1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of two TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 int sysctl_tcp_mtu_probing __read_mostly = 0; 63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS; 64 65 /* By default, RFC2861 behavior. */ 66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 67 68 int sysctl_tcp_cookie_size __read_mostly = 0; /* TCP_COOKIE_MAX */ 69 EXPORT_SYMBOL_GPL(sysctl_tcp_cookie_size); 70 71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 72 int push_one, gfp_t gfp); 73 74 /* Account for new data that has been sent to the network. */ 75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 76 { 77 struct tcp_sock *tp = tcp_sk(sk); 78 unsigned int prior_packets = tp->packets_out; 79 80 tcp_advance_send_head(sk, skb); 81 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 82 83 /* Don't override Nagle indefinitely with F-RTO */ 84 if (tp->frto_counter == 2) 85 tp->frto_counter = 3; 86 87 tp->packets_out += tcp_skb_pcount(skb); 88 if (!prior_packets || tp->early_retrans_delayed) 89 tcp_rearm_rto(sk); 90 } 91 92 /* SND.NXT, if window was not shrunk. 93 * If window has been shrunk, what should we make? It is not clear at all. 94 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 95 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 96 * invalid. OK, let's make this for now: 97 */ 98 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 99 { 100 const struct tcp_sock *tp = tcp_sk(sk); 101 102 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 103 return tp->snd_nxt; 104 else 105 return tcp_wnd_end(tp); 106 } 107 108 /* Calculate mss to advertise in SYN segment. 109 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 110 * 111 * 1. It is independent of path mtu. 112 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 113 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 114 * attached devices, because some buggy hosts are confused by 115 * large MSS. 116 * 4. We do not make 3, we advertise MSS, calculated from first 117 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 118 * This may be overridden via information stored in routing table. 119 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 120 * probably even Jumbo". 121 */ 122 static __u16 tcp_advertise_mss(struct sock *sk) 123 { 124 struct tcp_sock *tp = tcp_sk(sk); 125 const struct dst_entry *dst = __sk_dst_get(sk); 126 int mss = tp->advmss; 127 128 if (dst) { 129 unsigned int metric = dst_metric_advmss(dst); 130 131 if (metric < mss) { 132 mss = metric; 133 tp->advmss = mss; 134 } 135 } 136 137 return (__u16)mss; 138 } 139 140 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 141 * This is the first part of cwnd validation mechanism. */ 142 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 143 { 144 struct tcp_sock *tp = tcp_sk(sk); 145 s32 delta = tcp_time_stamp - tp->lsndtime; 146 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 147 u32 cwnd = tp->snd_cwnd; 148 149 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 150 151 tp->snd_ssthresh = tcp_current_ssthresh(sk); 152 restart_cwnd = min(restart_cwnd, cwnd); 153 154 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 155 cwnd >>= 1; 156 tp->snd_cwnd = max(cwnd, restart_cwnd); 157 tp->snd_cwnd_stamp = tcp_time_stamp; 158 tp->snd_cwnd_used = 0; 159 } 160 161 /* Congestion state accounting after a packet has been sent. */ 162 static void tcp_event_data_sent(struct tcp_sock *tp, 163 struct sock *sk) 164 { 165 struct inet_connection_sock *icsk = inet_csk(sk); 166 const u32 now = tcp_time_stamp; 167 168 if (sysctl_tcp_slow_start_after_idle && 169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 170 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 171 172 tp->lsndtime = now; 173 174 /* If it is a reply for ato after last received 175 * packet, enter pingpong mode. 176 */ 177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 178 icsk->icsk_ack.pingpong = 1; 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 183 { 184 tcp_dec_quickack_mode(sk, pkts); 185 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 186 } 187 188 /* Determine a window scaling and initial window to offer. 189 * Based on the assumption that the given amount of space 190 * will be offered. Store the results in the tp structure. 191 * NOTE: for smooth operation initial space offering should 192 * be a multiple of mss if possible. We assume here that mss >= 1. 193 * This MUST be enforced by all callers. 194 */ 195 void tcp_select_initial_window(int __space, __u32 mss, 196 __u32 *rcv_wnd, __u32 *window_clamp, 197 int wscale_ok, __u8 *rcv_wscale, 198 __u32 init_rcv_wnd) 199 { 200 unsigned int space = (__space < 0 ? 0 : __space); 201 202 /* If no clamp set the clamp to the max possible scaled window */ 203 if (*window_clamp == 0) 204 (*window_clamp) = (65535 << 14); 205 space = min(*window_clamp, space); 206 207 /* Quantize space offering to a multiple of mss if possible. */ 208 if (space > mss) 209 space = (space / mss) * mss; 210 211 /* NOTE: offering an initial window larger than 32767 212 * will break some buggy TCP stacks. If the admin tells us 213 * it is likely we could be speaking with such a buggy stack 214 * we will truncate our initial window offering to 32K-1 215 * unless the remote has sent us a window scaling option, 216 * which we interpret as a sign the remote TCP is not 217 * misinterpreting the window field as a signed quantity. 218 */ 219 if (sysctl_tcp_workaround_signed_windows) 220 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 221 else 222 (*rcv_wnd) = space; 223 224 (*rcv_wscale) = 0; 225 if (wscale_ok) { 226 /* Set window scaling on max possible window 227 * See RFC1323 for an explanation of the limit to 14 228 */ 229 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 230 space = min_t(u32, space, *window_clamp); 231 while (space > 65535 && (*rcv_wscale) < 14) { 232 space >>= 1; 233 (*rcv_wscale)++; 234 } 235 } 236 237 /* Set initial window to a value enough for senders starting with 238 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place 239 * a limit on the initial window when mss is larger than 1460. 240 */ 241 if (mss > (1 << *rcv_wscale)) { 242 int init_cwnd = TCP_DEFAULT_INIT_RCVWND; 243 if (mss > 1460) 244 init_cwnd = 245 max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2); 246 /* when initializing use the value from init_rcv_wnd 247 * rather than the default from above 248 */ 249 if (init_rcv_wnd) 250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 251 else 252 *rcv_wnd = min(*rcv_wnd, init_cwnd * mss); 253 } 254 255 /* Set the clamp no higher than max representable value */ 256 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 257 } 258 EXPORT_SYMBOL(tcp_select_initial_window); 259 260 /* Chose a new window to advertise, update state in tcp_sock for the 261 * socket, and return result with RFC1323 scaling applied. The return 262 * value can be stuffed directly into th->window for an outgoing 263 * frame. 264 */ 265 static u16 tcp_select_window(struct sock *sk) 266 { 267 struct tcp_sock *tp = tcp_sk(sk); 268 u32 cur_win = tcp_receive_window(tp); 269 u32 new_win = __tcp_select_window(sk); 270 271 /* Never shrink the offered window */ 272 if (new_win < cur_win) { 273 /* Danger Will Robinson! 274 * Don't update rcv_wup/rcv_wnd here or else 275 * we will not be able to advertise a zero 276 * window in time. --DaveM 277 * 278 * Relax Will Robinson. 279 */ 280 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 281 } 282 tp->rcv_wnd = new_win; 283 tp->rcv_wup = tp->rcv_nxt; 284 285 /* Make sure we do not exceed the maximum possible 286 * scaled window. 287 */ 288 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 289 new_win = min(new_win, MAX_TCP_WINDOW); 290 else 291 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 292 293 /* RFC1323 scaling applied */ 294 new_win >>= tp->rx_opt.rcv_wscale; 295 296 /* If we advertise zero window, disable fast path. */ 297 if (new_win == 0) 298 tp->pred_flags = 0; 299 300 return new_win; 301 } 302 303 /* Packet ECN state for a SYN-ACK */ 304 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb) 305 { 306 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 307 if (!(tp->ecn_flags & TCP_ECN_OK)) 308 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 309 } 310 311 /* Packet ECN state for a SYN. */ 312 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb) 313 { 314 struct tcp_sock *tp = tcp_sk(sk); 315 316 tp->ecn_flags = 0; 317 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) { 318 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 319 tp->ecn_flags = TCP_ECN_OK; 320 } 321 } 322 323 static __inline__ void 324 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th) 325 { 326 if (inet_rsk(req)->ecn_ok) 327 th->ece = 1; 328 } 329 330 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 331 * be sent. 332 */ 333 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb, 334 int tcp_header_len) 335 { 336 struct tcp_sock *tp = tcp_sk(sk); 337 338 if (tp->ecn_flags & TCP_ECN_OK) { 339 /* Not-retransmitted data segment: set ECT and inject CWR. */ 340 if (skb->len != tcp_header_len && 341 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 342 INET_ECN_xmit(sk); 343 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 344 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 345 tcp_hdr(skb)->cwr = 1; 346 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 347 } 348 } else { 349 /* ACK or retransmitted segment: clear ECT|CE */ 350 INET_ECN_dontxmit(sk); 351 } 352 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 353 tcp_hdr(skb)->ece = 1; 354 } 355 } 356 357 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 358 * auto increment end seqno. 359 */ 360 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 361 { 362 skb->ip_summed = CHECKSUM_PARTIAL; 363 skb->csum = 0; 364 365 TCP_SKB_CB(skb)->tcp_flags = flags; 366 TCP_SKB_CB(skb)->sacked = 0; 367 368 skb_shinfo(skb)->gso_segs = 1; 369 skb_shinfo(skb)->gso_size = 0; 370 skb_shinfo(skb)->gso_type = 0; 371 372 TCP_SKB_CB(skb)->seq = seq; 373 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 374 seq++; 375 TCP_SKB_CB(skb)->end_seq = seq; 376 } 377 378 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 379 { 380 return tp->snd_una != tp->snd_up; 381 } 382 383 #define OPTION_SACK_ADVERTISE (1 << 0) 384 #define OPTION_TS (1 << 1) 385 #define OPTION_MD5 (1 << 2) 386 #define OPTION_WSCALE (1 << 3) 387 #define OPTION_COOKIE_EXTENSION (1 << 4) 388 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 389 390 struct tcp_out_options { 391 u16 options; /* bit field of OPTION_* */ 392 u16 mss; /* 0 to disable */ 393 u8 ws; /* window scale, 0 to disable */ 394 u8 num_sack_blocks; /* number of SACK blocks to include */ 395 u8 hash_size; /* bytes in hash_location */ 396 __u8 *hash_location; /* temporary pointer, overloaded */ 397 __u32 tsval, tsecr; /* need to include OPTION_TS */ 398 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 399 }; 400 401 /* The sysctl int routines are generic, so check consistency here. 402 */ 403 static u8 tcp_cookie_size_check(u8 desired) 404 { 405 int cookie_size; 406 407 if (desired > 0) 408 /* previously specified */ 409 return desired; 410 411 cookie_size = ACCESS_ONCE(sysctl_tcp_cookie_size); 412 if (cookie_size <= 0) 413 /* no default specified */ 414 return 0; 415 416 if (cookie_size <= TCP_COOKIE_MIN) 417 /* value too small, specify minimum */ 418 return TCP_COOKIE_MIN; 419 420 if (cookie_size >= TCP_COOKIE_MAX) 421 /* value too large, specify maximum */ 422 return TCP_COOKIE_MAX; 423 424 if (cookie_size & 1) 425 /* 8-bit multiple, illegal, fix it */ 426 cookie_size++; 427 428 return (u8)cookie_size; 429 } 430 431 /* Write previously computed TCP options to the packet. 432 * 433 * Beware: Something in the Internet is very sensitive to the ordering of 434 * TCP options, we learned this through the hard way, so be careful here. 435 * Luckily we can at least blame others for their non-compliance but from 436 * inter-operatibility perspective it seems that we're somewhat stuck with 437 * the ordering which we have been using if we want to keep working with 438 * those broken things (not that it currently hurts anybody as there isn't 439 * particular reason why the ordering would need to be changed). 440 * 441 * At least SACK_PERM as the first option is known to lead to a disaster 442 * (but it may well be that other scenarios fail similarly). 443 */ 444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 445 struct tcp_out_options *opts) 446 { 447 u16 options = opts->options; /* mungable copy */ 448 449 /* Having both authentication and cookies for security is redundant, 450 * and there's certainly not enough room. Instead, the cookie-less 451 * extension variant is proposed. 