xref: /openbmc/linux/net/ipv4/tcp_output.c (revision a2fb4d78)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64 
65 /* By default, RFC2861 behavior.  */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67 
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70 
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 			   int push_one, gfp_t gfp);
73 
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 	struct inet_connection_sock *icsk = inet_csk(sk);
78 	struct tcp_sock *tp = tcp_sk(sk);
79 	unsigned int prior_packets = tp->packets_out;
80 
81 	tcp_advance_send_head(sk, skb);
82 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83 
84 	tp->packets_out += tcp_skb_pcount(skb);
85 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 		tcp_rearm_rto(sk);
88 	}
89 }
90 
91 /* SND.NXT, if window was not shrunk.
92  * If window has been shrunk, what should we make? It is not clear at all.
93  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95  * invalid. OK, let's make this for now:
96  */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 	const struct tcp_sock *tp = tcp_sk(sk);
100 
101 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism. */
141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
142 {
143 	struct tcp_sock *tp = tcp_sk(sk);
144 	s32 delta = tcp_time_stamp - tp->lsndtime;
145 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
146 	u32 cwnd = tp->snd_cwnd;
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tp->snd_cwnd = max(cwnd, restart_cwnd);
156 	tp->snd_cwnd_stamp = tcp_time_stamp;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_time_stamp;
166 	const struct dst_entry *dst = __sk_dst_get(sk);
167 
168 	if (sysctl_tcp_slow_start_after_idle &&
169 	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
171 
172 	tp->lsndtime = now;
173 
174 	/* If it is a reply for ato after last received
175 	 * packet, enter pingpong mode.
176 	 */
177 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
178 	    (!dst || !dst_metric(dst, RTAX_QUICKACK)))
179 			icsk->icsk_ack.pingpong = 1;
180 }
181 
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
184 {
185 	tcp_dec_quickack_mode(sk, pkts);
186 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
187 }
188 
189 
190 u32 tcp_default_init_rwnd(u32 mss)
191 {
192 	/* Initial receive window should be twice of TCP_INIT_CWND to
193 	 * enable proper sending of new unsent data during fast recovery
194 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 	 * limit when mss is larger than 1460.
196 	 */
197 	u32 init_rwnd = TCP_INIT_CWND * 2;
198 
199 	if (mss > 1460)
200 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201 	return init_rwnd;
202 }
203 
204 /* Determine a window scaling and initial window to offer.
205  * Based on the assumption that the given amount of space
206  * will be offered. Store the results in the tp structure.
207  * NOTE: for smooth operation initial space offering should
208  * be a multiple of mss if possible. We assume here that mss >= 1.
209  * This MUST be enforced by all callers.
210  */
211 void tcp_select_initial_window(int __space, __u32 mss,
212 			       __u32 *rcv_wnd, __u32 *window_clamp,
213 			       int wscale_ok, __u8 *rcv_wscale,
214 			       __u32 init_rcv_wnd)
215 {
216 	unsigned int space = (__space < 0 ? 0 : __space);
217 
218 	/* If no clamp set the clamp to the max possible scaled window */
219 	if (*window_clamp == 0)
220 		(*window_clamp) = (65535 << 14);
221 	space = min(*window_clamp, space);
222 
223 	/* Quantize space offering to a multiple of mss if possible. */
224 	if (space > mss)
225 		space = (space / mss) * mss;
226 
227 	/* NOTE: offering an initial window larger than 32767
228 	 * will break some buggy TCP stacks. If the admin tells us
229 	 * it is likely we could be speaking with such a buggy stack
230 	 * we will truncate our initial window offering to 32K-1
231 	 * unless the remote has sent us a window scaling option,
232 	 * which we interpret as a sign the remote TCP is not
233 	 * misinterpreting the window field as a signed quantity.
234 	 */
235 	if (sysctl_tcp_workaround_signed_windows)
236 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 	else
238 		(*rcv_wnd) = space;
239 
240 	(*rcv_wscale) = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window
243 		 * See RFC1323 for an explanation of the limit to 14
244 		 */
245 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
246 		space = min_t(u32, space, *window_clamp);
247 		while (space > 65535 && (*rcv_wscale) < 14) {
248 			space >>= 1;
249 			(*rcv_wscale)++;
250 		}
251 	}
252 
253 	if (mss > (1 << *rcv_wscale)) {
254 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
255 			init_rcv_wnd = tcp_default_init_rwnd(mss);
256 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
257 	}
258 
259 	/* Set the clamp no higher than max representable value */
260 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
261 }
262 EXPORT_SYMBOL(tcp_select_initial_window);
263 
264 /* Chose a new window to advertise, update state in tcp_sock for the
265  * socket, and return result with RFC1323 scaling applied.  The return
266  * value can be stuffed directly into th->window for an outgoing
267  * frame.
268  */
269 static u16 tcp_select_window(struct sock *sk)
270 {
271 	struct tcp_sock *tp = tcp_sk(sk);
272 	u32 cur_win = tcp_receive_window(tp);
273 	u32 new_win = __tcp_select_window(sk);
274 
275 	/* Never shrink the offered window */
276 	if (new_win < cur_win) {
277 		/* Danger Will Robinson!
278 		 * Don't update rcv_wup/rcv_wnd here or else
279 		 * we will not be able to advertise a zero
280 		 * window in time.  --DaveM
281 		 *
282 		 * Relax Will Robinson.
283 		 */
284 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
285 	}
286 	tp->rcv_wnd = new_win;
287 	tp->rcv_wup = tp->rcv_nxt;
288 
289 	/* Make sure we do not exceed the maximum possible
290 	 * scaled window.
291 	 */
292 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
293 		new_win = min(new_win, MAX_TCP_WINDOW);
294 	else
295 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
296 
297 	/* RFC1323 scaling applied */
298 	new_win >>= tp->rx_opt.rcv_wscale;
299 
300 	/* If we advertise zero window, disable fast path. */
301 	if (new_win == 0)
302 		tp->pred_flags = 0;
303 
304 	return new_win;
305 }
306 
307 /* Packet ECN state for a SYN-ACK */
308 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
309 {
310 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
311 	if (!(tp->ecn_flags & TCP_ECN_OK))
312 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
313 }
314 
315 /* Packet ECN state for a SYN.  */
316 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
317 {
318 	struct tcp_sock *tp = tcp_sk(sk);
319 
320 	tp->ecn_flags = 0;
321 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
322 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
323 		tp->ecn_flags = TCP_ECN_OK;
324 	}
325 }
326 
327 static __inline__ void
328 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
329 {
330 	if (inet_rsk(req)->ecn_ok)
331 		th->ece = 1;
332 }
333 
334 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
335  * be sent.
336  */
337 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
338 				int tcp_header_len)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 
342 	if (tp->ecn_flags & TCP_ECN_OK) {
343 		/* Not-retransmitted data segment: set ECT and inject CWR. */
344 		if (skb->len != tcp_header_len &&
345 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
346 			INET_ECN_xmit(sk);
347 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
348 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
349 				tcp_hdr(skb)->cwr = 1;
350 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
351 			}
352 		} else {
353 			/* ACK or retransmitted segment: clear ECT|CE */
354 			INET_ECN_dontxmit(sk);
355 		}
356 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
357 			tcp_hdr(skb)->ece = 1;
358 	}
359 }
360 
361 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
362  * auto increment end seqno.
363  */
364 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
365 {
366 	struct skb_shared_info *shinfo = skb_shinfo(skb);
367 
368 	skb->ip_summed = CHECKSUM_PARTIAL;
369 	skb->csum = 0;
370 
371 	TCP_SKB_CB(skb)->tcp_flags = flags;
372 	TCP_SKB_CB(skb)->sacked = 0;
373 
374 	shinfo->gso_segs = 1;
375 	shinfo->gso_size = 0;
376 	shinfo->gso_type = 0;
377 
378 	TCP_SKB_CB(skb)->seq = seq;
379 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
380 		seq++;
381 	TCP_SKB_CB(skb)->end_seq = seq;
382 }
383 
384 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
385 {
386 	return tp->snd_una != tp->snd_up;
387 }
388 
389 #define OPTION_SACK_ADVERTISE	(1 << 0)
390 #define OPTION_TS		(1 << 1)
391 #define OPTION_MD5		(1 << 2)
392 #define OPTION_WSCALE		(1 << 3)
393 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
394 
395 struct tcp_out_options {
396 	u16 options;		/* bit field of OPTION_* */
397 	u16 mss;		/* 0 to disable */
398 	u8 ws;			/* window scale, 0 to disable */
399 	u8 num_sack_blocks;	/* number of SACK blocks to include */
400 	u8 hash_size;		/* bytes in hash_location */
401 	__u8 *hash_location;	/* temporary pointer, overloaded */
402 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
403 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
404 };
405 
406 /* Write previously computed TCP options to the packet.
407  *
408  * Beware: Something in the Internet is very sensitive to the ordering of
409  * TCP options, we learned this through the hard way, so be careful here.
410  * Luckily we can at least blame others for their non-compliance but from
411  * inter-operability perspective it seems that we're somewhat stuck with
412  * the ordering which we have been using if we want to keep working with
413  * those broken things (not that it currently hurts anybody as there isn't
414  * particular reason why the ordering would need to be changed).
415  *
416  * At least SACK_PERM as the first option is known to lead to a disaster
417  * (but it may well be that other scenarios fail similarly).
418  */
419 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
420 			      struct tcp_out_options *opts)
421 {
422 	u16 options = opts->options;	/* mungable copy */
423 
424 	if (unlikely(OPTION_MD5 & options)) {
425 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
426 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
427 		/* overload cookie hash location */
428 		opts->hash_location = (__u8 *)ptr;
429 		ptr += 4;
430 	}
431 
432 	if (unlikely(opts->mss)) {
433 		*ptr++ = htonl((TCPOPT_MSS << 24) |
434 			       (TCPOLEN_MSS << 16) |
435 			       opts->mss);
436 	}
437 
438 	if (likely(OPTION_TS & options)) {
439 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
440 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
441 				       (TCPOLEN_SACK_PERM << 16) |
442 				       (TCPOPT_TIMESTAMP << 8) |
443 				       TCPOLEN_TIMESTAMP);
444 			options &= ~OPTION_SACK_ADVERTISE;
445 		} else {
446 			*ptr++ = htonl((TCPOPT_NOP << 24) |
447 				       (TCPOPT_NOP << 16) |
448 				       (TCPOPT_TIMESTAMP << 8) |
449 				       TCPOLEN_TIMESTAMP);
450 		}
451 		*ptr++ = htonl(opts->tsval);
452 		*ptr++ = htonl(opts->tsecr);
453 	}
454 
455 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
456 		*ptr++ = htonl((TCPOPT_NOP << 24) |
457 			       (TCPOPT_NOP << 16) |
458 			       (TCPOPT_SACK_PERM << 8) |
459 			       TCPOLEN_SACK_PERM);
460 	}
461 
462 	if (unlikely(OPTION_WSCALE & options)) {
463 		*ptr++ = htonl((TCPOPT_NOP << 24) |
464 			       (TCPOPT_WINDOW << 16) |
465 			       (TCPOLEN_WINDOW << 8) |
466 			       opts->ws);
467 	}
468 
469 	if (unlikely(opts->num_sack_blocks)) {
470 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
471 			tp->duplicate_sack : tp->selective_acks;
472 		int this_sack;
473 
474 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
475 			       (TCPOPT_NOP  << 16) |
476 			       (TCPOPT_SACK <<  8) |
477 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
478 						     TCPOLEN_SACK_PERBLOCK)));
479 
480 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
481 		     ++this_sack) {
482 			*ptr++ = htonl(sp[this_sack].start_seq);
483 			*ptr++ = htonl(sp[this_sack].end_seq);
484 		}
485 
486 		tp->rx_opt.dsack = 0;
487 	}
488 
489 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
490 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
491 
492 		*ptr++ = htonl((TCPOPT_EXP << 24) |
493 			       ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
494 			       TCPOPT_FASTOPEN_MAGIC);
495 
496 		memcpy(ptr, foc->val, foc->len);
497 		if ((foc->len & 3) == 2) {
498 			u8 *align = ((u8 *)ptr) + foc->len;
499 			align[0] = align[1] = TCPOPT_NOP;
500 		}
501 		ptr += (foc->len + 3) >> 2;
502 	}
503 }
504 
505 /* Compute TCP options for SYN packets. This is not the final
506  * network wire format yet.
