xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 96de25060d192523fa3c75110dc6348df47fa078)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45 
46 #include <trace/events/tcp.h>
47 
48 /* Refresh clocks of a TCP socket,
49  * ensuring monotically increasing values.
50  */
51 void tcp_mstamp_refresh(struct tcp_sock *tp)
52 {
53 	u64 val = tcp_clock_ns();
54 
55 	/* departure time for next data packet */
56 	if (val > tp->tcp_wstamp_ns)
57 		tp->tcp_wstamp_ns = val;
58 
59 	val = div_u64(val, NSEC_PER_USEC);
60 	if (val > tp->tcp_mstamp)
61 		tp->tcp_mstamp = val;
62 }
63 
64 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
65 			   int push_one, gfp_t gfp);
66 
67 /* Account for new data that has been sent to the network. */
68 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
69 {
70 	struct inet_connection_sock *icsk = inet_csk(sk);
71 	struct tcp_sock *tp = tcp_sk(sk);
72 	unsigned int prior_packets = tp->packets_out;
73 
74 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
75 
76 	__skb_unlink(skb, &sk->sk_write_queue);
77 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 }
86 
87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
88  * window scaling factor due to loss of precision.
89  * If window has been shrunk, what should we make? It is not clear at all.
90  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92  * invalid. OK, let's make this for now:
93  */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 	const struct tcp_sock *tp = tcp_sk(sk);
97 
98 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
99 	    (tp->rx_opt.wscale_ok &&
100 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
101 		return tp->snd_nxt;
102 	else
103 		return tcp_wnd_end(tp);
104 }
105 
106 /* Calculate mss to advertise in SYN segment.
107  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108  *
109  * 1. It is independent of path mtu.
110  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
111  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
112  *    attached devices, because some buggy hosts are confused by
113  *    large MSS.
114  * 4. We do not make 3, we advertise MSS, calculated from first
115  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
116  *    This may be overridden via information stored in routing table.
117  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
118  *    probably even Jumbo".
119  */
120 static __u16 tcp_advertise_mss(struct sock *sk)
121 {
122 	struct tcp_sock *tp = tcp_sk(sk);
123 	const struct dst_entry *dst = __sk_dst_get(sk);
124 	int mss = tp->advmss;
125 
126 	if (dst) {
127 		unsigned int metric = dst_metric_advmss(dst);
128 
129 		if (metric < mss) {
130 			mss = metric;
131 			tp->advmss = mss;
132 		}
133 	}
134 
135 	return (__u16)mss;
136 }
137 
138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
139  * This is the first part of cwnd validation mechanism.
140  */
141 void tcp_cwnd_restart(struct sock *sk, s32 delta)
142 {
143 	struct tcp_sock *tp = tcp_sk(sk);
144 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
145 	u32 cwnd = tp->snd_cwnd;
146 
147 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
148 
149 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
150 	restart_cwnd = min(restart_cwnd, cwnd);
151 
152 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
153 		cwnd >>= 1;
154 	tp->snd_cwnd = max(cwnd, restart_cwnd);
155 	tp->snd_cwnd_stamp = tcp_jiffies32;
156 	tp->snd_cwnd_used = 0;
157 }
158 
159 /* Congestion state accounting after a packet has been sent. */
160 static void tcp_event_data_sent(struct tcp_sock *tp,
161 				struct sock *sk)
162 {
163 	struct inet_connection_sock *icsk = inet_csk(sk);
164 	const u32 now = tcp_jiffies32;
165 
166 	if (tcp_packets_in_flight(tp) == 0)
167 		tcp_ca_event(sk, CA_EVENT_TX_START);
168 
169 	tp->lsndtime = now;
170 
171 	/* If it is a reply for ato after last received
172 	 * packet, enter pingpong mode.
173 	 */
174 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
175 		icsk->icsk_ack.pingpong = 1;
176 }
177 
178 /* Account for an ACK we sent. */
179 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
180 				      u32 rcv_nxt)
181 {
182 	struct tcp_sock *tp = tcp_sk(sk);
183 
184 	if (unlikely(tp->compressed_ack)) {
185 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186 			      tp->compressed_ack);
187 		tp->compressed_ack = 0;
188 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
189 			__sock_put(sk);
190 	}
191 
192 	if (unlikely(rcv_nxt != tp->rcv_nxt))
193 		return;  /* Special ACK sent by DCTCP to reflect ECN */
194 	tcp_dec_quickack_mode(sk, pkts);
195 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196 }
197 
198 /* Determine a window scaling and initial window to offer.
199  * Based on the assumption that the given amount of space
200  * will be offered. Store the results in the tp structure.
201  * NOTE: for smooth operation initial space offering should
202  * be a multiple of mss if possible. We assume here that mss >= 1.
203  * This MUST be enforced by all callers.
204  */
205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206 			       __u32 *rcv_wnd, __u32 *window_clamp,
207 			       int wscale_ok, __u8 *rcv_wscale,
208 			       __u32 init_rcv_wnd)
209 {
210 	unsigned int space = (__space < 0 ? 0 : __space);
211 
212 	/* If no clamp set the clamp to the max possible scaled window */
213 	if (*window_clamp == 0)
214 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
215 	space = min(*window_clamp, space);
216 
217 	/* Quantize space offering to a multiple of mss if possible. */
218 	if (space > mss)
219 		space = rounddown(space, mss);
220 
221 	/* NOTE: offering an initial window larger than 32767
222 	 * will break some buggy TCP stacks. If the admin tells us
223 	 * it is likely we could be speaking with such a buggy stack
224 	 * we will truncate our initial window offering to 32K-1
225 	 * unless the remote has sent us a window scaling option,
226 	 * which we interpret as a sign the remote TCP is not
227 	 * misinterpreting the window field as a signed quantity.
228 	 */
229 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
230 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 	else
232 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
233 
234 	if (init_rcv_wnd)
235 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
236 
237 	(*rcv_wscale) = 0;
238 	if (wscale_ok) {
239 		/* Set window scaling on max possible window */
240 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
241 		space = max_t(u32, space, sysctl_rmem_max);
242 		space = min_t(u32, space, *window_clamp);
243 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
244 			space >>= 1;
245 			(*rcv_wscale)++;
246 		}
247 	}
248 	/* Set the clamp no higher than max representable value */
249 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
250 }
251 EXPORT_SYMBOL(tcp_select_initial_window);
252 
253 /* Chose a new window to advertise, update state in tcp_sock for the
254  * socket, and return result with RFC1323 scaling applied.  The return
255  * value can be stuffed directly into th->window for an outgoing
256  * frame.
257  */
258 static u16 tcp_select_window(struct sock *sk)
259 {
260 	struct tcp_sock *tp = tcp_sk(sk);
261 	u32 old_win = tp->rcv_wnd;
262 	u32 cur_win = tcp_receive_window(tp);
263 	u32 new_win = __tcp_select_window(sk);
264 
265 	/* Never shrink the offered window */
266 	if (new_win < cur_win) {
267 		/* Danger Will Robinson!
268 		 * Don't update rcv_wup/rcv_wnd here or else
269 		 * we will not be able to advertise a zero
270 		 * window in time.  --DaveM
271 		 *
272 		 * Relax Will Robinson.
273 		 */
274 		if (new_win == 0)
275 			NET_INC_STATS(sock_net(sk),
276 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
277 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
278 	}
279 	tp->rcv_wnd = new_win;
280 	tp->rcv_wup = tp->rcv_nxt;
281 
282 	/* Make sure we do not exceed the maximum possible
283 	 * scaled window.
284 	 */
285 	if (!tp->rx_opt.rcv_wscale &&
286 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
287 		new_win = min(new_win, MAX_TCP_WINDOW);
288 	else
289 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
290 
291 	/* RFC1323 scaling applied */
292 	new_win >>= tp->rx_opt.rcv_wscale;
293 
294 	/* If we advertise zero window, disable fast path. */
295 	if (new_win == 0) {
296 		tp->pred_flags = 0;
297 		if (old_win)
298 			NET_INC_STATS(sock_net(sk),
299 				      LINUX_MIB_TCPTOZEROWINDOWADV);
300 	} else if (old_win == 0) {
301 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
302 	}
303 
304 	return new_win;
305 }
306 
307 /* Packet ECN state for a SYN-ACK */
308 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
309 {
310 	const struct tcp_sock *tp = tcp_sk(sk);
311 
312 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
313 	if (!(tp->ecn_flags & TCP_ECN_OK))
314 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
315 	else if (tcp_ca_needs_ecn(sk) ||
316 		 tcp_bpf_ca_needs_ecn(sk))
317 		INET_ECN_xmit(sk);
318 }
319 
320 /* Packet ECN state for a SYN.  */
321 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
322 {
323 	struct tcp_sock *tp = tcp_sk(sk);
324 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
325 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
326 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
327 
328 	if (!use_ecn) {
329 		const struct dst_entry *dst = __sk_dst_get(sk);
330 
331 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
332 			use_ecn = true;
333 	}
334 
335 	tp->ecn_flags = 0;
336 
337 	if (use_ecn) {
338 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
339 		tp->ecn_flags = TCP_ECN_OK;
340 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
341 			INET_ECN_xmit(sk);
342 	}
343 }
344 
345 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
346 {
347 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
348 		/* tp->ecn_flags are cleared at a later point in time when
349 		 * SYN ACK is ultimatively being received.
350 		 */
351 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
352 }
353 
354 static void
355 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
356 {
357 	if (inet_rsk(req)->ecn_ok)
358 		th->ece = 1;
359 }
360 
361 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
362  * be sent.
363  */
364 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
365 			 struct tcphdr *th, int tcp_header_len)
366 {
367 	struct tcp_sock *tp = tcp_sk(sk);
368 
369 	if (tp->ecn_flags & TCP_ECN_OK) {
370 		/* Not-retransmitted data segment: set ECT and inject CWR. */
371 		if (skb->len != tcp_header_len &&
372 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
373 			INET_ECN_xmit(sk);
374 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
375 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
376 				th->cwr = 1;
377 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
378 			}
379 		} else if (!tcp_ca_needs_ecn(sk)) {
380 			/* ACK or retransmitted segment: clear ECT|CE */
381 			INET_ECN_dontxmit(sk);
382 		}
383 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
384 			th->ece = 1;
385 	}
386 }
387 
388 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
389  * auto increment end seqno.
390  */
391 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
392 {
393 	skb->ip_summed = CHECKSUM_PARTIAL;
394 
395 	TCP_SKB_CB(skb)->tcp_flags = flags;
396 	TCP_SKB_CB(skb)->sacked = 0;
397 
398 	tcp_skb_pcount_set(skb, 1);
399 
400 	TCP_SKB_CB(skb)->seq = seq;
401 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
402 		seq++;
403 	TCP_SKB_CB(skb)->end_seq = seq;
404 }
405 
406 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
407 {
408 	return tp->snd_una != tp->snd_up;
409 }
410 
411 #define OPTION_SACK_ADVERTISE	(1 << 0)
412 #define OPTION_TS		(1 << 1)
413 #define OPTION_MD5		(1 << 2)
414 #define OPTION_WSCALE		(1 << 3)
415 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
416 #define OPTION_SMC		(1 << 9)
417 
418 static void smc_options_write(__be32 *ptr, u16 *options)
419 {
420 #if IS_ENABLED(CONFIG_SMC)
421 	if (static_branch_unlikely(&tcp_have_smc)) {
422 		if (unlikely(OPTION_SMC & *options)) {
423 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
424 				       (TCPOPT_NOP  << 16) |
425 				       (TCPOPT_EXP <<  8) |
426 				       (TCPOLEN_EXP_SMC_BASE));
427 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
428 		}
429 	}
430 #endif
431 }
432 
433 struct tcp_out_options {
434 	u16 options;		/* bit field of OPTION_* */
435 	u16 mss;		/* 0 to disable */
436 	u8 ws;			/* window scale, 0 to disable */
437 	u8 num_sack_blocks;	/* number of SACK blocks to include */
438 	u8 hash_size;		/* bytes in hash_location */
439 	__u8 *hash_location;	/* temporary pointer, overloaded */
440 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
441 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
442 };
443 
444 /* Write previously computed TCP options to the packet.
445  *
446  * Beware: Something in the Internet is very sensitive to the ordering of
447  * TCP options, we learned this through the hard way, so be careful here.
448  * Luckily we can at least blame others for their non-compliance but from
449  * inter-operability perspective it seems that we're somewhat stuck with
450  * the ordering which we have been using if we want to keep working with
451  * those broken things (not that it currently hurts anybody as there isn't
452  * particular reason why the ordering would need to be changed).
453  *
454  * At least SACK_PERM as the first option is known to lead to a disaster
455  * (but it may well be that other scenarios fail similarly).
