1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 #include <linux/static_key.h> 45 46 #include <trace/events/tcp.h> 47 48 /* Refresh clocks of a TCP socket, 49 * ensuring monotically increasing values. 50 */ 51 void tcp_mstamp_refresh(struct tcp_sock *tp) 52 { 53 u64 val = tcp_clock_ns(); 54 55 /* departure time for next data packet */ 56 if (val > tp->tcp_wstamp_ns) 57 tp->tcp_wstamp_ns = val; 58 59 val = div_u64(val, NSEC_PER_USEC); 60 if (val > tp->tcp_mstamp) 61 tp->tcp_mstamp = val; 62 } 63 64 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 65 int push_one, gfp_t gfp); 66 67 /* Account for new data that has been sent to the network. */ 68 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 69 { 70 struct inet_connection_sock *icsk = inet_csk(sk); 71 struct tcp_sock *tp = tcp_sk(sk); 72 unsigned int prior_packets = tp->packets_out; 73 74 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 75 76 __skb_unlink(skb, &sk->sk_write_queue); 77 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 } 86 87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 88 * window scaling factor due to loss of precision. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 99 (tp->rx_opt.wscale_ok && 100 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 101 return tp->snd_nxt; 102 else 103 return tcp_wnd_end(tp); 104 } 105 106 /* Calculate mss to advertise in SYN segment. 107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 108 * 109 * 1. It is independent of path mtu. 110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 112 * attached devices, because some buggy hosts are confused by 113 * large MSS. 114 * 4. We do not make 3, we advertise MSS, calculated from first 115 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 116 * This may be overridden via information stored in routing table. 117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 118 * probably even Jumbo". 119 */ 120 static __u16 tcp_advertise_mss(struct sock *sk) 121 { 122 struct tcp_sock *tp = tcp_sk(sk); 123 const struct dst_entry *dst = __sk_dst_get(sk); 124 int mss = tp->advmss; 125 126 if (dst) { 127 unsigned int metric = dst_metric_advmss(dst); 128 129 if (metric < mss) { 130 mss = metric; 131 tp->advmss = mss; 132 } 133 } 134 135 return (__u16)mss; 136 } 137 138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 139 * This is the first part of cwnd validation mechanism. 140 */ 141 void tcp_cwnd_restart(struct sock *sk, s32 delta) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 145 u32 cwnd = tp->snd_cwnd; 146 147 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 148 149 tp->snd_ssthresh = tcp_current_ssthresh(sk); 150 restart_cwnd = min(restart_cwnd, cwnd); 151 152 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 153 cwnd >>= 1; 154 tp->snd_cwnd = max(cwnd, restart_cwnd); 155 tp->snd_cwnd_stamp = tcp_jiffies32; 156 tp->snd_cwnd_used = 0; 157 } 158 159 /* Congestion state accounting after a packet has been sent. */ 160 static void tcp_event_data_sent(struct tcp_sock *tp, 161 struct sock *sk) 162 { 163 struct inet_connection_sock *icsk = inet_csk(sk); 164 const u32 now = tcp_jiffies32; 165 166 if (tcp_packets_in_flight(tp) == 0) 167 tcp_ca_event(sk, CA_EVENT_TX_START); 168 169 tp->lsndtime = now; 170 171 /* If it is a reply for ato after last received 172 * packet, enter pingpong mode. 173 */ 174 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 175 icsk->icsk_ack.pingpong = 1; 176 } 177 178 /* Account for an ACK we sent. */ 179 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 180 u32 rcv_nxt) 181 { 182 struct tcp_sock *tp = tcp_sk(sk); 183 184 if (unlikely(tp->compressed_ack)) { 185 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 186 tp->compressed_ack); 187 tp->compressed_ack = 0; 188 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 189 __sock_put(sk); 190 } 191 192 if (unlikely(rcv_nxt != tp->rcv_nxt)) 193 return; /* Special ACK sent by DCTCP to reflect ECN */ 194 tcp_dec_quickack_mode(sk, pkts); 195 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 196 } 197 198 /* Determine a window scaling and initial window to offer. 199 * Based on the assumption that the given amount of space 200 * will be offered. Store the results in the tp structure. 201 * NOTE: for smooth operation initial space offering should 202 * be a multiple of mss if possible. We assume here that mss >= 1. 203 * This MUST be enforced by all callers. 204 */ 205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 206 __u32 *rcv_wnd, __u32 *window_clamp, 207 int wscale_ok, __u8 *rcv_wscale, 208 __u32 init_rcv_wnd) 209 { 210 unsigned int space = (__space < 0 ? 0 : __space); 211 212 /* If no clamp set the clamp to the max possible scaled window */ 213 if (*window_clamp == 0) 214 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 215 space = min(*window_clamp, space); 216 217 /* Quantize space offering to a multiple of mss if possible. */ 218 if (space > mss) 219 space = rounddown(space, mss); 220 221 /* NOTE: offering an initial window larger than 32767 222 * will break some buggy TCP stacks. If the admin tells us 223 * it is likely we could be speaking with such a buggy stack 224 * we will truncate our initial window offering to 32K-1 225 * unless the remote has sent us a window scaling option, 226 * which we interpret as a sign the remote TCP is not 227 * misinterpreting the window field as a signed quantity. 228 */ 229 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 231 else 232 (*rcv_wnd) = min_t(u32, space, U16_MAX); 233 234 if (init_rcv_wnd) 235 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 236 237 (*rcv_wscale) = 0; 238 if (wscale_ok) { 239 /* Set window scaling on max possible window */ 240 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 241 space = max_t(u32, space, sysctl_rmem_max); 242 space = min_t(u32, space, *window_clamp); 243 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 244 space >>= 1; 245 (*rcv_wscale)++; 246 } 247 } 248 /* Set the clamp no higher than max representable value */ 249 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 250 } 251 EXPORT_SYMBOL(tcp_select_initial_window); 252 253 /* Chose a new window to advertise, update state in tcp_sock for the 254 * socket, and return result with RFC1323 scaling applied. The return 255 * value can be stuffed directly into th->window for an outgoing 256 * frame. 257 */ 258 static u16 tcp_select_window(struct sock *sk) 259 { 260 struct tcp_sock *tp = tcp_sk(sk); 261 u32 old_win = tp->rcv_wnd; 262 u32 cur_win = tcp_receive_window(tp); 263 u32 new_win = __tcp_select_window(sk); 264 265 /* Never shrink the offered window */ 266 if (new_win < cur_win) { 267 /* Danger Will Robinson! 268 * Don't update rcv_wup/rcv_wnd here or else 269 * we will not be able to advertise a zero 270 * window in time. --DaveM 271 * 272 * Relax Will Robinson. 273 */ 274 if (new_win == 0) 275 NET_INC_STATS(sock_net(sk), 276 LINUX_MIB_TCPWANTZEROWINDOWADV); 277 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 278 } 279 tp->rcv_wnd = new_win; 280 tp->rcv_wup = tp->rcv_nxt; 281 282 /* Make sure we do not exceed the maximum possible 283 * scaled window. 284 */ 285 if (!tp->rx_opt.rcv_wscale && 286 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 287 new_win = min(new_win, MAX_TCP_WINDOW); 288 else 289 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 290 291 /* RFC1323 scaling applied */ 292 new_win >>= tp->rx_opt.rcv_wscale; 293 294 /* If we advertise zero window, disable fast path. */ 295 if (new_win == 0) { 296 tp->pred_flags = 0; 297 if (old_win) 298 NET_INC_STATS(sock_net(sk), 299 LINUX_MIB_TCPTOZEROWINDOWADV); 300 } else if (old_win == 0) { 301 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 302 } 303 304 return new_win; 305 } 306 307 /* Packet ECN state for a SYN-ACK */ 308 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 309 { 310 const struct tcp_sock *tp = tcp_sk(sk); 311 312 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 313 if (!(tp->ecn_flags & TCP_ECN_OK)) 314 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 315 else if (tcp_ca_needs_ecn(sk) || 316 tcp_bpf_ca_needs_ecn(sk)) 317 INET_ECN_xmit(sk); 318 } 319 320 /* Packet ECN state for a SYN. */ 321 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 322 { 323 struct tcp_sock *tp = tcp_sk(sk); 324 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 325 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 326 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 327 328 if (!use_ecn) { 329 const struct dst_entry *dst = __sk_dst_get(sk); 330 331 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 332 use_ecn = true; 333 } 334 335 tp->ecn_flags = 0; 336 337 if (use_ecn) { 338 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 339 tp->ecn_flags = TCP_ECN_OK; 340 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 341 INET_ECN_xmit(sk); 342 } 343 } 344 345 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 346 { 347 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 348 /* tp->ecn_flags are cleared at a later point in time when 349 * SYN ACK is ultimatively being received. 350 */ 351 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 352 } 353 354 static void 355 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 356 { 357 if (inet_rsk(req)->ecn_ok) 358 th->ece = 1; 359 } 360 361 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 362 * be sent. 363 */ 364 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 365 struct tcphdr *th, int tcp_header_len) 366 { 367 struct tcp_sock *tp = tcp_sk(sk); 368 369 if (tp->ecn_flags & TCP_ECN_OK) { 370 /* Not-retransmitted data segment: set ECT and inject CWR. */ 371 if (skb->len != tcp_header_len && 372 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 373 INET_ECN_xmit(sk); 374 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 375 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 376 th->cwr = 1; 377 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 378 } 379 } else if (!tcp_ca_needs_ecn(sk)) { 380 /* ACK or retransmitted segment: clear ECT|CE */ 381 INET_ECN_dontxmit(sk); 382 } 383 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 384 th->ece = 1; 385 } 386 } 387 388 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 389 * auto increment end seqno. 390 */ 391 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 392 { 393 skb->ip_summed = CHECKSUM_PARTIAL; 394 395 TCP_SKB_CB(skb)->tcp_flags = flags; 396 TCP_SKB_CB(skb)->sacked = 0; 397 398 tcp_skb_pcount_set(skb, 1); 399 400 TCP_SKB_CB(skb)->seq = seq; 401 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 402 seq++; 403 TCP_SKB_CB(skb)->end_seq = seq; 404 } 405 406 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 407 { 408 return tp->snd_una != tp->snd_up; 409 } 410 411 #define OPTION_SACK_ADVERTISE (1 << 0) 412 #define OPTION_TS (1 << 1) 413 #define OPTION_MD5 (1 << 2) 414 #define OPTION_WSCALE (1 << 3) 415 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 416 #define OPTION_SMC (1 << 9) 417 418 static void smc_options_write(__be32 *ptr, u16 *options) 419 { 420 #if IS_ENABLED(CONFIG_SMC) 421 if (static_branch_unlikely(&tcp_have_smc)) { 422 if (unlikely(OPTION_SMC & *options)) { 423 *ptr++ = htonl((TCPOPT_NOP << 24) | 424 (TCPOPT_NOP << 16) | 425 (TCPOPT_EXP << 8) | 426 (TCPOLEN_EXP_SMC_BASE)); 427 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 428 } 429 } 430 #endif 431 } 432 433 struct tcp_out_options { 434 u16 options; /* bit field of OPTION_* */ 435 u16 mss; /* 0 to disable */ 436 u8 ws; /* window scale, 0 to disable */ 437 u8 num_sack_blocks; /* number of SACK blocks to include */ 438 u8 hash_size; /* bytes in hash_location */ 439 __u8 *hash_location; /* temporary pointer, overloaded */ 440 __u32 tsval, tsecr; /* need to include OPTION_TS */ 441 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 442 }; 443 444 /* Write previously computed TCP options to the packet. 445 * 446 * Beware: Something in the Internet is very sensitive to the ordering of 447 * TCP options, we learned this through the hard way, so be careful here. 448 * Luckily we can at least blame others for their non-compliance but from 449 * inter-operability perspective it seems that we're somewhat stuck with 450 * the ordering which we have been using if we want to keep working with 451 * those broken things (not that it currently hurts anybody as there isn't 452 * particular reason why the ordering would need to be changed). 453 * 454 * At least SACK_PERM as the first option is known to lead to a disaster 455 * (but it may well be that other scenarios fail similarly). 