1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX; 66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat); 67 68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 69 int push_one, gfp_t gfp); 70 71 /* Account for new data that has been sent to the network. */ 72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 73 { 74 struct inet_connection_sock *icsk = inet_csk(sk); 75 struct tcp_sock *tp = tcp_sk(sk); 76 unsigned int prior_packets = tp->packets_out; 77 78 tcp_advance_send_head(sk, skb); 79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 80 81 tp->packets_out += tcp_skb_pcount(skb); 82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 84 tcp_rearm_rto(sk); 85 } 86 87 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 88 tcp_skb_pcount(skb)); 89 } 90 91 /* SND.NXT, if window was not shrunk. 92 * If window has been shrunk, what should we make? It is not clear at all. 93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 95 * invalid. OK, let's make this for now: 96 */ 97 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 98 { 99 const struct tcp_sock *tp = tcp_sk(sk); 100 101 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. 141 */ 142 void tcp_cwnd_restart(struct sock *sk, s32 delta) 143 { 144 struct tcp_sock *tp = tcp_sk(sk); 145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 146 u32 cwnd = tp->snd_cwnd; 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tp->snd_cwnd = max(cwnd, restart_cwnd); 156 tp->snd_cwnd_stamp = tcp_time_stamp; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_time_stamp; 166 167 if (tcp_packets_in_flight(tp) == 0) 168 tcp_ca_event(sk, CA_EVENT_TX_START); 169 170 tp->lsndtime = now; 171 172 /* If it is a reply for ato after last received 173 * packet, enter pingpong mode. 174 */ 175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 icsk->icsk_ack.pingpong = 1; 177 } 178 179 /* Account for an ACK we sent. */ 180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 181 { 182 tcp_dec_quickack_mode(sk, pkts); 183 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 184 } 185 186 187 u32 tcp_default_init_rwnd(u32 mss) 188 { 189 /* Initial receive window should be twice of TCP_INIT_CWND to 190 * enable proper sending of new unsent data during fast recovery 191 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 192 * limit when mss is larger than 1460. 193 */ 194 u32 init_rwnd = TCP_INIT_CWND * 2; 195 196 if (mss > 1460) 197 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 198 return init_rwnd; 199 } 200 201 /* Determine a window scaling and initial window to offer. 202 * Based on the assumption that the given amount of space 203 * will be offered. Store the results in the tp structure. 204 * NOTE: for smooth operation initial space offering should 205 * be a multiple of mss if possible. We assume here that mss >= 1. 206 * This MUST be enforced by all callers. 207 */ 208 void tcp_select_initial_window(int __space, __u32 mss, 209 __u32 *rcv_wnd, __u32 *window_clamp, 210 int wscale_ok, __u8 *rcv_wscale, 211 __u32 init_rcv_wnd) 212 { 213 unsigned int space = (__space < 0 ? 0 : __space); 214 215 /* If no clamp set the clamp to the max possible scaled window */ 216 if (*window_clamp == 0) 217 (*window_clamp) = (65535 << 14); 218 space = min(*window_clamp, space); 219 220 /* Quantize space offering to a multiple of mss if possible. */ 221 if (space > mss) 222 space = (space / mss) * mss; 223 224 /* NOTE: offering an initial window larger than 32767 225 * will break some buggy TCP stacks. If the admin tells us 226 * it is likely we could be speaking with such a buggy stack 227 * we will truncate our initial window offering to 32K-1 228 * unless the remote has sent us a window scaling option, 229 * which we interpret as a sign the remote TCP is not 230 * misinterpreting the window field as a signed quantity. 231 */ 232 if (sysctl_tcp_workaround_signed_windows) 233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 234 else 235 (*rcv_wnd) = space; 236 237 (*rcv_wscale) = 0; 238 if (wscale_ok) { 239 /* Set window scaling on max possible window 240 * See RFC1323 for an explanation of the limit to 14 241 */ 242 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 243 space = min_t(u32, space, *window_clamp); 244 while (space > 65535 && (*rcv_wscale) < 14) { 245 space >>= 1; 246 (*rcv_wscale)++; 247 } 248 } 249 250 if (mss > (1 << *rcv_wscale)) { 251 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 252 init_rcv_wnd = tcp_default_init_rwnd(mss); 253 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 254 } 255 256 /* Set the clamp no higher than max representable value */ 257 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 258 } 259 EXPORT_SYMBOL(tcp_select_initial_window); 260 261 /* Chose a new window to advertise, update state in tcp_sock for the 262 * socket, and return result with RFC1323 scaling applied. The return 263 * value can be stuffed directly into th->window for an outgoing 264 * frame. 265 */ 266 static u16 tcp_select_window(struct sock *sk) 267 { 268 struct tcp_sock *tp = tcp_sk(sk); 269 u32 old_win = tp->rcv_wnd; 270 u32 cur_win = tcp_receive_window(tp); 271 u32 new_win = __tcp_select_window(sk); 272 273 /* Never shrink the offered window */ 274 if (new_win < cur_win) { 275 /* Danger Will Robinson! 276 * Don't update rcv_wup/rcv_wnd here or else 277 * we will not be able to advertise a zero 278 * window in time. --DaveM 279 * 280 * Relax Will Robinson. 281 */ 282 if (new_win == 0) 283 NET_INC_STATS(sock_net(sk), 284 LINUX_MIB_TCPWANTZEROWINDOWADV); 285 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 286 } 287 tp->rcv_wnd = new_win; 288 tp->rcv_wup = tp->rcv_nxt; 289 290 /* Make sure we do not exceed the maximum possible 291 * scaled window. 292 */ 293 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 294 new_win = min(new_win, MAX_TCP_WINDOW); 295 else 296 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 297 298 /* RFC1323 scaling applied */ 299 new_win >>= tp->rx_opt.rcv_wscale; 300 301 /* If we advertise zero window, disable fast path. */ 302 if (new_win == 0) { 303 tp->pred_flags = 0; 304 if (old_win) 305 NET_INC_STATS(sock_net(sk), 306 LINUX_MIB_TCPTOZEROWINDOWADV); 307 } else if (old_win == 0) { 308 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 309 } 310 311 return new_win; 312 } 313 314 /* Packet ECN state for a SYN-ACK */ 315 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 316 { 317 const struct tcp_sock *tp = tcp_sk(sk); 318 319 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 320 if (!(tp->ecn_flags & TCP_ECN_OK)) 321 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 322 else if (tcp_ca_needs_ecn(sk)) 323 INET_ECN_xmit(sk); 324 } 325 326 /* Packet ECN state for a SYN. */ 327 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 328 { 329 struct tcp_sock *tp = tcp_sk(sk); 330 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 331 tcp_ca_needs_ecn(sk); 332 333 if (!use_ecn) { 334 const struct dst_entry *dst = __sk_dst_get(sk); 335 336 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 337 use_ecn = true; 338 } 339 340 tp->ecn_flags = 0; 341 342 if (use_ecn) { 343 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 344 tp->ecn_flags = TCP_ECN_OK; 345 if (tcp_ca_needs_ecn(sk)) 346 INET_ECN_xmit(sk); 347 } 348 } 349 350 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 351 { 352 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 353 /* tp->ecn_flags are cleared at a later point in time when 354 * SYN ACK is ultimatively being received. 355 */ 356 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 357 } 358 359 static void 360 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 361 { 362 if (inet_rsk(req)->ecn_ok) 363 th->ece = 1; 364 } 365 366 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 367 * be sent. 368 */ 369 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 370 int tcp_header_len) 371 { 372 struct tcp_sock *tp = tcp_sk(sk); 373 374 if (tp->ecn_flags & TCP_ECN_OK) { 375 /* Not-retransmitted data segment: set ECT and inject CWR. */ 376 if (skb->len != tcp_header_len && 377 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 378 INET_ECN_xmit(sk); 379 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 380 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 381 tcp_hdr(skb)->cwr = 1; 382 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 383 } 384 } else if (!tcp_ca_needs_ecn(sk)) { 385 /* ACK or retransmitted segment: clear ECT|CE */ 386 INET_ECN_dontxmit(sk); 387 } 388 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 389 tcp_hdr(skb)->ece = 1; 390 } 391 } 392 393 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 394 * auto increment end seqno. 395 */ 396 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 397 { 398 skb->ip_summed = CHECKSUM_PARTIAL; 399 skb->csum = 0; 400 401 TCP_SKB_CB(skb)->tcp_flags = flags; 402 TCP_SKB_CB(skb)->sacked = 0; 403 404 tcp_skb_pcount_set(skb, 1); 405 406 TCP_SKB_CB(skb)->seq = seq; 407 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 408 seq++; 409 TCP_SKB_CB(skb)->end_seq = seq; 410 } 411 412 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 413 { 414 return tp->snd_una != tp->snd_up; 415 } 416 417 #define OPTION_SACK_ADVERTISE (1 << 0) 418 #define OPTION_TS (1 << 1) 419 #define OPTION_MD5 (1 << 2) 420 #define OPTION_WSCALE (1 << 3) 421 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 422 423 struct tcp_out_options { 424 u16 options; /* bit field of OPTION_* */ 425 u16 mss; /* 0 to disable */ 426 u8 ws; /* window scale, 0 to disable */ 427 u8 num_sack_blocks; /* number of SACK blocks to include */ 428 u8 hash_size; /* bytes in hash_location */ 429 __u8 *hash_location; /* temporary pointer, overloaded */ 430 __u32 tsval, tsecr; /* need to include OPTION_TS */ 431 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 432 }; 433 434 /* Write previously computed TCP options to the packet. 435 * 436 * Beware: Something in the Internet is very sensitive to the ordering of 437 * TCP options, we learned this through the hard way, so be careful here. 438 * Luckily we can at least blame others for their non-compliance but from 439 * inter-operability perspective it seems that we're somewhat stuck with 440 * the ordering which we have been using if we want to keep working with 441 * those broken things (not that it currently hurts anybody as there isn't 442 * particular reason why the ordering would need to be changed). 443 * 444 * At least SACK_PERM as the first option is known to lead to a disaster 445 * (but it may well be that other scenarios fail similarly). 446 */ 447 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 448 struct tcp_out_options *opts) 449 { 450 u16 options = opts->options; /* mungable copy */ 451 452 if (unlikely(OPTION_MD5 & options)) { 453 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 454 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 455 /* overload cookie hash location */ 456 opts->hash_location = (__u8 *)ptr; 457 ptr += 4; 458 } 459 460 if (unlikely(opts->mss)) { 461 *ptr++ = htonl((TCPOPT_MSS << 24) | 462 (TCPOLEN_MSS << 16) | 463 opts->mss); 464 } 465 466 if (likely(OPTION_TS & options)) { 467 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 468 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 469 (TCPOLEN_SACK_PERM << 16) | 470 (TCPOPT_TIMESTAMP << 8) | 471 TCPOLEN_TIMESTAMP); 472 options &= ~OPTION_SACK_ADVERTISE; 473 } else { 474 *ptr++ = htonl((TCPOPT_NOP << 24) | 475 (TCPOPT_NOP << 16) | 476 (TCPOPT_TIMESTAMP << 8) | 477 TCPOLEN_TIMESTAMP); 478 } 479 *ptr++ = htonl(opts->tsval); 480 *ptr++ = htonl(opts->tsecr); 481 } 482 483 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 484 *ptr++ = htonl((TCPOPT_NOP << 24) | 485 (TCPOPT_NOP << 16) | 486 (TCPOPT_SACK_PERM << 8) | 487 TCPOLEN_SACK_PERM); 488 } 489 490 if (unlikely(OPTION_WSCALE & options)) { 491 *ptr++ = htonl((TCPOPT_NOP << 24) | 492 (TCPOPT_WINDOW << 16) | 493 (TCPOLEN_WINDOW << 8) | 494 opts->ws); 495 } 496 497 if (unlikely(opts->num_sack_blocks)) { 498 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 499 tp->duplicate_sack : tp->selective_acks; 500 int this_sack; 501 502 *ptr++ = htonl((TCPOPT_NOP << 24) | 503 (TCPOPT_NOP << 16) | 504 (TCPOPT_SACK << 8) | 505 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 506 TCPOLEN_SACK_PERBLOCK))); 507 508 for (this_sack = 0; this_sack < opts->num_sack_blocks; 509 ++this_sack) { 510 *ptr++ = htonl(sp[this_sack].start_seq); 511 *ptr++ = htonl(sp[this_sack].end_seq); 512 } 513 514 tp->rx_opt.dsack = 0; 515 } 516 517 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 518 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 519 u8 *p = (u8 *)ptr; 520 u32 len; /* Fast Open option length */ 521 522 if (foc->exp) { 523 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 524 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 525 TCPOPT_FASTOPEN_MAGIC); 526 p += TCPOLEN_EXP_FASTOPEN_BASE; 527 } else { 528 len = TCPOLEN_FASTOPEN_BASE + foc->len; 529 *p++ = TCPOPT_FASTOPEN; 530 *p++ = len; 531 } 532 533 memcpy(p, foc->val, foc->len); 534 if ((len & 3) == 2) { 535 p[foc->len] = TCPOPT_NOP; 536 p[foc->len + 1] = TCPOPT_NOP; 537 } 538 ptr += (len + 3) >> 2; 539 } 540 } 541 542 /* Compute TCP options for SYN packets. This is not the final 543 * network wire format yet. 544 */ 545 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 546 struct tcp_out_options *opts, 547 struct tcp_md5sig_key **md5) 548 { 549 struct tcp_sock *tp = tcp_sk(sk); 550 unsigned int remaining = MAX_TCP_OPTION_SPACE; 551 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 552 553 #ifdef CONFIG_TCP_MD5SIG 554 *md5 = tp->af_specific->md5_lookup(sk, sk); 555 if (*md5) { 556 opts->options |= OPTION_MD5; 557 remaining -= TCPOLEN_MD5SIG_ALIGNED; 558 } 559 #else 560 *md5 = NULL; 561 #endif 562 563 /* We always get an MSS option. The option bytes which will be seen in 564 * normal data packets should timestamps be used, must be in the MSS 565 * advertised. But we subtract them from tp->mss_cache so that 566 * calculations in tcp_sendmsg are simpler etc. So account for this 567 * fact here if necessary. If we don't do this correctly, as a 568 * receiver we won't recognize data packets as being full sized when we 569 * should, and thus we won't abide by the delayed ACK rules correctly. 