316 else if (tcp_ca_needs_ecn(sk) || 317 tcp_bpf_ca_needs_ecn(sk)) 318 INET_ECN_xmit(sk); 319 } 320 321 /* Packet ECN state for a SYN. */ 322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 323 { 324 struct tcp_sock *tp = tcp_sk(sk); 325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 328 329 if (!use_ecn) { 330 const struct dst_entry *dst = __sk_dst_get(sk); 331 332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 333 use_ecn = true; 334 } 335 336 tp->ecn_flags = 0; 337 338 if (use_ecn) { 339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 340 tp->ecn_flags = TCP_ECN_OK; 341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 342 INET_ECN_xmit(sk); 343 } 344 } 345 346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 347 { 348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 349 /* tp->ecn_flags are cleared at a later point in time when 350 * SYN ACK is ultimatively being received. 351 */ 352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 353 } 354 355 static void 356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 357 { 358 if (inet_rsk(req)->ecn_ok) 359 th->ece = 1; 360 } 361 362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 363 * be sent. 364 */ 365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 366 struct tcphdr *th, int tcp_header_len) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 370 if (tp->ecn_flags & TCP_ECN_OK) { 371 /* Not-retransmitted data segment: set ECT and inject CWR. */ 372 if (skb->len != tcp_header_len && 373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 374 INET_ECN_xmit(sk); 375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 377 th->cwr = 1; 378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 379 } 380 } else if (!tcp_ca_needs_ecn(sk)) { 381 /* ACK or retransmitted segment: clear ECT|CE */ 382 INET_ECN_dontxmit(sk); 383 } 384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 385 th->ece = 1; 386 } 387 } 388 389 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 390 * auto increment end seqno. 391 */ 392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 393 { 394 skb->ip_summed = CHECKSUM_PARTIAL; 395 396 TCP_SKB_CB(skb)->tcp_flags = flags; 397 TCP_SKB_CB(skb)->sacked = 0; 398 399 tcp_skb_pcount_set(skb, 1); 400 401 TCP_SKB_CB(skb)->seq = seq; 402 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 403 seq++; 404 TCP_SKB_CB(skb)->end_seq = seq; 405 } 406 407 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 408 { 409 return tp->snd_una != tp->snd_up; 410 } 411 412 #define OPTION_SACK_ADVERTISE (1 << 0) 413 #define OPTION_TS (1 << 1) 414 #define OPTION_MD5 (1 << 2) 415 #define OPTION_WSCALE (1 << 3) 416 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 417 #define OPTION_SMC (1 << 9) 418 #define OPTION_MPTCP (1 << 10) 419 420 static void smc_options_write(__be32 *ptr, u16 *options) 421 { 422 #if IS_ENABLED(CONFIG_SMC) 423 if (static_branch_unlikely(&tcp_have_smc)) { 424 if (unlikely(OPTION_SMC & *options)) { 425 *ptr++ = htonl((TCPOPT_NOP << 24) | 426 (TCPOPT_NOP << 16) | 427 (TCPOPT_EXP << 8) | 428 (TCPOLEN_EXP_SMC_BASE)); 429 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 430 } 431 } 432 #endif 433 } 434 435 struct tcp_out_options { 436 u16 options; /* bit field of OPTION_* */ 437 u16 mss; /* 0 to disable */ 438 u8 ws; /* window scale, 0 to disable */ 439 u8 num_sack_blocks; /* number of SACK blocks to include */ 440 u8 hash_size; /* bytes in hash_location */ 441 u8 bpf_opt_len; /* length of BPF hdr option */ 442 __u8 *hash_location; /* temporary pointer, overloaded */ 443 __u32 tsval, tsecr; /* need to include OPTION_TS */ 444 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 445 struct mptcp_out_options mptcp; 446 }; 447 448 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts) 449 { 450 #if IS_ENABLED(CONFIG_MPTCP) 451 if (unlikely(OPTION_MPTCP & opts->options)) 452 mptcp_write_options(ptr, &opts->mptcp); 453 #endif 454 } 455 456 #ifdef CONFIG_CGROUP_BPF 457 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 458 enum tcp_synack_type synack_type) 459 { 460 if (unlikely(!skb)) 461 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 462 463 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 464 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 465 466 return 0; 467 } 468 469 /* req, syn_skb and synack_type are used when writing synack */ 470 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 471 struct request_sock *req, 472 struct sk_buff *syn_skb, 473 enum tcp_synack_type synack_type, 474 struct tcp_out_options *opts, 475 unsigned int *remaining) 476 { 477 struct bpf_sock_ops_kern sock_ops; 478 int err; 479 480 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 481 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 482 !*remaining) 483 return; 484 485 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 486 487 /* init sock_ops */ 488 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 489 490 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 491 492 if (req) { 493 /* The listen "sk" cannot be passed here because 494 * it is not locked. It would not make too much 495 * sense to do bpf_setsockopt(listen_sk) based 496 * on individual connection request also. 497 * 498 * Thus, "req" is passed here and the cgroup-bpf-progs 499 * of the listen "sk" will be run. 500 * 501 * "req" is also used here for fastopen even the "sk" here is 502 * a fullsock "child" sk. It is to keep the behavior 503 * consistent between fastopen and non-fastopen on 504 * the bpf programming side. 505 */ 506 sock_ops.sk = (struct sock *)req; 507 sock_ops.syn_skb = syn_skb; 508 } else { 509 sock_owned_by_me(sk); 510 511 sock_ops.is_fullsock = 1; 512 sock_ops.sk = sk; 513 } 514 515 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 516 sock_ops.remaining_opt_len = *remaining; 517 /* tcp_current_mss() does not pass a skb */ 518 if (skb) 519 bpf_skops_init_skb(&sock_ops, skb, 0); 520 521 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 522 523 if (err || sock_ops.remaining_opt_len == *remaining) 524 return; 525 526 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 527 /* round up to 4 bytes */ 528 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 529 530 *remaining -= opts->bpf_opt_len; 531 } 532 533 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 534 struct request_sock *req, 535 struct sk_buff *syn_skb, 536 enum tcp_synack_type synack_type, 537 struct tcp_out_options *opts) 538 { 539 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 540 struct bpf_sock_ops_kern sock_ops; 541 int err; 542 543 if (likely(!max_opt_len)) 544 return; 545 546 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 547 548 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 549 550 if (req) { 551 sock_ops.sk = (struct sock *)req; 552 sock_ops.syn_skb = syn_skb; 553 } else { 554 sock_owned_by_me(sk); 555 556 sock_ops.is_fullsock = 1; 557 sock_ops.sk = sk; 558 } 559 560 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 561 sock_ops.remaining_opt_len = max_opt_len; 562 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 563 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 564 565 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 566 567 if (err) 568 nr_written = 0; 569 else 570 nr_written = max_opt_len - sock_ops.remaining_opt_len; 571 572 if (nr_written < max_opt_len) 573 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 574 max_opt_len - nr_written); 575 } 576 #else 577 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 578 struct request_sock *req, 579 struct sk_buff *syn_skb, 580 enum tcp_synack_type synack_type, 581 struct tcp_out_options *opts, 582 unsigned int *remaining) 583 { 584 } 585 586 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 587 struct request_sock *req, 588 struct sk_buff *syn_skb, 589 enum tcp_synack_type synack_type, 590 struct tcp_out_options *opts) 591 { 592 } 593 #endif 594 595 /* Write previously computed TCP options to the packet. 596 * 597 * Beware: Something in the Internet is very sensitive to the ordering of 598 * TCP options, we learned this through the hard way, so be careful here. 599 * Luckily we can at least blame others for their non-compliance but from 600 * inter-operability perspective it seems that we're somewhat stuck with 601 * the ordering which we have been using if we want to keep working with 602 * those broken things (not that it currently hurts anybody as there isn't 603 * particular reason why the ordering would need to be changed). 604 * 605 * At least SACK_PERM as the first option is known to lead to a disaster 606 * (but it may well be that other scenarios fail similarly). 607 */ 608 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 609 struct tcp_out_options *opts) 610 { 611 u16 options = opts->options; /* mungable copy */ 612 613 if (unlikely(OPTION_MD5 & options)) { 614 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 615 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 616 /* overload cookie hash location */ 617 opts->hash_location = (__u8 *)ptr; 618 ptr += 4; 619 } 620 621 if (unlikely(opts->mss)) { 622 *ptr++ = htonl((TCPOPT_MSS << 24) | 623 (TCPOLEN_MSS << 16) | 624 opts->mss); 625 } 626 627 if (likely(OPTION_TS & options)) { 628 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 629 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 630 (TCPOLEN_SACK_PERM << 16) | 631 (TCPOPT_TIMESTAMP << 8) | 632 TCPOLEN_TIMESTAMP); 633 options &= ~OPTION_SACK_ADVERTISE; 634 } else { 635 *ptr++ = htonl((TCPOPT_NOP << 24) | 636 (TCPOPT_NOP << 16) | 637 (TCPOPT_TIMESTAMP << 8) | 638 TCPOLEN_TIMESTAMP); 639 } 640 *ptr++ = htonl(opts->tsval); 641 *ptr++ = htonl(opts->tsecr); 642 } 643 644 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 645 *ptr++ = htonl((TCPOPT_NOP << 24) | 646 (TCPOPT_NOP << 16) | 647 (TCPOPT_SACK_PERM << 8) | 648 TCPOLEN_SACK_PERM); 649 } 650 651 if (unlikely(OPTION_WSCALE & options)) { 652 *ptr++ = htonl((TCPOPT_NOP << 24) | 653 (TCPOPT_WINDOW << 16) | 654 (TCPOLEN_WINDOW << 8) | 655 opts->ws); 656 } 657 658 if (unlikely(opts->num_sack_blocks)) { 659 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 660 tp->duplicate_sack : tp->selective_acks; 661 int this_sack; 662 663 *ptr++ = htonl((TCPOPT_NOP << 24) | 664 (TCPOPT_NOP << 16) | 665 (TCPOPT_SACK << 8) | 666 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 667 TCPOLEN_SACK_PERBLOCK))); 668 669 for (this_sack = 0; this_sack < opts->num_sack_blocks; 670 ++this_sack) { 671 *ptr++ = htonl(sp[this_sack].start_seq); 672 *ptr++ = htonl(sp[this_sack].end_seq); 673 } 674 675 tp->rx_opt.dsack = 0; 676 } 677 678 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 679 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 680 u8 *p = (u8 *)ptr; 681 u32 len; /* Fast Open option length */ 682 683 if (foc->exp) { 684 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 685 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 686 TCPOPT_FASTOPEN_MAGIC); 687 p += TCPOLEN_EXP_FASTOPEN_BASE; 688 } else { 689 len = TCPOLEN_FASTOPEN_BASE + foc->len; 690 *p++ = TCPOPT_FASTOPEN; 691 *p++ = len; 692 } 693 694 memcpy(p, foc->val, foc->len); 695 if ((len & 3) == 2) { 696 p[foc->len] = TCPOPT_NOP; 697 p[foc->len + 1] = TCPOPT_NOP; 698 } 699 ptr += (len + 3) >> 2; 700 } 701 702 smc_options_write(ptr, &options); 703 704 mptcp_options_write(ptr, opts); 705 } 706 707 static void smc_set_option(const struct tcp_sock *tp, 708 struct tcp_out_options *opts, 709 unsigned int *remaining) 710 { 711 #if IS_ENABLED(CONFIG_SMC) 712 if (static_branch_unlikely(&tcp_have_smc)) { 713 if (tp->syn_smc) { 714 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 715 opts->options |= OPTION_SMC; 716 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 717 } 718 } 719 } 720 #endif 721 } 722 723 static void smc_set_option_cond(const struct tcp_sock *tp, 724 const struct inet_request_sock *ireq, 725 struct tcp_out_options *opts, 726 unsigned int *remaining) 727 { 728 #if IS_ENABLED(CONFIG_SMC) 729 if (static_branch_unlikely(&tcp_have_smc)) { 730 if (tp->syn_smc && ireq->smc_ok) { 731 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 732 opts->options |= OPTION_SMC; 733 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 734 } 735 } 736 } 737 #endif 738 } 739 740 static void mptcp_set_option_cond(const struct request_sock *req, 741 struct tcp_out_options *opts, 742 unsigned int *remaining) 743 { 744 if (rsk_is_mptcp(req)) { 745 unsigned int size; 746 747 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 748 if (*remaining >= size) { 749 opts->options |= OPTION_MPTCP; 750 *remaining -= size; 751 } 752 } 753 } 754 } 755 756 /* Compute TCP options for SYN packets. This is not the final 757 * network wire format yet. 758 */ 759 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 760 struct tcp_out_options *opts, 761 struct tcp_md5sig_key **md5) 762 { 763 struct tcp_sock *tp = tcp_sk(sk); 764 unsigned int remaining = MAX_TCP_OPTION_SPACE; 765 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 766 767 *md5 = NULL; 768 #ifdef CONFIG_TCP_MD5SIG 769 if (static_branch_unlikely(&tcp_md5_needed) && 770 rcu_access_pointer(tp->md5sig_info)) { 771 *md5 = tp->af_specific->md5_lookup(sk, sk); 772 if (*md5) { 773 opts->options |= OPTION_MD5; 774 remaining -= TCPOLEN_MD5SIG_ALIGNED; 775 } 776 } 777 #endif 778 779 /* We always get an MSS option. The option bytes which will be seen in 780 * normal data packets should timestamps be used, must be in the MSS 781 * advertised. But we subtract them from tp->mss_cache so that 782 * calculations in tcp_sendmsg are simpler etc. So account for this 783 * fact here if necessary. If we don't do this correctly, as a 784 * receiver we won't recognize data packets as being full sized when we 785 * should, and thus we won't abide by the delayed ACK rules correctly. 786 * SACKs don't matter, we never delay an ACK when we have any of those 787 * going out. */ 788 opts->mss = tcp_advertise_mss(sk); 789 remaining -= TCPOLEN_MSS_ALIGNED; 790 791 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 792 opts->options |= OPTION_TS; 793 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 794 opts->tsecr = tp->rx_opt.ts_recent; 795 remaining -= TCPOLEN_TSTAMP_ALIGNED; 796 } 797 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 798 opts->ws = tp->rx_opt.rcv_wscale; 799 opts->options |= OPTION_WSCALE; 800 remaining -= TCPOLEN_WSCALE_ALIGNED; 801 } 802 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 803 opts->options |= OPTION_SACK_ADVERTISE; 804 if (unlikely(!