507  */
508 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
509 				struct tcp_out_options *opts,
510 				struct tcp_md5sig_key **md5)
511 {
512 	struct tcp_sock *tp = tcp_sk(sk);
513 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
514 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
515 
516 #ifdef CONFIG_TCP_MD5SIG
517 	*md5 = tp->af_specific->md5_lookup(sk, sk);
518 	if (*md5) {
519 		opts->options |= OPTION_MD5;
520 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
521 	}
522 #else
523 	*md5 = NULL;
524 #endif
525 
526 	/* We always get an MSS option.  The option bytes which will be seen in
527 	 * normal data packets should timestamps be used, must be in the MSS
528 	 * advertised.  But we subtract them from tp->mss_cache so that
529 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
530 	 * fact here if necessary.  If we don't do this correctly, as a
531 	 * receiver we won't recognize data packets as being full sized when we
532 	 * should, and thus we won't abide by the delayed ACK rules correctly.
533 	 * SACKs don't matter, we never delay an ACK when we have any of those
534 	 * going out.  */
535 	opts->mss = tcp_advertise_mss(sk);
536 	remaining -= TCPOLEN_MSS_ALIGNED;
537 
538 	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
539 		opts->options |= OPTION_TS;
540 		opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
541 		opts->tsecr = tp->rx_opt.ts_recent;
542 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
543 	}
544 	if (likely(sysctl_tcp_window_scaling)) {
545 		opts->ws = tp->rx_opt.rcv_wscale;
546 		opts->options |= OPTION_WSCALE;
547 		remaining -= TCPOLEN_WSCALE_ALIGNED;
548 	}
549 	if (likely(sysctl_tcp_sack)) {
550 		opts->options |= OPTION_SACK_ADVERTISE;
551 		if (unlikely(!(OPTION_TS & opts->options)))
552 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
553 	}
554 
555 	if (fastopen && fastopen->cookie.len >= 0) {
556 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
557 		need = (need + 3) & ~3U;  /* Align to 32 bits */
558 		if (remaining >= need) {
559 			opts->options |= OPTION_FAST_OPEN_COOKIE;
560 			opts->fastopen_cookie = &fastopen->cookie;
561 			remaining -= need;
562 			tp->syn_fastopen = 1;
563 		}
564 	}
565 
566 	return MAX_TCP_OPTION_SPACE - remaining;
567 }
568 
569 /* Set up TCP options for SYN-ACKs. */
570 static unsigned int tcp_synack_options(struct sock *sk,
571 				   struct request_sock *req,
572 				   unsigned int mss, struct sk_buff *skb,
573 				   struct tcp_out_options *opts,
574 				   struct tcp_md5sig_key **md5,
575 				   struct tcp_fastopen_cookie *foc)
576 {
577 	struct inet_request_sock *ireq = inet_rsk(req);
578 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
579 
580 #ifdef CONFIG_TCP_MD5SIG
581 	*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
582 	if (*md5) {
583 		opts->options |= OPTION_MD5;
584 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
585 
586 		/* We can't fit any SACK blocks in a packet with MD5 + TS
587 		 * options. There was discussion about disabling SACK
588 		 * rather than TS in order to fit in better with old,
589 		 * buggy kernels, but that was deemed to be unnecessary.
590 		 */
591 		ireq->tstamp_ok &= !ireq->sack_ok;
592 	}
593 #else
594 	*md5 = NULL;
595 #endif
596 
597 	/* We always send an MSS option. */
598 	opts->mss = mss;
599 	remaining -= TCPOLEN_MSS_ALIGNED;
600 
601 	if (likely(ireq->wscale_ok)) {
602 		opts->ws = ireq->rcv_wscale;
603 		opts->options |= OPTION_WSCALE;
604 		remaining -= TCPOLEN_WSCALE_ALIGNED;
605 	}
606 	if (likely(ireq->tstamp_ok)) {
607 		opts->options |= OPTION_TS;
608 		opts->tsval = TCP_SKB_CB(skb)->when;
609 		opts->tsecr = req->ts_recent;
610 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
611 	}
612 	if (likely(ireq->sack_ok)) {
613 		opts->options |= OPTION_SACK_ADVERTISE;
614 		if (unlikely(!ireq->tstamp_ok))
615 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
616 	}
617 	if (foc != NULL) {
618 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
619 		need = (need + 3) & ~3U;  /* Align to 32 bits */
620 		if (remaining >= need) {
621 			opts->options |= OPTION_FAST_OPEN_COOKIE;
622 			opts->fastopen_cookie = foc;
623 			remaining -= need;
624 		}
625 	}
626 
627 	return MAX_TCP_OPTION_SPACE - remaining;
628 }
629 
630 /* Compute TCP options for ESTABLISHED sockets. This is not the
631  * final wire format yet.
632  */
633 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
634 					struct tcp_out_options *opts,
635 					struct tcp_md5sig_key **md5)
636 {
637 	struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
638 	struct tcp_sock *tp = tcp_sk(sk);
639 	unsigned int size = 0;
640 	unsigned int eff_sacks;
641 
642 	opts->options = 0;
643 
644 #ifdef CONFIG_TCP_MD5SIG
645 	*md5 = tp->af_specific->md5_lookup(sk, sk);
646 	if (unlikely(*md5)) {
647 		opts->options |= OPTION_MD5;
648 		size += TCPOLEN_MD5SIG_ALIGNED;
649 	}
650 #else
651 	*md5 = NULL;
652 #endif
653 
654 	if (likely(tp->rx_opt.tstamp_ok)) {
655 		opts->options |= OPTION_TS;
656 		opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
657 		opts->tsecr = tp->rx_opt.ts_recent;
658 		size += TCPOLEN_TSTAMP_ALIGNED;
659 	}
660 
661 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
662 	if (unlikely(eff_sacks)) {
663 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
664 		opts->num_sack_blocks =
665 			min_t(unsigned int, eff_sacks,
666 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
667 			      TCPOLEN_SACK_PERBLOCK);
668 		size += TCPOLEN_SACK_BASE_ALIGNED +
669 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
670 	}
671 
672 	return size;
673 }
674 
675 
676 /* TCP SMALL QUEUES (TSQ)
677  *
678  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
679  * to reduce RTT and bufferbloat.
680  * We do this using a special skb destructor (tcp_wfree).
681  *
682  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
683  * needs to be reallocated in a driver.
684  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
685  *
686  * Since transmit from skb destructor is forbidden, we use a tasklet
687  * to process all sockets that eventually need to send more skbs.
688  * We use one tasklet per cpu, with its own queue of sockets.
689  */
690 struct tsq_tasklet {
691 	struct tasklet_struct	tasklet;
692 	struct list_head	head; /* queue of tcp sockets */
693 };
694 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
695 
696 static void tcp_tsq_handler(struct sock *sk)
697 {
698 	if ((1 << sk->sk_state) &
699 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
700 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
701 		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
702 			       0, GFP_ATOMIC);
703 }
704 /*
705  * One tasklet per cpu tries to send more skbs.
706  * We run in tasklet context but need to disable irqs when
707  * transferring tsq->head because tcp_wfree() might
708  * interrupt us (non NAPI drivers)
709  */
710 static void tcp_tasklet_func(unsigned long data)
711 {
712 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
713 	LIST_HEAD(list);
714 	unsigned long flags;
715 	struct list_head *q, *n;
716 	struct tcp_sock *tp;
717 	struct sock *sk;
718 
719 	local_irq_save(flags);
720 	list_splice_init(&tsq->head, &list);
721 	local_irq_restore(flags);
722 
723 	list_for_each_safe(q, n, &list) {
724 		tp = list_entry(q, struct tcp_sock, tsq_node);
725 		list_del(&tp->tsq_node);
726 
727 		sk = (struct sock *)tp;
728 		bh_lock_sock(sk);
729 
730 		if (!sock_owned_by_user(sk)) {
731 			tcp_tsq_handler(sk);
732 		} else {
733 			/* defer the work to tcp_release_cb() */
734 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
735 		}
736 		bh_unlock_sock(sk);
737 
738 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
739 		sk_free(sk);
740 	}
741 }
742 
743 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
744 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
745 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
746 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
747 /**
748  * tcp_release_cb - tcp release_sock() callback
749  * @sk: socket
750  *
751  * called from release_sock() to perform protocol dependent
752  * actions before socket release.
753  */
754 void tcp_release_cb(struct sock *sk)
755 {
756 	struct tcp_sock *tp = tcp_sk(sk);
757 	unsigned long flags, nflags;
758 
759 	/* perform an atomic operation only if at least one flag is set */
760 	do {
761 		flags = tp->tsq_flags;
762 		if (!(flags & TCP_DEFERRED_ALL))
763 			return;
764 		nflags = flags & ~TCP_DEFERRED_ALL;
765 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
766 
767 	if (flags & (1UL << TCP_TSQ_DEFERRED))
768 		tcp_tsq_handler(sk);
769 
770 	/* Here begins the tricky part :
771 	 * We are called from release_sock() with :
772 	 * 1) BH disabled
773 	 * 2) sk_lock.slock spinlock held
774 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
775 	 *
776 	 * But following code is meant to be called from BH handlers,
777 	 * so we should keep BH disabled, but early release socket ownership
778 	 */
779 	sock_release_ownership(sk);
780 
781 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
782 		tcp_write_timer_handler(sk);
783 		__sock_put(sk);
784 	}
785 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
786 		tcp_delack_timer_handler(sk);
787 		__sock_put(sk);
788 	}
789 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
790 		sk->sk_prot->mtu_reduced(sk);
791 		__sock_put(sk);
792 	}
793 }
794 EXPORT_SYMBOL(tcp_release_cb);
795 
796 void __init tcp_tasklet_init(void)
797 {
798 	int i;
799 
800 	for_each_possible_cpu(i) {
801 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
802 
803 		INIT_LIST_HEAD(&tsq->head);
804 		tasklet_init(&tsq->tasklet,
805 			     tcp_tasklet_func,
806 			     (unsigned long)tsq);
807 	}
808 }
809 
810 /*
811  * Write buffer destructor automatically called from kfree_skb.
812  * We can't xmit new skbs from this context, as we might already
813  * hold qdisc lock.
814  */
815 void tcp_wfree(struct sk_buff *skb)
816 {
817 	struct sock *sk = skb->sk;
818 	struct tcp_sock *tp = tcp_sk(sk);
819 
820 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
821 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
822 		unsigned long flags;
823 		struct tsq_tasklet *tsq;
824 
825 		/* Keep a ref on socket.
826 		 * This last ref will be released in tcp_tasklet_func()
827 		 */
828 		atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
829 
830 		/* queue this socket to tasklet queue */
831 		local_irq_save(flags);
832 		tsq = &__get_cpu_var(tsq_tasklet);
833 		list_add(&tp->tsq_node, &tsq->head);
834 		tasklet_schedule(&tsq->tasklet);
835 		local_irq_restore(flags);
836 	} else {
837 		sock_wfree(skb);
838 	}
839 }
840 
841 /* This routine actually transmits TCP packets queued in by
842  * tcp_do_sendmsg().  This is used by both the initial
843  * transmission and possible later retransmissions.
844  * All SKB's seen here are completely headerless.  It is our
845  * job to build the TCP header, and pass the packet down to
846  * IP so it can do the same plus pass the packet off to the
847  * device.
848  *
849  * We are working here with either a clone of the original
850  * SKB, or a fresh unique copy made by the retransmit engine.
851  */
852 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
853 			    gfp_t gfp_mask)
854 {
855 	const struct inet_connection_sock *icsk = inet_csk(sk);
856 	struct inet_sock *inet;
857 	struct tcp_sock *tp;
858 	struct tcp_skb_cb *tcb;
859 	struct tcp_out_options opts;
860 	unsigned int tcp_options_size, tcp_header_size;
861 	struct tcp_md5sig_key *md5;
862 	struct tcphdr *th;
863 	int err;
864 
865 	BUG_ON(!skb || !tcp_skb_pcount(skb));
866 
867 	if (clone_it) {
868 		const struct sk_buff *fclone = skb + 1;
869 
870 		/* If congestion control is doing timestamping, we must
871 		 * take such a timestamp before we potentially clone/copy.
872 		 */
873 		if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
874 			__net_timestamp(skb);
875 
876 		if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
877 			     fclone->fclone == SKB_FCLONE_CLONE))
878 			NET_INC_STATS(sock_net(sk),
879 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
880 
881 		if (unlikely(skb_cloned(skb)))
882 			skb = pskb_copy(skb, gfp_mask);
883 		else
884 			skb = skb_clone(skb, gfp_mask);
885 		if (unlikely(!skb))
886 			return -ENOBUFS;
887 	}
888 
889 	inet = inet_sk(sk);
890 	tp = tcp_sk(sk);
891 	tcb = TCP_SKB_CB(skb);
892 	memset(&opts, 0, sizeof(opts));
893 
894 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
895 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
896 	else
897 		tcp_options_size = tcp_established_options(sk, skb, &opts,
898 							   &md5);
899 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
900 
901 	if (tcp_packets_in_flight(tp) == 0)
902 		tcp_ca_event(sk, CA_EVENT_TX_START);
903 
904 	/* if no packet is in qdisc/device queue, then allow XPS to select
905 	 * another queue.