452 * 453 * Consider the pessimal case with authentication. The options 454 * could look like: 455 * COOKIE|MD5(20) + MSS(4) + SACK|TS(12) + WSCALE(4) == 40 456 */ 457 if (unlikely(OPTION_MD5 & options)) { 458 if (unlikely(OPTION_COOKIE_EXTENSION & options)) { 459 *ptr++ = htonl((TCPOPT_COOKIE << 24) | 460 (TCPOLEN_COOKIE_BASE << 16) | 461 (TCPOPT_MD5SIG << 8) | 462 TCPOLEN_MD5SIG); 463 } else { 464 *ptr++ = htonl((TCPOPT_NOP << 24) | 465 (TCPOPT_NOP << 16) | 466 (TCPOPT_MD5SIG << 8) | 467 TCPOLEN_MD5SIG); 468 } 469 options &= ~OPTION_COOKIE_EXTENSION; 470 /* overload cookie hash location */ 471 opts->hash_location = (__u8 *)ptr; 472 ptr += 4; 473 } 474 475 if (unlikely(opts->mss)) { 476 *ptr++ = htonl((TCPOPT_MSS << 24) | 477 (TCPOLEN_MSS << 16) | 478 opts->mss); 479 } 480 481 if (likely(OPTION_TS & options)) { 482 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 483 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 484 (TCPOLEN_SACK_PERM << 16) | 485 (TCPOPT_TIMESTAMP << 8) | 486 TCPOLEN_TIMESTAMP); 487 options &= ~OPTION_SACK_ADVERTISE; 488 } else { 489 *ptr++ = htonl((TCPOPT_NOP << 24) | 490 (TCPOPT_NOP << 16) | 491 (TCPOPT_TIMESTAMP << 8) | 492 TCPOLEN_TIMESTAMP); 493 } 494 *ptr++ = htonl(opts->tsval); 495 *ptr++ = htonl(opts->tsecr); 496 } 497 498 /* Specification requires after timestamp, so do it now. 499 * 500 * Consider the pessimal case without authentication. The options 501 * could look like: 502 * MSS(4) + SACK|TS(12) + COOKIE(20) + WSCALE(4) == 40 503 */ 504 if (unlikely(OPTION_COOKIE_EXTENSION & options)) { 505 __u8 *cookie_copy = opts->hash_location; 506 u8 cookie_size = opts->hash_size; 507 508 /* 8-bit multiple handled in tcp_cookie_size_check() above, 509 * and elsewhere. 510 */ 511 if (0x2 & cookie_size) { 512 __u8 *p = (__u8 *)ptr; 513 514 /* 16-bit multiple */ 515 *p++ = TCPOPT_COOKIE; 516 *p++ = TCPOLEN_COOKIE_BASE + cookie_size; 517 *p++ = *cookie_copy++; 518 *p++ = *cookie_copy++; 519 ptr++; 520 cookie_size -= 2; 521 } else { 522 /* 32-bit multiple */ 523 *ptr++ = htonl(((TCPOPT_NOP << 24) | 524 (TCPOPT_NOP << 16) | 525 (TCPOPT_COOKIE << 8) | 526 TCPOLEN_COOKIE_BASE) + 527 cookie_size); 528 } 529 530 if (cookie_size > 0) { 531 memcpy(ptr, cookie_copy, cookie_size); 532 ptr += (cookie_size / 4); 533 } 534 } 535 536 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 537 *ptr++ = htonl((TCPOPT_NOP << 24) | 538 (TCPOPT_NOP << 16) | 539 (TCPOPT_SACK_PERM << 8) | 540 TCPOLEN_SACK_PERM); 541 } 542 543 if (unlikely(OPTION_WSCALE & options)) { 544 *ptr++ = htonl((TCPOPT_NOP << 24) | 545 (TCPOPT_WINDOW << 16) | 546 (TCPOLEN_WINDOW << 8) | 547 opts->ws); 548 } 549 550 if (unlikely(opts->num_sack_blocks)) { 551 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 552 tp->duplicate_sack : tp->selective_acks; 553 int this_sack; 554 555 *ptr++ = htonl((TCPOPT_NOP << 24) | 556 (TCPOPT_NOP << 16) | 557 (TCPOPT_SACK << 8) | 558 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 559 TCPOLEN_SACK_PERBLOCK))); 560 561 for (this_sack = 0; this_sack < opts->num_sack_blocks; 562 ++this_sack) { 563 *ptr++ = htonl(sp[this_sack].start_seq); 564 *ptr++ = htonl(sp[this_sack].end_seq); 565 } 566 567 tp->rx_opt.dsack = 0; 568 } 569 570 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 571 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 572 573 *ptr++ = htonl((TCPOPT_EXP << 24) | 574 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) | 575 TCPOPT_FASTOPEN_MAGIC); 576 577 memcpy(ptr, foc->val, foc->len); 578 if ((foc->len & 3) == 2) { 579 u8 *align = ((u8 *)ptr) + foc->len; 580 align[0] = align[1] = TCPOPT_NOP; 581 } 582 ptr += (foc->len + 3) >> 2; 583 } 584 } 585 586 /* Compute TCP options for SYN packets. This is not the final 587 * network wire format yet. 588 */ 589 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 590 struct tcp_out_options *opts, 591 struct tcp_md5sig_key **md5) 592 { 593 struct tcp_sock *tp = tcp_sk(sk); 594 struct tcp_cookie_values *cvp = tp->cookie_values; 595 unsigned int remaining = MAX_TCP_OPTION_SPACE; 596 u8 cookie_size = (!tp->rx_opt.cookie_out_never && cvp != NULL) ? 597 tcp_cookie_size_check(cvp->cookie_desired) : 598 0; 599 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 600 601 #ifdef CONFIG_TCP_MD5SIG 602 *md5 = tp->af_specific->md5_lookup(sk, sk); 603 if (*md5) { 604 opts->options |= OPTION_MD5; 605 remaining -= TCPOLEN_MD5SIG_ALIGNED; 606 } 607 #else 608 *md5 = NULL; 609 #endif 610 611 /* We always get an MSS option. The option bytes which will be seen in 612 * normal data packets should timestamps be used, must be in the MSS 613 * advertised. But we subtract them from tp->mss_cache so that 614 * calculations in tcp_sendmsg are simpler etc. So account for this 615 * fact here if necessary. If we don't do this correctly, as a 616 * receiver we won't recognize data packets as being full sized when we 617 * should, and thus we won't abide by the delayed ACK rules correctly. 618 * SACKs don't matter, we never delay an ACK when we have any of those 619 * going out. */ 620 opts->mss = tcp_advertise_mss(sk); 621 remaining -= TCPOLEN_MSS_ALIGNED; 622 623 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 624 opts->options |= OPTION_TS; 625 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset; 626 opts->tsecr = tp->rx_opt.ts_recent; 627 remaining -= TCPOLEN_TSTAMP_ALIGNED; 628 } 629 if (likely(sysctl_tcp_window_scaling)) { 630 opts->ws = tp->rx_opt.rcv_wscale; 631 opts->options |= OPTION_WSCALE; 632 remaining -= TCPOLEN_WSCALE_ALIGNED; 633 } 634 if (likely(sysctl_tcp_sack)) { 635 opts->options |= OPTION_SACK_ADVERTISE; 636 if (unlikely(!(OPTION_TS & opts->options))) 637 remaining -= TCPOLEN_SACKPERM_ALIGNED; 638 } 639 640 if (fastopen && fastopen->cookie.len >= 0) { 641 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len; 642 need = (need + 3) & ~3U; /* Align to 32 bits */ 643 if (remaining >= need) { 644 opts->options |= OPTION_FAST_OPEN_COOKIE; 645 opts->fastopen_cookie = &fastopen->cookie; 646 remaining -= need; 647 tp->syn_fastopen = 1; 648 } 649 } 650 /* Note that timestamps are required by the specification. 651 * 652 * Odd numbers of bytes are prohibited by the specification, ensuring 653 * that the cookie is 16-bit aligned, and the resulting cookie pair is 654 * 32-bit aligned. 655 */ 656 if (*md5 == NULL && 657 (OPTION_TS & opts->options) && 658 cookie_size > 0) { 659 int need = TCPOLEN_COOKIE_BASE + cookie_size; 660 661 if (0x2 & need) { 662 /* 32-bit multiple */ 663 need += 2; /* NOPs */ 664 665 if (need > remaining) { 666 /* try shrinking cookie to fit */ 667 cookie_size -= 2; 668 need -= 4; 669 } 670 } 671 while (need > remaining && TCP_COOKIE_MIN <= cookie_size) { 672 cookie_size -= 4; 673 need -= 4; 674 } 675 if (TCP_COOKIE_MIN <= cookie_size) { 676 opts->options |= OPTION_COOKIE_EXTENSION; 677 opts->hash_location = (__u8 *)&cvp->cookie_pair[0]; 678 opts->hash_size = cookie_size; 679 680 /* Remember for future incarnations. */ 681 cvp->cookie_desired = cookie_size; 682 683 if (cvp->cookie_desired != cvp->cookie_pair_size) { 684 /* Currently use random bytes as a nonce, 685 * assuming these are completely unpredictable 686 * by hostile users of the same system. 687 */ 688 get_random_bytes(&cvp->cookie_pair[0], 689 cookie_size); 690 cvp->cookie_pair_size = cookie_size; 691 } 692 693 remaining -= need; 694 } 695 } 696 return MAX_TCP_OPTION_SPACE - remaining; 697 } 698 699 /* Set up TCP options for SYN-ACKs. */ 700 static unsigned int tcp_synack_options(struct sock *sk, 701 struct request_sock *req, 702 unsigned int mss, struct sk_buff *skb, 703 struct tcp_out_options *opts, 704 struct tcp_md5sig_key **md5, 705 struct tcp_extend_values *xvp, 706 struct tcp_fastopen_cookie *foc) 707 { 708 struct inet_request_sock *ireq = inet_rsk(req); 709 unsigned int remaining = MAX_TCP_OPTION_SPACE; 710 u8 cookie_plus = (xvp != NULL && !xvp->cookie_out_never) ? 711 xvp->cookie_plus : 712 0; 713 714 #ifdef CONFIG_TCP_MD5SIG 715 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 716 if (*md5) { 717 opts->options |= OPTION_MD5; 718 remaining -= TCPOLEN_MD5SIG_ALIGNED; 719 720 /* We can't fit any SACK blocks in a packet with MD5 + TS 721 * options. There was discussion about disabling SACK 722 * rather than TS in order to fit in better with old, 723 * buggy kernels, but that was deemed to be unnecessary. 724 */ 725 ireq->tstamp_ok &= !ireq->sack_ok; 726 } 727 #else 728 *md5 = NULL; 729 #endif 730 731 /* We always send an MSS option. */ 732 opts->mss = mss; 733 remaining -= TCPOLEN_MSS_ALIGNED; 734 735 if (likely(ireq->wscale_ok)) { 736 opts->ws = ireq->rcv_wscale; 737 opts->options |= OPTION_WSCALE; 738 remaining -= TCPOLEN_WSCALE_ALIGNED; 739 } 740 if (likely(ireq->tstamp_ok)) { 741 opts->options |= OPTION_TS; 742 opts->tsval = TCP_SKB_CB(skb)->when; 743 opts->tsecr = req->ts_recent; 744 remaining -= TCPOLEN_TSTAMP_ALIGNED; 745 } 746 if (likely(ireq->sack_ok)) { 747 opts->options |= OPTION_SACK_ADVERTISE; 748 if (unlikely(!ireq->tstamp_ok)) 749 remaining -= TCPOLEN_SACKPERM_ALIGNED; 750 } 751 if (foc != NULL) { 752 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 753 need = (need + 3) & ~3U; /* Align to 32 bits */ 754 if (remaining >= need) { 755 opts->options |= OPTION_FAST_OPEN_COOKIE; 756 opts->fastopen_cookie = foc; 757 remaining -= need; 758 } 759 } 760 /* Similar rationale to tcp_syn_options() applies here, too. 761 * If the <SYN> options fit, the same options should fit now! 762 */ 763 if (*md5 == NULL && 764 ireq->tstamp_ok && 765 cookie_plus > TCPOLEN_COOKIE_BASE) { 766 int need = cookie_plus; /* has TCPOLEN_COOKIE_BASE */ 767 768 if (0x2 & need) { 769 /* 32-bit multiple */ 770 need += 2; /* NOPs */ 771 } 772 if (need <= remaining) { 773 opts->options |= OPTION_COOKIE_EXTENSION; 774 opts->hash_size = cookie_plus - TCPOLEN_COOKIE_BASE; 775 remaining -= need; 776 } else { 777 /* There's no error return, so flag it. */ 778 xvp->cookie_out_never = 1; /* true */ 779 opts->hash_size = 0; 780 } 781 } 782 return MAX_TCP_OPTION_SPACE - remaining; 783 } 784 785 /* Compute TCP options for ESTABLISHED sockets. This is not the 786 * final wire format yet. 787 */ 788 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 789 struct tcp_out_options *opts, 790 struct tcp_md5sig_key **md5) 791 { 792 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL; 793 struct tcp_sock *tp = tcp_sk(sk); 794 unsigned int size = 0; 795 unsigned int eff_sacks; 796 797 #ifdef CONFIG_TCP_MD5SIG 798 *md5 = tp->af_specific->md5_lookup(sk, sk); 799 if (unlikely(*md5)) { 800 opts->options |= OPTION_MD5; 801 size += TCPOLEN_MD5SIG_ALIGNED; 802 } 803 #else 804 *md5 = NULL; 805 #endif 806 807 if (likely(tp->rx_opt.tstamp_ok)) { 808 opts->options |= OPTION_TS; 809 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0; 810 opts->tsecr = tp->rx_opt.ts_recent; 811 size += TCPOLEN_TSTAMP_ALIGNED; 812 } 813 814 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 815 if (unlikely(eff_sacks)) { 816 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 817 opts->num_sack_blocks = 818 min_t(unsigned int, eff_sacks, 819 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 820 TCPOLEN_SACK_PERBLOCK); 821 size += TCPOLEN_SACK_BASE_ALIGNED + 822 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 823 } 824 825 return size; 826 } 827 828 829 /* TCP SMALL QUEUES (TSQ) 830 * 831 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 832 * to reduce RTT and bufferbloat. 833 * We do this using a special skb destructor (tcp_wfree). 834 * 835 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 836 * needs to be reallocated in a driver. 837 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc 838 * 839 * Since transmit from skb destructor is forbidden, we use a tasklet 840 * to process all sockets that eventually need to send more skbs. 841 * We use one tasklet per cpu, with its own queue of sockets. 