570 * SACKs don't matter, we never delay an ACK when we have any of those 571 * going out. */ 572 opts->mss = tcp_advertise_mss(sk); 573 remaining -= TCPOLEN_MSS_ALIGNED; 574 575 if (likely(sysctl_tcp_timestamps && !*md5)) { 576 opts->options |= OPTION_TS; 577 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 578 opts->tsecr = tp->rx_opt.ts_recent; 579 remaining -= TCPOLEN_TSTAMP_ALIGNED; 580 } 581 if (likely(sysctl_tcp_window_scaling)) { 582 opts->ws = tp->rx_opt.rcv_wscale; 583 opts->options |= OPTION_WSCALE; 584 remaining -= TCPOLEN_WSCALE_ALIGNED; 585 } 586 if (likely(sysctl_tcp_sack)) { 587 opts->options |= OPTION_SACK_ADVERTISE; 588 if (unlikely(!(OPTION_TS & opts->options))) 589 remaining -= TCPOLEN_SACKPERM_ALIGNED; 590 } 591 592 if (fastopen && fastopen->cookie.len >= 0) { 593 u32 need = fastopen->cookie.len; 594 595 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 596 TCPOLEN_FASTOPEN_BASE; 597 need = (need + 3) & ~3U; /* Align to 32 bits */ 598 if (remaining >= need) { 599 opts->options |= OPTION_FAST_OPEN_COOKIE; 600 opts->fastopen_cookie = &fastopen->cookie; 601 remaining -= need; 602 tp->syn_fastopen = 1; 603 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 604 } 605 } 606 607 return MAX_TCP_OPTION_SPACE - remaining; 608 } 609 610 /* Set up TCP options for SYN-ACKs. */ 611 static unsigned int tcp_synack_options(struct request_sock *req, 612 unsigned int mss, struct sk_buff *skb, 613 struct tcp_out_options *opts, 614 const struct tcp_md5sig_key *md5, 615 struct tcp_fastopen_cookie *foc) 616 { 617 struct inet_request_sock *ireq = inet_rsk(req); 618 unsigned int remaining = MAX_TCP_OPTION_SPACE; 619 620 #ifdef CONFIG_TCP_MD5SIG 621 if (md5) { 622 opts->options |= OPTION_MD5; 623 remaining -= TCPOLEN_MD5SIG_ALIGNED; 624 625 /* We can't fit any SACK blocks in a packet with MD5 + TS 626 * options. There was discussion about disabling SACK 627 * rather than TS in order to fit in better with old, 628 * buggy kernels, but that was deemed to be unnecessary. 629 */ 630 ireq->tstamp_ok &= !ireq->sack_ok; 631 } 632 #endif 633 634 /* We always send an MSS option. */ 635 opts->mss = mss; 636 remaining -= TCPOLEN_MSS_ALIGNED; 637 638 if (likely(ireq->wscale_ok)) { 639 opts->ws = ireq->rcv_wscale; 640 opts->options |= OPTION_WSCALE; 641 remaining -= TCPOLEN_WSCALE_ALIGNED; 642 } 643 if (likely(ireq->tstamp_ok)) { 644 opts->options |= OPTION_TS; 645 opts->tsval = tcp_skb_timestamp(skb); 646 opts->tsecr = req->ts_recent; 647 remaining -= TCPOLEN_TSTAMP_ALIGNED; 648 } 649 if (likely(ireq->sack_ok)) { 650 opts->options |= OPTION_SACK_ADVERTISE; 651 if (unlikely(!ireq->tstamp_ok)) 652 remaining -= TCPOLEN_SACKPERM_ALIGNED; 653 } 654 if (foc != NULL && foc->len >= 0) { 655 u32 need = foc->len; 656 657 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 658 TCPOLEN_FASTOPEN_BASE; 659 need = (need + 3) & ~3U; /* Align to 32 bits */ 660 if (remaining >= need) { 661 opts->options |= OPTION_FAST_OPEN_COOKIE; 662 opts->fastopen_cookie = foc; 663 remaining -= need; 664 } 665 } 666 667 return MAX_TCP_OPTION_SPACE - remaining; 668 } 669 670 /* Compute TCP options for ESTABLISHED sockets. This is not the 671 * final wire format yet. 672 */ 673 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 674 struct tcp_out_options *opts, 675 struct tcp_md5sig_key **md5) 676 { 677 struct tcp_sock *tp = tcp_sk(sk); 678 unsigned int size = 0; 679 unsigned int eff_sacks; 680 681 opts->options = 0; 682 683 #ifdef CONFIG_TCP_MD5SIG 684 *md5 = tp->af_specific->md5_lookup(sk, sk); 685 if (unlikely(*md5)) { 686 opts->options |= OPTION_MD5; 687 size += TCPOLEN_MD5SIG_ALIGNED; 688 } 689 #else 690 *md5 = NULL; 691 #endif 692 693 if (likely(tp->rx_opt.tstamp_ok)) { 694 opts->options |= OPTION_TS; 695 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 696 opts->tsecr = tp->rx_opt.ts_recent; 697 size += TCPOLEN_TSTAMP_ALIGNED; 698 } 699 700 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 701 if (unlikely(eff_sacks)) { 702 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 703 opts->num_sack_blocks = 704 min_t(unsigned int, eff_sacks, 705 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 706 TCPOLEN_SACK_PERBLOCK); 707 size += TCPOLEN_SACK_BASE_ALIGNED + 708 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 709 } 710 711 return size; 712 } 713 714 715 /* TCP SMALL QUEUES (TSQ) 716 * 717 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 718 * to reduce RTT and bufferbloat. 719 * We do this using a special skb destructor (tcp_wfree). 720 * 721 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 722 * needs to be reallocated in a driver. 723 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 724 * 725 * Since transmit from skb destructor is forbidden, we use a tasklet 726 * to process all sockets that eventually need to send more skbs. 727 * We use one tasklet per cpu, with its own queue of sockets. 728 */ 729 struct tsq_tasklet { 730 struct tasklet_struct tasklet; 731 struct list_head head; /* queue of tcp sockets */ 732 }; 733 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 734 735 static void tcp_tsq_handler(struct sock *sk) 736 { 737 if ((1 << sk->sk_state) & 738 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 739 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 740 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle, 741 0, GFP_ATOMIC); 742 } 743 /* 744 * One tasklet per cpu tries to send more skbs. 745 * We run in tasklet context but need to disable irqs when 746 * transferring tsq->head because tcp_wfree() might 747 * interrupt us (non NAPI drivers) 748 */ 749 static void tcp_tasklet_func(unsigned long data) 750 { 751 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 752 LIST_HEAD(list); 753 unsigned long flags; 754 struct list_head *q, *n; 755 struct tcp_sock *tp; 756 struct sock *sk; 757 758 local_irq_save(flags); 759 list_splice_init(&tsq->head, &list); 760 local_irq_restore(flags); 761 762 list_for_each_safe(q, n, &list) { 763 tp = list_entry(q, struct tcp_sock, tsq_node); 764 list_del(&tp->tsq_node); 765 766 sk = (struct sock *)tp; 767 bh_lock_sock(sk); 768 769 if (!sock_owned_by_user(sk)) { 770 tcp_tsq_handler(sk); 771 } else { 772 /* defer the work to tcp_release_cb() */ 773 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 774 } 775 bh_unlock_sock(sk); 776 777 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 778 sk_free(sk); 779 } 780 } 781 782 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 783 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 784 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 785 (1UL << TCP_MTU_REDUCED_DEFERRED)) 786 /** 787 * tcp_release_cb - tcp release_sock() callback 788 * @sk: socket 789 * 790 * called from release_sock() to perform protocol dependent 791 * actions before socket release. 792 */ 793 void tcp_release_cb(struct sock *sk) 794 { 795 struct tcp_sock *tp = tcp_sk(sk); 796 unsigned long flags, nflags; 797 798 /* perform an atomic operation only if at least one flag is set */ 799 do { 800 flags = tp->tsq_flags; 801 if (!(flags & TCP_DEFERRED_ALL)) 802 return; 803 nflags = flags & ~TCP_DEFERRED_ALL; 804 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 805 806 if (flags & (1UL << TCP_TSQ_DEFERRED)) 807 tcp_tsq_handler(sk); 808 809 /* Here begins the tricky part : 810 * We are called from release_sock() with : 811 * 1) BH disabled 812 * 2) sk_lock.slock spinlock held 813 * 3) socket owned by us (sk->sk_lock.owned == 1) 814 * 815 * But following code is meant to be called from BH handlers, 816 * so we should keep BH disabled, but early release socket ownership 817 */ 818 sock_release_ownership(sk); 819 820 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 821 tcp_write_timer_handler(sk); 822 __sock_put(sk); 823 } 824 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 825 tcp_delack_timer_handler(sk); 826 __sock_put(sk); 827 } 828 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 829 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 830 __sock_put(sk); 831 } 832 } 833 EXPORT_SYMBOL(tcp_release_cb); 834 835 void __init tcp_tasklet_init(void) 836 { 837 int i; 838 839 for_each_possible_cpu(i) { 840 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 841 842 INIT_LIST_HEAD(&tsq->head); 843 tasklet_init(&tsq->tasklet, 844 tcp_tasklet_func, 845 (unsigned long)tsq); 846 } 847 } 848 849 /* 850 * Write buffer destructor automatically called from kfree_skb. 851 * We can't xmit new skbs from this context, as we might already 852 * hold qdisc lock. 853 */ 854 void tcp_wfree(struct sk_buff *skb) 855 { 856 struct sock *sk = skb->sk; 857 struct tcp_sock *tp = tcp_sk(sk); 858 int wmem; 859 860 /* Keep one reference on sk_wmem_alloc. 861 * Will be released by sk_free() from here or tcp_tasklet_func() 862 */ 863 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 864 865 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 866 * Wait until our queues (qdisc + devices) are drained. 867 * This gives : 868 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 869 * - chance for incoming ACK (processed by another cpu maybe) 870 * to migrate this flow (skb->ooo_okay will be eventually set) 871 */ 872 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 873 goto out; 874 875 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 876 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 877 unsigned long flags; 878 struct tsq_tasklet *tsq; 879 880 /* queue this socket to tasklet queue */ 881 local_irq_save(flags); 882 tsq = this_cpu_ptr(&tsq_tasklet); 883 list_add(&tp->tsq_node, &tsq->head); 884 tasklet_schedule(&tsq->tasklet); 885 local_irq_restore(flags); 886 return; 887 } 888 out: 889 sk_free(sk); 890 } 891 892 /* This routine actually transmits TCP packets queued in by 893 * tcp_do_sendmsg(). This is used by both the initial 894 * transmission and possible later retransmissions. 895 * All SKB's seen here are completely headerless. It is our 896 * job to build the TCP header, and pass the packet down to 897 * IP so it can do the same plus pass the packet off to the 898 * device. 899 * 900 * We are working here with either a clone of the original 901 * SKB, or a fresh unique copy made by the retransmit engine. 902 */ 903 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 904 gfp_t gfp_mask) 905 { 906 const struct inet_connection_sock *icsk = inet_csk(sk); 907 struct inet_sock *inet; 908 struct tcp_sock *tp; 909 struct tcp_skb_cb *tcb; 910 struct tcp_out_options opts; 911 unsigned int tcp_options_size, tcp_header_size; 912 struct tcp_md5sig_key *md5; 913 struct tcphdr *th; 914 int err; 915 916 BUG_ON(!skb || !tcp_skb_pcount(skb)); 917 918 if (clone_it) { 919 skb_mstamp_get(&skb->skb_mstamp); 920 921 if (unlikely(skb_cloned(skb))) 922 skb = pskb_copy(skb, gfp_mask); 923 else 924 skb = skb_clone(skb, gfp_mask); 925 if (unlikely(!skb)) 926 return -ENOBUFS; 927 } 928 929 inet = inet_sk(sk); 930 tp = tcp_sk(sk); 931 tcb = TCP_SKB_CB(skb); 932 memset(&opts, 0, sizeof(opts)); 933 934 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 935 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 936 else 937 tcp_options_size = tcp_established_options(sk, skb, &opts, 938 &md5); 939 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 940 941 /* if no packet is in qdisc/device queue, then allow XPS to select 942 * another queue. We can be called from tcp_tsq_handler() 943 * which holds one reference to sk_wmem_alloc. 944 * 945 * TODO: Ideally, in-flight pure ACK packets should not matter here. 946 * One way to get this would be to set skb->truesize = 2 on them. 947 */ 948 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 949 950 skb_push(skb, tcp_header_size); 951 skb_reset_transport_header(skb); 952 953 skb_orphan(skb); 954 skb->sk = sk; 955 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree; 956 skb_set_hash_from_sk(skb, sk); 957 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 958 959 /* Build TCP header and checksum it. */ 960 th = tcp_hdr(skb); 961 th->source = inet->inet_sport; 962 th->dest = inet->inet_dport; 963 th->seq = htonl(tcb->seq); 964 th->ack_seq = htonl(tp->rcv_nxt); 965 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 966 tcb->tcp_flags); 967 968 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 969 /* RFC1323: The window in SYN & SYN/ACK segments 970 * is never scaled. 