906 	 */
907 	skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
908 
909 	skb_push(skb, tcp_header_size);
910 	skb_reset_transport_header(skb);
911 
912 	skb_orphan(skb);
913 	skb->sk = sk;
914 	skb->destructor = tcp_wfree;
915 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
916 
917 	/* Build TCP header and checksum it. */
918 	th = tcp_hdr(skb);
919 	th->source		= inet->inet_sport;
920 	th->dest		= inet->inet_dport;
921 	th->seq			= htonl(tcb->seq);
922 	th->ack_seq		= htonl(tp->rcv_nxt);
923 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
924 					tcb->tcp_flags);
925 
926 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
927 		/* RFC1323: The window in SYN & SYN/ACK segments
928 		 * is never scaled.
929 		 */
930 		th->window	= htons(min(tp->rcv_wnd, 65535U));
931 	} else {
932 		th->window	= htons(tcp_select_window(sk));
933 	}
934 	th->check		= 0;
935 	th->urg_ptr		= 0;
936 
937 	/* The urg_mode check is necessary during a below snd_una win probe */
938 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
939 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
940 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
941 			th->urg = 1;
942 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
943 			th->urg_ptr = htons(0xFFFF);
944 			th->urg = 1;
945 		}
946 	}
947 
948 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
949 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
950 		TCP_ECN_send(sk, skb, tcp_header_size);
951 
952 #ifdef CONFIG_TCP_MD5SIG
953 	/* Calculate the MD5 hash, as we have all we need now */
954 	if (md5) {
955 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
956 		tp->af_specific->calc_md5_hash(opts.hash_location,
957 					       md5, sk, NULL, skb);
958 	}
959 #endif
960 
961 	icsk->icsk_af_ops->send_check(sk, skb);
962 
963 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
964 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
965 
966 	if (skb->len != tcp_header_size)
967 		tcp_event_data_sent(tp, sk);
968 
969 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
970 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
971 			      tcp_skb_pcount(skb));
972 
973 	err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
974 	if (likely(err <= 0))
975 		return err;
976 
977 	tcp_enter_cwr(sk, 1);
978 
979 	return net_xmit_eval(err);
980 }
981 
982 /* This routine just queues the buffer for sending.
983  *
984  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
985  * otherwise socket can stall.
986  */
987 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
988 {
989 	struct tcp_sock *tp = tcp_sk(sk);
990 
991 	/* Advance write_seq and place onto the write_queue. */
992 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
993 	skb_header_release(skb);
994 	tcp_add_write_queue_tail(sk, skb);
995 	sk->sk_wmem_queued += skb->truesize;
996 	sk_mem_charge(sk, skb->truesize);
997 }
998 
999 /* Initialize TSO segments for a packet. */
1000 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1001 				 unsigned int mss_now)
1002 {
1003 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1004 
1005 	/* Make sure we own this skb before messing gso_size/gso_segs */
1006 	WARN_ON_ONCE(skb_cloned(skb));
1007 
1008 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1009 		/* Avoid the costly divide in the normal
1010 		 * non-TSO case.
1011 		 */
1012 		shinfo->gso_segs = 1;
1013 		shinfo->gso_size = 0;
1014 		shinfo->gso_type = 0;
1015 	} else {
1016 		shinfo->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1017 		shinfo->gso_size = mss_now;
1018 		shinfo->gso_type = sk->sk_gso_type;
1019 	}
1020 }
1021 
1022 /* When a modification to fackets out becomes necessary, we need to check
1023  * skb is counted to fackets_out or not.
1024  */
1025 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1026 				   int decr)
1027 {
1028 	struct tcp_sock *tp = tcp_sk(sk);
1029 
1030 	if (!tp->sacked_out || tcp_is_reno(tp))
1031 		return;
1032 
1033 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1034 		tp->fackets_out -= decr;
1035 }
1036 
1037 /* Pcount in the middle of the write queue got changed, we need to do various
1038  * tweaks to fix counters
1039  */
1040 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1041 {
1042 	struct tcp_sock *tp = tcp_sk(sk);
1043 
1044 	tp->packets_out -= decr;
1045 
1046 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1047 		tp->sacked_out -= decr;
1048 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1049 		tp->retrans_out -= decr;
1050 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1051 		tp->lost_out -= decr;
1052 
1053 	/* Reno case is special. Sigh... */
1054 	if (tcp_is_reno(tp) && decr > 0)
1055 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1056 
1057 	tcp_adjust_fackets_out(sk, skb, decr);
1058 
1059 	if (tp->lost_skb_hint &&
1060 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1061 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1062 		tp->lost_cnt_hint -= decr;
1063 
1064 	tcp_verify_left_out(tp);
1065 }
1066 
1067 /* Function to create two new TCP segments.  Shrinks the given segment
1068  * to the specified size and appends a new segment with the rest of the
1069  * packet to the list.  This won't be called frequently, I hope.
1070  * Remember, these are still headerless SKBs at this point.
1071  */
1072 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1073 		 unsigned int mss_now)
1074 {
1075 	struct tcp_sock *tp = tcp_sk(sk);
1076 	struct sk_buff *buff;
1077 	int nsize, old_factor;
1078 	int nlen;
1079 	u8 flags;
1080 
1081 	if (WARN_ON(len > skb->len))
1082 		return -EINVAL;
1083 
1084 	nsize = skb_headlen(skb) - len;
1085 	if (nsize < 0)
1086 		nsize = 0;
1087 
1088 	if (skb_unclone(skb, GFP_ATOMIC))
1089 		return -ENOMEM;
1090 
1091 	/* Get a new skb... force flag on. */
1092 	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1093 	if (buff == NULL)
1094 		return -ENOMEM; /* We'll just try again later. */
1095 
1096 	sk->sk_wmem_queued += buff->truesize;
1097 	sk_mem_charge(sk, buff->truesize);
1098 	nlen = skb->len - len - nsize;
1099 	buff->truesize += nlen;
1100 	skb->truesize -= nlen;
1101 
1102 	/* Correct the sequence numbers. */
1103 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1104 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1105 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1106 
1107 	/* PSH and FIN should only be set in the second packet. */
1108 	flags = TCP_SKB_CB(skb)->tcp_flags;
1109 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1110 	TCP_SKB_CB(buff)->tcp_flags = flags;
1111 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1112 
1113 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1114 		/* Copy and checksum data tail into the new buffer. */
1115 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1116 						       skb_put(buff, nsize),
1117 						       nsize, 0);
1118 
1119 		skb_trim(skb, len);
1120 
1121 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1122 	} else {
1123 		skb->ip_summed = CHECKSUM_PARTIAL;
1124 		skb_split(skb, buff, len);
1125 	}
1126 
1127 	buff->ip_summed = skb->ip_summed;
1128 
1129 	/* Looks stupid, but our code really uses when of
1130 	 * skbs, which it never sent before. --ANK
1131 	 */
1132 	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1133 	buff->tstamp = skb->tstamp;
1134 
1135 	old_factor = tcp_skb_pcount(skb);
1136 
1137 	/* Fix up tso_factor for both original and new SKB.  */
1138 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1139 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1140 
1141 	/* If this packet has been sent out already, we must
1142 	 * adjust the various packet counters.
1143 	 */
1144 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1145 		int diff = old_factor - tcp_skb_pcount(skb) -
1146 			tcp_skb_pcount(buff);
1147 
1148 		if (diff)
1149 			tcp_adjust_pcount(sk, skb, diff);
1150 	}
1151 
1152 	/* Link BUFF into the send queue. */
1153 	skb_header_release(buff);
1154 	tcp_insert_write_queue_after(skb, buff, sk);
1155 
1156 	return 0;
1157 }
1158 
1159 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1160  * eventually). The difference is that pulled data not copied, but
1161  * immediately discarded.
1162  */
1163 static void __pskb_trim_head(struct sk_buff *skb, int len)
1164 {
1165 	struct skb_shared_info *shinfo;
1166 	int i, k, eat;
1167 
1168 	eat = min_t(int, len, skb_headlen(skb));
1169 	if (eat) {
1170 		__skb_pull(skb, eat);
1171 		len -= eat;
1172 		if (!len)
1173 			return;
1174 	}
1175 	eat = len;
1176 	k = 0;
1177 	shinfo = skb_shinfo(skb);
1178 	for (i = 0; i < shinfo->nr_frags; i++) {
1179 		int size = skb_frag_size(&shinfo->frags[i]);
1180 
1181 		if (size <= eat) {
1182 			skb_frag_unref(skb, i);
1183 			eat -= size;
1184 		} else {
1185 			shinfo->frags[k] = shinfo->frags[i];
1186 			if (eat) {
1187 				shinfo->frags[k].page_offset += eat;
1188 				skb_frag_size_sub(&shinfo->frags[k], eat);
1189 				eat = 0;
1190 			}
1191 			k++;
1192 		}
1193 	}
1194 	shinfo->nr_frags = k;
1195 
1196 	skb_reset_tail_pointer(skb);
1197 	skb->data_len -= len;
1198 	skb->len = skb->data_len;
1199 }
1200 
1201 /* Remove acked data from a packet in the transmit queue. */
1202 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1203 {
1204 	if (skb_unclone(skb, GFP_ATOMIC))
1205 		return -ENOMEM;
1206 
1207 	__pskb_trim_head(skb, len);
1208 
1209 	TCP_SKB_CB(skb)->seq += len;
1210 	skb->ip_summed = CHECKSUM_PARTIAL;
1211 
1212 	skb->truesize	     -= len;
1213 	sk->sk_wmem_queued   -= len;
1214 	sk_mem_uncharge(sk, len);
1215 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1216 
1217 	/* Any change of skb->len requires recalculation of tso factor. */
1218 	if (tcp_skb_pcount(skb) > 1)
1219 		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1220 
1221 	return 0;
1222 }
1223 
1224 /* Calculate MSS not accounting any TCP options.  */
1225 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1226 {
1227 	const struct tcp_sock *tp = tcp_sk(sk);
1228 	const struct inet_connection_sock *icsk = inet_csk(sk);
1229 	int mss_now;
1230 
1231 	/* Calculate base mss without TCP options:
1232 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1233 	 */
1234 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1235 
1236 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1237 	if (icsk->icsk_af_ops->net_frag_header_len) {
1238 		const struct dst_entry *dst = __sk_dst_get(sk);
1239 
1240 		if (dst && dst_allfrag(dst))
1241 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1242 	}
1243 
1244 	/* Clamp it (mss_clamp does not include tcp options) */
1245 	if (mss_now > tp->rx_opt.mss_clamp)
1246 		mss_now = tp->rx_opt.mss_clamp;
1247 
1248 	/* Now subtract optional transport overhead */
1249 	mss_now -= icsk->icsk_ext_hdr_len;
1250 
1251 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1252 	if (mss_now < 48)
1253 		mss_now = 48;
1254 	return mss_now;
1255 }
1256 
1257 /* Calculate MSS. Not accounting for SACKs here.  */
1258 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1259 {
1260 	/* Subtract TCP options size, not including SACKs */
1261 	return __tcp_mtu_to_mss(sk, pmtu) -
1262 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1263 }
1264 
1265 /* Inverse of above */
1266 int tcp_mss_to_mtu(struct sock *sk, int mss)
1267 {
1268 	const struct tcp_sock *tp = tcp_sk(sk);
1269 	const struct inet_connection_sock *icsk = inet_csk(sk);
1270 	int mtu;
1271 
1272 	mtu = mss +
1273 	      tp->tcp_header_len +
1274 	      icsk->icsk_ext_hdr_len +
1275 	      icsk->icsk_af_ops->net_header_len;
1276 
1277 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1278 	if (icsk->icsk_af_ops->net_frag_header_len) {
1279 		const struct dst_entry *dst = __sk_dst_get(sk);
1280 
1281 		if (dst && dst_allfrag(dst))
1282 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1283 	}
1284 	return mtu;
1285 }
1286 
1287 /* MTU probing init per socket */
1288 void tcp_mtup_init(struct sock *sk)
1289 {
1290 	struct tcp_sock *tp = tcp_sk(sk);
1291 	struct inet_connection_sock *icsk = inet_csk(sk);
1292 
1293 	icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1294 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1295 			       icsk->icsk_af_ops->net_header_len;
1296 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1297 	icsk->icsk_mtup.probe_size = 0;
1298 }
1299 EXPORT_SYMBOL(tcp_mtup_init);
1300 
1301 /* This function synchronize snd mss to current pmtu/exthdr set.