842 */ 843 struct tsq_tasklet { 844 struct tasklet_struct tasklet; 845 struct list_head head; /* queue of tcp sockets */ 846 }; 847 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 848 849 static void tcp_tsq_handler(struct sock *sk) 850 { 851 if ((1 << sk->sk_state) & 852 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 853 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 854 tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC); 855 } 856 /* 857 * One tasklest per cpu tries to send more skbs. 858 * We run in tasklet context but need to disable irqs when 859 * transfering tsq->head because tcp_wfree() might 860 * interrupt us (non NAPI drivers) 861 */ 862 static void tcp_tasklet_func(unsigned long data) 863 { 864 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 865 LIST_HEAD(list); 866 unsigned long flags; 867 struct list_head *q, *n; 868 struct tcp_sock *tp; 869 struct sock *sk; 870 871 local_irq_save(flags); 872 list_splice_init(&tsq->head, &list); 873 local_irq_restore(flags); 874 875 list_for_each_safe(q, n, &list) { 876 tp = list_entry(q, struct tcp_sock, tsq_node); 877 list_del(&tp->tsq_node); 878 879 sk = (struct sock *)tp; 880 bh_lock_sock(sk); 881 882 if (!sock_owned_by_user(sk)) { 883 tcp_tsq_handler(sk); 884 } else { 885 /* defer the work to tcp_release_cb() */ 886 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 887 } 888 bh_unlock_sock(sk); 889 890 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 891 sk_free(sk); 892 } 893 } 894 895 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 896 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 897 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 898 (1UL << TCP_MTU_REDUCED_DEFERRED)) 899 /** 900 * tcp_release_cb - tcp release_sock() callback 901 * @sk: socket 902 * 903 * called from release_sock() to perform protocol dependent 904 * actions before socket release. 905 */ 906 void tcp_release_cb(struct sock *sk) 907 { 908 struct tcp_sock *tp = tcp_sk(sk); 909 unsigned long flags, nflags; 910 911 /* perform an atomic operation only if at least one flag is set */ 912 do { 913 flags = tp->tsq_flags; 914 if (!(flags & TCP_DEFERRED_ALL)) 915 return; 916 nflags = flags & ~TCP_DEFERRED_ALL; 917 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 918 919 if (flags & (1UL << TCP_TSQ_DEFERRED)) 920 tcp_tsq_handler(sk); 921 922 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 923 tcp_write_timer_handler(sk); 924 __sock_put(sk); 925 } 926 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 927 tcp_delack_timer_handler(sk); 928 __sock_put(sk); 929 } 930 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 931 sk->sk_prot->mtu_reduced(sk); 932 __sock_put(sk); 933 } 934 } 935 EXPORT_SYMBOL(tcp_release_cb); 936 937 void __init tcp_tasklet_init(void) 938 { 939 int i; 940 941 for_each_possible_cpu(i) { 942 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 943 944 INIT_LIST_HEAD(&tsq->head); 945 tasklet_init(&tsq->tasklet, 946 tcp_tasklet_func, 947 (unsigned long)tsq); 948 } 949 } 950 951 /* 952 * Write buffer destructor automatically called from kfree_skb. 953 * We cant xmit new skbs from this context, as we might already 954 * hold qdisc lock. 955 */ 956 static void tcp_wfree(struct sk_buff *skb) 957 { 958 struct sock *sk = skb->sk; 959 struct tcp_sock *tp = tcp_sk(sk); 960 961 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 962 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 963 unsigned long flags; 964 struct tsq_tasklet *tsq; 965 966 /* Keep a ref on socket. 967 * This last ref will be released in tcp_tasklet_func() 968 */ 969 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc); 970 971 /* queue this socket to tasklet queue */ 972 local_irq_save(flags); 973 tsq = &__get_cpu_var(tsq_tasklet); 974 list_add(&tp->tsq_node, &tsq->head); 975 tasklet_schedule(&tsq->tasklet); 976 local_irq_restore(flags); 977 } else { 978 sock_wfree(skb); 979 } 980 } 981 982 /* This routine actually transmits TCP packets queued in by 983 * tcp_do_sendmsg(). This is used by both the initial 984 * transmission and possible later retransmissions. 985 * All SKB's seen here are completely headerless. It is our 986 * job to build the TCP header, and pass the packet down to 987 * IP so it can do the same plus pass the packet off to the 988 * device. 989 * 990 * We are working here with either a clone of the original 991 * SKB, or a fresh unique copy made by the retransmit engine. 992 */ 993 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 994 gfp_t gfp_mask) 995 { 996 const struct inet_connection_sock *icsk = inet_csk(sk); 997 struct inet_sock *inet; 998 struct tcp_sock *tp; 999 struct tcp_skb_cb *tcb; 1000 struct tcp_out_options opts; 1001 unsigned int tcp_options_size, tcp_header_size; 1002 struct tcp_md5sig_key *md5; 1003 struct tcphdr *th; 1004 int err; 1005 1006 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1007 1008 /* If congestion control is doing timestamping, we must 1009 * take such a timestamp before we potentially clone/copy. 1010 */ 1011 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP) 1012 __net_timestamp(skb); 1013 1014 if (likely(clone_it)) { 1015 if (unlikely(skb_cloned(skb))) 1016 skb = pskb_copy(skb, gfp_mask); 1017 else 1018 skb = skb_clone(skb, gfp_mask); 1019 if (unlikely(!skb)) 1020 return -ENOBUFS; 1021 } 1022 1023 inet = inet_sk(sk); 1024 tp = tcp_sk(sk); 1025 tcb = TCP_SKB_CB(skb); 1026 memset(&opts, 0, sizeof(opts)); 1027 1028 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1029 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1030 else 1031 tcp_options_size = tcp_established_options(sk, skb, &opts, 1032 &md5); 1033 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1034 1035 if (tcp_packets_in_flight(tp) == 0) { 1036 tcp_ca_event(sk, CA_EVENT_TX_START); 1037 skb->ooo_okay = 1; 1038 } else 1039 skb->ooo_okay = 0; 1040 1041 skb_push(skb, tcp_header_size); 1042 skb_reset_transport_header(skb); 1043 1044 skb_orphan(skb); 1045 skb->sk = sk; 1046 skb->destructor = (sysctl_tcp_limit_output_bytes > 0) ? 1047 tcp_wfree : sock_wfree; 1048 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1049 1050 /* Build TCP header and checksum it. */ 1051 th = tcp_hdr(skb); 1052 th->source = inet->inet_sport; 1053 th->dest = inet->inet_dport; 1054 th->seq = htonl(tcb->seq); 1055 th->ack_seq = htonl(tp->rcv_nxt); 1056 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1057 tcb->tcp_flags); 1058 1059 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1060 /* RFC1323: The window in SYN & SYN/ACK segments 1061 * is never scaled. 1062 */ 1063 th->window = htons(min(tp->rcv_wnd, 65535U)); 1064 } else { 1065 th->window = htons(tcp_select_window(sk)); 1066 } 1067 th->check = 0; 1068 th->urg_ptr = 0; 1069 1070 /* The urg_mode check is necessary during a below snd_una win probe */ 1071 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1072 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1073 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1074 th->urg = 1; 1075 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1076 th->urg_ptr = htons(0xFFFF); 1077 th->urg = 1; 1078 } 1079 } 1080 1081 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1082 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 1083 TCP_ECN_send(sk, skb, tcp_header_size); 1084 1085 #ifdef CONFIG_TCP_MD5SIG 1086 /* Calculate the MD5 hash, as we have all we need now */ 1087 if (md5) { 1088 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1089 tp->af_specific->calc_md5_hash(opts.hash_location, 1090 md5, sk, NULL, skb); 1091 } 1092 #endif 1093 1094 icsk->icsk_af_ops->send_check(sk, skb); 1095 1096 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1097 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1098 1099 if (skb->len != tcp_header_size) 1100 tcp_event_data_sent(tp, sk); 1101 1102 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1103 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1104 tcp_skb_pcount(skb)); 1105 1106 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl); 1107 if (likely(err <= 0)) 1108 return err; 1109 1110 tcp_enter_cwr(sk, 1); 1111 1112 return net_xmit_eval(err); 1113 } 1114 1115 /* This routine just queues the buffer for sending. 1116 * 1117 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1118 * otherwise socket can stall. 1119 */ 1120 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1121 { 1122 struct tcp_sock *tp = tcp_sk(sk); 1123 1124 /* Advance write_seq and place onto the write_queue. */ 1125 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1126 skb_header_release(skb); 1127 tcp_add_write_queue_tail(sk, skb); 1128 sk->sk_wmem_queued += skb->truesize; 1129 sk_mem_charge(sk, skb->truesize); 1130 } 1131 1132 /* Initialize TSO segments for a packet. */ 1133 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 1134 unsigned int mss_now) 1135 { 1136 if (skb->len <= mss_now || !sk_can_gso(sk) || 1137 skb->ip_summed == CHECKSUM_NONE) { 1138 /* Avoid the costly divide in the normal 1139 * non-TSO case. 1140 */ 1141 skb_shinfo(skb)->gso_segs = 1; 1142 skb_shinfo(skb)->gso_size = 0; 1143 skb_shinfo(skb)->gso_type = 0; 1144 } else { 1145 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now); 1146 skb_shinfo(skb)->gso_size = mss_now; 1147 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1148 } 1149 } 1150 1151 /* When a modification to fackets out becomes necessary, we need to check 1152 * skb is counted to fackets_out or not. 1153 */ 1154 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1155 int decr) 1156 { 1157 struct tcp_sock *tp = tcp_sk(sk); 1158 1159 if (!tp->sacked_out || tcp_is_reno(tp)) 1160 return; 1161 1162 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1163 tp->fackets_out -= decr; 1164 } 1165 1166 /* Pcount in the middle of the write queue got changed, we need to do various 1167 * tweaks to fix counters 1168 */ 1169 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1170 { 1171 struct tcp_sock *tp = tcp_sk(sk); 1172 1173 tp->packets_out -= decr; 1174 1175 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1176 tp->sacked_out -= decr; 1177 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1178 tp->retrans_out -= decr; 1179 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1180 tp->lost_out -= decr; 1181 1182 /* Reno case is special. Sigh... */ 1183 if (tcp_is_reno(tp) && decr > 0) 1184 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1185 1186 tcp_adjust_fackets_out(sk, skb, decr); 1187 1188 if (tp->lost_skb_hint && 1189 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1190 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1191 tp->lost_cnt_hint -= decr; 1192 1193 tcp_verify_left_out(tp); 1194 } 1195 1196 /* Function to create two new TCP segments. Shrinks the given segment 1197 * to the specified size and appends a new segment with the rest of the 1198 * packet to the list. This won't be called frequently, I hope. 1199 * Remember, these are still headerless SKBs at this point. 1200 */ 1201 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1202 unsigned int mss_now) 1203 { 1204 struct tcp_sock *tp = tcp_sk(sk); 1205 struct sk_buff *buff; 1206 int nsize, old_factor; 1207 int nlen; 1208 u8 flags; 1209 1210 if (WARN_ON(len > skb->len)) 1211 return -EINVAL; 1212 1213 nsize = skb_headlen(skb) - len; 1214 if (nsize < 0) 1215 nsize = 0; 1216 1217 if (skb_cloned(skb) && 1218 skb_is_nonlinear(skb) && 1219 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1220 return -ENOMEM; 1221 1222 /* Get a new skb... force flag on. */ 1223 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 1224 if (buff == NULL) 1225 return -ENOMEM; /* We'll just try again later. */ 1226 1227 sk->sk_wmem_queued += buff->truesize; 1228 sk_mem_charge(sk, buff->truesize); 1229 nlen = skb->len - len - nsize; 1230 buff->truesize += nlen; 1231 skb->truesize -= nlen; 1232 1233 /* Correct the sequence numbers. */ 1234 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1235 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1236 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1237 1238 /* PSH and FIN should only be set in the second packet. */ 1239 flags = TCP_SKB_CB(skb)->tcp_flags; 1240 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1241 TCP_SKB_CB(buff)->tcp_flags = flags; 1242 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1243 1244 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1245 /* Copy and checksum data tail into the new buffer. */ 1246 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1247 skb_put(buff, nsize), 1248 nsize, 0); 1249 1250 skb_trim(skb, len); 1251 1252 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1253 } else { 1254 skb->ip_summed = CHECKSUM_PARTIAL; 1255 skb_split(skb, buff, len); 1256 } 1257 1258 buff->ip_summed = skb->ip_summed; 1259 1260 /* Looks stupid, but our code really uses when of 1261 * skbs, which it never sent before. --ANK 1262 */ 1263 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 1264 buff->tstamp = skb->tstamp; 1265 1266 old_factor = tcp_skb_pcount(skb); 1267 1268 /* Fix up tso_factor for both original and new SKB. */ 1269 tcp_set_skb_tso_segs(sk, skb, mss_now); 1270 tcp_set_skb_tso_segs(sk, buff, mss_now); 1271 1272 /* If this packet has been sent out already, we must 1273 * adjust the various packet counters. 1274 */ 1275 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1276 int diff = old_factor - tcp_skb_pcount(skb) - 1277 tcp_skb_pcount(buff); 1278 1279 if (diff) 1280 tcp_adjust_pcount(sk, skb, diff); 1281 } 1282 1283 /* Link BUFF into the send queue. */ 1284 skb_header_release(buff); 1285 tcp_insert_write_queue_after(skb, buff, sk); 1286 1287 return 0; 1288 } 1289 1290 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1291 * eventually). The difference is that pulled data not copied, but 1292 * immediately discarded. 