456  */
457 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
458 			      struct tcp_out_options *opts)
459 {
460 	u16 options = opts->options;	/* mungable copy */
461 
462 	if (unlikely(OPTION_MD5 & options)) {
463 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
464 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
465 		/* overload cookie hash location */
466 		opts->hash_location = (__u8 *)ptr;
467 		ptr += 4;
468 	}
469 
470 	if (unlikely(opts->mss)) {
471 		*ptr++ = htonl((TCPOPT_MSS << 24) |
472 			       (TCPOLEN_MSS << 16) |
473 			       opts->mss);
474 	}
475 
476 	if (likely(OPTION_TS & options)) {
477 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
478 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
479 				       (TCPOLEN_SACK_PERM << 16) |
480 				       (TCPOPT_TIMESTAMP << 8) |
481 				       TCPOLEN_TIMESTAMP);
482 			options &= ~OPTION_SACK_ADVERTISE;
483 		} else {
484 			*ptr++ = htonl((TCPOPT_NOP << 24) |
485 				       (TCPOPT_NOP << 16) |
486 				       (TCPOPT_TIMESTAMP << 8) |
487 				       TCPOLEN_TIMESTAMP);
488 		}
489 		*ptr++ = htonl(opts->tsval);
490 		*ptr++ = htonl(opts->tsecr);
491 	}
492 
493 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
494 		*ptr++ = htonl((TCPOPT_NOP << 24) |
495 			       (TCPOPT_NOP << 16) |
496 			       (TCPOPT_SACK_PERM << 8) |
497 			       TCPOLEN_SACK_PERM);
498 	}
499 
500 	if (unlikely(OPTION_WSCALE & options)) {
501 		*ptr++ = htonl((TCPOPT_NOP << 24) |
502 			       (TCPOPT_WINDOW << 16) |
503 			       (TCPOLEN_WINDOW << 8) |
504 			       opts->ws);
505 	}
506 
507 	if (unlikely(opts->num_sack_blocks)) {
508 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
509 			tp->duplicate_sack : tp->selective_acks;
510 		int this_sack;
511 
512 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
513 			       (TCPOPT_NOP  << 16) |
514 			       (TCPOPT_SACK <<  8) |
515 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
516 						     TCPOLEN_SACK_PERBLOCK)));
517 
518 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
519 		     ++this_sack) {
520 			*ptr++ = htonl(sp[this_sack].start_seq);
521 			*ptr++ = htonl(sp[this_sack].end_seq);
522 		}
523 
524 		tp->rx_opt.dsack = 0;
525 	}
526 
527 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
528 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
529 		u8 *p = (u8 *)ptr;
530 		u32 len; /* Fast Open option length */
531 
532 		if (foc->exp) {
533 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
534 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
535 				     TCPOPT_FASTOPEN_MAGIC);
536 			p += TCPOLEN_EXP_FASTOPEN_BASE;
537 		} else {
538 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
539 			*p++ = TCPOPT_FASTOPEN;
540 			*p++ = len;
541 		}
542 
543 		memcpy(p, foc->val, foc->len);
544 		if ((len & 3) == 2) {
545 			p[foc->len] = TCPOPT_NOP;
546 			p[foc->len + 1] = TCPOPT_NOP;
547 		}
548 		ptr += (len + 3) >> 2;
549 	}
550 
551 	smc_options_write(ptr, &options);
552 }
553 
554 static void smc_set_option(const struct tcp_sock *tp,
555 			   struct tcp_out_options *opts,
556 			   unsigned int *remaining)
557 {
558 #if IS_ENABLED(CONFIG_SMC)
559 	if (static_branch_unlikely(&tcp_have_smc)) {
560 		if (tp->syn_smc) {
561 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
562 				opts->options |= OPTION_SMC;
563 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
564 			}
565 		}
566 	}
567 #endif
568 }
569 
570 static void smc_set_option_cond(const struct tcp_sock *tp,
571 				const struct inet_request_sock *ireq,
572 				struct tcp_out_options *opts,
573 				unsigned int *remaining)
574 {
575 #if IS_ENABLED(CONFIG_SMC)
576 	if (static_branch_unlikely(&tcp_have_smc)) {
577 		if (tp->syn_smc && ireq->smc_ok) {
578 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
579 				opts->options |= OPTION_SMC;
580 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
581 			}
582 		}
583 	}
584 #endif
585 }
586 
587 /* Compute TCP options for SYN packets. This is not the final
588  * network wire format yet.
589  */
590 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
591 				struct tcp_out_options *opts,
592 				struct tcp_md5sig_key **md5)
593 {
594 	struct tcp_sock *tp = tcp_sk(sk);
595 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
596 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
597 
598 	*md5 = NULL;
599 #ifdef CONFIG_TCP_MD5SIG
600 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
601 		*md5 = tp->af_specific->md5_lookup(sk, sk);
602 		if (*md5) {
603 			opts->options |= OPTION_MD5;
604 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
605 		}
606 	}
607 #endif
608 
609 	/* We always get an MSS option.  The option bytes which will be seen in
610 	 * normal data packets should timestamps be used, must be in the MSS
611 	 * advertised.  But we subtract them from tp->mss_cache so that
612 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
613 	 * fact here if necessary.  If we don't do this correctly, as a
614 	 * receiver we won't recognize data packets as being full sized when we
615 	 * should, and thus we won't abide by the delayed ACK rules correctly.
616 	 * SACKs don't matter, we never delay an ACK when we have any of those
617 	 * going out.  */
618 	opts->mss = tcp_advertise_mss(sk);
619 	remaining -= TCPOLEN_MSS_ALIGNED;
620 
621 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
622 		opts->options |= OPTION_TS;
623 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
624 		opts->tsecr = tp->rx_opt.ts_recent;
625 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
626 	}
627 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
628 		opts->ws = tp->rx_opt.rcv_wscale;
629 		opts->options |= OPTION_WSCALE;
630 		remaining -= TCPOLEN_WSCALE_ALIGNED;
631 	}
632 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
633 		opts->options |= OPTION_SACK_ADVERTISE;
634 		if (unlikely(!(OPTION_TS & opts->options)))
635 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
636 	}
637 
638 	if (fastopen && fastopen->cookie.len >= 0) {
639 		u32 need = fastopen->cookie.len;
640 
641 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
642 					       TCPOLEN_FASTOPEN_BASE;
643 		need = (need + 3) & ~3U;  /* Align to 32 bits */
644 		if (remaining >= need) {
645 			opts->options |= OPTION_FAST_OPEN_COOKIE;
646 			opts->fastopen_cookie = &fastopen->cookie;
647 			remaining -= need;
648 			tp->syn_fastopen = 1;
649 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
650 		}
651 	}
652 
653 	smc_set_option(tp, opts, &remaining);
654 
655 	return MAX_TCP_OPTION_SPACE - remaining;
656 }
657 
658 /* Set up TCP options for SYN-ACKs. */
659 static unsigned int tcp_synack_options(const struct sock *sk,
660 				       struct request_sock *req,
661 				       unsigned int mss, struct sk_buff *skb,
662 				       struct tcp_out_options *opts,
663 				       const struct tcp_md5sig_key *md5,
664 				       struct tcp_fastopen_cookie *foc)
665 {
666 	struct inet_request_sock *ireq = inet_rsk(req);
667 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
668 
669 #ifdef CONFIG_TCP_MD5SIG
670 	if (md5) {
671 		opts->options |= OPTION_MD5;
672 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
673 
674 		/* We can't fit any SACK blocks in a packet with MD5 + TS
675 		 * options. There was discussion about disabling SACK
676 		 * rather than TS in order to fit in better with old,
677 		 * buggy kernels, but that was deemed to be unnecessary.
678 		 */
679 		ireq->tstamp_ok &= !ireq->sack_ok;
680 	}
681 #endif
682 
683 	/* We always send an MSS option. */
684 	opts->mss = mss;
685 	remaining -= TCPOLEN_MSS_ALIGNED;
686 
687 	if (likely(ireq->wscale_ok)) {
688 		opts->ws = ireq->rcv_wscale;
689 		opts->options |= OPTION_WSCALE;
690 		remaining -= TCPOLEN_WSCALE_ALIGNED;
691 	}
692 	if (likely(ireq->tstamp_ok)) {
693 		opts->options |= OPTION_TS;
694 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
695 		opts->tsecr = req->ts_recent;
696 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
697 	}
698 	if (likely(ireq->sack_ok)) {
699 		opts->options |= OPTION_SACK_ADVERTISE;
700 		if (unlikely(!ireq->tstamp_ok))
701 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
702 	}
703 	if (foc != NULL && foc->len >= 0) {
704 		u32 need = foc->len;
705 
706 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
707 				   TCPOLEN_FASTOPEN_BASE;
708 		need = (need + 3) & ~3U;  /* Align to 32 bits */
709 		if (remaining >= need) {
710 			opts->options |= OPTION_FAST_OPEN_COOKIE;
711 			opts->fastopen_cookie = foc;
712 			remaining -= need;
713 		}
714 	}
715 
716 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
717 
718 	return MAX_TCP_OPTION_SPACE - remaining;
719 }
720 
721 /* Compute TCP options for ESTABLISHED sockets. This is not the
722  * final wire format yet.
723  */
724 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
725 					struct tcp_out_options *opts,
726 					struct tcp_md5sig_key **md5)
727 {
728 	struct tcp_sock *tp = tcp_sk(sk);
729 	unsigned int size = 0;
730 	unsigned int eff_sacks;
731 
732 	opts->options = 0;
733 
734 	*md5 = NULL;
735 #ifdef CONFIG_TCP_MD5SIG
736 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
737 		*md5 = tp->af_specific->md5_lookup(sk, sk);
738 		if (*md5) {
739 			opts->options |= OPTION_MD5;
740 			size += TCPOLEN_MD5SIG_ALIGNED;
741 		}
742 	}
743 #endif
744 
745 	if (likely(tp->rx_opt.tstamp_ok)) {
746 		opts->options |= OPTION_TS;
747 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
748 		opts->tsecr = tp->rx_opt.ts_recent;
749 		size += TCPOLEN_TSTAMP_ALIGNED;
750 	}
751 
752 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
753 	if (unlikely(eff_sacks)) {
754 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
755 		opts->num_sack_blocks =
756 			min_t(unsigned int, eff_sacks,
757 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
758 			      TCPOLEN_SACK_PERBLOCK);
759 		size += TCPOLEN_SACK_BASE_ALIGNED +
760 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
761 	}
762 
763 	return size;
764 }
765 
766 
767 /* TCP SMALL QUEUES (TSQ)
768  *
769  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
770  * to reduce RTT and bufferbloat.
771  * We do this using a special skb destructor (tcp_wfree).
772  *
773  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
774  * needs to be reallocated in a driver.
775  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
776  *
777  * Since transmit from skb destructor is forbidden, we use a tasklet
778  * to process all sockets that eventually need to send more skbs.
779  * We use one tasklet per cpu, with its own queue of sockets.
780  */
781 struct tsq_tasklet {
782 	struct tasklet_struct	tasklet;
783 	struct list_head	head; /* queue of tcp sockets */
784 };
785 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
786 
787 static void tcp_tsq_write(struct sock *sk)
788 {
789 	if ((1 << sk->sk_state) &
790 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
791 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
792 		struct tcp_sock *tp = tcp_sk(sk);
793 
794 		if (tp->lost_out > tp->retrans_out &&
795 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
796 			tcp_mstamp_refresh(tp);
797 			tcp_xmit_retransmit_queue(sk);
798 		}
799 
800 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
801 			       0, GFP_ATOMIC);
802 	}
803 }
804 
805 static void tcp_tsq_handler(struct sock *sk)
806 {
807 	bh_lock_sock(sk);
808 	if (!sock_owned_by_user(sk))
809 		tcp_tsq_write(sk);
810 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
811 		sock_hold(sk);
812 	bh_unlock_sock(sk);
813 }
814 /*
815  * One tasklet per cpu tries to send more skbs.
816  * We run in tasklet context but need to disable irqs when
817  * transferring tsq->head because tcp_wfree() might
818  * interrupt us (non NAPI drivers)
819  */
820 static void tcp_tasklet_func(unsigned long data)
821 {
822 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
823 	LIST_HEAD(list);
824 	unsigned long flags;
825 	struct list_head *q, *n;
826 	struct tcp_sock *tp;
827 	struct sock *sk;
828 
829 	local_irq_save(flags);
830 	list_splice_init(&tsq->head, &list);
831 	local_irq_restore(flags);
832 
833 	list_for_each_safe(q, n, &list) {
834 		tp = list_entry(q, struct tcp_sock, tsq_node);
835 		list_del(&tp->tsq_node);
836 
837 		sk = (struct sock *)tp;
838 		smp_mb__before_atomic();
839 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
840 
841 		tcp_tsq_handler(sk);
842 		sk_free(sk);
843 	}
844 }
845 
846 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
847 			  TCPF_WRITE_TIMER_DEFERRED |	\
848 			  TCPF_DELACK_TIMER_DEFERRED |	\
849 			  TCPF_MTU_REDUCED_DEFERRED)
850 /**
851  * tcp_release_cb - tcp release_sock() callback
852  * @sk: socket
853  *
854  * called from release_sock() to perform protocol dependent
855  * actions before socket release.
856  */
857 void tcp_release_cb(struct sock *sk)
858 {
859 	unsigned long flags, nflags;
860 
861 	/* perform an atomic operation only if at least one flag is set */
862 	do {
863 		flags = sk->sk_tsq_flags;
864 		if (!(flags & TCP_DEFERRED_ALL))
865 			return;
866 		nflags = flags & ~TCP_DEFERRED_ALL;
867 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
868 
869 	if (flags & TCPF_TSQ_DEFERRED) {
870 		tcp_tsq_write(sk);
871 		__sock_put(sk);
872 	}
873 	/* Here begins the tricky part :
874 	 * We are called from release_sock() with :
875 	 * 1) BH disabled
876 	 * 2) sk_lock.slock spinlock held
877 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
878 	 *
879 	 * But following code is meant to be called from BH handlers,
880 	 * so we should keep BH disabled, but early release socket ownership
881 	 */
882 	sock_release_ownership(sk);
883 
884 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
885 		tcp_write_timer_handler(sk);
886 		__sock_put(sk);
887 	}
888 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
889 		tcp_delack_timer_handler(sk);
890 		__sock_put(sk);
891 	}
892 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
893 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
894 		__sock_put(sk);
895 	}
896 }
897 EXPORT_SYMBOL(tcp_release_cb);
898 
899 void __init tcp_tasklet_init(void)
900 {
901 	int i;
902 
903 	for_each_possible_cpu(i) {
904 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
905 
906 		INIT_LIST_HEAD(&tsq->head);
907 		tasklet_init(&tsq->tasklet,
908 			     tcp_tasklet_func,
909 			     (unsigned long)tsq);
910 	}
911 }
912 
913 /*
914  * Write buffer destructor automatically called from kfree_skb.
915  * We can't xmit new skbs from this context, as we might already
916  * hold qdisc lock.
917  */
918 void tcp_wfree(struct sk_buff *skb)
919 {
920 	struct sock *sk = skb->sk;
921 	struct tcp_sock *tp = tcp_sk(sk);
922 	unsigned long flags, nval, oval;
923 
924 	/* Keep one reference on sk_wmem_alloc.
925 	 * Will be released by sk_free() from here or tcp_tasklet_func()
926 	 */
927 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
928 
929 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
930 	 * Wait until our queues (qdisc + devices) are drained.
931 	 * This gives :
932 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
933 	 * - chance for incoming ACK (processed by another cpu maybe)
934 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
935 	 */
936 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
937 		goto out;
938 
939 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
940 		struct tsq_tasklet *tsq;
941 		bool empty;
942 
943 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
944 			goto out;
945 
946 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
947 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
948 		if (nval != oval)
949 			continue;
950 
951 		/* queue this socket to tasklet queue */
952 		local_irq_save(flags);
953 		tsq = this_cpu_ptr(&tsq_tasklet);
954 		empty = list_empty(&tsq->head);
955 		list_add(&tp->tsq_node, &tsq->head);
956 		if (empty)
957 			tasklet_schedule(&tsq->tasklet);
958 		local_irq_restore(flags);
959 		return;
960 	}
961 out:
962 	sk_free(sk);
963 }
964 
965 /* Note: Called under soft irq.
966  * We can call TCP stack right away, unless socket is owned by user.