456 */ 457 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 458 struct tcp_out_options *opts) 459 { 460 u16 options = opts->options; /* mungable copy */ 461 462 if (unlikely(OPTION_MD5 & options)) { 463 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 464 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 465 /* overload cookie hash location */ 466 opts->hash_location = (__u8 *)ptr; 467 ptr += 4; 468 } 469 470 if (unlikely(opts->mss)) { 471 *ptr++ = htonl((TCPOPT_MSS << 24) | 472 (TCPOLEN_MSS << 16) | 473 opts->mss); 474 } 475 476 if (likely(OPTION_TS & options)) { 477 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 478 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 479 (TCPOLEN_SACK_PERM << 16) | 480 (TCPOPT_TIMESTAMP << 8) | 481 TCPOLEN_TIMESTAMP); 482 options &= ~OPTION_SACK_ADVERTISE; 483 } else { 484 *ptr++ = htonl((TCPOPT_NOP << 24) | 485 (TCPOPT_NOP << 16) | 486 (TCPOPT_TIMESTAMP << 8) | 487 TCPOLEN_TIMESTAMP); 488 } 489 *ptr++ = htonl(opts->tsval); 490 *ptr++ = htonl(opts->tsecr); 491 } 492 493 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 494 *ptr++ = htonl((TCPOPT_NOP << 24) | 495 (TCPOPT_NOP << 16) | 496 (TCPOPT_SACK_PERM << 8) | 497 TCPOLEN_SACK_PERM); 498 } 499 500 if (unlikely(OPTION_WSCALE & options)) { 501 *ptr++ = htonl((TCPOPT_NOP << 24) | 502 (TCPOPT_WINDOW << 16) | 503 (TCPOLEN_WINDOW << 8) | 504 opts->ws); 505 } 506 507 if (unlikely(opts->num_sack_blocks)) { 508 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 509 tp->duplicate_sack : tp->selective_acks; 510 int this_sack; 511 512 *ptr++ = htonl((TCPOPT_NOP << 24) | 513 (TCPOPT_NOP << 16) | 514 (TCPOPT_SACK << 8) | 515 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 516 TCPOLEN_SACK_PERBLOCK))); 517 518 for (this_sack = 0; this_sack < opts->num_sack_blocks; 519 ++this_sack) { 520 *ptr++ = htonl(sp[this_sack].start_seq); 521 *ptr++ = htonl(sp[this_sack].end_seq); 522 } 523 524 tp->rx_opt.dsack = 0; 525 } 526 527 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 528 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 529 u8 *p = (u8 *)ptr; 530 u32 len; /* Fast Open option length */ 531 532 if (foc->exp) { 533 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 534 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 535 TCPOPT_FASTOPEN_MAGIC); 536 p += TCPOLEN_EXP_FASTOPEN_BASE; 537 } else { 538 len = TCPOLEN_FASTOPEN_BASE + foc->len; 539 *p++ = TCPOPT_FASTOPEN; 540 *p++ = len; 541 } 542 543 memcpy(p, foc->val, foc->len); 544 if ((len & 3) == 2) { 545 p[foc->len] = TCPOPT_NOP; 546 p[foc->len + 1] = TCPOPT_NOP; 547 } 548 ptr += (len + 3) >> 2; 549 } 550 551 smc_options_write(ptr, &options); 552 } 553 554 static void smc_set_option(const struct tcp_sock *tp, 555 struct tcp_out_options *opts, 556 unsigned int *remaining) 557 { 558 #if IS_ENABLED(CONFIG_SMC) 559 if (static_branch_unlikely(&tcp_have_smc)) { 560 if (tp->syn_smc) { 561 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 562 opts->options |= OPTION_SMC; 563 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 564 } 565 } 566 } 567 #endif 568 } 569 570 static void smc_set_option_cond(const struct tcp_sock *tp, 571 const struct inet_request_sock *ireq, 572 struct tcp_out_options *opts, 573 unsigned int *remaining) 574 { 575 #if IS_ENABLED(CONFIG_SMC) 576 if (static_branch_unlikely(&tcp_have_smc)) { 577 if (tp->syn_smc && ireq->smc_ok) { 578 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 579 opts->options |= OPTION_SMC; 580 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 581 } 582 } 583 } 584 #endif 585 } 586 587 /* Compute TCP options for SYN packets. This is not the final 588 * network wire format yet. 589 */ 590 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 591 struct tcp_out_options *opts, 592 struct tcp_md5sig_key **md5) 593 { 594 struct tcp_sock *tp = tcp_sk(sk); 595 unsigned int remaining = MAX_TCP_OPTION_SPACE; 596 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 597 598 *md5 = NULL; 599 #ifdef CONFIG_TCP_MD5SIG 600 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 601 *md5 = tp->af_specific->md5_lookup(sk, sk); 602 if (*md5) { 603 opts->options |= OPTION_MD5; 604 remaining -= TCPOLEN_MD5SIG_ALIGNED; 605 } 606 } 607 #endif 608 609 /* We always get an MSS option. The option bytes which will be seen in 610 * normal data packets should timestamps be used, must be in the MSS 611 * advertised. But we subtract them from tp->mss_cache so that 612 * calculations in tcp_sendmsg are simpler etc. So account for this 613 * fact here if necessary. If we don't do this correctly, as a 614 * receiver we won't recognize data packets as being full sized when we 615 * should, and thus we won't abide by the delayed ACK rules correctly. 616 * SACKs don't matter, we never delay an ACK when we have any of those 617 * going out. */ 618 opts->mss = tcp_advertise_mss(sk); 619 remaining -= TCPOLEN_MSS_ALIGNED; 620 621 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 622 opts->options |= OPTION_TS; 623 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 624 opts->tsecr = tp->rx_opt.ts_recent; 625 remaining -= TCPOLEN_TSTAMP_ALIGNED; 626 } 627 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 628 opts->ws = tp->rx_opt.rcv_wscale; 629 opts->options |= OPTION_WSCALE; 630 remaining -= TCPOLEN_WSCALE_ALIGNED; 631 } 632 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 633 opts->options |= OPTION_SACK_ADVERTISE; 634 if (unlikely(!(OPTION_TS & opts->options))) 635 remaining -= TCPOLEN_SACKPERM_ALIGNED; 636 } 637 638 if (fastopen && fastopen->cookie.len >= 0) { 639 u32 need = fastopen->cookie.len; 640 641 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 642 TCPOLEN_FASTOPEN_BASE; 643 need = (need + 3) & ~3U; /* Align to 32 bits */ 644 if (remaining >= need) { 645 opts->options |= OPTION_FAST_OPEN_COOKIE; 646 opts->fastopen_cookie = &fastopen->cookie; 647 remaining -= need; 648 tp->syn_fastopen = 1; 649 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 650 } 651 } 652 653 smc_set_option(tp, opts, &remaining); 654 655 return MAX_TCP_OPTION_SPACE - remaining; 656 } 657 658 /* Set up TCP options for SYN-ACKs. */ 659 static unsigned int tcp_synack_options(const struct sock *sk, 660 struct request_sock *req, 661 unsigned int mss, struct sk_buff *skb, 662 struct tcp_out_options *opts, 663 const struct tcp_md5sig_key *md5, 664 struct tcp_fastopen_cookie *foc) 665 { 666 struct inet_request_sock *ireq = inet_rsk(req); 667 unsigned int remaining = MAX_TCP_OPTION_SPACE; 668 669 #ifdef CONFIG_TCP_MD5SIG 670 if (md5) { 671 opts->options |= OPTION_MD5; 672 remaining -= TCPOLEN_MD5SIG_ALIGNED; 673 674 /* We can't fit any SACK blocks in a packet with MD5 + TS 675 * options. There was discussion about disabling SACK 676 * rather than TS in order to fit in better with old, 677 * buggy kernels, but that was deemed to be unnecessary. 678 */ 679 ireq->tstamp_ok &= !ireq->sack_ok; 680 } 681 #endif 682 683 /* We always send an MSS option. */ 684 opts->mss = mss; 685 remaining -= TCPOLEN_MSS_ALIGNED; 686 687 if (likely(ireq->wscale_ok)) { 688 opts->ws = ireq->rcv_wscale; 689 opts->options |= OPTION_WSCALE; 690 remaining -= TCPOLEN_WSCALE_ALIGNED; 691 } 692 if (likely(ireq->tstamp_ok)) { 693 opts->options |= OPTION_TS; 694 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 695 opts->tsecr = req->ts_recent; 696 remaining -= TCPOLEN_TSTAMP_ALIGNED; 697 } 698 if (likely(ireq->sack_ok)) { 699 opts->options |= OPTION_SACK_ADVERTISE; 700 if (unlikely(!ireq->tstamp_ok)) 701 remaining -= TCPOLEN_SACKPERM_ALIGNED; 702 } 703 if (foc != NULL && foc->len >= 0) { 704 u32 need = foc->len; 705 706 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 707 TCPOLEN_FASTOPEN_BASE; 708 need = (need + 3) & ~3U; /* Align to 32 bits */ 709 if (remaining >= need) { 710 opts->options |= OPTION_FAST_OPEN_COOKIE; 711 opts->fastopen_cookie = foc; 712 remaining -= need; 713 } 714 } 715 716 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 717 718 return MAX_TCP_OPTION_SPACE - remaining; 719 } 720 721 /* Compute TCP options for ESTABLISHED sockets. This is not the 722 * final wire format yet. 723 */ 724 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 725 struct tcp_out_options *opts, 726 struct tcp_md5sig_key **md5) 727 { 728 struct tcp_sock *tp = tcp_sk(sk); 729 unsigned int size = 0; 730 unsigned int eff_sacks; 731 732 opts->options = 0; 733 734 *md5 = NULL; 735 #ifdef CONFIG_TCP_MD5SIG 736 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 737 *md5 = tp->af_specific->md5_lookup(sk, sk); 738 if (*md5) { 739 opts->options |= OPTION_MD5; 740 size += TCPOLEN_MD5SIG_ALIGNED; 741 } 742 } 743 #endif 744 745 if (likely(tp->rx_opt.tstamp_ok)) { 746 opts->options |= OPTION_TS; 747 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 748 opts->tsecr = tp->rx_opt.ts_recent; 749 size += TCPOLEN_TSTAMP_ALIGNED; 750 } 751 752 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 753 if (unlikely(eff_sacks)) { 754 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 755 opts->num_sack_blocks = 756 min_t(unsigned int, eff_sacks, 757 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 758 TCPOLEN_SACK_PERBLOCK); 759 size += TCPOLEN_SACK_BASE_ALIGNED + 760 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 761 } 762 763 return size; 764 } 765 766 767 /* TCP SMALL QUEUES (TSQ) 768 * 769 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 770 * to reduce RTT and bufferbloat. 771 * We do this using a special skb destructor (tcp_wfree). 772 * 773 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 774 * needs to be reallocated in a driver. 775 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 776 * 777 * Since transmit from skb destructor is forbidden, we use a tasklet 778 * to process all sockets that eventually need to send more skbs. 779 * We use one tasklet per cpu, with its own queue of sockets. 780 */ 781 struct tsq_tasklet { 782 struct tasklet_struct tasklet; 783 struct list_head head; /* queue of tcp sockets */ 784 }; 785 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 786 787 static void tcp_tsq_write(struct sock *sk) 788 { 789 if ((1 << sk->sk_state) & 790 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 791 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 792 struct tcp_sock *tp = tcp_sk(sk); 793 794 if (tp->lost_out > tp->retrans_out && 795 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 796 tcp_mstamp_refresh(tp); 797 tcp_xmit_retransmit_queue(sk); 798 } 799 800 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 801 0, GFP_ATOMIC); 802 } 803 } 804 805 static void tcp_tsq_handler(struct sock *sk) 806 { 807 bh_lock_sock(sk); 808 if (!sock_owned_by_user(sk)) 809 tcp_tsq_write(sk); 810 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 811 sock_hold(sk); 812 bh_unlock_sock(sk); 813 } 814 /* 815 * One tasklet per cpu tries to send more skbs. 816 * We run in tasklet context but need to disable irqs when 817 * transferring tsq->head because tcp_wfree() might 818 * interrupt us (non NAPI drivers) 819 */ 820 static void tcp_tasklet_func(unsigned long data) 821 { 822 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 823 LIST_HEAD(list); 824 unsigned long flags; 825 struct list_head *q, *n; 826 struct tcp_sock *tp; 827 struct sock *sk; 828 829 local_irq_save(flags); 830 list_splice_init(&tsq->head, &list); 831 local_irq_restore(flags); 832 833 list_for_each_safe(q, n, &list) { 834 tp = list_entry(q, struct tcp_sock, tsq_node); 835 list_del(&tp->tsq_node); 836 837 sk = (struct sock *)tp; 838 smp_mb__before_atomic(); 839 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 840 841 tcp_tsq_handler(sk); 842 sk_free(sk); 843 } 844 } 845 846 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 847 TCPF_WRITE_TIMER_DEFERRED | \ 848 TCPF_DELACK_TIMER_DEFERRED | \ 849 TCPF_MTU_REDUCED_DEFERRED) 850 /** 851 * tcp_release_cb - tcp release_sock() callback 852 * @sk: socket 853 * 854 * called from release_sock() to perform protocol dependent 855 * actions before socket release. 856 */ 857 void tcp_release_cb(struct sock *sk) 858 { 859 unsigned long flags, nflags; 860 861 /* perform an atomic operation only if at least one flag is set */ 862 do { 863 flags = sk->sk_tsq_flags; 864 if (!(flags & TCP_DEFERRED_ALL)) 865 return; 866 nflags = flags & ~TCP_DEFERRED_ALL; 867 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 868 869 if (flags & TCPF_TSQ_DEFERRED) { 870 tcp_tsq_write(sk); 871 __sock_put(sk); 872 } 873 /* Here begins the tricky part : 874 * We are called from release_sock() with : 875 * 1) BH disabled 876 * 2) sk_lock.slock spinlock held 877 * 3) socket owned by us (sk->sk_lock.owned == 1) 878 * 879 * But following code is meant to be called from BH handlers, 880 * so we should keep BH disabled, but early release socket ownership 881 */ 882 sock_release_ownership(sk); 883 884 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 885 tcp_write_timer_handler(sk); 886 __sock_put(sk); 887 } 888 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 889 tcp_delack_timer_handler(sk); 890 __sock_put(sk); 891 } 892 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 893 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 894 __sock_put(sk); 895 } 896 } 897 EXPORT_SYMBOL(tcp_release_cb); 898 899 void __init tcp_tasklet_init(void) 900 { 901 int i; 902 903 for_each_possible_cpu(i) { 904 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 905 906 INIT_LIST_HEAD(&tsq->head); 907 tasklet_init(&tsq->tasklet, 908 tcp_tasklet_func, 909 (unsigned long)tsq); 910 } 911 } 912 913 /* 914 * Write buffer destructor automatically called from kfree_skb. 915 * We can't xmit new skbs from this context, as we might already 916 * hold qdisc lock. 917 */ 918 void tcp_wfree(struct sk_buff *skb) 919 { 920 struct sock *sk = skb->sk; 921 struct tcp_sock *tp = tcp_sk(sk); 922 unsigned long flags, nval, oval; 923 924 /* Keep one reference on sk_wmem_alloc. 925 * Will be released by sk_free() from here or tcp_tasklet_func() 926 */ 927 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 928 929 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 930 * Wait until our queues (qdisc + devices) are drained. 931 * This gives : 932 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 933 * - chance for incoming ACK (processed by another cpu maybe) 934 * to migrate this flow (skb->ooo_okay will be eventually set) 935 */ 936 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 937 goto out; 938 939 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 940 struct tsq_tasklet *tsq; 941 bool empty; 942 943 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 944 goto out; 945 946 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 947 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 948 if (nval != oval) 949 continue; 950 951 /* queue this socket to tasklet queue */ 952 local_irq_save(flags); 953 tsq = this_cpu_ptr(&tsq_tasklet); 954 empty = list_empty(&tsq->head); 955 list_add(&tp->tsq_node, &tsq->head); 956 if (empty) 957 tasklet_schedule(&tsq->tasklet); 958 local_irq_restore(flags); 959 return; 960 } 961 out: 962 sk_free(sk); 963 } 964 965 /* Note: Called under soft irq. 966 * We can call TCP stack right away, unless socket is owned by user. 967 */ 968 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 969 { 970 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 971 struct sock *sk = (struct sock *)tp; 972 973 tcp_tsq_handler(sk); 974 sock_put(sk); 975 976 return HRTIMER_NORESTART; 977 } 978 979 static void tcp_internal_pacing(struct sock *sk) 980 { 981 if (!tcp_needs_internal_pacing(sk)) 982 return; 983 hrtimer_start(&tcp_sk(sk)->pacing_timer, 984 ns_to_ktime(tcp_sk(sk)->tcp_wstamp_ns), 985 HRTIMER_MODE_ABS_PINNED_SOFT); 986 sock_hold(sk); 987 } 988 989 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb) 990 { 991 struct tcp_sock *tp = tcp_sk(sk); 992 993 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 994 if (sk->sk_pacing_status != SK_PACING_NONE) { 995 u32 rate = sk->sk_pacing_rate; 996 997 /* Original sch_fq does not pace first 10 MSS 998 * Note that tp->data_segs_out overflows after 2^32 packets, 999 * this is a minor annoyance. 1000 */ 1001 if (rate != ~0U && rate && tp->data_segs_out >= 10) { 1002 tp->tcp_wstamp_ns += div_u64((u64)skb->len * NSEC_PER_SEC, rate); 1003 1004 tcp_internal_pacing(sk); 1005 } 1006 } 1007 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1008 } 1009 1010 /* This routine actually transmits TCP packets queued in by 1011 * tcp_do_sendmsg(). This is used by both the initial 1012 * transmission and possible later retransmissions. 1013 * All SKB's seen here are completely headerless. It is our 1014 * job to build the TCP header, and pass the packet down to 1015 * IP so it can do the same plus pass the packet off to the 1016 * device. 1017 * 1018 * We are working here with either a clone of the original 1019 * SKB, or a fresh unique copy made by the retransmit engine. 