1302 
1303    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1304    for TCP options, but includes only bare TCP header.
1305 
1306    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1307    It is minimum of user_mss and mss received with SYN.
1308    It also does not include TCP options.
1309 
1310    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1311 
1312    tp->mss_cache is current effective sending mss, including
1313    all tcp options except for SACKs. It is evaluated,
1314    taking into account current pmtu, but never exceeds
1315    tp->rx_opt.mss_clamp.
1316 
1317    NOTE1. rfc1122 clearly states that advertised MSS
1318    DOES NOT include either tcp or ip options.
1319 
1320    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1321    are READ ONLY outside this function.		--ANK (980731)
1322  */
1323 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1324 {
1325 	struct tcp_sock *tp = tcp_sk(sk);
1326 	struct inet_connection_sock *icsk = inet_csk(sk);
1327 	int mss_now;
1328 
1329 	if (icsk->icsk_mtup.search_high > pmtu)
1330 		icsk->icsk_mtup.search_high = pmtu;
1331 
1332 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1333 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1334 
1335 	/* And store cached results */
1336 	icsk->icsk_pmtu_cookie = pmtu;
1337 	if (icsk->icsk_mtup.enabled)
1338 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1339 	tp->mss_cache = mss_now;
1340 
1341 	return mss_now;
1342 }
1343 EXPORT_SYMBOL(tcp_sync_mss);
1344 
1345 /* Compute the current effective MSS, taking SACKs and IP options,
1346  * and even PMTU discovery events into account.
1347  */
1348 unsigned int tcp_current_mss(struct sock *sk)
1349 {
1350 	const struct tcp_sock *tp = tcp_sk(sk);
1351 	const struct dst_entry *dst = __sk_dst_get(sk);
1352 	u32 mss_now;
1353 	unsigned int header_len;
1354 	struct tcp_out_options opts;
1355 	struct tcp_md5sig_key *md5;
1356 
1357 	mss_now = tp->mss_cache;
1358 
1359 	if (dst) {
1360 		u32 mtu = dst_mtu(dst);
1361 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1362 			mss_now = tcp_sync_mss(sk, mtu);
1363 	}
1364 
1365 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1366 		     sizeof(struct tcphdr);
1367 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1368 	 * some common options. If this is an odd packet (because we have SACK
1369 	 * blocks etc) then our calculated header_len will be different, and
1370 	 * we have to adjust mss_now correspondingly */
1371 	if (header_len != tp->tcp_header_len) {
1372 		int delta = (int) header_len - tp->tcp_header_len;
1373 		mss_now -= delta;
1374 	}
1375 
1376 	return mss_now;
1377 }
1378 
1379 /* Congestion window validation. (RFC2861) */
1380 static void tcp_cwnd_validate(struct sock *sk)
1381 {
1382 	struct tcp_sock *tp = tcp_sk(sk);
1383 
1384 	if (tp->packets_out >= tp->snd_cwnd) {
1385 		/* Network is feed fully. */
1386 		tp->snd_cwnd_used = 0;
1387 		tp->snd_cwnd_stamp = tcp_time_stamp;
1388 	} else {
1389 		/* Network starves. */
1390 		if (tp->packets_out > tp->snd_cwnd_used)
1391 			tp->snd_cwnd_used = tp->packets_out;
1392 
1393 		if (sysctl_tcp_slow_start_after_idle &&
1394 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1395 			tcp_cwnd_application_limited(sk);
1396 	}
1397 }
1398 
1399 /* Minshall's variant of the Nagle send check. */
1400 static bool tcp_minshall_check(const struct tcp_sock *tp)
1401 {
1402 	return after(tp->snd_sml, tp->snd_una) &&
1403 		!after(tp->snd_sml, tp->snd_nxt);
1404 }
1405 
1406 /* Update snd_sml if this skb is under mss
1407  * Note that a TSO packet might end with a sub-mss segment
1408  * The test is really :
1409  * if ((skb->len % mss) != 0)
1410  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1411  * But we can avoid doing the divide again given we already have
1412  *  skb_pcount = skb->len / mss_now
1413  */
1414 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1415 				const struct sk_buff *skb)
1416 {
1417 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1418 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1419 }
1420 
1421 /* Return false, if packet can be sent now without violation Nagle's rules:
1422  * 1. It is full sized. (provided by caller in %partial bool)
1423  * 2. Or it contains FIN. (already checked by caller)
1424  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1425  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1426  *    With Minshall's modification: all sent small packets are ACKed.
1427  */
1428 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1429 			    unsigned int mss_now, int nonagle)
1430 {
1431 	return partial &&
1432 		((nonagle & TCP_NAGLE_CORK) ||
1433 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1434 }
1435 /* Returns the portion of skb which can be sent right away */
1436 static unsigned int tcp_mss_split_point(const struct sock *sk,
1437 					const struct sk_buff *skb,
1438 					unsigned int mss_now,
1439 					unsigned int max_segs,
1440 					int nonagle)
1441 {
1442 	const struct tcp_sock *tp = tcp_sk(sk);
1443 	u32 partial, needed, window, max_len;
1444 
1445 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1446 	max_len = mss_now * max_segs;
1447 
1448 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1449 		return max_len;
1450 
1451 	needed = min(skb->len, window);
1452 
1453 	if (max_len <= needed)
1454 		return max_len;
1455 
1456 	partial = needed % mss_now;
1457 	/* If last segment is not a full MSS, check if Nagle rules allow us
1458 	 * to include this last segment in this skb.
1459 	 * Otherwise, we'll split the skb at last MSS boundary
1460 	 */
1461 	if (tcp_nagle_check(partial != 0, tp, mss_now, nonagle))
1462 		return needed - partial;
1463 
1464 	return needed;
1465 }
1466 
1467 /* Can at least one segment of SKB be sent right now, according to the
1468  * congestion window rules?  If so, return how many segments are allowed.
1469  */
1470 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1471 					 const struct sk_buff *skb)
1472 {
1473 	u32 in_flight, cwnd;
1474 
1475 	/* Don't be strict about the congestion window for the final FIN.  */
1476 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1477 	    tcp_skb_pcount(skb) == 1)
1478 		return 1;
1479 
1480 	in_flight = tcp_packets_in_flight(tp);
1481 	cwnd = tp->snd_cwnd;
1482 	if (in_flight < cwnd)
1483 		return (cwnd - in_flight);
1484 
1485 	return 0;
1486 }
1487 
1488 /* Initialize TSO state of a skb.
1489  * This must be invoked the first time we consider transmitting
1490  * SKB onto the wire.
1491  */
1492 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1493 			     unsigned int mss_now)
1494 {
1495 	int tso_segs = tcp_skb_pcount(skb);
1496 
1497 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1498 		tcp_set_skb_tso_segs(sk, skb, mss_now);
1499 		tso_segs = tcp_skb_pcount(skb);
1500 	}
1501 	return tso_segs;
1502 }
1503 
1504 
1505 /* Return true if the Nagle test allows this packet to be
1506  * sent now.
1507  */
1508 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1509 				  unsigned int cur_mss, int nonagle)
1510 {
1511 	/* Nagle rule does not apply to frames, which sit in the middle of the
1512 	 * write_queue (they have no chances to get new data).
1513 	 *
1514 	 * This is implemented in the callers, where they modify the 'nonagle'
1515 	 * argument based upon the location of SKB in the send queue.
1516 	 */
1517 	if (nonagle & TCP_NAGLE_PUSH)
1518 		return true;
1519 
1520 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1521 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1522 		return true;
1523 
1524 	if (!tcp_nagle_check(skb->len < cur_mss, tp, cur_mss, nonagle))
1525 		return true;
1526 
1527 	return false;
1528 }
1529 
1530 /* Does at least the first segment of SKB fit into the send window? */
1531 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1532 			     const struct sk_buff *skb,
1533 			     unsigned int cur_mss)
1534 {
1535 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1536 
1537 	if (skb->len > cur_mss)
1538 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1539 
1540 	return !after(end_seq, tcp_wnd_end(tp));
1541 }
1542 
1543 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1544  * should be put on the wire right now.  If so, it returns the number of
1545  * packets allowed by the congestion window.
1546  */
1547 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1548 				 unsigned int cur_mss, int nonagle)
1549 {
1550 	const struct tcp_sock *tp = tcp_sk(sk);
1551 	unsigned int cwnd_quota;
1552 
1553 	tcp_init_tso_segs(sk, skb, cur_mss);
1554 
1555 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1556 		return 0;
1557 
1558 	cwnd_quota = tcp_cwnd_test(tp, skb);
1559 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1560 		cwnd_quota = 0;
1561 
1562 	return cwnd_quota;
1563 }
1564 
1565 /* Test if sending is allowed right now. */
1566 bool tcp_may_send_now(struct sock *sk)
1567 {
1568 	const struct tcp_sock *tp = tcp_sk(sk);
1569 	struct sk_buff *skb = tcp_send_head(sk);
1570 
1571 	return skb &&
1572 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1573 			     (tcp_skb_is_last(sk, skb) ?
1574 			      tp->nonagle : TCP_NAGLE_PUSH));
1575 }
1576 
1577 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1578  * which is put after SKB on the list.  It is very much like
1579  * tcp_fragment() except that it may make several kinds of assumptions
1580  * in order to speed up the splitting operation.  In particular, we
1581  * know that all the data is in scatter-gather pages, and that the
1582  * packet has never been sent out before (and thus is not cloned).
1583  */
1584 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1585 			unsigned int mss_now, gfp_t gfp)
1586 {
1587 	struct sk_buff *buff;
1588 	int nlen = skb->len - len;
1589 	u8 flags;
1590 
1591 	/* All of a TSO frame must be composed of paged data.  */
1592 	if (skb->len != skb->data_len)
1593 		return tcp_fragment(sk, skb, len, mss_now);
1594 
1595 	buff = sk_stream_alloc_skb(sk, 0, gfp);
1596 	if (unlikely(buff == NULL))
1597 		return -ENOMEM;
1598 
1599 	sk->sk_wmem_queued += buff->truesize;
1600 	sk_mem_charge(sk, buff->truesize);
1601 	buff->truesize += nlen;
1602 	skb->truesize -= nlen;
1603 
1604 	/* Correct the sequence numbers. */
1605 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1606 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1607 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1608 
1609 	/* PSH and FIN should only be set in the second packet. */
1610 	flags = TCP_SKB_CB(skb)->tcp_flags;
1611 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1612 	TCP_SKB_CB(buff)->tcp_flags = flags;
1613 
1614 	/* This packet was never sent out yet, so no SACK bits. */
1615 	TCP_SKB_CB(buff)->sacked = 0;
1616 
1617 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1618 	skb_split(skb, buff, len);
1619 
1620 	/* Fix up tso_factor for both original and new SKB.  */
1621 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1622 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1623 
1624 	/* Link BUFF into the send queue. */
1625 	skb_header_release(buff);
1626 	tcp_insert_write_queue_after(skb, buff, sk);
1627 
1628 	return 0;
1629 }
1630 
1631 /* Try to defer sending, if possible, in order to minimize the amount
1632  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1633  *
1634  * This algorithm is from John Heffner.
1635  */
1636 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1637 {
1638 	struct tcp_sock *tp = tcp_sk(sk);
1639 	const struct inet_connection_sock *icsk = inet_csk(sk);
1640 	u32 send_win, cong_win, limit, in_flight;
1641 	int win_divisor;
1642 
1643 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1644 		goto send_now;
1645 
1646 	if (icsk->icsk_ca_state != TCP_CA_Open)
1647 		goto send_now;
1648 
1649 	/* Defer for less than two clock ticks. */
1650 	if (tp->tso_deferred &&
1651 	    (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1652 		goto send_now;
1653 
1654 	in_flight = tcp_packets_in_flight(tp);
1655 
1656 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1657 
1658 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1659 
1660 	/* From in_flight test above, we know that cwnd > in_flight.  */
1661 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1662 
1663 	limit = min(send_win, cong_win);
1664 
1665 	/* If a full-sized TSO skb can be sent, do it. */
1666 	if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1667 			   tp->xmit_size_goal_segs * tp->mss_cache))
1668 		goto send_now;
1669 
1670 	/* Middle in queue won't get any more data, full sendable already? */
1671 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1672 		goto send_now;
1673 
1674 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1675 	if (win_divisor) {
1676 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1677 
1678 		/* If at least some fraction of a window is available,
1679 		 * just use it.
1680 		 */
1681 		chunk /= win_divisor;
1682 		if (limit >= chunk)
1683 			goto send_now;
1684 	} else {
1685 		/* Different approach, try not to defer past a single
1686 		 * ACK.  Receiver should ACK every other full sized
1687 		 * frame, so if we have space for more than 3 frames
1688 		 * then send now.