(OPTION_TS & opts->options))) 805 remaining -= TCPOLEN_SACKPERM_ALIGNED; 806 } 807 808 if (fastopen && fastopen->cookie.len >= 0) { 809 u32 need = fastopen->cookie.len; 810 811 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 812 TCPOLEN_FASTOPEN_BASE; 813 need = (need + 3) & ~3U; /* Align to 32 bits */ 814 if (remaining >= need) { 815 opts->options |= OPTION_FAST_OPEN_COOKIE; 816 opts->fastopen_cookie = &fastopen->cookie; 817 remaining -= need; 818 tp->syn_fastopen = 1; 819 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 820 } 821 } 822 823 smc_set_option(tp, opts, &remaining); 824 825 if (sk_is_mptcp(sk)) { 826 unsigned int size; 827 828 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 829 opts->options |= OPTION_MPTCP; 830 remaining -= size; 831 } 832 } 833 834 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 835 836 return MAX_TCP_OPTION_SPACE - remaining; 837 } 838 839 /* Set up TCP options for SYN-ACKs. */ 840 static unsigned int tcp_synack_options(const struct sock *sk, 841 struct request_sock *req, 842 unsigned int mss, struct sk_buff *skb, 843 struct tcp_out_options *opts, 844 const struct tcp_md5sig_key *md5, 845 struct tcp_fastopen_cookie *foc, 846 enum tcp_synack_type synack_type, 847 struct sk_buff *syn_skb) 848 { 849 struct inet_request_sock *ireq = inet_rsk(req); 850 unsigned int remaining = MAX_TCP_OPTION_SPACE; 851 852 #ifdef CONFIG_TCP_MD5SIG 853 if (md5) { 854 opts->options |= OPTION_MD5; 855 remaining -= TCPOLEN_MD5SIG_ALIGNED; 856 857 /* We can't fit any SACK blocks in a packet with MD5 + TS 858 * options. There was discussion about disabling SACK 859 * rather than TS in order to fit in better with old, 860 * buggy kernels, but that was deemed to be unnecessary. 861 */ 862 if (synack_type != TCP_SYNACK_COOKIE) 863 ireq->tstamp_ok &= !ireq->sack_ok; 864 } 865 #endif 866 867 /* We always send an MSS option. */ 868 opts->mss = mss; 869 remaining -= TCPOLEN_MSS_ALIGNED; 870 871 if (likely(ireq->wscale_ok)) { 872 opts->ws = ireq->rcv_wscale; 873 opts->options |= OPTION_WSCALE; 874 remaining -= TCPOLEN_WSCALE_ALIGNED; 875 } 876 if (likely(ireq->tstamp_ok)) { 877 opts->options |= OPTION_TS; 878 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 879 opts->tsecr = req->ts_recent; 880 remaining -= TCPOLEN_TSTAMP_ALIGNED; 881 } 882 if (likely(ireq->sack_ok)) { 883 opts->options |= OPTION_SACK_ADVERTISE; 884 if (unlikely(!ireq->tstamp_ok)) 885 remaining -= TCPOLEN_SACKPERM_ALIGNED; 886 } 887 if (foc != NULL && foc->len >= 0) { 888 u32 need = foc->len; 889 890 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 891 TCPOLEN_FASTOPEN_BASE; 892 need = (need + 3) & ~3U; /* Align to 32 bits */ 893 if (remaining >= need) { 894 opts->options |= OPTION_FAST_OPEN_COOKIE; 895 opts->fastopen_cookie = foc; 896 remaining -= need; 897 } 898 } 899 900 mptcp_set_option_cond(req, opts, &remaining); 901 902 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 903 904 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 905 synack_type, opts, &remaining); 906 907 return MAX_TCP_OPTION_SPACE - remaining; 908 } 909 910 /* Compute TCP options for ESTABLISHED sockets. This is not the 911 * final wire format yet. 912 */ 913 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 914 struct tcp_out_options *opts, 915 struct tcp_md5sig_key **md5) 916 { 917 struct tcp_sock *tp = tcp_sk(sk); 918 unsigned int size = 0; 919 unsigned int eff_sacks; 920 921 opts->options = 0; 922 923 *md5 = NULL; 924 #ifdef CONFIG_TCP_MD5SIG 925 if (static_branch_unlikely(&tcp_md5_needed) && 926 rcu_access_pointer(tp->md5sig_info)) { 927 *md5 = tp->af_specific->md5_lookup(sk, sk); 928 if (*md5) { 929 opts->options |= OPTION_MD5; 930 size += TCPOLEN_MD5SIG_ALIGNED; 931 } 932 } 933 #endif 934 935 if (likely(tp->rx_opt.tstamp_ok)) { 936 opts->options |= OPTION_TS; 937 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 938 opts->tsecr = tp->rx_opt.ts_recent; 939 size += TCPOLEN_TSTAMP_ALIGNED; 940 } 941 942 /* MPTCP options have precedence over SACK for the limited TCP 943 * option space because a MPTCP connection would be forced to 944 * fall back to regular TCP if a required multipath option is 945 * missing. SACK still gets a chance to use whatever space is 946 * left. 947 */ 948 if (sk_is_mptcp(sk)) { 949 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 950 unsigned int opt_size = 0; 951 952 if (mptcp_established_options(sk, skb, &opt_size, remaining, 953 &opts->mptcp)) { 954 opts->options |= OPTION_MPTCP; 955 size += opt_size; 956 } 957 } 958 959 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 960 if (unlikely(eff_sacks)) { 961 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 962 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 963 TCPOLEN_SACK_PERBLOCK)) 964 return size; 965 966 opts->num_sack_blocks = 967 min_t(unsigned int, eff_sacks, 968 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 969 TCPOLEN_SACK_PERBLOCK); 970 971 size += TCPOLEN_SACK_BASE_ALIGNED + 972 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 973 } 974 975 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 976 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 977 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 978 979 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 980 981 size = MAX_TCP_OPTION_SPACE - remaining; 982 } 983 984 return size; 985 } 986 987 988 /* TCP SMALL QUEUES (TSQ) 989 * 990 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 991 * to reduce RTT and bufferbloat. 992 * We do this using a special skb destructor (tcp_wfree). 993 * 994 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 995 * needs to be reallocated in a driver. 996 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 997 * 998 * Since transmit from skb destructor is forbidden, we use a tasklet 999 * to process all sockets that eventually need to send more skbs. 1000 * We use one tasklet per cpu, with its own queue of sockets. 1001 */ 1002 struct tsq_tasklet { 1003 struct tasklet_struct tasklet; 1004 struct list_head head; /* queue of tcp sockets */ 1005 }; 1006 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1007 1008 static void tcp_tsq_write(struct sock *sk) 1009 { 1010 if ((1 << sk->sk_state) & 1011 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1012 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1013 struct tcp_sock *tp = tcp_sk(sk); 1014 1015 if (tp->lost_out > tp->retrans_out && 1016 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 1017 tcp_mstamp_refresh(tp); 1018 tcp_xmit_retransmit_queue(sk); 1019 } 1020 1021 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1022 0, GFP_ATOMIC); 1023 } 1024 } 1025 1026 static void tcp_tsq_handler(struct sock *sk) 1027 { 1028 bh_lock_sock(sk); 1029 if (!sock_owned_by_user(sk)) 1030 tcp_tsq_write(sk); 1031 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1032 sock_hold(sk); 1033 bh_unlock_sock(sk); 1034 } 1035 /* 1036 * One tasklet per cpu tries to send more skbs. 1037 * We run in tasklet context but need to disable irqs when 1038 * transferring tsq->head because tcp_wfree() might 1039 * interrupt us (non NAPI drivers) 1040 */ 1041 static void tcp_tasklet_func(unsigned long data) 1042 { 1043 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 1044 LIST_HEAD(list); 1045 unsigned long flags; 1046 struct list_head *q, *n; 1047 struct tcp_sock *tp; 1048 struct sock *sk; 1049 1050 local_irq_save(flags); 1051 list_splice_init(&tsq->head, &list); 1052 local_irq_restore(flags); 1053 1054 list_for_each_safe(q, n, &list) { 1055 tp = list_entry(q, struct tcp_sock, tsq_node); 1056 list_del(&tp->tsq_node); 1057 1058 sk = (struct sock *)tp; 1059 smp_mb__before_atomic(); 1060 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1061 1062 tcp_tsq_handler(sk); 1063 sk_free(sk); 1064 } 1065 } 1066 1067 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1068 TCPF_WRITE_TIMER_DEFERRED | \ 1069 TCPF_DELACK_TIMER_DEFERRED | \ 1070 TCPF_MTU_REDUCED_DEFERRED) 1071 /** 1072 * tcp_release_cb - tcp release_sock() callback 1073 * @sk: socket 1074 * 1075 * called from release_sock() to perform protocol dependent 1076 * actions before socket release. 1077 */ 1078 void tcp_release_cb(struct sock *sk) 1079 { 1080 unsigned long flags, nflags; 1081 1082 /* perform an atomic operation only if at least one flag is set */ 1083 do { 1084 flags = sk->sk_tsq_flags; 1085 if (!(flags & TCP_DEFERRED_ALL)) 1086 return; 1087 nflags = flags & ~TCP_DEFERRED_ALL; 1088 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 1089 1090 if (flags & TCPF_TSQ_DEFERRED) { 1091 tcp_tsq_write(sk); 1092 __sock_put(sk); 1093 } 1094 /* Here begins the tricky part : 1095 * We are called from release_sock() with : 1096 * 1) BH disabled 1097 * 2) sk_lock.slock spinlock held 1098 * 3) socket owned by us (sk->sk_lock.owned == 1) 1099 * 1100 * But following code is meant to be called from BH handlers, 1101 * so we should keep BH disabled, but early release socket ownership 1102 */ 1103 sock_release_ownership(sk); 1104 1105 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1106 tcp_write_timer_handler(sk); 1107 __sock_put(sk); 1108 } 1109 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1110 tcp_delack_timer_handler(sk); 1111 __sock_put(sk); 1112 } 1113 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1114 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1115 __sock_put(sk); 1116 } 1117 } 1118 EXPORT_SYMBOL(tcp_release_cb); 1119 1120 void __init tcp_tasklet_init(void) 1121 { 1122 int i; 1123 1124 for_each_possible_cpu(i) { 1125 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1126 1127 INIT_LIST_HEAD(&tsq->head); 1128 tasklet_init(&tsq->tasklet, 1129 tcp_tasklet_func, 1130 (unsigned long)tsq); 1131 } 1132 } 1133 1134 /* 1135 * Write buffer destructor automatically called from kfree_skb. 1136 * We can't xmit new skbs from this context, as we might already 1137 * hold qdisc lock. 1138 */ 1139 void tcp_wfree(struct sk_buff *skb) 1140 { 1141 struct sock *sk = skb->sk; 1142 struct tcp_sock *tp = tcp_sk(sk); 1143 unsigned long flags, nval, oval; 1144 1145 /* Keep one reference on sk_wmem_alloc. 1146 * Will be released by sk_free() from here or tcp_tasklet_func() 1147 */ 1148 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1149 1150 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1151 * Wait until our queues (qdisc + devices) are drained. 1152 * This gives : 1153 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1154 * - chance for incoming ACK (processed by another cpu maybe) 1155 * to migrate this flow (skb->ooo_okay will be eventually set) 1156 */ 1157 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1158 goto out; 1159 1160 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 1161 struct tsq_tasklet *tsq; 1162 bool empty; 1163 1164 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1165 goto out; 1166 1167 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1168 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 1169 if (nval != oval) 1170 continue; 1171 1172 /* queue this socket to tasklet queue */ 1173 local_irq_save(flags); 1174 tsq = this_cpu_ptr(&tsq_tasklet); 1175 empty = list_empty(&tsq->head); 1176 list_add(&tp->tsq_node, &tsq->head); 1177 if (empty) 1178 tasklet_schedule(&tsq->tasklet); 1179 local_irq_restore(flags); 1180 return; 1181 } 1182 out: 1183 sk_free(sk); 1184 } 1185 1186 /* Note: Called under soft irq. 1187 * We can call TCP stack right away, unless socket is owned by user. 1188 */ 1189 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1190 { 1191 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1192 struct sock *sk = (struct sock *)tp; 1193 1194 tcp_tsq_handler(sk); 1195 sock_put(sk); 1196 1197 return HRTIMER_NORESTART; 1198 } 1199 1200 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1201 u64 prior_wstamp) 1202 { 1203 struct tcp_sock *tp = tcp_sk(sk); 1204 1205 if (sk->sk_pacing_status != SK_PACING_NONE) { 1206 unsigned long rate = sk->sk_pacing_rate; 1207 1208 /* Original sch_fq does not pace first 10 MSS 1209 * Note that tp->data_segs_out overflows after 2^32 packets, 1210 * this is a minor annoyance. 1211 */ 1212 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1213 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1214 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1215 1216 /* take into account OS jitter */ 1217 len_ns -= min_t(u64, len_ns / 2, credit); 1218 tp->tcp_wstamp_ns += len_ns; 1219 } 1220 } 1221 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1222 } 1223 1224 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1225 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1226 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1227 1228 /* This routine actually transmits TCP packets queued in by 1229 * tcp_do_sendmsg(). This is used by both the initial 1230 * transmission and possible later retransmissions. 1231 * All SKB's seen here are completely headerless. It is our 1232 * job to build the TCP header, and pass the packet down to 1233 * IP so it can do the same plus pass the packet off to the 1234 * device. 1235 * 1236 * We are working here with either a clone of the original 1237 * SKB, or a fresh unique copy made by the retransmit engine. 1238 */ 1239 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1240 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1241 { 1242 const struct inet_connection_sock *icsk = inet_csk(sk); 1243 struct inet_sock *inet; 1244 struct tcp_sock *tp; 1245 struct tcp_skb_cb *tcb; 1246 struct tcp_out_options opts; 1247 unsigned int tcp_options_size, tcp_header_size; 1248 struct sk_buff *oskb = NULL; 1249 struct tcp_md5sig_key *md5; 1250 struct tcphdr *th; 1251 u64 prior_wstamp; 1252 int err; 1253 1254 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1255 tp = tcp_sk(sk); 1256 prior_wstamp = tp->tcp_wstamp_ns; 1257 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1258 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1259 if (clone_it) { 1260 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1261 - tp->snd_una; 1262 oskb = skb; 1263 1264 tcp_skb_tsorted_save(oskb) { 1265 if (unlikely(skb_cloned(oskb))) 1266 skb = pskb_copy(oskb, gfp_mask); 1267 else 1268 skb = skb_clone(oskb, gfp_mask); 1269 } tcp_skb_tsorted_restore(oskb); 1270 1271 if (unlikely(!skb)) 1272 return -ENOBUFS; 1273 /* retransmit skbs might have a non zero value in skb->dev 1274 * because skb->dev is aliased with skb->rbnode.rb_left 1275 */ 1276 skb->dev = NULL; 1277 } 1278 1279 inet = inet_sk(sk); 1280 tcb = TCP_SKB_CB(skb); 1281 memset(&opts, 0, sizeof(opts)); 1282 1283 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1284 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1285 } else { 1286 tcp_options_size = tcp_established_options(sk, skb, &opts, 1287 &md5); 1288 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1289 * at receiver : This slightly improve GRO performance. 1290 * Note that we do not force the PSH flag for non GSO packets, 1291 * because they might be sent under high congestion events, 1292 * and in this case it is better to delay the delivery of 1-MSS 1293 * packets and thus the corresponding ACK packet that would 1294 * release the following packet. 1295 */ 1296 if (tcp_skb_pcount(skb) > 1) 1297 tcb->tcp_flags |= TCPHDR_PSH; 1298 } 1299 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1300 1301 /* if no packet is in qdisc/device queue, then allow XPS to select 1302 * another queue. We can be called from tcp_tsq_handler() 1303 * which holds one reference to sk. 1304 * 1305 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1306 * One way to get this would be to set skb->truesize = 2 on them. 1307 */ 1308 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1309 1310 /* If we had to use memory reserve to allocate this skb, 1311 * this might cause drops if packet is looped back : 1312 * Other socket might not have SOCK_MEMALLOC. 