967  */
968 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
969 {
970 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
971 	struct sock *sk = (struct sock *)tp;
972 
973 	tcp_tsq_handler(sk);
974 	sock_put(sk);
975 
976 	return HRTIMER_NORESTART;
977 }
978 
979 static void tcp_internal_pacing(struct sock *sk)
980 {
981 	if (!tcp_needs_internal_pacing(sk))
982 		return;
983 	hrtimer_start(&tcp_sk(sk)->pacing_timer,
984 		      ns_to_ktime(tcp_sk(sk)->tcp_wstamp_ns),
985 		      HRTIMER_MODE_ABS_PINNED_SOFT);
986 	sock_hold(sk);
987 }
988 
989 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb)
990 {
991 	struct tcp_sock *tp = tcp_sk(sk);
992 
993 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
994 	if (sk->sk_pacing_status != SK_PACING_NONE) {
995 		u32 rate = sk->sk_pacing_rate;
996 
997 		/* Original sch_fq does not pace first 10 MSS
998 		 * Note that tp->data_segs_out overflows after 2^32 packets,
999 		 * this is a minor annoyance.
1000 		 */
1001 		if (rate != ~0U && rate && tp->data_segs_out >= 10) {
1002 			tp->tcp_wstamp_ns += div_u64((u64)skb->len * NSEC_PER_SEC, rate);
1003 
1004 			tcp_internal_pacing(sk);
1005 		}
1006 	}
1007 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1008 }
1009 
1010 /* This routine actually transmits TCP packets queued in by
1011  * tcp_do_sendmsg().  This is used by both the initial
1012  * transmission and possible later retransmissions.
1013  * All SKB's seen here are completely headerless.  It is our
1014  * job to build the TCP header, and pass the packet down to
1015  * IP so it can do the same plus pass the packet off to the
1016  * device.
1017  *
1018  * We are working here with either a clone of the original
1019  * SKB, or a fresh unique copy made by the retransmit engine.
1020  */
1021 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1022 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1023 {
1024 	const struct inet_connection_sock *icsk = inet_csk(sk);
1025 	struct inet_sock *inet;
1026 	struct tcp_sock *tp;
1027 	struct tcp_skb_cb *tcb;
1028 	struct tcp_out_options opts;
1029 	unsigned int tcp_options_size, tcp_header_size;
1030 	struct sk_buff *oskb = NULL;
1031 	struct tcp_md5sig_key *md5;
1032 	struct tcphdr *th;
1033 	int err;
1034 
1035 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1036 	tp = tcp_sk(sk);
1037 
1038 	if (clone_it) {
1039 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1040 			- tp->snd_una;
1041 		oskb = skb;
1042 
1043 		tcp_skb_tsorted_save(oskb) {
1044 			if (unlikely(skb_cloned(oskb)))
1045 				skb = pskb_copy(oskb, gfp_mask);
1046 			else
1047 				skb = skb_clone(oskb, gfp_mask);
1048 		} tcp_skb_tsorted_restore(oskb);
1049 
1050 		if (unlikely(!skb))
1051 			return -ENOBUFS;
1052 	}
1053 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1054 
1055 	inet = inet_sk(sk);
1056 	tcb = TCP_SKB_CB(skb);
1057 	memset(&opts, 0, sizeof(opts));
1058 
1059 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1060 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1061 	else
1062 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1063 							   &md5);
1064 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1065 
1066 	/* if no packet is in qdisc/device queue, then allow XPS to select
1067 	 * another queue. We can be called from tcp_tsq_handler()
1068 	 * which holds one reference to sk.
1069 	 *
1070 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1071 	 * One way to get this would be to set skb->truesize = 2 on them.
1072 	 */
1073 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1074 
1075 	/* If we had to use memory reserve to allocate this skb,
1076 	 * this might cause drops if packet is looped back :
1077 	 * Other socket might not have SOCK_MEMALLOC.
1078 	 * Packets not looped back do not care about pfmemalloc.
1079 	 */
1080 	skb->pfmemalloc = 0;
1081 
1082 	skb_push(skb, tcp_header_size);
1083 	skb_reset_transport_header(skb);
1084 
1085 	skb_orphan(skb);
1086 	skb->sk = sk;
1087 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1088 	skb_set_hash_from_sk(skb, sk);
1089 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1090 
1091 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1092 
1093 	/* Build TCP header and checksum it. */
1094 	th = (struct tcphdr *)skb->data;
1095 	th->source		= inet->inet_sport;
1096 	th->dest		= inet->inet_dport;
1097 	th->seq			= htonl(tcb->seq);
1098 	th->ack_seq		= htonl(rcv_nxt);
1099 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1100 					tcb->tcp_flags);
1101 
1102 	th->check		= 0;
1103 	th->urg_ptr		= 0;
1104 
1105 	/* The urg_mode check is necessary during a below snd_una win probe */
1106 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1107 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1108 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1109 			th->urg = 1;
1110 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1111 			th->urg_ptr = htons(0xFFFF);
1112 			th->urg = 1;
1113 		}
1114 	}
1115 
1116 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1117 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1118 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1119 		th->window      = htons(tcp_select_window(sk));
1120 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1121 	} else {
1122 		/* RFC1323: The window in SYN & SYN/ACK segments
1123 		 * is never scaled.
1124 		 */
1125 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1126 	}
1127 #ifdef CONFIG_TCP_MD5SIG
1128 	/* Calculate the MD5 hash, as we have all we need now */
1129 	if (md5) {
1130 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1131 		tp->af_specific->calc_md5_hash(opts.hash_location,
1132 					       md5, sk, skb);
1133 	}
1134 #endif
1135 
1136 	icsk->icsk_af_ops->send_check(sk, skb);
1137 
1138 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1139 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1140 
1141 	if (skb->len != tcp_header_size) {
1142 		tcp_event_data_sent(tp, sk);
1143 		tp->data_segs_out += tcp_skb_pcount(skb);
1144 		tp->bytes_sent += skb->len - tcp_header_size;
1145 	}
1146 
1147 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1148 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1149 			      tcp_skb_pcount(skb));
1150 
1151 	tp->segs_out += tcp_skb_pcount(skb);
1152 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1153 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1154 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1155 
1156 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1157 
1158 	/* Cleanup our debris for IP stacks */
1159 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1160 			       sizeof(struct inet6_skb_parm)));
1161 
1162 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1163 
1164 	if (unlikely(err > 0)) {
1165 		tcp_enter_cwr(sk);
1166 		err = net_xmit_eval(err);
1167 	}
1168 	if (!err && oskb) {
1169 		tcp_update_skb_after_send(sk, oskb);
1170 		tcp_rate_skb_sent(sk, oskb);
1171 	}
1172 	return err;
1173 }
1174 
1175 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1176 			    gfp_t gfp_mask)
1177 {
1178 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1179 				  tcp_sk(sk)->rcv_nxt);
1180 }
1181 
1182 /* This routine just queues the buffer for sending.
1183  *
1184  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1185  * otherwise socket can stall.
1186  */
1187 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1188 {
1189 	struct tcp_sock *tp = tcp_sk(sk);
1190 
1191 	/* Advance write_seq and place onto the write_queue. */
1192 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1193 	__skb_header_release(skb);
1194 	tcp_add_write_queue_tail(sk, skb);
1195 	sk->sk_wmem_queued += skb->truesize;
1196 	sk_mem_charge(sk, skb->truesize);
1197 }
1198 
1199 /* Initialize TSO segments for a packet. */
1200 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1201 {
1202 	if (skb->len <= mss_now) {
1203 		/* Avoid the costly divide in the normal
1204 		 * non-TSO case.
1205 		 */
1206 		tcp_skb_pcount_set(skb, 1);
1207 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1208 	} else {
1209 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1210 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1211 	}
1212 }
1213 
1214 /* Pcount in the middle of the write queue got changed, we need to do various
1215  * tweaks to fix counters
1216  */
1217 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1218 {
1219 	struct tcp_sock *tp = tcp_sk(sk);
1220 
1221 	tp->packets_out -= decr;
1222 
1223 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1224 		tp->sacked_out -= decr;
1225 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1226 		tp->retrans_out -= decr;
1227 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1228 		tp->lost_out -= decr;
1229 
1230 	/* Reno case is special. Sigh... */
1231 	if (tcp_is_reno(tp) && decr > 0)
1232 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1233 
1234 	if (tp->lost_skb_hint &&
1235 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1236 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1237 		tp->lost_cnt_hint -= decr;
1238 
1239 	tcp_verify_left_out(tp);
1240 }
1241 
1242 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1243 {
1244 	return TCP_SKB_CB(skb)->txstamp_ack ||
1245 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1246 }
1247 
1248 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1249 {
1250 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1251 
1252 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1253 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1254 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1255 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1256 
1257 		shinfo->tx_flags &= ~tsflags;
1258 		shinfo2->tx_flags |= tsflags;
1259 		swap(shinfo->tskey, shinfo2->tskey);
1260 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1261 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1262 	}
1263 }
1264 
1265 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1266 {
1267 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1268 	TCP_SKB_CB(skb)->eor = 0;
1269 }
1270 
1271 /* Insert buff after skb on the write or rtx queue of sk.  */
1272 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1273 					 struct sk_buff *buff,
1274 					 struct sock *sk,
1275 					 enum tcp_queue tcp_queue)
1276 {
1277 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1278 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1279 	else
1280 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1281 }
1282 
1283 /* Function to create two new TCP segments.  Shrinks the given segment
1284  * to the specified size and appends a new segment with the rest of the
1285  * packet to the list.  This won't be called frequently, I hope.
1286  * Remember, these are still headerless SKBs at this point.
1287  */
1288 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1289 		 struct sk_buff *skb, u32 len,
1290 		 unsigned int mss_now, gfp_t gfp)
1291 {
1292 	struct tcp_sock *tp = tcp_sk(sk);
1293 	struct sk_buff *buff;
1294 	int nsize, old_factor;
1295 	int nlen;
1296 	u8 flags;
1297 
1298 	if (WARN_ON(len > skb->len))
1299 		return -EINVAL;
1300 
1301 	nsize = skb_headlen(skb) - len;
1302 	if (nsize < 0)
1303 		nsize = 0;
1304 
1305 	if (skb_unclone(skb, gfp))
1306 		return -ENOMEM;
1307 
1308 	/* Get a new skb... force flag on. */
1309 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1310 	if (!buff)
1311 		return -ENOMEM; /* We'll just try again later. */
1312 
1313 	sk->sk_wmem_queued += buff->truesize;
1314 	sk_mem_charge(sk, buff->truesize);
1315 	nlen = skb->len - len - nsize;
1316 	buff->truesize += nlen;
1317 	skb->truesize -= nlen;
1318 
1319 	/* Correct the sequence numbers. */
1320 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1321 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1322 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1323 
1324 	/* PSH and FIN should only be set in the second packet. */
1325 	flags = TCP_SKB_CB(skb)->tcp_flags;
1326 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1327 	TCP_SKB_CB(buff)->tcp_flags = flags;
1328 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1329 	tcp_skb_fragment_eor(skb, buff);
1330 
1331 	skb_split(skb, buff, len);
1332 
1333 	buff->ip_summed = CHECKSUM_PARTIAL;
1334 
1335 	buff->tstamp = skb->tstamp;
1336 	tcp_fragment_tstamp(skb, buff);
1337 
1338 	old_factor = tcp_skb_pcount(skb);
1339 
1340 	/* Fix up tso_factor for both original and new SKB.  */
1341 	tcp_set_skb_tso_segs(skb, mss_now);
1342 	tcp_set_skb_tso_segs(buff, mss_now);
1343 
1344 	/* Update delivered info for the new segment */
1345 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1346 
1347 	/* If this packet has been sent out already, we must
1348 	 * adjust the various packet counters.
1349 	 */
1350 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1351 		int diff = old_factor - tcp_skb_pcount(skb) -
1352 			tcp_skb_pcount(buff);
1353 
1354 		if (diff)
1355 			tcp_adjust_pcount(sk, skb, diff);
1356 	}
1357 
1358 	/* Link BUFF into the send queue. */
1359 	__skb_header_release(buff);
1360 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1361 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1362 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1363 
1364 	return 0;
1365 }
1366 
1367 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1368  * data is not copied, but immediately discarded.
1369  */
1370 static int __pskb_trim_head(struct sk_buff *skb, int len)
1371 {
1372 	struct skb_shared_info *shinfo;
1373 	int i, k, eat;
1374 
1375 	eat = min_t(int, len, skb_headlen(skb));
1376 	if (eat) {
1377 		__skb_pull(skb, eat);
1378 		len -= eat;
1379 		if (!len)
1380 			return 0;
1381 	}
1382 	eat = len;
1383 	k = 0;
1384 	shinfo = skb_shinfo(skb);
1385 	for (i = 0; i < shinfo->nr_frags; i++) {
1386 		int size = skb_frag_size(&shinfo->frags[i]);
1387 
1388 		if (size <= eat) {
1389 			skb_frag_unref(skb, i);
1390 			eat -= size;
1391 		} else {
1392 			shinfo->frags[k] = shinfo->frags[i];
1393 			if (eat) {
1394 				shinfo->frags[k].page_offset += eat;
1395 				skb_frag_size_sub(&shinfo->frags[k], eat);
1396 				eat = 0;
1397 			}
1398 			k++;
1399 		}
1400 	}
1401 	shinfo->nr_frags = k;
1402 
1403 	skb->data_len -= len;
1404 	skb->len = skb->data_len;
1405 	return len;
1406 }
1407 
1408 /* Remove acked data from a packet in the transmit queue. */
1409 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1410 {
1411 	u32 delta_truesize;
1412 
1413 	if (skb_unclone(skb, GFP_ATOMIC))
1414 		return -ENOMEM;
1415 
1416 	delta_truesize = __pskb_trim_head(skb, len);
1417 
1418 	TCP_SKB_CB(skb)->seq += len;
1419 	skb->ip_summed = CHECKSUM_PARTIAL;
1420 
1421 	if (delta_truesize) {
1422 		skb->truesize	   -= delta_truesize;
1423 		sk->sk_wmem_queued -= delta_truesize;
1424 		sk_mem_uncharge(sk, delta_truesize);
1425 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1426 	}
1427 
1428 	/* Any change of skb->len requires recalculation of tso factor. */
1429 	if (tcp_skb_pcount(skb) > 1)
1430 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1431 
1432 	return 0;
1433 }
1434 
1435 /* Calculate MSS not accounting any TCP options.  */
1436 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1437 {
1438 	const struct tcp_sock *tp = tcp_sk(sk);
1439 	const struct inet_connection_sock *icsk = inet_csk(sk);
1440 	int mss_now;
1441 
1442 	/* Calculate base mss without TCP options:
1443 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1444 	 */
1445 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1446 
1447 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1448 	if (icsk->icsk_af_ops->net_frag_header_len) {
1449 		const struct dst_entry *dst = __sk_dst_get(sk);
1450 
1451 		if (dst && dst_allfrag(dst))
1452 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1453 	}
1454 
1455 	/* Clamp it (mss_clamp does not include tcp options) */
1456 	if (mss_now > tp->rx_opt.mss_clamp)
1457 		mss_now = tp->rx_opt.mss_clamp;
1458 
1459 	/* Now subtract optional transport overhead */
1460 	mss_now -= icsk->icsk_ext_hdr_len;
1461 
1462 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1463 	if (mss_now < 48)
1464 		mss_now = 48;
1465 	return mss_now;
1466 }
1467 
1468 /* Calculate MSS. Not accounting for SACKs here.  */
1469 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1470 {
1471 	/* Subtract TCP options size, not including SACKs */
1472 	return __tcp_mtu_to_mss(sk, pmtu) -
1473 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1474 }
1475 
1476 /* Inverse of above */
1477 int tcp_mss_to_mtu(struct sock *sk, int mss)
1478 {
1479 	const struct tcp_sock *tp = tcp_sk(sk);
1480 	const struct inet_connection_sock *icsk = inet_csk(sk);
1481 	int mtu;
1482 
1483 	mtu = mss +
1484 	      tp->tcp_header_len +
1485 	      icsk->icsk_ext_hdr_len +
1486 	      icsk->icsk_af_ops->net_header_len;
1487 
1488 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1489 	if (icsk->icsk_af_ops->net_frag_header_len) {
1490 		const struct dst_entry *dst = __sk_dst_get(sk);
1491 
1492 		if (dst && dst_allfrag(dst))
1493 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1494 	}
1495 	return mtu;
1496 }
1497 EXPORT_SYMBOL(tcp_mss_to_mtu);
1498 
1499 /* MTU probing init per socket */
1500 void tcp_mtup_init(struct sock *sk)
1501 {
1502 	struct tcp_sock *tp = tcp_sk(sk);
1503 	struct inet_connection_sock *icsk = inet_csk(sk);
1504 	struct net *net = sock_net(sk);
1505 
1506 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1507 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1508 			       icsk->icsk_af_ops->net_header_len;
1509 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1510 	icsk->icsk_mtup.probe_size = 0;
1511 	if (icsk->icsk_mtup.enabled)
1512 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1513 }
1514 EXPORT_SYMBOL(tcp_mtup_init);
1515 
1516 /* This function synchronize snd mss to current pmtu/exthdr set.