1293 */ 1294 static void __pskb_trim_head(struct sk_buff *skb, int len) 1295 { 1296 int i, k, eat; 1297 1298 eat = min_t(int, len, skb_headlen(skb)); 1299 if (eat) { 1300 __skb_pull(skb, eat); 1301 skb->avail_size -= eat; 1302 len -= eat; 1303 if (!len) 1304 return; 1305 } 1306 eat = len; 1307 k = 0; 1308 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1309 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1310 1311 if (size <= eat) { 1312 skb_frag_unref(skb, i); 1313 eat -= size; 1314 } else { 1315 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1316 if (eat) { 1317 skb_shinfo(skb)->frags[k].page_offset += eat; 1318 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1319 eat = 0; 1320 } 1321 k++; 1322 } 1323 } 1324 skb_shinfo(skb)->nr_frags = k; 1325 1326 skb_reset_tail_pointer(skb); 1327 skb->data_len -= len; 1328 skb->len = skb->data_len; 1329 } 1330 1331 /* Remove acked data from a packet in the transmit queue. */ 1332 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1333 { 1334 if (skb_unclone(skb, GFP_ATOMIC)) 1335 return -ENOMEM; 1336 1337 __pskb_trim_head(skb, len); 1338 1339 TCP_SKB_CB(skb)->seq += len; 1340 skb->ip_summed = CHECKSUM_PARTIAL; 1341 1342 skb->truesize -= len; 1343 sk->sk_wmem_queued -= len; 1344 sk_mem_uncharge(sk, len); 1345 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1346 1347 /* Any change of skb->len requires recalculation of tso factor. */ 1348 if (tcp_skb_pcount(skb) > 1) 1349 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1350 1351 return 0; 1352 } 1353 1354 /* Calculate MSS not accounting any TCP options. */ 1355 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1356 { 1357 const struct tcp_sock *tp = tcp_sk(sk); 1358 const struct inet_connection_sock *icsk = inet_csk(sk); 1359 int mss_now; 1360 1361 /* Calculate base mss without TCP options: 1362 It is MMS_S - sizeof(tcphdr) of rfc1122 1363 */ 1364 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1365 1366 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1367 if (icsk->icsk_af_ops->net_frag_header_len) { 1368 const struct dst_entry *dst = __sk_dst_get(sk); 1369 1370 if (dst && dst_allfrag(dst)) 1371 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1372 } 1373 1374 /* Clamp it (mss_clamp does not include tcp options) */ 1375 if (mss_now > tp->rx_opt.mss_clamp) 1376 mss_now = tp->rx_opt.mss_clamp; 1377 1378 /* Now subtract optional transport overhead */ 1379 mss_now -= icsk->icsk_ext_hdr_len; 1380 1381 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1382 if (mss_now < 48) 1383 mss_now = 48; 1384 return mss_now; 1385 } 1386 1387 /* Calculate MSS. Not accounting for SACKs here. */ 1388 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1389 { 1390 /* Subtract TCP options size, not including SACKs */ 1391 return __tcp_mtu_to_mss(sk, pmtu) - 1392 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1393 } 1394 1395 /* Inverse of above */ 1396 int tcp_mss_to_mtu(struct sock *sk, int mss) 1397 { 1398 const struct tcp_sock *tp = tcp_sk(sk); 1399 const struct inet_connection_sock *icsk = inet_csk(sk); 1400 int mtu; 1401 1402 mtu = mss + 1403 tp->tcp_header_len + 1404 icsk->icsk_ext_hdr_len + 1405 icsk->icsk_af_ops->net_header_len; 1406 1407 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1408 if (icsk->icsk_af_ops->net_frag_header_len) { 1409 const struct dst_entry *dst = __sk_dst_get(sk); 1410 1411 if (dst && dst_allfrag(dst)) 1412 mtu += icsk->icsk_af_ops->net_frag_header_len; 1413 } 1414 return mtu; 1415 } 1416 1417 /* MTU probing init per socket */ 1418 void tcp_mtup_init(struct sock *sk) 1419 { 1420 struct tcp_sock *tp = tcp_sk(sk); 1421 struct inet_connection_sock *icsk = inet_csk(sk); 1422 1423 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 1424 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1425 icsk->icsk_af_ops->net_header_len; 1426 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 1427 icsk->icsk_mtup.probe_size = 0; 1428 } 1429 EXPORT_SYMBOL(tcp_mtup_init); 1430 1431 /* This function synchronize snd mss to current pmtu/exthdr set. 1432 1433 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1434 for TCP options, but includes only bare TCP header. 1435 1436 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1437 It is minimum of user_mss and mss received with SYN. 1438 It also does not include TCP options. 1439 1440 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1441 1442 tp->mss_cache is current effective sending mss, including 1443 all tcp options except for SACKs. It is evaluated, 1444 taking into account current pmtu, but never exceeds 1445 tp->rx_opt.mss_clamp. 1446 1447 NOTE1. rfc1122 clearly states that advertised MSS 1448 DOES NOT include either tcp or ip options. 1449 1450 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1451 are READ ONLY outside this function. --ANK (980731) 1452 */ 1453 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1454 { 1455 struct tcp_sock *tp = tcp_sk(sk); 1456 struct inet_connection_sock *icsk = inet_csk(sk); 1457 int mss_now; 1458 1459 if (icsk->icsk_mtup.search_high > pmtu) 1460 icsk->icsk_mtup.search_high = pmtu; 1461 1462 mss_now = tcp_mtu_to_mss(sk, pmtu); 1463 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1464 1465 /* And store cached results */ 1466 icsk->icsk_pmtu_cookie = pmtu; 1467 if (icsk->icsk_mtup.enabled) 1468 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1469 tp->mss_cache = mss_now; 1470 1471 return mss_now; 1472 } 1473 EXPORT_SYMBOL(tcp_sync_mss); 1474 1475 /* Compute the current effective MSS, taking SACKs and IP options, 1476 * and even PMTU discovery events into account. 1477 */ 1478 unsigned int tcp_current_mss(struct sock *sk) 1479 { 1480 const struct tcp_sock *tp = tcp_sk(sk); 1481 const struct dst_entry *dst = __sk_dst_get(sk); 1482 u32 mss_now; 1483 unsigned int header_len; 1484 struct tcp_out_options opts; 1485 struct tcp_md5sig_key *md5; 1486 1487 mss_now = tp->mss_cache; 1488 1489 if (dst) { 1490 u32 mtu = dst_mtu(dst); 1491 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1492 mss_now = tcp_sync_mss(sk, mtu); 1493 } 1494 1495 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1496 sizeof(struct tcphdr); 1497 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1498 * some common options. If this is an odd packet (because we have SACK 1499 * blocks etc) then our calculated header_len will be different, and 1500 * we have to adjust mss_now correspondingly */ 1501 if (header_len != tp->tcp_header_len) { 1502 int delta = (int) header_len - tp->tcp_header_len; 1503 mss_now -= delta; 1504 } 1505 1506 return mss_now; 1507 } 1508 1509 /* Congestion window validation. (RFC2861) */ 1510 static void tcp_cwnd_validate(struct sock *sk) 1511 { 1512 struct tcp_sock *tp = tcp_sk(sk); 1513 1514 if (tp->packets_out >= tp->snd_cwnd) { 1515 /* Network is feed fully. */ 1516 tp->snd_cwnd_used = 0; 1517 tp->snd_cwnd_stamp = tcp_time_stamp; 1518 } else { 1519 /* Network starves. */ 1520 if (tp->packets_out > tp->snd_cwnd_used) 1521 tp->snd_cwnd_used = tp->packets_out; 1522 1523 if (sysctl_tcp_slow_start_after_idle && 1524 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1525 tcp_cwnd_application_limited(sk); 1526 } 1527 } 1528 1529 /* Returns the portion of skb which can be sent right away without 1530 * introducing MSS oddities to segment boundaries. In rare cases where 1531 * mss_now != mss_cache, we will request caller to create a small skb 1532 * per input skb which could be mostly avoided here (if desired). 1533 * 1534 * We explicitly want to create a request for splitting write queue tail 1535 * to a small skb for Nagle purposes while avoiding unnecessary modulos, 1536 * thus all the complexity (cwnd_len is always MSS multiple which we 1537 * return whenever allowed by the other factors). Basically we need the 1538 * modulo only when the receiver window alone is the limiting factor or 1539 * when we would be allowed to send the split-due-to-Nagle skb fully. 1540 */ 1541 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb, 1542 unsigned int mss_now, unsigned int max_segs) 1543 { 1544 const struct tcp_sock *tp = tcp_sk(sk); 1545 u32 needed, window, max_len; 1546 1547 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1548 max_len = mss_now * max_segs; 1549 1550 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1551 return max_len; 1552 1553 needed = min(skb->len, window); 1554 1555 if (max_len <= needed) 1556 return max_len; 1557 1558 return needed - needed % mss_now; 1559 } 1560 1561 /* Can at least one segment of SKB be sent right now, according to the 1562 * congestion window rules? If so, return how many segments are allowed. 1563 */ 1564 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1565 const struct sk_buff *skb) 1566 { 1567 u32 in_flight, cwnd; 1568 1569 /* Don't be strict about the congestion window for the final FIN. */ 1570 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1571 tcp_skb_pcount(skb) == 1) 1572 return 1; 1573 1574 in_flight = tcp_packets_in_flight(tp); 1575 cwnd = tp->snd_cwnd; 1576 if (in_flight < cwnd) 1577 return (cwnd - in_flight); 1578 1579 return 0; 1580 } 1581 1582 /* Initialize TSO state of a skb. 1583 * This must be invoked the first time we consider transmitting 1584 * SKB onto the wire. 1585 */ 1586 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1587 unsigned int mss_now) 1588 { 1589 int tso_segs = tcp_skb_pcount(skb); 1590 1591 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1592 tcp_set_skb_tso_segs(sk, skb, mss_now); 1593 tso_segs = tcp_skb_pcount(skb); 1594 } 1595 return tso_segs; 1596 } 1597 1598 /* Minshall's variant of the Nagle send check. */ 1599 static inline bool tcp_minshall_check(const struct tcp_sock *tp) 1600 { 1601 return after(tp->snd_sml, tp->snd_una) && 1602 !after(tp->snd_sml, tp->snd_nxt); 1603 } 1604 1605 /* Return false, if packet can be sent now without violation Nagle's rules: 1606 * 1. It is full sized. 1607 * 2. Or it contains FIN. (already checked by caller) 1608 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1609 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1610 * With Minshall's modification: all sent small packets are ACKed. 1611 */ 1612 static inline bool tcp_nagle_check(const struct tcp_sock *tp, 1613 const struct sk_buff *skb, 1614 unsigned int mss_now, int nonagle) 1615 { 1616 return skb->len < mss_now && 1617 ((nonagle & TCP_NAGLE_CORK) || 1618 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1619 } 1620 1621 /* Return true if the Nagle test allows this packet to be 1622 * sent now. 1623 */ 1624 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1625 unsigned int cur_mss, int nonagle) 1626 { 1627 /* Nagle rule does not apply to frames, which sit in the middle of the 1628 * write_queue (they have no chances to get new data). 1629 * 1630 * This is implemented in the callers, where they modify the 'nonagle' 1631 * argument based upon the location of SKB in the send queue. 1632 */ 1633 if (nonagle & TCP_NAGLE_PUSH) 1634 return true; 1635 1636 /* Don't use the nagle rule for urgent data (or for the final FIN). 1637 * Nagle can be ignored during F-RTO too (see RFC4138). 1638 */ 1639 if (tcp_urg_mode(tp) || (tp->frto_counter == 2) || 1640 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1641 return true; 1642 1643 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 1644 return true; 1645 1646 return false; 1647 } 1648 1649 /* Does at least the first segment of SKB fit into the send window? */ 1650 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1651 const struct sk_buff *skb, 1652 unsigned int cur_mss) 1653 { 1654 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1655 1656 if (skb->len > cur_mss) 1657 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1658 1659 return !after(end_seq, tcp_wnd_end(tp)); 1660 } 1661 1662 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1663 * should be put on the wire right now. If so, it returns the number of 1664 * packets allowed by the congestion window. 1665 */ 1666 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1667 unsigned int cur_mss, int nonagle) 1668 { 1669 const struct tcp_sock *tp = tcp_sk(sk); 1670 unsigned int cwnd_quota; 1671 1672 tcp_init_tso_segs(sk, skb, cur_mss); 1673 1674 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1675 return 0; 1676 1677 cwnd_quota = tcp_cwnd_test(tp, skb); 1678 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1679 cwnd_quota = 0; 1680 1681 return cwnd_quota; 1682 } 1683 1684 /* Test if sending is allowed right now. */ 1685 bool tcp_may_send_now(struct sock *sk) 1686 { 1687 const struct tcp_sock *tp = tcp_sk(sk); 1688 struct sk_buff *skb = tcp_send_head(sk); 1689 1690 return skb && 1691 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1692 (tcp_skb_is_last(sk, skb) ? 