xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 8ee90c5c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 			   int push_one, gfp_t gfp);
67 
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 	struct inet_connection_sock *icsk = inet_csk(sk);
72 	struct tcp_sock *tp = tcp_sk(sk);
73 	unsigned int prior_packets = tp->packets_out;
74 
75 	tcp_advance_send_head(sk, skb);
76 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 		tcp_rearm_rto(sk);
81 
82 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 		      tcp_skb_pcount(skb));
84 }
85 
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87  * window scaling factor due to loss of precision.
88  * If window has been shrunk, what should we make? It is not clear at all.
89  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91  * invalid. OK, let's make this for now:
92  */
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 	const struct tcp_sock *tp = tcp_sk(sk);
96 
97 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 	    (tp->rx_opt.wscale_ok &&
99 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 		return tp->snd_nxt;
101 	else
102 		return tcp_wnd_end(tp);
103 }
104 
105 /* Calculate mss to advertise in SYN segment.
106  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107  *
108  * 1. It is independent of path mtu.
109  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111  *    attached devices, because some buggy hosts are confused by
112  *    large MSS.
113  * 4. We do not make 3, we advertise MSS, calculated from first
114  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
115  *    This may be overridden via information stored in routing table.
116  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117  *    probably even Jumbo".
118  */
119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 	struct tcp_sock *tp = tcp_sk(sk);
122 	const struct dst_entry *dst = __sk_dst_get(sk);
123 	int mss = tp->advmss;
124 
125 	if (dst) {
126 		unsigned int metric = dst_metric_advmss(dst);
127 
128 		if (metric < mss) {
129 			mss = metric;
130 			tp->advmss = mss;
131 		}
132 	}
133 
134 	return (__u16)mss;
135 }
136 
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138  * This is the first part of cwnd validation mechanism.
139  */
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 	struct tcp_sock *tp = tcp_sk(sk);
143 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 	u32 cwnd = tp->snd_cwnd;
145 
146 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147 
148 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 	restart_cwnd = min(restart_cwnd, cwnd);
150 
151 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 		cwnd >>= 1;
153 	tp->snd_cwnd = max(cwnd, restart_cwnd);
154 	tp->snd_cwnd_stamp = tcp_jiffies32;
155 	tp->snd_cwnd_used = 0;
156 }
157 
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 				struct sock *sk)
161 {
162 	struct inet_connection_sock *icsk = inet_csk(sk);
163 	const u32 now = tcp_jiffies32;
164 
165 	if (tcp_packets_in_flight(tp) == 0)
166 		tcp_ca_event(sk, CA_EVENT_TX_START);
167 
168 	tp->lsndtime = now;
169 
170 	/* If it is a reply for ato after last received
171 	 * packet, enter pingpong mode.
172 	 */
173 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 		icsk->icsk_ack.pingpong = 1;
175 }
176 
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 	tcp_dec_quickack_mode(sk, pkts);
181 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183 
184 
185 u32 tcp_default_init_rwnd(u32 mss)
186 {
187 	/* Initial receive window should be twice of TCP_INIT_CWND to
188 	 * enable proper sending of new unsent data during fast recovery
189 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
190 	 * limit when mss is larger than 1460.
191 	 */
192 	u32 init_rwnd = TCP_INIT_CWND * 2;
193 
194 	if (mss > 1460)
195 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
196 	return init_rwnd;
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
206 void tcp_select_initial_window(int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (*window_clamp == 0)
215 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 	space = min(*window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = rounddown(space, mss);
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (sysctl_tcp_workaround_signed_windows)
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = space;
234 
235 	(*rcv_wscale) = 0;
236 	if (wscale_ok) {
237 		/* Set window scaling on max possible window */
238 		space = max_t(u32, space, sysctl_tcp_rmem[2]);
239 		space = max_t(u32, space, sysctl_rmem_max);
240 		space = min_t(u32, space, *window_clamp);
241 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
242 			space >>= 1;
243 			(*rcv_wscale)++;
244 		}
245 	}
246 
247 	if (mss > (1 << *rcv_wscale)) {
248 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 			init_rcv_wnd = tcp_default_init_rwnd(mss);
250 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 	}
252 
253 	/* Set the clamp no higher than max representable value */
254 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
255 }
256 EXPORT_SYMBOL(tcp_select_initial_window);
257 
258 /* Chose a new window to advertise, update state in tcp_sock for the
259  * socket, and return result with RFC1323 scaling applied.  The return
260  * value can be stuffed directly into th->window for an outgoing
261  * frame.
262  */
263 static u16 tcp_select_window(struct sock *sk)
264 {
265 	struct tcp_sock *tp = tcp_sk(sk);
266 	u32 old_win = tp->rcv_wnd;
267 	u32 cur_win = tcp_receive_window(tp);
268 	u32 new_win = __tcp_select_window(sk);
269 
270 	/* Never shrink the offered window */
271 	if (new_win < cur_win) {
272 		/* Danger Will Robinson!
273 		 * Don't update rcv_wup/rcv_wnd here or else
274 		 * we will not be able to advertise a zero
275 		 * window in time.  --DaveM
276 		 *
277 		 * Relax Will Robinson.
278 		 */
279 		if (new_win == 0)
280 			NET_INC_STATS(sock_net(sk),
281 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
282 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
283 	}
284 	tp->rcv_wnd = new_win;
285 	tp->rcv_wup = tp->rcv_nxt;
286 
287 	/* Make sure we do not exceed the maximum possible
288 	 * scaled window.
289 	 */
290 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 		new_win = min(new_win, MAX_TCP_WINDOW);
292 	else
293 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
294 
295 	/* RFC1323 scaling applied */
296 	new_win >>= tp->rx_opt.rcv_wscale;
297 
298 	/* If we advertise zero window, disable fast path. */
299 	if (new_win == 0) {
300 		tp->pred_flags = 0;
301 		if (old_win)
302 			NET_INC_STATS(sock_net(sk),
303 				      LINUX_MIB_TCPTOZEROWINDOWADV);
304 	} else if (old_win == 0) {
305 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
306 	}
307 
308 	return new_win;
309 }
310 
311 /* Packet ECN state for a SYN-ACK */
312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
313 {
314 	const struct tcp_sock *tp = tcp_sk(sk);
315 
316 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
317 	if (!(tp->ecn_flags & TCP_ECN_OK))
318 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
319 	else if (tcp_ca_needs_ecn(sk) ||
320 		 tcp_bpf_ca_needs_ecn(sk))
321 		INET_ECN_xmit(sk);
322 }
323 
324 /* Packet ECN state for a SYN.  */
325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
326 {
327 	struct tcp_sock *tp = tcp_sk(sk);
328 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
329 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
330 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
331 
332 	if (!use_ecn) {
333 		const struct dst_entry *dst = __sk_dst_get(sk);
334 
335 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
336 			use_ecn = true;
337 	}
338 
339 	tp->ecn_flags = 0;
340 
341 	if (use_ecn) {
342 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
343 		tp->ecn_flags = TCP_ECN_OK;
344 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
345 			INET_ECN_xmit(sk);
346 	}
347 }
348 
349 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
350 {
351 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
352 		/* tp->ecn_flags are cleared at a later point in time when
353 		 * SYN ACK is ultimatively being received.
354 		 */
355 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
356 }
357 
358 static void
359 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
360 {
361 	if (inet_rsk(req)->ecn_ok)
362 		th->ece = 1;
363 }
364 
365 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
366  * be sent.
367  */
368 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
369 			 struct tcphdr *th, int tcp_header_len)
370 {
371 	struct tcp_sock *tp = tcp_sk(sk);
372 
373 	if (tp->ecn_flags & TCP_ECN_OK) {
374 		/* Not-retransmitted data segment: set ECT and inject CWR. */
375 		if (skb->len != tcp_header_len &&
376 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
377 			INET_ECN_xmit(sk);
378 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
379 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
380 				th->cwr = 1;
381 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
382 			}
383 		} else if (!tcp_ca_needs_ecn(sk)) {
384 			/* ACK or retransmitted segment: clear ECT|CE */
385 			INET_ECN_dontxmit(sk);
386 		}
387 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
388 			th->ece = 1;
389 	}
390 }
391 
392 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
393  * auto increment end seqno.