1517 
1518    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1519    for TCP options, but includes only bare TCP header.
1520 
1521    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1522    It is minimum of user_mss and mss received with SYN.
1523    It also does not include TCP options.
1524 
1525    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1526 
1527    tp->mss_cache is current effective sending mss, including
1528    all tcp options except for SACKs. It is evaluated,
1529    taking into account current pmtu, but never exceeds
1530    tp->rx_opt.mss_clamp.
1531 
1532    NOTE1. rfc1122 clearly states that advertised MSS
1533    DOES NOT include either tcp or ip options.
1534 
1535    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1536    are READ ONLY outside this function.		--ANK (980731)
1537  */
1538 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1539 {
1540 	struct tcp_sock *tp = tcp_sk(sk);
1541 	struct inet_connection_sock *icsk = inet_csk(sk);
1542 	int mss_now;
1543 
1544 	if (icsk->icsk_mtup.search_high > pmtu)
1545 		icsk->icsk_mtup.search_high = pmtu;
1546 
1547 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1548 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1549 
1550 	/* And store cached results */
1551 	icsk->icsk_pmtu_cookie = pmtu;
1552 	if (icsk->icsk_mtup.enabled)
1553 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1554 	tp->mss_cache = mss_now;
1555 
1556 	return mss_now;
1557 }
1558 EXPORT_SYMBOL(tcp_sync_mss);
1559 
1560 /* Compute the current effective MSS, taking SACKs and IP options,
1561  * and even PMTU discovery events into account.
1562  */
1563 unsigned int tcp_current_mss(struct sock *sk)
1564 {
1565 	const struct tcp_sock *tp = tcp_sk(sk);
1566 	const struct dst_entry *dst = __sk_dst_get(sk);
1567 	u32 mss_now;
1568 	unsigned int header_len;
1569 	struct tcp_out_options opts;
1570 	struct tcp_md5sig_key *md5;
1571 
1572 	mss_now = tp->mss_cache;
1573 
1574 	if (dst) {
1575 		u32 mtu = dst_mtu(dst);
1576 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1577 			mss_now = tcp_sync_mss(sk, mtu);
1578 	}
1579 
1580 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1581 		     sizeof(struct tcphdr);
1582 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1583 	 * some common options. If this is an odd packet (because we have SACK
1584 	 * blocks etc) then our calculated header_len will be different, and
1585 	 * we have to adjust mss_now correspondingly */
1586 	if (header_len != tp->tcp_header_len) {
1587 		int delta = (int) header_len - tp->tcp_header_len;
1588 		mss_now -= delta;
1589 	}
1590 
1591 	return mss_now;
1592 }
1593 
1594 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1595  * As additional protections, we do not touch cwnd in retransmission phases,
1596  * and if application hit its sndbuf limit recently.
1597  */
1598 static void tcp_cwnd_application_limited(struct sock *sk)
1599 {
1600 	struct tcp_sock *tp = tcp_sk(sk);
1601 
1602 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1603 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1604 		/* Limited by application or receiver window. */
1605 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1606 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1607 		if (win_used < tp->snd_cwnd) {
1608 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1609 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1610 		}
1611 		tp->snd_cwnd_used = 0;
1612 	}
1613 	tp->snd_cwnd_stamp = tcp_jiffies32;
1614 }
1615 
1616 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1617 {
1618 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1619 	struct tcp_sock *tp = tcp_sk(sk);
1620 
1621 	/* Track the maximum number of outstanding packets in each
1622 	 * window, and remember whether we were cwnd-limited then.
1623 	 */
1624 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1625 	    tp->packets_out > tp->max_packets_out) {
1626 		tp->max_packets_out = tp->packets_out;
1627 		tp->max_packets_seq = tp->snd_nxt;
1628 		tp->is_cwnd_limited = is_cwnd_limited;
1629 	}
1630 
1631 	if (tcp_is_cwnd_limited(sk)) {
1632 		/* Network is feed fully. */
1633 		tp->snd_cwnd_used = 0;
1634 		tp->snd_cwnd_stamp = tcp_jiffies32;
1635 	} else {
1636 		/* Network starves. */
1637 		if (tp->packets_out > tp->snd_cwnd_used)
1638 			tp->snd_cwnd_used = tp->packets_out;
1639 
1640 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1641 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1642 		    !ca_ops->cong_control)
1643 			tcp_cwnd_application_limited(sk);
1644 
1645 		/* The following conditions together indicate the starvation
1646 		 * is caused by insufficient sender buffer:
1647 		 * 1) just sent some data (see tcp_write_xmit)
1648 		 * 2) not cwnd limited (this else condition)
1649 		 * 3) no more data to send (tcp_write_queue_empty())
1650 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1651 		 */
1652 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1653 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1654 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1655 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1656 	}
1657 }
1658 
1659 /* Minshall's variant of the Nagle send check. */
1660 static bool tcp_minshall_check(const struct tcp_sock *tp)
1661 {
1662 	return after(tp->snd_sml, tp->snd_una) &&
1663 		!after(tp->snd_sml, tp->snd_nxt);
1664 }
1665 
1666 /* Update snd_sml if this skb is under mss
1667  * Note that a TSO packet might end with a sub-mss segment
1668  * The test is really :
1669  * if ((skb->len % mss) != 0)
1670  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1671  * But we can avoid doing the divide again given we already have
1672  *  skb_pcount = skb->len / mss_now
1673  */
1674 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1675 				const struct sk_buff *skb)
1676 {
1677 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1678 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1679 }
1680 
1681 /* Return false, if packet can be sent now without violation Nagle's rules:
1682  * 1. It is full sized. (provided by caller in %partial bool)
1683  * 2. Or it contains FIN. (already checked by caller)
1684  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1685  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1686  *    With Minshall's modification: all sent small packets are ACKed.
1687  */
1688 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1689 			    int nonagle)
1690 {
1691 	return partial &&
1692 		((nonagle & TCP_NAGLE_CORK) ||
1693 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1694 }
1695 
1696 /* Return how many segs we'd like on a TSO packet,
1697  * to send one TSO packet per ms
1698  */
1699 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1700 			    int min_tso_segs)
1701 {
1702 	u32 bytes, segs;
1703 
1704 	bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
1705 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1706 
1707 	/* Goal is to send at least one packet per ms,
1708 	 * not one big TSO packet every 100 ms.
1709 	 * This preserves ACK clocking and is consistent
1710 	 * with tcp_tso_should_defer() heuristic.
1711 	 */
1712 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1713 
1714 	return segs;
1715 }
1716 
1717 /* Return the number of segments we want in the skb we are transmitting.
1718  * See if congestion control module wants to decide; otherwise, autosize.
1719  */
1720 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1721 {
1722 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1723 	u32 min_tso, tso_segs;
1724 
1725 	min_tso = ca_ops->min_tso_segs ?
1726 			ca_ops->min_tso_segs(sk) :
1727 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1728 
1729 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1730 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1731 }
1732 
1733 /* Returns the portion of skb which can be sent right away */
1734 static unsigned int tcp_mss_split_point(const struct sock *sk,
1735 					const struct sk_buff *skb,
1736 					unsigned int mss_now,
1737 					unsigned int max_segs,
1738 					int nonagle)
1739 {
1740 	const struct tcp_sock *tp = tcp_sk(sk);
1741 	u32 partial, needed, window, max_len;
1742 
1743 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1744 	max_len = mss_now * max_segs;
1745 
1746 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1747 		return max_len;
1748 
1749 	needed = min(skb->len, window);
1750 
1751 	if (max_len <= needed)
1752 		return max_len;
1753 
1754 	partial = needed % mss_now;
1755 	/* If last segment is not a full MSS, check if Nagle rules allow us
1756 	 * to include this last segment in this skb.
1757 	 * Otherwise, we'll split the skb at last MSS boundary
1758 	 */
1759 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1760 		return needed - partial;
1761 
1762 	return needed;
1763 }
1764 
1765 /* Can at least one segment of SKB be sent right now, according to the
1766  * congestion window rules?  If so, return how many segments are allowed.
1767  */
1768 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1769 					 const struct sk_buff *skb)
1770 {
1771 	u32 in_flight, cwnd, halfcwnd;
1772 
1773 	/* Don't be strict about the congestion window for the final FIN.  */
1774 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1775 	    tcp_skb_pcount(skb) == 1)
1776 		return 1;
1777 
1778 	in_flight = tcp_packets_in_flight(tp);
1779 	cwnd = tp->snd_cwnd;
1780 	if (in_flight >= cwnd)
1781 		return 0;
1782 
1783 	/* For better scheduling, ensure we have at least
1784 	 * 2 GSO packets in flight.
1785 	 */
1786 	halfcwnd = max(cwnd >> 1, 1U);
1787 	return min(halfcwnd, cwnd - in_flight);
1788 }
1789 
1790 /* Initialize TSO state of a skb.
1791  * This must be invoked the first time we consider transmitting
1792  * SKB onto the wire.
1793  */
1794 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1795 {
1796 	int tso_segs = tcp_skb_pcount(skb);
1797 
1798 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1799 		tcp_set_skb_tso_segs(skb, mss_now);
1800 		tso_segs = tcp_skb_pcount(skb);
1801 	}
1802 	return tso_segs;
1803 }
1804 
1805 
1806 /* Return true if the Nagle test allows this packet to be
1807  * sent now.
1808  */
1809 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1810 				  unsigned int cur_mss, int nonagle)
1811 {
1812 	/* Nagle rule does not apply to frames, which sit in the middle of the
1813 	 * write_queue (they have no chances to get new data).
1814 	 *
1815 	 * This is implemented in the callers, where they modify the 'nonagle'
1816 	 * argument based upon the location of SKB in the send queue.
1817 	 */
1818 	if (nonagle & TCP_NAGLE_PUSH)
1819 		return true;
1820 
1821 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1822 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1823 		return true;
1824 
1825 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1826 		return true;
1827 
1828 	return false;
1829 }
1830 
1831 /* Does at least the first segment of SKB fit into the send window? */
1832 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1833 			     const struct sk_buff *skb,
1834 			     unsigned int cur_mss)
1835 {
1836 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1837 
1838 	if (skb->len > cur_mss)
1839 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1840 
1841 	return !after(end_seq, tcp_wnd_end(tp));
1842 }
1843 
1844 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1845  * which is put after SKB on the list.  It is very much like
1846  * tcp_fragment() except that it may make several kinds of assumptions
1847  * in order to speed up the splitting operation.  In particular, we
1848  * know that all the data is in scatter-gather pages, and that the
1849  * packet has never been sent out before (and thus is not cloned).
1850  */
1851 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1852 			struct sk_buff *skb, unsigned int len,
1853 			unsigned int mss_now, gfp_t gfp)
1854 {
1855 	struct sk_buff *buff;
1856 	int nlen = skb->len - len;
1857 	u8 flags;
1858 
1859 	/* All of a TSO frame must be composed of paged data.  */
1860 	if (skb->len != skb->data_len)
1861 		return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1862 
1863 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1864 	if (unlikely(!buff))
1865 		return -ENOMEM;
1866 
1867 	sk->sk_wmem_queued += buff->truesize;
1868 	sk_mem_charge(sk, buff->truesize);
1869 	buff->truesize += nlen;
1870 	skb->truesize -= nlen;
1871 
1872 	/* Correct the sequence numbers. */
1873 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1874 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1875 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1876 
1877 	/* PSH and FIN should only be set in the second packet. */
1878 	flags = TCP_SKB_CB(skb)->tcp_flags;
1879 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1880 	TCP_SKB_CB(buff)->tcp_flags = flags;
1881 
1882 	/* This packet was never sent out yet, so no SACK bits. */
1883 	TCP_SKB_CB(buff)->sacked = 0;
1884 
1885 	tcp_skb_fragment_eor(skb, buff);
1886 
1887 	buff->ip_summed = CHECKSUM_PARTIAL;
1888 	skb_split(skb, buff, len);
1889 	tcp_fragment_tstamp(skb, buff);
1890 
1891 	/* Fix up tso_factor for both original and new SKB.  */
1892 	tcp_set_skb_tso_segs(skb, mss_now);
1893 	tcp_set_skb_tso_segs(buff, mss_now);
1894 
1895 	/* Link BUFF into the send queue. */
1896 	__skb_header_release(buff);
1897 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1898 
1899 	return 0;
1900 }
1901 
1902 /* Try to defer sending, if possible, in order to minimize the amount
1903  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1904  *
1905  * This algorithm is from John Heffner.
1906  */
1907 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1908 				 bool *is_cwnd_limited, u32 max_segs)
1909 {
1910 	const struct inet_connection_sock *icsk = inet_csk(sk);
1911 	u32 age, send_win, cong_win, limit, in_flight;
1912 	struct tcp_sock *tp = tcp_sk(sk);
1913 	struct sk_buff *head;
1914 	int win_divisor;
1915 
1916 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1917 		goto send_now;
1918 
1919 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1920 		goto send_now;
1921 
1922 	/* Avoid bursty behavior by allowing defer
1923 	 * only if the last write was recent.