1693 tp->nonagle : TCP_NAGLE_PUSH)); 1694 } 1695 1696 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1697 * which is put after SKB on the list. It is very much like 1698 * tcp_fragment() except that it may make several kinds of assumptions 1699 * in order to speed up the splitting operation. In particular, we 1700 * know that all the data is in scatter-gather pages, and that the 1701 * packet has never been sent out before (and thus is not cloned). 1702 */ 1703 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1704 unsigned int mss_now, gfp_t gfp) 1705 { 1706 struct sk_buff *buff; 1707 int nlen = skb->len - len; 1708 u8 flags; 1709 1710 /* All of a TSO frame must be composed of paged data. */ 1711 if (skb->len != skb->data_len) 1712 return tcp_fragment(sk, skb, len, mss_now); 1713 1714 buff = sk_stream_alloc_skb(sk, 0, gfp); 1715 if (unlikely(buff == NULL)) 1716 return -ENOMEM; 1717 1718 sk->sk_wmem_queued += buff->truesize; 1719 sk_mem_charge(sk, buff->truesize); 1720 buff->truesize += nlen; 1721 skb->truesize -= nlen; 1722 1723 /* Correct the sequence numbers. */ 1724 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1725 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1726 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1727 1728 /* PSH and FIN should only be set in the second packet. */ 1729 flags = TCP_SKB_CB(skb)->tcp_flags; 1730 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1731 TCP_SKB_CB(buff)->tcp_flags = flags; 1732 1733 /* This packet was never sent out yet, so no SACK bits. */ 1734 TCP_SKB_CB(buff)->sacked = 0; 1735 1736 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1737 skb_split(skb, buff, len); 1738 1739 /* Fix up tso_factor for both original and new SKB. */ 1740 tcp_set_skb_tso_segs(sk, skb, mss_now); 1741 tcp_set_skb_tso_segs(sk, buff, mss_now); 1742 1743 /* Link BUFF into the send queue. */ 1744 skb_header_release(buff); 1745 tcp_insert_write_queue_after(skb, buff, sk); 1746 1747 return 0; 1748 } 1749 1750 /* Try to defer sending, if possible, in order to minimize the amount 1751 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1752 * 1753 * This algorithm is from John Heffner. 1754 */ 1755 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb) 1756 { 1757 struct tcp_sock *tp = tcp_sk(sk); 1758 const struct inet_connection_sock *icsk = inet_csk(sk); 1759 u32 send_win, cong_win, limit, in_flight; 1760 int win_divisor; 1761 1762 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1763 goto send_now; 1764 1765 if (icsk->icsk_ca_state != TCP_CA_Open) 1766 goto send_now; 1767 1768 /* Defer for less than two clock ticks. */ 1769 if (tp->tso_deferred && 1770 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1771 goto send_now; 1772 1773 in_flight = tcp_packets_in_flight(tp); 1774 1775 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1776 1777 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1778 1779 /* From in_flight test above, we know that cwnd > in_flight. */ 1780 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1781 1782 limit = min(send_win, cong_win); 1783 1784 /* If a full-sized TSO skb can be sent, do it. */ 1785 if (limit >= min_t(unsigned int, sk->sk_gso_max_size, 1786 sk->sk_gso_max_segs * tp->mss_cache)) 1787 goto send_now; 1788 1789 /* Middle in queue won't get any more data, full sendable already? */ 1790 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1791 goto send_now; 1792 1793 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1794 if (win_divisor) { 1795 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1796 1797 /* If at least some fraction of a window is available, 1798 * just use it. 1799 */ 1800 chunk /= win_divisor; 1801 if (limit >= chunk) 1802 goto send_now; 1803 } else { 1804 /* Different approach, try not to defer past a single 1805 * ACK. Receiver should ACK every other full sized 1806 * frame, so if we have space for more than 3 frames 1807 * then send now. 1808 */ 1809 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1810 goto send_now; 1811 } 1812 1813 /* Ok, it looks like it is advisable to defer. */ 1814 tp->tso_deferred = 1 | (jiffies << 1); 1815 1816 return true; 1817 1818 send_now: 1819 tp->tso_deferred = 0; 1820 return false; 1821 } 1822 1823 /* Create a new MTU probe if we are ready. 1824 * MTU probe is regularly attempting to increase the path MTU by 1825 * deliberately sending larger packets. This discovers routing 1826 * changes resulting in larger path MTUs. 1827 * 1828 * Returns 0 if we should wait to probe (no cwnd available), 1829 * 1 if a probe was sent, 1830 * -1 otherwise 1831 */ 1832 static int tcp_mtu_probe(struct sock *sk) 1833 { 1834 struct tcp_sock *tp = tcp_sk(sk); 1835 struct inet_connection_sock *icsk = inet_csk(sk); 1836 struct sk_buff *skb, *nskb, *next; 1837 int len; 1838 int probe_size; 1839 int size_needed; 1840 int copy; 1841 int mss_now; 1842 1843 /* Not currently probing/verifying, 1844 * not in recovery, 1845 * have enough cwnd, and 1846 * not SACKing (the variable headers throw things off) */ 1847 if (!icsk->icsk_mtup.enabled || 1848 icsk->icsk_mtup.probe_size || 1849 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1850 tp->snd_cwnd < 11 || 1851 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1852 return -1; 1853 1854 /* Very simple search strategy: just double the MSS. */ 1855 mss_now = tcp_current_mss(sk); 1856 probe_size = 2 * tp->mss_cache; 1857 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1858 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1859 /* TODO: set timer for probe_converge_event */ 1860 return -1; 1861 } 1862 1863 /* Have enough data in the send queue to probe? */ 1864 if (tp->write_seq - tp->snd_nxt < size_needed) 1865 return -1; 1866 1867 if (tp->snd_wnd < size_needed) 1868 return -1; 1869 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1870 return 0; 1871 1872 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1873 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1874 if (!tcp_packets_in_flight(tp)) 1875 return -1; 1876 else 1877 return 0; 1878 } 1879 1880 /* We're allowed to probe. Build it now. */ 1881 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1882 return -1; 1883 sk->sk_wmem_queued += nskb->truesize; 1884 sk_mem_charge(sk, nskb->truesize); 1885 1886 skb = tcp_send_head(sk); 1887 1888 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1889 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1890 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1891 TCP_SKB_CB(nskb)->sacked = 0; 1892 nskb->csum = 0; 1893 nskb->ip_summed = skb->ip_summed; 1894 1895 tcp_insert_write_queue_before(nskb, skb, sk); 1896 1897 len = 0; 1898 tcp_for_write_queue_from_safe(skb, next, sk) { 1899 copy = min_t(int, skb->len, probe_size - len); 1900 if (nskb->ip_summed) 1901 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1902 else 1903 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1904 skb_put(nskb, copy), 1905 copy, nskb->csum); 1906 1907 if (skb->len <= copy) { 1908 /* We've eaten all the data from this skb. 1909 * Throw it away. */ 1910 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1911 tcp_unlink_write_queue(skb, sk); 1912 sk_wmem_free_skb(sk, skb); 1913 } else { 1914 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1915 ~(TCPHDR_FIN|TCPHDR_PSH); 1916 if (!skb_shinfo(skb)->nr_frags) { 1917 skb_pull(skb, copy); 1918 if (skb->ip_summed != CHECKSUM_PARTIAL) 1919 skb->csum = csum_partial(skb->data, 1920 skb->len, 0); 1921 } else { 1922 __pskb_trim_head(skb, copy); 1923 tcp_set_skb_tso_segs(sk, skb, mss_now); 1924 } 1925 TCP_SKB_CB(skb)->seq += copy; 1926 } 1927 1928 len += copy; 1929 1930 if (len >= probe_size) 1931 break; 1932 } 1933 tcp_init_tso_segs(sk, nskb, nskb->len); 1934 1935 /* We're ready to send. If this fails, the probe will 1936 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1937 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1938 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1939 /* Decrement cwnd here because we are sending 1940 * effectively two packets. */ 1941 tp->snd_cwnd--; 1942 tcp_event_new_data_sent(sk, nskb); 1943 1944 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1945 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1946 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1947 1948 return 1; 1949 } 1950 1951 return -1; 1952 } 1953 1954 /* This routine writes packets to the network. It advances the 1955 * send_head. This happens as incoming acks open up the remote 1956 * window for us. 1957 * 1958 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1959 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1960 * account rare use of URG, this is not a big flaw. 1961 * 1962 * Returns true, if no segments are in flight and we have queued segments, 1963 * but cannot send anything now because of SWS or another problem. 1964 */ 1965 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1966 int push_one, gfp_t gfp) 1967 { 1968 struct tcp_sock *tp = tcp_sk(sk); 1969 struct sk_buff *skb; 1970 unsigned int tso_segs, sent_pkts; 1971 int cwnd_quota; 1972 int result; 1973 1974 sent_pkts = 0; 1975 1976 if (!push_one) { 1977 /* Do MTU probing. */ 1978 result = tcp_mtu_probe(sk); 1979 if (!result) { 1980 return false; 1981 } else if (result > 0) { 1982 sent_pkts = 1; 1983 } 1984 } 1985 1986 while ((skb = tcp_send_head(sk))) { 1987 unsigned int limit; 1988 1989 1990 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1991 BUG_ON(!tso_segs); 1992 1993 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) 1994 goto repair; /* Skip network transmission */ 1995 1996 cwnd_quota = tcp_cwnd_test(tp, skb); 1997 if (!cwnd_quota) 1998 break; 1999 2000 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 2001 break; 2002 2003 if (tso_segs == 1) { 2004 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2005 (tcp_skb_is_last(sk, skb) ? 2006 nonagle : TCP_NAGLE_PUSH)))) 2007 break; 2008 } else { 2009 if (!push_one && tcp_tso_should_defer(sk, skb)) 2010 break; 2011 } 2012 2013 /* TSQ : sk_wmem_alloc accounts skb truesize, 2014 * including skb overhead. But thats OK. 2015 */ 2016 if (atomic_read(&sk->sk_wmem_alloc) >= sysctl_tcp_limit_output_bytes) { 2017 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 2018 break; 2019 } 2020 limit = mss_now; 2021 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2022 limit = tcp_mss_split_point(sk, skb, mss_now, 2023 min_t(unsigned int, 2024 cwnd_quota, 2025 sk->sk_gso_max_segs)); 2026 2027 if (skb->len > limit && 2028 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2029 break; 2030 2031 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2032 2033 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2034 break; 2035 2036 repair: 2037 /* Advance the send_head. This one is sent out. 2038 * This call will increment packets_out. 2039 */ 2040 tcp_event_new_data_sent(sk, skb); 2041 2042 tcp_minshall_update(tp, mss_now, skb); 2043 sent_pkts += tcp_skb_pcount(skb); 2044 2045 if (push_one) 2046 break; 2047 } 2048 2049 if (likely(sent_pkts)) { 2050 if (tcp_in_cwnd_reduction(sk)) 2051 tp->prr_out += sent_pkts; 2052 tcp_cwnd_validate(sk); 2053 return false; 2054 } 2055 return !tp->packets_out && tcp_send_head(sk); 2056 } 2057 2058 /* Push out any pending frames which were held back due to 2059 * TCP_CORK or attempt at coalescing tiny packets. 2060 * The socket must be locked by the caller. 2061 */ 2062 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2063 int nonagle) 2064 { 2065 /* If we are closed, the bytes will have to remain here. 2066 * In time closedown will finish, we empty the write queue and 2067 * all will be happy. 2068 */ 2069 if (unlikely(sk->sk_state == TCP_CLOSE)) 2070 return; 2071 2072 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2073 sk_gfp_atomic(sk, GFP_ATOMIC))) 2074 tcp_check_probe_timer(sk); 2075 } 2076 2077 /* Send _single_ skb sitting at the send head. This function requires 2078 * true push pending frames to setup probe timer etc. 2079 */ 2080 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2081 { 2082 struct sk_buff *skb = tcp_send_head(sk); 2083 2084 BUG_ON(!skb || skb->len < mss_now); 2085 2086 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2087 } 2088 2089 /* This function returns the amount that we can raise the 2090 * usable window based on the following constraints 2091 * 2092 * 1. The window can never be shrunk once it is offered (RFC 793) 2093 * 2. We limit memory per socket 2094 * 2095 * RFC 1122: 2096 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2097 * RECV.NEXT + RCV.WIN fixed until: 2098 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2099 * 2100 * i.e. don't raise the right edge of the window until you can raise 2101 * it at least MSS bytes. 