394  */
395 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
396 {
397 	skb->ip_summed = CHECKSUM_PARTIAL;
398 	skb->csum = 0;
399 
400 	TCP_SKB_CB(skb)->tcp_flags = flags;
401 	TCP_SKB_CB(skb)->sacked = 0;
402 
403 	tcp_skb_pcount_set(skb, 1);
404 
405 	TCP_SKB_CB(skb)->seq = seq;
406 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
407 		seq++;
408 	TCP_SKB_CB(skb)->end_seq = seq;
409 }
410 
411 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
412 {
413 	return tp->snd_una != tp->snd_up;
414 }
415 
416 #define OPTION_SACK_ADVERTISE	(1 << 0)
417 #define OPTION_TS		(1 << 1)
418 #define OPTION_MD5		(1 << 2)
419 #define OPTION_WSCALE		(1 << 3)
420 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
421 
422 struct tcp_out_options {
423 	u16 options;		/* bit field of OPTION_* */
424 	u16 mss;		/* 0 to disable */
425 	u8 ws;			/* window scale, 0 to disable */
426 	u8 num_sack_blocks;	/* number of SACK blocks to include */
427 	u8 hash_size;		/* bytes in hash_location */
428 	__u8 *hash_location;	/* temporary pointer, overloaded */
429 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
430 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
431 };
432 
433 /* Write previously computed TCP options to the packet.
434  *
435  * Beware: Something in the Internet is very sensitive to the ordering of
436  * TCP options, we learned this through the hard way, so be careful here.
437  * Luckily we can at least blame others for their non-compliance but from
438  * inter-operability perspective it seems that we're somewhat stuck with
439  * the ordering which we have been using if we want to keep working with
440  * those broken things (not that it currently hurts anybody as there isn't
441  * particular reason why the ordering would need to be changed).
442  *
443  * At least SACK_PERM as the first option is known to lead to a disaster
444  * (but it may well be that other scenarios fail similarly).
445  */
446 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
447 			      struct tcp_out_options *opts)
448 {
449 	u16 options = opts->options;	/* mungable copy */
450 
451 	if (unlikely(OPTION_MD5 & options)) {
452 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
453 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
454 		/* overload cookie hash location */
455 		opts->hash_location = (__u8 *)ptr;
456 		ptr += 4;
457 	}
458 
459 	if (unlikely(opts->mss)) {
460 		*ptr++ = htonl((TCPOPT_MSS << 24) |
461 			       (TCPOLEN_MSS << 16) |
462 			       opts->mss);
463 	}
464 
465 	if (likely(OPTION_TS & options)) {
466 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
467 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
468 				       (TCPOLEN_SACK_PERM << 16) |
469 				       (TCPOPT_TIMESTAMP << 8) |
470 				       TCPOLEN_TIMESTAMP);
471 			options &= ~OPTION_SACK_ADVERTISE;
472 		} else {
473 			*ptr++ = htonl((TCPOPT_NOP << 24) |
474 				       (TCPOPT_NOP << 16) |
475 				       (TCPOPT_TIMESTAMP << 8) |
476 				       TCPOLEN_TIMESTAMP);
477 		}
478 		*ptr++ = htonl(opts->tsval);
479 		*ptr++ = htonl(opts->tsecr);
480 	}
481 
482 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
483 		*ptr++ = htonl((TCPOPT_NOP << 24) |
484 			       (TCPOPT_NOP << 16) |
485 			       (TCPOPT_SACK_PERM << 8) |
486 			       TCPOLEN_SACK_PERM);
487 	}
488 
489 	if (unlikely(OPTION_WSCALE & options)) {
490 		*ptr++ = htonl((TCPOPT_NOP << 24) |
491 			       (TCPOPT_WINDOW << 16) |
492 			       (TCPOLEN_WINDOW << 8) |
493 			       opts->ws);
494 	}
495 
496 	if (unlikely(opts->num_sack_blocks)) {
497 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
498 			tp->duplicate_sack : tp->selective_acks;
499 		int this_sack;
500 
501 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
502 			       (TCPOPT_NOP  << 16) |
503 			       (TCPOPT_SACK <<  8) |
504 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
505 						     TCPOLEN_SACK_PERBLOCK)));
506 
507 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
508 		     ++this_sack) {
509 			*ptr++ = htonl(sp[this_sack].start_seq);
510 			*ptr++ = htonl(sp[this_sack].end_seq);
511 		}
512 
513 		tp->rx_opt.dsack = 0;
514 	}
515 
516 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
517 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
518 		u8 *p = (u8 *)ptr;
519 		u32 len; /* Fast Open option length */
520 
521 		if (foc->exp) {
522 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
523 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
524 				     TCPOPT_FASTOPEN_MAGIC);
525 			p += TCPOLEN_EXP_FASTOPEN_BASE;
526 		} else {
527 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
528 			*p++ = TCPOPT_FASTOPEN;
529 			*p++ = len;
530 		}
531 
532 		memcpy(p, foc->val, foc->len);
533 		if ((len & 3) == 2) {
534 			p[foc->len] = TCPOPT_NOP;
535 			p[foc->len + 1] = TCPOPT_NOP;
536 		}
537 		ptr += (len + 3) >> 2;
538 	}
539 }
540 
541 /* Compute TCP options for SYN packets. This is not the final
542  * network wire format yet.
543  */
544 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
545 				struct tcp_out_options *opts,
546 				struct tcp_md5sig_key **md5)
547 {
548 	struct tcp_sock *tp = tcp_sk(sk);
549 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
550 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
551 
552 #ifdef CONFIG_TCP_MD5SIG
553 	*md5 = tp->af_specific->md5_lookup(sk, sk);
554 	if (*md5) {
555 		opts->options |= OPTION_MD5;
556 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
557 	}
558 #else
559 	*md5 = NULL;
560 #endif
561 
562 	/* We always get an MSS option.  The option bytes which will be seen in
563 	 * normal data packets should timestamps be used, must be in the MSS
564 	 * advertised.  But we subtract them from tp->mss_cache so that
565 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
566 	 * fact here if necessary.  If we don't do this correctly, as a
567 	 * receiver we won't recognize data packets as being full sized when we
568 	 * should, and thus we won't abide by the delayed ACK rules correctly.
569 	 * SACKs don't matter, we never delay an ACK when we have any of those
570 	 * going out.  */
571 	opts->mss = tcp_advertise_mss(sk);
572 	remaining -= TCPOLEN_MSS_ALIGNED;
573 
574 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
575 		opts->options |= OPTION_TS;
576 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
577 		opts->tsecr = tp->rx_opt.ts_recent;
578 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
579 	}
580 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
581 		opts->ws = tp->rx_opt.rcv_wscale;
582 		opts->options |= OPTION_WSCALE;
583 		remaining -= TCPOLEN_WSCALE_ALIGNED;
584 	}
585 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
586 		opts->options |= OPTION_SACK_ADVERTISE;
587 		if (unlikely(!(OPTION_TS & opts->options)))
588 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
589 	}
590 
591 	if (fastopen && fastopen->cookie.len >= 0) {
592 		u32 need = fastopen->cookie.len;
593 
594 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
595 					       TCPOLEN_FASTOPEN_BASE;
596 		need = (need + 3) & ~3U;  /* Align to 32 bits */
597 		if (remaining >= need) {
598 			opts->options |= OPTION_FAST_OPEN_COOKIE;
599 			opts->fastopen_cookie = &fastopen->cookie;
600 			remaining -= need;
601 			tp->syn_fastopen = 1;
602 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
603 		}
604 	}
605 
606 	return MAX_TCP_OPTION_SPACE - remaining;
607 }
608 
609 /* Set up TCP options for SYN-ACKs. */
610 static unsigned int tcp_synack_options(struct request_sock *req,
611 				       unsigned int mss, struct sk_buff *skb,
612 				       struct tcp_out_options *opts,
613 				       const struct tcp_md5sig_key *md5,
614 				       struct tcp_fastopen_cookie *foc)
615 {
616 	struct inet_request_sock *ireq = inet_rsk(req);
617 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
618 
619 #ifdef CONFIG_TCP_MD5SIG
620 	if (md5) {
621 		opts->options |= OPTION_MD5;
622 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
623 
624 		/* We can't fit any SACK blocks in a packet with MD5 + TS
625 		 * options. There was discussion about disabling SACK
626 		 * rather than TS in order to fit in better with old,
627 		 * buggy kernels, but that was deemed to be unnecessary.