1924 	 */
1925 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1926 		goto send_now;
1927 
1928 	in_flight = tcp_packets_in_flight(tp);
1929 
1930 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1931 	BUG_ON(tp->snd_cwnd <= in_flight);
1932 
1933 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1934 
1935 	/* From in_flight test above, we know that cwnd > in_flight.  */
1936 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1937 
1938 	limit = min(send_win, cong_win);
1939 
1940 	/* If a full-sized TSO skb can be sent, do it. */
1941 	if (limit >= max_segs * tp->mss_cache)
1942 		goto send_now;
1943 
1944 	/* Middle in queue won't get any more data, full sendable already? */
1945 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1946 		goto send_now;
1947 
1948 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1949 	if (win_divisor) {
1950 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1951 
1952 		/* If at least some fraction of a window is available,
1953 		 * just use it.
1954 		 */
1955 		chunk /= win_divisor;
1956 		if (limit >= chunk)
1957 			goto send_now;
1958 	} else {
1959 		/* Different approach, try not to defer past a single
1960 		 * ACK.  Receiver should ACK every other full sized
1961 		 * frame, so if we have space for more than 3 frames
1962 		 * then send now.
1963 		 */
1964 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1965 			goto send_now;
1966 	}
1967 
1968 	/* TODO : use tsorted_sent_queue ? */
1969 	head = tcp_rtx_queue_head(sk);
1970 	if (!head)
1971 		goto send_now;
1972 	age = tcp_stamp_us_delta(tp->tcp_mstamp, tcp_skb_timestamp_us(head));
1973 	/* If next ACK is likely to come too late (half srtt), do not defer */
1974 	if (age < (tp->srtt_us >> 4))
1975 		goto send_now;
1976 
1977 	/* Ok, it looks like it is advisable to defer. */
1978 
1979 	if (cong_win < send_win && cong_win <= skb->len)
1980 		*is_cwnd_limited = true;
1981 
1982 	return true;
1983 
1984 send_now:
1985 	return false;
1986 }
1987 
1988 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1989 {
1990 	struct inet_connection_sock *icsk = inet_csk(sk);
1991 	struct tcp_sock *tp = tcp_sk(sk);
1992 	struct net *net = sock_net(sk);
1993 	u32 interval;
1994 	s32 delta;
1995 
1996 	interval = net->ipv4.sysctl_tcp_probe_interval;
1997 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
1998 	if (unlikely(delta >= interval * HZ)) {
1999 		int mss = tcp_current_mss(sk);
2000 
2001 		/* Update current search range */
2002 		icsk->icsk_mtup.probe_size = 0;
2003 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2004 			sizeof(struct tcphdr) +
2005 			icsk->icsk_af_ops->net_header_len;
2006 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2007 
2008 		/* Update probe time stamp */
2009 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2010 	}
2011 }
2012 
2013 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2014 {
2015 	struct sk_buff *skb, *next;
2016 
2017 	skb = tcp_send_head(sk);
2018 	tcp_for_write_queue_from_safe(skb, next, sk) {
2019 		if (len <= skb->len)
2020 			break;
2021 
2022 		if (unlikely(TCP_SKB_CB(skb)->eor))
2023 			return false;
2024 
2025 		len -= skb->len;
2026 	}
2027 
2028 	return true;
2029 }
2030 
2031 /* Create a new MTU probe if we are ready.
2032  * MTU probe is regularly attempting to increase the path MTU by
2033  * deliberately sending larger packets.  This discovers routing
2034  * changes resulting in larger path MTUs.
2035  *
2036  * Returns 0 if we should wait to probe (no cwnd available),
2037  *         1 if a probe was sent,
2038  *         -1 otherwise
2039  */
2040 static int tcp_mtu_probe(struct sock *sk)
2041 {
2042 	struct inet_connection_sock *icsk = inet_csk(sk);
2043 	struct tcp_sock *tp = tcp_sk(sk);
2044 	struct sk_buff *skb, *nskb, *next;
2045 	struct net *net = sock_net(sk);
2046 	int probe_size;
2047 	int size_needed;
2048 	int copy, len;
2049 	int mss_now;
2050 	int interval;
2051 
2052 	/* Not currently probing/verifying,
2053 	 * not in recovery,
2054 	 * have enough cwnd, and
2055 	 * not SACKing (the variable headers throw things off)
2056 	 */
2057 	if (likely(!icsk->icsk_mtup.enabled ||
2058 		   icsk->icsk_mtup.probe_size ||
2059 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2060 		   tp->snd_cwnd < 11 ||
2061 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2062 		return -1;
2063 
2064 	/* Use binary search for probe_size between tcp_mss_base,
2065 	 * and current mss_clamp. if (search_high - search_low)
2066 	 * smaller than a threshold, backoff from probing.
2067 	 */
2068 	mss_now = tcp_current_mss(sk);
2069 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2070 				    icsk->icsk_mtup.search_low) >> 1);
2071 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2072 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2073 	/* When misfortune happens, we are reprobing actively,
2074 	 * and then reprobe timer has expired. We stick with current
2075 	 * probing process by not resetting search range to its orignal.
2076 	 */
2077 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2078 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2079 		/* Check whether enough time has elaplased for
2080 		 * another round of probing.
2081 		 */
2082 		tcp_mtu_check_reprobe(sk);
2083 		return -1;
2084 	}
2085 
2086 	/* Have enough data in the send queue to probe? */
2087 	if (tp->write_seq - tp->snd_nxt < size_needed)
2088 		return -1;
2089 
2090 	if (tp->snd_wnd < size_needed)
2091 		return -1;
2092 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2093 		return 0;
2094 
2095 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2096 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2097 		if (!tcp_packets_in_flight(tp))
2098 			return -1;
2099 		else
2100 			return 0;
2101 	}
2102 
2103 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2104 		return -1;
2105 
2106 	/* We're allowed to probe.  Build it now. */
2107 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2108 	if (!nskb)
2109 		return -1;
2110 	sk->sk_wmem_queued += nskb->truesize;
2111 	sk_mem_charge(sk, nskb->truesize);
2112 
2113 	skb = tcp_send_head(sk);
2114 
2115 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2116 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2117 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2118 	TCP_SKB_CB(nskb)->sacked = 0;
2119 	nskb->csum = 0;
2120 	nskb->ip_summed = CHECKSUM_PARTIAL;
2121 
2122 	tcp_insert_write_queue_before(nskb, skb, sk);
2123 	tcp_highest_sack_replace(sk, skb, nskb);
2124 
2125 	len = 0;
2126 	tcp_for_write_queue_from_safe(skb, next, sk) {
2127 		copy = min_t(int, skb->len, probe_size - len);
2128 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2129 
2130 		if (skb->len <= copy) {
2131 			/* We've eaten all the data from this skb.
2132 			 * Throw it away. */
2133 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2134 			/* If this is the last SKB we copy and eor is set
2135 			 * we need to propagate it to the new skb.
2136 			 */
2137 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2138 			tcp_unlink_write_queue(skb, sk);
2139 			sk_wmem_free_skb(sk, skb);
2140 		} else {
2141 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2142 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2143 			if (!skb_shinfo(skb)->nr_frags) {
2144 				skb_pull(skb, copy);
2145 			} else {
2146 				__pskb_trim_head(skb, copy);
2147 				tcp_set_skb_tso_segs(skb, mss_now);
2148 			}
2149 			TCP_SKB_CB(skb)->seq += copy;
2150 		}
2151 
2152 		len += copy;
2153 
2154 		if (len >= probe_size)
2155 			break;
2156 	}
2157 	tcp_init_tso_segs(nskb, nskb->len);
2158 
2159 	/* We're ready to send.  If this fails, the probe will
2160 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2161 	 */
2162 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2163 		/* Decrement cwnd here because we are sending
2164 		 * effectively two packets. */
2165 		tp->snd_cwnd--;
2166 		tcp_event_new_data_sent(sk, nskb);
2167 
2168 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2169 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2170 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2171 
2172 		return 1;
2173 	}
2174 
2175 	return -1;
2176 }
2177 
2178 static bool tcp_pacing_check(const struct sock *sk)
2179 {
2180 	return tcp_needs_internal_pacing(sk) &&
2181 	       hrtimer_is_queued(&tcp_sk(sk)->pacing_timer);
2182 }
2183 
2184 /* TCP Small Queues :
2185  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2186  * (These limits are doubled for retransmits)
2187  * This allows for :
2188  *  - better RTT estimation and ACK scheduling
2189  *  - faster recovery
2190  *  - high rates
2191  * Alas, some drivers / subsystems require a fair amount
2192  * of queued bytes to ensure line rate.
2193  * One example is wifi aggregation (802.11 AMPDU)
2194  */
2195 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2196 				  unsigned int factor)
2197 {
2198 	unsigned int limit;
2199 
2200 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
2201 	limit = min_t(u32, limit,
2202 		      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2203 	limit <<= factor;
2204 
2205 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2206 		/* Always send skb if rtx queue is empty.
2207 		 * No need to wait for TX completion to call us back,
2208 		 * after softirq/tasklet schedule.
2209 		 * This helps when TX completions are delayed too much.
2210 		 */
2211 		if (tcp_rtx_queue_empty(sk))
2212 			return false;
2213 
2214 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2215 		/* It is possible TX completion already happened
2216 		 * before we set TSQ_THROTTLED, so we must
2217 		 * test again the condition.
2218 		 */
2219 		smp_mb__after_atomic();
2220 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2221 			return true;
2222 	}
2223 	return false;
2224 }
2225 
2226 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2227 {
2228 	const u32 now = tcp_jiffies32;
2229 	enum tcp_chrono old = tp->chrono_type;
2230 
2231 	if (old > TCP_CHRONO_UNSPEC)
2232 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2233 	tp->chrono_start = now;
2234 	tp->chrono_type = new;
2235 }
2236 
2237 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2238 {
2239 	struct tcp_sock *tp = tcp_sk(sk);
2240 
2241 	/* If there are multiple conditions worthy of tracking in a
2242 	 * chronograph then the highest priority enum takes precedence
2243 	 * over the other conditions. So that if something "more interesting"
2244 	 * starts happening, stop the previous chrono and start a new one.
2245 	 */
2246 	if (type > tp->chrono_type)
2247 		tcp_chrono_set(tp, type);
2248 }
2249 
2250 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2251 {
2252 	struct tcp_sock *tp = tcp_sk(sk);
2253 
2254 
2255 	/* There are multiple conditions worthy of tracking in a
2256 	 * chronograph, so that the highest priority enum takes
2257 	 * precedence over the other conditions (see tcp_chrono_start).
2258 	 * If a condition stops, we only stop chrono tracking if
2259 	 * it's the "most interesting" or current chrono we are
2260 	 * tracking and starts busy chrono if we have pending data.
2261 	 */
2262 	if (tcp_rtx_and_write_queues_empty(sk))
2263 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2264 	else if (type == tp->chrono_type)
2265 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2266 }
2267 
2268 /* This routine writes packets to the network.  It advances the
2269  * send_head.  This happens as incoming acks open up the remote
2270  * window for us.
2271  *
2272  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2273  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2274  * account rare use of URG, this is not a big flaw.
2275  *
2276  * Send at most one packet when push_one > 0. Temporarily ignore
2277  * cwnd limit to force at most one packet out when push_one == 2.
2278 
2279  * Returns true, if no segments are in flight and we have queued segments,
2280  * but cannot send anything now because of SWS or another problem.
2281  */
2282 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2283 			   int push_one, gfp_t gfp)
2284 {
2285 	struct tcp_sock *tp = tcp_sk(sk);
2286 	struct sk_buff *skb;
2287 	unsigned int tso_segs, sent_pkts;
2288 	int cwnd_quota;
2289 	int result;
2290 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2291 	u32 max_segs;
2292 
2293 	sent_pkts = 0;
2294 
2295 	tcp_mstamp_refresh(tp);
2296 	if (!push_one) {
2297 		/* Do MTU probing. */
2298 		result = tcp_mtu_probe(sk);
2299 		if (!result) {
2300 			return false;
2301 		} else if (result > 0) {
2302 			sent_pkts = 1;
2303 		}
2304 	}
2305 
2306 	max_segs = tcp_tso_segs(sk, mss_now);
2307 	while ((skb = tcp_send_head(sk))) {
2308 		unsigned int limit;
2309 
2310 		if (tcp_pacing_check(sk))
2311 			break;
2312 
2313 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2314 		BUG_ON(!tso_segs);
2315 
2316 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2317 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2318 			tcp_update_skb_after_send(sk, skb);
2319 			goto repair; /* Skip network transmission */
2320 		}
2321 
2322 		cwnd_quota = tcp_cwnd_test(tp, skb);
2323 		if (!cwnd_quota) {
2324 			if (push_one == 2)
2325 				/* Force out a loss probe pkt. */
2326 				cwnd_quota = 1;
2327 			else
2328 				break;
2329 		}
2330 
2331 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2332 			is_rwnd_limited = true;
2333 			break;
2334 		}
2335 
2336 		if (tso_segs == 1) {
2337 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2338 						     (tcp_skb_is_last(sk, skb) ?
2339 						      nonagle : TCP_NAGLE_PUSH))))
2340 				break;
2341 		} else {
2342 			if (!push_one &&
2343 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2344 						 max_segs))
2345 				break;
2346 		}
2347 
2348 		limit = mss_now;
2349 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2350 			limit = tcp_mss_split_point(sk, skb, mss_now,
2351 						    min_t(unsigned int,
2352 							  cwnd_quota,
2353 							  max_segs),
2354 						    nonagle);
2355 
2356 		if (skb->len > limit &&
2357 		    unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2358 					  skb, limit, mss_now, gfp)))
2359 			break;
2360 
2361 		if (tcp_small_queue_check(sk, skb, 0))
2362 			break;
2363 
2364 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2365 			break;
2366 
2367 repair:
2368 		/* Advance the send_head.  This one is sent out.
2369 		 * This call will increment packets_out.
2370 		 */
2371 		tcp_event_new_data_sent(sk, skb);
2372 
2373 		tcp_minshall_update(tp, mss_now, skb);
2374 		sent_pkts += tcp_skb_pcount(skb);
2375 
2376 		if (push_one)
2377 			break;
2378 	}
2379 
2380 	if (is_rwnd_limited)
2381 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2382 	else
2383 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2384 
2385 	if (likely(sent_pkts)) {
2386 		if (tcp_in_cwnd_reduction(sk))
2387 			tp->prr_out += sent_pkts;
2388 
2389 		/* Send one loss probe per tail loss episode. */
2390 		if (push_one != 2)
2391 			tcp_schedule_loss_probe(sk, false);
2392 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2393 		tcp_cwnd_validate(sk, is_cwnd_limited);
2394 		return false;
2395 	}
2396 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2397 }
2398 
2399 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2400 {
2401 	struct inet_connection_sock *icsk = inet_csk(sk);
2402 	struct tcp_sock *tp = tcp_sk(sk);
2403 	u32 timeout, rto_delta_us;
2404 	int early_retrans;
2405 
2406 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2407 	 * finishes.