1313 * Packets not looped back do not care about pfmemalloc. 1314 */ 1315 skb->pfmemalloc = 0; 1316 1317 skb_push(skb, tcp_header_size); 1318 skb_reset_transport_header(skb); 1319 1320 skb_orphan(skb); 1321 skb->sk = sk; 1322 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1323 skb_set_hash_from_sk(skb, sk); 1324 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1325 1326 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1327 1328 /* Build TCP header and checksum it. */ 1329 th = (struct tcphdr *)skb->data; 1330 th->source = inet->inet_sport; 1331 th->dest = inet->inet_dport; 1332 th->seq = htonl(tcb->seq); 1333 th->ack_seq = htonl(rcv_nxt); 1334 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1335 tcb->tcp_flags); 1336 1337 th->check = 0; 1338 th->urg_ptr = 0; 1339 1340 /* The urg_mode check is necessary during a below snd_una win probe */ 1341 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1342 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1343 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1344 th->urg = 1; 1345 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1346 th->urg_ptr = htons(0xFFFF); 1347 th->urg = 1; 1348 } 1349 } 1350 1351 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1352 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1353 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1354 th->window = htons(tcp_select_window(sk)); 1355 tcp_ecn_send(sk, skb, th, tcp_header_size); 1356 } else { 1357 /* RFC1323: The window in SYN & SYN/ACK segments 1358 * is never scaled. 1359 */ 1360 th->window = htons(min(tp->rcv_wnd, 65535U)); 1361 } 1362 #ifdef CONFIG_TCP_MD5SIG 1363 /* Calculate the MD5 hash, as we have all we need now */ 1364 if (md5) { 1365 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1366 tp->af_specific->calc_md5_hash(opts.hash_location, 1367 md5, sk, skb); 1368 } 1369 #endif 1370 1371 /* BPF prog is the last one writing header option */ 1372 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1373 1374 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1375 tcp_v6_send_check, tcp_v4_send_check, 1376 sk, skb); 1377 1378 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1379 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1380 1381 if (skb->len != tcp_header_size) { 1382 tcp_event_data_sent(tp, sk); 1383 tp->data_segs_out += tcp_skb_pcount(skb); 1384 tp->bytes_sent += skb->len - tcp_header_size; 1385 } 1386 1387 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1388 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1389 tcp_skb_pcount(skb)); 1390 1391 tp->segs_out += tcp_skb_pcount(skb); 1392 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1393 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1394 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1395 1396 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1397 1398 /* Cleanup our debris for IP stacks */ 1399 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1400 sizeof(struct inet6_skb_parm))); 1401 1402 tcp_add_tx_delay(skb, tp); 1403 1404 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1405 inet6_csk_xmit, ip_queue_xmit, 1406 sk, skb, &inet->cork.fl); 1407 1408 if (unlikely(err > 0)) { 1409 tcp_enter_cwr(sk); 1410 err = net_xmit_eval(err); 1411 } 1412 if (!err && oskb) { 1413 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1414 tcp_rate_skb_sent(sk, oskb); 1415 } 1416 return err; 1417 } 1418 1419 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1420 gfp_t gfp_mask) 1421 { 1422 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1423 tcp_sk(sk)->rcv_nxt); 1424 } 1425 1426 /* This routine just queues the buffer for sending. 1427 * 1428 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1429 * otherwise socket can stall. 1430 */ 1431 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1432 { 1433 struct tcp_sock *tp = tcp_sk(sk); 1434 1435 /* Advance write_seq and place onto the write_queue. */ 1436 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1437 __skb_header_release(skb); 1438 tcp_add_write_queue_tail(sk, skb); 1439 sk_wmem_queued_add(sk, skb->truesize); 1440 sk_mem_charge(sk, skb->truesize); 1441 } 1442 1443 /* Initialize TSO segments for a packet. */ 1444 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1445 { 1446 if (skb->len <= mss_now) { 1447 /* Avoid the costly divide in the normal 1448 * non-TSO case. 1449 */ 1450 tcp_skb_pcount_set(skb, 1); 1451 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1452 } else { 1453 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1454 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1455 } 1456 } 1457 1458 /* Pcount in the middle of the write queue got changed, we need to do various 1459 * tweaks to fix counters 1460 */ 1461 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1462 { 1463 struct tcp_sock *tp = tcp_sk(sk); 1464 1465 tp->packets_out -= decr; 1466 1467 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1468 tp->sacked_out -= decr; 1469 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1470 tp->retrans_out -= decr; 1471 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1472 tp->lost_out -= decr; 1473 1474 /* Reno case is special. Sigh... */ 1475 if (tcp_is_reno(tp) && decr > 0) 1476 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1477 1478 if (tp->lost_skb_hint && 1479 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1480 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1481 tp->lost_cnt_hint -= decr; 1482 1483 tcp_verify_left_out(tp); 1484 } 1485 1486 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1487 { 1488 return TCP_SKB_CB(skb)->txstamp_ack || 1489 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1490 } 1491 1492 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1493 { 1494 struct skb_shared_info *shinfo = skb_shinfo(skb); 1495 1496 if (unlikely(tcp_has_tx_tstamp(skb)) && 1497 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1498 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1499 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1500 1501 shinfo->tx_flags &= ~tsflags; 1502 shinfo2->tx_flags |= tsflags; 1503 swap(shinfo->tskey, shinfo2->tskey); 1504 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1505 TCP_SKB_CB(skb)->txstamp_ack = 0; 1506 } 1507 } 1508 1509 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1510 { 1511 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1512 TCP_SKB_CB(skb)->eor = 0; 1513 } 1514 1515 /* Insert buff after skb on the write or rtx queue of sk. */ 1516 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1517 struct sk_buff *buff, 1518 struct sock *sk, 1519 enum tcp_queue tcp_queue) 1520 { 1521 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1522 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1523 else 1524 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1525 } 1526 1527 /* Function to create two new TCP segments. Shrinks the given segment 1528 * to the specified size and appends a new segment with the rest of the 1529 * packet to the list. This won't be called frequently, I hope. 1530 * Remember, these are still headerless SKBs at this point. 1531 */ 1532 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1533 struct sk_buff *skb, u32 len, 1534 unsigned int mss_now, gfp_t gfp) 1535 { 1536 struct tcp_sock *tp = tcp_sk(sk); 1537 struct sk_buff *buff; 1538 int nsize, old_factor; 1539 long limit; 1540 int nlen; 1541 u8 flags; 1542 1543 if (WARN_ON(len > skb->len)) 1544 return -EINVAL; 1545 1546 nsize = skb_headlen(skb) - len; 1547 if (nsize < 0) 1548 nsize = 0; 1549 1550 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1551 * We need some allowance to not penalize applications setting small 1552 * SO_SNDBUF values. 1553 * Also allow first and last skb in retransmit queue to be split. 1554 */ 1555 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE); 1556 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1557 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1558 skb != tcp_rtx_queue_head(sk) && 1559 skb != tcp_rtx_queue_tail(sk))) { 1560 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1561 return -ENOMEM; 1562 } 1563 1564 if (skb_unclone(skb, gfp)) 1565 return -ENOMEM; 1566 1567 /* Get a new skb... force flag on. */ 1568 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1569 if (!buff) 1570 return -ENOMEM; /* We'll just try again later. */ 1571 skb_copy_decrypted(buff, skb); 1572 1573 sk_wmem_queued_add(sk, buff->truesize); 1574 sk_mem_charge(sk, buff->truesize); 1575 nlen = skb->len - len - nsize; 1576 buff->truesize += nlen; 1577 skb->truesize -= nlen; 1578 1579 /* Correct the sequence numbers. */ 1580 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1581 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1582 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1583 1584 /* PSH and FIN should only be set in the second packet. */ 1585 flags = TCP_SKB_CB(skb)->tcp_flags; 1586 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1587 TCP_SKB_CB(buff)->tcp_flags = flags; 1588 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1589 tcp_skb_fragment_eor(skb, buff); 1590 1591 skb_split(skb, buff, len); 1592 1593 buff->ip_summed = CHECKSUM_PARTIAL; 1594 1595 buff->tstamp = skb->tstamp; 1596 tcp_fragment_tstamp(skb, buff); 1597 1598 old_factor = tcp_skb_pcount(skb); 1599 1600 /* Fix up tso_factor for both original and new SKB. */ 1601 tcp_set_skb_tso_segs(skb, mss_now); 1602 tcp_set_skb_tso_segs(buff, mss_now); 1603 1604 /* Update delivered info for the new segment */ 1605 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1606 1607 /* If this packet has been sent out already, we must 1608 * adjust the various packet counters. 1609 */ 1610 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1611 int diff = old_factor - tcp_skb_pcount(skb) - 1612 tcp_skb_pcount(buff); 1613 1614 if (diff) 1615 tcp_adjust_pcount(sk, skb, diff); 1616 } 1617 1618 /* Link BUFF into the send queue. */ 1619 __skb_header_release(buff); 1620 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1621 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1622 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1623 1624 return 0; 1625 } 1626 1627 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1628 * data is not copied, but immediately discarded. 1629 */ 1630 static int __pskb_trim_head(struct sk_buff *skb, int len) 1631 { 1632 struct skb_shared_info *shinfo; 1633 int i, k, eat; 1634 1635 eat = min_t(int, len, skb_headlen(skb)); 1636 if (eat) { 1637 __skb_pull(skb, eat); 1638 len -= eat; 1639 if (!len) 1640 return 0; 1641 } 1642 eat = len; 1643 k = 0; 1644 shinfo = skb_shinfo(skb); 1645 for (i = 0; i < shinfo->nr_frags; i++) { 1646 int size = skb_frag_size(&shinfo->frags[i]); 1647 1648 if (size <= eat) { 1649 skb_frag_unref(skb, i); 1650 eat -= size; 1651 } else { 1652 shinfo->frags[k] = shinfo->frags[i]; 1653 if (eat) { 1654 skb_frag_off_add(&shinfo->frags[k], eat); 1655 skb_frag_size_sub(&shinfo->frags[k], eat); 1656 eat = 0; 1657 } 1658 k++; 1659 } 1660 } 1661 shinfo->nr_frags = k; 1662 1663 skb->data_len -= len; 1664 skb->len = skb->data_len; 1665 return len; 1666 } 1667 1668 /* Remove acked data from a packet in the transmit queue. */ 1669 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1670 { 1671 u32 delta_truesize; 1672 1673 if (skb_unclone(skb, GFP_ATOMIC)) 1674 return -ENOMEM; 1675 1676 delta_truesize = __pskb_trim_head(skb, len); 1677 1678 TCP_SKB_CB(skb)->seq += len; 1679 skb->ip_summed = CHECKSUM_PARTIAL; 1680 1681 if (delta_truesize) { 1682 skb->truesize -= delta_truesize; 1683 sk_wmem_queued_add(sk, -delta_truesize); 1684 sk_mem_uncharge(sk, delta_truesize); 1685 } 1686 1687 /* Any change of skb->len requires recalculation of tso factor. */ 1688 if (tcp_skb_pcount(skb) > 1) 1689 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1690 1691 return 0; 1692 } 1693 1694 /* Calculate MSS not accounting any TCP options. */ 1695 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1696 { 1697 const struct tcp_sock *tp = tcp_sk(sk); 1698 const struct inet_connection_sock *icsk = inet_csk(sk); 1699 int mss_now; 1700 1701 /* Calculate base mss without TCP options: 1702 It is MMS_S - sizeof(tcphdr) of rfc1122 1703 */ 1704 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1705 1706 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1707 if (icsk->icsk_af_ops->net_frag_header_len) { 1708 const struct dst_entry *dst = __sk_dst_get(sk); 1709 1710 if (dst && dst_allfrag(dst)) 1711 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1712 } 1713 1714 /* Clamp it (mss_clamp does not include tcp options) */ 1715 if (mss_now > tp->rx_opt.mss_clamp) 1716 mss_now = tp->rx_opt.mss_clamp; 1717 1718 /* Now subtract optional transport overhead */ 1719 mss_now -= icsk->icsk_ext_hdr_len; 1720 1721 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1722 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss); 1723 return mss_now; 1724 } 1725 1726 /* Calculate MSS. Not accounting for SACKs here. */ 1727 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1728 { 1729 /* Subtract TCP options size, not including SACKs */ 1730 return __tcp_mtu_to_mss(sk, pmtu) - 1731 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1732 } 1733 1734 /* Inverse of above */ 1735 int tcp_mss_to_mtu(struct sock *sk, int mss) 1736 { 1737 const struct tcp_sock *tp = tcp_sk(sk); 1738 const struct inet_connection_sock *icsk = inet_csk(sk); 1739 int mtu; 1740 1741 mtu = mss + 1742 tp->tcp_header_len + 1743 icsk->icsk_ext_hdr_len + 1744 icsk->icsk_af_ops->net_header_len; 1745 1746 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1747 if (icsk->icsk_af_ops->net_frag_header_len) { 1748 const struct dst_entry *dst = __sk_dst_get(sk); 1749 1750 if (dst && dst_allfrag(dst)) 1751 mtu += icsk->icsk_af_ops->net_frag_header_len; 1752 } 1753 return mtu; 1754 } 1755 EXPORT_SYMBOL(tcp_mss_to_mtu); 1756 1757 /* MTU probing init per socket */ 1758 void tcp_mtup_init(struct sock *sk) 1759 { 1760 struct tcp_sock *tp = tcp_sk(sk); 1761 struct inet_connection_sock *icsk = inet_csk(sk); 1762 struct net *net = sock_net(sk); 1763 1764 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1765 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1766 icsk->icsk_af_ops->net_header_len; 1767 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1768 icsk->icsk_mtup.probe_size = 0; 1769 if (icsk->icsk_mtup.enabled) 1770 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1771 } 1772 EXPORT_SYMBOL(tcp_mtup_init); 1773 1774 /* This function synchronize snd mss to current pmtu/exthdr set. 1775 1776 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1777 for TCP options, but includes only bare TCP header. 1778 1779 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1780 It is minimum of user_mss and mss received with SYN. 1781 It also does not include TCP options. 1782 1783 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1784 1785 tp->mss_cache is current effective sending mss, including 1786 all tcp options except for SACKs. It is evaluated, 1787 taking into account current pmtu, but never exceeds 1788 tp->rx_opt.mss_clamp. 