971 */ 972 th->window = htons(min(tp->rcv_wnd, 65535U)); 973 } else { 974 th->window = htons(tcp_select_window(sk)); 975 } 976 th->check = 0; 977 th->urg_ptr = 0; 978 979 /* The urg_mode check is necessary during a below snd_una win probe */ 980 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 981 if (before(tp->snd_up, tcb->seq + 0x10000)) { 982 th->urg_ptr = htons(tp->snd_up - tcb->seq); 983 th->urg = 1; 984 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 985 th->urg_ptr = htons(0xFFFF); 986 th->urg = 1; 987 } 988 } 989 990 tcp_options_write((__be32 *)(th + 1), tp, &opts); 991 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 992 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 993 tcp_ecn_send(sk, skb, tcp_header_size); 994 995 #ifdef CONFIG_TCP_MD5SIG 996 /* Calculate the MD5 hash, as we have all we need now */ 997 if (md5) { 998 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 999 tp->af_specific->calc_md5_hash(opts.hash_location, 1000 md5, sk, skb); 1001 } 1002 #endif 1003 1004 icsk->icsk_af_ops->send_check(sk, skb); 1005 1006 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1007 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1008 1009 if (skb->len != tcp_header_size) 1010 tcp_event_data_sent(tp, sk); 1011 1012 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1013 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1014 tcp_skb_pcount(skb)); 1015 1016 tp->segs_out += tcp_skb_pcount(skb); 1017 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1018 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1019 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1020 1021 /* Our usage of tstamp should remain private */ 1022 skb->tstamp.tv64 = 0; 1023 1024 /* Cleanup our debris for IP stacks */ 1025 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1026 sizeof(struct inet6_skb_parm))); 1027 1028 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1029 1030 if (likely(err <= 0)) 1031 return err; 1032 1033 tcp_enter_cwr(sk); 1034 1035 return net_xmit_eval(err); 1036 } 1037 1038 /* This routine just queues the buffer for sending. 1039 * 1040 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1041 * otherwise socket can stall. 1042 */ 1043 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1044 { 1045 struct tcp_sock *tp = tcp_sk(sk); 1046 1047 /* Advance write_seq and place onto the write_queue. */ 1048 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1049 __skb_header_release(skb); 1050 tcp_add_write_queue_tail(sk, skb); 1051 sk->sk_wmem_queued += skb->truesize; 1052 sk_mem_charge(sk, skb->truesize); 1053 } 1054 1055 /* Initialize TSO segments for a packet. */ 1056 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1057 { 1058 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1059 /* Avoid the costly divide in the normal 1060 * non-TSO case. 1061 */ 1062 tcp_skb_pcount_set(skb, 1); 1063 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1064 } else { 1065 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1066 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1067 } 1068 } 1069 1070 /* When a modification to fackets out becomes necessary, we need to check 1071 * skb is counted to fackets_out or not. 1072 */ 1073 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1074 int decr) 1075 { 1076 struct tcp_sock *tp = tcp_sk(sk); 1077 1078 if (!tp->sacked_out || tcp_is_reno(tp)) 1079 return; 1080 1081 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1082 tp->fackets_out -= decr; 1083 } 1084 1085 /* Pcount in the middle of the write queue got changed, we need to do various 1086 * tweaks to fix counters 1087 */ 1088 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1089 { 1090 struct tcp_sock *tp = tcp_sk(sk); 1091 1092 tp->packets_out -= decr; 1093 1094 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1095 tp->sacked_out -= decr; 1096 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1097 tp->retrans_out -= decr; 1098 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1099 tp->lost_out -= decr; 1100 1101 /* Reno case is special. Sigh... */ 1102 if (tcp_is_reno(tp) && decr > 0) 1103 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1104 1105 tcp_adjust_fackets_out(sk, skb, decr); 1106 1107 if (tp->lost_skb_hint && 1108 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1109 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1110 tp->lost_cnt_hint -= decr; 1111 1112 tcp_verify_left_out(tp); 1113 } 1114 1115 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1116 { 1117 struct skb_shared_info *shinfo = skb_shinfo(skb); 1118 1119 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) && 1120 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1121 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1122 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1123 1124 shinfo->tx_flags &= ~tsflags; 1125 shinfo2->tx_flags |= tsflags; 1126 swap(shinfo->tskey, shinfo2->tskey); 1127 } 1128 } 1129 1130 /* Function to create two new TCP segments. Shrinks the given segment 1131 * to the specified size and appends a new segment with the rest of the 1132 * packet to the list. This won't be called frequently, I hope. 1133 * Remember, these are still headerless SKBs at this point. 1134 */ 1135 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1136 unsigned int mss_now, gfp_t gfp) 1137 { 1138 struct tcp_sock *tp = tcp_sk(sk); 1139 struct sk_buff *buff; 1140 int nsize, old_factor; 1141 int nlen; 1142 u8 flags; 1143 1144 if (WARN_ON(len > skb->len)) 1145 return -EINVAL; 1146 1147 nsize = skb_headlen(skb) - len; 1148 if (nsize < 0) 1149 nsize = 0; 1150 1151 if (skb_unclone(skb, gfp)) 1152 return -ENOMEM; 1153 1154 /* Get a new skb... force flag on. */ 1155 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1156 if (!buff) 1157 return -ENOMEM; /* We'll just try again later. */ 1158 1159 sk->sk_wmem_queued += buff->truesize; 1160 sk_mem_charge(sk, buff->truesize); 1161 nlen = skb->len - len - nsize; 1162 buff->truesize += nlen; 1163 skb->truesize -= nlen; 1164 1165 /* Correct the sequence numbers. */ 1166 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1167 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1168 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1169 1170 /* PSH and FIN should only be set in the second packet. */ 1171 flags = TCP_SKB_CB(skb)->tcp_flags; 1172 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1173 TCP_SKB_CB(buff)->tcp_flags = flags; 1174 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1175 1176 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1177 /* Copy and checksum data tail into the new buffer. */ 1178 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1179 skb_put(buff, nsize), 1180 nsize, 0); 1181 1182 skb_trim(skb, len); 1183 1184 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1185 } else { 1186 skb->ip_summed = CHECKSUM_PARTIAL; 1187 skb_split(skb, buff, len); 1188 } 1189 1190 buff->ip_summed = skb->ip_summed; 1191 1192 buff->tstamp = skb->tstamp; 1193 tcp_fragment_tstamp(skb, buff); 1194 1195 old_factor = tcp_skb_pcount(skb); 1196 1197 /* Fix up tso_factor for both original and new SKB. */ 1198 tcp_set_skb_tso_segs(skb, mss_now); 1199 tcp_set_skb_tso_segs(buff, mss_now); 1200 1201 /* If this packet has been sent out already, we must 1202 * adjust the various packet counters. 1203 */ 1204 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1205 int diff = old_factor - tcp_skb_pcount(skb) - 1206 tcp_skb_pcount(buff); 1207 1208 if (diff) 1209 tcp_adjust_pcount(sk, skb, diff); 1210 } 1211 1212 /* Link BUFF into the send queue. */ 1213 __skb_header_release(buff); 1214 tcp_insert_write_queue_after(skb, buff, sk); 1215 1216 return 0; 1217 } 1218 1219 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1220 * eventually). The difference is that pulled data not copied, but 1221 * immediately discarded. 1222 */ 1223 static void __pskb_trim_head(struct sk_buff *skb, int len) 1224 { 1225 struct skb_shared_info *shinfo; 1226 int i, k, eat; 1227 1228 eat = min_t(int, len, skb_headlen(skb)); 1229 if (eat) { 1230 __skb_pull(skb, eat); 1231 len -= eat; 1232 if (!len) 1233 return; 1234 } 1235 eat = len; 1236 k = 0; 1237 shinfo = skb_shinfo(skb); 1238 for (i = 0; i < shinfo->nr_frags; i++) { 1239 int size = skb_frag_size(&shinfo->frags[i]); 1240 1241 if (size <= eat) { 1242 skb_frag_unref(skb, i); 1243 eat -= size; 1244 } else { 1245 shinfo->frags[k] = shinfo->frags[i]; 1246 if (eat) { 1247 shinfo->frags[k].page_offset += eat; 1248 skb_frag_size_sub(&shinfo->frags[k], eat); 1249 eat = 0; 1250 } 1251 k++; 1252 } 1253 } 1254 shinfo->nr_frags = k; 1255 1256 skb_reset_tail_pointer(skb); 1257 skb->data_len -= len; 1258 skb->len = skb->data_len; 1259 } 1260 1261 /* Remove acked data from a packet in the transmit queue. */ 1262 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1263 { 1264 if (skb_unclone(skb, GFP_ATOMIC)) 1265 return -ENOMEM; 1266 1267 __pskb_trim_head(skb, len); 1268 1269 TCP_SKB_CB(skb)->seq += len; 1270 skb->ip_summed = CHECKSUM_PARTIAL; 1271 1272 skb->truesize -= len; 1273 sk->sk_wmem_queued -= len; 1274 sk_mem_uncharge(sk, len); 1275 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1276 1277 /* Any change of skb->len requires recalculation of tso factor. */ 1278 if (tcp_skb_pcount(skb) > 1) 1279 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1280 1281 return 0; 1282 } 1283 1284 /* Calculate MSS not accounting any TCP options. */ 1285 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1286 { 1287 const struct tcp_sock *tp = tcp_sk(sk); 1288 const struct inet_connection_sock *icsk = inet_csk(sk); 1289 int mss_now; 1290 1291 /* Calculate base mss without TCP options: 1292 It is MMS_S - sizeof(tcphdr) of rfc1122 1293 */ 1294 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1295 1296 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1297 if (icsk->icsk_af_ops->net_frag_header_len) { 1298 const struct dst_entry *dst = __sk_dst_get(sk); 1299 1300 if (dst && dst_allfrag(dst)) 1301 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1302 } 1303 1304 /* Clamp it (mss_clamp does not include tcp options) */ 1305 if (mss_now > tp->rx_opt.mss_clamp) 1306 mss_now = tp->rx_opt.mss_clamp; 1307 1308 /* Now subtract optional transport overhead */ 1309 mss_now -= icsk->icsk_ext_hdr_len; 1310 1311 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1312 if (mss_now < 48) 1313 mss_now = 48; 1314 return mss_now; 1315 } 1316 1317 /* Calculate MSS. Not accounting for SACKs here. */ 1318 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1319 { 1320 /* Subtract TCP options size, not including SACKs */ 1321 return __tcp_mtu_to_mss(sk, pmtu) - 1322 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1323 } 1324 1325 /* Inverse of above */ 1326 int tcp_mss_to_mtu(struct sock *sk, int mss) 1327 { 1328 const struct tcp_sock *tp = tcp_sk(sk); 1329 const struct inet_connection_sock *icsk = inet_csk(sk); 1330 int mtu; 1331 1332 mtu = mss + 1333 tp->tcp_header_len + 1334 icsk->icsk_ext_hdr_len + 1335 icsk->icsk_af_ops->net_header_len; 1336 1337 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1338 if (icsk->icsk_af_ops->net_frag_header_len) { 1339 const struct dst_entry *dst = __sk_dst_get(sk); 1340 1341 if (dst && dst_allfrag(dst)) 1342 mtu += icsk->icsk_af_ops->net_frag_header_len; 1343 } 1344 return mtu; 1345 } 1346 1347 /* MTU probing init per socket */ 1348 void tcp_mtup_init(struct sock *sk) 1349 { 1350 struct tcp_sock *tp = tcp_sk(sk); 1351 struct inet_connection_sock *icsk = inet_csk(sk); 1352 struct net *net = sock_net(sk); 1353 1354 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1355 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1356 icsk->icsk_af_ops->net_header_len; 1357 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1358 icsk->icsk_mtup.probe_size = 0; 1359 if (icsk->icsk_mtup.enabled) 1360 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1361 } 1362 EXPORT_SYMBOL(tcp_mtup_init); 1363 1364 /* This function synchronize snd mss to current pmtu/exthdr set. 1365 1366 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1367 for TCP options, but includes only bare TCP header. 1368 1369 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1370 It is minimum of user_mss and mss received with SYN. 1371 It also does not include TCP options. 1372 1373 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1374 1375 tp->mss_cache is current effective sending mss, including 1376 all tcp options except for SACKs. It is evaluated, 1377 taking into account current pmtu, but never exceeds 1378 tp->rx_opt.mss_clamp. 1379 1380 NOTE1. rfc1122 clearly states that advertised MSS 1381 DOES NOT include either tcp or ip options. 1382 1383 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1384 are READ ONLY outside this function. --ANK (980731) 1385 */ 1386 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1387 { 1388 struct tcp_sock *tp = tcp_sk(sk); 1389 struct inet_connection_sock *icsk = inet_csk(sk); 1390 int mss_now; 1391 1392 if (icsk->icsk_mtup.search_high > pmtu) 1393 icsk->icsk_mtup.search_high = pmtu; 1394 1395 mss_now = tcp_mtu_to_mss(sk, pmtu); 1396 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1397 1398 /* And store cached results */ 1399 icsk->icsk_pmtu_cookie = pmtu; 1400 if (icsk->icsk_mtup.enabled) 1401 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1402 tp->mss_cache = mss_now; 1403 1404 return mss_now; 1405 } 1406 EXPORT_SYMBOL(tcp_sync_mss); 1407 1408 /* Compute the current effective MSS, taking SACKs and IP options, 1409 * and even PMTU discovery events into account. 