2408 	 */
2409 	if (tp->fastopen_rsk)
2410 		return false;
2411 
2412 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2413 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2414 	 * not in loss recovery, that are either limited by cwnd or application.
2415 	 */
2416 	if ((early_retrans != 3 && early_retrans != 4) ||
2417 	    !tp->packets_out || !tcp_is_sack(tp) ||
2418 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2419 	     icsk->icsk_ca_state != TCP_CA_CWR))
2420 		return false;
2421 
2422 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2423 	 * for delayed ack when there's one outstanding packet. If no RTT
2424 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2425 	 */
2426 	if (tp->srtt_us) {
2427 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2428 		if (tp->packets_out == 1)
2429 			timeout += TCP_RTO_MIN;
2430 		else
2431 			timeout += TCP_TIMEOUT_MIN;
2432 	} else {
2433 		timeout = TCP_TIMEOUT_INIT;
2434 	}
2435 
2436 	/* If the RTO formula yields an earlier time, then use that time. */
2437 	rto_delta_us = advancing_rto ?
2438 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2439 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2440 	if (rto_delta_us > 0)
2441 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2442 
2443 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2444 				  TCP_RTO_MAX);
2445 	return true;
2446 }
2447 
2448 /* Thanks to skb fast clones, we can detect if a prior transmit of
2449  * a packet is still in a qdisc or driver queue.
2450  * In this case, there is very little point doing a retransmit !
2451  */
2452 static bool skb_still_in_host_queue(const struct sock *sk,
2453 				    const struct sk_buff *skb)
2454 {
2455 	if (unlikely(skb_fclone_busy(sk, skb))) {
2456 		NET_INC_STATS(sock_net(sk),
2457 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2458 		return true;
2459 	}
2460 	return false;
2461 }
2462 
2463 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2464  * retransmit the last segment.
2465  */
2466 void tcp_send_loss_probe(struct sock *sk)
2467 {
2468 	struct tcp_sock *tp = tcp_sk(sk);
2469 	struct sk_buff *skb;
2470 	int pcount;
2471 	int mss = tcp_current_mss(sk);
2472 
2473 	skb = tcp_send_head(sk);
2474 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2475 		pcount = tp->packets_out;
2476 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2477 		if (tp->packets_out > pcount)
2478 			goto probe_sent;
2479 		goto rearm_timer;
2480 	}
2481 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2482 
2483 	/* At most one outstanding TLP retransmission. */
2484 	if (tp->tlp_high_seq)
2485 		goto rearm_timer;
2486 
2487 	/* Retransmit last segment. */
2488 	if (WARN_ON(!skb))
2489 		goto rearm_timer;
2490 
2491 	if (skb_still_in_host_queue(sk, skb))
2492 		goto rearm_timer;
2493 
2494 	pcount = tcp_skb_pcount(skb);
2495 	if (WARN_ON(!pcount))
2496 		goto rearm_timer;
2497 
2498 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2499 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2500 					  (pcount - 1) * mss, mss,
2501 					  GFP_ATOMIC)))
2502 			goto rearm_timer;
2503 		skb = skb_rb_next(skb);
2504 	}
2505 
2506 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2507 		goto rearm_timer;
2508 
2509 	if (__tcp_retransmit_skb(sk, skb, 1))
2510 		goto rearm_timer;
2511 
2512 	/* Record snd_nxt for loss detection. */
2513 	tp->tlp_high_seq = tp->snd_nxt;
2514 
2515 probe_sent:
2516 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2517 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2518 	inet_csk(sk)->icsk_pending = 0;
2519 rearm_timer:
2520 	tcp_rearm_rto(sk);
2521 }
2522 
2523 /* Push out any pending frames which were held back due to
2524  * TCP_CORK or attempt at coalescing tiny packets.
2525  * The socket must be locked by the caller.
2526  */
2527 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2528 			       int nonagle)
2529 {
2530 	/* If we are closed, the bytes will have to remain here.
2531 	 * In time closedown will finish, we empty the write queue and
2532 	 * all will be happy.
2533 	 */
2534 	if (unlikely(sk->sk_state == TCP_CLOSE))
2535 		return;
2536 
2537 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2538 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2539 		tcp_check_probe_timer(sk);
2540 }
2541 
2542 /* Send _single_ skb sitting at the send head. This function requires
2543  * true push pending frames to setup probe timer etc.
2544  */
2545 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2546 {
2547 	struct sk_buff *skb = tcp_send_head(sk);
2548 
2549 	BUG_ON(!skb || skb->len < mss_now);
2550 
2551 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2552 }
2553 
2554 /* This function returns the amount that we can raise the
2555  * usable window based on the following constraints
2556  *
2557  * 1. The window can never be shrunk once it is offered (RFC 793)
2558  * 2. We limit memory per socket
2559  *
2560  * RFC 1122:
2561  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2562  *  RECV.NEXT + RCV.WIN fixed until:
2563  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2564  *
2565  * i.e. don't raise the right edge of the window until you can raise
2566  * it at least MSS bytes.
2567  *
2568  * Unfortunately, the recommended algorithm breaks header prediction,
2569  * since header prediction assumes th->window stays fixed.
2570  *
2571  * Strictly speaking, keeping th->window fixed violates the receiver
2572  * side SWS prevention criteria. The problem is that under this rule
2573  * a stream of single byte packets will cause the right side of the
2574  * window to always advance by a single byte.
2575  *
2576  * Of course, if the sender implements sender side SWS prevention
2577  * then this will not be a problem.
2578  *
2579  * BSD seems to make the following compromise:
2580  *
2581  *	If the free space is less than the 1/4 of the maximum
2582  *	space available and the free space is less than 1/2 mss,
2583  *	then set the window to 0.
2584  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2585  *	Otherwise, just prevent the window from shrinking
2586  *	and from being larger than the largest representable value.
2587  *
2588  * This prevents incremental opening of the window in the regime
2589  * where TCP is limited by the speed of the reader side taking
2590  * data out of the TCP receive queue. It does nothing about
2591  * those cases where the window is constrained on the sender side
2592  * because the pipeline is full.
2593  *
2594  * BSD also seems to "accidentally" limit itself to windows that are a
2595  * multiple of MSS, at least until the free space gets quite small.
2596  * This would appear to be a side effect of the mbuf implementation.
2597  * Combining these two algorithms results in the observed behavior
2598  * of having a fixed window size at almost all times.
2599  *
2600  * Below we obtain similar behavior by forcing the offered window to
2601  * a multiple of the mss when it is feasible to do so.
2602  *
2603  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2604  * Regular options like TIMESTAMP are taken into account.
2605  */
2606 u32 __tcp_select_window(struct sock *sk)
2607 {
2608 	struct inet_connection_sock *icsk = inet_csk(sk);
2609 	struct tcp_sock *tp = tcp_sk(sk);
2610 	/* MSS for the peer's data.  Previous versions used mss_clamp
2611 	 * here.  I don't know if the value based on our guesses
2612 	 * of peer's MSS is better for the performance.  It's more correct
2613 	 * but may be worse for the performance because of rcv_mss
2614 	 * fluctuations.  --SAW  1998/11/1
2615 	 */
2616 	int mss = icsk->icsk_ack.rcv_mss;
2617 	int free_space = tcp_space(sk);
2618 	int allowed_space = tcp_full_space(sk);
2619 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2620 	int window;
2621 
2622 	if (unlikely(mss > full_space)) {
2623 		mss = full_space;
2624 		if (mss <= 0)
2625 			return 0;
2626 	}
2627 	if (free_space < (full_space >> 1)) {
2628 		icsk->icsk_ack.quick = 0;
2629 
2630 		if (tcp_under_memory_pressure(sk))
2631 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2632 					       4U * tp->advmss);
2633 
2634 		/* free_space might become our new window, make sure we don't
2635 		 * increase it due to wscale.
2636 		 */
2637 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2638 
2639 		/* if free space is less than mss estimate, or is below 1/16th
2640 		 * of the maximum allowed, try to move to zero-window, else
2641 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2642 		 * new incoming data is dropped due to memory limits.
2643 		 * With large window, mss test triggers way too late in order
2644 		 * to announce zero window in time before rmem limit kicks in.
2645 		 */
2646 		if (free_space < (allowed_space >> 4) || free_space < mss)
2647 			return 0;
2648 	}
2649 
2650 	if (free_space > tp->rcv_ssthresh)
2651 		free_space = tp->rcv_ssthresh;
2652 
2653 	/* Don't do rounding if we are using window scaling, since the
2654 	 * scaled window will not line up with the MSS boundary anyway.
2655 	 */
2656 	if (tp->rx_opt.rcv_wscale) {
2657 		window = free_space;
2658 
2659 		/* Advertise enough space so that it won't get scaled away.
2660 		 * Import case: prevent zero window announcement if
2661 		 * 1<<rcv_wscale > mss.
2662 		 */
2663 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2664 	} else {
2665 		window = tp->rcv_wnd;
2666 		/* Get the largest window that is a nice multiple of mss.
2667 		 * Window clamp already applied above.
2668 		 * If our current window offering is within 1 mss of the
2669 		 * free space we just keep it. This prevents the divide
2670 		 * and multiply from happening most of the time.
2671 		 * We also don't do any window rounding when the free space
2672 		 * is too small.
2673 		 */
2674 		if (window <= free_space - mss || window > free_space)
2675 			window = rounddown(free_space, mss);
2676 		else if (mss == full_space &&
2677 			 free_space > window + (full_space >> 1))
2678 			window = free_space;
2679 	}
2680 
2681 	return window;
2682 }
2683 
2684 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2685 			     const struct sk_buff *next_skb)
2686 {
2687 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2688 		const struct skb_shared_info *next_shinfo =
2689 			skb_shinfo(next_skb);
2690 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2691 
2692 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2693 		shinfo->tskey = next_shinfo->tskey;
2694 		TCP_SKB_CB(skb)->txstamp_ack |=
2695 			TCP_SKB_CB(next_skb)->txstamp_ack;
2696 	}
2697 }
2698 
2699 /* Collapses two adjacent SKB's during retransmission. */
2700 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2701 {
2702 	struct tcp_sock *tp = tcp_sk(sk);
2703 	struct sk_buff *next_skb = skb_rb_next(skb);
2704 	int next_skb_size;
2705 
2706 	next_skb_size = next_skb->len;
2707 
2708 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2709 
2710 	if (next_skb_size) {
2711 		if (next_skb_size <= skb_availroom(skb))
2712 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2713 				      next_skb_size);
2714 		else if (!skb_shift(skb, next_skb, next_skb_size))
2715 			return false;
2716 	}
2717 	tcp_highest_sack_replace(sk, next_skb, skb);
2718 
2719 	/* Update sequence range on original skb. */
2720 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2721 
2722 	/* Merge over control information. This moves PSH/FIN etc. over */
2723 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2724 
2725 	/* All done, get rid of second SKB and account for it so
2726 	 * packet counting does not break.
2727 	 */
2728 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2729 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2730 
2731 	/* changed transmit queue under us so clear hints */
2732 	tcp_clear_retrans_hints_partial(tp);
2733 	if (next_skb == tp->retransmit_skb_hint)
2734 		tp->retransmit_skb_hint = skb;
2735 
2736 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2737 
2738 	tcp_skb_collapse_tstamp(skb, next_skb);
2739 
2740 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2741 	return true;
2742 }
2743 
2744 /* Check if coalescing SKBs is legal. */
2745 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2746 {
2747 	if (tcp_skb_pcount(skb) > 1)
2748 		return false;
2749 	if (skb_cloned(skb))
2750 		return false;
2751 	/* Some heuristics for collapsing over SACK'd could be invented */
2752 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2753 		return false;
2754 
2755 	return true;
2756 }
2757 
2758 /* Collapse packets in the retransmit queue to make to create
2759  * less packets on the wire. This is only done on retransmission.
2760  */
2761 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2762 				     int space)
2763 {
2764 	struct tcp_sock *tp = tcp_sk(sk);
2765 	struct sk_buff *skb = to, *tmp;
2766 	bool first = true;
2767 
2768 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2769 		return;
2770 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2771 		return;
2772 
2773 	skb_rbtree_walk_from_safe(skb, tmp) {
2774 		if (!tcp_can_collapse(sk, skb))
2775 			break;
2776 
2777 		if (!tcp_skb_can_collapse_to(to))
2778 			break;
2779 
2780 		space -= skb->len;
2781 
2782 		if (first) {
2783 			first = false;
2784 			continue;
2785 		}
2786 
2787 		if (space < 0)
2788 			break;
2789 
2790 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2791 			break;
2792 
2793 		if (!tcp_collapse_retrans(sk, to))
2794 			break;
2795 	}
2796 }
2797 
2798 /* This retransmits one SKB.  Policy decisions and retransmit queue
2799  * state updates are done by the caller.  Returns non-zero if an
2800  * error occurred which prevented the send.
2801  */
2802 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2803 {
2804 	struct inet_connection_sock *icsk = inet_csk(sk);
2805 	struct tcp_sock *tp = tcp_sk(sk);
2806 	unsigned int cur_mss;
2807 	int diff, len, err;
2808 
2809 
2810 	/* Inconclusive MTU probe */
2811 	if (icsk->icsk_mtup.probe_size)
2812 		icsk->icsk_mtup.probe_size = 0;
2813 
2814 	/* Do not sent more than we queued. 1/4 is reserved for possible
2815 	 * copying overhead: fragmentation, tunneling, mangling etc.
2816 	 */
2817 	if (refcount_read(&sk->sk_wmem_alloc) >
2818 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2819 		  sk->sk_sndbuf))
2820 		return -EAGAIN;
2821 
2822 	if (skb_still_in_host_queue(sk, skb))
2823 		return -EBUSY;
2824 
2825 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2826 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2827 			WARN_ON_ONCE(1);
2828 			return -EINVAL;
2829 		}
2830 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2831 			return -ENOMEM;
2832 	}
2833 
2834 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2835 		return -EHOSTUNREACH; /* Routing failure or similar. */
2836 
2837 	cur_mss = tcp_current_mss(sk);
2838 
2839 	/* If receiver has shrunk his window, and skb is out of
2840 	 * new window, do not retransmit it. The exception is the
2841 	 * case, when window is shrunk to zero. In this case
2842 	 * our retransmit serves as a zero window probe.