1789 1790 NOTE1. rfc1122 clearly states that advertised MSS 1791 DOES NOT include either tcp or ip options. 1792 1793 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1794 are READ ONLY outside this function. --ANK (980731) 1795 */ 1796 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1797 { 1798 struct tcp_sock *tp = tcp_sk(sk); 1799 struct inet_connection_sock *icsk = inet_csk(sk); 1800 int mss_now; 1801 1802 if (icsk->icsk_mtup.search_high > pmtu) 1803 icsk->icsk_mtup.search_high = pmtu; 1804 1805 mss_now = tcp_mtu_to_mss(sk, pmtu); 1806 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1807 1808 /* And store cached results */ 1809 icsk->icsk_pmtu_cookie = pmtu; 1810 if (icsk->icsk_mtup.enabled) 1811 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1812 tp->mss_cache = mss_now; 1813 1814 return mss_now; 1815 } 1816 EXPORT_SYMBOL(tcp_sync_mss); 1817 1818 /* Compute the current effective MSS, taking SACKs and IP options, 1819 * and even PMTU discovery events into account. 1820 */ 1821 unsigned int tcp_current_mss(struct sock *sk) 1822 { 1823 const struct tcp_sock *tp = tcp_sk(sk); 1824 const struct dst_entry *dst = __sk_dst_get(sk); 1825 u32 mss_now; 1826 unsigned int header_len; 1827 struct tcp_out_options opts; 1828 struct tcp_md5sig_key *md5; 1829 1830 mss_now = tp->mss_cache; 1831 1832 if (dst) { 1833 u32 mtu = dst_mtu(dst); 1834 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1835 mss_now = tcp_sync_mss(sk, mtu); 1836 } 1837 1838 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1839 sizeof(struct tcphdr); 1840 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1841 * some common options. If this is an odd packet (because we have SACK 1842 * blocks etc) then our calculated header_len will be different, and 1843 * we have to adjust mss_now correspondingly */ 1844 if (header_len != tp->tcp_header_len) { 1845 int delta = (int) header_len - tp->tcp_header_len; 1846 mss_now -= delta; 1847 } 1848 1849 return mss_now; 1850 } 1851 1852 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1853 * As additional protections, we do not touch cwnd in retransmission phases, 1854 * and if application hit its sndbuf limit recently. 1855 */ 1856 static void tcp_cwnd_application_limited(struct sock *sk) 1857 { 1858 struct tcp_sock *tp = tcp_sk(sk); 1859 1860 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1861 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1862 /* Limited by application or receiver window. */ 1863 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1864 u32 win_used = max(tp->snd_cwnd_used, init_win); 1865 if (win_used < tp->snd_cwnd) { 1866 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1867 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1868 } 1869 tp->snd_cwnd_used = 0; 1870 } 1871 tp->snd_cwnd_stamp = tcp_jiffies32; 1872 } 1873 1874 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1875 { 1876 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1877 struct tcp_sock *tp = tcp_sk(sk); 1878 1879 /* Track the maximum number of outstanding packets in each 1880 * window, and remember whether we were cwnd-limited then. 1881 */ 1882 if (!before(tp->snd_una, tp->max_packets_seq) || 1883 tp->packets_out > tp->max_packets_out || 1884 is_cwnd_limited) { 1885 tp->max_packets_out = tp->packets_out; 1886 tp->max_packets_seq = tp->snd_nxt; 1887 tp->is_cwnd_limited = is_cwnd_limited; 1888 } 1889 1890 if (tcp_is_cwnd_limited(sk)) { 1891 /* Network is feed fully. */ 1892 tp->snd_cwnd_used = 0; 1893 tp->snd_cwnd_stamp = tcp_jiffies32; 1894 } else { 1895 /* Network starves. */ 1896 if (tp->packets_out > tp->snd_cwnd_used) 1897 tp->snd_cwnd_used = tp->packets_out; 1898 1899 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1900 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1901 !ca_ops->cong_control) 1902 tcp_cwnd_application_limited(sk); 1903 1904 /* The following conditions together indicate the starvation 1905 * is caused by insufficient sender buffer: 1906 * 1) just sent some data (see tcp_write_xmit) 1907 * 2) not cwnd limited (this else condition) 1908 * 3) no more data to send (tcp_write_queue_empty()) 1909 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1910 */ 1911 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1912 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1913 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1914 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1915 } 1916 } 1917 1918 /* Minshall's variant of the Nagle send check. */ 1919 static bool tcp_minshall_check(const struct tcp_sock *tp) 1920 { 1921 return after(tp->snd_sml, tp->snd_una) && 1922 !after(tp->snd_sml, tp->snd_nxt); 1923 } 1924 1925 /* Update snd_sml if this skb is under mss 1926 * Note that a TSO packet might end with a sub-mss segment 1927 * The test is really : 1928 * if ((skb->len % mss) != 0) 1929 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1930 * But we can avoid doing the divide again given we already have 1931 * skb_pcount = skb->len / mss_now 1932 */ 1933 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1934 const struct sk_buff *skb) 1935 { 1936 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1937 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1938 } 1939 1940 /* Return false, if packet can be sent now without violation Nagle's rules: 1941 * 1. It is full sized. (provided by caller in %partial bool) 1942 * 2. Or it contains FIN. (already checked by caller) 1943 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1944 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1945 * With Minshall's modification: all sent small packets are ACKed. 1946 */ 1947 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1948 int nonagle) 1949 { 1950 return partial && 1951 ((nonagle & TCP_NAGLE_CORK) || 1952 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1953 } 1954 1955 /* Return how many segs we'd like on a TSO packet, 1956 * to send one TSO packet per ms 1957 */ 1958 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1959 int min_tso_segs) 1960 { 1961 u32 bytes, segs; 1962 1963 bytes = min_t(unsigned long, 1964 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift), 1965 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1966 1967 /* Goal is to send at least one packet per ms, 1968 * not one big TSO packet every 100 ms. 1969 * This preserves ACK clocking and is consistent 1970 * with tcp_tso_should_defer() heuristic. 1971 */ 1972 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1973 1974 return segs; 1975 } 1976 1977 /* Return the number of segments we want in the skb we are transmitting. 1978 * See if congestion control module wants to decide; otherwise, autosize. 1979 */ 1980 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1981 { 1982 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1983 u32 min_tso, tso_segs; 1984 1985 min_tso = ca_ops->min_tso_segs ? 1986 ca_ops->min_tso_segs(sk) : 1987 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1988 1989 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1990 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1991 } 1992 1993 /* Returns the portion of skb which can be sent right away */ 1994 static unsigned int tcp_mss_split_point(const struct sock *sk, 1995 const struct sk_buff *skb, 1996 unsigned int mss_now, 1997 unsigned int max_segs, 1998 int nonagle) 1999 { 2000 const struct tcp_sock *tp = tcp_sk(sk); 2001 u32 partial, needed, window, max_len; 2002 2003 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2004 max_len = mss_now * max_segs; 2005 2006 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2007 return max_len; 2008 2009 needed = min(skb->len, window); 2010 2011 if (max_len <= needed) 2012 return max_len; 2013 2014 partial = needed % mss_now; 2015 /* If last segment is not a full MSS, check if Nagle rules allow us 2016 * to include this last segment in this skb. 2017 * Otherwise, we'll split the skb at last MSS boundary 2018 */ 2019 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2020 return needed - partial; 2021 2022 return needed; 2023 } 2024 2025 /* Can at least one segment of SKB be sent right now, according to the 2026 * congestion window rules? If so, return how many segments are allowed. 2027 */ 2028 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 2029 const struct sk_buff *skb) 2030 { 2031 u32 in_flight, cwnd, halfcwnd; 2032 2033 /* Don't be strict about the congestion window for the final FIN. */ 2034 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2035 tcp_skb_pcount(skb) == 1) 2036 return 1; 2037 2038 in_flight = tcp_packets_in_flight(tp); 2039 cwnd = tp->snd_cwnd; 2040 if (in_flight >= cwnd) 2041 return 0; 2042 2043 /* For better scheduling, ensure we have at least 2044 * 2 GSO packets in flight. 2045 */ 2046 halfcwnd = max(cwnd >> 1, 1U); 2047 return min(halfcwnd, cwnd - in_flight); 2048 } 2049 2050 /* Initialize TSO state of a skb. 2051 * This must be invoked the first time we consider transmitting 2052 * SKB onto the wire. 2053 */ 2054 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2055 { 2056 int tso_segs = tcp_skb_pcount(skb); 2057 2058 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 2059 tcp_set_skb_tso_segs(skb, mss_now); 2060 tso_segs = tcp_skb_pcount(skb); 2061 } 2062 return tso_segs; 2063 } 2064 2065 2066 /* Return true if the Nagle test allows this packet to be 2067 * sent now. 2068 */ 2069 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2070 unsigned int cur_mss, int nonagle) 2071 { 2072 /* Nagle rule does not apply to frames, which sit in the middle of the 2073 * write_queue (they have no chances to get new data). 2074 * 2075 * This is implemented in the callers, where they modify the 'nonagle' 2076 * argument based upon the location of SKB in the send queue. 2077 */ 2078 if (nonagle & TCP_NAGLE_PUSH) 2079 return true; 2080 2081 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2082 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2083 return true; 2084 2085 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2086 return true; 2087 2088 return false; 2089 } 2090 2091 /* Does at least the first segment of SKB fit into the send window? */ 2092 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2093 const struct sk_buff *skb, 2094 unsigned int cur_mss) 2095 { 2096 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2097 2098 if (skb->len > cur_mss) 2099 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2100 2101 return !after(end_seq, tcp_wnd_end(tp)); 2102 } 2103 2104 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2105 * which is put after SKB on the list. It is very much like 2106 * tcp_fragment() except that it may make several kinds of assumptions 2107 * in order to speed up the splitting operation. In particular, we 2108 * know that all the data is in scatter-gather pages, and that the 2109 * packet has never been sent out before (and thus is not cloned). 2110 */ 2111 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2112 unsigned int mss_now, gfp_t gfp) 2113 { 2114 int nlen = skb->len - len; 2115 struct sk_buff *buff; 2116 u8 flags; 2117 2118 /* All of a TSO frame must be composed of paged data. */ 2119 if (skb->len != skb->data_len) 2120 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2121 skb, len, mss_now, gfp); 2122 2123 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 2124 if (unlikely(!buff)) 2125 return -ENOMEM; 2126 skb_copy_decrypted(buff, skb); 2127 2128 sk_wmem_queued_add(sk, buff->truesize); 2129 sk_mem_charge(sk, buff->truesize); 2130 buff->truesize += nlen; 2131 skb->truesize -= nlen; 2132 2133 /* Correct the sequence numbers. */ 2134 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2135 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2136 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2137 2138 /* PSH and FIN should only be set in the second packet. */ 2139 flags = TCP_SKB_CB(skb)->tcp_flags; 2140 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2141 TCP_SKB_CB(buff)->tcp_flags = flags; 2142 2143 /* This packet was never sent out yet, so no SACK bits. */ 2144 TCP_SKB_CB(buff)->sacked = 0; 2145 2146 tcp_skb_fragment_eor(skb, buff); 2147 2148 buff->ip_summed = CHECKSUM_PARTIAL; 2149 skb_split(skb, buff, len); 2150 tcp_fragment_tstamp(skb, buff); 2151 2152 /* Fix up tso_factor for both original and new SKB. */ 2153 tcp_set_skb_tso_segs(skb, mss_now); 2154 tcp_set_skb_tso_segs(buff, mss_now); 2155 2156 /* Link BUFF into the send queue. */ 2157 __skb_header_release(buff); 2158 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2159 2160 return 0; 2161 } 2162 2163 /* Try to defer sending, if possible, in order to minimize the amount 2164 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2165 * 2166 * This algorithm is from John Heffner. 2167 */ 2168 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2169 bool *is_cwnd_limited, 2170 bool *is_rwnd_limited, 2171 u32 max_segs) 2172 { 2173 const struct inet_connection_sock *icsk = inet_csk(sk); 2174 u32 send_win, cong_win, limit, in_flight; 2175 struct tcp_sock *tp = tcp_sk(sk); 2176 struct sk_buff *head; 2177 int win_divisor; 2178 s64 delta; 2179 2180 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2181 goto send_now; 2182 2183 /* Avoid bursty behavior by allowing defer 2184 * only if the last write was recent (1 ms). 2185 * Note that tp->tcp_wstamp_ns can be in the future if we have 2186 * packets waiting in a qdisc or device for EDT delivery. 2187 */ 2188 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2189 if (delta > 0) 2190 goto send_now; 2191 2192 in_flight = tcp_packets_in_flight(tp); 2193 2194 BUG_ON(tcp_skb_pcount(skb) <= 1); 2195 BUG_ON(tp->snd_cwnd <= in_flight); 2196 2197 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2198 2199 /* From in_flight test above, we know that cwnd > in_flight. */ 2200 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 2201 2202 limit = min(send_win, cong_win); 2203 2204 /* If a full-sized TSO skb can be sent, do it. */ 2205 if (limit >= max_segs * tp->mss_cache) 2206 goto send_now; 2207 2208 /* Middle in queue won't get any more data, full sendable already? */ 2209 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2210 goto send_now; 2211 2212 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2213 if (win_divisor) { 2214 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 2215 2216 /* If at least some fraction of a window is available, 2217 * just use it. 2218 */ 2219 chunk /= win_divisor; 2220 if (limit >= chunk) 2221 goto send_now; 2222 } else { 2223 /* Different approach, try not to defer past a single 2224 * ACK. Receiver should ACK every other full sized 2225 * frame, so if we have space for more than 3 frames 2226 * then send now. 2227 */ 2228 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2229 goto send_now; 2230 } 2231 2232 /* TODO : use tsorted_sent_queue ? */ 2233 head = tcp_rtx_queue_head(sk); 2234 if (!head) 2235 goto send_now; 2236 delta = tp->tcp_clock_cache - head->tstamp; 2237 /* If next ACK is likely to come too late (half srtt), do not defer */ 2238 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2239 goto send_now; 2240 2241 /* Ok, it looks like it is advisable to defer. 