1020 */ 1021 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1022 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1023 { 1024 const struct inet_connection_sock *icsk = inet_csk(sk); 1025 struct inet_sock *inet; 1026 struct tcp_sock *tp; 1027 struct tcp_skb_cb *tcb; 1028 struct tcp_out_options opts; 1029 unsigned int tcp_options_size, tcp_header_size; 1030 struct sk_buff *oskb = NULL; 1031 struct tcp_md5sig_key *md5; 1032 struct tcphdr *th; 1033 int err; 1034 1035 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1036 tp = tcp_sk(sk); 1037 1038 if (clone_it) { 1039 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1040 - tp->snd_una; 1041 oskb = skb; 1042 1043 tcp_skb_tsorted_save(oskb) { 1044 if (unlikely(skb_cloned(oskb))) 1045 skb = pskb_copy(oskb, gfp_mask); 1046 else 1047 skb = skb_clone(oskb, gfp_mask); 1048 } tcp_skb_tsorted_restore(oskb); 1049 1050 if (unlikely(!skb)) 1051 return -ENOBUFS; 1052 } 1053 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1054 1055 inet = inet_sk(sk); 1056 tcb = TCP_SKB_CB(skb); 1057 memset(&opts, 0, sizeof(opts)); 1058 1059 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1060 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1061 else 1062 tcp_options_size = tcp_established_options(sk, skb, &opts, 1063 &md5); 1064 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1065 1066 /* if no packet is in qdisc/device queue, then allow XPS to select 1067 * another queue. We can be called from tcp_tsq_handler() 1068 * which holds one reference to sk. 1069 * 1070 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1071 * One way to get this would be to set skb->truesize = 2 on them. 1072 */ 1073 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1074 1075 /* If we had to use memory reserve to allocate this skb, 1076 * this might cause drops if packet is looped back : 1077 * Other socket might not have SOCK_MEMALLOC. 1078 * Packets not looped back do not care about pfmemalloc. 1079 */ 1080 skb->pfmemalloc = 0; 1081 1082 skb_push(skb, tcp_header_size); 1083 skb_reset_transport_header(skb); 1084 1085 skb_orphan(skb); 1086 skb->sk = sk; 1087 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1088 skb_set_hash_from_sk(skb, sk); 1089 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1090 1091 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1092 1093 /* Build TCP header and checksum it. */ 1094 th = (struct tcphdr *)skb->data; 1095 th->source = inet->inet_sport; 1096 th->dest = inet->inet_dport; 1097 th->seq = htonl(tcb->seq); 1098 th->ack_seq = htonl(rcv_nxt); 1099 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1100 tcb->tcp_flags); 1101 1102 th->check = 0; 1103 th->urg_ptr = 0; 1104 1105 /* The urg_mode check is necessary during a below snd_una win probe */ 1106 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1107 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1108 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1109 th->urg = 1; 1110 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1111 th->urg_ptr = htons(0xFFFF); 1112 th->urg = 1; 1113 } 1114 } 1115 1116 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1117 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1118 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1119 th->window = htons(tcp_select_window(sk)); 1120 tcp_ecn_send(sk, skb, th, tcp_header_size); 1121 } else { 1122 /* RFC1323: The window in SYN & SYN/ACK segments 1123 * is never scaled. 1124 */ 1125 th->window = htons(min(tp->rcv_wnd, 65535U)); 1126 } 1127 #ifdef CONFIG_TCP_MD5SIG 1128 /* Calculate the MD5 hash, as we have all we need now */ 1129 if (md5) { 1130 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1131 tp->af_specific->calc_md5_hash(opts.hash_location, 1132 md5, sk, skb); 1133 } 1134 #endif 1135 1136 icsk->icsk_af_ops->send_check(sk, skb); 1137 1138 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1139 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1140 1141 if (skb->len != tcp_header_size) { 1142 tcp_event_data_sent(tp, sk); 1143 tp->data_segs_out += tcp_skb_pcount(skb); 1144 tp->bytes_sent += skb->len - tcp_header_size; 1145 } 1146 1147 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1148 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1149 tcp_skb_pcount(skb)); 1150 1151 tp->segs_out += tcp_skb_pcount(skb); 1152 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1153 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1154 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1155 1156 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1157 1158 /* Cleanup our debris for IP stacks */ 1159 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1160 sizeof(struct inet6_skb_parm))); 1161 1162 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1163 1164 if (unlikely(err > 0)) { 1165 tcp_enter_cwr(sk); 1166 err = net_xmit_eval(err); 1167 } 1168 if (!err && oskb) { 1169 tcp_update_skb_after_send(sk, oskb); 1170 tcp_rate_skb_sent(sk, oskb); 1171 } 1172 return err; 1173 } 1174 1175 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1176 gfp_t gfp_mask) 1177 { 1178 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1179 tcp_sk(sk)->rcv_nxt); 1180 } 1181 1182 /* This routine just queues the buffer for sending. 1183 * 1184 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1185 * otherwise socket can stall. 1186 */ 1187 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1188 { 1189 struct tcp_sock *tp = tcp_sk(sk); 1190 1191 /* Advance write_seq and place onto the write_queue. */ 1192 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1193 __skb_header_release(skb); 1194 tcp_add_write_queue_tail(sk, skb); 1195 sk->sk_wmem_queued += skb->truesize; 1196 sk_mem_charge(sk, skb->truesize); 1197 } 1198 1199 /* Initialize TSO segments for a packet. */ 1200 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1201 { 1202 if (skb->len <= mss_now) { 1203 /* Avoid the costly divide in the normal 1204 * non-TSO case. 1205 */ 1206 tcp_skb_pcount_set(skb, 1); 1207 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1208 } else { 1209 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1210 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1211 } 1212 } 1213 1214 /* Pcount in the middle of the write queue got changed, we need to do various 1215 * tweaks to fix counters 1216 */ 1217 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1218 { 1219 struct tcp_sock *tp = tcp_sk(sk); 1220 1221 tp->packets_out -= decr; 1222 1223 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1224 tp->sacked_out -= decr; 1225 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1226 tp->retrans_out -= decr; 1227 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1228 tp->lost_out -= decr; 1229 1230 /* Reno case is special. Sigh... */ 1231 if (tcp_is_reno(tp) && decr > 0) 1232 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1233 1234 if (tp->lost_skb_hint && 1235 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1236 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1237 tp->lost_cnt_hint -= decr; 1238 1239 tcp_verify_left_out(tp); 1240 } 1241 1242 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1243 { 1244 return TCP_SKB_CB(skb)->txstamp_ack || 1245 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1246 } 1247 1248 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1249 { 1250 struct skb_shared_info *shinfo = skb_shinfo(skb); 1251 1252 if (unlikely(tcp_has_tx_tstamp(skb)) && 1253 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1254 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1255 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1256 1257 shinfo->tx_flags &= ~tsflags; 1258 shinfo2->tx_flags |= tsflags; 1259 swap(shinfo->tskey, shinfo2->tskey); 1260 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1261 TCP_SKB_CB(skb)->txstamp_ack = 0; 1262 } 1263 } 1264 1265 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1266 { 1267 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1268 TCP_SKB_CB(skb)->eor = 0; 1269 } 1270 1271 /* Insert buff after skb on the write or rtx queue of sk. */ 1272 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1273 struct sk_buff *buff, 1274 struct sock *sk, 1275 enum tcp_queue tcp_queue) 1276 { 1277 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1278 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1279 else 1280 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1281 } 1282 1283 /* Function to create two new TCP segments. Shrinks the given segment 1284 * to the specified size and appends a new segment with the rest of the 1285 * packet to the list. This won't be called frequently, I hope. 1286 * Remember, these are still headerless SKBs at this point. 1287 */ 1288 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1289 struct sk_buff *skb, u32 len, 1290 unsigned int mss_now, gfp_t gfp) 1291 { 1292 struct tcp_sock *tp = tcp_sk(sk); 1293 struct sk_buff *buff; 1294 int nsize, old_factor; 1295 int nlen; 1296 u8 flags; 1297 1298 if (WARN_ON(len > skb->len)) 1299 return -EINVAL; 1300 1301 nsize = skb_headlen(skb) - len; 1302 if (nsize < 0) 1303 nsize = 0; 1304 1305 if (skb_unclone(skb, gfp)) 1306 return -ENOMEM; 1307 1308 /* Get a new skb... force flag on. */ 1309 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1310 if (!buff) 1311 return -ENOMEM; /* We'll just try again later. */ 1312 1313 sk->sk_wmem_queued += buff->truesize; 1314 sk_mem_charge(sk, buff->truesize); 1315 nlen = skb->len - len - nsize; 1316 buff->truesize += nlen; 1317 skb->truesize -= nlen; 1318 1319 /* Correct the sequence numbers. */ 1320 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1321 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1322 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1323 1324 /* PSH and FIN should only be set in the second packet. */ 1325 flags = TCP_SKB_CB(skb)->tcp_flags; 1326 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1327 TCP_SKB_CB(buff)->tcp_flags = flags; 1328 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1329 tcp_skb_fragment_eor(skb, buff); 1330 1331 skb_split(skb, buff, len); 1332 1333 buff->ip_summed = CHECKSUM_PARTIAL; 1334 1335 buff->tstamp = skb->tstamp; 1336 tcp_fragment_tstamp(skb, buff); 1337 1338 old_factor = tcp_skb_pcount(skb); 1339 1340 /* Fix up tso_factor for both original and new SKB. */ 1341 tcp_set_skb_tso_segs(skb, mss_now); 1342 tcp_set_skb_tso_segs(buff, mss_now); 1343 1344 /* Update delivered info for the new segment */ 1345 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1346 1347 /* If this packet has been sent out already, we must 1348 * adjust the various packet counters. 1349 */ 1350 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1351 int diff = old_factor - tcp_skb_pcount(skb) - 1352 tcp_skb_pcount(buff); 1353 1354 if (diff) 1355 tcp_adjust_pcount(sk, skb, diff); 1356 } 1357 1358 /* Link BUFF into the send queue. */ 1359 __skb_header_release(buff); 1360 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1361 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1362 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1363 1364 return 0; 1365 } 1366 1367 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1368 * data is not copied, but immediately discarded. 1369 */ 1370 static int __pskb_trim_head(struct sk_buff *skb, int len) 1371 { 1372 struct skb_shared_info *shinfo; 1373 int i, k, eat; 1374 1375 eat = min_t(int, len, skb_headlen(skb)); 1376 if (eat) { 1377 __skb_pull(skb, eat); 1378 len -= eat; 1379 if (!len) 1380 return 0; 1381 } 1382 eat = len; 1383 k = 0; 1384 shinfo = skb_shinfo(skb); 1385 for (i = 0; i < shinfo->nr_frags; i++) { 1386 int size = skb_frag_size(&shinfo->frags[i]); 1387 1388 if (size <= eat) { 1389 skb_frag_unref(skb, i); 1390 eat -= size; 1391 } else { 1392 shinfo->frags[k] = shinfo->frags[i]; 1393 if (eat) { 1394 shinfo->frags[k].page_offset += eat; 1395 skb_frag_size_sub(&shinfo->frags[k], eat); 1396 eat = 0; 1397 } 1398 k++; 1399 } 1400 } 1401 shinfo->nr_frags = k; 1402 1403 skb->data_len -= len; 1404 skb->len = skb->data_len; 1405 return len; 1406 } 1407 1408 /* Remove acked data from a packet in the transmit queue. */ 1409 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1410 { 1411 u32 delta_truesize; 1412 1413 if (skb_unclone(skb, GFP_ATOMIC)) 1414 return -ENOMEM; 1415 1416 delta_truesize = __pskb_trim_head(skb, len); 1417 1418 TCP_SKB_CB(skb)->seq += len; 1419 skb->ip_summed = CHECKSUM_PARTIAL; 1420 1421 if (delta_truesize) { 1422 skb->truesize -= delta_truesize; 1423 sk->sk_wmem_queued -= delta_truesize; 1424 sk_mem_uncharge(sk, delta_truesize); 1425 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1426 } 1427 1428 /* Any change of skb->len requires recalculation of tso factor. */ 1429 if (tcp_skb_pcount(skb) > 1) 1430 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1431 1432 return 0; 1433 } 1434 1435 /* Calculate MSS not accounting any TCP options. */ 1436 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1437 { 1438 const struct tcp_sock *tp = tcp_sk(sk); 1439 const struct inet_connection_sock *icsk = inet_csk(sk); 1440 int mss_now; 1441 1442 /* Calculate base mss without TCP options: 1443 It is MMS_S - sizeof(tcphdr) of rfc1122 1444 */ 1445 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1446 1447 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1448 if (icsk->icsk_af_ops->net_frag_header_len) { 1449 const struct dst_entry *dst = __sk_dst_get(sk); 1450 1451 if (dst && dst_allfrag(dst)) 1452 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1453 } 1454 1455 /* Clamp it (mss_clamp does not include tcp options) */ 1456 if (mss_now > tp->rx_opt.mss_clamp) 1457 mss_now = tp->rx_opt.mss_clamp; 1458 1459 /* Now subtract optional transport overhead */ 1460 mss_now -= icsk->icsk_ext_hdr_len; 1461 1462 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1463 if (mss_now < 48) 1464 mss_now = 48; 1465 return mss_now; 1466 } 1467 1468 /* Calculate MSS. Not accounting for SACKs here. */ 1469 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1470 { 1471 /* Subtract TCP options size, not including SACKs */ 1472 return __tcp_mtu_to_mss(sk, pmtu) - 1473 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1474 } 1475 1476 /* Inverse of above */ 1477 int tcp_mss_to_mtu(struct sock *sk, int mss) 1478 { 1479 const struct tcp_sock *tp = tcp_sk(sk); 1480 const struct inet_connection_sock *icsk = inet_csk(sk); 1481 int mtu; 1482 1483 mtu = mss + 1484 tp->tcp_header_len + 1485 icsk->icsk_ext_hdr_len + 1486 icsk->icsk_af_ops->net_header_len; 1487 1488 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1489 if (icsk->icsk_af_ops->net_frag_header_len) { 1490 const struct dst_entry *dst = __sk_dst_get(sk); 1491 1492 if (dst && dst_allfrag(dst)) 1493 mtu += icsk->icsk_af_ops->net_frag_header_len; 1494 } 1495 return mtu; 1496 } 1497 EXPORT_SYMBOL(tcp_mss_to_mtu); 1498 1499 /* MTU probing init per socket */ 1500 void tcp_mtup_init(struct sock *sk) 1501 { 1502 struct tcp_sock *tp = tcp_sk(sk); 1503 struct inet_connection_sock *icsk = inet_csk(sk); 1504 struct net *net = sock_net(sk); 1505 1506 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1507 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1508 icsk->icsk_af_ops->net_header_len; 1509 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1510 icsk->icsk_mtup.probe_size = 0; 1511 if (icsk->icsk_mtup.enabled) 1512 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1513 } 1514 EXPORT_SYMBOL(tcp_mtup_init); 1515 1516 /* This function synchronize snd mss to current pmtu/exthdr set. 1517 1518 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1519 for TCP options, but includes only bare TCP header. 