2843 	 */
2844 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2845 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2846 		return -EAGAIN;
2847 
2848 	len = cur_mss * segs;
2849 	if (skb->len > len) {
2850 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2851 				 cur_mss, GFP_ATOMIC))
2852 			return -ENOMEM; /* We'll try again later. */
2853 	} else {
2854 		if (skb_unclone(skb, GFP_ATOMIC))
2855 			return -ENOMEM;
2856 
2857 		diff = tcp_skb_pcount(skb);
2858 		tcp_set_skb_tso_segs(skb, cur_mss);
2859 		diff -= tcp_skb_pcount(skb);
2860 		if (diff)
2861 			tcp_adjust_pcount(sk, skb, diff);
2862 		if (skb->len < cur_mss)
2863 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2864 	}
2865 
2866 	/* RFC3168, section 6.1.1.1. ECN fallback */
2867 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2868 		tcp_ecn_clear_syn(sk, skb);
2869 
2870 	/* Update global and local TCP statistics. */
2871 	segs = tcp_skb_pcount(skb);
2872 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2873 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2874 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2875 	tp->total_retrans += segs;
2876 	tp->bytes_retrans += skb->len;
2877 
2878 	/* make sure skb->data is aligned on arches that require it
2879 	 * and check if ack-trimming & collapsing extended the headroom
2880 	 * beyond what csum_start can cover.
2881 	 */
2882 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2883 		     skb_headroom(skb) >= 0xFFFF)) {
2884 		struct sk_buff *nskb;
2885 
2886 		tcp_skb_tsorted_save(skb) {
2887 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2888 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2889 				     -ENOBUFS;
2890 		} tcp_skb_tsorted_restore(skb);
2891 
2892 		if (!err) {
2893 			tcp_update_skb_after_send(sk, skb);
2894 			tcp_rate_skb_sent(sk, skb);
2895 		}
2896 	} else {
2897 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2898 	}
2899 
2900 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2901 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2902 				  TCP_SKB_CB(skb)->seq, segs, err);
2903 
2904 	if (likely(!err)) {
2905 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2906 		trace_tcp_retransmit_skb(sk, skb);
2907 	} else if (err != -EBUSY) {
2908 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2909 	}
2910 	return err;
2911 }
2912 
2913 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2914 {
2915 	struct tcp_sock *tp = tcp_sk(sk);
2916 	int err = __tcp_retransmit_skb(sk, skb, segs);
2917 
2918 	if (err == 0) {
2919 #if FASTRETRANS_DEBUG > 0
2920 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2921 			net_dbg_ratelimited("retrans_out leaked\n");
2922 		}
2923 #endif
2924 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2925 		tp->retrans_out += tcp_skb_pcount(skb);
2926 
2927 		/* Save stamp of the first retransmit. */
2928 		if (!tp->retrans_stamp)
2929 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2930 
2931 	}
2932 
2933 	if (tp->undo_retrans < 0)
2934 		tp->undo_retrans = 0;
2935 	tp->undo_retrans += tcp_skb_pcount(skb);
2936 	return err;
2937 }
2938 
2939 /* This gets called after a retransmit timeout, and the initially
2940  * retransmitted data is acknowledged.  It tries to continue
2941  * resending the rest of the retransmit queue, until either
2942  * we've sent it all or the congestion window limit is reached.
2943  */
2944 void tcp_xmit_retransmit_queue(struct sock *sk)
2945 {
2946 	const struct inet_connection_sock *icsk = inet_csk(sk);
2947 	struct sk_buff *skb, *rtx_head, *hole = NULL;
2948 	struct tcp_sock *tp = tcp_sk(sk);
2949 	u32 max_segs;
2950 	int mib_idx;
2951 
2952 	if (!tp->packets_out)
2953 		return;
2954 
2955 	rtx_head = tcp_rtx_queue_head(sk);
2956 	skb = tp->retransmit_skb_hint ?: rtx_head;
2957 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2958 	skb_rbtree_walk_from(skb) {
2959 		__u8 sacked;
2960 		int segs;
2961 
2962 		if (tcp_pacing_check(sk))
2963 			break;
2964 
2965 		/* we could do better than to assign each time */
2966 		if (!hole)
2967 			tp->retransmit_skb_hint = skb;
2968 
2969 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2970 		if (segs <= 0)
2971 			return;
2972 		sacked = TCP_SKB_CB(skb)->sacked;
2973 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2974 		 * we need to make sure not sending too bigs TSO packets
2975 		 */
2976 		segs = min_t(int, segs, max_segs);
2977 
2978 		if (tp->retrans_out >= tp->lost_out) {
2979 			break;
2980 		} else if (!(sacked & TCPCB_LOST)) {
2981 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2982 				hole = skb;
2983 			continue;
2984 
2985 		} else {
2986 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2987 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2988 			else
2989 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2990 		}
2991 
2992 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2993 			continue;
2994 
2995 		if (tcp_small_queue_check(sk, skb, 1))
2996 			return;
2997 
2998 		if (tcp_retransmit_skb(sk, skb, segs))
2999 			return;
3000 
3001 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3002 
3003 		if (tcp_in_cwnd_reduction(sk))
3004 			tp->prr_out += tcp_skb_pcount(skb);
3005 
3006 		if (skb == rtx_head &&
3007 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3008 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3009 						  inet_csk(sk)->icsk_rto,
3010 						  TCP_RTO_MAX);
3011 	}
3012 }
3013 
3014 /* We allow to exceed memory limits for FIN packets to expedite
3015  * connection tear down and (memory) recovery.
3016  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3017  * or even be forced to close flow without any FIN.
3018  * In general, we want to allow one skb per socket to avoid hangs
3019  * with edge trigger epoll()
3020  */
3021 void sk_forced_mem_schedule(struct sock *sk, int size)
3022 {
3023 	int amt;
3024 
3025 	if (size <= sk->sk_forward_alloc)
3026 		return;
3027 	amt = sk_mem_pages(size);
3028 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3029 	sk_memory_allocated_add(sk, amt);
3030 
3031 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3032 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3033 }
3034 
3035 /* Send a FIN. The caller locks the socket for us.
3036  * We should try to send a FIN packet really hard, but eventually give up.
3037  */
3038 void tcp_send_fin(struct sock *sk)
3039 {
3040 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3041 	struct tcp_sock *tp = tcp_sk(sk);
3042 
3043 	/* Optimization, tack on the FIN if we have one skb in write queue and
3044 	 * this skb was not yet sent, or we are under memory pressure.
3045 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3046 	 * as TCP stack thinks it has already been transmitted.
3047 	 */
3048 	if (!tskb && tcp_under_memory_pressure(sk))
3049 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3050 
3051 	if (tskb) {
3052 coalesce:
3053 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3054 		TCP_SKB_CB(tskb)->end_seq++;
3055 		tp->write_seq++;
3056 		if (tcp_write_queue_empty(sk)) {
3057 			/* This means tskb was already sent.
3058 			 * Pretend we included the FIN on previous transmit.
3059 			 * We need to set tp->snd_nxt to the value it would have
3060 			 * if FIN had been sent. This is because retransmit path
3061 			 * does not change tp->snd_nxt.
3062 			 */
3063 			tp->snd_nxt++;
3064 			return;
3065 		}
3066 	} else {
3067 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3068 		if (unlikely(!skb)) {
3069 			if (tskb)
3070 				goto coalesce;
3071 			return;
3072 		}
3073 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3074 		skb_reserve(skb, MAX_TCP_HEADER);
3075 		sk_forced_mem_schedule(sk, skb->truesize);
3076 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3077 		tcp_init_nondata_skb(skb, tp->write_seq,
3078 				     TCPHDR_ACK | TCPHDR_FIN);
3079 		tcp_queue_skb(sk, skb);
3080 	}
3081 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3082 }
3083 
3084 /* We get here when a process closes a file descriptor (either due to
3085  * an explicit close() or as a byproduct of exit()'ing) and there
3086  * was unread data in the receive queue.  This behavior is recommended
3087  * by RFC 2525, section 2.17.  -DaveM
3088  */
3089 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3090 {
3091 	struct sk_buff *skb;
3092 
3093 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3094 
3095 	/* NOTE: No TCP options attached and we never retransmit this. */
3096 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3097 	if (!skb) {
3098 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3099 		return;
3100 	}
3101 
3102 	/* Reserve space for headers and prepare control bits. */
3103 	skb_reserve(skb, MAX_TCP_HEADER);
3104 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3105 			     TCPHDR_ACK | TCPHDR_RST);
3106 	tcp_mstamp_refresh(tcp_sk(sk));
3107 	/* Send it off. */
3108 	if (tcp_transmit_skb(sk, skb, 0, priority))
3109 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3110 
3111 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3112 	 * skb here is different to the troublesome skb, so use NULL
3113 	 */
3114 	trace_tcp_send_reset(sk, NULL);
3115 }
3116 
3117 /* Send a crossed SYN-ACK during socket establishment.
3118  * WARNING: This routine must only be called when we have already sent
3119  * a SYN packet that crossed the incoming SYN that caused this routine
3120  * to get called. If this assumption fails then the initial rcv_wnd
3121  * and rcv_wscale values will not be correct.
3122  */
3123 int tcp_send_synack(struct sock *sk)
3124 {
3125 	struct sk_buff *skb;
3126 
3127 	skb = tcp_rtx_queue_head(sk);
3128 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3129 		pr_err("%s: wrong queue state\n", __func__);
3130 		return -EFAULT;
3131 	}
3132 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3133 		if (skb_cloned(skb)) {
3134 			struct sk_buff *nskb;
3135 
3136 			tcp_skb_tsorted_save(skb) {
3137 				nskb = skb_copy(skb, GFP_ATOMIC);
3138 			} tcp_skb_tsorted_restore(skb);
3139 			if (!nskb)
3140 				return -ENOMEM;
3141 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3142 			tcp_rtx_queue_unlink_and_free(skb, sk);
3143 			__skb_header_release(nskb);
3144 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3145 			sk->sk_wmem_queued += nskb->truesize;
3146 			sk_mem_charge(sk, nskb->truesize);
3147 			skb = nskb;
3148 		}
3149 
3150 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3151 		tcp_ecn_send_synack(sk, skb);
3152 	}
3153 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3154 }
3155 
3156 /**
3157  * tcp_make_synack - Prepare a SYN-ACK.
3158  * sk: listener socket
3159  * dst: dst entry attached to the SYNACK
3160  * req: request_sock pointer
3161  *
3162  * Allocate one skb and build a SYNACK packet.
3163  * @dst is consumed : Caller should not use it again.
3164  */
3165 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3166 				struct request_sock *req,
3167 				struct tcp_fastopen_cookie *foc,
3168 				enum tcp_synack_type synack_type)
3169 {
3170 	struct inet_request_sock *ireq = inet_rsk(req);
3171 	const struct tcp_sock *tp = tcp_sk(sk);
3172 	struct tcp_md5sig_key *md5 = NULL;
3173 	struct tcp_out_options opts;
3174 	struct sk_buff *skb;
3175 	int tcp_header_size;
3176 	struct tcphdr *th;
3177 	int mss;
3178 
3179 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3180 	if (unlikely(!skb)) {
3181 		dst_release(dst);
3182 		return NULL;
3183 	}
3184 	/* Reserve space for headers. */
3185 	skb_reserve(skb, MAX_TCP_HEADER);
3186 
3187 	switch (synack_type) {
3188 	case TCP_SYNACK_NORMAL:
3189 		skb_set_owner_w(skb, req_to_sk(req));
3190 		break;
3191 	case TCP_SYNACK_COOKIE:
3192 		/* Under synflood, we do not attach skb to a socket,
3193 		 * to avoid false sharing.
3194 		 */
3195 		break;
3196 	case TCP_SYNACK_FASTOPEN:
3197 		/* sk is a const pointer, because we want to express multiple
3198 		 * cpu might call us concurrently.
3199 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3200 		 */
3201 		skb_set_owner_w(skb, (struct sock *)sk);
3202 		break;
3203 	}
3204 	skb_dst_set(skb, dst);
3205 
3206 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3207 
3208 	memset(&opts, 0, sizeof(opts));
3209 #ifdef CONFIG_SYN_COOKIES
3210 	if (unlikely(req->cookie_ts))
3211 		skb->skb_mstamp_ns = cookie_init_timestamp(req);
3212 	else
3213 #endif
3214 		skb->skb_mstamp_ns = tcp_clock_ns();
3215 
3216 #ifdef CONFIG_TCP_MD5SIG
3217 	rcu_read_lock();
3218 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3219 #endif
3220 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3221 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3222 					     foc) + sizeof(*th);
3223 
3224 	skb_push(skb, tcp_header_size);
3225 	skb_reset_transport_header(skb);
3226 
3227 	th = (struct tcphdr *)skb->data;
3228 	memset(th, 0, sizeof(struct tcphdr));
3229 	th->syn = 1;
3230 	th->ack = 1;
3231 	tcp_ecn_make_synack(req, th);
3232 	th->source = htons(ireq->ir_num);
3233 	th->dest = ireq->ir_rmt_port;
3234 	skb->mark = ireq->ir_mark;
3235 	skb->ip_summed = CHECKSUM_PARTIAL;
3236 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3237 	/* XXX data is queued and acked as is. No buffer/window check */
3238 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3239 
3240 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3241 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3242 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3243 	th->doff = (tcp_header_size >> 2);
3244 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3245 
3246 #ifdef CONFIG_TCP_MD5SIG
3247 	/* Okay, we have all we need - do the md5 hash if needed */
3248 	if (md5)
3249 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3250 					       md5, req_to_sk(req), skb);
3251 	rcu_read_unlock();
3252 #endif
3253 
3254 	/* Do not fool tcpdump (if any), clean our debris */
3255 	skb->tstamp = 0;
3256 	return skb;
3257 }
3258 EXPORT_SYMBOL(tcp_make_synack);
3259 
3260 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3261 {
3262 	struct inet_connection_sock *icsk = inet_csk(sk);
3263 	const struct tcp_congestion_ops *ca;
3264 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3265 
3266 	if (ca_key == TCP_CA_UNSPEC)
3267 		return;
3268 
3269 	rcu_read_lock();
3270 	ca = tcp_ca_find_key(ca_key);
3271 	if (likely(ca && try_module_get(ca->owner))) {
3272 		module_put(icsk->icsk_ca_ops->owner);
3273 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3274 		icsk->icsk_ca_ops = ca;
3275 	}
3276 	rcu_read_unlock();
3277 }
3278 
3279 /* Do all connect socket setups that can be done AF independent. */
3280 static void tcp_connect_init(struct sock *sk)
3281 {
3282 	const struct dst_entry *dst = __sk_dst_get(sk);
3283 	struct tcp_sock *tp = tcp_sk(sk);
3284 	__u8 rcv_wscale;
3285 	u32 rcv_wnd;
3286 
3287 	/* We'll fix this up when we get a response from the other end.