628 		 */
629 		ireq->tstamp_ok &= !ireq->sack_ok;
630 	}
631 #endif
632 
633 	/* We always send an MSS option. */
634 	opts->mss = mss;
635 	remaining -= TCPOLEN_MSS_ALIGNED;
636 
637 	if (likely(ireq->wscale_ok)) {
638 		opts->ws = ireq->rcv_wscale;
639 		opts->options |= OPTION_WSCALE;
640 		remaining -= TCPOLEN_WSCALE_ALIGNED;
641 	}
642 	if (likely(ireq->tstamp_ok)) {
643 		opts->options |= OPTION_TS;
644 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
645 		opts->tsecr = req->ts_recent;
646 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
647 	}
648 	if (likely(ireq->sack_ok)) {
649 		opts->options |= OPTION_SACK_ADVERTISE;
650 		if (unlikely(!ireq->tstamp_ok))
651 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
652 	}
653 	if (foc != NULL && foc->len >= 0) {
654 		u32 need = foc->len;
655 
656 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
657 				   TCPOLEN_FASTOPEN_BASE;
658 		need = (need + 3) & ~3U;  /* Align to 32 bits */
659 		if (remaining >= need) {
660 			opts->options |= OPTION_FAST_OPEN_COOKIE;
661 			opts->fastopen_cookie = foc;
662 			remaining -= need;
663 		}
664 	}
665 
666 	return MAX_TCP_OPTION_SPACE - remaining;
667 }
668 
669 /* Compute TCP options for ESTABLISHED sockets. This is not the
670  * final wire format yet.
671  */
672 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
673 					struct tcp_out_options *opts,
674 					struct tcp_md5sig_key **md5)
675 {
676 	struct tcp_sock *tp = tcp_sk(sk);
677 	unsigned int size = 0;
678 	unsigned int eff_sacks;
679 
680 	opts->options = 0;
681 
682 #ifdef CONFIG_TCP_MD5SIG
683 	*md5 = tp->af_specific->md5_lookup(sk, sk);
684 	if (unlikely(*md5)) {
685 		opts->options |= OPTION_MD5;
686 		size += TCPOLEN_MD5SIG_ALIGNED;
687 	}
688 #else
689 	*md5 = NULL;
690 #endif
691 
692 	if (likely(tp->rx_opt.tstamp_ok)) {
693 		opts->options |= OPTION_TS;
694 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
695 		opts->tsecr = tp->rx_opt.ts_recent;
696 		size += TCPOLEN_TSTAMP_ALIGNED;
697 	}
698 
699 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
700 	if (unlikely(eff_sacks)) {
701 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
702 		opts->num_sack_blocks =
703 			min_t(unsigned int, eff_sacks,
704 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
705 			      TCPOLEN_SACK_PERBLOCK);
706 		size += TCPOLEN_SACK_BASE_ALIGNED +
707 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
708 	}
709 
710 	return size;
711 }
712 
713 
714 /* TCP SMALL QUEUES (TSQ)
715  *
716  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
717  * to reduce RTT and bufferbloat.
718  * We do this using a special skb destructor (tcp_wfree).
719  *
720  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
721  * needs to be reallocated in a driver.
722  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
723  *
724  * Since transmit from skb destructor is forbidden, we use a tasklet
725  * to process all sockets that eventually need to send more skbs.
726  * We use one tasklet per cpu, with its own queue of sockets.
727  */
728 struct tsq_tasklet {
729 	struct tasklet_struct	tasklet;
730 	struct list_head	head; /* queue of tcp sockets */
731 };
732 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
733 
734 static void tcp_tsq_handler(struct sock *sk)
735 {
736 	if ((1 << sk->sk_state) &
737 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
738 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
739 		struct tcp_sock *tp = tcp_sk(sk);
740 
741 		if (tp->lost_out > tp->retrans_out &&
742 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
743 			tcp_mstamp_refresh(tp);
744 			tcp_xmit_retransmit_queue(sk);
745 		}
746 
747 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
748 			       0, GFP_ATOMIC);
749 	}
750 }
751 /*
752  * One tasklet per cpu tries to send more skbs.
753  * We run in tasklet context but need to disable irqs when
754  * transferring tsq->head because tcp_wfree() might
755  * interrupt us (non NAPI drivers)
756  */
757 static void tcp_tasklet_func(unsigned long data)
758 {
759 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
760 	LIST_HEAD(list);
761 	unsigned long flags;
762 	struct list_head *q, *n;
763 	struct tcp_sock *tp;
764 	struct sock *sk;
765 
766 	local_irq_save(flags);
767 	list_splice_init(&tsq->head, &list);
768 	local_irq_restore(flags);
769 
770 	list_for_each_safe(q, n, &list) {
771 		tp = list_entry(q, struct tcp_sock, tsq_node);
772 		list_del(&tp->tsq_node);
773 
774 		sk = (struct sock *)tp;
775 		smp_mb__before_atomic();
776 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
777 
778 		if (!sk->sk_lock.owned &&
779 		    test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
780 			bh_lock_sock(sk);
781 			if (!sock_owned_by_user(sk)) {
782 				clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
783 				tcp_tsq_handler(sk);
784 			}
785 			bh_unlock_sock(sk);
786 		}
787 
788 		sk_free(sk);
789 	}
790 }
791 
792 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
793 			  TCPF_WRITE_TIMER_DEFERRED |	\
794 			  TCPF_DELACK_TIMER_DEFERRED |	\
795 			  TCPF_MTU_REDUCED_DEFERRED)
796 /**
797  * tcp_release_cb - tcp release_sock() callback
798  * @sk: socket
799  *
800  * called from release_sock() to perform protocol dependent
801  * actions before socket release.
802  */
803 void tcp_release_cb(struct sock *sk)
804 {
805 	unsigned long flags, nflags;
806 
807 	/* perform an atomic operation only if at least one flag is set */
808 	do {
809 		flags = sk->sk_tsq_flags;
810 		if (!(flags & TCP_DEFERRED_ALL))
811 			return;
812 		nflags = flags & ~TCP_DEFERRED_ALL;
813 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
814 
815 	if (flags & TCPF_TSQ_DEFERRED)
816 		tcp_tsq_handler(sk);
817 
818 	/* Here begins the tricky part :
819 	 * We are called from release_sock() with :
820 	 * 1) BH disabled
821 	 * 2) sk_lock.slock spinlock held
822 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
823 	 *
824 	 * But following code is meant to be called from BH handlers,
825 	 * so we should keep BH disabled, but early release socket ownership
826 	 */
827 	sock_release_ownership(sk);
828 
829 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
830 		tcp_write_timer_handler(sk);
831 		__sock_put(sk);
832 	}
833 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
834 		tcp_delack_timer_handler(sk);
835 		__sock_put(sk);
836 	}
837 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
838 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
839 		__sock_put(sk);
840 	}
841 }
842 EXPORT_SYMBOL(tcp_release_cb);
843 
844 void __init tcp_tasklet_init(void)
845 {
846 	int i;
847 
848 	for_each_possible_cpu(i) {
849 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
850 
851 		INIT_LIST_HEAD(&tsq->head);
852 		tasklet_init(&tsq->tasklet,
853 			     tcp_tasklet_func,
854 			     (unsigned long)tsq);
855 	}
856 }
857 
858 /*
859  * Write buffer destructor automatically called from kfree_skb.
860  * We can't xmit new skbs from this context, as we might already
861  * hold qdisc lock.
862  */
863 void tcp_wfree(struct sk_buff *skb)
864 {
865 	struct sock *sk = skb->sk;
866 	struct tcp_sock *tp = tcp_sk(sk);
867 	unsigned long flags, nval, oval;
868 
869 	/* Keep one reference on sk_wmem_alloc.
870 	 * Will be released by sk_free() from here or tcp_tasklet_func()
871 	 */
872 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
873 
874 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
875 	 * Wait until our queues (qdisc + devices) are drained.
876 	 * This gives :
877 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
878 	 * - chance for incoming ACK (processed by another cpu maybe)
879 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
880 	 */
881 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
882 		goto out;
883 
884 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
885 		struct tsq_tasklet *tsq;
886 		bool empty;
887 
888 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
889 			goto out;
890 
891 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
892 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
893 		if (nval != oval)
894 			continue;
895 
896 		/* queue this socket to tasklet queue */
897 		local_irq_save(flags);
898 		tsq = this_cpu_ptr(&tsq_tasklet);
899 		empty = list_empty(&tsq->head);
900 		list_add(&tp->tsq_node, &tsq->head);
901 		if (empty)
902 			tasklet_schedule(&tsq->tasklet);
903 		local_irq_restore(flags);
904 		return;
905 	}
906 out:
907 	sk_free(sk);
908 }
909 
910 /* Note: Called under hard irq.
911  * We can not call TCP stack right away.