1689 		 */
1690 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1691 			goto send_now;
1692 	}
1693 
1694 	/* Ok, it looks like it is advisable to defer.
1695 	 * Do not rearm the timer if already set to not break TCP ACK clocking.
1696 	 */
1697 	if (!tp->tso_deferred)
1698 		tp->tso_deferred = 1 | (jiffies << 1);
1699 
1700 	return true;
1701 
1702 send_now:
1703 	tp->tso_deferred = 0;
1704 	return false;
1705 }
1706 
1707 /* Create a new MTU probe if we are ready.
1708  * MTU probe is regularly attempting to increase the path MTU by
1709  * deliberately sending larger packets.  This discovers routing
1710  * changes resulting in larger path MTUs.
1711  *
1712  * Returns 0 if we should wait to probe (no cwnd available),
1713  *         1 if a probe was sent,
1714  *         -1 otherwise
1715  */
1716 static int tcp_mtu_probe(struct sock *sk)
1717 {
1718 	struct tcp_sock *tp = tcp_sk(sk);
1719 	struct inet_connection_sock *icsk = inet_csk(sk);
1720 	struct sk_buff *skb, *nskb, *next;
1721 	int len;
1722 	int probe_size;
1723 	int size_needed;
1724 	int copy;
1725 	int mss_now;
1726 
1727 	/* Not currently probing/verifying,
1728 	 * not in recovery,
1729 	 * have enough cwnd, and
1730 	 * not SACKing (the variable headers throw things off) */
1731 	if (!icsk->icsk_mtup.enabled ||
1732 	    icsk->icsk_mtup.probe_size ||
1733 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1734 	    tp->snd_cwnd < 11 ||
1735 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1736 		return -1;
1737 
1738 	/* Very simple search strategy: just double the MSS. */
1739 	mss_now = tcp_current_mss(sk);
1740 	probe_size = 2 * tp->mss_cache;
1741 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1742 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1743 		/* TODO: set timer for probe_converge_event */
1744 		return -1;
1745 	}
1746 
1747 	/* Have enough data in the send queue to probe? */
1748 	if (tp->write_seq - tp->snd_nxt < size_needed)
1749 		return -1;
1750 
1751 	if (tp->snd_wnd < size_needed)
1752 		return -1;
1753 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1754 		return 0;
1755 
1756 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1757 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1758 		if (!tcp_packets_in_flight(tp))
1759 			return -1;
1760 		else
1761 			return 0;
1762 	}
1763 
1764 	/* We're allowed to probe.  Build it now. */
1765 	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1766 		return -1;
1767 	sk->sk_wmem_queued += nskb->truesize;
1768 	sk_mem_charge(sk, nskb->truesize);
1769 
1770 	skb = tcp_send_head(sk);
1771 
1772 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1773 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1774 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1775 	TCP_SKB_CB(nskb)->sacked = 0;
1776 	nskb->csum = 0;
1777 	nskb->ip_summed = skb->ip_summed;
1778 
1779 	tcp_insert_write_queue_before(nskb, skb, sk);
1780 
1781 	len = 0;
1782 	tcp_for_write_queue_from_safe(skb, next, sk) {
1783 		copy = min_t(int, skb->len, probe_size - len);
1784 		if (nskb->ip_summed)
1785 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1786 		else
1787 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1788 							    skb_put(nskb, copy),
1789 							    copy, nskb->csum);
1790 
1791 		if (skb->len <= copy) {
1792 			/* We've eaten all the data from this skb.
1793 			 * Throw it away. */
1794 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1795 			tcp_unlink_write_queue(skb, sk);
1796 			sk_wmem_free_skb(sk, skb);
1797 		} else {
1798 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1799 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1800 			if (!skb_shinfo(skb)->nr_frags) {
1801 				skb_pull(skb, copy);
1802 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1803 					skb->csum = csum_partial(skb->data,
1804 								 skb->len, 0);
1805 			} else {
1806 				__pskb_trim_head(skb, copy);
1807 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1808 			}
1809 			TCP_SKB_CB(skb)->seq += copy;
1810 		}
1811 
1812 		len += copy;
1813 
1814 		if (len >= probe_size)
1815 			break;
1816 	}
1817 	tcp_init_tso_segs(sk, nskb, nskb->len);
1818 
1819 	/* We're ready to send.  If this fails, the probe will
1820 	 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1821 	TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1822 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1823 		/* Decrement cwnd here because we are sending
1824 		 * effectively two packets. */
1825 		tp->snd_cwnd--;
1826 		tcp_event_new_data_sent(sk, nskb);
1827 
1828 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1829 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1830 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1831 
1832 		return 1;
1833 	}
1834 
1835 	return -1;
1836 }
1837 
1838 /* This routine writes packets to the network.  It advances the
1839  * send_head.  This happens as incoming acks open up the remote
1840  * window for us.
1841  *
1842  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1843  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1844  * account rare use of URG, this is not a big flaw.
1845  *
1846  * Send at most one packet when push_one > 0. Temporarily ignore
1847  * cwnd limit to force at most one packet out when push_one == 2.
1848 
1849  * Returns true, if no segments are in flight and we have queued segments,
1850  * but cannot send anything now because of SWS or another problem.
1851  */
1852 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1853 			   int push_one, gfp_t gfp)
1854 {
1855 	struct tcp_sock *tp = tcp_sk(sk);
1856 	struct sk_buff *skb;
1857 	unsigned int tso_segs, sent_pkts;
1858 	int cwnd_quota;
1859 	int result;
1860 
1861 	sent_pkts = 0;
1862 
1863 	if (!push_one) {
1864 		/* Do MTU probing. */
1865 		result = tcp_mtu_probe(sk);
1866 		if (!result) {
1867 			return false;
1868 		} else if (result > 0) {
1869 			sent_pkts = 1;
1870 		}
1871 	}
1872 
1873 	while ((skb = tcp_send_head(sk))) {
1874 		unsigned int limit;
1875 
1876 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1877 		BUG_ON(!tso_segs);
1878 
1879 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1880 			goto repair; /* Skip network transmission */
1881 
1882 		cwnd_quota = tcp_cwnd_test(tp, skb);
1883 		if (!cwnd_quota) {
1884 			if (push_one == 2)
1885 				/* Force out a loss probe pkt. */
1886 				cwnd_quota = 1;
1887 			else
1888 				break;
1889 		}
1890 
1891 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1892 			break;
1893 
1894 		if (tso_segs == 1) {
1895 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1896 						     (tcp_skb_is_last(sk, skb) ?
1897 						      nonagle : TCP_NAGLE_PUSH))))
1898 				break;
1899 		} else {
1900 			if (!push_one && tcp_tso_should_defer(sk, skb))
1901 				break;
1902 		}
1903 
1904 		/* TCP Small Queues :
1905 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1906 		 * This allows for :
1907 		 *  - better RTT estimation and ACK scheduling
1908 		 *  - faster recovery
1909 		 *  - high rates
1910 		 * Alas, some drivers / subsystems require a fair amount
1911 		 * of queued bytes to ensure line rate.
1912 		 * One example is wifi aggregation (802.11 AMPDU)
1913 		 */
1914 		limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
1915 			      sk->sk_pacing_rate >> 10);
1916 
1917 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1918 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1919 			/* It is possible TX completion already happened
1920 			 * before we set TSQ_THROTTLED, so we must
1921 			 * test again the condition.
1922 			 * We abuse smp_mb__after_clear_bit() because
1923 			 * there is no smp_mb__after_set_bit() yet
1924 			 */
1925 			smp_mb__after_clear_bit();
1926 			if (atomic_read(&sk->sk_wmem_alloc) > limit)
1927 				break;
1928 		}
1929 
1930 		limit = mss_now;
1931 		if (tso_segs > 1 && !tcp_urg_mode(tp))
1932 			limit = tcp_mss_split_point(sk, skb, mss_now,
1933 						    min_t(unsigned int,
1934 							  cwnd_quota,
1935 							  sk->sk_gso_max_segs),
1936 						    nonagle);
1937 
1938 		if (skb->len > limit &&
1939 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1940 			break;
1941 
1942 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1943 
1944 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1945 			break;
1946 
1947 repair:
1948 		/* Advance the send_head.  This one is sent out.
1949 		 * This call will increment packets_out.
1950 		 */
1951 		tcp_event_new_data_sent(sk, skb);
1952 
1953 		tcp_minshall_update(tp, mss_now, skb);
1954 		sent_pkts += tcp_skb_pcount(skb);
1955 
1956 		if (push_one)
1957 			break;
1958 	}
1959 
1960 	if (likely(sent_pkts)) {
1961 		if (tcp_in_cwnd_reduction(sk))
1962 			tp->prr_out += sent_pkts;
1963 
1964 		/* Send one loss probe per tail loss episode. */
1965 		if (push_one != 2)
1966 			tcp_schedule_loss_probe(sk);
1967 		tcp_cwnd_validate(sk);
1968 		return false;
1969 	}
1970 	return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1971 }
1972 
1973 bool tcp_schedule_loss_probe(struct sock *sk)
1974 {
1975 	struct inet_connection_sock *icsk = inet_csk(sk);
1976 	struct tcp_sock *tp = tcp_sk(sk);
1977 	u32 timeout, tlp_time_stamp, rto_time_stamp;
1978 	u32 rtt = tp->srtt >> 3;
1979 
1980 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
1981 		return false;
1982 	/* No consecutive loss probes. */
1983 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
1984 		tcp_rearm_rto(sk);
1985 		return false;
1986 	}
1987 	/* Don't do any loss probe on a Fast Open connection before 3WHS
1988 	 * finishes.
1989 	 */
1990 	if (sk->sk_state == TCP_SYN_RECV)
1991 		return false;
1992 
1993 	/* TLP is only scheduled when next timer event is RTO. */
1994 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
1995 		return false;
1996 
1997 	/* Schedule a loss probe in 2*RTT for SACK capable connections
1998 	 * in Open state, that are either limited by cwnd or application.
1999 	 */
2000 	if (sysctl_tcp_early_retrans < 3 || !tp->srtt || !tp->packets_out ||
2001 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2002 		return false;
2003 
2004 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2005 	     tcp_send_head(sk))
2006 		return false;
2007 
2008 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2009 	 * for delayed ack when there's one outstanding packet.
2010 	 */
2011 	timeout = rtt << 1;
2012 	if (tp->packets_out == 1)
2013 		timeout = max_t(u32, timeout,
2014 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2015 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2016 
2017 	/* If RTO is shorter, just schedule TLP in its place. */
2018 	tlp_time_stamp = tcp_time_stamp + timeout;
2019 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2020 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2021 		s32 delta = rto_time_stamp - tcp_time_stamp;
2022 		if (delta > 0)
2023 			timeout = delta;
2024 	}
2025 
2026 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2027 				  TCP_RTO_MAX);
2028 	return true;
2029 }
2030 
2031 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2032  * retransmit the last segment.
2033  */
2034 void tcp_send_loss_probe(struct sock *sk)
2035 {
2036 	struct tcp_sock *tp = tcp_sk(sk);
2037 	struct sk_buff *skb;
2038 	int pcount;
2039 	int mss = tcp_current_mss(sk);
2040 	int err = -1;
2041 
2042 	if (tcp_send_head(sk) != NULL) {
2043 		err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2044 		goto rearm_timer;
2045 	}
2046 
2047 	/* At most one outstanding TLP retransmission. */
2048 	if (tp->tlp_high_seq)
2049 		goto rearm_timer;
2050 
2051 	/* Retransmit last segment. */
2052 	skb = tcp_write_queue_tail(sk);
2053 	if (WARN_ON(!skb))
2054 		goto rearm_timer;
2055 
2056 	pcount = tcp_skb_pcount(skb);
2057 	if (WARN_ON(!pcount))
2058 		goto rearm_timer;
2059 
2060 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2061 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
2062 			goto rearm_timer;
2063 		skb = tcp_write_queue_tail(sk);
2064 	}
2065 
2066 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2067 		goto rearm_timer;
2068 
2069 	/* Probe with zero data doesn't trigger fast recovery. */
2070 	if (skb->len > 0)
2071 		err = __tcp_retransmit_skb(sk, skb);
2072 
2073 	/* Record snd_nxt for loss detection. */
2074 	if (likely(!err))
2075 		tp->tlp_high_seq = tp->snd_nxt;
2076 
2077 rearm_timer:
2078 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2079 				  inet_csk(sk)->icsk_rto,
2080 				  TCP_RTO_MAX);
2081 
2082 	if (likely(!err))
2083 		NET_INC_STATS_BH(sock_net(sk),
2084 				 LINUX_MIB_TCPLOSSPROBES);
2085 	return;
2086 }
2087 
2088 /* Push out any pending frames which were held back due to
2089  * TCP_CORK or attempt at coalescing tiny packets.