1410 */ 1411 unsigned int tcp_current_mss(struct sock *sk) 1412 { 1413 const struct tcp_sock *tp = tcp_sk(sk); 1414 const struct dst_entry *dst = __sk_dst_get(sk); 1415 u32 mss_now; 1416 unsigned int header_len; 1417 struct tcp_out_options opts; 1418 struct tcp_md5sig_key *md5; 1419 1420 mss_now = tp->mss_cache; 1421 1422 if (dst) { 1423 u32 mtu = dst_mtu(dst); 1424 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1425 mss_now = tcp_sync_mss(sk, mtu); 1426 } 1427 1428 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1429 sizeof(struct tcphdr); 1430 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1431 * some common options. If this is an odd packet (because we have SACK 1432 * blocks etc) then our calculated header_len will be different, and 1433 * we have to adjust mss_now correspondingly */ 1434 if (header_len != tp->tcp_header_len) { 1435 int delta = (int) header_len - tp->tcp_header_len; 1436 mss_now -= delta; 1437 } 1438 1439 return mss_now; 1440 } 1441 1442 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1443 * As additional protections, we do not touch cwnd in retransmission phases, 1444 * and if application hit its sndbuf limit recently. 1445 */ 1446 static void tcp_cwnd_application_limited(struct sock *sk) 1447 { 1448 struct tcp_sock *tp = tcp_sk(sk); 1449 1450 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1451 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1452 /* Limited by application or receiver window. */ 1453 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1454 u32 win_used = max(tp->snd_cwnd_used, init_win); 1455 if (win_used < tp->snd_cwnd) { 1456 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1457 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1458 } 1459 tp->snd_cwnd_used = 0; 1460 } 1461 tp->snd_cwnd_stamp = tcp_time_stamp; 1462 } 1463 1464 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1465 { 1466 struct tcp_sock *tp = tcp_sk(sk); 1467 1468 /* Track the maximum number of outstanding packets in each 1469 * window, and remember whether we were cwnd-limited then. 1470 */ 1471 if (!before(tp->snd_una, tp->max_packets_seq) || 1472 tp->packets_out > tp->max_packets_out) { 1473 tp->max_packets_out = tp->packets_out; 1474 tp->max_packets_seq = tp->snd_nxt; 1475 tp->is_cwnd_limited = is_cwnd_limited; 1476 } 1477 1478 if (tcp_is_cwnd_limited(sk)) { 1479 /* Network is feed fully. */ 1480 tp->snd_cwnd_used = 0; 1481 tp->snd_cwnd_stamp = tcp_time_stamp; 1482 } else { 1483 /* Network starves. */ 1484 if (tp->packets_out > tp->snd_cwnd_used) 1485 tp->snd_cwnd_used = tp->packets_out; 1486 1487 if (sysctl_tcp_slow_start_after_idle && 1488 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1489 tcp_cwnd_application_limited(sk); 1490 } 1491 } 1492 1493 /* Minshall's variant of the Nagle send check. */ 1494 static bool tcp_minshall_check(const struct tcp_sock *tp) 1495 { 1496 return after(tp->snd_sml, tp->snd_una) && 1497 !after(tp->snd_sml, tp->snd_nxt); 1498 } 1499 1500 /* Update snd_sml if this skb is under mss 1501 * Note that a TSO packet might end with a sub-mss segment 1502 * The test is really : 1503 * if ((skb->len % mss) != 0) 1504 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1505 * But we can avoid doing the divide again given we already have 1506 * skb_pcount = skb->len / mss_now 1507 */ 1508 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1509 const struct sk_buff *skb) 1510 { 1511 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1512 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1513 } 1514 1515 /* Return false, if packet can be sent now without violation Nagle's rules: 1516 * 1. It is full sized. (provided by caller in %partial bool) 1517 * 2. Or it contains FIN. (already checked by caller) 1518 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1519 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1520 * With Minshall's modification: all sent small packets are ACKed. 1521 */ 1522 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1523 int nonagle) 1524 { 1525 return partial && 1526 ((nonagle & TCP_NAGLE_CORK) || 1527 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1528 } 1529 1530 /* Return how many segs we'd like on a TSO packet, 1531 * to send one TSO packet per ms 1532 */ 1533 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now) 1534 { 1535 u32 bytes, segs; 1536 1537 bytes = min(sk->sk_pacing_rate >> 10, 1538 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1539 1540 /* Goal is to send at least one packet per ms, 1541 * not one big TSO packet every 100 ms. 1542 * This preserves ACK clocking and is consistent 1543 * with tcp_tso_should_defer() heuristic. 1544 */ 1545 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs); 1546 1547 return min_t(u32, segs, sk->sk_gso_max_segs); 1548 } 1549 1550 /* Returns the portion of skb which can be sent right away */ 1551 static unsigned int tcp_mss_split_point(const struct sock *sk, 1552 const struct sk_buff *skb, 1553 unsigned int mss_now, 1554 unsigned int max_segs, 1555 int nonagle) 1556 { 1557 const struct tcp_sock *tp = tcp_sk(sk); 1558 u32 partial, needed, window, max_len; 1559 1560 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1561 max_len = mss_now * max_segs; 1562 1563 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1564 return max_len; 1565 1566 needed = min(skb->len, window); 1567 1568 if (max_len <= needed) 1569 return max_len; 1570 1571 partial = needed % mss_now; 1572 /* If last segment is not a full MSS, check if Nagle rules allow us 1573 * to include this last segment in this skb. 1574 * Otherwise, we'll split the skb at last MSS boundary 1575 */ 1576 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1577 return needed - partial; 1578 1579 return needed; 1580 } 1581 1582 /* Can at least one segment of SKB be sent right now, according to the 1583 * congestion window rules? If so, return how many segments are allowed. 1584 */ 1585 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1586 const struct sk_buff *skb) 1587 { 1588 u32 in_flight, cwnd, halfcwnd; 1589 1590 /* Don't be strict about the congestion window for the final FIN. */ 1591 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1592 tcp_skb_pcount(skb) == 1) 1593 return 1; 1594 1595 in_flight = tcp_packets_in_flight(tp); 1596 cwnd = tp->snd_cwnd; 1597 if (in_flight >= cwnd) 1598 return 0; 1599 1600 /* For better scheduling, ensure we have at least 1601 * 2 GSO packets in flight. 1602 */ 1603 halfcwnd = max(cwnd >> 1, 1U); 1604 return min(halfcwnd, cwnd - in_flight); 1605 } 1606 1607 /* Initialize TSO state of a skb. 1608 * This must be invoked the first time we consider transmitting 1609 * SKB onto the wire. 1610 */ 1611 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1612 { 1613 int tso_segs = tcp_skb_pcount(skb); 1614 1615 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1616 tcp_set_skb_tso_segs(skb, mss_now); 1617 tso_segs = tcp_skb_pcount(skb); 1618 } 1619 return tso_segs; 1620 } 1621 1622 1623 /* Return true if the Nagle test allows this packet to be 1624 * sent now. 1625 */ 1626 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1627 unsigned int cur_mss, int nonagle) 1628 { 1629 /* Nagle rule does not apply to frames, which sit in the middle of the 1630 * write_queue (they have no chances to get new data). 1631 * 1632 * This is implemented in the callers, where they modify the 'nonagle' 1633 * argument based upon the location of SKB in the send queue. 1634 */ 1635 if (nonagle & TCP_NAGLE_PUSH) 1636 return true; 1637 1638 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1639 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1640 return true; 1641 1642 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1643 return true; 1644 1645 return false; 1646 } 1647 1648 /* Does at least the first segment of SKB fit into the send window? */ 1649 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1650 const struct sk_buff *skb, 1651 unsigned int cur_mss) 1652 { 1653 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1654 1655 if (skb->len > cur_mss) 1656 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1657 1658 return !after(end_seq, tcp_wnd_end(tp)); 1659 } 1660 1661 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1662 * should be put on the wire right now. If so, it returns the number of 1663 * packets allowed by the congestion window. 1664 */ 1665 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1666 unsigned int cur_mss, int nonagle) 1667 { 1668 const struct tcp_sock *tp = tcp_sk(sk); 1669 unsigned int cwnd_quota; 1670 1671 tcp_init_tso_segs(skb, cur_mss); 1672 1673 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1674 return 0; 1675 1676 cwnd_quota = tcp_cwnd_test(tp, skb); 1677 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1678 cwnd_quota = 0; 1679 1680 return cwnd_quota; 1681 } 1682 1683 /* Test if sending is allowed right now. */ 1684 bool tcp_may_send_now(struct sock *sk) 1685 { 1686 const struct tcp_sock *tp = tcp_sk(sk); 1687 struct sk_buff *skb = tcp_send_head(sk); 1688 1689 return skb && 1690 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1691 (tcp_skb_is_last(sk, skb) ? 1692 tp->nonagle : TCP_NAGLE_PUSH)); 1693 } 1694 1695 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1696 * which is put after SKB on the list. It is very much like 1697 * tcp_fragment() except that it may make several kinds of assumptions 1698 * in order to speed up the splitting operation. In particular, we 1699 * know that all the data is in scatter-gather pages, and that the 1700 * packet has never been sent out before (and thus is not cloned). 1701 */ 1702 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1703 unsigned int mss_now, gfp_t gfp) 1704 { 1705 struct sk_buff *buff; 1706 int nlen = skb->len - len; 1707 u8 flags; 1708 1709 /* All of a TSO frame must be composed of paged data. */ 1710 if (skb->len != skb->data_len) 1711 return tcp_fragment(sk, skb, len, mss_now, gfp); 1712 1713 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1714 if (unlikely(!buff)) 1715 return -ENOMEM; 1716 1717 sk->sk_wmem_queued += buff->truesize; 1718 sk_mem_charge(sk, buff->truesize); 1719 buff->truesize += nlen; 1720 skb->truesize -= nlen; 1721 1722 /* Correct the sequence numbers. */ 1723 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1724 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1725 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1726 1727 /* PSH and FIN should only be set in the second packet. */ 1728 flags = TCP_SKB_CB(skb)->tcp_flags; 1729 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1730 TCP_SKB_CB(buff)->tcp_flags = flags; 1731 1732 /* This packet was never sent out yet, so no SACK bits. */ 1733 TCP_SKB_CB(buff)->sacked = 0; 1734 1735 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1736 skb_split(skb, buff, len); 1737 tcp_fragment_tstamp(skb, buff); 1738 1739 /* Fix up tso_factor for both original and new SKB. */ 1740 tcp_set_skb_tso_segs(skb, mss_now); 1741 tcp_set_skb_tso_segs(buff, mss_now); 1742 1743 /* Link BUFF into the send queue. */ 1744 __skb_header_release(buff); 1745 tcp_insert_write_queue_after(skb, buff, sk); 1746 1747 return 0; 1748 } 1749 1750 /* Try to defer sending, if possible, in order to minimize the amount 1751 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1752 * 1753 * This algorithm is from John Heffner. 1754 */ 1755 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1756 bool *is_cwnd_limited, u32 max_segs) 1757 { 1758 const struct inet_connection_sock *icsk = inet_csk(sk); 1759 u32 age, send_win, cong_win, limit, in_flight; 1760 struct tcp_sock *tp = tcp_sk(sk); 1761 struct skb_mstamp now; 1762 struct sk_buff *head; 1763 int win_divisor; 1764 1765 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1766 goto send_now; 1767 1768 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1769 goto send_now; 1770 1771 /* Avoid bursty behavior by allowing defer 1772 * only if the last write was recent. 1773 */ 1774 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0) 1775 goto send_now; 1776 1777 in_flight = tcp_packets_in_flight(tp); 1778 1779 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1780 1781 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1782 1783 /* From in_flight test above, we know that cwnd > in_flight. */ 1784 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1785 1786 limit = min(send_win, cong_win); 1787 1788 /* If a full-sized TSO skb can be sent, do it. */ 1789 if (limit >= max_segs * tp->mss_cache) 1790 goto send_now; 1791 1792 /* Middle in queue won't get any more data, full sendable already? */ 1793 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1794 goto send_now; 1795 1796 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1797 if (win_divisor) { 1798 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1799 1800 /* If at least some fraction of a window is available, 1801 * just use it. 1802 */ 1803 chunk /= win_divisor; 1804 if (limit >= chunk) 1805 goto send_now; 1806 } else { 1807 /* Different approach, try not to defer past a single 1808 * ACK. Receiver should ACK every other full sized 1809 * frame, so if we have space for more than 3 frames 1810 * then send now. 1811 */ 1812 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1813 goto send_now; 1814 } 1815 1816 head = tcp_write_queue_head(sk); 1817 skb_mstamp_get(&now); 1818 age = skb_mstamp_us_delta(&now, &head->skb_mstamp); 1819 /* If next ACK is likely to come too late (half srtt), do not defer */ 1820 if (age < (tp->srtt_us >> 4)) 1821 goto send_now; 1822 1823 /* Ok, it looks like it is advisable to defer. */ 1824 1825 if (cong_win < send_win && cong_win <= skb->len) 1826 *is_cwnd_limited = true; 1827 1828 return true; 1829 1830 send_now: 1831 return false; 1832 } 1833 1834 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1835 { 1836 struct inet_connection_sock *icsk = inet_csk(sk); 1837 struct tcp_sock *tp = tcp_sk(sk); 1838 struct net *net = sock_net(sk); 1839 u32 interval; 1840 s32 delta; 1841 1842 interval = net->ipv4.sysctl_tcp_probe_interval; 1843 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp; 1844 if (unlikely(delta >= interval * HZ)) { 1845 int mss = tcp_current_mss(sk); 1846 1847 /* Update current search range */ 1848 icsk->icsk_mtup.probe_size = 0; 1849 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1850 sizeof(struct tcphdr) + 1851 icsk->icsk_af_ops->net_header_len; 1852 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1853 1854 /* Update probe time stamp */ 1855 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1856 } 1857 } 1858 1859 /* Create a new MTU probe if we are ready. 