1520 1521 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1522 It is minimum of user_mss and mss received with SYN. 1523 It also does not include TCP options. 1524 1525 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1526 1527 tp->mss_cache is current effective sending mss, including 1528 all tcp options except for SACKs. It is evaluated, 1529 taking into account current pmtu, but never exceeds 1530 tp->rx_opt.mss_clamp. 1531 1532 NOTE1. rfc1122 clearly states that advertised MSS 1533 DOES NOT include either tcp or ip options. 1534 1535 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1536 are READ ONLY outside this function. --ANK (980731) 1537 */ 1538 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1539 { 1540 struct tcp_sock *tp = tcp_sk(sk); 1541 struct inet_connection_sock *icsk = inet_csk(sk); 1542 int mss_now; 1543 1544 if (icsk->icsk_mtup.search_high > pmtu) 1545 icsk->icsk_mtup.search_high = pmtu; 1546 1547 mss_now = tcp_mtu_to_mss(sk, pmtu); 1548 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1549 1550 /* And store cached results */ 1551 icsk->icsk_pmtu_cookie = pmtu; 1552 if (icsk->icsk_mtup.enabled) 1553 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1554 tp->mss_cache = mss_now; 1555 1556 return mss_now; 1557 } 1558 EXPORT_SYMBOL(tcp_sync_mss); 1559 1560 /* Compute the current effective MSS, taking SACKs and IP options, 1561 * and even PMTU discovery events into account. 1562 */ 1563 unsigned int tcp_current_mss(struct sock *sk) 1564 { 1565 const struct tcp_sock *tp = tcp_sk(sk); 1566 const struct dst_entry *dst = __sk_dst_get(sk); 1567 u32 mss_now; 1568 unsigned int header_len; 1569 struct tcp_out_options opts; 1570 struct tcp_md5sig_key *md5; 1571 1572 mss_now = tp->mss_cache; 1573 1574 if (dst) { 1575 u32 mtu = dst_mtu(dst); 1576 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1577 mss_now = tcp_sync_mss(sk, mtu); 1578 } 1579 1580 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1581 sizeof(struct tcphdr); 1582 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1583 * some common options. If this is an odd packet (because we have SACK 1584 * blocks etc) then our calculated header_len will be different, and 1585 * we have to adjust mss_now correspondingly */ 1586 if (header_len != tp->tcp_header_len) { 1587 int delta = (int) header_len - tp->tcp_header_len; 1588 mss_now -= delta; 1589 } 1590 1591 return mss_now; 1592 } 1593 1594 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1595 * As additional protections, we do not touch cwnd in retransmission phases, 1596 * and if application hit its sndbuf limit recently. 1597 */ 1598 static void tcp_cwnd_application_limited(struct sock *sk) 1599 { 1600 struct tcp_sock *tp = tcp_sk(sk); 1601 1602 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1603 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1604 /* Limited by application or receiver window. */ 1605 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1606 u32 win_used = max(tp->snd_cwnd_used, init_win); 1607 if (win_used < tp->snd_cwnd) { 1608 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1609 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1610 } 1611 tp->snd_cwnd_used = 0; 1612 } 1613 tp->snd_cwnd_stamp = tcp_jiffies32; 1614 } 1615 1616 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1617 { 1618 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1619 struct tcp_sock *tp = tcp_sk(sk); 1620 1621 /* Track the maximum number of outstanding packets in each 1622 * window, and remember whether we were cwnd-limited then. 1623 */ 1624 if (!before(tp->snd_una, tp->max_packets_seq) || 1625 tp->packets_out > tp->max_packets_out) { 1626 tp->max_packets_out = tp->packets_out; 1627 tp->max_packets_seq = tp->snd_nxt; 1628 tp->is_cwnd_limited = is_cwnd_limited; 1629 } 1630 1631 if (tcp_is_cwnd_limited(sk)) { 1632 /* Network is feed fully. */ 1633 tp->snd_cwnd_used = 0; 1634 tp->snd_cwnd_stamp = tcp_jiffies32; 1635 } else { 1636 /* Network starves. */ 1637 if (tp->packets_out > tp->snd_cwnd_used) 1638 tp->snd_cwnd_used = tp->packets_out; 1639 1640 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1641 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1642 !ca_ops->cong_control) 1643 tcp_cwnd_application_limited(sk); 1644 1645 /* The following conditions together indicate the starvation 1646 * is caused by insufficient sender buffer: 1647 * 1) just sent some data (see tcp_write_xmit) 1648 * 2) not cwnd limited (this else condition) 1649 * 3) no more data to send (tcp_write_queue_empty()) 1650 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1651 */ 1652 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1653 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1654 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1655 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1656 } 1657 } 1658 1659 /* Minshall's variant of the Nagle send check. */ 1660 static bool tcp_minshall_check(const struct tcp_sock *tp) 1661 { 1662 return after(tp->snd_sml, tp->snd_una) && 1663 !after(tp->snd_sml, tp->snd_nxt); 1664 } 1665 1666 /* Update snd_sml if this skb is under mss 1667 * Note that a TSO packet might end with a sub-mss segment 1668 * The test is really : 1669 * if ((skb->len % mss) != 0) 1670 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1671 * But we can avoid doing the divide again given we already have 1672 * skb_pcount = skb->len / mss_now 1673 */ 1674 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1675 const struct sk_buff *skb) 1676 { 1677 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1678 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1679 } 1680 1681 /* Return false, if packet can be sent now without violation Nagle's rules: 1682 * 1. It is full sized. (provided by caller in %partial bool) 1683 * 2. Or it contains FIN. (already checked by caller) 1684 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1685 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1686 * With Minshall's modification: all sent small packets are ACKed. 1687 */ 1688 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1689 int nonagle) 1690 { 1691 return partial && 1692 ((nonagle & TCP_NAGLE_CORK) || 1693 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1694 } 1695 1696 /* Return how many segs we'd like on a TSO packet, 1697 * to send one TSO packet per ms 1698 */ 1699 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1700 int min_tso_segs) 1701 { 1702 u32 bytes, segs; 1703 1704 bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift, 1705 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1706 1707 /* Goal is to send at least one packet per ms, 1708 * not one big TSO packet every 100 ms. 1709 * This preserves ACK clocking and is consistent 1710 * with tcp_tso_should_defer() heuristic. 1711 */ 1712 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1713 1714 return segs; 1715 } 1716 1717 /* Return the number of segments we want in the skb we are transmitting. 1718 * See if congestion control module wants to decide; otherwise, autosize. 1719 */ 1720 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1721 { 1722 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1723 u32 min_tso, tso_segs; 1724 1725 min_tso = ca_ops->min_tso_segs ? 1726 ca_ops->min_tso_segs(sk) : 1727 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1728 1729 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1730 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1731 } 1732 1733 /* Returns the portion of skb which can be sent right away */ 1734 static unsigned int tcp_mss_split_point(const struct sock *sk, 1735 const struct sk_buff *skb, 1736 unsigned int mss_now, 1737 unsigned int max_segs, 1738 int nonagle) 1739 { 1740 const struct tcp_sock *tp = tcp_sk(sk); 1741 u32 partial, needed, window, max_len; 1742 1743 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1744 max_len = mss_now * max_segs; 1745 1746 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1747 return max_len; 1748 1749 needed = min(skb->len, window); 1750 1751 if (max_len <= needed) 1752 return max_len; 1753 1754 partial = needed % mss_now; 1755 /* If last segment is not a full MSS, check if Nagle rules allow us 1756 * to include this last segment in this skb. 1757 * Otherwise, we'll split the skb at last MSS boundary 1758 */ 1759 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1760 return needed - partial; 1761 1762 return needed; 1763 } 1764 1765 /* Can at least one segment of SKB be sent right now, according to the 1766 * congestion window rules? If so, return how many segments are allowed. 1767 */ 1768 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1769 const struct sk_buff *skb) 1770 { 1771 u32 in_flight, cwnd, halfcwnd; 1772 1773 /* Don't be strict about the congestion window for the final FIN. */ 1774 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1775 tcp_skb_pcount(skb) == 1) 1776 return 1; 1777 1778 in_flight = tcp_packets_in_flight(tp); 1779 cwnd = tp->snd_cwnd; 1780 if (in_flight >= cwnd) 1781 return 0; 1782 1783 /* For better scheduling, ensure we have at least 1784 * 2 GSO packets in flight. 1785 */ 1786 halfcwnd = max(cwnd >> 1, 1U); 1787 return min(halfcwnd, cwnd - in_flight); 1788 } 1789 1790 /* Initialize TSO state of a skb. 1791 * This must be invoked the first time we consider transmitting 1792 * SKB onto the wire. 1793 */ 1794 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1795 { 1796 int tso_segs = tcp_skb_pcount(skb); 1797 1798 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1799 tcp_set_skb_tso_segs(skb, mss_now); 1800 tso_segs = tcp_skb_pcount(skb); 1801 } 1802 return tso_segs; 1803 } 1804 1805 1806 /* Return true if the Nagle test allows this packet to be 1807 * sent now. 1808 */ 1809 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1810 unsigned int cur_mss, int nonagle) 1811 { 1812 /* Nagle rule does not apply to frames, which sit in the middle of the 1813 * write_queue (they have no chances to get new data). 1814 * 1815 * This is implemented in the callers, where they modify the 'nonagle' 1816 * argument based upon the location of SKB in the send queue. 1817 */ 1818 if (nonagle & TCP_NAGLE_PUSH) 1819 return true; 1820 1821 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1822 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1823 return true; 1824 1825 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1826 return true; 1827 1828 return false; 1829 } 1830 1831 /* Does at least the first segment of SKB fit into the send window? */ 1832 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1833 const struct sk_buff *skb, 1834 unsigned int cur_mss) 1835 { 1836 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1837 1838 if (skb->len > cur_mss) 1839 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1840 1841 return !after(end_seq, tcp_wnd_end(tp)); 1842 } 1843 1844 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1845 * which is put after SKB on the list. It is very much like 1846 * tcp_fragment() except that it may make several kinds of assumptions 1847 * in order to speed up the splitting operation. In particular, we 1848 * know that all the data is in scatter-gather pages, and that the 1849 * packet has never been sent out before (and thus is not cloned). 1850 */ 1851 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1852 struct sk_buff *skb, unsigned int len, 1853 unsigned int mss_now, gfp_t gfp) 1854 { 1855 struct sk_buff *buff; 1856 int nlen = skb->len - len; 1857 u8 flags; 1858 1859 /* All of a TSO frame must be composed of paged data. */ 1860 if (skb->len != skb->data_len) 1861 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp); 1862 1863 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1864 if (unlikely(!buff)) 1865 return -ENOMEM; 1866 1867 sk->sk_wmem_queued += buff->truesize; 1868 sk_mem_charge(sk, buff->truesize); 1869 buff->truesize += nlen; 1870 skb->truesize -= nlen; 1871 1872 /* Correct the sequence numbers. */ 1873 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1874 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1875 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1876 1877 /* PSH and FIN should only be set in the second packet. */ 1878 flags = TCP_SKB_CB(skb)->tcp_flags; 1879 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1880 TCP_SKB_CB(buff)->tcp_flags = flags; 1881 1882 /* This packet was never sent out yet, so no SACK bits. */ 1883 TCP_SKB_CB(buff)->sacked = 0; 1884 1885 tcp_skb_fragment_eor(skb, buff); 1886 1887 buff->ip_summed = CHECKSUM_PARTIAL; 1888 skb_split(skb, buff, len); 1889 tcp_fragment_tstamp(skb, buff); 1890 1891 /* Fix up tso_factor for both original and new SKB. */ 1892 tcp_set_skb_tso_segs(skb, mss_now); 1893 tcp_set_skb_tso_segs(buff, mss_now); 1894 1895 /* Link BUFF into the send queue. */ 1896 __skb_header_release(buff); 1897 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1898 1899 return 0; 1900 } 1901 1902 /* Try to defer sending, if possible, in order to minimize the amount 1903 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1904 * 1905 * This algorithm is from John Heffner. 1906 */ 1907 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1908 bool *is_cwnd_limited, u32 max_segs) 1909 { 1910 const struct inet_connection_sock *icsk = inet_csk(sk); 1911 u32 age, send_win, cong_win, limit, in_flight; 1912 struct tcp_sock *tp = tcp_sk(sk); 1913 struct sk_buff *head; 1914 int win_divisor; 1915 1916 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1917 goto send_now; 1918 1919 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1920 goto send_now; 1921 1922 /* Avoid bursty behavior by allowing defer 1923 * only if the last write was recent. 