2242 * Three cases are tracked : 2243 * 1) We are cwnd-limited 2244 * 2) We are rwnd-limited 2245 * 3) We are application limited. 2246 */ 2247 if (cong_win < send_win) { 2248 if (cong_win <= skb->len) { 2249 *is_cwnd_limited = true; 2250 return true; 2251 } 2252 } else { 2253 if (send_win <= skb->len) { 2254 *is_rwnd_limited = true; 2255 return true; 2256 } 2257 } 2258 2259 /* If this packet won't get more data, do not wait. */ 2260 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2261 TCP_SKB_CB(skb)->eor) 2262 goto send_now; 2263 2264 return true; 2265 2266 send_now: 2267 return false; 2268 } 2269 2270 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2271 { 2272 struct inet_connection_sock *icsk = inet_csk(sk); 2273 struct tcp_sock *tp = tcp_sk(sk); 2274 struct net *net = sock_net(sk); 2275 u32 interval; 2276 s32 delta; 2277 2278 interval = net->ipv4.sysctl_tcp_probe_interval; 2279 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2280 if (unlikely(delta >= interval * HZ)) { 2281 int mss = tcp_current_mss(sk); 2282 2283 /* Update current search range */ 2284 icsk->icsk_mtup.probe_size = 0; 2285 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2286 sizeof(struct tcphdr) + 2287 icsk->icsk_af_ops->net_header_len; 2288 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2289 2290 /* Update probe time stamp */ 2291 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2292 } 2293 } 2294 2295 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2296 { 2297 struct sk_buff *skb, *next; 2298 2299 skb = tcp_send_head(sk); 2300 tcp_for_write_queue_from_safe(skb, next, sk) { 2301 if (len <= skb->len) 2302 break; 2303 2304 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb)) 2305 return false; 2306 2307 len -= skb->len; 2308 } 2309 2310 return true; 2311 } 2312 2313 /* Create a new MTU probe if we are ready. 2314 * MTU probe is regularly attempting to increase the path MTU by 2315 * deliberately sending larger packets. This discovers routing 2316 * changes resulting in larger path MTUs. 2317 * 2318 * Returns 0 if we should wait to probe (no cwnd available), 2319 * 1 if a probe was sent, 2320 * -1 otherwise 2321 */ 2322 static int tcp_mtu_probe(struct sock *sk) 2323 { 2324 struct inet_connection_sock *icsk = inet_csk(sk); 2325 struct tcp_sock *tp = tcp_sk(sk); 2326 struct sk_buff *skb, *nskb, *next; 2327 struct net *net = sock_net(sk); 2328 int probe_size; 2329 int size_needed; 2330 int copy, len; 2331 int mss_now; 2332 int interval; 2333 2334 /* Not currently probing/verifying, 2335 * not in recovery, 2336 * have enough cwnd, and 2337 * not SACKing (the variable headers throw things off) 2338 */ 2339 if (likely(!icsk->icsk_mtup.enabled || 2340 icsk->icsk_mtup.probe_size || 2341 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2342 tp->snd_cwnd < 11 || 2343 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2344 return -1; 2345 2346 /* Use binary search for probe_size between tcp_mss_base, 2347 * and current mss_clamp. if (search_high - search_low) 2348 * smaller than a threshold, backoff from probing. 2349 */ 2350 mss_now = tcp_current_mss(sk); 2351 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2352 icsk->icsk_mtup.search_low) >> 1); 2353 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2354 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2355 /* When misfortune happens, we are reprobing actively, 2356 * and then reprobe timer has expired. We stick with current 2357 * probing process by not resetting search range to its orignal. 2358 */ 2359 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2360 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2361 /* Check whether enough time has elaplased for 2362 * another round of probing. 2363 */ 2364 tcp_mtu_check_reprobe(sk); 2365 return -1; 2366 } 2367 2368 /* Have enough data in the send queue to probe? */ 2369 if (tp->write_seq - tp->snd_nxt < size_needed) 2370 return -1; 2371 2372 if (tp->snd_wnd < size_needed) 2373 return -1; 2374 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2375 return 0; 2376 2377 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2378 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2379 if (!tcp_packets_in_flight(tp)) 2380 return -1; 2381 else 2382 return 0; 2383 } 2384 2385 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2386 return -1; 2387 2388 /* We're allowed to probe. Build it now. */ 2389 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2390 if (!nskb) 2391 return -1; 2392 sk_wmem_queued_add(sk, nskb->truesize); 2393 sk_mem_charge(sk, nskb->truesize); 2394 2395 skb = tcp_send_head(sk); 2396 skb_copy_decrypted(nskb, skb); 2397 2398 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2399 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2400 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2401 TCP_SKB_CB(nskb)->sacked = 0; 2402 nskb->csum = 0; 2403 nskb->ip_summed = CHECKSUM_PARTIAL; 2404 2405 tcp_insert_write_queue_before(nskb, skb, sk); 2406 tcp_highest_sack_replace(sk, skb, nskb); 2407 2408 len = 0; 2409 tcp_for_write_queue_from_safe(skb, next, sk) { 2410 copy = min_t(int, skb->len, probe_size - len); 2411 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2412 2413 if (skb->len <= copy) { 2414 /* We've eaten all the data from this skb. 2415 * Throw it away. */ 2416 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2417 /* If this is the last SKB we copy and eor is set 2418 * we need to propagate it to the new skb. 2419 */ 2420 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2421 tcp_skb_collapse_tstamp(nskb, skb); 2422 tcp_unlink_write_queue(skb, sk); 2423 sk_wmem_free_skb(sk, skb); 2424 } else { 2425 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2426 ~(TCPHDR_FIN|TCPHDR_PSH); 2427 if (!skb_shinfo(skb)->nr_frags) { 2428 skb_pull(skb, copy); 2429 } else { 2430 __pskb_trim_head(skb, copy); 2431 tcp_set_skb_tso_segs(skb, mss_now); 2432 } 2433 TCP_SKB_CB(skb)->seq += copy; 2434 } 2435 2436 len += copy; 2437 2438 if (len >= probe_size) 2439 break; 2440 } 2441 tcp_init_tso_segs(nskb, nskb->len); 2442 2443 /* We're ready to send. If this fails, the probe will 2444 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2445 */ 2446 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2447 /* Decrement cwnd here because we are sending 2448 * effectively two packets. */ 2449 tp->snd_cwnd--; 2450 tcp_event_new_data_sent(sk, nskb); 2451 2452 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2453 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2454 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2455 2456 return 1; 2457 } 2458 2459 return -1; 2460 } 2461 2462 static bool tcp_pacing_check(struct sock *sk) 2463 { 2464 struct tcp_sock *tp = tcp_sk(sk); 2465 2466 if (!tcp_needs_internal_pacing(sk)) 2467 return false; 2468 2469 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2470 return false; 2471 2472 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2473 hrtimer_start(&tp->pacing_timer, 2474 ns_to_ktime(tp->tcp_wstamp_ns), 2475 HRTIMER_MODE_ABS_PINNED_SOFT); 2476 sock_hold(sk); 2477 } 2478 return true; 2479 } 2480 2481 /* TCP Small Queues : 2482 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2483 * (These limits are doubled for retransmits) 2484 * This allows for : 2485 * - better RTT estimation and ACK scheduling 2486 * - faster recovery 2487 * - high rates 2488 * Alas, some drivers / subsystems require a fair amount 2489 * of queued bytes to ensure line rate. 2490 * One example is wifi aggregation (802.11 AMPDU) 2491 */ 2492 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2493 unsigned int factor) 2494 { 2495 unsigned long limit; 2496 2497 limit = max_t(unsigned long, 2498 2 * skb->truesize, 2499 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift)); 2500 if (sk->sk_pacing_status == SK_PACING_NONE) 2501 limit = min_t(unsigned long, limit, 2502 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2503 limit <<= factor; 2504 2505 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2506 tcp_sk(sk)->tcp_tx_delay) { 2507 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2508 2509 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2510 * approximate our needs assuming an ~100% skb->truesize overhead. 2511 * USEC_PER_SEC is approximated by 2^20. 2512 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2513 */ 2514 extra_bytes >>= (20 - 1); 2515 limit += extra_bytes; 2516 } 2517 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2518 /* Always send skb if rtx queue is empty. 2519 * No need to wait for TX completion to call us back, 2520 * after softirq/tasklet schedule. 2521 * This helps when TX completions are delayed too much. 2522 */ 2523 if (tcp_rtx_queue_empty(sk)) 2524 return false; 2525 2526 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2527 /* It is possible TX completion already happened 2528 * before we set TSQ_THROTTLED, so we must 2529 * test again the condition. 2530 */ 2531 smp_mb__after_atomic(); 2532 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2533 return true; 2534 } 2535 return false; 2536 } 2537 2538 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2539 { 2540 const u32 now = tcp_jiffies32; 2541 enum tcp_chrono old = tp->chrono_type; 2542 2543 if (old > TCP_CHRONO_UNSPEC) 2544 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2545 tp->chrono_start = now; 2546 tp->chrono_type = new; 2547 } 2548 2549 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2550 { 2551 struct tcp_sock *tp = tcp_sk(sk); 2552 2553 /* If there are multiple conditions worthy of tracking in a 2554 * chronograph then the highest priority enum takes precedence 2555 * over the other conditions. So that if something "more interesting" 2556 * starts happening, stop the previous chrono and start a new one. 2557 */ 2558 if (type > tp->chrono_type) 2559 tcp_chrono_set(tp, type); 2560 } 2561 2562 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2563 { 2564 struct tcp_sock *tp = tcp_sk(sk); 2565 2566 2567 /* There are multiple conditions worthy of tracking in a 2568 * chronograph, so that the highest priority enum takes 2569 * precedence over the other conditions (see tcp_chrono_start). 2570 * If a condition stops, we only stop chrono tracking if 2571 * it's the "most interesting" or current chrono we are 2572 * tracking and starts busy chrono if we have pending data. 2573 */ 2574 if (tcp_rtx_and_write_queues_empty(sk)) 2575 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2576 else if (type == tp->chrono_type) 2577 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2578 } 2579 2580 /* This routine writes packets to the network. It advances the 2581 * send_head. This happens as incoming acks open up the remote 2582 * window for us. 2583 * 2584 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2585 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2586 * account rare use of URG, this is not a big flaw. 2587 * 2588 * Send at most one packet when push_one > 0. Temporarily ignore 2589 * cwnd limit to force at most one packet out when push_one == 2. 2590 2591 * Returns true, if no segments are in flight and we have queued segments, 2592 * but cannot send anything now because of SWS or another problem. 2593 */ 2594 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2595 int push_one, gfp_t gfp) 2596 { 2597 struct tcp_sock *tp = tcp_sk(sk); 2598 struct sk_buff *skb; 2599 unsigned int tso_segs, sent_pkts; 2600 int cwnd_quota; 2601 int result; 2602 bool is_cwnd_limited = false, is_rwnd_limited = false; 2603 u32 max_segs; 2604 2605 sent_pkts = 0; 2606 2607 tcp_mstamp_refresh(tp); 2608 if (!push_one) { 2609 /* Do MTU probing. */ 2610 result = tcp_mtu_probe(sk); 2611 if (!result) { 2612 return false; 2613 } else if (result > 0) { 2614 sent_pkts = 1; 2615 } 2616 } 2617 2618 max_segs = tcp_tso_segs(sk, mss_now); 2619 while ((skb = tcp_send_head(sk))) { 2620 unsigned int limit; 2621 2622 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2623 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2624 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2625 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2626 tcp_init_tso_segs(skb, mss_now); 2627 goto repair; /* Skip network transmission */ 2628 } 2629 2630 if (tcp_pacing_check(sk)) 2631 break; 2632 2633 tso_segs = tcp_init_tso_segs(skb, mss_now); 2634 BUG_ON(!tso_segs); 2635 2636 cwnd_quota = tcp_cwnd_test(tp, skb); 2637 if (!cwnd_quota) { 2638 if (push_one == 2) 2639 /* Force out a loss probe pkt. */ 2640 cwnd_quota = 1; 2641 else 2642 break; 2643 } 2644 2645 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2646 is_rwnd_limited = true; 2647 break; 2648 } 2649 2650 if (tso_segs == 1) { 2651 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2652 (tcp_skb_is_last(sk, skb) ? 2653 nonagle : TCP_NAGLE_PUSH)))) 2654 break; 2655 } else { 2656 if (!push_one && 2657 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2658 &is_rwnd_limited, max_segs)) 2659 break; 2660 } 2661 2662 limit = mss_now; 2663 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2664 limit = tcp_mss_split_point(sk, skb, mss_now, 2665 min_t(unsigned int, 2666 cwnd_quota, 2667 max_segs), 2668 nonagle); 2669 2670 if (skb->len > limit && 2671 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2672 break; 2673 2674 if (tcp_small_queue_check(sk, skb, 0)) 2675 break; 2676 2677 /* Argh, we hit an empty skb(), presumably a thread 2678 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2679 * We do not want to send a pure-ack packet and have 2680 * a strange looking rtx queue with empty packet(s). 2681 */ 2682 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2683 break; 2684 2685 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2686 break; 2687 2688 repair: 2689 /* Advance the send_head. This one is sent out. 2690 * This call will increment packets_out. 2691 */ 2692 tcp_event_new_data_sent(sk, skb); 2693 2694 tcp_minshall_update(tp, mss_now, skb); 2695 sent_pkts += tcp_skb_pcount(skb); 2696 2697 if (push_one) 2698 break; 2699 } 2700 2701 if (is_rwnd_limited) 2702 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2703 else 2704 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2705 2706 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2707 if (likely(sent_pkts || is_cwnd_limited)) 2708 tcp_cwnd_validate(sk, is_cwnd_limited); 2709 2710 if (likely(sent_pkts)) { 2711 if (tcp_in_cwnd_reduction(sk)) 2712 tp->prr_out += sent_pkts; 2713 2714 /* Send one loss probe per tail loss episode. */ 2715 if (push_one != 2) 2716 tcp_schedule_loss_probe(sk, false); 2717 return false; 2718 } 2719 return !tp->packets_out && !tcp_write_queue_empty(sk); 2720 } 2721 2722 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2723 { 2724 struct inet_connection_sock *icsk = inet_csk(sk); 2725 struct tcp_sock *tp = tcp_sk(sk); 2726 u32 timeout, rto_delta_us; 2727 int early_retrans; 2728 2729 /* Don't do any loss probe on a Fast Open connection before 3WHS 2730 * finishes. 2731 */ 2732 if (rcu_access_pointer(tp->fastopen_rsk)) 2733 return false; 2734 2735 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2736 /* Schedule a loss probe in 2*RTT for SACK capable connections 2737 * not in loss recovery, that are either limited by cwnd or application. 