1860 * MTU probe is regularly attempting to increase the path MTU by 1861 * deliberately sending larger packets. This discovers routing 1862 * changes resulting in larger path MTUs. 1863 * 1864 * Returns 0 if we should wait to probe (no cwnd available), 1865 * 1 if a probe was sent, 1866 * -1 otherwise 1867 */ 1868 static int tcp_mtu_probe(struct sock *sk) 1869 { 1870 struct tcp_sock *tp = tcp_sk(sk); 1871 struct inet_connection_sock *icsk = inet_csk(sk); 1872 struct sk_buff *skb, *nskb, *next; 1873 struct net *net = sock_net(sk); 1874 int len; 1875 int probe_size; 1876 int size_needed; 1877 int copy; 1878 int mss_now; 1879 int interval; 1880 1881 /* Not currently probing/verifying, 1882 * not in recovery, 1883 * have enough cwnd, and 1884 * not SACKing (the variable headers throw things off) */ 1885 if (!icsk->icsk_mtup.enabled || 1886 icsk->icsk_mtup.probe_size || 1887 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1888 tp->snd_cwnd < 11 || 1889 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1890 return -1; 1891 1892 /* Use binary search for probe_size between tcp_mss_base, 1893 * and current mss_clamp. if (search_high - search_low) 1894 * smaller than a threshold, backoff from probing. 1895 */ 1896 mss_now = tcp_current_mss(sk); 1897 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 1898 icsk->icsk_mtup.search_low) >> 1); 1899 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1900 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 1901 /* When misfortune happens, we are reprobing actively, 1902 * and then reprobe timer has expired. We stick with current 1903 * probing process by not resetting search range to its orignal. 1904 */ 1905 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 1906 interval < net->ipv4.sysctl_tcp_probe_threshold) { 1907 /* Check whether enough time has elaplased for 1908 * another round of probing. 1909 */ 1910 tcp_mtu_check_reprobe(sk); 1911 return -1; 1912 } 1913 1914 /* Have enough data in the send queue to probe? */ 1915 if (tp->write_seq - tp->snd_nxt < size_needed) 1916 return -1; 1917 1918 if (tp->snd_wnd < size_needed) 1919 return -1; 1920 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1921 return 0; 1922 1923 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1924 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1925 if (!tcp_packets_in_flight(tp)) 1926 return -1; 1927 else 1928 return 0; 1929 } 1930 1931 /* We're allowed to probe. Build it now. */ 1932 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 1933 if (!nskb) 1934 return -1; 1935 sk->sk_wmem_queued += nskb->truesize; 1936 sk_mem_charge(sk, nskb->truesize); 1937 1938 skb = tcp_send_head(sk); 1939 1940 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1941 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1942 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1943 TCP_SKB_CB(nskb)->sacked = 0; 1944 nskb->csum = 0; 1945 nskb->ip_summed = skb->ip_summed; 1946 1947 tcp_insert_write_queue_before(nskb, skb, sk); 1948 1949 len = 0; 1950 tcp_for_write_queue_from_safe(skb, next, sk) { 1951 copy = min_t(int, skb->len, probe_size - len); 1952 if (nskb->ip_summed) 1953 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1954 else 1955 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1956 skb_put(nskb, copy), 1957 copy, nskb->csum); 1958 1959 if (skb->len <= copy) { 1960 /* We've eaten all the data from this skb. 1961 * Throw it away. */ 1962 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1963 tcp_unlink_write_queue(skb, sk); 1964 sk_wmem_free_skb(sk, skb); 1965 } else { 1966 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1967 ~(TCPHDR_FIN|TCPHDR_PSH); 1968 if (!skb_shinfo(skb)->nr_frags) { 1969 skb_pull(skb, copy); 1970 if (skb->ip_summed != CHECKSUM_PARTIAL) 1971 skb->csum = csum_partial(skb->data, 1972 skb->len, 0); 1973 } else { 1974 __pskb_trim_head(skb, copy); 1975 tcp_set_skb_tso_segs(skb, mss_now); 1976 } 1977 TCP_SKB_CB(skb)->seq += copy; 1978 } 1979 1980 len += copy; 1981 1982 if (len >= probe_size) 1983 break; 1984 } 1985 tcp_init_tso_segs(nskb, nskb->len); 1986 1987 /* We're ready to send. If this fails, the probe will 1988 * be resegmented into mss-sized pieces by tcp_write_xmit(). 1989 */ 1990 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1991 /* Decrement cwnd here because we are sending 1992 * effectively two packets. */ 1993 tp->snd_cwnd--; 1994 tcp_event_new_data_sent(sk, nskb); 1995 1996 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1997 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1998 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1999 2000 return 1; 2001 } 2002 2003 return -1; 2004 } 2005 2006 /* This routine writes packets to the network. It advances the 2007 * send_head. This happens as incoming acks open up the remote 2008 * window for us. 2009 * 2010 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2011 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2012 * account rare use of URG, this is not a big flaw. 2013 * 2014 * Send at most one packet when push_one > 0. Temporarily ignore 2015 * cwnd limit to force at most one packet out when push_one == 2. 2016 2017 * Returns true, if no segments are in flight and we have queued segments, 2018 * but cannot send anything now because of SWS or another problem. 2019 */ 2020 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2021 int push_one, gfp_t gfp) 2022 { 2023 struct tcp_sock *tp = tcp_sk(sk); 2024 struct sk_buff *skb; 2025 unsigned int tso_segs, sent_pkts; 2026 int cwnd_quota; 2027 int result; 2028 bool is_cwnd_limited = false; 2029 u32 max_segs; 2030 2031 sent_pkts = 0; 2032 2033 if (!push_one) { 2034 /* Do MTU probing. */ 2035 result = tcp_mtu_probe(sk); 2036 if (!result) { 2037 return false; 2038 } else if (result > 0) { 2039 sent_pkts = 1; 2040 } 2041 } 2042 2043 max_segs = tcp_tso_autosize(sk, mss_now); 2044 while ((skb = tcp_send_head(sk))) { 2045 unsigned int limit; 2046 2047 tso_segs = tcp_init_tso_segs(skb, mss_now); 2048 BUG_ON(!tso_segs); 2049 2050 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2051 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2052 skb_mstamp_get(&skb->skb_mstamp); 2053 goto repair; /* Skip network transmission */ 2054 } 2055 2056 cwnd_quota = tcp_cwnd_test(tp, skb); 2057 if (!cwnd_quota) { 2058 if (push_one == 2) 2059 /* Force out a loss probe pkt. */ 2060 cwnd_quota = 1; 2061 else 2062 break; 2063 } 2064 2065 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 2066 break; 2067 2068 if (tso_segs == 1) { 2069 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2070 (tcp_skb_is_last(sk, skb) ? 2071 nonagle : TCP_NAGLE_PUSH)))) 2072 break; 2073 } else { 2074 if (!push_one && 2075 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2076 max_segs)) 2077 break; 2078 } 2079 2080 limit = mss_now; 2081 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2082 limit = tcp_mss_split_point(sk, skb, mss_now, 2083 min_t(unsigned int, 2084 cwnd_quota, 2085 max_segs), 2086 nonagle); 2087 2088 if (skb->len > limit && 2089 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2090 break; 2091 2092 /* TCP Small Queues : 2093 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2094 * This allows for : 2095 * - better RTT estimation and ACK scheduling 2096 * - faster recovery 2097 * - high rates 2098 * Alas, some drivers / subsystems require a fair amount 2099 * of queued bytes to ensure line rate. 2100 * One example is wifi aggregation (802.11 AMPDU) 2101 */ 2102 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2103 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2104 2105 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2106 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 2107 /* It is possible TX completion already happened 2108 * before we set TSQ_THROTTLED, so we must 2109 * test again the condition. 2110 */ 2111 smp_mb__after_atomic(); 2112 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2113 break; 2114 } 2115 2116 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2117 break; 2118 2119 repair: 2120 /* Advance the send_head. This one is sent out. 2121 * This call will increment packets_out. 2122 */ 2123 tcp_event_new_data_sent(sk, skb); 2124 2125 tcp_minshall_update(tp, mss_now, skb); 2126 sent_pkts += tcp_skb_pcount(skb); 2127 2128 if (push_one) 2129 break; 2130 } 2131 2132 if (likely(sent_pkts)) { 2133 if (tcp_in_cwnd_reduction(sk)) 2134 tp->prr_out += sent_pkts; 2135 2136 /* Send one loss probe per tail loss episode. */ 2137 if (push_one != 2) 2138 tcp_schedule_loss_probe(sk); 2139 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2140 tcp_cwnd_validate(sk, is_cwnd_limited); 2141 return false; 2142 } 2143 return !tp->packets_out && tcp_send_head(sk); 2144 } 2145 2146 bool tcp_schedule_loss_probe(struct sock *sk) 2147 { 2148 struct inet_connection_sock *icsk = inet_csk(sk); 2149 struct tcp_sock *tp = tcp_sk(sk); 2150 u32 timeout, tlp_time_stamp, rto_time_stamp; 2151 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2152 2153 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 2154 return false; 2155 /* No consecutive loss probes. */ 2156 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2157 tcp_rearm_rto(sk); 2158 return false; 2159 } 2160 /* Don't do any loss probe on a Fast Open connection before 3WHS 2161 * finishes. 2162 */ 2163 if (tp->fastopen_rsk) 2164 return false; 2165 2166 /* TLP is only scheduled when next timer event is RTO. */ 2167 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2168 return false; 2169 2170 /* Schedule a loss probe in 2*RTT for SACK capable connections 2171 * in Open state, that are either limited by cwnd or application. 2172 */ 2173 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out || 2174 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2175 return false; 2176 2177 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2178 tcp_send_head(sk)) 2179 return false; 2180 2181 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2182 * for delayed ack when there's one outstanding packet. If no RTT 2183 * sample is available then probe after TCP_TIMEOUT_INIT. 2184 */ 2185 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT; 2186 if (tp->packets_out == 1) 2187 timeout = max_t(u32, timeout, 2188 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2189 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2190 2191 /* If RTO is shorter, just schedule TLP in its place. */ 2192 tlp_time_stamp = tcp_time_stamp + timeout; 2193 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2194 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2195 s32 delta = rto_time_stamp - tcp_time_stamp; 2196 if (delta > 0) 2197 timeout = delta; 2198 } 2199 2200 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2201 TCP_RTO_MAX); 2202 return true; 2203 } 2204 2205 /* Thanks to skb fast clones, we can detect if a prior transmit of 2206 * a packet is still in a qdisc or driver queue. 2207 * In this case, there is very little point doing a retransmit ! 2208 * Note: This is called from BH context only. 2209 */ 2210 static bool skb_still_in_host_queue(const struct sock *sk, 2211 const struct sk_buff *skb) 2212 { 2213 if (unlikely(skb_fclone_busy(sk, skb))) { 2214 NET_INC_STATS_BH(sock_net(sk), 2215 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2216 return true; 2217 } 2218 return false; 2219 } 2220 2221 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2222 * retransmit the last segment. 2223 */ 2224 void tcp_send_loss_probe(struct sock *sk) 2225 { 2226 struct tcp_sock *tp = tcp_sk(sk); 2227 struct sk_buff *skb; 2228 int pcount; 2229 int mss = tcp_current_mss(sk); 2230 2231 skb = tcp_send_head(sk); 2232 if (skb) { 2233 if (tcp_snd_wnd_test(tp, skb, mss)) { 2234 pcount = tp->packets_out; 2235 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2236 if (tp->packets_out > pcount) 2237 goto probe_sent; 2238 goto rearm_timer; 2239 } 2240 skb = tcp_write_queue_prev(sk, skb); 2241 } else { 2242 skb = tcp_write_queue_tail(sk); 2243 } 2244 2245 /* At most one outstanding TLP retransmission. */ 2246 if (tp->tlp_high_seq) 2247 goto rearm_timer; 2248 2249 /* Retransmit last segment. */ 2250 if (WARN_ON(!skb)) 2251 goto rearm_timer; 2252 2253 if (skb_still_in_host_queue(sk, skb)) 2254 goto rearm_timer; 2255 2256 pcount = tcp_skb_pcount(skb); 2257 if (WARN_ON(!pcount)) 2258 goto rearm_timer; 2259 2260 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2261 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2262 GFP_ATOMIC))) 2263 goto rearm_timer; 2264 skb = tcp_write_queue_next(sk, skb); 2265 } 2266 2267 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2268 goto rearm_timer; 2269 2270 if (__tcp_retransmit_skb(sk, skb)) 2271 goto rearm_timer; 2272 2273 /* Record snd_nxt for loss detection. */ 2274 tp->tlp_high_seq = tp->snd_nxt; 2275 2276 probe_sent: 2277 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2278 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2279 inet_csk(sk)->icsk_pending = 0; 2280 rearm_timer: 2281 tcp_rearm_rto(sk); 2282 } 2283 2284 /* Push out any pending frames which were held back due to 2285 * TCP_CORK or attempt at coalescing tiny packets. 