2090  * The socket must be locked by the caller.
2091  */
2092 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2093 			       int nonagle)
2094 {
2095 	/* If we are closed, the bytes will have to remain here.
2096 	 * In time closedown will finish, we empty the write queue and
2097 	 * all will be happy.
2098 	 */
2099 	if (unlikely(sk->sk_state == TCP_CLOSE))
2100 		return;
2101 
2102 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2103 			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2104 		tcp_check_probe_timer(sk);
2105 }
2106 
2107 /* Send _single_ skb sitting at the send head. This function requires
2108  * true push pending frames to setup probe timer etc.
2109  */
2110 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2111 {
2112 	struct sk_buff *skb = tcp_send_head(sk);
2113 
2114 	BUG_ON(!skb || skb->len < mss_now);
2115 
2116 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2117 }
2118 
2119 /* This function returns the amount that we can raise the
2120  * usable window based on the following constraints
2121  *
2122  * 1. The window can never be shrunk once it is offered (RFC 793)
2123  * 2. We limit memory per socket
2124  *
2125  * RFC 1122:
2126  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2127  *  RECV.NEXT + RCV.WIN fixed until:
2128  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2129  *
2130  * i.e. don't raise the right edge of the window until you can raise
2131  * it at least MSS bytes.
2132  *
2133  * Unfortunately, the recommended algorithm breaks header prediction,
2134  * since header prediction assumes th->window stays fixed.
2135  *
2136  * Strictly speaking, keeping th->window fixed violates the receiver
2137  * side SWS prevention criteria. The problem is that under this rule
2138  * a stream of single byte packets will cause the right side of the
2139  * window to always advance by a single byte.
2140  *
2141  * Of course, if the sender implements sender side SWS prevention
2142  * then this will not be a problem.
2143  *
2144  * BSD seems to make the following compromise:
2145  *
2146  *	If the free space is less than the 1/4 of the maximum
2147  *	space available and the free space is less than 1/2 mss,
2148  *	then set the window to 0.
2149  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2150  *	Otherwise, just prevent the window from shrinking
2151  *	and from being larger than the largest representable value.
2152  *
2153  * This prevents incremental opening of the window in the regime
2154  * where TCP is limited by the speed of the reader side taking
2155  * data out of the TCP receive queue. It does nothing about
2156  * those cases where the window is constrained on the sender side
2157  * because the pipeline is full.
2158  *
2159  * BSD also seems to "accidentally" limit itself to windows that are a
2160  * multiple of MSS, at least until the free space gets quite small.
2161  * This would appear to be a side effect of the mbuf implementation.
2162  * Combining these two algorithms results in the observed behavior
2163  * of having a fixed window size at almost all times.
2164  *
2165  * Below we obtain similar behavior by forcing the offered window to
2166  * a multiple of the mss when it is feasible to do so.
2167  *
2168  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2169  * Regular options like TIMESTAMP are taken into account.
2170  */
2171 u32 __tcp_select_window(struct sock *sk)
2172 {
2173 	struct inet_connection_sock *icsk = inet_csk(sk);
2174 	struct tcp_sock *tp = tcp_sk(sk);
2175 	/* MSS for the peer's data.  Previous versions used mss_clamp
2176 	 * here.  I don't know if the value based on our guesses
2177 	 * of peer's MSS is better for the performance.  It's more correct
2178 	 * but may be worse for the performance because of rcv_mss
2179 	 * fluctuations.  --SAW  1998/11/1
2180 	 */
2181 	int mss = icsk->icsk_ack.rcv_mss;
2182 	int free_space = tcp_space(sk);
2183 	int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2184 	int window;
2185 
2186 	if (mss > full_space)
2187 		mss = full_space;
2188 
2189 	if (free_space < (full_space >> 1)) {
2190 		icsk->icsk_ack.quick = 0;
2191 
2192 		if (sk_under_memory_pressure(sk))
2193 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2194 					       4U * tp->advmss);
2195 
2196 		if (free_space < mss)
2197 			return 0;
2198 	}
2199 
2200 	if (free_space > tp->rcv_ssthresh)
2201 		free_space = tp->rcv_ssthresh;
2202 
2203 	/* Don't do rounding if we are using window scaling, since the
2204 	 * scaled window will not line up with the MSS boundary anyway.
2205 	 */
2206 	window = tp->rcv_wnd;
2207 	if (tp->rx_opt.rcv_wscale) {
2208 		window = free_space;
2209 
2210 		/* Advertise enough space so that it won't get scaled away.
2211 		 * Import case: prevent zero window announcement if
2212 		 * 1<<rcv_wscale > mss.
2213 		 */
2214 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2215 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2216 				  << tp->rx_opt.rcv_wscale);
2217 	} else {
2218 		/* Get the largest window that is a nice multiple of mss.
2219 		 * Window clamp already applied above.
2220 		 * If our current window offering is within 1 mss of the
2221 		 * free space we just keep it. This prevents the divide
2222 		 * and multiply from happening most of the time.
2223 		 * We also don't do any window rounding when the free space
2224 		 * is too small.
2225 		 */
2226 		if (window <= free_space - mss || window > free_space)
2227 			window = (free_space / mss) * mss;
2228 		else if (mss == full_space &&
2229 			 free_space > window + (full_space >> 1))
2230 			window = free_space;
2231 	}
2232 
2233 	return window;
2234 }
2235 
2236 /* Collapses two adjacent SKB's during retransmission. */
2237 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2238 {
2239 	struct tcp_sock *tp = tcp_sk(sk);
2240 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2241 	int skb_size, next_skb_size;
2242 
2243 	skb_size = skb->len;
2244 	next_skb_size = next_skb->len;
2245 
2246 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2247 
2248 	tcp_highest_sack_combine(sk, next_skb, skb);
2249 
2250 	tcp_unlink_write_queue(next_skb, sk);
2251 
2252 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2253 				  next_skb_size);
2254 
2255 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2256 		skb->ip_summed = CHECKSUM_PARTIAL;
2257 
2258 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2259 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2260 
2261 	/* Update sequence range on original skb. */
2262 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2263 
2264 	/* Merge over control information. This moves PSH/FIN etc. over */
2265 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2266 
2267 	/* All done, get rid of second SKB and account for it so
2268 	 * packet counting does not break.
2269 	 */
2270 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2271 
2272 	/* changed transmit queue under us so clear hints */
2273 	tcp_clear_retrans_hints_partial(tp);
2274 	if (next_skb == tp->retransmit_skb_hint)
2275 		tp->retransmit_skb_hint = skb;
2276 
2277 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2278 
2279 	sk_wmem_free_skb(sk, next_skb);
2280 }
2281 
2282 /* Check if coalescing SKBs is legal. */
2283 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2284 {
2285 	if (tcp_skb_pcount(skb) > 1)
2286 		return false;
2287 	/* TODO: SACK collapsing could be used to remove this condition */
2288 	if (skb_shinfo(skb)->nr_frags != 0)
2289 		return false;
2290 	if (skb_cloned(skb))
2291 		return false;
2292 	if (skb == tcp_send_head(sk))
2293 		return false;
2294 	/* Some heurestics for collapsing over SACK'd could be invented */
2295 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2296 		return false;
2297 
2298 	return true;
2299 }
2300 
2301 /* Collapse packets in the retransmit queue to make to create
2302  * less packets on the wire. This is only done on retransmission.
2303  */
2304 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2305 				     int space)
2306 {
2307 	struct tcp_sock *tp = tcp_sk(sk);
2308 	struct sk_buff *skb = to, *tmp;
2309 	bool first = true;
2310 
2311 	if (!sysctl_tcp_retrans_collapse)
2312 		return;
2313 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2314 		return;
2315 
2316 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2317 		if (!tcp_can_collapse(sk, skb))
2318 			break;
2319 
2320 		space -= skb->len;
2321 
2322 		if (first) {
2323 			first = false;
2324 			continue;
2325 		}
2326 
2327 		if (space < 0)
2328 			break;
2329 		/* Punt if not enough space exists in the first SKB for
2330 		 * the data in the second
2331 		 */
2332 		if (skb->len > skb_availroom(to))
2333 			break;
2334 
2335 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2336 			break;
2337 
2338 		tcp_collapse_retrans(sk, to);
2339 	}
2340 }
2341 
2342 /* This retransmits one SKB.  Policy decisions and retransmit queue
2343  * state updates are done by the caller.  Returns non-zero if an
2344  * error occurred which prevented the send.
2345  */
2346 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2347 {
2348 	struct tcp_sock *tp = tcp_sk(sk);
2349 	struct inet_connection_sock *icsk = inet_csk(sk);
2350 	unsigned int cur_mss;
2351 	int err;
2352 
2353 	/* Inconslusive MTU probe */
2354 	if (icsk->icsk_mtup.probe_size) {
2355 		icsk->icsk_mtup.probe_size = 0;
2356 	}
2357 
2358 	/* Do not sent more than we queued. 1/4 is reserved for possible
2359 	 * copying overhead: fragmentation, tunneling, mangling etc.
2360 	 */
2361 	if (atomic_read(&sk->sk_wmem_alloc) >
2362 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2363 		return -EAGAIN;
2364 
2365 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2366 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2367 			BUG();
2368 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2369 			return -ENOMEM;
2370 	}
2371 
2372 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2373 		return -EHOSTUNREACH; /* Routing failure or similar. */
2374 
2375 	cur_mss = tcp_current_mss(sk);
2376 
2377 	/* If receiver has shrunk his window, and skb is out of
2378 	 * new window, do not retransmit it. The exception is the
2379 	 * case, when window is shrunk to zero. In this case
2380 	 * our retransmit serves as a zero window probe.
2381 	 */
2382 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2383 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2384 		return -EAGAIN;
2385 
2386 	if (skb->len > cur_mss) {
2387 		if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2388 			return -ENOMEM; /* We'll try again later. */
2389 	} else {
2390 		int oldpcount = tcp_skb_pcount(skb);
2391 
2392 		if (unlikely(oldpcount > 1)) {
2393 			if (skb_unclone(skb, GFP_ATOMIC))
2394 				return -ENOMEM;
2395 			tcp_init_tso_segs(sk, skb, cur_mss);
2396 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2397 		}
2398 	}
2399 
2400 	tcp_retrans_try_collapse(sk, skb, cur_mss);
2401 
2402 	/* Make a copy, if the first transmission SKB clone we made
2403 	 * is still in somebody's hands, else make a clone.
2404 	 */
2405 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2406 
2407 	/* make sure skb->data is aligned on arches that require it
2408 	 * and check if ack-trimming & collapsing extended the headroom
2409 	 * beyond what csum_start can cover.
2410 	 */
2411 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2412 		     skb_headroom(skb) >= 0xFFFF)) {
2413 		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2414 						   GFP_ATOMIC);
2415 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2416 			     -ENOBUFS;
2417 	} else {
2418 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2419 	}
2420 
2421 	if (likely(!err))
2422 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2423 	return err;
2424 }
2425 
2426 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2427 {
2428 	struct tcp_sock *tp = tcp_sk(sk);
2429 	int err = __tcp_retransmit_skb(sk, skb);
2430 
2431 	if (err == 0) {
2432 		/* Update global TCP statistics. */
2433 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2434 
2435 		tp->total_retrans++;
2436 
2437 #if FASTRETRANS_DEBUG > 0
2438 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2439 			net_dbg_ratelimited("retrans_out leaked\n");
2440 		}
2441 #endif
2442 		if (!tp->retrans_out)
2443 			tp->lost_retrans_low = tp->snd_nxt;
2444 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2445 		tp->retrans_out += tcp_skb_pcount(skb);
2446 
2447 		/* Save stamp of the first retransmit. */
2448 		if (!tp->retrans_stamp)
2449 			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2450 
2451 		tp->undo_retrans += tcp_skb_pcount(skb);
2452 
2453 		/* snd_nxt is stored to detect loss of retransmitted segment,
2454 		 * see tcp_input.c tcp_sacktag_write_queue().
2455 		 */
2456 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2457 	} else {
2458 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2459 	}
2460 	return err;
2461 }
2462 
2463 /* Check if we forward retransmits are possible in the current
2464  * window/congestion state.
2465  */
2466 static bool tcp_can_forward_retransmit(struct sock *sk)
2467 {
2468 	const struct inet_connection_sock *icsk = inet_csk(sk);
2469 	const struct tcp_sock *tp = tcp_sk(sk);
2470 
2471 	/* Forward retransmissions are possible only during Recovery. */
2472 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2473 		return false;
2474 
2475 	/* No forward retransmissions in Reno are possible. */
2476 	if (tcp_is_reno(tp))
2477 		return false;
2478 
2479 	/* Yeah, we have to make difficult choice between forward transmission
2480 	 * and retransmission... Both ways have their merits...