2738 */ 2739 if ((early_retrans != 3 && early_retrans != 4) || 2740 !tp->packets_out || !tcp_is_sack(tp) || 2741 (icsk->icsk_ca_state != TCP_CA_Open && 2742 icsk->icsk_ca_state != TCP_CA_CWR)) 2743 return false; 2744 2745 /* Probe timeout is 2*rtt. Add minimum RTO to account 2746 * for delayed ack when there's one outstanding packet. If no RTT 2747 * sample is available then probe after TCP_TIMEOUT_INIT. 2748 */ 2749 if (tp->srtt_us) { 2750 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2751 if (tp->packets_out == 1) 2752 timeout += TCP_RTO_MIN; 2753 else 2754 timeout += TCP_TIMEOUT_MIN; 2755 } else { 2756 timeout = TCP_TIMEOUT_INIT; 2757 } 2758 2759 /* If the RTO formula yields an earlier time, then use that time. */ 2760 rto_delta_us = advancing_rto ? 2761 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2762 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2763 if (rto_delta_us > 0) 2764 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2765 2766 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2767 return true; 2768 } 2769 2770 /* Thanks to skb fast clones, we can detect if a prior transmit of 2771 * a packet is still in a qdisc or driver queue. 2772 * In this case, there is very little point doing a retransmit ! 2773 */ 2774 static bool skb_still_in_host_queue(const struct sock *sk, 2775 const struct sk_buff *skb) 2776 { 2777 if (unlikely(skb_fclone_busy(sk, skb))) { 2778 NET_INC_STATS(sock_net(sk), 2779 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2780 return true; 2781 } 2782 return false; 2783 } 2784 2785 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2786 * retransmit the last segment. 2787 */ 2788 void tcp_send_loss_probe(struct sock *sk) 2789 { 2790 struct tcp_sock *tp = tcp_sk(sk); 2791 struct sk_buff *skb; 2792 int pcount; 2793 int mss = tcp_current_mss(sk); 2794 2795 /* At most one outstanding TLP */ 2796 if (tp->tlp_high_seq) 2797 goto rearm_timer; 2798 2799 tp->tlp_retrans = 0; 2800 skb = tcp_send_head(sk); 2801 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2802 pcount = tp->packets_out; 2803 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2804 if (tp->packets_out > pcount) 2805 goto probe_sent; 2806 goto rearm_timer; 2807 } 2808 skb = skb_rb_last(&sk->tcp_rtx_queue); 2809 if (unlikely(!skb)) { 2810 WARN_ONCE(tp->packets_out, 2811 "invalid inflight: %u state %u cwnd %u mss %d\n", 2812 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); 2813 inet_csk(sk)->icsk_pending = 0; 2814 return; 2815 } 2816 2817 if (skb_still_in_host_queue(sk, skb)) 2818 goto rearm_timer; 2819 2820 pcount = tcp_skb_pcount(skb); 2821 if (WARN_ON(!pcount)) 2822 goto rearm_timer; 2823 2824 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2825 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2826 (pcount - 1) * mss, mss, 2827 GFP_ATOMIC))) 2828 goto rearm_timer; 2829 skb = skb_rb_next(skb); 2830 } 2831 2832 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2833 goto rearm_timer; 2834 2835 if (__tcp_retransmit_skb(sk, skb, 1)) 2836 goto rearm_timer; 2837 2838 tp->tlp_retrans = 1; 2839 2840 probe_sent: 2841 /* Record snd_nxt for loss detection. */ 2842 tp->tlp_high_seq = tp->snd_nxt; 2843 2844 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2845 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2846 inet_csk(sk)->icsk_pending = 0; 2847 rearm_timer: 2848 tcp_rearm_rto(sk); 2849 } 2850 2851 /* Push out any pending frames which were held back due to 2852 * TCP_CORK or attempt at coalescing tiny packets. 2853 * The socket must be locked by the caller. 2854 */ 2855 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2856 int nonagle) 2857 { 2858 /* If we are closed, the bytes will have to remain here. 2859 * In time closedown will finish, we empty the write queue and 2860 * all will be happy. 2861 */ 2862 if (unlikely(sk->sk_state == TCP_CLOSE)) 2863 return; 2864 2865 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2866 sk_gfp_mask(sk, GFP_ATOMIC))) 2867 tcp_check_probe_timer(sk); 2868 } 2869 2870 /* Send _single_ skb sitting at the send head. This function requires 2871 * true push pending frames to setup probe timer etc. 2872 */ 2873 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2874 { 2875 struct sk_buff *skb = tcp_send_head(sk); 2876 2877 BUG_ON(!skb || skb->len < mss_now); 2878 2879 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2880 } 2881 2882 /* This function returns the amount that we can raise the 2883 * usable window based on the following constraints 2884 * 2885 * 1. The window can never be shrunk once it is offered (RFC 793) 2886 * 2. We limit memory per socket 2887 * 2888 * RFC 1122: 2889 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2890 * RECV.NEXT + RCV.WIN fixed until: 2891 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2892 * 2893 * i.e. don't raise the right edge of the window until you can raise 2894 * it at least MSS bytes. 2895 * 2896 * Unfortunately, the recommended algorithm breaks header prediction, 2897 * since header prediction assumes th->window stays fixed. 2898 * 2899 * Strictly speaking, keeping th->window fixed violates the receiver 2900 * side SWS prevention criteria. The problem is that under this rule 2901 * a stream of single byte packets will cause the right side of the 2902 * window to always advance by a single byte. 2903 * 2904 * Of course, if the sender implements sender side SWS prevention 2905 * then this will not be a problem. 2906 * 2907 * BSD seems to make the following compromise: 2908 * 2909 * If the free space is less than the 1/4 of the maximum 2910 * space available and the free space is less than 1/2 mss, 2911 * then set the window to 0. 2912 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2913 * Otherwise, just prevent the window from shrinking 2914 * and from being larger than the largest representable value. 2915 * 2916 * This prevents incremental opening of the window in the regime 2917 * where TCP is limited by the speed of the reader side taking 2918 * data out of the TCP receive queue. It does nothing about 2919 * those cases where the window is constrained on the sender side 2920 * because the pipeline is full. 2921 * 2922 * BSD also seems to "accidentally" limit itself to windows that are a 2923 * multiple of MSS, at least until the free space gets quite small. 2924 * This would appear to be a side effect of the mbuf implementation. 2925 * Combining these two algorithms results in the observed behavior 2926 * of having a fixed window size at almost all times. 2927 * 2928 * Below we obtain similar behavior by forcing the offered window to 2929 * a multiple of the mss when it is feasible to do so. 2930 * 2931 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2932 * Regular options like TIMESTAMP are taken into account. 2933 */ 2934 u32 __tcp_select_window(struct sock *sk) 2935 { 2936 struct inet_connection_sock *icsk = inet_csk(sk); 2937 struct tcp_sock *tp = tcp_sk(sk); 2938 /* MSS for the peer's data. Previous versions used mss_clamp 2939 * here. I don't know if the value based on our guesses 2940 * of peer's MSS is better for the performance. It's more correct 2941 * but may be worse for the performance because of rcv_mss 2942 * fluctuations. --SAW 1998/11/1 2943 */ 2944 int mss = icsk->icsk_ack.rcv_mss; 2945 int free_space = tcp_space(sk); 2946 int allowed_space = tcp_full_space(sk); 2947 int full_space, window; 2948 2949 if (sk_is_mptcp(sk)) 2950 mptcp_space(sk, &free_space, &allowed_space); 2951 2952 full_space = min_t(int, tp->window_clamp, allowed_space); 2953 2954 if (unlikely(mss > full_space)) { 2955 mss = full_space; 2956 if (mss <= 0) 2957 return 0; 2958 } 2959 if (free_space < (full_space >> 1)) { 2960 icsk->icsk_ack.quick = 0; 2961 2962 if (tcp_under_memory_pressure(sk)) 2963 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2964 4U * tp->advmss); 2965 2966 /* free_space might become our new window, make sure we don't 2967 * increase it due to wscale. 2968 */ 2969 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2970 2971 /* if free space is less than mss estimate, or is below 1/16th 2972 * of the maximum allowed, try to move to zero-window, else 2973 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2974 * new incoming data is dropped due to memory limits. 2975 * With large window, mss test triggers way too late in order 2976 * to announce zero window in time before rmem limit kicks in. 2977 */ 2978 if (free_space < (allowed_space >> 4) || free_space < mss) 2979 return 0; 2980 } 2981 2982 if (free_space > tp->rcv_ssthresh) 2983 free_space = tp->rcv_ssthresh; 2984 2985 /* Don't do rounding if we are using window scaling, since the 2986 * scaled window will not line up with the MSS boundary anyway. 2987 */ 2988 if (tp->rx_opt.rcv_wscale) { 2989 window = free_space; 2990 2991 /* Advertise enough space so that it won't get scaled away. 2992 * Import case: prevent zero window announcement if 2993 * 1<<rcv_wscale > mss. 2994 */ 2995 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2996 } else { 2997 window = tp->rcv_wnd; 2998 /* Get the largest window that is a nice multiple of mss. 2999 * Window clamp already applied above. 3000 * If our current window offering is within 1 mss of the 3001 * free space we just keep it. This prevents the divide 3002 * and multiply from happening most of the time. 3003 * We also don't do any window rounding when the free space 3004 * is too small. 3005 */ 3006 if (window <= free_space - mss || window > free_space) 3007 window = rounddown(free_space, mss); 3008 else if (mss == full_space && 3009 free_space > window + (full_space >> 1)) 3010 window = free_space; 3011 } 3012 3013 return window; 3014 } 3015 3016 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3017 const struct sk_buff *next_skb) 3018 { 3019 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3020 const struct skb_shared_info *next_shinfo = 3021 skb_shinfo(next_skb); 3022 struct skb_shared_info *shinfo = skb_shinfo(skb); 3023 3024 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3025 shinfo->tskey = next_shinfo->tskey; 3026 TCP_SKB_CB(skb)->txstamp_ack |= 3027 TCP_SKB_CB(next_skb)->txstamp_ack; 3028 } 3029 } 3030 3031 /* Collapses two adjacent SKB's during retransmission. */ 3032 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3033 { 3034 struct tcp_sock *tp = tcp_sk(sk); 3035 struct sk_buff *next_skb = skb_rb_next(skb); 3036 int next_skb_size; 3037 3038 next_skb_size = next_skb->len; 3039 3040 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3041 3042 if (next_skb_size) { 3043 if (next_skb_size <= skb_availroom(skb)) 3044 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 3045 next_skb_size); 3046 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3047 return false; 3048 } 3049 tcp_highest_sack_replace(sk, next_skb, skb); 3050 3051 /* Update sequence range on original skb. */ 3052 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3053 3054 /* Merge over control information. This moves PSH/FIN etc. over */ 3055 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3056 3057 /* All done, get rid of second SKB and account for it so 3058 * packet counting does not break. 3059 */ 3060 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3061 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3062 3063 /* changed transmit queue under us so clear hints */ 3064 tcp_clear_retrans_hints_partial(tp); 3065 if (next_skb == tp->retransmit_skb_hint) 3066 tp->retransmit_skb_hint = skb; 3067 3068 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3069 3070 tcp_skb_collapse_tstamp(skb, next_skb); 3071 3072 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3073 return true; 3074 } 3075 3076 /* Check if coalescing SKBs is legal. */ 3077 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3078 { 3079 if (tcp_skb_pcount(skb) > 1) 3080 return false; 3081 if (skb_cloned(skb)) 3082 return false; 3083 /* Some heuristics for collapsing over SACK'd could be invented */ 3084 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3085 return false; 3086 3087 return true; 3088 } 3089 3090 /* Collapse packets in the retransmit queue to make to create 3091 * less packets on the wire. This is only done on retransmission. 3092 */ 3093 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3094 int space) 3095 { 3096 struct tcp_sock *tp = tcp_sk(sk); 3097 struct sk_buff *skb = to, *tmp; 3098 bool first = true; 3099 3100 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 3101 return; 3102 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3103 return; 3104 3105 skb_rbtree_walk_from_safe(skb, tmp) { 3106 if (!tcp_can_collapse(sk, skb)) 3107 break; 3108 3109 if (!tcp_skb_can_collapse(to, skb)) 3110 break; 3111 3112 space -= skb->len; 3113 3114 if (first) { 3115 first = false; 3116 continue; 3117 } 3118 3119 if (space < 0) 3120 break; 3121 3122 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3123 break; 3124 3125 if (!tcp_collapse_retrans(sk, to)) 3126 break; 3127 } 3128 } 3129 3130 /* This retransmits one SKB. Policy decisions and retransmit queue 3131 * state updates are done by the caller. Returns non-zero if an 3132 * error occurred which prevented the send. 3133 */ 3134 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3135 { 3136 struct inet_connection_sock *icsk = inet_csk(sk); 3137 struct tcp_sock *tp = tcp_sk(sk); 3138 unsigned int cur_mss; 3139 int diff, len, err; 3140 3141 3142 /* Inconclusive MTU probe */ 3143 if (icsk->icsk_mtup.probe_size) 3144 icsk->icsk_mtup.probe_size = 0; 3145 3146 /* Do not sent more than we queued. 1/4 is reserved for possible 3147 * copying overhead: fragmentation, tunneling, mangling etc. 3148 */ 3149 if (refcount_read(&sk->sk_wmem_alloc) > 3150 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 3151 sk->sk_sndbuf)) 3152 return -EAGAIN; 3153 3154 if (skb_still_in_host_queue(sk, skb)) 3155 return -EBUSY; 3156 3157 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3158 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3159 WARN_ON_ONCE(1); 3160 return -EINVAL; 3161 } 3162 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3163 return -ENOMEM; 3164 } 3165 3166 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3167 return -EHOSTUNREACH; /* Routing failure or similar. */ 3168 3169 cur_mss = tcp_current_mss(sk); 3170 3171 /* If receiver has shrunk his window, and skb is out of 3172 * new window, do not retransmit it. The exception is the 3173 * case, when window is shrunk to zero. In this case 3174 * our retransmit serves as a zero window probe. 