2286 * The socket must be locked by the caller. 2287 */ 2288 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2289 int nonagle) 2290 { 2291 /* If we are closed, the bytes will have to remain here. 2292 * In time closedown will finish, we empty the write queue and 2293 * all will be happy. 2294 */ 2295 if (unlikely(sk->sk_state == TCP_CLOSE)) 2296 return; 2297 2298 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2299 sk_gfp_atomic(sk, GFP_ATOMIC))) 2300 tcp_check_probe_timer(sk); 2301 } 2302 2303 /* Send _single_ skb sitting at the send head. This function requires 2304 * true push pending frames to setup probe timer etc. 2305 */ 2306 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2307 { 2308 struct sk_buff *skb = tcp_send_head(sk); 2309 2310 BUG_ON(!skb || skb->len < mss_now); 2311 2312 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2313 } 2314 2315 /* This function returns the amount that we can raise the 2316 * usable window based on the following constraints 2317 * 2318 * 1. The window can never be shrunk once it is offered (RFC 793) 2319 * 2. We limit memory per socket 2320 * 2321 * RFC 1122: 2322 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2323 * RECV.NEXT + RCV.WIN fixed until: 2324 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2325 * 2326 * i.e. don't raise the right edge of the window until you can raise 2327 * it at least MSS bytes. 2328 * 2329 * Unfortunately, the recommended algorithm breaks header prediction, 2330 * since header prediction assumes th->window stays fixed. 2331 * 2332 * Strictly speaking, keeping th->window fixed violates the receiver 2333 * side SWS prevention criteria. The problem is that under this rule 2334 * a stream of single byte packets will cause the right side of the 2335 * window to always advance by a single byte. 2336 * 2337 * Of course, if the sender implements sender side SWS prevention 2338 * then this will not be a problem. 2339 * 2340 * BSD seems to make the following compromise: 2341 * 2342 * If the free space is less than the 1/4 of the maximum 2343 * space available and the free space is less than 1/2 mss, 2344 * then set the window to 0. 2345 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2346 * Otherwise, just prevent the window from shrinking 2347 * and from being larger than the largest representable value. 2348 * 2349 * This prevents incremental opening of the window in the regime 2350 * where TCP is limited by the speed of the reader side taking 2351 * data out of the TCP receive queue. It does nothing about 2352 * those cases where the window is constrained on the sender side 2353 * because the pipeline is full. 2354 * 2355 * BSD also seems to "accidentally" limit itself to windows that are a 2356 * multiple of MSS, at least until the free space gets quite small. 2357 * This would appear to be a side effect of the mbuf implementation. 2358 * Combining these two algorithms results in the observed behavior 2359 * of having a fixed window size at almost all times. 2360 * 2361 * Below we obtain similar behavior by forcing the offered window to 2362 * a multiple of the mss when it is feasible to do so. 2363 * 2364 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2365 * Regular options like TIMESTAMP are taken into account. 2366 */ 2367 u32 __tcp_select_window(struct sock *sk) 2368 { 2369 struct inet_connection_sock *icsk = inet_csk(sk); 2370 struct tcp_sock *tp = tcp_sk(sk); 2371 /* MSS for the peer's data. Previous versions used mss_clamp 2372 * here. I don't know if the value based on our guesses 2373 * of peer's MSS is better for the performance. It's more correct 2374 * but may be worse for the performance because of rcv_mss 2375 * fluctuations. --SAW 1998/11/1 2376 */ 2377 int mss = icsk->icsk_ack.rcv_mss; 2378 int free_space = tcp_space(sk); 2379 int allowed_space = tcp_full_space(sk); 2380 int full_space = min_t(int, tp->window_clamp, allowed_space); 2381 int window; 2382 2383 if (mss > full_space) 2384 mss = full_space; 2385 2386 if (free_space < (full_space >> 1)) { 2387 icsk->icsk_ack.quick = 0; 2388 2389 if (tcp_under_memory_pressure(sk)) 2390 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2391 4U * tp->advmss); 2392 2393 /* free_space might become our new window, make sure we don't 2394 * increase it due to wscale. 2395 */ 2396 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2397 2398 /* if free space is less than mss estimate, or is below 1/16th 2399 * of the maximum allowed, try to move to zero-window, else 2400 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2401 * new incoming data is dropped due to memory limits. 2402 * With large window, mss test triggers way too late in order 2403 * to announce zero window in time before rmem limit kicks in. 2404 */ 2405 if (free_space < (allowed_space >> 4) || free_space < mss) 2406 return 0; 2407 } 2408 2409 if (free_space > tp->rcv_ssthresh) 2410 free_space = tp->rcv_ssthresh; 2411 2412 /* Don't do rounding if we are using window scaling, since the 2413 * scaled window will not line up with the MSS boundary anyway. 2414 */ 2415 window = tp->rcv_wnd; 2416 if (tp->rx_opt.rcv_wscale) { 2417 window = free_space; 2418 2419 /* Advertise enough space so that it won't get scaled away. 2420 * Import case: prevent zero window announcement if 2421 * 1<<rcv_wscale > mss. 2422 */ 2423 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2424 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2425 << tp->rx_opt.rcv_wscale); 2426 } else { 2427 /* Get the largest window that is a nice multiple of mss. 2428 * Window clamp already applied above. 2429 * If our current window offering is within 1 mss of the 2430 * free space we just keep it. This prevents the divide 2431 * and multiply from happening most of the time. 2432 * We also don't do any window rounding when the free space 2433 * is too small. 2434 */ 2435 if (window <= free_space - mss || window > free_space) 2436 window = (free_space / mss) * mss; 2437 else if (mss == full_space && 2438 free_space > window + (full_space >> 1)) 2439 window = free_space; 2440 } 2441 2442 return window; 2443 } 2444 2445 /* Collapses two adjacent SKB's during retransmission. */ 2446 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2447 { 2448 struct tcp_sock *tp = tcp_sk(sk); 2449 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2450 int skb_size, next_skb_size; 2451 2452 skb_size = skb->len; 2453 next_skb_size = next_skb->len; 2454 2455 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2456 2457 tcp_highest_sack_combine(sk, next_skb, skb); 2458 2459 tcp_unlink_write_queue(next_skb, sk); 2460 2461 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2462 next_skb_size); 2463 2464 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2465 skb->ip_summed = CHECKSUM_PARTIAL; 2466 2467 if (skb->ip_summed != CHECKSUM_PARTIAL) 2468 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2469 2470 /* Update sequence range on original skb. */ 2471 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2472 2473 /* Merge over control information. This moves PSH/FIN etc. over */ 2474 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2475 2476 /* All done, get rid of second SKB and account for it so 2477 * packet counting does not break. 2478 */ 2479 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2480 2481 /* changed transmit queue under us so clear hints */ 2482 tcp_clear_retrans_hints_partial(tp); 2483 if (next_skb == tp->retransmit_skb_hint) 2484 tp->retransmit_skb_hint = skb; 2485 2486 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2487 2488 sk_wmem_free_skb(sk, next_skb); 2489 } 2490 2491 /* Check if coalescing SKBs is legal. */ 2492 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2493 { 2494 if (tcp_skb_pcount(skb) > 1) 2495 return false; 2496 /* TODO: SACK collapsing could be used to remove this condition */ 2497 if (skb_shinfo(skb)->nr_frags != 0) 2498 return false; 2499 if (skb_cloned(skb)) 2500 return false; 2501 if (skb == tcp_send_head(sk)) 2502 return false; 2503 /* Some heurestics for collapsing over SACK'd could be invented */ 2504 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2505 return false; 2506 2507 return true; 2508 } 2509 2510 /* Collapse packets in the retransmit queue to make to create 2511 * less packets on the wire. This is only done on retransmission. 2512 */ 2513 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2514 int space) 2515 { 2516 struct tcp_sock *tp = tcp_sk(sk); 2517 struct sk_buff *skb = to, *tmp; 2518 bool first = true; 2519 2520 if (!sysctl_tcp_retrans_collapse) 2521 return; 2522 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2523 return; 2524 2525 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2526 if (!tcp_can_collapse(sk, skb)) 2527 break; 2528 2529 space -= skb->len; 2530 2531 if (first) { 2532 first = false; 2533 continue; 2534 } 2535 2536 if (space < 0) 2537 break; 2538 /* Punt if not enough space exists in the first SKB for 2539 * the data in the second 2540 */ 2541 if (skb->len > skb_availroom(to)) 2542 break; 2543 2544 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2545 break; 2546 2547 tcp_collapse_retrans(sk, to); 2548 } 2549 } 2550 2551 /* This retransmits one SKB. Policy decisions and retransmit queue 2552 * state updates are done by the caller. Returns non-zero if an 2553 * error occurred which prevented the send. 2554 */ 2555 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2556 { 2557 struct tcp_sock *tp = tcp_sk(sk); 2558 struct inet_connection_sock *icsk = inet_csk(sk); 2559 unsigned int cur_mss; 2560 int err; 2561 2562 /* Inconslusive MTU probe */ 2563 if (icsk->icsk_mtup.probe_size) { 2564 icsk->icsk_mtup.probe_size = 0; 2565 } 2566 2567 /* Do not sent more than we queued. 1/4 is reserved for possible 2568 * copying overhead: fragmentation, tunneling, mangling etc. 2569 */ 2570 if (atomic_read(&sk->sk_wmem_alloc) > 2571 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2572 return -EAGAIN; 2573 2574 if (skb_still_in_host_queue(sk, skb)) 2575 return -EBUSY; 2576 2577 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2578 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2579 BUG(); 2580 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2581 return -ENOMEM; 2582 } 2583 2584 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2585 return -EHOSTUNREACH; /* Routing failure or similar. */ 2586 2587 cur_mss = tcp_current_mss(sk); 2588 2589 /* If receiver has shrunk his window, and skb is out of 2590 * new window, do not retransmit it. The exception is the 2591 * case, when window is shrunk to zero. In this case 2592 * our retransmit serves as a zero window probe. 2593 */ 2594 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2595 TCP_SKB_CB(skb)->seq != tp->snd_una) 2596 return -EAGAIN; 2597 2598 if (skb->len > cur_mss) { 2599 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC)) 2600 return -ENOMEM; /* We'll try again later. */ 2601 } else { 2602 int oldpcount = tcp_skb_pcount(skb); 2603 2604 if (unlikely(oldpcount > 1)) { 2605 if (skb_unclone(skb, GFP_ATOMIC)) 2606 return -ENOMEM; 2607 tcp_init_tso_segs(skb, cur_mss); 2608 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2609 } 2610 } 2611 2612 /* RFC3168, section 6.1.1.1. ECN fallback */ 2613 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2614 tcp_ecn_clear_syn(sk, skb); 2615 2616 tcp_retrans_try_collapse(sk, skb, cur_mss); 2617 2618 /* Make a copy, if the first transmission SKB clone we made 2619 * is still in somebody's hands, else make a clone. 2620 */ 2621 2622 /* make sure skb->data is aligned on arches that require it 2623 * and check if ack-trimming & collapsing extended the headroom 2624 * beyond what csum_start can cover. 2625 */ 2626 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2627 skb_headroom(skb) >= 0xFFFF)) { 2628 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2629 GFP_ATOMIC); 2630 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2631 -ENOBUFS; 2632 } else { 2633 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2634 } 2635 2636 if (likely(!err)) { 2637 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2638 /* Update global TCP statistics. */ 2639 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2640 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2641 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2642 tp->total_retrans++; 2643 } 2644 return err; 2645 } 2646 2647 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2648 { 2649 struct tcp_sock *tp = tcp_sk(sk); 2650 int err = __tcp_retransmit_skb(sk, skb); 2651 2652 if (err == 0) { 2653 #if FASTRETRANS_DEBUG > 0 2654 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2655 net_dbg_ratelimited("retrans_out leaked\n"); 2656 } 2657 #endif 2658 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2659 tp->retrans_out += tcp_skb_pcount(skb); 2660 2661 /* Save stamp of the first retransmit. */ 2662 if (!tp->retrans_stamp) 2663 tp->retrans_stamp = tcp_skb_timestamp(skb); 2664 2665 } else if (err != -EBUSY) { 2666 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2667 } 2668 2669 if (tp->undo_retrans < 0) 2670 tp->undo_retrans = 0; 2671 tp->undo_retrans += tcp_skb_pcount(skb); 2672 return err; 2673 } 2674 2675 /* Check if we forward retransmits are possible in the current 2676 * window/congestion state. 