1924 */ 1925 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1926 goto send_now; 1927 1928 in_flight = tcp_packets_in_flight(tp); 1929 1930 BUG_ON(tcp_skb_pcount(skb) <= 1); 1931 BUG_ON(tp->snd_cwnd <= in_flight); 1932 1933 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1934 1935 /* From in_flight test above, we know that cwnd > in_flight. */ 1936 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1937 1938 limit = min(send_win, cong_win); 1939 1940 /* If a full-sized TSO skb can be sent, do it. */ 1941 if (limit >= max_segs * tp->mss_cache) 1942 goto send_now; 1943 1944 /* Middle in queue won't get any more data, full sendable already? */ 1945 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1946 goto send_now; 1947 1948 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1949 if (win_divisor) { 1950 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1951 1952 /* If at least some fraction of a window is available, 1953 * just use it. 1954 */ 1955 chunk /= win_divisor; 1956 if (limit >= chunk) 1957 goto send_now; 1958 } else { 1959 /* Different approach, try not to defer past a single 1960 * ACK. Receiver should ACK every other full sized 1961 * frame, so if we have space for more than 3 frames 1962 * then send now. 1963 */ 1964 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1965 goto send_now; 1966 } 1967 1968 /* TODO : use tsorted_sent_queue ? */ 1969 head = tcp_rtx_queue_head(sk); 1970 if (!head) 1971 goto send_now; 1972 age = tcp_stamp_us_delta(tp->tcp_mstamp, tcp_skb_timestamp_us(head)); 1973 /* If next ACK is likely to come too late (half srtt), do not defer */ 1974 if (age < (tp->srtt_us >> 4)) 1975 goto send_now; 1976 1977 /* Ok, it looks like it is advisable to defer. */ 1978 1979 if (cong_win < send_win && cong_win <= skb->len) 1980 *is_cwnd_limited = true; 1981 1982 return true; 1983 1984 send_now: 1985 return false; 1986 } 1987 1988 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1989 { 1990 struct inet_connection_sock *icsk = inet_csk(sk); 1991 struct tcp_sock *tp = tcp_sk(sk); 1992 struct net *net = sock_net(sk); 1993 u32 interval; 1994 s32 delta; 1995 1996 interval = net->ipv4.sysctl_tcp_probe_interval; 1997 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 1998 if (unlikely(delta >= interval * HZ)) { 1999 int mss = tcp_current_mss(sk); 2000 2001 /* Update current search range */ 2002 icsk->icsk_mtup.probe_size = 0; 2003 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2004 sizeof(struct tcphdr) + 2005 icsk->icsk_af_ops->net_header_len; 2006 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2007 2008 /* Update probe time stamp */ 2009 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2010 } 2011 } 2012 2013 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2014 { 2015 struct sk_buff *skb, *next; 2016 2017 skb = tcp_send_head(sk); 2018 tcp_for_write_queue_from_safe(skb, next, sk) { 2019 if (len <= skb->len) 2020 break; 2021 2022 if (unlikely(TCP_SKB_CB(skb)->eor)) 2023 return false; 2024 2025 len -= skb->len; 2026 } 2027 2028 return true; 2029 } 2030 2031 /* Create a new MTU probe if we are ready. 2032 * MTU probe is regularly attempting to increase the path MTU by 2033 * deliberately sending larger packets. This discovers routing 2034 * changes resulting in larger path MTUs. 2035 * 2036 * Returns 0 if we should wait to probe (no cwnd available), 2037 * 1 if a probe was sent, 2038 * -1 otherwise 2039 */ 2040 static int tcp_mtu_probe(struct sock *sk) 2041 { 2042 struct inet_connection_sock *icsk = inet_csk(sk); 2043 struct tcp_sock *tp = tcp_sk(sk); 2044 struct sk_buff *skb, *nskb, *next; 2045 struct net *net = sock_net(sk); 2046 int probe_size; 2047 int size_needed; 2048 int copy, len; 2049 int mss_now; 2050 int interval; 2051 2052 /* Not currently probing/verifying, 2053 * not in recovery, 2054 * have enough cwnd, and 2055 * not SACKing (the variable headers throw things off) 2056 */ 2057 if (likely(!icsk->icsk_mtup.enabled || 2058 icsk->icsk_mtup.probe_size || 2059 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2060 tp->snd_cwnd < 11 || 2061 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2062 return -1; 2063 2064 /* Use binary search for probe_size between tcp_mss_base, 2065 * and current mss_clamp. if (search_high - search_low) 2066 * smaller than a threshold, backoff from probing. 2067 */ 2068 mss_now = tcp_current_mss(sk); 2069 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2070 icsk->icsk_mtup.search_low) >> 1); 2071 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2072 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2073 /* When misfortune happens, we are reprobing actively, 2074 * and then reprobe timer has expired. We stick with current 2075 * probing process by not resetting search range to its orignal. 2076 */ 2077 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2078 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2079 /* Check whether enough time has elaplased for 2080 * another round of probing. 2081 */ 2082 tcp_mtu_check_reprobe(sk); 2083 return -1; 2084 } 2085 2086 /* Have enough data in the send queue to probe? */ 2087 if (tp->write_seq - tp->snd_nxt < size_needed) 2088 return -1; 2089 2090 if (tp->snd_wnd < size_needed) 2091 return -1; 2092 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2093 return 0; 2094 2095 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2096 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2097 if (!tcp_packets_in_flight(tp)) 2098 return -1; 2099 else 2100 return 0; 2101 } 2102 2103 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2104 return -1; 2105 2106 /* We're allowed to probe. Build it now. */ 2107 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2108 if (!nskb) 2109 return -1; 2110 sk->sk_wmem_queued += nskb->truesize; 2111 sk_mem_charge(sk, nskb->truesize); 2112 2113 skb = tcp_send_head(sk); 2114 2115 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2116 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2117 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2118 TCP_SKB_CB(nskb)->sacked = 0; 2119 nskb->csum = 0; 2120 nskb->ip_summed = CHECKSUM_PARTIAL; 2121 2122 tcp_insert_write_queue_before(nskb, skb, sk); 2123 tcp_highest_sack_replace(sk, skb, nskb); 2124 2125 len = 0; 2126 tcp_for_write_queue_from_safe(skb, next, sk) { 2127 copy = min_t(int, skb->len, probe_size - len); 2128 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2129 2130 if (skb->len <= copy) { 2131 /* We've eaten all the data from this skb. 2132 * Throw it away. */ 2133 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2134 /* If this is the last SKB we copy and eor is set 2135 * we need to propagate it to the new skb. 2136 */ 2137 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2138 tcp_unlink_write_queue(skb, sk); 2139 sk_wmem_free_skb(sk, skb); 2140 } else { 2141 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2142 ~(TCPHDR_FIN|TCPHDR_PSH); 2143 if (!skb_shinfo(skb)->nr_frags) { 2144 skb_pull(skb, copy); 2145 } else { 2146 __pskb_trim_head(skb, copy); 2147 tcp_set_skb_tso_segs(skb, mss_now); 2148 } 2149 TCP_SKB_CB(skb)->seq += copy; 2150 } 2151 2152 len += copy; 2153 2154 if (len >= probe_size) 2155 break; 2156 } 2157 tcp_init_tso_segs(nskb, nskb->len); 2158 2159 /* We're ready to send. If this fails, the probe will 2160 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2161 */ 2162 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2163 /* Decrement cwnd here because we are sending 2164 * effectively two packets. */ 2165 tp->snd_cwnd--; 2166 tcp_event_new_data_sent(sk, nskb); 2167 2168 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2169 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2170 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2171 2172 return 1; 2173 } 2174 2175 return -1; 2176 } 2177 2178 static bool tcp_pacing_check(const struct sock *sk) 2179 { 2180 return tcp_needs_internal_pacing(sk) && 2181 hrtimer_is_queued(&tcp_sk(sk)->pacing_timer); 2182 } 2183 2184 /* TCP Small Queues : 2185 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2186 * (These limits are doubled for retransmits) 2187 * This allows for : 2188 * - better RTT estimation and ACK scheduling 2189 * - faster recovery 2190 * - high rates 2191 * Alas, some drivers / subsystems require a fair amount 2192 * of queued bytes to ensure line rate. 2193 * One example is wifi aggregation (802.11 AMPDU) 2194 */ 2195 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2196 unsigned int factor) 2197 { 2198 unsigned int limit; 2199 2200 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift); 2201 limit = min_t(u32, limit, 2202 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2203 limit <<= factor; 2204 2205 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2206 /* Always send skb if rtx queue is empty. 2207 * No need to wait for TX completion to call us back, 2208 * after softirq/tasklet schedule. 2209 * This helps when TX completions are delayed too much. 2210 */ 2211 if (tcp_rtx_queue_empty(sk)) 2212 return false; 2213 2214 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2215 /* It is possible TX completion already happened 2216 * before we set TSQ_THROTTLED, so we must 2217 * test again the condition. 2218 */ 2219 smp_mb__after_atomic(); 2220 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2221 return true; 2222 } 2223 return false; 2224 } 2225 2226 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2227 { 2228 const u32 now = tcp_jiffies32; 2229 enum tcp_chrono old = tp->chrono_type; 2230 2231 if (old > TCP_CHRONO_UNSPEC) 2232 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2233 tp->chrono_start = now; 2234 tp->chrono_type = new; 2235 } 2236 2237 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2238 { 2239 struct tcp_sock *tp = tcp_sk(sk); 2240 2241 /* If there are multiple conditions worthy of tracking in a 2242 * chronograph then the highest priority enum takes precedence 2243 * over the other conditions. So that if something "more interesting" 2244 * starts happening, stop the previous chrono and start a new one. 2245 */ 2246 if (type > tp->chrono_type) 2247 tcp_chrono_set(tp, type); 2248 } 2249 2250 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2251 { 2252 struct tcp_sock *tp = tcp_sk(sk); 2253 2254 2255 /* There are multiple conditions worthy of tracking in a 2256 * chronograph, so that the highest priority enum takes 2257 * precedence over the other conditions (see tcp_chrono_start). 2258 * If a condition stops, we only stop chrono tracking if 2259 * it's the "most interesting" or current chrono we are 2260 * tracking and starts busy chrono if we have pending data. 2261 */ 2262 if (tcp_rtx_and_write_queues_empty(sk)) 2263 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2264 else if (type == tp->chrono_type) 2265 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2266 } 2267 2268 /* This routine writes packets to the network. It advances the 2269 * send_head. This happens as incoming acks open up the remote 2270 * window for us. 2271 * 2272 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2273 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2274 * account rare use of URG, this is not a big flaw. 2275 * 2276 * Send at most one packet when push_one > 0. Temporarily ignore 2277 * cwnd limit to force at most one packet out when push_one == 2. 2278 2279 * Returns true, if no segments are in flight and we have queued segments, 2280 * but cannot send anything now because of SWS or another problem. 2281 */ 2282 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2283 int push_one, gfp_t gfp) 2284 { 2285 struct tcp_sock *tp = tcp_sk(sk); 2286 struct sk_buff *skb; 2287 unsigned int tso_segs, sent_pkts; 2288 int cwnd_quota; 2289 int result; 2290 bool is_cwnd_limited = false, is_rwnd_limited = false; 2291 u32 max_segs; 2292 2293 sent_pkts = 0; 2294 2295 tcp_mstamp_refresh(tp); 2296 if (!push_one) { 2297 /* Do MTU probing. */ 2298 result = tcp_mtu_probe(sk); 2299 if (!result) { 2300 return false; 2301 } else if (result > 0) { 2302 sent_pkts = 1; 2303 } 2304 } 2305 2306 max_segs = tcp_tso_segs(sk, mss_now); 2307 while ((skb = tcp_send_head(sk))) { 2308 unsigned int limit; 2309 2310 if (tcp_pacing_check(sk)) 2311 break; 2312 2313 tso_segs = tcp_init_tso_segs(skb, mss_now); 2314 BUG_ON(!tso_segs); 2315 2316 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2317 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2318 tcp_update_skb_after_send(sk, skb); 2319 goto repair; /* Skip network transmission */ 2320 } 2321 2322 cwnd_quota = tcp_cwnd_test(tp, skb); 2323 if (!cwnd_quota) { 2324 if (push_one == 2) 2325 /* Force out a loss probe pkt. */ 2326 cwnd_quota = 1; 2327 else 2328 break; 2329 } 2330 2331 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2332 is_rwnd_limited = true; 2333 break; 2334 } 2335 2336 if (tso_segs == 1) { 2337 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2338 (tcp_skb_is_last(sk, skb) ? 2339 nonagle : TCP_NAGLE_PUSH)))) 2340 break; 2341 } else { 2342 if (!push_one && 2343 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2344 max_segs)) 2345 break; 2346 } 2347 2348 limit = mss_now; 2349 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2350 limit = tcp_mss_split_point(sk, skb, mss_now, 2351 min_t(unsigned int, 2352 cwnd_quota, 2353 max_segs), 2354 nonagle); 2355 2356 if (skb->len > limit && 2357 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2358 skb, limit, mss_now, gfp))) 2359 break; 2360 2361 if (tcp_small_queue_check(sk, skb, 0)) 2362 break; 2363 2364 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2365 break; 2366 2367 repair: 2368 /* Advance the send_head. This one is sent out. 2369 * This call will increment packets_out. 2370 */ 2371 tcp_event_new_data_sent(sk, skb); 2372 2373 tcp_minshall_update(tp, mss_now, skb); 2374 sent_pkts += tcp_skb_pcount(skb); 2375 2376 if (push_one) 2377 break; 2378 } 2379 2380 if (is_rwnd_limited) 2381 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2382 else 2383 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2384 2385 if (likely(sent_pkts)) { 2386 if (tcp_in_cwnd_reduction(sk)) 2387 tp->prr_out += sent_pkts; 2388 2389 /* Send one loss probe per tail loss episode. */ 2390 if (push_one != 2) 2391 tcp_schedule_loss_probe(sk, false); 2392 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2393 tcp_cwnd_validate(sk, is_cwnd_limited); 2394 return false; 2395 } 2396 return !tp->packets_out && !tcp_write_queue_empty(sk); 2397 } 2398 2399 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2400 { 2401 struct inet_connection_sock *icsk = inet_csk(sk); 2402 struct tcp_sock *tp = tcp_sk(sk); 2403 u32 timeout, rto_delta_us; 2404 int early_retrans; 2405 2406 /* Don't do any loss probe on a Fast Open connection before 3WHS 2407 * finishes. 