912  */
913 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
914 {
915 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
916 	struct sock *sk = (struct sock *)tp;
917 	unsigned long nval, oval;
918 
919 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
920 		struct tsq_tasklet *tsq;
921 		bool empty;
922 
923 		if (oval & TSQF_QUEUED)
924 			break;
925 
926 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
927 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
928 		if (nval != oval)
929 			continue;
930 
931 		if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
932 			break;
933 		/* queue this socket to tasklet queue */
934 		tsq = this_cpu_ptr(&tsq_tasklet);
935 		empty = list_empty(&tsq->head);
936 		list_add(&tp->tsq_node, &tsq->head);
937 		if (empty)
938 			tasklet_schedule(&tsq->tasklet);
939 		break;
940 	}
941 	return HRTIMER_NORESTART;
942 }
943 
944 /* BBR congestion control needs pacing.
945  * Same remark for SO_MAX_PACING_RATE.
946  * sch_fq packet scheduler is efficiently handling pacing,
947  * but is not always installed/used.
948  * Return true if TCP stack should pace packets itself.
949  */
950 static bool tcp_needs_internal_pacing(const struct sock *sk)
951 {
952 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
953 }
954 
955 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
956 {
957 	u64 len_ns;
958 	u32 rate;
959 
960 	if (!tcp_needs_internal_pacing(sk))
961 		return;
962 	rate = sk->sk_pacing_rate;
963 	if (!rate || rate == ~0U)
964 		return;
965 
966 	/* Should account for header sizes as sch_fq does,
967 	 * but lets make things simple.
968 	 */
969 	len_ns = (u64)skb->len * NSEC_PER_SEC;
970 	do_div(len_ns, rate);
971 	hrtimer_start(&tcp_sk(sk)->pacing_timer,
972 		      ktime_add_ns(ktime_get(), len_ns),
973 		      HRTIMER_MODE_ABS_PINNED);
974 }
975 
976 /* This routine actually transmits TCP packets queued in by
977  * tcp_do_sendmsg().  This is used by both the initial
978  * transmission and possible later retransmissions.
979  * All SKB's seen here are completely headerless.  It is our
980  * job to build the TCP header, and pass the packet down to
981  * IP so it can do the same plus pass the packet off to the
982  * device.
983  *
984  * We are working here with either a clone of the original
985  * SKB, or a fresh unique copy made by the retransmit engine.
986  */
987 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
988 			    gfp_t gfp_mask)
989 {
990 	const struct inet_connection_sock *icsk = inet_csk(sk);
991 	struct inet_sock *inet;
992 	struct tcp_sock *tp;
993 	struct tcp_skb_cb *tcb;
994 	struct tcp_out_options opts;
995 	unsigned int tcp_options_size, tcp_header_size;
996 	struct sk_buff *oskb = NULL;
997 	struct tcp_md5sig_key *md5;
998 	struct tcphdr *th;
999 	int err;
1000 
1001 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1002 	tp = tcp_sk(sk);
1003 
1004 	if (clone_it) {
1005 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1006 			- tp->snd_una;
1007 		oskb = skb;
1008 		if (unlikely(skb_cloned(skb)))
1009 			skb = pskb_copy(skb, gfp_mask);
1010 		else
1011 			skb = skb_clone(skb, gfp_mask);
1012 		if (unlikely(!skb))
1013 			return -ENOBUFS;
1014 	}
1015 	skb->skb_mstamp = tp->tcp_mstamp;
1016 
1017 	inet = inet_sk(sk);
1018 	tcb = TCP_SKB_CB(skb);
1019 	memset(&opts, 0, sizeof(opts));
1020 
1021 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1022 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1023 	else
1024 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1025 							   &md5);
1026 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1027 
1028 	/* if no packet is in qdisc/device queue, then allow XPS to select
1029 	 * another queue. We can be called from tcp_tsq_handler()
1030 	 * which holds one reference to sk_wmem_alloc.
1031 	 *
1032 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1033 	 * One way to get this would be to set skb->truesize = 2 on them.
1034 	 */
1035 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1036 
1037 	/* If we had to use memory reserve to allocate this skb,
1038 	 * this might cause drops if packet is looped back :
1039 	 * Other socket might not have SOCK_MEMALLOC.
1040 	 * Packets not looped back do not care about pfmemalloc.
1041 	 */
1042 	skb->pfmemalloc = 0;
1043 
1044 	skb_push(skb, tcp_header_size);
1045 	skb_reset_transport_header(skb);
1046 
1047 	skb_orphan(skb);
1048 	skb->sk = sk;
1049 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1050 	skb_set_hash_from_sk(skb, sk);
1051 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1052 
1053 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1054 
1055 	/* Build TCP header and checksum it. */
1056 	th = (struct tcphdr *)skb->data;
1057 	th->source		= inet->inet_sport;
1058 	th->dest		= inet->inet_dport;
1059 	th->seq			= htonl(tcb->seq);
1060 	th->ack_seq		= htonl(tp->rcv_nxt);
1061 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1062 					tcb->tcp_flags);
1063 
1064 	th->check		= 0;
1065 	th->urg_ptr		= 0;
1066 
1067 	/* The urg_mode check is necessary during a below snd_una win probe */
1068 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1069 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1070 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1071 			th->urg = 1;
1072 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1073 			th->urg_ptr = htons(0xFFFF);
1074 			th->urg = 1;
1075 		}
1076 	}
1077 
1078 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1079 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1080 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1081 		th->window      = htons(tcp_select_window(sk));
1082 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1083 	} else {
1084 		/* RFC1323: The window in SYN & SYN/ACK segments
1085 		 * is never scaled.
1086 		 */
1087 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1088 	}
1089 #ifdef CONFIG_TCP_MD5SIG
1090 	/* Calculate the MD5 hash, as we have all we need now */
1091 	if (md5) {
1092 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1093 		tp->af_specific->calc_md5_hash(opts.hash_location,
1094 					       md5, sk, skb);
1095 	}
1096 #endif
1097 
1098 	icsk->icsk_af_ops->send_check(sk, skb);
1099 
1100 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1101 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1102 
1103 	if (skb->len != tcp_header_size) {
1104 		tcp_event_data_sent(tp, sk);
1105 		tp->data_segs_out += tcp_skb_pcount(skb);
1106 		tcp_internal_pacing(sk, skb);
1107 	}
1108 
1109 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1110 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1111 			      tcp_skb_pcount(skb));
1112 
1113 	tp->segs_out += tcp_skb_pcount(skb);
1114 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1115 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1116 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1117 
1118 	/* Our usage of tstamp should remain private */
1119 	skb->tstamp = 0;
1120 
1121 	/* Cleanup our debris for IP stacks */
1122 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1123 			       sizeof(struct inet6_skb_parm)));
1124 
1125 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1126 
1127 	if (unlikely(err > 0)) {
1128 		tcp_enter_cwr(sk);
1129 		err = net_xmit_eval(err);
1130 	}
1131 	if (!err && oskb) {
1132 		oskb->skb_mstamp = tp->tcp_mstamp;
1133 		tcp_rate_skb_sent(sk, oskb);
1134 	}
1135 	return err;
1136 }
1137 
1138 /* This routine just queues the buffer for sending.
1139  *
1140  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1141  * otherwise socket can stall.
1142  */
1143 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1144 {
1145 	struct tcp_sock *tp = tcp_sk(sk);
1146 
1147 	/* Advance write_seq and place onto the write_queue. */
1148 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1149 	__skb_header_release(skb);
1150 	tcp_add_write_queue_tail(sk, skb);
1151 	sk->sk_wmem_queued += skb->truesize;
1152 	sk_mem_charge(sk, skb->truesize);
1153 }
1154 
1155 /* Initialize TSO segments for a packet. */
1156 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1157 {
1158 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1159 		/* Avoid the costly divide in the normal
1160 		 * non-TSO case.
1161 		 */
1162 		tcp_skb_pcount_set(skb, 1);
1163 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1164 	} else {
1165 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1166 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1167 	}
1168 }
1169 
1170 /* When a modification to fackets out becomes necessary, we need to check
1171  * skb is counted to fackets_out or not.