2102 * 2103 * Unfortunately, the recommended algorithm breaks header prediction, 2104 * since header prediction assumes th->window stays fixed. 2105 * 2106 * Strictly speaking, keeping th->window fixed violates the receiver 2107 * side SWS prevention criteria. The problem is that under this rule 2108 * a stream of single byte packets will cause the right side of the 2109 * window to always advance by a single byte. 2110 * 2111 * Of course, if the sender implements sender side SWS prevention 2112 * then this will not be a problem. 2113 * 2114 * BSD seems to make the following compromise: 2115 * 2116 * If the free space is less than the 1/4 of the maximum 2117 * space available and the free space is less than 1/2 mss, 2118 * then set the window to 0. 2119 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2120 * Otherwise, just prevent the window from shrinking 2121 * and from being larger than the largest representable value. 2122 * 2123 * This prevents incremental opening of the window in the regime 2124 * where TCP is limited by the speed of the reader side taking 2125 * data out of the TCP receive queue. It does nothing about 2126 * those cases where the window is constrained on the sender side 2127 * because the pipeline is full. 2128 * 2129 * BSD also seems to "accidentally" limit itself to windows that are a 2130 * multiple of MSS, at least until the free space gets quite small. 2131 * This would appear to be a side effect of the mbuf implementation. 2132 * Combining these two algorithms results in the observed behavior 2133 * of having a fixed window size at almost all times. 2134 * 2135 * Below we obtain similar behavior by forcing the offered window to 2136 * a multiple of the mss when it is feasible to do so. 2137 * 2138 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2139 * Regular options like TIMESTAMP are taken into account. 2140 */ 2141 u32 __tcp_select_window(struct sock *sk) 2142 { 2143 struct inet_connection_sock *icsk = inet_csk(sk); 2144 struct tcp_sock *tp = tcp_sk(sk); 2145 /* MSS for the peer's data. Previous versions used mss_clamp 2146 * here. I don't know if the value based on our guesses 2147 * of peer's MSS is better for the performance. It's more correct 2148 * but may be worse for the performance because of rcv_mss 2149 * fluctuations. --SAW 1998/11/1 2150 */ 2151 int mss = icsk->icsk_ack.rcv_mss; 2152 int free_space = tcp_space(sk); 2153 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 2154 int window; 2155 2156 if (mss > full_space) 2157 mss = full_space; 2158 2159 if (free_space < (full_space >> 1)) { 2160 icsk->icsk_ack.quick = 0; 2161 2162 if (sk_under_memory_pressure(sk)) 2163 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2164 4U * tp->advmss); 2165 2166 if (free_space < mss) 2167 return 0; 2168 } 2169 2170 if (free_space > tp->rcv_ssthresh) 2171 free_space = tp->rcv_ssthresh; 2172 2173 /* Don't do rounding if we are using window scaling, since the 2174 * scaled window will not line up with the MSS boundary anyway. 2175 */ 2176 window = tp->rcv_wnd; 2177 if (tp->rx_opt.rcv_wscale) { 2178 window = free_space; 2179 2180 /* Advertise enough space so that it won't get scaled away. 2181 * Import case: prevent zero window announcement if 2182 * 1<<rcv_wscale > mss. 2183 */ 2184 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2185 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2186 << tp->rx_opt.rcv_wscale); 2187 } else { 2188 /* Get the largest window that is a nice multiple of mss. 2189 * Window clamp already applied above. 2190 * If our current window offering is within 1 mss of the 2191 * free space we just keep it. This prevents the divide 2192 * and multiply from happening most of the time. 2193 * We also don't do any window rounding when the free space 2194 * is too small. 2195 */ 2196 if (window <= free_space - mss || window > free_space) 2197 window = (free_space / mss) * mss; 2198 else if (mss == full_space && 2199 free_space > window + (full_space >> 1)) 2200 window = free_space; 2201 } 2202 2203 return window; 2204 } 2205 2206 /* Collapses two adjacent SKB's during retransmission. */ 2207 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2208 { 2209 struct tcp_sock *tp = tcp_sk(sk); 2210 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2211 int skb_size, next_skb_size; 2212 2213 skb_size = skb->len; 2214 next_skb_size = next_skb->len; 2215 2216 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2217 2218 tcp_highest_sack_combine(sk, next_skb, skb); 2219 2220 tcp_unlink_write_queue(next_skb, sk); 2221 2222 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2223 next_skb_size); 2224 2225 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2226 skb->ip_summed = CHECKSUM_PARTIAL; 2227 2228 if (skb->ip_summed != CHECKSUM_PARTIAL) 2229 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2230 2231 /* Update sequence range on original skb. */ 2232 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2233 2234 /* Merge over control information. This moves PSH/FIN etc. over */ 2235 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2236 2237 /* All done, get rid of second SKB and account for it so 2238 * packet counting does not break. 2239 */ 2240 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2241 2242 /* changed transmit queue under us so clear hints */ 2243 tcp_clear_retrans_hints_partial(tp); 2244 if (next_skb == tp->retransmit_skb_hint) 2245 tp->retransmit_skb_hint = skb; 2246 2247 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2248 2249 sk_wmem_free_skb(sk, next_skb); 2250 } 2251 2252 /* Check if coalescing SKBs is legal. */ 2253 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2254 { 2255 if (tcp_skb_pcount(skb) > 1) 2256 return false; 2257 /* TODO: SACK collapsing could be used to remove this condition */ 2258 if (skb_shinfo(skb)->nr_frags != 0) 2259 return false; 2260 if (skb_cloned(skb)) 2261 return false; 2262 if (skb == tcp_send_head(sk)) 2263 return false; 2264 /* Some heurestics for collapsing over SACK'd could be invented */ 2265 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2266 return false; 2267 2268 return true; 2269 } 2270 2271 /* Collapse packets in the retransmit queue to make to create 2272 * less packets on the wire. This is only done on retransmission. 2273 */ 2274 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2275 int space) 2276 { 2277 struct tcp_sock *tp = tcp_sk(sk); 2278 struct sk_buff *skb = to, *tmp; 2279 bool first = true; 2280 2281 if (!sysctl_tcp_retrans_collapse) 2282 return; 2283 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2284 return; 2285 2286 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2287 if (!tcp_can_collapse(sk, skb)) 2288 break; 2289 2290 space -= skb->len; 2291 2292 if (first) { 2293 first = false; 2294 continue; 2295 } 2296 2297 if (space < 0) 2298 break; 2299 /* Punt if not enough space exists in the first SKB for 2300 * the data in the second 2301 */ 2302 if (skb->len > skb_availroom(to)) 2303 break; 2304 2305 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2306 break; 2307 2308 tcp_collapse_retrans(sk, to); 2309 } 2310 } 2311 2312 /* This retransmits one SKB. Policy decisions and retransmit queue 2313 * state updates are done by the caller. Returns non-zero if an 2314 * error occurred which prevented the send. 2315 */ 2316 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2317 { 2318 struct tcp_sock *tp = tcp_sk(sk); 2319 struct inet_connection_sock *icsk = inet_csk(sk); 2320 unsigned int cur_mss; 2321 2322 /* Inconslusive MTU probe */ 2323 if (icsk->icsk_mtup.probe_size) { 2324 icsk->icsk_mtup.probe_size = 0; 2325 } 2326 2327 /* Do not sent more than we queued. 1/4 is reserved for possible 2328 * copying overhead: fragmentation, tunneling, mangling etc. 2329 */ 2330 if (atomic_read(&sk->sk_wmem_alloc) > 2331 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2332 return -EAGAIN; 2333 2334 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2335 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2336 BUG(); 2337 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2338 return -ENOMEM; 2339 } 2340 2341 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2342 return -EHOSTUNREACH; /* Routing failure or similar. */ 2343 2344 cur_mss = tcp_current_mss(sk); 2345 2346 /* If receiver has shrunk his window, and skb is out of 2347 * new window, do not retransmit it. The exception is the 2348 * case, when window is shrunk to zero. In this case 2349 * our retransmit serves as a zero window probe. 2350 */ 2351 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2352 TCP_SKB_CB(skb)->seq != tp->snd_una) 2353 return -EAGAIN; 2354 2355 if (skb->len > cur_mss) { 2356 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 2357 return -ENOMEM; /* We'll try again later. */ 2358 } else { 2359 int oldpcount = tcp_skb_pcount(skb); 2360 2361 if (unlikely(oldpcount > 1)) { 2362 tcp_init_tso_segs(sk, skb, cur_mss); 2363 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2364 } 2365 } 2366 2367 tcp_retrans_try_collapse(sk, skb, cur_mss); 2368 2369 /* Some Solaris stacks overoptimize and ignore the FIN on a 2370 * retransmit when old data is attached. So strip it off 2371 * since it is cheap to do so and saves bytes on the network. 2372 */ 2373 if (skb->len > 0 && 2374 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2375 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 2376 if (!pskb_trim(skb, 0)) { 2377 /* Reuse, even though it does some unnecessary work */ 2378 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1, 2379 TCP_SKB_CB(skb)->tcp_flags); 2380 skb->ip_summed = CHECKSUM_NONE; 2381 } 2382 } 2383 2384 /* Make a copy, if the first transmission SKB clone we made 2385 * is still in somebody's hands, else make a clone. 2386 */ 2387 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2388 2389 /* make sure skb->data is aligned on arches that require it */ 2390 if (unlikely(NET_IP_ALIGN && ((unsigned long)skb->data & 3))) { 2391 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2392 GFP_ATOMIC); 2393 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2394 -ENOBUFS; 2395 } else { 2396 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2397 } 2398 } 2399 2400 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2401 { 2402 struct tcp_sock *tp = tcp_sk(sk); 2403 int err = __tcp_retransmit_skb(sk, skb); 2404 2405 if (err == 0) { 2406 /* Update global TCP statistics. */ 2407 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2408 2409 tp->total_retrans++; 2410 2411 #if FASTRETRANS_DEBUG > 0 2412 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2413 net_dbg_ratelimited("retrans_out leaked\n"); 2414 } 2415 #endif 2416 if (!tp->retrans_out) 2417 tp->lost_retrans_low = tp->snd_nxt; 2418 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2419 tp->retrans_out += tcp_skb_pcount(skb); 2420 2421 /* Save stamp of the first retransmit. */ 2422 if (!tp->retrans_stamp) 2423 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 2424 2425 tp->undo_retrans += tcp_skb_pcount(skb); 2426 2427 /* snd_nxt is stored to detect loss of retransmitted segment, 2428 * see tcp_input.c tcp_sacktag_write_queue(). 2429 */ 2430 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2431 } 2432 return err; 2433 } 2434 2435 /* Check if we forward retransmits are possible in the current 2436 * window/congestion state. 2437 */ 2438 static bool tcp_can_forward_retransmit(struct sock *sk) 2439 { 2440 const struct inet_connection_sock *icsk = inet_csk(sk); 2441 const struct tcp_sock *tp = tcp_sk(sk); 2442 2443 /* Forward retransmissions are possible only during Recovery. */ 2444 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2445 return false; 2446 2447 /* No forward retransmissions in Reno are possible. */ 2448 if (tcp_is_reno(tp)) 2449 return false; 2450 2451 /* Yeah, we have to make difficult choice between forward transmission 2452 * and retransmission... Both ways have their merits... 2453 * 2454 * For now we do not retransmit anything, while we have some new 2455 * segments to send. In the other cases, follow rule 3 for 2456 * NextSeg() specified in RFC3517. 2457 */ 2458 2459 if (tcp_may_send_now(sk)) 2460 return false; 2461 2462 return true; 2463 } 2464 2465 /* This gets called after a retransmit timeout, and the initially 2466 * retransmitted data is acknowledged. It tries to continue 2467 * resending the rest of the retransmit queue, until either 2468 * we've sent it all or the congestion window limit is reached. 