3175 */ 3176 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 3177 TCP_SKB_CB(skb)->seq != tp->snd_una) 3178 return -EAGAIN; 3179 3180 len = cur_mss * segs; 3181 if (skb->len > len) { 3182 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3183 cur_mss, GFP_ATOMIC)) 3184 return -ENOMEM; /* We'll try again later. */ 3185 } else { 3186 if (skb_unclone(skb, GFP_ATOMIC)) 3187 return -ENOMEM; 3188 3189 diff = tcp_skb_pcount(skb); 3190 tcp_set_skb_tso_segs(skb, cur_mss); 3191 diff -= tcp_skb_pcount(skb); 3192 if (diff) 3193 tcp_adjust_pcount(sk, skb, diff); 3194 if (skb->len < cur_mss) 3195 tcp_retrans_try_collapse(sk, skb, cur_mss); 3196 } 3197 3198 /* RFC3168, section 6.1.1.1. ECN fallback */ 3199 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3200 tcp_ecn_clear_syn(sk, skb); 3201 3202 /* Update global and local TCP statistics. */ 3203 segs = tcp_skb_pcount(skb); 3204 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3205 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3206 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3207 tp->total_retrans += segs; 3208 tp->bytes_retrans += skb->len; 3209 3210 /* make sure skb->data is aligned on arches that require it 3211 * and check if ack-trimming & collapsing extended the headroom 3212 * beyond what csum_start can cover. 3213 */ 3214 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3215 skb_headroom(skb) >= 0xFFFF)) { 3216 struct sk_buff *nskb; 3217 3218 tcp_skb_tsorted_save(skb) { 3219 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3220 if (nskb) { 3221 nskb->dev = NULL; 3222 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3223 } else { 3224 err = -ENOBUFS; 3225 } 3226 } tcp_skb_tsorted_restore(skb); 3227 3228 if (!err) { 3229 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3230 tcp_rate_skb_sent(sk, skb); 3231 } 3232 } else { 3233 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3234 } 3235 3236 /* To avoid taking spuriously low RTT samples based on a timestamp 3237 * for a transmit that never happened, always mark EVER_RETRANS 3238 */ 3239 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3240 3241 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3242 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3243 TCP_SKB_CB(skb)->seq, segs, err); 3244 3245 if (likely(!err)) { 3246 trace_tcp_retransmit_skb(sk, skb); 3247 } else if (err != -EBUSY) { 3248 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3249 } 3250 return err; 3251 } 3252 3253 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3254 { 3255 struct tcp_sock *tp = tcp_sk(sk); 3256 int err = __tcp_retransmit_skb(sk, skb, segs); 3257 3258 if (err == 0) { 3259 #if FASTRETRANS_DEBUG > 0 3260 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3261 net_dbg_ratelimited("retrans_out leaked\n"); 3262 } 3263 #endif 3264 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3265 tp->retrans_out += tcp_skb_pcount(skb); 3266 } 3267 3268 /* Save stamp of the first (attempted) retransmit. */ 3269 if (!tp->retrans_stamp) 3270 tp->retrans_stamp = tcp_skb_timestamp(skb); 3271 3272 if (tp->undo_retrans < 0) 3273 tp->undo_retrans = 0; 3274 tp->undo_retrans += tcp_skb_pcount(skb); 3275 return err; 3276 } 3277 3278 /* This gets called after a retransmit timeout, and the initially 3279 * retransmitted data is acknowledged. It tries to continue 3280 * resending the rest of the retransmit queue, until either 3281 * we've sent it all or the congestion window limit is reached. 3282 */ 3283 void tcp_xmit_retransmit_queue(struct sock *sk) 3284 { 3285 const struct inet_connection_sock *icsk = inet_csk(sk); 3286 struct sk_buff *skb, *rtx_head, *hole = NULL; 3287 struct tcp_sock *tp = tcp_sk(sk); 3288 bool rearm_timer = false; 3289 u32 max_segs; 3290 int mib_idx; 3291 3292 if (!tp->packets_out) 3293 return; 3294 3295 rtx_head = tcp_rtx_queue_head(sk); 3296 skb = tp->retransmit_skb_hint ?: rtx_head; 3297 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3298 skb_rbtree_walk_from(skb) { 3299 __u8 sacked; 3300 int segs; 3301 3302 if (tcp_pacing_check(sk)) 3303 break; 3304 3305 /* we could do better than to assign each time */ 3306 if (!hole) 3307 tp->retransmit_skb_hint = skb; 3308 3309 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 3310 if (segs <= 0) 3311 break; 3312 sacked = TCP_SKB_CB(skb)->sacked; 3313 /* In case tcp_shift_skb_data() have aggregated large skbs, 3314 * we need to make sure not sending too bigs TSO packets 3315 */ 3316 segs = min_t(int, segs, max_segs); 3317 3318 if (tp->retrans_out >= tp->lost_out) { 3319 break; 3320 } else if (!(sacked & TCPCB_LOST)) { 3321 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3322 hole = skb; 3323 continue; 3324 3325 } else { 3326 if (icsk->icsk_ca_state != TCP_CA_Loss) 3327 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3328 else 3329 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3330 } 3331 3332 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3333 continue; 3334 3335 if (tcp_small_queue_check(sk, skb, 1)) 3336 break; 3337 3338 if (tcp_retransmit_skb(sk, skb, segs)) 3339 break; 3340 3341 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3342 3343 if (tcp_in_cwnd_reduction(sk)) 3344 tp->prr_out += tcp_skb_pcount(skb); 3345 3346 if (skb == rtx_head && 3347 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3348 rearm_timer = true; 3349 3350 } 3351 if (rearm_timer) 3352 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3353 inet_csk(sk)->icsk_rto, 3354 TCP_RTO_MAX); 3355 } 3356 3357 /* We allow to exceed memory limits for FIN packets to expedite 3358 * connection tear down and (memory) recovery. 3359 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3360 * or even be forced to close flow without any FIN. 3361 * In general, we want to allow one skb per socket to avoid hangs 3362 * with edge trigger epoll() 3363 */ 3364 void sk_forced_mem_schedule(struct sock *sk, int size) 3365 { 3366 int amt; 3367 3368 if (size <= sk->sk_forward_alloc) 3369 return; 3370 amt = sk_mem_pages(size); 3371 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3372 sk_memory_allocated_add(sk, amt); 3373 3374 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3375 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3376 } 3377 3378 /* Send a FIN. The caller locks the socket for us. 3379 * We should try to send a FIN packet really hard, but eventually give up. 3380 */ 3381 void tcp_send_fin(struct sock *sk) 3382 { 3383 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3384 struct tcp_sock *tp = tcp_sk(sk); 3385 3386 /* Optimization, tack on the FIN if we have one skb in write queue and 3387 * this skb was not yet sent, or we are under memory pressure. 3388 * Note: in the latter case, FIN packet will be sent after a timeout, 3389 * as TCP stack thinks it has already been transmitted. 3390 */ 3391 tskb = tail; 3392 if (!tskb && tcp_under_memory_pressure(sk)) 3393 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3394 3395 if (tskb) { 3396 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3397 TCP_SKB_CB(tskb)->end_seq++; 3398 tp->write_seq++; 3399 if (!tail) { 3400 /* This means tskb was already sent. 3401 * Pretend we included the FIN on previous transmit. 3402 * We need to set tp->snd_nxt to the value it would have 3403 * if FIN had been sent. This is because retransmit path 3404 * does not change tp->snd_nxt. 3405 */ 3406 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3407 return; 3408 } 3409 } else { 3410 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3411 if (unlikely(!skb)) 3412 return; 3413 3414 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3415 skb_reserve(skb, MAX_TCP_HEADER); 3416 sk_forced_mem_schedule(sk, skb->truesize); 3417 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3418 tcp_init_nondata_skb(skb, tp->write_seq, 3419 TCPHDR_ACK | TCPHDR_FIN); 3420 tcp_queue_skb(sk, skb); 3421 } 3422 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3423 } 3424 3425 /* We get here when a process closes a file descriptor (either due to 3426 * an explicit close() or as a byproduct of exit()'ing) and there 3427 * was unread data in the receive queue. This behavior is recommended 3428 * by RFC 2525, section 2.17. -DaveM 3429 */ 3430 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3431 { 3432 struct sk_buff *skb; 3433 3434 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3435 3436 /* NOTE: No TCP options attached and we never retransmit this. */ 3437 skb = alloc_skb(MAX_TCP_HEADER, priority); 3438 if (!skb) { 3439 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3440 return; 3441 } 3442 3443 /* Reserve space for headers and prepare control bits. */ 3444 skb_reserve(skb, MAX_TCP_HEADER); 3445 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3446 TCPHDR_ACK | TCPHDR_RST); 3447 tcp_mstamp_refresh(tcp_sk(sk)); 3448 /* Send it off. */ 3449 if (tcp_transmit_skb(sk, skb, 0, priority)) 3450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3451 3452 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3453 * skb here is different to the troublesome skb, so use NULL 3454 */ 3455 trace_tcp_send_reset(sk, NULL); 3456 } 3457 3458 /* Send a crossed SYN-ACK during socket establishment. 3459 * WARNING: This routine must only be called when we have already sent 3460 * a SYN packet that crossed the incoming SYN that caused this routine 3461 * to get called. If this assumption fails then the initial rcv_wnd 3462 * and rcv_wscale values will not be correct. 3463 */ 3464 int tcp_send_synack(struct sock *sk) 3465 { 3466 struct sk_buff *skb; 3467 3468 skb = tcp_rtx_queue_head(sk); 3469 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3470 pr_err("%s: wrong queue state\n", __func__); 3471 return -EFAULT; 3472 } 3473 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3474 if (skb_cloned(skb)) { 3475 struct sk_buff *nskb; 3476 3477 tcp_skb_tsorted_save(skb) { 3478 nskb = skb_copy(skb, GFP_ATOMIC); 3479 } tcp_skb_tsorted_restore(skb); 3480 if (!nskb) 3481 return -ENOMEM; 3482 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3483 tcp_highest_sack_replace(sk, skb, nskb); 3484 tcp_rtx_queue_unlink_and_free(skb, sk); 3485 __skb_header_release(nskb); 3486 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3487 sk_wmem_queued_add(sk, nskb->truesize); 3488 sk_mem_charge(sk, nskb->truesize); 3489 skb = nskb; 3490 } 3491 3492 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3493 tcp_ecn_send_synack(sk, skb); 3494 } 3495 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3496 } 3497 3498 /** 3499 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3500 * @sk: listener socket 3501 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3502 * should not use it again. 3503 * @req: request_sock pointer 3504 * @foc: cookie for tcp fast open 3505 * @synack_type: Type of synack to prepare 3506 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3507 */ 3508 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3509 struct request_sock *req, 3510 struct tcp_fastopen_cookie *foc, 3511 enum tcp_synack_type synack_type, 3512 struct sk_buff *syn_skb) 3513 { 3514 struct inet_request_sock *ireq = inet_rsk(req); 3515 const struct tcp_sock *tp = tcp_sk(sk); 3516 struct tcp_md5sig_key *md5 = NULL; 3517 struct tcp_out_options opts; 3518 struct sk_buff *skb; 3519 int tcp_header_size; 3520 struct tcphdr *th; 3521 int mss; 3522 u64 now; 3523 3524 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3525 if (unlikely(!skb)) { 3526 dst_release(dst); 3527 return NULL; 3528 } 3529 /* Reserve space for headers. */ 3530 skb_reserve(skb, MAX_TCP_HEADER); 3531 3532 switch (synack_type) { 3533 case TCP_SYNACK_NORMAL: 3534 skb_set_owner_w(skb, req_to_sk(req)); 3535 break; 3536 case TCP_SYNACK_COOKIE: 3537 /* Under synflood, we do not attach skb to a socket, 3538 * to avoid false sharing. 3539 */ 3540 break; 3541 case TCP_SYNACK_FASTOPEN: 3542 /* sk is a const pointer, because we want to express multiple 3543 * cpu might call us concurrently. 3544 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3545 */ 3546 skb_set_owner_w(skb, (struct sock *)sk); 3547 break; 3548 } 3549 skb_dst_set(skb, dst); 3550 3551 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3552 3553 memset(&opts, 0, sizeof(opts)); 3554 now = tcp_clock_ns(); 3555 #ifdef CONFIG_SYN_COOKIES 3556 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3557 skb->skb_mstamp_ns = cookie_init_timestamp(req, now); 3558 else 3559 #endif 3560 { 3561 skb->skb_mstamp_ns = now; 3562 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3563 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3564 } 3565 3566 #ifdef CONFIG_TCP_MD5SIG 3567 rcu_read_lock(); 3568 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3569 #endif 3570 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3571 /* bpf program will be interested in the tcp_flags */ 3572 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3573 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3574 foc, synack_type, 3575 syn_skb) + sizeof(*th); 3576 3577 skb_push(skb, tcp_header_size); 3578 skb_reset_transport_header(skb); 3579 3580 th = (struct tcphdr *)skb->data; 3581 memset(th, 0, sizeof(struct tcphdr)); 3582 th->syn = 1; 3583 th->ack = 1; 3584 tcp_ecn_make_synack(req, th); 3585 th->source = htons(ireq->ir_num); 3586 th->dest = ireq->ir_rmt_port; 3587 skb->mark = ireq->ir_mark; 3588 skb->ip_summed = CHECKSUM_PARTIAL; 3589 th->seq = htonl(tcp_rsk(req)->snt_isn); 3590 /* XXX data is queued and acked as is. No buffer/window check */ 3591 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3592 3593 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3594 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3595 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3596 th->doff = (tcp_header_size >> 2); 3597 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3598 3599 #ifdef CONFIG_TCP_MD5SIG 3600 /* Okay, we have all we need - do the md5 hash if needed */ 3601 if (md5) 3602 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3603 md5, req_to_sk(req), skb); 3604 rcu_read_unlock(); 3605 #endif 3606 3607 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3608 synack_type, &opts); 3609 3610 skb->skb_mstamp_ns = now; 3611 tcp_add_tx_delay(skb, tp); 3612 3613 return skb; 3614 } 3615 EXPORT_SYMBOL(tcp_make_synack); 3616 3617 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3618 { 3619 struct inet_connection_sock *icsk = inet_csk(sk); 3620 const struct tcp_congestion_ops *ca; 3621 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3622 3623 if (ca_key == TCP_CA_UNSPEC) 3624 return; 3625 3626 rcu_read_lock(); 3627 ca = tcp_ca_find_key(ca_key); 3628 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3629 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3630 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3631 icsk->icsk_ca_ops = ca; 3632 } 3633 rcu_read_unlock(); 3634 } 3635 3636 /* Do all connect socket setups that can be done AF independent. */ 3637 static void tcp_connect_init(struct sock *sk) 3638 { 3639 const struct dst_entry *dst = __sk_dst_get(sk); 3640 struct tcp_sock *tp = tcp_sk(sk); 3641 __u8 rcv_wscale; 3642 u32 rcv_wnd; 3643 3644 /* We'll fix this up when we get a response from the other end. 3645 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3646 */ 3647 tp->tcp_header_len = sizeof(struct tcphdr); 3648 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3649 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3650 3651 #ifdef CONFIG_TCP_MD5SIG 3652 if (tp->af_specific->md5_lookup(sk, sk)) 3653 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3654 #endif 3655 3656 /* If user gave his TCP_MAXSEG, record it to clamp */ 3657 if (tp->rx_opt.user_mss) 