1172  */
1173 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1174 				   int decr)
1175 {
1176 	struct tcp_sock *tp = tcp_sk(sk);
1177 
1178 	if (!tp->sacked_out || tcp_is_reno(tp))
1179 		return;
1180 
1181 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1182 		tp->fackets_out -= decr;
1183 }
1184 
1185 /* Pcount in the middle of the write queue got changed, we need to do various
1186  * tweaks to fix counters
1187  */
1188 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1189 {
1190 	struct tcp_sock *tp = tcp_sk(sk);
1191 
1192 	tp->packets_out -= decr;
1193 
1194 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1195 		tp->sacked_out -= decr;
1196 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1197 		tp->retrans_out -= decr;
1198 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1199 		tp->lost_out -= decr;
1200 
1201 	/* Reno case is special. Sigh... */
1202 	if (tcp_is_reno(tp) && decr > 0)
1203 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1204 
1205 	tcp_adjust_fackets_out(sk, skb, decr);
1206 
1207 	if (tp->lost_skb_hint &&
1208 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1209 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1210 		tp->lost_cnt_hint -= decr;
1211 
1212 	tcp_verify_left_out(tp);
1213 }
1214 
1215 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1216 {
1217 	return TCP_SKB_CB(skb)->txstamp_ack ||
1218 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1219 }
1220 
1221 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1222 {
1223 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1224 
1225 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1226 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1227 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1228 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1229 
1230 		shinfo->tx_flags &= ~tsflags;
1231 		shinfo2->tx_flags |= tsflags;
1232 		swap(shinfo->tskey, shinfo2->tskey);
1233 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1234 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1235 	}
1236 }
1237 
1238 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1239 {
1240 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1241 	TCP_SKB_CB(skb)->eor = 0;
1242 }
1243 
1244 /* Function to create two new TCP segments.  Shrinks the given segment
1245  * to the specified size and appends a new segment with the rest of the
1246  * packet to the list.  This won't be called frequently, I hope.
1247  * Remember, these are still headerless SKBs at this point.
1248  */
1249 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1250 		 unsigned int mss_now, gfp_t gfp)
1251 {
1252 	struct tcp_sock *tp = tcp_sk(sk);
1253 	struct sk_buff *buff;
1254 	int nsize, old_factor;
1255 	int nlen;
1256 	u8 flags;
1257 
1258 	if (WARN_ON(len > skb->len))
1259 		return -EINVAL;
1260 
1261 	nsize = skb_headlen(skb) - len;
1262 	if (nsize < 0)
1263 		nsize = 0;
1264 
1265 	if (skb_unclone(skb, gfp))
1266 		return -ENOMEM;
1267 
1268 	/* Get a new skb... force flag on. */
1269 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1270 	if (!buff)
1271 		return -ENOMEM; /* We'll just try again later. */
1272 
1273 	sk->sk_wmem_queued += buff->truesize;
1274 	sk_mem_charge(sk, buff->truesize);
1275 	nlen = skb->len - len - nsize;
1276 	buff->truesize += nlen;
1277 	skb->truesize -= nlen;
1278 
1279 	/* Correct the sequence numbers. */
1280 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1281 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1282 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1283 
1284 	/* PSH and FIN should only be set in the second packet. */
1285 	flags = TCP_SKB_CB(skb)->tcp_flags;
1286 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1287 	TCP_SKB_CB(buff)->tcp_flags = flags;
1288 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1289 	tcp_skb_fragment_eor(skb, buff);
1290 
1291 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1292 		/* Copy and checksum data tail into the new buffer. */
1293 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1294 						       skb_put(buff, nsize),
1295 						       nsize, 0);
1296 
1297 		skb_trim(skb, len);
1298 
1299 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1300 	} else {
1301 		skb->ip_summed = CHECKSUM_PARTIAL;
1302 		skb_split(skb, buff, len);
1303 	}
1304 
1305 	buff->ip_summed = skb->ip_summed;
1306 
1307 	buff->tstamp = skb->tstamp;
1308 	tcp_fragment_tstamp(skb, buff);
1309 
1310 	old_factor = tcp_skb_pcount(skb);
1311 
1312 	/* Fix up tso_factor for both original and new SKB.  */
1313 	tcp_set_skb_tso_segs(skb, mss_now);
1314 	tcp_set_skb_tso_segs(buff, mss_now);
1315 
1316 	/* Update delivered info for the new segment */
1317 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1318 
1319 	/* If this packet has been sent out already, we must
1320 	 * adjust the various packet counters.
1321 	 */
1322 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1323 		int diff = old_factor - tcp_skb_pcount(skb) -
1324 			tcp_skb_pcount(buff);
1325 
1326 		if (diff)
1327 			tcp_adjust_pcount(sk, skb, diff);
1328 	}
1329 
1330 	/* Link BUFF into the send queue. */
1331 	__skb_header_release(buff);
1332 	tcp_insert_write_queue_after(skb, buff, sk);
1333 
1334 	return 0;
1335 }
1336 
1337 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1338  * data is not copied, but immediately discarded.
1339  */
1340 static int __pskb_trim_head(struct sk_buff *skb, int len)
1341 {
1342 	struct skb_shared_info *shinfo;
1343 	int i, k, eat;
1344 
1345 	eat = min_t(int, len, skb_headlen(skb));
1346 	if (eat) {
1347 		__skb_pull(skb, eat);
1348 		len -= eat;
1349 		if (!len)
1350 			return 0;
1351 	}
1352 	eat = len;
1353 	k = 0;
1354 	shinfo = skb_shinfo(skb);
1355 	for (i = 0; i < shinfo->nr_frags; i++) {
1356 		int size = skb_frag_size(&shinfo->frags[i]);
1357 
1358 		if (size <= eat) {
1359 			skb_frag_unref(skb, i);
1360 			eat -= size;
1361 		} else {
1362 			shinfo->frags[k] = shinfo->frags[i];
1363 			if (eat) {
1364 				shinfo->frags[k].page_offset += eat;
1365 				skb_frag_size_sub(&shinfo->frags[k], eat);
1366 				eat = 0;
1367 			}
1368 			k++;
1369 		}
1370 	}
1371 	shinfo->nr_frags = k;
1372 
1373 	skb->data_len -= len;
1374 	skb->len = skb->data_len;
1375 	return len;
1376 }
1377 
1378 /* Remove acked data from a packet in the transmit queue. */
1379 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1380 {
1381 	u32 delta_truesize;
1382 
1383 	if (skb_unclone(skb, GFP_ATOMIC))
1384 		return -ENOMEM;
1385 
1386 	delta_truesize = __pskb_trim_head(skb, len);
1387 
1388 	TCP_SKB_CB(skb)->seq += len;
1389 	skb->ip_summed = CHECKSUM_PARTIAL;
1390 
1391 	if (delta_truesize) {
1392 		skb->truesize	   -= delta_truesize;
1393 		sk->sk_wmem_queued -= delta_truesize;
1394 		sk_mem_uncharge(sk, delta_truesize);
1395 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1396 	}
1397 
1398 	/* Any change of skb->len requires recalculation of tso factor. */
1399 	if (tcp_skb_pcount(skb) > 1)
1400 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1401 
1402 	return 0;
1403 }
1404 
1405 /* Calculate MSS not accounting any TCP options.  */
1406 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1407 {
1408 	const struct tcp_sock *tp = tcp_sk(sk);
1409 	const struct inet_connection_sock *icsk = inet_csk(sk);
1410 	int mss_now;
1411 
1412 	/* Calculate base mss without TCP options:
1413 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1414 	 */
1415 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1416 
1417 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1418 	if (icsk->icsk_af_ops->net_frag_header_len) {
1419 		const struct dst_entry *dst = __sk_dst_get(sk);
1420 
1421 		if (dst && dst_allfrag(dst))
1422 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1423 	}
1424 
1425 	/* Clamp it (mss_clamp does not include tcp options) */
1426 	if (mss_now > tp->rx_opt.mss_clamp)
1427 		mss_now = tp->rx_opt.mss_clamp;
1428 
1429 	/* Now subtract optional transport overhead */
1430 	mss_now -= icsk->icsk_ext_hdr_len;
1431 
1432 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1433 	if (mss_now < 48)
1434 		mss_now = 48;
1435 	return mss_now;
1436 }
1437 
1438 /* Calculate MSS. Not accounting for SACKs here.  */
1439 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1440 {
1441 	/* Subtract TCP options size, not including SACKs */
1442 	return __tcp_mtu_to_mss(sk, pmtu) -
1443 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1444 }
1445 
1446 /* Inverse of above */
1447 int tcp_mss_to_mtu(struct sock *sk, int mss)
1448 {
1449 	const struct tcp_sock *tp = tcp_sk(sk);
1450 	const struct inet_connection_sock *icsk = inet_csk(sk);
1451 	int mtu;
1452 
1453 	mtu = mss +
1454 	      tp->tcp_header_len +
1455 	      icsk->icsk_ext_hdr_len +
1456 	      icsk->icsk_af_ops->net_header_len;
1457 
1458 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1459 	if (icsk->icsk_af_ops->net_frag_header_len) {
1460 		const struct dst_entry *dst = __sk_dst_get(sk);
1461 
1462 		if (dst && dst_allfrag(dst))
1463 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1464 	}
1465 	return mtu;
1466 }
1467 EXPORT_SYMBOL(tcp_mss_to_mtu);
1468 
1469 /* MTU probing init per socket */
1470 void tcp_mtup_init(struct sock *sk)
1471 {
1472 	struct tcp_sock *tp = tcp_sk(sk);
1473 	struct inet_connection_sock *icsk = inet_csk(sk);
1474 	struct net *net = sock_net(sk);
1475 
1476 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1477 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1478 			       icsk->icsk_af_ops->net_header_len;
1479 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1480 	icsk->icsk_mtup.probe_size = 0;
1481 	if (icsk->icsk_mtup.enabled)
1482 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1483 }
1484 EXPORT_SYMBOL(tcp_mtup_init);
1485 
1486 /* This function synchronize snd mss to current pmtu/exthdr set.