2469 * If doing SACK, the first ACK which comes back for a timeout 2470 * based retransmit packet might feed us FACK information again. 2471 * If so, we use it to avoid unnecessarily retransmissions. 2472 */ 2473 void tcp_xmit_retransmit_queue(struct sock *sk) 2474 { 2475 const struct inet_connection_sock *icsk = inet_csk(sk); 2476 struct tcp_sock *tp = tcp_sk(sk); 2477 struct sk_buff *skb; 2478 struct sk_buff *hole = NULL; 2479 u32 last_lost; 2480 int mib_idx; 2481 int fwd_rexmitting = 0; 2482 2483 if (!tp->packets_out) 2484 return; 2485 2486 if (!tp->lost_out) 2487 tp->retransmit_high = tp->snd_una; 2488 2489 if (tp->retransmit_skb_hint) { 2490 skb = tp->retransmit_skb_hint; 2491 last_lost = TCP_SKB_CB(skb)->end_seq; 2492 if (after(last_lost, tp->retransmit_high)) 2493 last_lost = tp->retransmit_high; 2494 } else { 2495 skb = tcp_write_queue_head(sk); 2496 last_lost = tp->snd_una; 2497 } 2498 2499 tcp_for_write_queue_from(skb, sk) { 2500 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2501 2502 if (skb == tcp_send_head(sk)) 2503 break; 2504 /* we could do better than to assign each time */ 2505 if (hole == NULL) 2506 tp->retransmit_skb_hint = skb; 2507 2508 /* Assume this retransmit will generate 2509 * only one packet for congestion window 2510 * calculation purposes. This works because 2511 * tcp_retransmit_skb() will chop up the 2512 * packet to be MSS sized and all the 2513 * packet counting works out. 2514 */ 2515 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2516 return; 2517 2518 if (fwd_rexmitting) { 2519 begin_fwd: 2520 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2521 break; 2522 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2523 2524 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2525 tp->retransmit_high = last_lost; 2526 if (!tcp_can_forward_retransmit(sk)) 2527 break; 2528 /* Backtrack if necessary to non-L'ed skb */ 2529 if (hole != NULL) { 2530 skb = hole; 2531 hole = NULL; 2532 } 2533 fwd_rexmitting = 1; 2534 goto begin_fwd; 2535 2536 } else if (!(sacked & TCPCB_LOST)) { 2537 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2538 hole = skb; 2539 continue; 2540 2541 } else { 2542 last_lost = TCP_SKB_CB(skb)->end_seq; 2543 if (icsk->icsk_ca_state != TCP_CA_Loss) 2544 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2545 else 2546 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2547 } 2548 2549 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2550 continue; 2551 2552 if (tcp_retransmit_skb(sk, skb)) { 2553 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2554 return; 2555 } 2556 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2557 2558 if (tcp_in_cwnd_reduction(sk)) 2559 tp->prr_out += tcp_skb_pcount(skb); 2560 2561 if (skb == tcp_write_queue_head(sk)) 2562 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2563 inet_csk(sk)->icsk_rto, 2564 TCP_RTO_MAX); 2565 } 2566 } 2567 2568 /* Send a fin. The caller locks the socket for us. This cannot be 2569 * allowed to fail queueing a FIN frame under any circumstances. 2570 */ 2571 void tcp_send_fin(struct sock *sk) 2572 { 2573 struct tcp_sock *tp = tcp_sk(sk); 2574 struct sk_buff *skb = tcp_write_queue_tail(sk); 2575 int mss_now; 2576 2577 /* Optimization, tack on the FIN if we have a queue of 2578 * unsent frames. But be careful about outgoing SACKS 2579 * and IP options. 2580 */ 2581 mss_now = tcp_current_mss(sk); 2582 2583 if (tcp_send_head(sk) != NULL) { 2584 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN; 2585 TCP_SKB_CB(skb)->end_seq++; 2586 tp->write_seq++; 2587 } else { 2588 /* Socket is locked, keep trying until memory is available. */ 2589 for (;;) { 2590 skb = alloc_skb_fclone(MAX_TCP_HEADER, 2591 sk->sk_allocation); 2592 if (skb) 2593 break; 2594 yield(); 2595 } 2596 2597 /* Reserve space for headers and prepare control bits. */ 2598 skb_reserve(skb, MAX_TCP_HEADER); 2599 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2600 tcp_init_nondata_skb(skb, tp->write_seq, 2601 TCPHDR_ACK | TCPHDR_FIN); 2602 tcp_queue_skb(sk, skb); 2603 } 2604 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2605 } 2606 2607 /* We get here when a process closes a file descriptor (either due to 2608 * an explicit close() or as a byproduct of exit()'ing) and there 2609 * was unread data in the receive queue. This behavior is recommended 2610 * by RFC 2525, section 2.17. -DaveM 2611 */ 2612 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2613 { 2614 struct sk_buff *skb; 2615 2616 /* NOTE: No TCP options attached and we never retransmit this. */ 2617 skb = alloc_skb(MAX_TCP_HEADER, priority); 2618 if (!skb) { 2619 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2620 return; 2621 } 2622 2623 /* Reserve space for headers and prepare control bits. */ 2624 skb_reserve(skb, MAX_TCP_HEADER); 2625 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2626 TCPHDR_ACK | TCPHDR_RST); 2627 /* Send it off. */ 2628 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2629 if (tcp_transmit_skb(sk, skb, 0, priority)) 2630 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2631 2632 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2633 } 2634 2635 /* Send a crossed SYN-ACK during socket establishment. 2636 * WARNING: This routine must only be called when we have already sent 2637 * a SYN packet that crossed the incoming SYN that caused this routine 2638 * to get called. If this assumption fails then the initial rcv_wnd 2639 * and rcv_wscale values will not be correct. 2640 */ 2641 int tcp_send_synack(struct sock *sk) 2642 { 2643 struct sk_buff *skb; 2644 2645 skb = tcp_write_queue_head(sk); 2646 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2647 pr_debug("%s: wrong queue state\n", __func__); 2648 return -EFAULT; 2649 } 2650 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2651 if (skb_cloned(skb)) { 2652 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2653 if (nskb == NULL) 2654 return -ENOMEM; 2655 tcp_unlink_write_queue(skb, sk); 2656 skb_header_release(nskb); 2657 __tcp_add_write_queue_head(sk, nskb); 2658 sk_wmem_free_skb(sk, skb); 2659 sk->sk_wmem_queued += nskb->truesize; 2660 sk_mem_charge(sk, nskb->truesize); 2661 skb = nskb; 2662 } 2663 2664 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2665 TCP_ECN_send_synack(tcp_sk(sk), skb); 2666 } 2667 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2668 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2669 } 2670 2671 /** 2672 * tcp_make_synack - Prepare a SYN-ACK. 2673 * sk: listener socket 2674 * dst: dst entry attached to the SYNACK 2675 * req: request_sock pointer 2676 * rvp: request_values pointer 2677 * 2678 * Allocate one skb and build a SYNACK packet. 2679 * @dst is consumed : Caller should not use it again. 2680 */ 2681 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2682 struct request_sock *req, 2683 struct request_values *rvp, 2684 struct tcp_fastopen_cookie *foc) 2685 { 2686 struct tcp_out_options opts; 2687 struct tcp_extend_values *xvp = tcp_xv(rvp); 2688 struct inet_request_sock *ireq = inet_rsk(req); 2689 struct tcp_sock *tp = tcp_sk(sk); 2690 const struct tcp_cookie_values *cvp = tp->cookie_values; 2691 struct tcphdr *th; 2692 struct sk_buff *skb; 2693 struct tcp_md5sig_key *md5; 2694 int tcp_header_size; 2695 int mss; 2696 int s_data_desired = 0; 2697 2698 if (cvp != NULL && cvp->s_data_constant && cvp->s_data_desired) 2699 s_data_desired = cvp->s_data_desired; 2700 skb = alloc_skb(MAX_TCP_HEADER + 15 + s_data_desired, 2701 sk_gfp_atomic(sk, GFP_ATOMIC)); 2702 if (unlikely(!skb)) { 2703 dst_release(dst); 2704 return NULL; 2705 } 2706 /* Reserve space for headers. */ 2707 skb_reserve(skb, MAX_TCP_HEADER); 2708 2709 skb_dst_set(skb, dst); 2710 2711 mss = dst_metric_advmss(dst); 2712 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2713 mss = tp->rx_opt.user_mss; 2714 2715 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 2716 __u8 rcv_wscale; 2717 /* Set this up on the first call only */ 2718 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 2719 2720 /* limit the window selection if the user enforce a smaller rx buffer */ 2721 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2722 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0)) 2723 req->window_clamp = tcp_full_space(sk); 2724 2725 /* tcp_full_space because it is guaranteed to be the first packet */ 2726 tcp_select_initial_window(tcp_full_space(sk), 2727 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 2728 &req->rcv_wnd, 2729 &req->window_clamp, 2730 ireq->wscale_ok, 2731 &rcv_wscale, 2732 dst_metric(dst, RTAX_INITRWND)); 2733 ireq->rcv_wscale = rcv_wscale; 2734 } 2735 2736 memset(&opts, 0, sizeof(opts)); 2737 #ifdef CONFIG_SYN_COOKIES 2738 if (unlikely(req->cookie_ts)) 2739 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req); 2740 else 2741 #endif 2742 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2743 tcp_header_size = tcp_synack_options(sk, req, mss, 2744 skb, &opts, &md5, xvp, foc) 2745 + sizeof(*th); 2746 2747 skb_push(skb, tcp_header_size); 2748 skb_reset_transport_header(skb); 2749 2750 th = tcp_hdr(skb); 2751 memset(th, 0, sizeof(struct tcphdr)); 2752 th->syn = 1; 2753 th->ack = 1; 2754 TCP_ECN_make_synack(req, th); 2755 th->source = ireq->loc_port; 2756 th->dest = ireq->rmt_port; 2757 /* Setting of flags are superfluous here for callers (and ECE is 2758 * not even correctly set) 2759 */ 2760 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2761 TCPHDR_SYN | TCPHDR_ACK); 2762 2763 if (OPTION_COOKIE_EXTENSION & opts.options) { 2764 if (s_data_desired) { 2765 u8 *buf = skb_put(skb, s_data_desired); 2766 2767 /* copy data directly from the listening socket. */ 2768 memcpy(buf, cvp->s_data_payload, s_data_desired); 2769 TCP_SKB_CB(skb)->end_seq += s_data_desired; 2770 } 2771 2772 if (opts.hash_size > 0) { 2773 __u32 workspace[SHA_WORKSPACE_WORDS]; 2774 u32 *mess = &xvp->cookie_bakery[COOKIE_DIGEST_WORDS]; 2775 u32 *tail = &mess[COOKIE_MESSAGE_WORDS-1]; 2776 2777 /* Secret recipe depends on the Timestamp, (future) 2778 * Sequence and Acknowledgment Numbers, Initiator 2779 * Cookie, and others handled by IP variant caller. 2780 */ 2781 *tail-- ^= opts.tsval; 2782 *tail-- ^= tcp_rsk(req)->rcv_isn + 1; 2783 *tail-- ^= TCP_SKB_CB(skb)->seq + 1; 2784 2785 /* recommended */ 2786 *tail-- ^= (((__force u32)th->dest << 16) | (__force u32)th->source); 2787 *tail-- ^= (u32)(unsigned long)cvp; /* per sockopt */ 2788 2789 sha_transform((__u32 *)&xvp->cookie_bakery[0], 2790 (char *)mess, 2791 &workspace[0]); 2792 opts.hash_location = 2793 (__u8 *)&xvp->cookie_bakery[0]; 2794 } 2795 } 2796 2797 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2798 /* XXX data is queued and acked as is. No buffer/window check */ 2799 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 2800 2801 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2802 th->window = htons(min(req->rcv_wnd, 65535U)); 2803 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2804 th->doff = (tcp_header_size >> 2); 2805 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb)); 2806 2807 #ifdef CONFIG_TCP_MD5SIG 2808 /* Okay, we have all we need - do the md5 hash if needed */ 2809 if (md5) { 2810 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2811 md5, NULL, req, skb); 2812 } 2813 #endif 2814 2815 return skb; 2816 } 2817 EXPORT_SYMBOL(tcp_make_synack); 2818 2819 /* Do all connect socket setups that can be done AF independent. */ 2820 void tcp_connect_init(struct sock *sk) 2821 { 2822 const struct dst_entry *dst = __sk_dst_get(sk); 2823 struct tcp_sock *tp = tcp_sk(sk); 2824 __u8 rcv_wscale; 2825 2826 /* We'll fix this up when we get a response from the other end. 2827 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2828 */ 2829 tp->tcp_header_len = sizeof(struct tcphdr) + 2830 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2831 2832 #ifdef CONFIG_TCP_MD5SIG 2833 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2834 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2835 #endif 2836 2837 /* If user gave his TCP_MAXSEG, record it to clamp */ 2838 if (tp->rx_opt.user_mss) 2839 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2840 tp->max_window = 0; 2841 tcp_mtup_init(sk); 2842 tcp_sync_mss(sk, dst_mtu(dst)); 2843 2844 if (!tp->window_clamp) 2845 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2846 tp->advmss = dst_metric_advmss(dst); 2847 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2848 tp->advmss = tp->rx_opt.user_mss; 2849 2850 tcp_initialize_rcv_mss(sk); 2851 2852 /* limit the window selection if the user enforce a smaller rx buffer */ 2853 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2854 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 2855 tp->window_clamp = tcp_full_space(sk); 2856 2857 tcp_select_initial_window(tcp_full_space(sk), 2858 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2859 &tp->rcv_wnd, 2860 &tp->window_clamp, 2861 sysctl_tcp_window_scaling, 2862 &rcv_wscale, 2863 dst_metric(dst, RTAX_INITRWND)); 2864 2865 tp->rx_opt.rcv_wscale = rcv_wscale; 2866 tp->rcv_ssthresh = tp->rcv_wnd; 2867 2868 sk->sk_err = 0; 2869 sock_reset_flag(sk, SOCK_DONE); 2870 tp->snd_wnd = 0; 2871 tcp_init_wl(tp, 0); 2872 tp->snd_una = tp->write_seq; 2873 tp->snd_sml = tp->write_seq; 2874 tp->snd_up = tp->write_seq; 2875 tp->snd_nxt = tp->write_seq; 2876 2877 if (likely(!tp->repair)) 2878 tp->rcv_nxt = 0; 2879 tp->rcv_wup = tp->rcv_nxt; 2880 tp->copied_seq = tp->rcv_nxt; 2881 2882 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2883 inet_csk(sk)->icsk_retransmits = 0; 2884 tcp_clear_retrans(tp); 2885 } 2886 2887 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 2888 { 2889 struct tcp_sock *tp = tcp_sk(sk); 2890 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 2891 2892 tcb->end_seq += skb->len; 2893 skb_header_release(skb); 2894 __tcp_add_write_queue_tail(sk, skb); 2895 sk->sk_wmem_queued += skb->truesize; 2896 sk_mem_charge(sk, skb->truesize); 2897 tp->write_seq = tcb->end_seq; 2898 tp->packets_out += tcp_skb_pcount(skb); 2899 } 2900 2901 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 2902 * queue a data-only packet after the regular SYN, such that regular SYNs 2903 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 2904 * only the SYN sequence, the data are retransmitted in the first ACK. 2905 * If cookie is not cached or other error occurs, falls back to send a 2906 * regular SYN with Fast Open cookie request option. 