2408 */ 2409 if (tp->fastopen_rsk) 2410 return false; 2411 2412 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2413 /* Schedule a loss probe in 2*RTT for SACK capable connections 2414 * not in loss recovery, that are either limited by cwnd or application. 2415 */ 2416 if ((early_retrans != 3 && early_retrans != 4) || 2417 !tp->packets_out || !tcp_is_sack(tp) || 2418 (icsk->icsk_ca_state != TCP_CA_Open && 2419 icsk->icsk_ca_state != TCP_CA_CWR)) 2420 return false; 2421 2422 /* Probe timeout is 2*rtt. Add minimum RTO to account 2423 * for delayed ack when there's one outstanding packet. If no RTT 2424 * sample is available then probe after TCP_TIMEOUT_INIT. 2425 */ 2426 if (tp->srtt_us) { 2427 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2428 if (tp->packets_out == 1) 2429 timeout += TCP_RTO_MIN; 2430 else 2431 timeout += TCP_TIMEOUT_MIN; 2432 } else { 2433 timeout = TCP_TIMEOUT_INIT; 2434 } 2435 2436 /* If the RTO formula yields an earlier time, then use that time. */ 2437 rto_delta_us = advancing_rto ? 2438 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2439 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2440 if (rto_delta_us > 0) 2441 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2442 2443 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2444 TCP_RTO_MAX); 2445 return true; 2446 } 2447 2448 /* Thanks to skb fast clones, we can detect if a prior transmit of 2449 * a packet is still in a qdisc or driver queue. 2450 * In this case, there is very little point doing a retransmit ! 2451 */ 2452 static bool skb_still_in_host_queue(const struct sock *sk, 2453 const struct sk_buff *skb) 2454 { 2455 if (unlikely(skb_fclone_busy(sk, skb))) { 2456 NET_INC_STATS(sock_net(sk), 2457 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2458 return true; 2459 } 2460 return false; 2461 } 2462 2463 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2464 * retransmit the last segment. 2465 */ 2466 void tcp_send_loss_probe(struct sock *sk) 2467 { 2468 struct tcp_sock *tp = tcp_sk(sk); 2469 struct sk_buff *skb; 2470 int pcount; 2471 int mss = tcp_current_mss(sk); 2472 2473 skb = tcp_send_head(sk); 2474 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2475 pcount = tp->packets_out; 2476 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2477 if (tp->packets_out > pcount) 2478 goto probe_sent; 2479 goto rearm_timer; 2480 } 2481 skb = skb_rb_last(&sk->tcp_rtx_queue); 2482 2483 /* At most one outstanding TLP retransmission. */ 2484 if (tp->tlp_high_seq) 2485 goto rearm_timer; 2486 2487 /* Retransmit last segment. */ 2488 if (WARN_ON(!skb)) 2489 goto rearm_timer; 2490 2491 if (skb_still_in_host_queue(sk, skb)) 2492 goto rearm_timer; 2493 2494 pcount = tcp_skb_pcount(skb); 2495 if (WARN_ON(!pcount)) 2496 goto rearm_timer; 2497 2498 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2499 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2500 (pcount - 1) * mss, mss, 2501 GFP_ATOMIC))) 2502 goto rearm_timer; 2503 skb = skb_rb_next(skb); 2504 } 2505 2506 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2507 goto rearm_timer; 2508 2509 if (__tcp_retransmit_skb(sk, skb, 1)) 2510 goto rearm_timer; 2511 2512 /* Record snd_nxt for loss detection. */ 2513 tp->tlp_high_seq = tp->snd_nxt; 2514 2515 probe_sent: 2516 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2517 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2518 inet_csk(sk)->icsk_pending = 0; 2519 rearm_timer: 2520 tcp_rearm_rto(sk); 2521 } 2522 2523 /* Push out any pending frames which were held back due to 2524 * TCP_CORK or attempt at coalescing tiny packets. 2525 * The socket must be locked by the caller. 2526 */ 2527 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2528 int nonagle) 2529 { 2530 /* If we are closed, the bytes will have to remain here. 2531 * In time closedown will finish, we empty the write queue and 2532 * all will be happy. 2533 */ 2534 if (unlikely(sk->sk_state == TCP_CLOSE)) 2535 return; 2536 2537 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2538 sk_gfp_mask(sk, GFP_ATOMIC))) 2539 tcp_check_probe_timer(sk); 2540 } 2541 2542 /* Send _single_ skb sitting at the send head. This function requires 2543 * true push pending frames to setup probe timer etc. 2544 */ 2545 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2546 { 2547 struct sk_buff *skb = tcp_send_head(sk); 2548 2549 BUG_ON(!skb || skb->len < mss_now); 2550 2551 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2552 } 2553 2554 /* This function returns the amount that we can raise the 2555 * usable window based on the following constraints 2556 * 2557 * 1. The window can never be shrunk once it is offered (RFC 793) 2558 * 2. We limit memory per socket 2559 * 2560 * RFC 1122: 2561 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2562 * RECV.NEXT + RCV.WIN fixed until: 2563 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2564 * 2565 * i.e. don't raise the right edge of the window until you can raise 2566 * it at least MSS bytes. 2567 * 2568 * Unfortunately, the recommended algorithm breaks header prediction, 2569 * since header prediction assumes th->window stays fixed. 2570 * 2571 * Strictly speaking, keeping th->window fixed violates the receiver 2572 * side SWS prevention criteria. The problem is that under this rule 2573 * a stream of single byte packets will cause the right side of the 2574 * window to always advance by a single byte. 2575 * 2576 * Of course, if the sender implements sender side SWS prevention 2577 * then this will not be a problem. 2578 * 2579 * BSD seems to make the following compromise: 2580 * 2581 * If the free space is less than the 1/4 of the maximum 2582 * space available and the free space is less than 1/2 mss, 2583 * then set the window to 0. 2584 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2585 * Otherwise, just prevent the window from shrinking 2586 * and from being larger than the largest representable value. 2587 * 2588 * This prevents incremental opening of the window in the regime 2589 * where TCP is limited by the speed of the reader side taking 2590 * data out of the TCP receive queue. It does nothing about 2591 * those cases where the window is constrained on the sender side 2592 * because the pipeline is full. 2593 * 2594 * BSD also seems to "accidentally" limit itself to windows that are a 2595 * multiple of MSS, at least until the free space gets quite small. 2596 * This would appear to be a side effect of the mbuf implementation. 2597 * Combining these two algorithms results in the observed behavior 2598 * of having a fixed window size at almost all times. 2599 * 2600 * Below we obtain similar behavior by forcing the offered window to 2601 * a multiple of the mss when it is feasible to do so. 2602 * 2603 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2604 * Regular options like TIMESTAMP are taken into account. 2605 */ 2606 u32 __tcp_select_window(struct sock *sk) 2607 { 2608 struct inet_connection_sock *icsk = inet_csk(sk); 2609 struct tcp_sock *tp = tcp_sk(sk); 2610 /* MSS for the peer's data. Previous versions used mss_clamp 2611 * here. I don't know if the value based on our guesses 2612 * of peer's MSS is better for the performance. It's more correct 2613 * but may be worse for the performance because of rcv_mss 2614 * fluctuations. --SAW 1998/11/1 2615 */ 2616 int mss = icsk->icsk_ack.rcv_mss; 2617 int free_space = tcp_space(sk); 2618 int allowed_space = tcp_full_space(sk); 2619 int full_space = min_t(int, tp->window_clamp, allowed_space); 2620 int window; 2621 2622 if (unlikely(mss > full_space)) { 2623 mss = full_space; 2624 if (mss <= 0) 2625 return 0; 2626 } 2627 if (free_space < (full_space >> 1)) { 2628 icsk->icsk_ack.quick = 0; 2629 2630 if (tcp_under_memory_pressure(sk)) 2631 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2632 4U * tp->advmss); 2633 2634 /* free_space might become our new window, make sure we don't 2635 * increase it due to wscale. 2636 */ 2637 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2638 2639 /* if free space is less than mss estimate, or is below 1/16th 2640 * of the maximum allowed, try to move to zero-window, else 2641 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2642 * new incoming data is dropped due to memory limits. 2643 * With large window, mss test triggers way too late in order 2644 * to announce zero window in time before rmem limit kicks in. 2645 */ 2646 if (free_space < (allowed_space >> 4) || free_space < mss) 2647 return 0; 2648 } 2649 2650 if (free_space > tp->rcv_ssthresh) 2651 free_space = tp->rcv_ssthresh; 2652 2653 /* Don't do rounding if we are using window scaling, since the 2654 * scaled window will not line up with the MSS boundary anyway. 2655 */ 2656 if (tp->rx_opt.rcv_wscale) { 2657 window = free_space; 2658 2659 /* Advertise enough space so that it won't get scaled away. 2660 * Import case: prevent zero window announcement if 2661 * 1<<rcv_wscale > mss. 2662 */ 2663 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2664 } else { 2665 window = tp->rcv_wnd; 2666 /* Get the largest window that is a nice multiple of mss. 2667 * Window clamp already applied above. 2668 * If our current window offering is within 1 mss of the 2669 * free space we just keep it. This prevents the divide 2670 * and multiply from happening most of the time. 2671 * We also don't do any window rounding when the free space 2672 * is too small. 2673 */ 2674 if (window <= free_space - mss || window > free_space) 2675 window = rounddown(free_space, mss); 2676 else if (mss == full_space && 2677 free_space > window + (full_space >> 1)) 2678 window = free_space; 2679 } 2680 2681 return window; 2682 } 2683 2684 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2685 const struct sk_buff *next_skb) 2686 { 2687 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2688 const struct skb_shared_info *next_shinfo = 2689 skb_shinfo(next_skb); 2690 struct skb_shared_info *shinfo = skb_shinfo(skb); 2691 2692 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2693 shinfo->tskey = next_shinfo->tskey; 2694 TCP_SKB_CB(skb)->txstamp_ack |= 2695 TCP_SKB_CB(next_skb)->txstamp_ack; 2696 } 2697 } 2698 2699 /* Collapses two adjacent SKB's during retransmission. */ 2700 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2701 { 2702 struct tcp_sock *tp = tcp_sk(sk); 2703 struct sk_buff *next_skb = skb_rb_next(skb); 2704 int next_skb_size; 2705 2706 next_skb_size = next_skb->len; 2707 2708 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2709 2710 if (next_skb_size) { 2711 if (next_skb_size <= skb_availroom(skb)) 2712 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2713 next_skb_size); 2714 else if (!skb_shift(skb, next_skb, next_skb_size)) 2715 return false; 2716 } 2717 tcp_highest_sack_replace(sk, next_skb, skb); 2718 2719 /* Update sequence range on original skb. */ 2720 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2721 2722 /* Merge over control information. This moves PSH/FIN etc. over */ 2723 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2724 2725 /* All done, get rid of second SKB and account for it so 2726 * packet counting does not break. 2727 */ 2728 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2729 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2730 2731 /* changed transmit queue under us so clear hints */ 2732 tcp_clear_retrans_hints_partial(tp); 2733 if (next_skb == tp->retransmit_skb_hint) 2734 tp->retransmit_skb_hint = skb; 2735 2736 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2737 2738 tcp_skb_collapse_tstamp(skb, next_skb); 2739 2740 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2741 return true; 2742 } 2743 2744 /* Check if coalescing SKBs is legal. */ 2745 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2746 { 2747 if (tcp_skb_pcount(skb) > 1) 2748 return false; 2749 if (skb_cloned(skb)) 2750 return false; 2751 /* Some heuristics for collapsing over SACK'd could be invented */ 2752 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2753 return false; 2754 2755 return true; 2756 } 2757 2758 /* Collapse packets in the retransmit queue to make to create 2759 * less packets on the wire. This is only done on retransmission. 2760 */ 2761 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2762 int space) 2763 { 2764 struct tcp_sock *tp = tcp_sk(sk); 2765 struct sk_buff *skb = to, *tmp; 2766 bool first = true; 2767 2768 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2769 return; 2770 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2771 return; 2772 2773 skb_rbtree_walk_from_safe(skb, tmp) { 2774 if (!tcp_can_collapse(sk, skb)) 2775 break; 2776 2777 if (!tcp_skb_can_collapse_to(to)) 2778 break; 2779 2780 space -= skb->len; 2781 2782 if (first) { 2783 first = false; 2784 continue; 2785 } 2786 2787 if (space < 0) 2788 break; 2789 2790 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2791 break; 2792 2793 if (!tcp_collapse_retrans(sk, to)) 2794 break; 2795 } 2796 } 2797 2798 /* This retransmits one SKB. Policy decisions and retransmit queue 2799 * state updates are done by the caller. Returns non-zero if an 2800 * error occurred which prevented the send. 2801 */ 2802 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2803 { 2804 struct inet_connection_sock *icsk = inet_csk(sk); 2805 struct tcp_sock *tp = tcp_sk(sk); 2806 unsigned int cur_mss; 2807 int diff, len, err; 2808 2809 2810 /* Inconclusive MTU probe */ 2811 if (icsk->icsk_mtup.probe_size) 2812 icsk->icsk_mtup.probe_size = 0; 2813 2814 /* Do not sent more than we queued. 1/4 is reserved for possible 2815 * copying overhead: fragmentation, tunneling, mangling etc. 2816 */ 2817 if (refcount_read(&sk->sk_wmem_alloc) > 2818 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2819 sk->sk_sndbuf)) 2820 return -EAGAIN; 2821 2822 if (skb_still_in_host_queue(sk, skb)) 2823 return -EBUSY; 2824 2825 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2826 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2827 WARN_ON_ONCE(1); 2828 return -EINVAL; 2829 } 2830 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2831 return -ENOMEM; 2832 } 2833 2834 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2835 return -EHOSTUNREACH; /* Routing failure or similar. */ 2836 2837 cur_mss = tcp_current_mss(sk); 2838 2839 /* If receiver has shrunk his window, and skb is out of 2840 * new window, do not retransmit it. The exception is the 2841 * case, when window is shrunk to zero. In this case 2842 * our retransmit serves as a zero window probe. 