1487 
1488    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1489    for TCP options, but includes only bare TCP header.
1490 
1491    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1492    It is minimum of user_mss and mss received with SYN.
1493    It also does not include TCP options.
1494 
1495    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1496 
1497    tp->mss_cache is current effective sending mss, including
1498    all tcp options except for SACKs. It is evaluated,
1499    taking into account current pmtu, but never exceeds
1500    tp->rx_opt.mss_clamp.
1501 
1502    NOTE1. rfc1122 clearly states that advertised MSS
1503    DOES NOT include either tcp or ip options.
1504 
1505    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1506    are READ ONLY outside this function.		--ANK (980731)
1507  */
1508 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1509 {
1510 	struct tcp_sock *tp = tcp_sk(sk);
1511 	struct inet_connection_sock *icsk = inet_csk(sk);
1512 	int mss_now;
1513 
1514 	if (icsk->icsk_mtup.search_high > pmtu)
1515 		icsk->icsk_mtup.search_high = pmtu;
1516 
1517 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1518 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1519 
1520 	/* And store cached results */
1521 	icsk->icsk_pmtu_cookie = pmtu;
1522 	if (icsk->icsk_mtup.enabled)
1523 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1524 	tp->mss_cache = mss_now;
1525 
1526 	return mss_now;
1527 }
1528 EXPORT_SYMBOL(tcp_sync_mss);
1529 
1530 /* Compute the current effective MSS, taking SACKs and IP options,
1531  * and even PMTU discovery events into account.
1532  */
1533 unsigned int tcp_current_mss(struct sock *sk)
1534 {
1535 	const struct tcp_sock *tp = tcp_sk(sk);
1536 	const struct dst_entry *dst = __sk_dst_get(sk);
1537 	u32 mss_now;
1538 	unsigned int header_len;
1539 	struct tcp_out_options opts;
1540 	struct tcp_md5sig_key *md5;
1541 
1542 	mss_now = tp->mss_cache;
1543 
1544 	if (dst) {
1545 		u32 mtu = dst_mtu(dst);
1546 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1547 			mss_now = tcp_sync_mss(sk, mtu);
1548 	}
1549 
1550 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1551 		     sizeof(struct tcphdr);
1552 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1553 	 * some common options. If this is an odd packet (because we have SACK
1554 	 * blocks etc) then our calculated header_len will be different, and
1555 	 * we have to adjust mss_now correspondingly */
1556 	if (header_len != tp->tcp_header_len) {
1557 		int delta = (int) header_len - tp->tcp_header_len;
1558 		mss_now -= delta;
1559 	}
1560 
1561 	return mss_now;
1562 }
1563 
1564 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1565  * As additional protections, we do not touch cwnd in retransmission phases,
1566  * and if application hit its sndbuf limit recently.
1567  */
1568 static void tcp_cwnd_application_limited(struct sock *sk)
1569 {
1570 	struct tcp_sock *tp = tcp_sk(sk);
1571 
1572 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1573 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1574 		/* Limited by application or receiver window. */
1575 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1576 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1577 		if (win_used < tp->snd_cwnd) {
1578 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1579 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1580 		}
1581 		tp->snd_cwnd_used = 0;
1582 	}
1583 	tp->snd_cwnd_stamp = tcp_jiffies32;
1584 }
1585 
1586 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1587 {
1588 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1589 	struct tcp_sock *tp = tcp_sk(sk);
1590 
1591 	/* Track the maximum number of outstanding packets in each
1592 	 * window, and remember whether we were cwnd-limited then.
1593 	 */
1594 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1595 	    tp->packets_out > tp->max_packets_out) {
1596 		tp->max_packets_out = tp->packets_out;
1597 		tp->max_packets_seq = tp->snd_nxt;
1598 		tp->is_cwnd_limited = is_cwnd_limited;
1599 	}
1600 
1601 	if (tcp_is_cwnd_limited(sk)) {
1602 		/* Network is feed fully. */
1603 		tp->snd_cwnd_used = 0;
1604 		tp->snd_cwnd_stamp = tcp_jiffies32;
1605 	} else {
1606 		/* Network starves. */
1607 		if (tp->packets_out > tp->snd_cwnd_used)
1608 			tp->snd_cwnd_used = tp->packets_out;
1609 
1610 		if (sysctl_tcp_slow_start_after_idle &&
1611 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1612 		    !ca_ops->cong_control)
1613 			tcp_cwnd_application_limited(sk);
1614 
1615 		/* The following conditions together indicate the starvation
1616 		 * is caused by insufficient sender buffer:
1617 		 * 1) just sent some data (see tcp_write_xmit)
1618 		 * 2) not cwnd limited (this else condition)
1619 		 * 3) no more data to send (null tcp_send_head )
1620 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1621 		 */
1622 		if (!tcp_send_head(sk) && sk->sk_socket &&
1623 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1624 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1625 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1626 	}
1627 }
1628 
1629 /* Minshall's variant of the Nagle send check. */
1630 static bool tcp_minshall_check(const struct tcp_sock *tp)
1631 {
1632 	return after(tp->snd_sml, tp->snd_una) &&
1633 		!after(tp->snd_sml, tp->snd_nxt);
1634 }
1635 
1636 /* Update snd_sml if this skb is under mss
1637  * Note that a TSO packet might end with a sub-mss segment
1638  * The test is really :
1639  * if ((skb->len % mss) != 0)
1640  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1641  * But we can avoid doing the divide again given we already have
1642  *  skb_pcount = skb->len / mss_now
1643  */
1644 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1645 				const struct sk_buff *skb)
1646 {
1647 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1648 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1649 }
1650 
1651 /* Return false, if packet can be sent now without violation Nagle's rules:
1652  * 1. It is full sized. (provided by caller in %partial bool)
1653  * 2. Or it contains FIN. (already checked by caller)
1654  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1655  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1656  *    With Minshall's modification: all sent small packets are ACKed.
1657  */
1658 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1659 			    int nonagle)
1660 {
1661 	return partial &&
1662 		((nonagle & TCP_NAGLE_CORK) ||
1663 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1664 }
1665 
1666 /* Return how many segs we'd like on a TSO packet,
1667  * to send one TSO packet per ms
1668  */
1669 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1670 		     int min_tso_segs)
1671 {
1672 	u32 bytes, segs;
1673 
1674 	bytes = min(sk->sk_pacing_rate >> 10,
1675 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1676 
1677 	/* Goal is to send at least one packet per ms,
1678 	 * not one big TSO packet every 100 ms.
1679 	 * This preserves ACK clocking and is consistent
1680 	 * with tcp_tso_should_defer() heuristic.
1681 	 */
1682 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1683 
1684 	return min_t(u32, segs, sk->sk_gso_max_segs);
1685 }
1686 EXPORT_SYMBOL(tcp_tso_autosize);
1687 
1688 /* Return the number of segments we want in the skb we are transmitting.
1689  * See if congestion control module wants to decide; otherwise, autosize.