2907 */ 2908 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 2909 { 2910 struct tcp_sock *tp = tcp_sk(sk); 2911 struct tcp_fastopen_request *fo = tp->fastopen_req; 2912 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen; 2913 struct sk_buff *syn_data = NULL, *data; 2914 unsigned long last_syn_loss = 0; 2915 2916 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 2917 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 2918 &syn_loss, &last_syn_loss); 2919 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 2920 if (syn_loss > 1 && 2921 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 2922 fo->cookie.len = -1; 2923 goto fallback; 2924 } 2925 2926 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 2927 fo->cookie.len = -1; 2928 else if (fo->cookie.len <= 0) 2929 goto fallback; 2930 2931 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 2932 * user-MSS. Reserve maximum option space for middleboxes that add 2933 * private TCP options. The cost is reduced data space in SYN :( 2934 */ 2935 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 2936 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2937 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 2938 MAX_TCP_OPTION_SPACE; 2939 2940 syn_data = skb_copy_expand(syn, skb_headroom(syn), space, 2941 sk->sk_allocation); 2942 if (syn_data == NULL) 2943 goto fallback; 2944 2945 for (i = 0; i < iovlen && syn_data->len < space; ++i) { 2946 struct iovec *iov = &fo->data->msg_iov[i]; 2947 unsigned char __user *from = iov->iov_base; 2948 int len = iov->iov_len; 2949 2950 if (syn_data->len + len > space) 2951 len = space - syn_data->len; 2952 else if (i + 1 == iovlen) 2953 /* No more data pending in inet_wait_for_connect() */ 2954 fo->data = NULL; 2955 2956 if (skb_add_data(syn_data, from, len)) 2957 goto fallback; 2958 } 2959 2960 /* Queue a data-only packet after the regular SYN for retransmission */ 2961 data = pskb_copy(syn_data, sk->sk_allocation); 2962 if (data == NULL) 2963 goto fallback; 2964 TCP_SKB_CB(data)->seq++; 2965 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN; 2966 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH); 2967 tcp_connect_queue_skb(sk, data); 2968 fo->copied = data->len; 2969 2970 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) { 2971 tp->syn_data = (fo->copied > 0); 2972 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 2973 goto done; 2974 } 2975 syn_data = NULL; 2976 2977 fallback: 2978 /* Send a regular SYN with Fast Open cookie request option */ 2979 if (fo->cookie.len > 0) 2980 fo->cookie.len = 0; 2981 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 2982 if (err) 2983 tp->syn_fastopen = 0; 2984 kfree_skb(syn_data); 2985 done: 2986 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 2987 return err; 2988 } 2989 2990 /* Build a SYN and send it off. */ 2991 int tcp_connect(struct sock *sk) 2992 { 2993 struct tcp_sock *tp = tcp_sk(sk); 2994 struct sk_buff *buff; 2995 int err; 2996 2997 tcp_connect_init(sk); 2998 2999 if (unlikely(tp->repair)) { 3000 tcp_finish_connect(sk, NULL); 3001 return 0; 3002 } 3003 3004 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 3005 if (unlikely(buff == NULL)) 3006 return -ENOBUFS; 3007 3008 /* Reserve space for headers. */ 3009 skb_reserve(buff, MAX_TCP_HEADER); 3010 3011 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3012 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp; 3013 tcp_connect_queue_skb(sk, buff); 3014 TCP_ECN_send_syn(sk, buff); 3015 3016 /* Send off SYN; include data in Fast Open. */ 3017 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3018 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3019 if (err == -ECONNREFUSED) 3020 return err; 3021 3022 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3023 * in order to make this packet get counted in tcpOutSegs. 3024 */ 3025 tp->snd_nxt = tp->write_seq; 3026 tp->pushed_seq = tp->write_seq; 3027 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3028 3029 /* Timer for repeating the SYN until an answer. */ 3030 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3031 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3032 return 0; 3033 } 3034 EXPORT_SYMBOL(tcp_connect); 3035 3036 /* Send out a delayed ack, the caller does the policy checking 3037 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3038 * for details. 3039 */ 3040 void tcp_send_delayed_ack(struct sock *sk) 3041 { 3042 struct inet_connection_sock *icsk = inet_csk(sk); 3043 int ato = icsk->icsk_ack.ato; 3044 unsigned long timeout; 3045 3046 if (ato > TCP_DELACK_MIN) { 3047 const struct tcp_sock *tp = tcp_sk(sk); 3048 int max_ato = HZ / 2; 3049 3050 if (icsk->icsk_ack.pingpong || 3051 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3052 max_ato = TCP_DELACK_MAX; 3053 3054 /* Slow path, intersegment interval is "high". */ 3055 3056 /* If some rtt estimate is known, use it to bound delayed ack. 3057 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3058 * directly. 3059 */ 3060 if (tp->srtt) { 3061 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN); 3062 3063 if (rtt < max_ato) 3064 max_ato = rtt; 3065 } 3066 3067 ato = min(ato, max_ato); 3068 } 3069 3070 /* Stay within the limit we were given */ 3071 timeout = jiffies + ato; 3072 3073 /* Use new timeout only if there wasn't a older one earlier. */ 3074 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3075 /* If delack timer was blocked or is about to expire, 3076 * send ACK now. 3077 */ 3078 if (icsk->icsk_ack.blocked || 3079 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3080 tcp_send_ack(sk); 3081 return; 3082 } 3083 3084 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3085 timeout = icsk->icsk_ack.timeout; 3086 } 3087 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3088 icsk->icsk_ack.timeout = timeout; 3089 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3090 } 3091 3092 /* This routine sends an ack and also updates the window. */ 3093 void tcp_send_ack(struct sock *sk) 3094 { 3095 struct sk_buff *buff; 3096 3097 /* If we have been reset, we may not send again. */ 3098 if (sk->sk_state == TCP_CLOSE) 3099 return; 3100 3101 /* We are not putting this on the write queue, so 3102 * tcp_transmit_skb() will set the ownership to this 3103 * sock. 3104 */ 3105 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3106 if (buff == NULL) { 3107 inet_csk_schedule_ack(sk); 3108 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3109 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3110 TCP_DELACK_MAX, TCP_RTO_MAX); 3111 return; 3112 } 3113 3114 /* Reserve space for headers and prepare control bits. */ 3115 skb_reserve(buff, MAX_TCP_HEADER); 3116 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3117 3118 /* Send it off, this clears delayed acks for us. */ 3119 TCP_SKB_CB(buff)->when = tcp_time_stamp; 3120 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC)); 3121 } 3122 3123 /* This routine sends a packet with an out of date sequence 3124 * number. It assumes the other end will try to ack it. 3125 * 3126 * Question: what should we make while urgent mode? 3127 * 4.4BSD forces sending single byte of data. We cannot send 3128 * out of window data, because we have SND.NXT==SND.MAX... 3129 * 3130 * Current solution: to send TWO zero-length segments in urgent mode: 3131 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3132 * out-of-date with SND.UNA-1 to probe window. 3133 */ 3134 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 3135 { 3136 struct tcp_sock *tp = tcp_sk(sk); 3137 struct sk_buff *skb; 3138 3139 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3140 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3141 if (skb == NULL) 3142 return -1; 3143 3144 /* Reserve space for headers and set control bits. */ 3145 skb_reserve(skb, MAX_TCP_HEADER); 3146 /* Use a previous sequence. This should cause the other 3147 * end to send an ack. Don't queue or clone SKB, just 3148 * send it. 3149 */ 3150 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3151 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3152 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3153 } 3154 3155 void tcp_send_window_probe(struct sock *sk) 3156 { 3157 if (sk->sk_state == TCP_ESTABLISHED) { 3158 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3159 tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq; 3160 tcp_xmit_probe_skb(sk, 0); 3161 } 3162 } 3163 3164 /* Initiate keepalive or window probe from timer. */ 3165 int tcp_write_wakeup(struct sock *sk) 3166 { 3167 struct tcp_sock *tp = tcp_sk(sk); 3168 struct sk_buff *skb; 3169 3170 if (sk->sk_state == TCP_CLOSE) 3171 return -1; 3172 3173 if ((skb = tcp_send_head(sk)) != NULL && 3174 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3175 int err; 3176 unsigned int mss = tcp_current_mss(sk); 3177 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3178 3179 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3180 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3181 3182 /* We are probing the opening of a window 3183 * but the window size is != 0 3184 * must have been a result SWS avoidance ( sender ) 3185 */ 3186 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3187 skb->len > mss) { 3188 seg_size = min(seg_size, mss); 3189 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3190 if (tcp_fragment(sk, skb, seg_size, mss)) 3191 return -1; 3192 } else if (!tcp_skb_pcount(skb)) 3193 tcp_set_skb_tso_segs(sk, skb, mss); 3194 3195 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3196 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3197 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3198 if (!err) 3199 tcp_event_new_data_sent(sk, skb); 3200 return err; 3201 } else { 3202 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3203 tcp_xmit_probe_skb(sk, 1); 3204 return tcp_xmit_probe_skb(sk, 0); 3205 } 3206 } 3207 3208 /* A window probe timeout has occurred. If window is not closed send 3209 * a partial packet else a zero probe. 3210 */ 3211 void tcp_send_probe0(struct sock *sk) 3212 { 3213 struct inet_connection_sock *icsk = inet_csk(sk); 3214 struct tcp_sock *tp = tcp_sk(sk); 3215 int err; 3216 3217 err = tcp_write_wakeup(sk); 3218 3219 if (tp->packets_out || !tcp_send_head(sk)) { 3220 /* Cancel probe timer, if it is not required. */ 3221 icsk->icsk_probes_out = 0; 3222 icsk->icsk_backoff = 0; 3223 return; 3224 } 3225 3226 if (err <= 0) { 3227 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3228 icsk->icsk_backoff++; 3229 icsk->icsk_probes_out++; 3230 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3231 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3232 TCP_RTO_MAX); 3233 } else { 3234 /* If packet was not sent due to local congestion, 3235 * do not backoff and do not remember icsk_probes_out. 3236 * Let local senders to fight for local resources. 3237 * 3238 * Use accumulated backoff yet. 3239 */ 3240 if (!icsk->icsk_probes_out) 3241 icsk->icsk_probes_out = 1; 3242 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3243 min(icsk->icsk_rto << icsk->icsk_backoff, 3244 TCP_RESOURCE_PROBE_INTERVAL), 3245 TCP_RTO_MAX); 3246 } 3247 } 3248