2843 */ 2844 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2845 TCP_SKB_CB(skb)->seq != tp->snd_una) 2846 return -EAGAIN; 2847 2848 len = cur_mss * segs; 2849 if (skb->len > len) { 2850 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2851 cur_mss, GFP_ATOMIC)) 2852 return -ENOMEM; /* We'll try again later. */ 2853 } else { 2854 if (skb_unclone(skb, GFP_ATOMIC)) 2855 return -ENOMEM; 2856 2857 diff = tcp_skb_pcount(skb); 2858 tcp_set_skb_tso_segs(skb, cur_mss); 2859 diff -= tcp_skb_pcount(skb); 2860 if (diff) 2861 tcp_adjust_pcount(sk, skb, diff); 2862 if (skb->len < cur_mss) 2863 tcp_retrans_try_collapse(sk, skb, cur_mss); 2864 } 2865 2866 /* RFC3168, section 6.1.1.1. ECN fallback */ 2867 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2868 tcp_ecn_clear_syn(sk, skb); 2869 2870 /* Update global and local TCP statistics. */ 2871 segs = tcp_skb_pcount(skb); 2872 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2873 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2874 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2875 tp->total_retrans += segs; 2876 tp->bytes_retrans += skb->len; 2877 2878 /* make sure skb->data is aligned on arches that require it 2879 * and check if ack-trimming & collapsing extended the headroom 2880 * beyond what csum_start can cover. 2881 */ 2882 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2883 skb_headroom(skb) >= 0xFFFF)) { 2884 struct sk_buff *nskb; 2885 2886 tcp_skb_tsorted_save(skb) { 2887 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2888 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2889 -ENOBUFS; 2890 } tcp_skb_tsorted_restore(skb); 2891 2892 if (!err) { 2893 tcp_update_skb_after_send(sk, skb); 2894 tcp_rate_skb_sent(sk, skb); 2895 } 2896 } else { 2897 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2898 } 2899 2900 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2901 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2902 TCP_SKB_CB(skb)->seq, segs, err); 2903 2904 if (likely(!err)) { 2905 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2906 trace_tcp_retransmit_skb(sk, skb); 2907 } else if (err != -EBUSY) { 2908 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2909 } 2910 return err; 2911 } 2912 2913 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2914 { 2915 struct tcp_sock *tp = tcp_sk(sk); 2916 int err = __tcp_retransmit_skb(sk, skb, segs); 2917 2918 if (err == 0) { 2919 #if FASTRETRANS_DEBUG > 0 2920 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2921 net_dbg_ratelimited("retrans_out leaked\n"); 2922 } 2923 #endif 2924 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2925 tp->retrans_out += tcp_skb_pcount(skb); 2926 2927 /* Save stamp of the first retransmit. */ 2928 if (!tp->retrans_stamp) 2929 tp->retrans_stamp = tcp_skb_timestamp(skb); 2930 2931 } 2932 2933 if (tp->undo_retrans < 0) 2934 tp->undo_retrans = 0; 2935 tp->undo_retrans += tcp_skb_pcount(skb); 2936 return err; 2937 } 2938 2939 /* This gets called after a retransmit timeout, and the initially 2940 * retransmitted data is acknowledged. It tries to continue 2941 * resending the rest of the retransmit queue, until either 2942 * we've sent it all or the congestion window limit is reached. 2943 */ 2944 void tcp_xmit_retransmit_queue(struct sock *sk) 2945 { 2946 const struct inet_connection_sock *icsk = inet_csk(sk); 2947 struct sk_buff *skb, *rtx_head, *hole = NULL; 2948 struct tcp_sock *tp = tcp_sk(sk); 2949 u32 max_segs; 2950 int mib_idx; 2951 2952 if (!tp->packets_out) 2953 return; 2954 2955 rtx_head = tcp_rtx_queue_head(sk); 2956 skb = tp->retransmit_skb_hint ?: rtx_head; 2957 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2958 skb_rbtree_walk_from(skb) { 2959 __u8 sacked; 2960 int segs; 2961 2962 if (tcp_pacing_check(sk)) 2963 break; 2964 2965 /* we could do better than to assign each time */ 2966 if (!hole) 2967 tp->retransmit_skb_hint = skb; 2968 2969 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2970 if (segs <= 0) 2971 return; 2972 sacked = TCP_SKB_CB(skb)->sacked; 2973 /* In case tcp_shift_skb_data() have aggregated large skbs, 2974 * we need to make sure not sending too bigs TSO packets 2975 */ 2976 segs = min_t(int, segs, max_segs); 2977 2978 if (tp->retrans_out >= tp->lost_out) { 2979 break; 2980 } else if (!(sacked & TCPCB_LOST)) { 2981 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2982 hole = skb; 2983 continue; 2984 2985 } else { 2986 if (icsk->icsk_ca_state != TCP_CA_Loss) 2987 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2988 else 2989 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2990 } 2991 2992 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2993 continue; 2994 2995 if (tcp_small_queue_check(sk, skb, 1)) 2996 return; 2997 2998 if (tcp_retransmit_skb(sk, skb, segs)) 2999 return; 3000 3001 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3002 3003 if (tcp_in_cwnd_reduction(sk)) 3004 tp->prr_out += tcp_skb_pcount(skb); 3005 3006 if (skb == rtx_head && 3007 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3008 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3009 inet_csk(sk)->icsk_rto, 3010 TCP_RTO_MAX); 3011 } 3012 } 3013 3014 /* We allow to exceed memory limits for FIN packets to expedite 3015 * connection tear down and (memory) recovery. 3016 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3017 * or even be forced to close flow without any FIN. 3018 * In general, we want to allow one skb per socket to avoid hangs 3019 * with edge trigger epoll() 3020 */ 3021 void sk_forced_mem_schedule(struct sock *sk, int size) 3022 { 3023 int amt; 3024 3025 if (size <= sk->sk_forward_alloc) 3026 return; 3027 amt = sk_mem_pages(size); 3028 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3029 sk_memory_allocated_add(sk, amt); 3030 3031 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3032 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3033 } 3034 3035 /* Send a FIN. The caller locks the socket for us. 3036 * We should try to send a FIN packet really hard, but eventually give up. 3037 */ 3038 void tcp_send_fin(struct sock *sk) 3039 { 3040 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3041 struct tcp_sock *tp = tcp_sk(sk); 3042 3043 /* Optimization, tack on the FIN if we have one skb in write queue and 3044 * this skb was not yet sent, or we are under memory pressure. 3045 * Note: in the latter case, FIN packet will be sent after a timeout, 3046 * as TCP stack thinks it has already been transmitted. 3047 */ 3048 if (!tskb && tcp_under_memory_pressure(sk)) 3049 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3050 3051 if (tskb) { 3052 coalesce: 3053 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3054 TCP_SKB_CB(tskb)->end_seq++; 3055 tp->write_seq++; 3056 if (tcp_write_queue_empty(sk)) { 3057 /* This means tskb was already sent. 3058 * Pretend we included the FIN on previous transmit. 3059 * We need to set tp->snd_nxt to the value it would have 3060 * if FIN had been sent. This is because retransmit path 3061 * does not change tp->snd_nxt. 3062 */ 3063 tp->snd_nxt++; 3064 return; 3065 } 3066 } else { 3067 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3068 if (unlikely(!skb)) { 3069 if (tskb) 3070 goto coalesce; 3071 return; 3072 } 3073 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3074 skb_reserve(skb, MAX_TCP_HEADER); 3075 sk_forced_mem_schedule(sk, skb->truesize); 3076 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3077 tcp_init_nondata_skb(skb, tp->write_seq, 3078 TCPHDR_ACK | TCPHDR_FIN); 3079 tcp_queue_skb(sk, skb); 3080 } 3081 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3082 } 3083 3084 /* We get here when a process closes a file descriptor (either due to 3085 * an explicit close() or as a byproduct of exit()'ing) and there 3086 * was unread data in the receive queue. This behavior is recommended 3087 * by RFC 2525, section 2.17. -DaveM 3088 */ 3089 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3090 { 3091 struct sk_buff *skb; 3092 3093 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3094 3095 /* NOTE: No TCP options attached and we never retransmit this. */ 3096 skb = alloc_skb(MAX_TCP_HEADER, priority); 3097 if (!skb) { 3098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3099 return; 3100 } 3101 3102 /* Reserve space for headers and prepare control bits. */ 3103 skb_reserve(skb, MAX_TCP_HEADER); 3104 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3105 TCPHDR_ACK | TCPHDR_RST); 3106 tcp_mstamp_refresh(tcp_sk(sk)); 3107 /* Send it off. */ 3108 if (tcp_transmit_skb(sk, skb, 0, priority)) 3109 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3110 3111 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3112 * skb here is different to the troublesome skb, so use NULL 3113 */ 3114 trace_tcp_send_reset(sk, NULL); 3115 } 3116 3117 /* Send a crossed SYN-ACK during socket establishment. 3118 * WARNING: This routine must only be called when we have already sent 3119 * a SYN packet that crossed the incoming SYN that caused this routine 3120 * to get called. If this assumption fails then the initial rcv_wnd 3121 * and rcv_wscale values will not be correct. 3122 */ 3123 int tcp_send_synack(struct sock *sk) 3124 { 3125 struct sk_buff *skb; 3126 3127 skb = tcp_rtx_queue_head(sk); 3128 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3129 pr_err("%s: wrong queue state\n", __func__); 3130 return -EFAULT; 3131 } 3132 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3133 if (skb_cloned(skb)) { 3134 struct sk_buff *nskb; 3135 3136 tcp_skb_tsorted_save(skb) { 3137 nskb = skb_copy(skb, GFP_ATOMIC); 3138 } tcp_skb_tsorted_restore(skb); 3139 if (!nskb) 3140 return -ENOMEM; 3141 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3142 tcp_rtx_queue_unlink_and_free(skb, sk); 3143 __skb_header_release(nskb); 3144 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3145 sk->sk_wmem_queued += nskb->truesize; 3146 sk_mem_charge(sk, nskb->truesize); 3147 skb = nskb; 3148 } 3149 3150 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3151 tcp_ecn_send_synack(sk, skb); 3152 } 3153 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3154 } 3155 3156 /** 3157 * tcp_make_synack - Prepare a SYN-ACK. 3158 * sk: listener socket 3159 * dst: dst entry attached to the SYNACK 3160 * req: request_sock pointer 3161 * 3162 * Allocate one skb and build a SYNACK packet. 3163 * @dst is consumed : Caller should not use it again. 3164 */ 3165 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3166 struct request_sock *req, 3167 struct tcp_fastopen_cookie *foc, 3168 enum tcp_synack_type synack_type) 3169 { 3170 struct inet_request_sock *ireq = inet_rsk(req); 3171 const struct tcp_sock *tp = tcp_sk(sk); 3172 struct tcp_md5sig_key *md5 = NULL; 3173 struct tcp_out_options opts; 3174 struct sk_buff *skb; 3175 int tcp_header_size; 3176 struct tcphdr *th; 3177 int mss; 3178 3179 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3180 if (unlikely(!skb)) { 3181 dst_release(dst); 3182 return NULL; 3183 } 3184 /* Reserve space for headers. */ 3185 skb_reserve(skb, MAX_TCP_HEADER); 3186 3187 switch (synack_type) { 3188 case TCP_SYNACK_NORMAL: 3189 skb_set_owner_w(skb, req_to_sk(req)); 3190 break; 3191 case TCP_SYNACK_COOKIE: 3192 /* Under synflood, we do not attach skb to a socket, 3193 * to avoid false sharing. 3194 */ 3195 break; 3196 case TCP_SYNACK_FASTOPEN: 3197 /* sk is a const pointer, because we want to express multiple 3198 * cpu might call us concurrently. 3199 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3200 */ 3201 skb_set_owner_w(skb, (struct sock *)sk); 3202 break; 3203 } 3204 skb_dst_set(skb, dst); 3205 3206 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3207 3208 memset(&opts, 0, sizeof(opts)); 3209 #ifdef CONFIG_SYN_COOKIES 3210 if (unlikely(req->cookie_ts)) 3211 skb->skb_mstamp_ns = cookie_init_timestamp(req); 3212 else 3213 #endif 3214 skb->skb_mstamp_ns = tcp_clock_ns(); 3215 3216 #ifdef CONFIG_TCP_MD5SIG 3217 rcu_read_lock(); 3218 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3219 #endif 3220 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3221 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3222 foc) + sizeof(*th); 3223 3224 skb_push(skb, tcp_header_size); 3225 skb_reset_transport_header(skb); 3226 3227 th = (struct tcphdr *)skb->data; 3228 memset(th, 0, sizeof(struct tcphdr)); 3229 th->syn = 1; 3230 th->ack = 1; 3231 tcp_ecn_make_synack(req, th); 3232 th->source = htons(ireq->ir_num); 3233 th->dest = ireq->ir_rmt_port; 3234 skb->mark = ireq->ir_mark; 3235 skb->ip_summed = CHECKSUM_PARTIAL; 3236 th->seq = htonl(tcp_rsk(req)->snt_isn); 3237 /* XXX data is queued and acked as is. No buffer/window check */ 3238 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3239 3240 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3241 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3242 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3243 th->doff = (tcp_header_size >> 2); 3244 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3245 3246 #ifdef CONFIG_TCP_MD5SIG 3247 /* Okay, we have all we need - do the md5 hash if needed */ 3248 if (md5) 3249 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3250 md5, req_to_sk(req), skb); 3251 rcu_read_unlock(); 3252 #endif 3253 3254 /* Do not fool tcpdump (if any), clean our debris */ 3255 skb->tstamp = 0; 3256 return skb; 3257 } 3258 EXPORT_SYMBOL(tcp_make_synack); 3259 3260 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3261 { 3262 struct inet_connection_sock *icsk = inet_csk(sk); 3263 const struct tcp_congestion_ops *ca; 3264 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3265 3266 if (ca_key == TCP_CA_UNSPEC) 3267 return; 3268 3269 rcu_read_lock(); 3270 ca = tcp_ca_find_key(ca_key); 3271 if (likely(ca && try_module_get(ca->owner))) { 3272 module_put(icsk->icsk_ca_ops->owner); 3273 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3274 icsk->icsk_ca_ops = ca; 3275 } 3276 rcu_read_unlock(); 3277 } 3278 3279 /* Do all connect socket setups that can be done AF independent. */ 3280 static void tcp_connect_init(struct sock *sk) 3281 { 3282 const struct dst_entry *dst = __sk_dst_get(sk); 3283 struct tcp_sock *tp = tcp_sk(sk); 3284 __u8 rcv_wscale; 3285 u32 rcv_wnd; 3286 3287 /* We'll fix this up when we get a response from the other end. 3288 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3289 */ 3290 tp->tcp_header_len = sizeof(struct tcphdr); 3291 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3292 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3293 3294 #ifdef CONFIG_TCP_MD5SIG 3295 if (tp->af_specific->md5_lookup(sk, sk)) 3296 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3297 #endif 3298 3299 /* If user gave his TCP_MAXSEG, record it to clamp */ 3300 if (tp->rx_opt.user_mss) 3301 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3302 tp->max_window = 0; 3303 tcp_mtup_init(sk); 3304 tcp_sync_mss(sk, dst_mtu(dst)); 3305 3306 tcp_ca_dst_init(sk, dst); 3307 3308 if (!tp->window_clamp) 3309 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3310 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3311 3312 tcp_initialize_rcv_mss(sk); 3313 3314 /* limit the window selection if the user enforce a smaller rx buffer */ 3315 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3316 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3317 tp->window_clamp = tcp_full_space(sk); 3318 3319 rcv_wnd = tcp_rwnd_init_bpf(sk); 3320 if (rcv_wnd == 0) 3321 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3322 3323 tcp_select_initial_window(sk, tcp_full_space(sk), 3324 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3325 &tp->rcv_wnd, 3326 &tp->window_clamp, 3327 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3328 &rcv_wscale, 3329 rcv_wnd); 3330 3331 tp->rx_opt.rcv_wscale = rcv_wscale; 3332 tp->rcv_ssthresh = tp->rcv_wnd; 3333 3334 sk->sk_err = 0; 3335 sock_reset_flag(sk, SOCK_DONE); 3336 tp->snd_wnd = 0; 3337 tcp_init_wl(tp, 0); 3338 tcp_write_queue_purge(sk); 3339 tp->snd_una = tp->write_seq; 3340 tp->snd_sml = tp->write_seq; 3341 tp->snd_up = tp->write_seq; 3342 tp->snd_nxt = tp->write_seq; 3343 3344 if (likely(!tp->repair)) 3345 tp->rcv_nxt = 0; 3346 else 3347 tp->rcv_tstamp = tcp_jiffies32; 3348 tp->rcv_wup = tp->rcv_nxt; 3349 tp->copied_seq = tp->rcv_nxt; 3350 3351 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3352 inet_csk(sk)->icsk_retransmits = 0; 3353 tcp_clear_retrans(tp); 3354 } 3355 3356 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3357 { 3358 struct tcp_sock *tp = tcp_sk(sk); 3359 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3360 3361 tcb->end_seq += skb->len; 3362 __skb_header_release(skb); 3363 sk->sk_wmem_queued += skb->truesize; 3364 sk_mem_charge(sk, skb->truesize); 3365 tp->write_seq = tcb->end_seq; 3366 tp->packets_out += tcp_skb_pcount(skb); 3367 } 3368 3369 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3370 * queue a data-only packet after the regular SYN, such that regular SYNs 3371 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3372 * only the SYN sequence, the data are retransmitted in the first ACK. 3373 * If cookie is not cached or other error occurs, falls back to send a 3374 * regular SYN with Fast Open cookie request option. 