2677 */ 2678 static bool tcp_can_forward_retransmit(struct sock *sk) 2679 { 2680 const struct inet_connection_sock *icsk = inet_csk(sk); 2681 const struct tcp_sock *tp = tcp_sk(sk); 2682 2683 /* Forward retransmissions are possible only during Recovery. */ 2684 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2685 return false; 2686 2687 /* No forward retransmissions in Reno are possible. */ 2688 if (tcp_is_reno(tp)) 2689 return false; 2690 2691 /* Yeah, we have to make difficult choice between forward transmission 2692 * and retransmission... Both ways have their merits... 2693 * 2694 * For now we do not retransmit anything, while we have some new 2695 * segments to send. In the other cases, follow rule 3 for 2696 * NextSeg() specified in RFC3517. 2697 */ 2698 2699 if (tcp_may_send_now(sk)) 2700 return false; 2701 2702 return true; 2703 } 2704 2705 /* This gets called after a retransmit timeout, and the initially 2706 * retransmitted data is acknowledged. It tries to continue 2707 * resending the rest of the retransmit queue, until either 2708 * we've sent it all or the congestion window limit is reached. 2709 * If doing SACK, the first ACK which comes back for a timeout 2710 * based retransmit packet might feed us FACK information again. 2711 * If so, we use it to avoid unnecessarily retransmissions. 2712 */ 2713 void tcp_xmit_retransmit_queue(struct sock *sk) 2714 { 2715 const struct inet_connection_sock *icsk = inet_csk(sk); 2716 struct tcp_sock *tp = tcp_sk(sk); 2717 struct sk_buff *skb; 2718 struct sk_buff *hole = NULL; 2719 u32 last_lost; 2720 int mib_idx; 2721 int fwd_rexmitting = 0; 2722 2723 if (!tp->packets_out) 2724 return; 2725 2726 if (!tp->lost_out) 2727 tp->retransmit_high = tp->snd_una; 2728 2729 if (tp->retransmit_skb_hint) { 2730 skb = tp->retransmit_skb_hint; 2731 last_lost = TCP_SKB_CB(skb)->end_seq; 2732 if (after(last_lost, tp->retransmit_high)) 2733 last_lost = tp->retransmit_high; 2734 } else { 2735 skb = tcp_write_queue_head(sk); 2736 last_lost = tp->snd_una; 2737 } 2738 2739 tcp_for_write_queue_from(skb, sk) { 2740 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2741 2742 if (skb == tcp_send_head(sk)) 2743 break; 2744 /* we could do better than to assign each time */ 2745 if (!hole) 2746 tp->retransmit_skb_hint = skb; 2747 2748 /* Assume this retransmit will generate 2749 * only one packet for congestion window 2750 * calculation purposes. This works because 2751 * tcp_retransmit_skb() will chop up the 2752 * packet to be MSS sized and all the 2753 * packet counting works out. 2754 */ 2755 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2756 return; 2757 2758 if (fwd_rexmitting) { 2759 begin_fwd: 2760 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2761 break; 2762 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2763 2764 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2765 tp->retransmit_high = last_lost; 2766 if (!tcp_can_forward_retransmit(sk)) 2767 break; 2768 /* Backtrack if necessary to non-L'ed skb */ 2769 if (hole) { 2770 skb = hole; 2771 hole = NULL; 2772 } 2773 fwd_rexmitting = 1; 2774 goto begin_fwd; 2775 2776 } else if (!(sacked & TCPCB_LOST)) { 2777 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2778 hole = skb; 2779 continue; 2780 2781 } else { 2782 last_lost = TCP_SKB_CB(skb)->end_seq; 2783 if (icsk->icsk_ca_state != TCP_CA_Loss) 2784 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2785 else 2786 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2787 } 2788 2789 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2790 continue; 2791 2792 if (tcp_retransmit_skb(sk, skb)) 2793 return; 2794 2795 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2796 2797 if (tcp_in_cwnd_reduction(sk)) 2798 tp->prr_out += tcp_skb_pcount(skb); 2799 2800 if (skb == tcp_write_queue_head(sk)) 2801 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2802 inet_csk(sk)->icsk_rto, 2803 TCP_RTO_MAX); 2804 } 2805 } 2806 2807 /* We allow to exceed memory limits for FIN packets to expedite 2808 * connection tear down and (memory) recovery. 2809 * Otherwise tcp_send_fin() could be tempted to either delay FIN 2810 * or even be forced to close flow without any FIN. 2811 * In general, we want to allow one skb per socket to avoid hangs 2812 * with edge trigger epoll() 2813 */ 2814 void sk_forced_mem_schedule(struct sock *sk, int size) 2815 { 2816 int amt, status; 2817 2818 if (size <= sk->sk_forward_alloc) 2819 return; 2820 amt = sk_mem_pages(size); 2821 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2822 sk_memory_allocated_add(sk, amt, &status); 2823 } 2824 2825 /* Send a FIN. The caller locks the socket for us. 2826 * We should try to send a FIN packet really hard, but eventually give up. 2827 */ 2828 void tcp_send_fin(struct sock *sk) 2829 { 2830 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 2831 struct tcp_sock *tp = tcp_sk(sk); 2832 2833 /* Optimization, tack on the FIN if we have one skb in write queue and 2834 * this skb was not yet sent, or we are under memory pressure. 2835 * Note: in the latter case, FIN packet will be sent after a timeout, 2836 * as TCP stack thinks it has already been transmitted. 2837 */ 2838 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) { 2839 coalesce: 2840 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 2841 TCP_SKB_CB(tskb)->end_seq++; 2842 tp->write_seq++; 2843 if (!tcp_send_head(sk)) { 2844 /* This means tskb was already sent. 2845 * Pretend we included the FIN on previous transmit. 2846 * We need to set tp->snd_nxt to the value it would have 2847 * if FIN had been sent. This is because retransmit path 2848 * does not change tp->snd_nxt. 2849 */ 2850 tp->snd_nxt++; 2851 return; 2852 } 2853 } else { 2854 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 2855 if (unlikely(!skb)) { 2856 if (tskb) 2857 goto coalesce; 2858 return; 2859 } 2860 skb_reserve(skb, MAX_TCP_HEADER); 2861 sk_forced_mem_schedule(sk, skb->truesize); 2862 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2863 tcp_init_nondata_skb(skb, tp->write_seq, 2864 TCPHDR_ACK | TCPHDR_FIN); 2865 tcp_queue_skb(sk, skb); 2866 } 2867 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 2868 } 2869 2870 /* We get here when a process closes a file descriptor (either due to 2871 * an explicit close() or as a byproduct of exit()'ing) and there 2872 * was unread data in the receive queue. This behavior is recommended 2873 * by RFC 2525, section 2.17. -DaveM 2874 */ 2875 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2876 { 2877 struct sk_buff *skb; 2878 2879 /* NOTE: No TCP options attached and we never retransmit this. */ 2880 skb = alloc_skb(MAX_TCP_HEADER, priority); 2881 if (!skb) { 2882 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2883 return; 2884 } 2885 2886 /* Reserve space for headers and prepare control bits. */ 2887 skb_reserve(skb, MAX_TCP_HEADER); 2888 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2889 TCPHDR_ACK | TCPHDR_RST); 2890 skb_mstamp_get(&skb->skb_mstamp); 2891 /* Send it off. */ 2892 if (tcp_transmit_skb(sk, skb, 0, priority)) 2893 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2894 2895 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2896 } 2897 2898 /* Send a crossed SYN-ACK during socket establishment. 2899 * WARNING: This routine must only be called when we have already sent 2900 * a SYN packet that crossed the incoming SYN that caused this routine 2901 * to get called. If this assumption fails then the initial rcv_wnd 2902 * and rcv_wscale values will not be correct. 2903 */ 2904 int tcp_send_synack(struct sock *sk) 2905 { 2906 struct sk_buff *skb; 2907 2908 skb = tcp_write_queue_head(sk); 2909 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2910 pr_debug("%s: wrong queue state\n", __func__); 2911 return -EFAULT; 2912 } 2913 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2914 if (skb_cloned(skb)) { 2915 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2916 if (!nskb) 2917 return -ENOMEM; 2918 tcp_unlink_write_queue(skb, sk); 2919 __skb_header_release(nskb); 2920 __tcp_add_write_queue_head(sk, nskb); 2921 sk_wmem_free_skb(sk, skb); 2922 sk->sk_wmem_queued += nskb->truesize; 2923 sk_mem_charge(sk, nskb->truesize); 2924 skb = nskb; 2925 } 2926 2927 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2928 tcp_ecn_send_synack(sk, skb); 2929 } 2930 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2931 } 2932 2933 /** 2934 * tcp_make_synack - Prepare a SYN-ACK. 2935 * sk: listener socket 2936 * dst: dst entry attached to the SYNACK 2937 * req: request_sock pointer 2938 * 2939 * Allocate one skb and build a SYNACK packet. 2940 * @dst is consumed : Caller should not use it again. 2941 */ 2942 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 2943 struct request_sock *req, 2944 struct tcp_fastopen_cookie *foc, 2945 bool attach_req) 2946 { 2947 struct inet_request_sock *ireq = inet_rsk(req); 2948 const struct tcp_sock *tp = tcp_sk(sk); 2949 struct tcp_md5sig_key *md5 = NULL; 2950 struct tcp_out_options opts; 2951 struct sk_buff *skb; 2952 int tcp_header_size; 2953 struct tcphdr *th; 2954 u16 user_mss; 2955 int mss; 2956 2957 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2958 if (unlikely(!skb)) { 2959 dst_release(dst); 2960 return NULL; 2961 } 2962 /* Reserve space for headers. */ 2963 skb_reserve(skb, MAX_TCP_HEADER); 2964 2965 if (attach_req) { 2966 skb_set_owner_w(skb, req_to_sk(req)); 2967 } else { 2968 /* sk is a const pointer, because we want to express multiple 2969 * cpu might call us concurrently. 2970 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 2971 */ 2972 skb_set_owner_w(skb, (struct sock *)sk); 2973 } 2974 skb_dst_set(skb, dst); 2975 2976 mss = dst_metric_advmss(dst); 2977 user_mss = READ_ONCE(tp->rx_opt.user_mss); 2978 if (user_mss && user_mss < mss) 2979 mss = user_mss; 2980 2981 memset(&opts, 0, sizeof(opts)); 2982 #ifdef CONFIG_SYN_COOKIES 2983 if (unlikely(req->cookie_ts)) 2984 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 2985 else 2986 #endif 2987 skb_mstamp_get(&skb->skb_mstamp); 2988 2989 #ifdef CONFIG_TCP_MD5SIG 2990 rcu_read_lock(); 2991 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 2992 #endif 2993 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 2994 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) + 2995 sizeof(*th); 2996 2997 skb_push(skb, tcp_header_size); 2998 skb_reset_transport_header(skb); 2999 3000 th = tcp_hdr(skb); 3001 memset(th, 0, sizeof(struct tcphdr)); 3002 th->syn = 1; 3003 th->ack = 1; 3004 tcp_ecn_make_synack(req, th); 3005 th->source = htons(ireq->ir_num); 3006 th->dest = ireq->ir_rmt_port; 3007 /* Setting of flags are superfluous here for callers (and ECE is 3008 * not even correctly set) 3009 */ 3010 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3011 TCPHDR_SYN | TCPHDR_ACK); 3012 3013 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3014 /* XXX data is queued and acked as is. No buffer/window check */ 3015 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3016 3017 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3018 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3019 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3020 th->doff = (tcp_header_size >> 2); 3021 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS); 3022 3023 #ifdef CONFIG_TCP_MD5SIG 3024 /* Okay, we have all we need - do the md5 hash if needed */ 3025 if (md5) 3026 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3027 md5, req_to_sk(req), skb); 3028 rcu_read_unlock(); 3029 #endif 3030 3031 /* Do not fool tcpdump (if any), clean our debris */ 3032 skb->tstamp.tv64 = 0; 3033 return skb; 3034 } 3035 EXPORT_SYMBOL(tcp_make_synack); 3036 3037 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3038 { 3039 struct inet_connection_sock *icsk = inet_csk(sk); 3040 const struct tcp_congestion_ops *ca; 3041 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3042 3043 if (ca_key == TCP_CA_UNSPEC) 3044 return; 3045 3046 rcu_read_lock(); 3047 ca = tcp_ca_find_key(ca_key); 3048 if (likely(ca && try_module_get(ca->owner))) { 3049 module_put(icsk->icsk_ca_ops->owner); 3050 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3051 icsk->icsk_ca_ops = ca; 3052 } 3053 rcu_read_unlock(); 3054 } 3055 3056 /* Do all connect socket setups that can be done AF independent. */ 3057 static void tcp_connect_init(struct sock *sk) 3058 { 3059 const struct dst_entry *dst = __sk_dst_get(sk); 3060 struct tcp_sock *tp = tcp_sk(sk); 3061 __u8 rcv_wscale; 3062 3063 /* We'll fix this up when we get a response from the other end. 3064 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3065 */ 3066 tp->tcp_header_len = sizeof(struct tcphdr) + 3067 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 3068 3069 #ifdef CONFIG_TCP_MD5SIG 3070 if (tp->af_specific->md5_lookup(sk, sk)) 3071 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3072 #endif 3073 3074 /* If user gave his TCP_MAXSEG, record it to clamp */ 3075 if (tp->rx_opt.user_mss) 3076 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3077 tp->max_window = 0; 3078 tcp_mtup_init(sk); 3079 tcp_sync_mss(sk, dst_mtu(dst)); 3080 3081 tcp_ca_dst_init(sk, dst); 3082 3083 if (!tp->window_clamp) 3084 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3085 tp->advmss = dst_metric_advmss(dst); 3086 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 3087 tp->advmss = tp->rx_opt.user_mss; 3088 3089 tcp_initialize_rcv_mss(sk); 3090 3091 /* limit the window selection if the user enforce a smaller rx buffer */ 3092 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3093 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3094 tp->window_clamp = tcp_full_space(sk); 3095 3096 tcp_select_initial_window(tcp_full_space(sk), 3097 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3098 &tp->rcv_wnd, 3099 &tp->window_clamp, 3100 sysctl_tcp_window_scaling, 3101 &rcv_wscale, 3102 dst_metric(dst, RTAX_INITRWND)); 3103 3104 tp->rx_opt.rcv_wscale = rcv_wscale; 3105 tp->rcv_ssthresh = tp->rcv_wnd; 3106 3107 sk->sk_err = 0; 3108 sock_reset_flag(sk, SOCK_DONE); 3109 tp->snd_wnd = 0; 3110 tcp_init_wl(tp, 0); 3111 tp->snd_una = tp->write_seq; 3112 tp->snd_sml = tp->write_seq; 3113 tp->snd_up = tp->write_seq; 3114 tp->snd_nxt = tp->write_seq; 3115 3116 if (likely(!tp->repair)) 3117 tp->rcv_nxt = 0; 3118 else 3119 tp->rcv_tstamp = tcp_time_stamp; 3120 tp->rcv_wup = tp->rcv_nxt; 3121 tp->copied_seq = tp->rcv_nxt; 3122 3123 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3124 inet_csk(sk)->icsk_retransmits = 0; 3125 tcp_clear_retrans(tp); 3126 } 3127 3128 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3129 { 3130 struct tcp_sock *tp = tcp_sk(sk); 3131 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3132 3133 tcb->end_seq += skb->len; 3134 __skb_header_release(skb); 3135 __tcp_add_write_queue_tail(sk, skb); 3136 sk->sk_wmem_queued += skb->truesize; 3137 sk_mem_charge(sk, skb->truesize); 3138 tp->write_seq = tcb->end_seq; 3139 tp->packets_out += tcp_skb_pcount(skb); 3140 } 3141 3142 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3143 * queue a data-only packet after the regular SYN, such that regular SYNs 3144 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3145 * only the SYN sequence, the data are retransmitted in the first ACK. 3146 * If cookie is not cached or other error occurs, falls back to send a 3147 * regular SYN with Fast Open cookie request option. 