3288 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3289 	 */
3290 	tp->tcp_header_len = sizeof(struct tcphdr);
3291 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3292 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3293 
3294 #ifdef CONFIG_TCP_MD5SIG
3295 	if (tp->af_specific->md5_lookup(sk, sk))
3296 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3297 #endif
3298 
3299 	/* If user gave his TCP_MAXSEG, record it to clamp */
3300 	if (tp->rx_opt.user_mss)
3301 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3302 	tp->max_window = 0;
3303 	tcp_mtup_init(sk);
3304 	tcp_sync_mss(sk, dst_mtu(dst));
3305 
3306 	tcp_ca_dst_init(sk, dst);
3307 
3308 	if (!tp->window_clamp)
3309 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3310 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3311 
3312 	tcp_initialize_rcv_mss(sk);
3313 
3314 	/* limit the window selection if the user enforce a smaller rx buffer */
3315 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3316 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3317 		tp->window_clamp = tcp_full_space(sk);
3318 
3319 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3320 	if (rcv_wnd == 0)
3321 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3322 
3323 	tcp_select_initial_window(sk, tcp_full_space(sk),
3324 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3325 				  &tp->rcv_wnd,
3326 				  &tp->window_clamp,
3327 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3328 				  &rcv_wscale,
3329 				  rcv_wnd);
3330 
3331 	tp->rx_opt.rcv_wscale = rcv_wscale;
3332 	tp->rcv_ssthresh = tp->rcv_wnd;
3333 
3334 	sk->sk_err = 0;
3335 	sock_reset_flag(sk, SOCK_DONE);
3336 	tp->snd_wnd = 0;
3337 	tcp_init_wl(tp, 0);
3338 	tcp_write_queue_purge(sk);
3339 	tp->snd_una = tp->write_seq;
3340 	tp->snd_sml = tp->write_seq;
3341 	tp->snd_up = tp->write_seq;
3342 	tp->snd_nxt = tp->write_seq;
3343 
3344 	if (likely(!tp->repair))
3345 		tp->rcv_nxt = 0;
3346 	else
3347 		tp->rcv_tstamp = tcp_jiffies32;
3348 	tp->rcv_wup = tp->rcv_nxt;
3349 	tp->copied_seq = tp->rcv_nxt;
3350 
3351 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3352 	inet_csk(sk)->icsk_retransmits = 0;
3353 	tcp_clear_retrans(tp);
3354 }
3355 
3356 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3357 {
3358 	struct tcp_sock *tp = tcp_sk(sk);
3359 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3360 
3361 	tcb->end_seq += skb->len;
3362 	__skb_header_release(skb);
3363 	sk->sk_wmem_queued += skb->truesize;
3364 	sk_mem_charge(sk, skb->truesize);
3365 	tp->write_seq = tcb->end_seq;
3366 	tp->packets_out += tcp_skb_pcount(skb);
3367 }
3368 
3369 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3370  * queue a data-only packet after the regular SYN, such that regular SYNs
3371  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3372  * only the SYN sequence, the data are retransmitted in the first ACK.
3373  * If cookie is not cached or other error occurs, falls back to send a
3374  * regular SYN with Fast Open cookie request option.
3375  */
3376 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3377 {
3378 	struct tcp_sock *tp = tcp_sk(sk);
3379 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3380 	int space, err = 0;
3381 	struct sk_buff *syn_data;
3382 
3383 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3384 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3385 		goto fallback;
3386 
3387 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3388 	 * user-MSS. Reserve maximum option space for middleboxes that add
3389 	 * private TCP options. The cost is reduced data space in SYN :(
3390 	 */
3391 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3392 
3393 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3394 		MAX_TCP_OPTION_SPACE;
3395 
3396 	space = min_t(size_t, space, fo->size);
3397 
3398 	/* limit to order-0 allocations */
3399 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3400 
3401 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3402 	if (!syn_data)
3403 		goto fallback;
3404 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3405 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3406 	if (space) {
3407 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3408 					    &fo->data->msg_iter);
3409 		if (unlikely(!copied)) {
3410 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3411 			kfree_skb(syn_data);
3412 			goto fallback;
3413 		}
3414 		if (copied != space) {
3415 			skb_trim(syn_data, copied);
3416 			space = copied;
3417 		}
3418 	}
3419 	/* No more data pending in inet_wait_for_connect() */
3420 	if (space == fo->size)
3421 		fo->data = NULL;
3422 	fo->copied = space;
3423 
3424 	tcp_connect_queue_skb(sk, syn_data);
3425 	if (syn_data->len)
3426 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3427 
3428 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3429 
3430 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3431 
3432 	/* Now full SYN+DATA was cloned and sent (or not),
3433 	 * remove the SYN from the original skb (syn_data)
3434 	 * we keep in write queue in case of a retransmit, as we
3435 	 * also have the SYN packet (with no data) in the same queue.
3436 	 */
3437 	TCP_SKB_CB(syn_data)->seq++;
3438 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3439 	if (!err) {
3440 		tp->syn_data = (fo->copied > 0);
3441 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3442 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3443 		goto done;
3444 	}
3445 
3446 	/* data was not sent, put it in write_queue */
3447 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3448 	tp->packets_out -= tcp_skb_pcount(syn_data);
3449 
3450 fallback:
3451 	/* Send a regular SYN with Fast Open cookie request option */
3452 	if (fo->cookie.len > 0)
3453 		fo->cookie.len = 0;
3454 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3455 	if (err)
3456 		tp->syn_fastopen = 0;
3457 done:
3458 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3459 	return err;
3460 }
3461 
3462 /* Build a SYN and send it off. */
3463 int tcp_connect(struct sock *sk)
3464 {
3465 	struct tcp_sock *tp = tcp_sk(sk);
3466 	struct sk_buff *buff;
3467 	int err;
3468 
3469 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3470 
3471 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3472 		return -EHOSTUNREACH; /* Routing failure or similar. */
3473 
3474 	tcp_connect_init(sk);
3475 
3476 	if (unlikely(tp->repair)) {
3477 		tcp_finish_connect(sk, NULL);
3478 		return 0;
3479 	}
3480 
3481 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3482 	if (unlikely(!buff))
3483 		return -ENOBUFS;
3484 
3485 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3486 	tcp_mstamp_refresh(tp);
3487 	tp->retrans_stamp = tcp_time_stamp(tp);
3488 	tcp_connect_queue_skb(sk, buff);
3489 	tcp_ecn_send_syn(sk, buff);
3490 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3491 
3492 	/* Send off SYN; include data in Fast Open. */
3493 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3494 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3495 	if (err == -ECONNREFUSED)
3496 		return err;
3497 
3498 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3499 	 * in order to make this packet get counted in tcpOutSegs.
3500 	 */
3501 	tp->snd_nxt = tp->write_seq;
3502 	tp->pushed_seq = tp->write_seq;
3503 	buff = tcp_send_head(sk);
3504 	if (unlikely(buff)) {
3505 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3506 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3507 	}
3508 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3509 
3510 	/* Timer for repeating the SYN until an answer. */
3511 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3512 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3513 	return 0;
3514 }
3515 EXPORT_SYMBOL(tcp_connect);
3516 
3517 /* Send out a delayed ack, the caller does the policy checking
3518  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3519  * for details.
3520  */
3521 void tcp_send_delayed_ack(struct sock *sk)
3522 {
3523 	struct inet_connection_sock *icsk = inet_csk(sk);
3524 	int ato = icsk->icsk_ack.ato;
3525 	unsigned long timeout;
3526 
3527 	if (ato > TCP_DELACK_MIN) {
3528 		const struct tcp_sock *tp = tcp_sk(sk);
3529 		int max_ato = HZ / 2;
3530 
3531 		if (icsk->icsk_ack.pingpong ||
3532 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3533 			max_ato = TCP_DELACK_MAX;
3534 
3535 		/* Slow path, intersegment interval is "high". */
3536 
3537 		/* If some rtt estimate is known, use it to bound delayed ack.
3538 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3539 		 * directly.
3540 		 */
3541 		if (tp->srtt_us) {
3542 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3543 					TCP_DELACK_MIN);
3544 
3545 			if (rtt < max_ato)
3546 				max_ato = rtt;
3547 		}
3548 
3549 		ato = min(ato, max_ato);
3550 	}
3551 
3552 	/* Stay within the limit we were given */
3553 	timeout = jiffies + ato;
3554 
3555 	/* Use new timeout only if there wasn't a older one earlier. */
3556 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3557 		/* If delack timer was blocked or is about to expire,
3558 		 * send ACK now.
3559 		 */
3560 		if (icsk->icsk_ack.blocked ||
3561 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3562 			tcp_send_ack(sk);
3563 			return;
3564 		}
3565 
3566 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3567 			timeout = icsk->icsk_ack.timeout;
3568 	}
3569 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3570 	icsk->icsk_ack.timeout = timeout;
3571 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3572 }
3573 
3574 /* This routine sends an ack and also updates the window. */
3575 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3576 {
3577 	struct sk_buff *buff;
3578 
3579 	/* If we have been reset, we may not send again. */
3580 	if (sk->sk_state == TCP_CLOSE)
3581 		return;
3582 
3583 	/* We are not putting this on the write queue, so
3584 	 * tcp_transmit_skb() will set the ownership to this
3585 	 * sock.
3586 	 */
3587 	buff = alloc_skb(MAX_TCP_HEADER,
3588 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3589 	if (unlikely(!buff)) {
3590 		inet_csk_schedule_ack(sk);
3591 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3592 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3593 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3594 		return;
3595 	}
3596 
3597 	/* Reserve space for headers and prepare control bits. */
3598 	skb_reserve(buff, MAX_TCP_HEADER);
3599 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3600 
3601 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3602 	 * too much.
3603 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3604 	 */
3605 	skb_set_tcp_pure_ack(buff);
3606 
3607 	/* Send it off, this clears delayed acks for us. */
3608 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3609 }
3610 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3611 
3612 void tcp_send_ack(struct sock *sk)
3613 {
3614 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3615 }
3616 
3617 /* This routine sends a packet with an out of date sequence
3618  * number. It assumes the other end will try to ack it.
3619  *
3620  * Question: what should we make while urgent mode?
3621  * 4.4BSD forces sending single byte of data. We cannot send
3622  * out of window data, because we have SND.NXT==SND.MAX...
3623  *
3624  * Current solution: to send TWO zero-length segments in urgent mode:
3625  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3626  * out-of-date with SND.UNA-1 to probe window.
3627  */
3628 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3629 {
3630 	struct tcp_sock *tp = tcp_sk(sk);
3631 	struct sk_buff *skb;
3632 
3633 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3634 	skb = alloc_skb(MAX_TCP_HEADER,
3635 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3636 	if (!skb)
3637 		return -1;
3638 
3639 	/* Reserve space for headers and set control bits. */
3640 	skb_reserve(skb, MAX_TCP_HEADER);
3641 	/* Use a previous sequence.  This should cause the other
3642 	 * end to send an ack.  Don't queue or clone SKB, just
3643 	 * send it.
3644 	 */
3645 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3646 	NET_INC_STATS(sock_net(sk), mib);
3647 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3648 }
3649 
3650 /* Called from setsockopt( ... TCP_REPAIR ) */
3651 void tcp_send_window_probe(struct sock *sk)
3652 {
3653 	if (sk->sk_state == TCP_ESTABLISHED) {
3654 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3655 		tcp_mstamp_refresh(tcp_sk(sk));
3656 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3657 	}
3658 }
3659 
3660 /* Initiate keepalive or window probe from timer. */
3661 int tcp_write_wakeup(struct sock *sk, int mib)
3662 {
3663 	struct tcp_sock *tp = tcp_sk(sk);
3664 	struct sk_buff *skb;
3665 
3666 	if (sk->sk_state == TCP_CLOSE)
3667 		return -1;
3668 
3669 	skb = tcp_send_head(sk);
3670 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3671 		int err;
3672 		unsigned int mss = tcp_current_mss(sk);
3673 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3674 
3675 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3676 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3677 
3678 		/* We are probing the opening of a window
3679 		 * but the window size is != 0
3680 		 * must have been a result SWS avoidance ( sender )
3681 		 */
3682 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3683 		    skb->len > mss) {
3684 			seg_size = min(seg_size, mss);
3685 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3686 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3687 					 skb, seg_size, mss, GFP_ATOMIC))
3688 				return -1;
3689 		} else if (!tcp_skb_pcount(skb))
3690 			tcp_set_skb_tso_segs(skb, mss);
3691 
3692 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3693 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3694 		if (!err)
3695 			tcp_event_new_data_sent(sk, skb);
3696 		return err;
3697 	} else {
3698 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3699 			tcp_xmit_probe_skb(sk, 1, mib);
3700 		return tcp_xmit_probe_skb(sk, 0, mib);
3701 	}
3702 }
3703 
3704 /* A window probe timeout has occurred.  If window is not closed send
3705  * a partial packet else a zero probe.
3706  */
3707 void tcp_send_probe0(struct sock *sk)
3708 {
3709 	struct inet_connection_sock *icsk = inet_csk(sk);
3710 	struct tcp_sock *tp = tcp_sk(sk);
3711 	struct net *net = sock_net(sk);
3712 	unsigned long probe_max;
3713 	int err;
3714 
3715 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3716 
3717 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3718 		/* Cancel probe timer, if it is not required. */
3719 		icsk->icsk_probes_out = 0;
3720 		icsk->icsk_backoff = 0;
3721 		return;
3722 	}
3723 
3724 	if (err <= 0) {
3725 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3726 			icsk->icsk_backoff++;
3727 		icsk->icsk_probes_out++;
3728 		probe_max = TCP_RTO_MAX;
3729 	} else {
3730 		/* If packet was not sent due to local congestion,
3731 		 * do not backoff and do not remember icsk_probes_out.
3732 		 * Let local senders to fight for local resources.
3733 		 *
3734 		 * Use accumulated backoff yet.
3735 		 */
3736 		if (!icsk->icsk_probes_out)
3737 			icsk->icsk_probes_out = 1;
3738 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3739 	}
3740 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3741 				  tcp_probe0_when(sk, probe_max),
3742 				  TCP_RTO_MAX);
3743 }
3744 
3745 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3746 {
3747 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3748 	struct flowi fl;
3749 	int res;
3750 
3751 	tcp_rsk(req)->txhash = net_tx_rndhash();
3752 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3753 	if (!res) {
3754 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3755 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3756 		if (unlikely(tcp_passive_fastopen(sk)))
3757 			tcp_sk(sk)->total_retrans++;
3758 		trace_tcp_retransmit_synack(sk, req);
3759 	}
3760 	return res;
3761 }
3762 EXPORT_SYMBOL(tcp_rtx_synack);
3763