2481 	 *
2482 	 * For now we do not retransmit anything, while we have some new
2483 	 * segments to send. In the other cases, follow rule 3 for
2484 	 * NextSeg() specified in RFC3517.
2485 	 */
2486 
2487 	if (tcp_may_send_now(sk))
2488 		return false;
2489 
2490 	return true;
2491 }
2492 
2493 /* This gets called after a retransmit timeout, and the initially
2494  * retransmitted data is acknowledged.  It tries to continue
2495  * resending the rest of the retransmit queue, until either
2496  * we've sent it all or the congestion window limit is reached.
2497  * If doing SACK, the first ACK which comes back for a timeout
2498  * based retransmit packet might feed us FACK information again.
2499  * If so, we use it to avoid unnecessarily retransmissions.
2500  */
2501 void tcp_xmit_retransmit_queue(struct sock *sk)
2502 {
2503 	const struct inet_connection_sock *icsk = inet_csk(sk);
2504 	struct tcp_sock *tp = tcp_sk(sk);
2505 	struct sk_buff *skb;
2506 	struct sk_buff *hole = NULL;
2507 	u32 last_lost;
2508 	int mib_idx;
2509 	int fwd_rexmitting = 0;
2510 
2511 	if (!tp->packets_out)
2512 		return;
2513 
2514 	if (!tp->lost_out)
2515 		tp->retransmit_high = tp->snd_una;
2516 
2517 	if (tp->retransmit_skb_hint) {
2518 		skb = tp->retransmit_skb_hint;
2519 		last_lost = TCP_SKB_CB(skb)->end_seq;
2520 		if (after(last_lost, tp->retransmit_high))
2521 			last_lost = tp->retransmit_high;
2522 	} else {
2523 		skb = tcp_write_queue_head(sk);
2524 		last_lost = tp->snd_una;
2525 	}
2526 
2527 	tcp_for_write_queue_from(skb, sk) {
2528 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2529 
2530 		if (skb == tcp_send_head(sk))
2531 			break;
2532 		/* we could do better than to assign each time */
2533 		if (hole == NULL)
2534 			tp->retransmit_skb_hint = skb;
2535 
2536 		/* Assume this retransmit will generate
2537 		 * only one packet for congestion window
2538 		 * calculation purposes.  This works because
2539 		 * tcp_retransmit_skb() will chop up the
2540 		 * packet to be MSS sized and all the
2541 		 * packet counting works out.
2542 		 */
2543 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2544 			return;
2545 
2546 		if (fwd_rexmitting) {
2547 begin_fwd:
2548 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2549 				break;
2550 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2551 
2552 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2553 			tp->retransmit_high = last_lost;
2554 			if (!tcp_can_forward_retransmit(sk))
2555 				break;
2556 			/* Backtrack if necessary to non-L'ed skb */
2557 			if (hole != NULL) {
2558 				skb = hole;
2559 				hole = NULL;
2560 			}
2561 			fwd_rexmitting = 1;
2562 			goto begin_fwd;
2563 
2564 		} else if (!(sacked & TCPCB_LOST)) {
2565 			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2566 				hole = skb;
2567 			continue;
2568 
2569 		} else {
2570 			last_lost = TCP_SKB_CB(skb)->end_seq;
2571 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2572 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2573 			else
2574 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2575 		}
2576 
2577 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2578 			continue;
2579 
2580 		if (tcp_retransmit_skb(sk, skb))
2581 			return;
2582 
2583 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2584 
2585 		if (tcp_in_cwnd_reduction(sk))
2586 			tp->prr_out += tcp_skb_pcount(skb);
2587 
2588 		if (skb == tcp_write_queue_head(sk))
2589 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2590 						  inet_csk(sk)->icsk_rto,
2591 						  TCP_RTO_MAX);
2592 	}
2593 }
2594 
2595 /* Send a fin.  The caller locks the socket for us.  This cannot be
2596  * allowed to fail queueing a FIN frame under any circumstances.
2597  */
2598 void tcp_send_fin(struct sock *sk)
2599 {
2600 	struct tcp_sock *tp = tcp_sk(sk);
2601 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2602 	int mss_now;
2603 
2604 	/* Optimization, tack on the FIN if we have a queue of
2605 	 * unsent frames.  But be careful about outgoing SACKS
2606 	 * and IP options.
2607 	 */
2608 	mss_now = tcp_current_mss(sk);
2609 
2610 	if (tcp_send_head(sk) != NULL) {
2611 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2612 		TCP_SKB_CB(skb)->end_seq++;
2613 		tp->write_seq++;
2614 	} else {
2615 		/* Socket is locked, keep trying until memory is available. */
2616 		for (;;) {
2617 			skb = alloc_skb_fclone(MAX_TCP_HEADER,
2618 					       sk->sk_allocation);
2619 			if (skb)
2620 				break;
2621 			yield();
2622 		}
2623 
2624 		/* Reserve space for headers and prepare control bits. */
2625 		skb_reserve(skb, MAX_TCP_HEADER);
2626 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2627 		tcp_init_nondata_skb(skb, tp->write_seq,
2628 				     TCPHDR_ACK | TCPHDR_FIN);
2629 		tcp_queue_skb(sk, skb);
2630 	}
2631 	__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2632 }
2633 
2634 /* We get here when a process closes a file descriptor (either due to
2635  * an explicit close() or as a byproduct of exit()'ing) and there
2636  * was unread data in the receive queue.  This behavior is recommended
2637  * by RFC 2525, section 2.17.  -DaveM
2638  */
2639 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2640 {
2641 	struct sk_buff *skb;
2642 
2643 	/* NOTE: No TCP options attached and we never retransmit this. */
2644 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2645 	if (!skb) {
2646 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2647 		return;
2648 	}
2649 
2650 	/* Reserve space for headers and prepare control bits. */
2651 	skb_reserve(skb, MAX_TCP_HEADER);
2652 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2653 			     TCPHDR_ACK | TCPHDR_RST);
2654 	/* Send it off. */
2655 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2656 	if (tcp_transmit_skb(sk, skb, 0, priority))
2657 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2658 
2659 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2660 }
2661 
2662 /* Send a crossed SYN-ACK during socket establishment.
2663  * WARNING: This routine must only be called when we have already sent
2664  * a SYN packet that crossed the incoming SYN that caused this routine
2665  * to get called. If this assumption fails then the initial rcv_wnd
2666  * and rcv_wscale values will not be correct.
2667  */
2668 int tcp_send_synack(struct sock *sk)
2669 {
2670 	struct sk_buff *skb;
2671 
2672 	skb = tcp_write_queue_head(sk);
2673 	if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2674 		pr_debug("%s: wrong queue state\n", __func__);
2675 		return -EFAULT;
2676 	}
2677 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2678 		if (skb_cloned(skb)) {
2679 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2680 			if (nskb == NULL)
2681 				return -ENOMEM;
2682 			tcp_unlink_write_queue(skb, sk);
2683 			skb_header_release(nskb);
2684 			__tcp_add_write_queue_head(sk, nskb);
2685 			sk_wmem_free_skb(sk, skb);
2686 			sk->sk_wmem_queued += nskb->truesize;
2687 			sk_mem_charge(sk, nskb->truesize);
2688 			skb = nskb;
2689 		}
2690 
2691 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2692 		TCP_ECN_send_synack(tcp_sk(sk), skb);
2693 	}
2694 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2695 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2696 }
2697 
2698 /**
2699  * tcp_make_synack - Prepare a SYN-ACK.
2700  * sk: listener socket
2701  * dst: dst entry attached to the SYNACK
2702  * req: request_sock pointer
2703  *
2704  * Allocate one skb and build a SYNACK packet.
2705  * @dst is consumed : Caller should not use it again.
2706  */
2707 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2708 				struct request_sock *req,
2709 				struct tcp_fastopen_cookie *foc)
2710 {
2711 	struct tcp_out_options opts;
2712 	struct inet_request_sock *ireq = inet_rsk(req);
2713 	struct tcp_sock *tp = tcp_sk(sk);
2714 	struct tcphdr *th;
2715 	struct sk_buff *skb;
2716 	struct tcp_md5sig_key *md5;
2717 	int tcp_header_size;
2718 	int mss;
2719 
2720 	skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2721 	if (unlikely(!skb)) {
2722 		dst_release(dst);
2723 		return NULL;
2724 	}
2725 	/* Reserve space for headers. */
2726 	skb_reserve(skb, MAX_TCP_HEADER);
2727 
2728 	skb_dst_set(skb, dst);
2729 	security_skb_owned_by(skb, sk);
2730 
2731 	mss = dst_metric_advmss(dst);
2732 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2733 		mss = tp->rx_opt.user_mss;
2734 
2735 	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2736 		__u8 rcv_wscale;
2737 		/* Set this up on the first call only */
2738 		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2739 
2740 		/* limit the window selection if the user enforce a smaller rx buffer */
2741 		if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2742 		    (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2743 			req->window_clamp = tcp_full_space(sk);
2744 
2745 		/* tcp_full_space because it is guaranteed to be the first packet */
2746 		tcp_select_initial_window(tcp_full_space(sk),
2747 			mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2748 			&req->rcv_wnd,
2749 			&req->window_clamp,
2750 			ireq->wscale_ok,
2751 			&rcv_wscale,
2752 			dst_metric(dst, RTAX_INITRWND));
2753 		ireq->rcv_wscale = rcv_wscale;
2754 	}
2755 
2756 	memset(&opts, 0, sizeof(opts));
2757 #ifdef CONFIG_SYN_COOKIES
2758 	if (unlikely(req->cookie_ts))
2759 		TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2760 	else
2761 #endif
2762 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2763 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2764 					     foc) + sizeof(*th);
2765 
2766 	skb_push(skb, tcp_header_size);
2767 	skb_reset_transport_header(skb);
2768 
2769 	th = tcp_hdr(skb);
2770 	memset(th, 0, sizeof(struct tcphdr));
2771 	th->syn = 1;
2772 	th->ack = 1;
2773 	TCP_ECN_make_synack(req, th);
2774 	th->source = htons(ireq->ir_num);
2775 	th->dest = ireq->ir_rmt_port;
2776 	/* Setting of flags are superfluous here for callers (and ECE is
2777 	 * not even correctly set)
2778 	 */
2779 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2780 			     TCPHDR_SYN | TCPHDR_ACK);
2781 
2782 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2783 	/* XXX data is queued and acked as is. No buffer/window check */
2784 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2785 
2786 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2787 	th->window = htons(min(req->rcv_wnd, 65535U));
2788 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
2789 	th->doff = (tcp_header_size >> 2);
2790 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2791 
2792 #ifdef CONFIG_TCP_MD5SIG
2793 	/* Okay, we have all we need - do the md5 hash if needed */
2794 	if (md5) {
2795 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2796 					       md5, NULL, req, skb);
2797 	}
2798 #endif
2799 
2800 	return skb;
2801 }
2802 EXPORT_SYMBOL(tcp_make_synack);
2803 
2804 /* Do all connect socket setups that can be done AF independent. */
2805 static void tcp_connect_init(struct sock *sk)
2806 {
2807 	const struct dst_entry *dst = __sk_dst_get(sk);
2808 	struct tcp_sock *tp = tcp_sk(sk);
2809 	__u8 rcv_wscale;
2810 
2811 	/* We'll fix this up when we get a response from the other end.