3658 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3659 tp->max_window = 0; 3660 tcp_mtup_init(sk); 3661 tcp_sync_mss(sk, dst_mtu(dst)); 3662 3663 tcp_ca_dst_init(sk, dst); 3664 3665 if (!tp->window_clamp) 3666 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3667 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3668 3669 tcp_initialize_rcv_mss(sk); 3670 3671 /* limit the window selection if the user enforce a smaller rx buffer */ 3672 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3673 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3674 tp->window_clamp = tcp_full_space(sk); 3675 3676 rcv_wnd = tcp_rwnd_init_bpf(sk); 3677 if (rcv_wnd == 0) 3678 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3679 3680 tcp_select_initial_window(sk, tcp_full_space(sk), 3681 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3682 &tp->rcv_wnd, 3683 &tp->window_clamp, 3684 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3685 &rcv_wscale, 3686 rcv_wnd); 3687 3688 tp->rx_opt.rcv_wscale = rcv_wscale; 3689 tp->rcv_ssthresh = tp->rcv_wnd; 3690 3691 sk->sk_err = 0; 3692 sock_reset_flag(sk, SOCK_DONE); 3693 tp->snd_wnd = 0; 3694 tcp_init_wl(tp, 0); 3695 tcp_write_queue_purge(sk); 3696 tp->snd_una = tp->write_seq; 3697 tp->snd_sml = tp->write_seq; 3698 tp->snd_up = tp->write_seq; 3699 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3700 3701 if (likely(!tp->repair)) 3702 tp->rcv_nxt = 0; 3703 else 3704 tp->rcv_tstamp = tcp_jiffies32; 3705 tp->rcv_wup = tp->rcv_nxt; 3706 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3707 3708 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3709 inet_csk(sk)->icsk_retransmits = 0; 3710 tcp_clear_retrans(tp); 3711 } 3712 3713 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3714 { 3715 struct tcp_sock *tp = tcp_sk(sk); 3716 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3717 3718 tcb->end_seq += skb->len; 3719 __skb_header_release(skb); 3720 sk_wmem_queued_add(sk, skb->truesize); 3721 sk_mem_charge(sk, skb->truesize); 3722 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3723 tp->packets_out += tcp_skb_pcount(skb); 3724 } 3725 3726 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3727 * queue a data-only packet after the regular SYN, such that regular SYNs 3728 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3729 * only the SYN sequence, the data are retransmitted in the first ACK. 3730 * If cookie is not cached or other error occurs, falls back to send a 3731 * regular SYN with Fast Open cookie request option. 3732 */ 3733 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3734 { 3735 struct tcp_sock *tp = tcp_sk(sk); 3736 struct tcp_fastopen_request *fo = tp->fastopen_req; 3737 int space, err = 0; 3738 struct sk_buff *syn_data; 3739 3740 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3741 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3742 goto fallback; 3743 3744 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3745 * user-MSS. Reserve maximum option space for middleboxes that add 3746 * private TCP options. The cost is reduced data space in SYN :( 3747 */ 3748 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3749 3750 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3751 MAX_TCP_OPTION_SPACE; 3752 3753 space = min_t(size_t, space, fo->size); 3754 3755 /* limit to order-0 allocations */ 3756 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3757 3758 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3759 if (!syn_data) 3760 goto fallback; 3761 syn_data->ip_summed = CHECKSUM_PARTIAL; 3762 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3763 if (space) { 3764 int copied = copy_from_iter(skb_put(syn_data, space), space, 3765 &fo->data->msg_iter); 3766 if (unlikely(!copied)) { 3767 tcp_skb_tsorted_anchor_cleanup(syn_data); 3768 kfree_skb(syn_data); 3769 goto fallback; 3770 } 3771 if (copied != space) { 3772 skb_trim(syn_data, copied); 3773 space = copied; 3774 } 3775 skb_zcopy_set(syn_data, fo->uarg, NULL); 3776 } 3777 /* No more data pending in inet_wait_for_connect() */ 3778 if (space == fo->size) 3779 fo->data = NULL; 3780 fo->copied = space; 3781 3782 tcp_connect_queue_skb(sk, syn_data); 3783 if (syn_data->len) 3784 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3785 3786 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3787 3788 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3789 3790 /* Now full SYN+DATA was cloned and sent (or not), 3791 * remove the SYN from the original skb (syn_data) 3792 * we keep in write queue in case of a retransmit, as we 3793 * also have the SYN packet (with no data) in the same queue. 3794 */ 3795 TCP_SKB_CB(syn_data)->seq++; 3796 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3797 if (!err) { 3798 tp->syn_data = (fo->copied > 0); 3799 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3800 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3801 goto done; 3802 } 3803 3804 /* data was not sent, put it in write_queue */ 3805 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3806 tp->packets_out -= tcp_skb_pcount(syn_data); 3807 3808 fallback: 3809 /* Send a regular SYN with Fast Open cookie request option */ 3810 if (fo->cookie.len > 0) 3811 fo->cookie.len = 0; 3812 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3813 if (err) 3814 tp->syn_fastopen = 0; 3815 done: 3816 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3817 return err; 3818 } 3819 3820 /* Build a SYN and send it off. */ 3821 int tcp_connect(struct sock *sk) 3822 { 3823 struct tcp_sock *tp = tcp_sk(sk); 3824 struct sk_buff *buff; 3825 int err; 3826 3827 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3828 3829 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3830 return -EHOSTUNREACH; /* Routing failure or similar. */ 3831 3832 tcp_connect_init(sk); 3833 3834 if (unlikely(tp->repair)) { 3835 tcp_finish_connect(sk, NULL); 3836 return 0; 3837 } 3838 3839 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3840 if (unlikely(!buff)) 3841 return -ENOBUFS; 3842 3843 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3844 tcp_mstamp_refresh(tp); 3845 tp->retrans_stamp = tcp_time_stamp(tp); 3846 tcp_connect_queue_skb(sk, buff); 3847 tcp_ecn_send_syn(sk, buff); 3848 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3849 3850 /* Send off SYN; include data in Fast Open. */ 3851 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3852 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3853 if (err == -ECONNREFUSED) 3854 return err; 3855 3856 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3857 * in order to make this packet get counted in tcpOutSegs. 3858 */ 3859 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3860 tp->pushed_seq = tp->write_seq; 3861 buff = tcp_send_head(sk); 3862 if (unlikely(buff)) { 3863 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3864 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3865 } 3866 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3867 3868 /* Timer for repeating the SYN until an answer. */ 3869 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3870 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3871 return 0; 3872 } 3873 EXPORT_SYMBOL(tcp_connect); 3874 3875 /* Send out a delayed ack, the caller does the policy checking 3876 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3877 * for details. 3878 */ 3879 void tcp_send_delayed_ack(struct sock *sk) 3880 { 3881 struct inet_connection_sock *icsk = inet_csk(sk); 3882 int ato = icsk->icsk_ack.ato; 3883 unsigned long timeout; 3884 3885 if (ato > TCP_DELACK_MIN) { 3886 const struct tcp_sock *tp = tcp_sk(sk); 3887 int max_ato = HZ / 2; 3888 3889 if (inet_csk_in_pingpong_mode(sk) || 3890 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3891 max_ato = TCP_DELACK_MAX; 3892 3893 /* Slow path, intersegment interval is "high". */ 3894 3895 /* If some rtt estimate is known, use it to bound delayed ack. 3896 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3897 * directly. 3898 */ 3899 if (tp->srtt_us) { 3900 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3901 TCP_DELACK_MIN); 3902 3903 if (rtt < max_ato) 3904 max_ato = rtt; 3905 } 3906 3907 ato = min(ato, max_ato); 3908 } 3909 3910 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max); 3911 3912 /* Stay within the limit we were given */ 3913 timeout = jiffies + ato; 3914 3915 /* Use new timeout only if there wasn't a older one earlier. */ 3916 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3917 /* If delack timer is about to expire, send ACK now. */ 3918 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3919 tcp_send_ack(sk); 3920 return; 3921 } 3922 3923 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3924 timeout = icsk->icsk_ack.timeout; 3925 } 3926 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3927 icsk->icsk_ack.timeout = timeout; 3928 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3929 } 3930 3931 /* This routine sends an ack and also updates the window. */ 3932 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3933 { 3934 struct sk_buff *buff; 3935 3936 /* If we have been reset, we may not send again. */ 3937 if (sk->sk_state == TCP_CLOSE) 3938 return; 3939 3940 /* We are not putting this on the write queue, so 3941 * tcp_transmit_skb() will set the ownership to this 3942 * sock. 3943 */ 3944 buff = alloc_skb(MAX_TCP_HEADER, 3945 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3946 if (unlikely(!buff)) { 3947 struct inet_connection_sock *icsk = inet_csk(sk); 3948 unsigned long delay; 3949 3950 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 3951 if (delay < TCP_RTO_MAX) 3952 icsk->icsk_ack.retry++; 3953 inet_csk_schedule_ack(sk); 3954 icsk->icsk_ack.ato = TCP_ATO_MIN; 3955 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 3956 return; 3957 } 3958 3959 /* Reserve space for headers and prepare control bits. */ 3960 skb_reserve(buff, MAX_TCP_HEADER); 3961 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3962 3963 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3964 * too much. 3965 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3966 */ 3967 skb_set_tcp_pure_ack(buff); 3968 3969 /* Send it off, this clears delayed acks for us. */ 3970 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3971 } 3972 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3973 3974 void tcp_send_ack(struct sock *sk) 3975 { 3976 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3977 } 3978 3979 /* This routine sends a packet with an out of date sequence 3980 * number. It assumes the other end will try to ack it. 3981 * 3982 * Question: what should we make while urgent mode? 3983 * 4.4BSD forces sending single byte of data. We cannot send 3984 * out of window data, because we have SND.NXT==SND.MAX... 3985 * 3986 * Current solution: to send TWO zero-length segments in urgent mode: 3987 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3988 * out-of-date with SND.UNA-1 to probe window. 3989 */ 3990 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3991 { 3992 struct tcp_sock *tp = tcp_sk(sk); 3993 struct sk_buff *skb; 3994 3995 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3996 skb = alloc_skb(MAX_TCP_HEADER, 3997 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3998 if (!skb) 3999 return -1; 4000 4001 /* Reserve space for headers and set control bits. */ 4002 skb_reserve(skb, MAX_TCP_HEADER); 4003 /* Use a previous sequence. This should cause the other 4004 * end to send an ack. Don't queue or clone SKB, just 4005 * send it. 4006 */ 4007 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4008 NET_INC_STATS(sock_net(sk), mib); 4009 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4010 } 4011 4012 /* Called from setsockopt( ... TCP_REPAIR ) */ 4013 void tcp_send_window_probe(struct sock *sk) 4014 { 4015 if (sk->sk_state == TCP_ESTABLISHED) { 4016 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4017 tcp_mstamp_refresh(tcp_sk(sk)); 4018 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4019 } 4020 } 4021 4022 /* Initiate keepalive or window probe from timer. */ 4023 int tcp_write_wakeup(struct sock *sk, int mib) 4024 { 4025 struct tcp_sock *tp = tcp_sk(sk); 4026 struct sk_buff *skb; 4027 4028 if (sk->sk_state == TCP_CLOSE) 4029 return -1; 4030 4031 skb = tcp_send_head(sk); 4032 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4033 int err; 4034 unsigned int mss = tcp_current_mss(sk); 4035 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4036 4037 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4038 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4039 4040 /* We are probing the opening of a window 4041 * but the window size is != 0 4042 * must have been a result SWS avoidance ( sender ) 4043 */ 4044 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4045 skb->len > mss) { 4046 seg_size = min(seg_size, mss); 4047 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4048 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4049 skb, seg_size, mss, GFP_ATOMIC)) 4050 return -1; 4051 } else if (!tcp_skb_pcount(skb)) 4052 tcp_set_skb_tso_segs(skb, mss); 4053 4054 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4055 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4056 if (!err) 4057 tcp_event_new_data_sent(sk, skb); 4058 return err; 4059 } else { 4060 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4061 tcp_xmit_probe_skb(sk, 1, mib); 4062 return tcp_xmit_probe_skb(sk, 0, mib); 4063 } 4064 } 4065 4066 /* A window probe timeout has occurred. If window is not closed send 4067 * a partial packet else a zero probe. 4068 */ 4069 void tcp_send_probe0(struct sock *sk) 4070 { 4071 struct inet_connection_sock *icsk = inet_csk(sk); 4072 struct tcp_sock *tp = tcp_sk(sk); 4073 struct net *net = sock_net(sk); 4074 unsigned long timeout; 4075 int err; 4076 4077 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4078 4079 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4080 /* Cancel probe timer, if it is not required. */ 4081 icsk->icsk_probes_out = 0; 4082 icsk->icsk_backoff = 0; 4083 return; 4084 } 4085 4086 icsk->icsk_probes_out++; 4087 if (err <= 0) { 4088 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 4089 icsk->icsk_backoff++; 4090 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4091 } else { 4092 /* If packet was not sent due to local congestion, 4093 * Let senders fight for local resources conservatively. 4094 */ 4095 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4096 } 4097 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4098 } 4099 4100 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4101 { 4102 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4103 struct flowi fl; 4104 int res; 4105 4106 tcp_rsk(req)->txhash = net_tx_rndhash(); 4107 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4108 NULL); 4109 if (!res) { 4110 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4111 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4112 if (unlikely(tcp_passive_fastopen(sk))) 4113 tcp_sk(sk)->total_retrans++; 4114 trace_tcp_retransmit_synack(sk, req); 4115 } 4116 return res; 4117 } 4118 EXPORT_SYMBOL(tcp_rtx_synack); 4119