1690  */
1691 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1692 {
1693 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1694 	u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1695 
1696 	return tso_segs ? :
1697 		tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1698 }
1699 
1700 /* Returns the portion of skb which can be sent right away */
1701 static unsigned int tcp_mss_split_point(const struct sock *sk,
1702 					const struct sk_buff *skb,
1703 					unsigned int mss_now,
1704 					unsigned int max_segs,
1705 					int nonagle)
1706 {
1707 	const struct tcp_sock *tp = tcp_sk(sk);
1708 	u32 partial, needed, window, max_len;
1709 
1710 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1711 	max_len = mss_now * max_segs;
1712 
1713 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1714 		return max_len;
1715 
1716 	needed = min(skb->len, window);
1717 
1718 	if (max_len <= needed)
1719 		return max_len;
1720 
1721 	partial = needed % mss_now;
1722 	/* If last segment is not a full MSS, check if Nagle rules allow us
1723 	 * to include this last segment in this skb.
1724 	 * Otherwise, we'll split the skb at last MSS boundary
1725 	 */
1726 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1727 		return needed - partial;
1728 
1729 	return needed;
1730 }
1731 
1732 /* Can at least one segment of SKB be sent right now, according to the
1733  * congestion window rules?  If so, return how many segments are allowed.
1734  */
1735 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1736 					 const struct sk_buff *skb)
1737 {
1738 	u32 in_flight, cwnd, halfcwnd;
1739 
1740 	/* Don't be strict about the congestion window for the final FIN.  */
1741 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1742 	    tcp_skb_pcount(skb) == 1)
1743 		return 1;
1744 
1745 	in_flight = tcp_packets_in_flight(tp);
1746 	cwnd = tp->snd_cwnd;
1747 	if (in_flight >= cwnd)
1748 		return 0;
1749 
1750 	/* For better scheduling, ensure we have at least
1751 	 * 2 GSO packets in flight.
1752 	 */
1753 	halfcwnd = max(cwnd >> 1, 1U);
1754 	return min(halfcwnd, cwnd - in_flight);
1755 }
1756 
1757 /* Initialize TSO state of a skb.
1758  * This must be invoked the first time we consider transmitting
1759  * SKB onto the wire.
1760  */
1761 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1762 {
1763 	int tso_segs = tcp_skb_pcount(skb);
1764 
1765 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1766 		tcp_set_skb_tso_segs(skb, mss_now);
1767 		tso_segs = tcp_skb_pcount(skb);
1768 	}
1769 	return tso_segs;
1770 }
1771 
1772 
1773 /* Return true if the Nagle test allows this packet to be
1774  * sent now.
1775  */
1776 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1777 				  unsigned int cur_mss, int nonagle)
1778 {
1779 	/* Nagle rule does not apply to frames, which sit in the middle of the
1780 	 * write_queue (they have no chances to get new data).
1781 	 *
1782 	 * This is implemented in the callers, where they modify the 'nonagle'
1783 	 * argument based upon the location of SKB in the send queue.
1784 	 */
1785 	if (nonagle & TCP_NAGLE_PUSH)
1786 		return true;
1787 
1788 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1789 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1790 		return true;
1791 
1792 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1793 		return true;
1794 
1795 	return false;
1796 }
1797 
1798 /* Does at least the first segment of SKB fit into the send window? */
1799 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1800 			     const struct sk_buff *skb,
1801 			     unsigned int cur_mss)
1802 {
1803 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1804 
1805 	if (skb->len > cur_mss)
1806 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1807 
1808 	return !after(end_seq, tcp_wnd_end(tp));
1809 }
1810 
1811 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1812  * which is put after SKB on the list.  It is very much like
1813  * tcp_fragment() except that it may make several kinds of assumptions
1814  * in order to speed up the splitting operation.  In particular, we
1815  * know that all the data is in scatter-gather pages, and that the
1816  * packet has never been sent out before (and thus is not cloned).
1817  */
1818 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1819 			unsigned int mss_now, gfp_t gfp)
1820 {
1821 	struct sk_buff *buff;
1822 	int nlen = skb->len - len;
1823 	u8 flags;
1824 
1825 	/* All of a TSO frame must be composed of paged data.  */
1826 	if (skb->len != skb->data_len)
1827 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1828 
1829 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1830 	if (unlikely(!buff))
1831 		return -ENOMEM;
1832 
1833 	sk->sk_wmem_queued += buff->truesize;
1834 	sk_mem_charge(sk, buff->truesize);
1835 	buff->truesize += nlen;
1836 	skb->truesize -= nlen;
1837 
1838 	/* Correct the sequence numbers. */
1839 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1840 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1841 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1842 
1843 	/* PSH and FIN should only be set in the second packet. */
1844 	flags = TCP_SKB_CB(skb)->tcp_flags;
1845 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1846 	TCP_SKB_CB(buff)->tcp_flags = flags;
1847 
1848 	/* This packet was never sent out yet, so no SACK bits. */
1849 	TCP_SKB_CB(buff)->sacked = 0;
1850 
1851 	tcp_skb_fragment_eor(skb, buff);
1852 
1853 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1854 	skb_split(skb, buff, len);
1855 	tcp_fragment_tstamp(skb, buff);
1856 
1857 	/* Fix up tso_factor for both original and new SKB.  */
1858 	tcp_set_skb_tso_segs(skb, mss_now);
1859 	tcp_set_skb_tso_segs(buff, mss_now);
1860 
1861 	/* Link BUFF into the send queue. */
1862 	__skb_header_release(buff);
1863 	tcp_insert_write_queue_after(skb, buff, sk);
1864 
1865 	return 0;
1866 }
1867 
1868 /* Try to defer sending, if possible, in order to minimize the amount
1869  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1870  *
1871  * This algorithm is from John Heffner.
1872  */
1873 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1874 				 bool *is_cwnd_limited, u32 max_segs)
1875 {
1876 	const struct inet_connection_sock *icsk = inet_csk(sk);
1877 	u32 age, send_win, cong_win, limit, in_flight;
1878 	struct tcp_sock *tp = tcp_sk(sk);
1879 	struct sk_buff *head;
1880 	int win_divisor;
1881 
1882 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1883 		goto send_now;
1884 
1885 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1886 		goto send_now;
1887 
1888 	/* Avoid bursty behavior by allowing defer
1889 	 * only if the last write was recent.
1890 	 */
1891 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1892 		goto send_now;
1893 
1894 	in_flight = tcp_packets_in_flight(tp);
1895 
1896 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1897 
1898 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1899 
1900 	/* From in_flight test above, we know that cwnd > in_flight.  */
1901 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1902 
1903 	limit = min(send_win, cong_win);
1904 
1905 	/* If a full-sized TSO skb can be sent, do it. */
1906 	if (limit >= max_segs * tp->mss_cache)
1907 		goto send_now;
1908 
1909 	/* Middle in queue won't get any more data, full sendable already? */
1910 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1911 		goto send_now;
1912 
1913 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1914 	if (win_divisor) {
1915 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1916 
1917 		/* If at least some fraction of a window is available,
1918 		 * just use it.
1919 		 */
1920 		chunk /= win_divisor;
1921 		if (limit >= chunk)
1922 			goto send_now;
1923 	} else {
1924 		/* Different approach, try not to defer past a single
1925 		 * ACK.  Receiver should ACK every other full sized
1926 		 * frame, so if we have space for more than 3 frames
1927 		 * then send now.
1928 		 */
1929 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1930 			goto send_now;
1931 	}
1932 
1933 	head = tcp_write_queue_head(sk);
1934 
1935 	age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1936 	/* If next ACK is likely to come too late (half srtt), do not defer */
1937 	if (age < (tp->srtt_us >> 4))
1938 		goto send_now;
1939 
1940 	/* Ok, it looks like it is advisable to defer. */
1941 
1942 	if (cong_win < send_win && cong_win <= skb->len)
1943 		*is_cwnd_limited = true;
1944 
1945 	return true;
1946 
1947 send_now:
1948 	return false;
1949 }
1950 
1951 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1952 {
1953 	struct inet_connection_sock *icsk = inet_csk(sk);
1954 	struct tcp_sock *tp = tcp_sk(sk);
1955 	struct net *net = sock_net(sk);
1956 	u32 interval;
1957 	s32 delta;
1958 
1959 	interval = net->ipv4.sysctl_tcp_probe_interval;
1960 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
1961 	if (unlikely(delta >= interval * HZ)) {
1962 		int mss = tcp_current_mss(sk);
1963 
1964 		/* Update current search range */
1965 		icsk->icsk_mtup.probe_size = 0;
1966 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1967 			sizeof(struct tcphdr) +
1968 			icsk->icsk_af_ops->net_header_len;
1969 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1970 
1971 		/* Update probe time stamp */
1972 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1973 	}
1974 }
1975 
1976 /* Create a new MTU probe if we are ready.