3375 */ 3376 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3377 { 3378 struct tcp_sock *tp = tcp_sk(sk); 3379 struct tcp_fastopen_request *fo = tp->fastopen_req; 3380 int space, err = 0; 3381 struct sk_buff *syn_data; 3382 3383 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3384 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3385 goto fallback; 3386 3387 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3388 * user-MSS. Reserve maximum option space for middleboxes that add 3389 * private TCP options. The cost is reduced data space in SYN :( 3390 */ 3391 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3392 3393 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3394 MAX_TCP_OPTION_SPACE; 3395 3396 space = min_t(size_t, space, fo->size); 3397 3398 /* limit to order-0 allocations */ 3399 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3400 3401 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3402 if (!syn_data) 3403 goto fallback; 3404 syn_data->ip_summed = CHECKSUM_PARTIAL; 3405 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3406 if (space) { 3407 int copied = copy_from_iter(skb_put(syn_data, space), space, 3408 &fo->data->msg_iter); 3409 if (unlikely(!copied)) { 3410 tcp_skb_tsorted_anchor_cleanup(syn_data); 3411 kfree_skb(syn_data); 3412 goto fallback; 3413 } 3414 if (copied != space) { 3415 skb_trim(syn_data, copied); 3416 space = copied; 3417 } 3418 } 3419 /* No more data pending in inet_wait_for_connect() */ 3420 if (space == fo->size) 3421 fo->data = NULL; 3422 fo->copied = space; 3423 3424 tcp_connect_queue_skb(sk, syn_data); 3425 if (syn_data->len) 3426 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3427 3428 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3429 3430 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3431 3432 /* Now full SYN+DATA was cloned and sent (or not), 3433 * remove the SYN from the original skb (syn_data) 3434 * we keep in write queue in case of a retransmit, as we 3435 * also have the SYN packet (with no data) in the same queue. 3436 */ 3437 TCP_SKB_CB(syn_data)->seq++; 3438 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3439 if (!err) { 3440 tp->syn_data = (fo->copied > 0); 3441 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3442 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3443 goto done; 3444 } 3445 3446 /* data was not sent, put it in write_queue */ 3447 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3448 tp->packets_out -= tcp_skb_pcount(syn_data); 3449 3450 fallback: 3451 /* Send a regular SYN with Fast Open cookie request option */ 3452 if (fo->cookie.len > 0) 3453 fo->cookie.len = 0; 3454 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3455 if (err) 3456 tp->syn_fastopen = 0; 3457 done: 3458 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3459 return err; 3460 } 3461 3462 /* Build a SYN and send it off. */ 3463 int tcp_connect(struct sock *sk) 3464 { 3465 struct tcp_sock *tp = tcp_sk(sk); 3466 struct sk_buff *buff; 3467 int err; 3468 3469 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3470 3471 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3472 return -EHOSTUNREACH; /* Routing failure or similar. */ 3473 3474 tcp_connect_init(sk); 3475 3476 if (unlikely(tp->repair)) { 3477 tcp_finish_connect(sk, NULL); 3478 return 0; 3479 } 3480 3481 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3482 if (unlikely(!buff)) 3483 return -ENOBUFS; 3484 3485 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3486 tcp_mstamp_refresh(tp); 3487 tp->retrans_stamp = tcp_time_stamp(tp); 3488 tcp_connect_queue_skb(sk, buff); 3489 tcp_ecn_send_syn(sk, buff); 3490 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3491 3492 /* Send off SYN; include data in Fast Open. */ 3493 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3494 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3495 if (err == -ECONNREFUSED) 3496 return err; 3497 3498 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3499 * in order to make this packet get counted in tcpOutSegs. 3500 */ 3501 tp->snd_nxt = tp->write_seq; 3502 tp->pushed_seq = tp->write_seq; 3503 buff = tcp_send_head(sk); 3504 if (unlikely(buff)) { 3505 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3506 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3507 } 3508 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3509 3510 /* Timer for repeating the SYN until an answer. */ 3511 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3512 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3513 return 0; 3514 } 3515 EXPORT_SYMBOL(tcp_connect); 3516 3517 /* Send out a delayed ack, the caller does the policy checking 3518 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3519 * for details. 3520 */ 3521 void tcp_send_delayed_ack(struct sock *sk) 3522 { 3523 struct inet_connection_sock *icsk = inet_csk(sk); 3524 int ato = icsk->icsk_ack.ato; 3525 unsigned long timeout; 3526 3527 if (ato > TCP_DELACK_MIN) { 3528 const struct tcp_sock *tp = tcp_sk(sk); 3529 int max_ato = HZ / 2; 3530 3531 if (icsk->icsk_ack.pingpong || 3532 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3533 max_ato = TCP_DELACK_MAX; 3534 3535 /* Slow path, intersegment interval is "high". */ 3536 3537 /* If some rtt estimate is known, use it to bound delayed ack. 3538 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3539 * directly. 3540 */ 3541 if (tp->srtt_us) { 3542 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3543 TCP_DELACK_MIN); 3544 3545 if (rtt < max_ato) 3546 max_ato = rtt; 3547 } 3548 3549 ato = min(ato, max_ato); 3550 } 3551 3552 /* Stay within the limit we were given */ 3553 timeout = jiffies + ato; 3554 3555 /* Use new timeout only if there wasn't a older one earlier. */ 3556 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3557 /* If delack timer was blocked or is about to expire, 3558 * send ACK now. 3559 */ 3560 if (icsk->icsk_ack.blocked || 3561 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3562 tcp_send_ack(sk); 3563 return; 3564 } 3565 3566 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3567 timeout = icsk->icsk_ack.timeout; 3568 } 3569 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3570 icsk->icsk_ack.timeout = timeout; 3571 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3572 } 3573 3574 /* This routine sends an ack and also updates the window. */ 3575 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3576 { 3577 struct sk_buff *buff; 3578 3579 /* If we have been reset, we may not send again. */ 3580 if (sk->sk_state == TCP_CLOSE) 3581 return; 3582 3583 /* We are not putting this on the write queue, so 3584 * tcp_transmit_skb() will set the ownership to this 3585 * sock. 3586 */ 3587 buff = alloc_skb(MAX_TCP_HEADER, 3588 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3589 if (unlikely(!buff)) { 3590 inet_csk_schedule_ack(sk); 3591 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3592 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3593 TCP_DELACK_MAX, TCP_RTO_MAX); 3594 return; 3595 } 3596 3597 /* Reserve space for headers and prepare control bits. */ 3598 skb_reserve(buff, MAX_TCP_HEADER); 3599 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3600 3601 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3602 * too much. 3603 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3604 */ 3605 skb_set_tcp_pure_ack(buff); 3606 3607 /* Send it off, this clears delayed acks for us. */ 3608 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3609 } 3610 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3611 3612 void tcp_send_ack(struct sock *sk) 3613 { 3614 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3615 } 3616 3617 /* This routine sends a packet with an out of date sequence 3618 * number. It assumes the other end will try to ack it. 3619 * 3620 * Question: what should we make while urgent mode? 3621 * 4.4BSD forces sending single byte of data. We cannot send 3622 * out of window data, because we have SND.NXT==SND.MAX... 3623 * 3624 * Current solution: to send TWO zero-length segments in urgent mode: 3625 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3626 * out-of-date with SND.UNA-1 to probe window. 3627 */ 3628 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3629 { 3630 struct tcp_sock *tp = tcp_sk(sk); 3631 struct sk_buff *skb; 3632 3633 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3634 skb = alloc_skb(MAX_TCP_HEADER, 3635 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3636 if (!skb) 3637 return -1; 3638 3639 /* Reserve space for headers and set control bits. */ 3640 skb_reserve(skb, MAX_TCP_HEADER); 3641 /* Use a previous sequence. This should cause the other 3642 * end to send an ack. Don't queue or clone SKB, just 3643 * send it. 3644 */ 3645 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3646 NET_INC_STATS(sock_net(sk), mib); 3647 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3648 } 3649 3650 /* Called from setsockopt( ... TCP_REPAIR ) */ 3651 void tcp_send_window_probe(struct sock *sk) 3652 { 3653 if (sk->sk_state == TCP_ESTABLISHED) { 3654 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3655 tcp_mstamp_refresh(tcp_sk(sk)); 3656 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3657 } 3658 } 3659 3660 /* Initiate keepalive or window probe from timer. */ 3661 int tcp_write_wakeup(struct sock *sk, int mib) 3662 { 3663 struct tcp_sock *tp = tcp_sk(sk); 3664 struct sk_buff *skb; 3665 3666 if (sk->sk_state == TCP_CLOSE) 3667 return -1; 3668 3669 skb = tcp_send_head(sk); 3670 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3671 int err; 3672 unsigned int mss = tcp_current_mss(sk); 3673 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3674 3675 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3676 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3677 3678 /* We are probing the opening of a window 3679 * but the window size is != 0 3680 * must have been a result SWS avoidance ( sender ) 3681 */ 3682 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3683 skb->len > mss) { 3684 seg_size = min(seg_size, mss); 3685 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3686 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3687 skb, seg_size, mss, GFP_ATOMIC)) 3688 return -1; 3689 } else if (!tcp_skb_pcount(skb)) 3690 tcp_set_skb_tso_segs(skb, mss); 3691 3692 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3693 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3694 if (!err) 3695 tcp_event_new_data_sent(sk, skb); 3696 return err; 3697 } else { 3698 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3699 tcp_xmit_probe_skb(sk, 1, mib); 3700 return tcp_xmit_probe_skb(sk, 0, mib); 3701 } 3702 } 3703 3704 /* A window probe timeout has occurred. If window is not closed send 3705 * a partial packet else a zero probe. 3706 */ 3707 void tcp_send_probe0(struct sock *sk) 3708 { 3709 struct inet_connection_sock *icsk = inet_csk(sk); 3710 struct tcp_sock *tp = tcp_sk(sk); 3711 struct net *net = sock_net(sk); 3712 unsigned long probe_max; 3713 int err; 3714 3715 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3716 3717 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3718 /* Cancel probe timer, if it is not required. */ 3719 icsk->icsk_probes_out = 0; 3720 icsk->icsk_backoff = 0; 3721 return; 3722 } 3723 3724 if (err <= 0) { 3725 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3726 icsk->icsk_backoff++; 3727 icsk->icsk_probes_out++; 3728 probe_max = TCP_RTO_MAX; 3729 } else { 3730 /* If packet was not sent due to local congestion, 3731 * do not backoff and do not remember icsk_probes_out. 3732 * Let local senders to fight for local resources. 3733 * 3734 * Use accumulated backoff yet. 3735 */ 3736 if (!icsk->icsk_probes_out) 3737 icsk->icsk_probes_out = 1; 3738 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3739 } 3740 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3741 tcp_probe0_when(sk, probe_max), 3742 TCP_RTO_MAX); 3743 } 3744 3745 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3746 { 3747 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3748 struct flowi fl; 3749 int res; 3750 3751 tcp_rsk(req)->txhash = net_tx_rndhash(); 3752 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3753 if (!res) { 3754 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3755 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3756 if (unlikely(tcp_passive_fastopen(sk))) 3757 tcp_sk(sk)->total_retrans++; 3758 trace_tcp_retransmit_synack(sk, req); 3759 } 3760 return res; 3761 } 3762 EXPORT_SYMBOL(tcp_rtx_synack); 3763