2812 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2813 	 */
2814 	tp->tcp_header_len = sizeof(struct tcphdr) +
2815 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2816 
2817 #ifdef CONFIG_TCP_MD5SIG
2818 	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2819 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2820 #endif
2821 
2822 	/* If user gave his TCP_MAXSEG, record it to clamp */
2823 	if (tp->rx_opt.user_mss)
2824 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2825 	tp->max_window = 0;
2826 	tcp_mtup_init(sk);
2827 	tcp_sync_mss(sk, dst_mtu(dst));
2828 
2829 	if (!tp->window_clamp)
2830 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2831 	tp->advmss = dst_metric_advmss(dst);
2832 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2833 		tp->advmss = tp->rx_opt.user_mss;
2834 
2835 	tcp_initialize_rcv_mss(sk);
2836 
2837 	/* limit the window selection if the user enforce a smaller rx buffer */
2838 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2839 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2840 		tp->window_clamp = tcp_full_space(sk);
2841 
2842 	tcp_select_initial_window(tcp_full_space(sk),
2843 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2844 				  &tp->rcv_wnd,
2845 				  &tp->window_clamp,
2846 				  sysctl_tcp_window_scaling,
2847 				  &rcv_wscale,
2848 				  dst_metric(dst, RTAX_INITRWND));
2849 
2850 	tp->rx_opt.rcv_wscale = rcv_wscale;
2851 	tp->rcv_ssthresh = tp->rcv_wnd;
2852 
2853 	sk->sk_err = 0;
2854 	sock_reset_flag(sk, SOCK_DONE);
2855 	tp->snd_wnd = 0;
2856 	tcp_init_wl(tp, 0);
2857 	tp->snd_una = tp->write_seq;
2858 	tp->snd_sml = tp->write_seq;
2859 	tp->snd_up = tp->write_seq;
2860 	tp->snd_nxt = tp->write_seq;
2861 
2862 	if (likely(!tp->repair))
2863 		tp->rcv_nxt = 0;
2864 	else
2865 		tp->rcv_tstamp = tcp_time_stamp;
2866 	tp->rcv_wup = tp->rcv_nxt;
2867 	tp->copied_seq = tp->rcv_nxt;
2868 
2869 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2870 	inet_csk(sk)->icsk_retransmits = 0;
2871 	tcp_clear_retrans(tp);
2872 }
2873 
2874 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2875 {
2876 	struct tcp_sock *tp = tcp_sk(sk);
2877 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2878 
2879 	tcb->end_seq += skb->len;
2880 	skb_header_release(skb);
2881 	__tcp_add_write_queue_tail(sk, skb);
2882 	sk->sk_wmem_queued += skb->truesize;
2883 	sk_mem_charge(sk, skb->truesize);
2884 	tp->write_seq = tcb->end_seq;
2885 	tp->packets_out += tcp_skb_pcount(skb);
2886 }
2887 
2888 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2889  * queue a data-only packet after the regular SYN, such that regular SYNs
2890  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2891  * only the SYN sequence, the data are retransmitted in the first ACK.
2892  * If cookie is not cached or other error occurs, falls back to send a
2893  * regular SYN with Fast Open cookie request option.
2894  */
2895 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2896 {
2897 	struct tcp_sock *tp = tcp_sk(sk);
2898 	struct tcp_fastopen_request *fo = tp->fastopen_req;
2899 	int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2900 	struct sk_buff *syn_data = NULL, *data;
2901 	unsigned long last_syn_loss = 0;
2902 
2903 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
2904 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2905 			       &syn_loss, &last_syn_loss);
2906 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
2907 	if (syn_loss > 1 &&
2908 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2909 		fo->cookie.len = -1;
2910 		goto fallback;
2911 	}
2912 
2913 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2914 		fo->cookie.len = -1;
2915 	else if (fo->cookie.len <= 0)
2916 		goto fallback;
2917 
2918 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2919 	 * user-MSS. Reserve maximum option space for middleboxes that add
2920 	 * private TCP options. The cost is reduced data space in SYN :(
2921 	 */
2922 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2923 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2924 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2925 		MAX_TCP_OPTION_SPACE;
2926 
2927 	space = min_t(size_t, space, fo->size);
2928 
2929 	/* limit to order-0 allocations */
2930 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
2931 
2932 	syn_data = skb_copy_expand(syn, MAX_TCP_HEADER, space,
2933 				   sk->sk_allocation);
2934 	if (syn_data == NULL)
2935 		goto fallback;
2936 
2937 	for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2938 		struct iovec *iov = &fo->data->msg_iov[i];
2939 		unsigned char __user *from = iov->iov_base;
2940 		int len = iov->iov_len;
2941 
2942 		if (syn_data->len + len > space)
2943 			len = space - syn_data->len;
2944 		else if (i + 1 == iovlen)
2945 			/* No more data pending in inet_wait_for_connect() */
2946 			fo->data = NULL;
2947 
2948 		if (skb_add_data(syn_data, from, len))
2949 			goto fallback;
2950 	}
2951 
2952 	/* Queue a data-only packet after the regular SYN for retransmission */
2953 	data = pskb_copy(syn_data, sk->sk_allocation);
2954 	if (data == NULL)
2955 		goto fallback;
2956 	TCP_SKB_CB(data)->seq++;
2957 	TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2958 	TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2959 	tcp_connect_queue_skb(sk, data);
2960 	fo->copied = data->len;
2961 
2962 	if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2963 		tp->syn_data = (fo->copied > 0);
2964 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2965 		goto done;
2966 	}
2967 	syn_data = NULL;
2968 
2969 fallback:
2970 	/* Send a regular SYN with Fast Open cookie request option */
2971 	if (fo->cookie.len > 0)
2972 		fo->cookie.len = 0;
2973 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2974 	if (err)
2975 		tp->syn_fastopen = 0;
2976 	kfree_skb(syn_data);
2977 done:
2978 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
2979 	return err;
2980 }
2981 
2982 /* Build a SYN and send it off. */
2983 int tcp_connect(struct sock *sk)
2984 {
2985 	struct tcp_sock *tp = tcp_sk(sk);
2986 	struct sk_buff *buff;
2987 	int err;
2988 
2989 	tcp_connect_init(sk);
2990 
2991 	if (unlikely(tp->repair)) {
2992 		tcp_finish_connect(sk, NULL);
2993 		return 0;
2994 	}
2995 
2996 	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2997 	if (unlikely(buff == NULL))
2998 		return -ENOBUFS;
2999 
3000 	/* Reserve space for headers. */
3001 	skb_reserve(buff, MAX_TCP_HEADER);
3002 
3003 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3004 	tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
3005 	tcp_connect_queue_skb(sk, buff);
3006 	TCP_ECN_send_syn(sk, buff);
3007 
3008 	/* Send off SYN; include data in Fast Open. */
3009 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3010 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3011 	if (err == -ECONNREFUSED)
3012 		return err;
3013 
3014 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3015 	 * in order to make this packet get counted in tcpOutSegs.
3016 	 */
3017 	tp->snd_nxt = tp->write_seq;
3018 	tp->pushed_seq = tp->write_seq;
3019 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3020 
3021 	/* Timer for repeating the SYN until an answer. */
3022 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3023 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3024 	return 0;
3025 }
3026 EXPORT_SYMBOL(tcp_connect);
3027 
3028 /* Send out a delayed ack, the caller does the policy checking
3029  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3030  * for details.
3031  */
3032 void tcp_send_delayed_ack(struct sock *sk)
3033 {
3034 	struct inet_connection_sock *icsk = inet_csk(sk);
3035 	int ato = icsk->icsk_ack.ato;
3036 	unsigned long timeout;
3037 
3038 	if (ato > TCP_DELACK_MIN) {
3039 		const struct tcp_sock *tp = tcp_sk(sk);
3040 		int max_ato = HZ / 2;
3041 
3042 		if (icsk->icsk_ack.pingpong ||
3043 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3044 			max_ato = TCP_DELACK_MAX;
3045 
3046 		/* Slow path, intersegment interval is "high". */
3047 
3048 		/* If some rtt estimate is known, use it to bound delayed ack.
3049 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3050 		 * directly.
3051 		 */
3052 		if (tp->srtt) {
3053 			int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
3054 
3055 			if (rtt < max_ato)
3056 				max_ato = rtt;
3057 		}
3058 
3059 		ato = min(ato, max_ato);
3060 	}
3061 
3062 	/* Stay within the limit we were given */
3063 	timeout = jiffies + ato;
3064 
3065 	/* Use new timeout only if there wasn't a older one earlier. */
3066 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3067 		/* If delack timer was blocked or is about to expire,
3068 		 * send ACK now.
3069 		 */
3070 		if (icsk->icsk_ack.blocked ||
3071 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3072 			tcp_send_ack(sk);
3073 			return;
3074 		}
3075 
3076 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3077 			timeout = icsk->icsk_ack.timeout;
3078 	}
3079 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3080 	icsk->icsk_ack.timeout = timeout;
3081 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3082 }
3083 
3084 /* This routine sends an ack and also updates the window. */
3085 void tcp_send_ack(struct sock *sk)
3086 {
3087 	struct sk_buff *buff;
3088 
3089 	/* If we have been reset, we may not send again. */
3090 	if (sk->sk_state == TCP_CLOSE)
3091 		return;
3092 
3093 	/* We are not putting this on the write queue, so
3094 	 * tcp_transmit_skb() will set the ownership to this
3095 	 * sock.
3096 	 */
3097 	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3098 	if (buff == NULL) {
3099 		inet_csk_schedule_ack(sk);
3100 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3101 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3102 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3103 		return;
3104 	}
3105 
3106 	/* Reserve space for headers and prepare control bits. */
3107 	skb_reserve(buff, MAX_TCP_HEADER);
3108 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3109 
3110 	/* Send it off, this clears delayed acks for us. */
3111 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
3112 	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3113 }
3114 
3115 /* This routine sends a packet with an out of date sequence
3116  * number. It assumes the other end will try to ack it.
3117  *
3118  * Question: what should we make while urgent mode?
3119  * 4.4BSD forces sending single byte of data. We cannot send
3120  * out of window data, because we have SND.NXT==SND.MAX...
3121  *
3122  * Current solution: to send TWO zero-length segments in urgent mode:
3123  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3124  * out-of-date with SND.UNA-1 to probe window.
3125  */
3126 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3127 {
3128 	struct tcp_sock *tp = tcp_sk(sk);
3129 	struct sk_buff *skb;
3130 
3131 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3132 	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3133 	if (skb == NULL)
3134 		return -1;
3135 
3136 	/* Reserve space for headers and set control bits. */
3137 	skb_reserve(skb, MAX_TCP_HEADER);
3138 	/* Use a previous sequence.  This should cause the other
3139 	 * end to send an ack.  Don't queue or clone SKB, just
3140 	 * send it.
3141 	 */
3142 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3143 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
3144 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3145 }
3146 
3147 void tcp_send_window_probe(struct sock *sk)
3148 {
3149 	if (sk->sk_state == TCP_ESTABLISHED) {
3150 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3151 		tcp_xmit_probe_skb(sk, 0);
3152 	}
3153 }
3154 
3155 /* Initiate keepalive or window probe from timer. */
3156 int tcp_write_wakeup(struct sock *sk)
3157 {
3158 	struct tcp_sock *tp = tcp_sk(sk);
3159 	struct sk_buff *skb;
3160 
3161 	if (sk->sk_state == TCP_CLOSE)
3162 		return -1;
3163 
3164 	if ((skb = tcp_send_head(sk)) != NULL &&
3165 	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3166 		int err;
3167 		unsigned int mss = tcp_current_mss(sk);
3168 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3169 
3170 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3171 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3172 
3173 		/* We are probing the opening of a window
3174 		 * but the window size is != 0
3175 		 * must have been a result SWS avoidance ( sender )
3176 		 */
3177 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3178 		    skb->len > mss) {
3179 			seg_size = min(seg_size, mss);
3180 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3181 			if (tcp_fragment(sk, skb, seg_size, mss))
3182 				return -1;
3183 		} else if (!tcp_skb_pcount(skb))
3184 			tcp_set_skb_tso_segs(sk, skb, mss);
3185 
3186 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3187 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
3188 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3189 		if (!err)
3190 			tcp_event_new_data_sent(sk, skb);
3191 		return err;
3192 	} else {
3193 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3194 			tcp_xmit_probe_skb(sk, 1);
3195 		return tcp_xmit_probe_skb(sk, 0);
3196 	}
3197 }
3198 
3199 /* A window probe timeout has occurred.  If window is not closed send
3200  * a partial packet else a zero probe.
3201  */
3202 void tcp_send_probe0(struct sock *sk)
3203 {
3204 	struct inet_connection_sock *icsk = inet_csk(sk);
3205 	struct tcp_sock *tp = tcp_sk(sk);
3206 	int err;
3207 
3208 	err = tcp_write_wakeup(sk);
3209 
3210 	if (tp->packets_out || !tcp_send_head(sk)) {
3211 		/* Cancel probe timer, if it is not required. */
3212 		icsk->icsk_probes_out = 0;
3213 		icsk->icsk_backoff = 0;
3214 		return;
3215 	}
3216 
3217 	if (err <= 0) {
3218 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3219 			icsk->icsk_backoff++;
3220 		icsk->icsk_probes_out++;
3221 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3222 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3223 					  TCP_RTO_MAX);
3224 	} else {
3225 		/* If packet was not sent due to local congestion,
3226 		 * do not backoff and do not remember icsk_probes_out.
3227 		 * Let local senders to fight for local resources.
3228 		 *
3229 		 * Use accumulated backoff yet.
3230 		 */
3231 		if (!icsk->icsk_probes_out)
3232 			icsk->icsk_probes_out = 1;
3233 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3234 					  min(icsk->icsk_rto << icsk->icsk_backoff,
3235 					      TCP_RESOURCE_PROBE_INTERVAL),
3236 					  TCP_RTO_MAX);
3237 	}
3238 }
3239