3148 */ 3149 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3150 { 3151 struct tcp_sock *tp = tcp_sk(sk); 3152 struct tcp_fastopen_request *fo = tp->fastopen_req; 3153 int syn_loss = 0, space, err = 0; 3154 unsigned long last_syn_loss = 0; 3155 struct sk_buff *syn_data; 3156 3157 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3158 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 3159 &syn_loss, &last_syn_loss); 3160 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 3161 if (syn_loss > 1 && 3162 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 3163 fo->cookie.len = -1; 3164 goto fallback; 3165 } 3166 3167 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 3168 fo->cookie.len = -1; 3169 else if (fo->cookie.len <= 0) 3170 goto fallback; 3171 3172 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3173 * user-MSS. Reserve maximum option space for middleboxes that add 3174 * private TCP options. The cost is reduced data space in SYN :( 3175 */ 3176 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 3177 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3178 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3179 MAX_TCP_OPTION_SPACE; 3180 3181 space = min_t(size_t, space, fo->size); 3182 3183 /* limit to order-0 allocations */ 3184 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3185 3186 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3187 if (!syn_data) 3188 goto fallback; 3189 syn_data->ip_summed = CHECKSUM_PARTIAL; 3190 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3191 if (space) { 3192 int copied = copy_from_iter(skb_put(syn_data, space), space, 3193 &fo->data->msg_iter); 3194 if (unlikely(!copied)) { 3195 kfree_skb(syn_data); 3196 goto fallback; 3197 } 3198 if (copied != space) { 3199 skb_trim(syn_data, copied); 3200 space = copied; 3201 } 3202 } 3203 /* No more data pending in inet_wait_for_connect() */ 3204 if (space == fo->size) 3205 fo->data = NULL; 3206 fo->copied = space; 3207 3208 tcp_connect_queue_skb(sk, syn_data); 3209 3210 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3211 3212 syn->skb_mstamp = syn_data->skb_mstamp; 3213 3214 /* Now full SYN+DATA was cloned and sent (or not), 3215 * remove the SYN from the original skb (syn_data) 3216 * we keep in write queue in case of a retransmit, as we 3217 * also have the SYN packet (with no data) in the same queue. 3218 */ 3219 TCP_SKB_CB(syn_data)->seq++; 3220 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3221 if (!err) { 3222 tp->syn_data = (fo->copied > 0); 3223 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3224 goto done; 3225 } 3226 3227 fallback: 3228 /* Send a regular SYN with Fast Open cookie request option */ 3229 if (fo->cookie.len > 0) 3230 fo->cookie.len = 0; 3231 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3232 if (err) 3233 tp->syn_fastopen = 0; 3234 done: 3235 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3236 return err; 3237 } 3238 3239 /* Build a SYN and send it off. */ 3240 int tcp_connect(struct sock *sk) 3241 { 3242 struct tcp_sock *tp = tcp_sk(sk); 3243 struct sk_buff *buff; 3244 int err; 3245 3246 tcp_connect_init(sk); 3247 3248 if (unlikely(tp->repair)) { 3249 tcp_finish_connect(sk, NULL); 3250 return 0; 3251 } 3252 3253 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3254 if (unlikely(!buff)) 3255 return -ENOBUFS; 3256 3257 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3258 tp->retrans_stamp = tcp_time_stamp; 3259 tcp_connect_queue_skb(sk, buff); 3260 tcp_ecn_send_syn(sk, buff); 3261 3262 /* Send off SYN; include data in Fast Open. */ 3263 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3264 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3265 if (err == -ECONNREFUSED) 3266 return err; 3267 3268 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3269 * in order to make this packet get counted in tcpOutSegs. 3270 */ 3271 tp->snd_nxt = tp->write_seq; 3272 tp->pushed_seq = tp->write_seq; 3273 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3274 3275 /* Timer for repeating the SYN until an answer. */ 3276 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3277 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3278 return 0; 3279 } 3280 EXPORT_SYMBOL(tcp_connect); 3281 3282 /* Send out a delayed ack, the caller does the policy checking 3283 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3284 * for details. 3285 */ 3286 void tcp_send_delayed_ack(struct sock *sk) 3287 { 3288 struct inet_connection_sock *icsk = inet_csk(sk); 3289 int ato = icsk->icsk_ack.ato; 3290 unsigned long timeout; 3291 3292 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3293 3294 if (ato > TCP_DELACK_MIN) { 3295 const struct tcp_sock *tp = tcp_sk(sk); 3296 int max_ato = HZ / 2; 3297 3298 if (icsk->icsk_ack.pingpong || 3299 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3300 max_ato = TCP_DELACK_MAX; 3301 3302 /* Slow path, intersegment interval is "high". */ 3303 3304 /* If some rtt estimate is known, use it to bound delayed ack. 3305 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3306 * directly. 3307 */ 3308 if (tp->srtt_us) { 3309 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3310 TCP_DELACK_MIN); 3311 3312 if (rtt < max_ato) 3313 max_ato = rtt; 3314 } 3315 3316 ato = min(ato, max_ato); 3317 } 3318 3319 /* Stay within the limit we were given */ 3320 timeout = jiffies + ato; 3321 3322 /* Use new timeout only if there wasn't a older one earlier. */ 3323 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3324 /* If delack timer was blocked or is about to expire, 3325 * send ACK now. 3326 */ 3327 if (icsk->icsk_ack.blocked || 3328 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3329 tcp_send_ack(sk); 3330 return; 3331 } 3332 3333 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3334 timeout = icsk->icsk_ack.timeout; 3335 } 3336 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3337 icsk->icsk_ack.timeout = timeout; 3338 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3339 } 3340 3341 /* This routine sends an ack and also updates the window. */ 3342 void tcp_send_ack(struct sock *sk) 3343 { 3344 struct sk_buff *buff; 3345 3346 /* If we have been reset, we may not send again. */ 3347 if (sk->sk_state == TCP_CLOSE) 3348 return; 3349 3350 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3351 3352 /* We are not putting this on the write queue, so 3353 * tcp_transmit_skb() will set the ownership to this 3354 * sock. 3355 */ 3356 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3357 if (!buff) { 3358 inet_csk_schedule_ack(sk); 3359 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3360 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3361 TCP_DELACK_MAX, TCP_RTO_MAX); 3362 return; 3363 } 3364 3365 /* Reserve space for headers and prepare control bits. */ 3366 skb_reserve(buff, MAX_TCP_HEADER); 3367 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3368 3369 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3370 * too much. 3371 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3372 * We also avoid tcp_wfree() overhead (cache line miss accessing 3373 * tp->tsq_flags) by using regular sock_wfree() 3374 */ 3375 skb_set_tcp_pure_ack(buff); 3376 3377 /* Send it off, this clears delayed acks for us. */ 3378 skb_mstamp_get(&buff->skb_mstamp); 3379 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC)); 3380 } 3381 EXPORT_SYMBOL_GPL(tcp_send_ack); 3382 3383 /* This routine sends a packet with an out of date sequence 3384 * number. It assumes the other end will try to ack it. 3385 * 3386 * Question: what should we make while urgent mode? 3387 * 4.4BSD forces sending single byte of data. We cannot send 3388 * out of window data, because we have SND.NXT==SND.MAX... 3389 * 3390 * Current solution: to send TWO zero-length segments in urgent mode: 3391 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3392 * out-of-date with SND.UNA-1 to probe window. 3393 */ 3394 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3395 { 3396 struct tcp_sock *tp = tcp_sk(sk); 3397 struct sk_buff *skb; 3398 3399 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3400 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3401 if (!skb) 3402 return -1; 3403 3404 /* Reserve space for headers and set control bits. */ 3405 skb_reserve(skb, MAX_TCP_HEADER); 3406 /* Use a previous sequence. This should cause the other 3407 * end to send an ack. Don't queue or clone SKB, just 3408 * send it. 3409 */ 3410 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3411 skb_mstamp_get(&skb->skb_mstamp); 3412 NET_INC_STATS(sock_net(sk), mib); 3413 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3414 } 3415 3416 void tcp_send_window_probe(struct sock *sk) 3417 { 3418 if (sk->sk_state == TCP_ESTABLISHED) { 3419 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3420 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3421 } 3422 } 3423 3424 /* Initiate keepalive or window probe from timer. */ 3425 int tcp_write_wakeup(struct sock *sk, int mib) 3426 { 3427 struct tcp_sock *tp = tcp_sk(sk); 3428 struct sk_buff *skb; 3429 3430 if (sk->sk_state == TCP_CLOSE) 3431 return -1; 3432 3433 skb = tcp_send_head(sk); 3434 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3435 int err; 3436 unsigned int mss = tcp_current_mss(sk); 3437 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3438 3439 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3440 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3441 3442 /* We are probing the opening of a window 3443 * but the window size is != 0 3444 * must have been a result SWS avoidance ( sender ) 3445 */ 3446 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3447 skb->len > mss) { 3448 seg_size = min(seg_size, mss); 3449 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3450 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3451 return -1; 3452 } else if (!tcp_skb_pcount(skb)) 3453 tcp_set_skb_tso_segs(skb, mss); 3454 3455 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3456 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3457 if (!err) 3458 tcp_event_new_data_sent(sk, skb); 3459 return err; 3460 } else { 3461 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3462 tcp_xmit_probe_skb(sk, 1, mib); 3463 return tcp_xmit_probe_skb(sk, 0, mib); 3464 } 3465 } 3466 3467 /* A window probe timeout has occurred. If window is not closed send 3468 * a partial packet else a zero probe. 3469 */ 3470 void tcp_send_probe0(struct sock *sk) 3471 { 3472 struct inet_connection_sock *icsk = inet_csk(sk); 3473 struct tcp_sock *tp = tcp_sk(sk); 3474 unsigned long probe_max; 3475 int err; 3476 3477 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3478 3479 if (tp->packets_out || !tcp_send_head(sk)) { 3480 /* Cancel probe timer, if it is not required. */ 3481 icsk->icsk_probes_out = 0; 3482 icsk->icsk_backoff = 0; 3483 return; 3484 } 3485 3486 if (err <= 0) { 3487 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3488 icsk->icsk_backoff++; 3489 icsk->icsk_probes_out++; 3490 probe_max = TCP_RTO_MAX; 3491 } else { 3492 /* If packet was not sent due to local congestion, 3493 * do not backoff and do not remember icsk_probes_out. 3494 * Let local senders to fight for local resources. 3495 * 3496 * Use accumulated backoff yet. 3497 */ 3498 if (!icsk->icsk_probes_out) 3499 icsk->icsk_probes_out = 1; 3500 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3501 } 3502 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3503 tcp_probe0_when(sk, probe_max), 3504 TCP_RTO_MAX); 3505 } 3506 3507 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3508 { 3509 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3510 struct flowi fl; 3511 int res; 3512 3513 tcp_rsk(req)->txhash = net_tx_rndhash(); 3514 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, true); 3515 if (!res) { 3516 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS); 3517 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3518 } 3519 return res; 3520 } 3521 EXPORT_SYMBOL(tcp_rtx_synack); 3522