1977  * MTU probe is regularly attempting to increase the path MTU by
1978  * deliberately sending larger packets.  This discovers routing
1979  * changes resulting in larger path MTUs.
1980  *
1981  * Returns 0 if we should wait to probe (no cwnd available),
1982  *         1 if a probe was sent,
1983  *         -1 otherwise
1984  */
1985 static int tcp_mtu_probe(struct sock *sk)
1986 {
1987 	struct inet_connection_sock *icsk = inet_csk(sk);
1988 	struct tcp_sock *tp = tcp_sk(sk);
1989 	struct sk_buff *skb, *nskb, *next;
1990 	struct net *net = sock_net(sk);
1991 	int probe_size;
1992 	int size_needed;
1993 	int copy, len;
1994 	int mss_now;
1995 	int interval;
1996 
1997 	/* Not currently probing/verifying,
1998 	 * not in recovery,
1999 	 * have enough cwnd, and
2000 	 * not SACKing (the variable headers throw things off)
2001 	 */
2002 	if (likely(!icsk->icsk_mtup.enabled ||
2003 		   icsk->icsk_mtup.probe_size ||
2004 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2005 		   tp->snd_cwnd < 11 ||
2006 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2007 		return -1;
2008 
2009 	/* Use binary search for probe_size between tcp_mss_base,
2010 	 * and current mss_clamp. if (search_high - search_low)
2011 	 * smaller than a threshold, backoff from probing.
2012 	 */
2013 	mss_now = tcp_current_mss(sk);
2014 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2015 				    icsk->icsk_mtup.search_low) >> 1);
2016 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2017 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2018 	/* When misfortune happens, we are reprobing actively,
2019 	 * and then reprobe timer has expired. We stick with current
2020 	 * probing process by not resetting search range to its orignal.
2021 	 */
2022 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2023 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2024 		/* Check whether enough time has elaplased for
2025 		 * another round of probing.
2026 		 */
2027 		tcp_mtu_check_reprobe(sk);
2028 		return -1;
2029 	}
2030 
2031 	/* Have enough data in the send queue to probe? */
2032 	if (tp->write_seq - tp->snd_nxt < size_needed)
2033 		return -1;
2034 
2035 	if (tp->snd_wnd < size_needed)
2036 		return -1;
2037 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2038 		return 0;
2039 
2040 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2041 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2042 		if (!tcp_packets_in_flight(tp))
2043 			return -1;
2044 		else
2045 			return 0;
2046 	}
2047 
2048 	/* We're allowed to probe.  Build it now. */
2049 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2050 	if (!nskb)
2051 		return -1;
2052 	sk->sk_wmem_queued += nskb->truesize;
2053 	sk_mem_charge(sk, nskb->truesize);
2054 
2055 	skb = tcp_send_head(sk);
2056 
2057 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2058 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2059 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2060 	TCP_SKB_CB(nskb)->sacked = 0;
2061 	nskb->csum = 0;
2062 	nskb->ip_summed = skb->ip_summed;
2063 
2064 	tcp_insert_write_queue_before(nskb, skb, sk);
2065 
2066 	len = 0;
2067 	tcp_for_write_queue_from_safe(skb, next, sk) {
2068 		copy = min_t(int, skb->len, probe_size - len);
2069 		if (nskb->ip_summed) {
2070 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2071 		} else {
2072 			__wsum csum = skb_copy_and_csum_bits(skb, 0,
2073 							     skb_put(nskb, copy),
2074 							     copy, 0);
2075 			nskb->csum = csum_block_add(nskb->csum, csum, len);
2076 		}
2077 
2078 		if (skb->len <= copy) {
2079 			/* We've eaten all the data from this skb.
2080 			 * Throw it away. */
2081 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2082 			tcp_unlink_write_queue(skb, sk);
2083 			sk_wmem_free_skb(sk, skb);
2084 		} else {
2085 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2086 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2087 			if (!skb_shinfo(skb)->nr_frags) {
2088 				skb_pull(skb, copy);
2089 				if (skb->ip_summed != CHECKSUM_PARTIAL)
2090 					skb->csum = csum_partial(skb->data,
2091 								 skb->len, 0);
2092 			} else {
2093 				__pskb_trim_head(skb, copy);
2094 				tcp_set_skb_tso_segs(skb, mss_now);
2095 			}
2096 			TCP_SKB_CB(skb)->seq += copy;
2097 		}
2098 
2099 		len += copy;
2100 
2101 		if (len >= probe_size)
2102 			break;
2103 	}
2104 	tcp_init_tso_segs(nskb, nskb->len);
2105 
2106 	/* We're ready to send.  If this fails, the probe will
2107 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2108 	 */
2109 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2110 		/* Decrement cwnd here because we are sending
2111 		 * effectively two packets. */
2112 		tp->snd_cwnd--;
2113 		tcp_event_new_data_sent(sk, nskb);
2114 
2115 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2116 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2117 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2118 
2119 		return 1;
2120 	}
2121 
2122 	return -1;
2123 }
2124 
2125 static bool tcp_pacing_check(const struct sock *sk)
2126 {
2127 	return tcp_needs_internal_pacing(sk) &&
2128 	       hrtimer_active(&tcp_sk(sk)->pacing_timer);
2129 }
2130 
2131 /* TCP Small Queues :
2132  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2133  * (These limits are doubled for retransmits)
2134  * This allows for :
2135  *  - better RTT estimation and ACK scheduling
2136  *  - faster recovery
2137  *  - high rates
2138  * Alas, some drivers / subsystems require a fair amount
2139  * of queued bytes to ensure line rate.
2140  * One example is wifi aggregation (802.11 AMPDU)
2141  */
2142 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2143 				  unsigned int factor)
2144 {
2145 	unsigned int limit;
2146 
2147 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2148 	limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2149 	limit <<= factor;
2150 
2151 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2152 		/* Always send the 1st or 2nd skb in write queue.
2153 		 * No need to wait for TX completion to call us back,
2154 		 * after softirq/tasklet schedule.
2155 		 * This helps when TX completions are delayed too much.
2156 		 */
2157 		if (skb == sk->sk_write_queue.next ||
2158 		    skb->prev == sk->sk_write_queue.next)
2159 			return false;
2160 
2161 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2162 		/* It is possible TX completion already happened
2163 		 * before we set TSQ_THROTTLED, so we must
2164 		 * test again the condition.
2165 		 */
2166 		smp_mb__after_atomic();
2167 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2168 			return true;
2169 	}
2170 	return false;
2171 }
2172 
2173 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2174 {
2175 	const u32 now = tcp_jiffies32;
2176 	enum tcp_chrono old = tp->chrono_type;
2177 
2178 	if (old > TCP_CHRONO_UNSPEC)
2179 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2180 	tp->chrono_start = now;
2181 	tp->chrono_type = new;
2182 }
2183 
2184 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2185 {
2186 	struct tcp_sock *tp = tcp_sk(sk);
2187 
2188 	/* If there are multiple conditions worthy of tracking in a
2189 	 * chronograph then the highest priority enum takes precedence
2190 	 * over the other conditions. So that if something "more interesting"
2191 	 * starts happening, stop the previous chrono and start a new one.
2192 	 */
2193 	if (type > tp->chrono_type)
2194 		tcp_chrono_set(tp, type);
2195 }
2196 
2197 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2198 {
2199 	struct tcp_sock *tp = tcp_sk(sk);
2200 
2201 
2202 	/* There are multiple conditions worthy of tracking in a
2203 	 * chronograph, so that the highest priority enum takes
2204 	 * precedence over the other conditions (see tcp_chrono_start).
2205 	 * If a condition stops, we only stop chrono tracking if
2206 	 * it's the "most interesting" or current chrono we are
2207 	 * tracking and starts busy chrono if we have pending data.
2208 	 */
2209 	if (tcp_write_queue_empty(sk))
2210 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2211 	else if (type == tp->chrono_type)
2212 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2213 }
2214 
2215 /* This routine writes packets to the network.  It advances the
2216  * send_head.  This happens as incoming acks open up the remote
2217  * window for us.
2218  *
2219  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2220  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2221  * account rare use of URG, this is not a big flaw.
2222  *
2223  * Send at most one packet when push_one > 0. Temporarily ignore
2224  * cwnd limit to force at most one packet out when push_one == 2.
2225 
2226  * Returns true, if no segments are in flight and we have queued segments,
2227  * but cannot send anything now because of SWS or another problem.
2228  */
2229 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2230 			   int push_one, gfp_t gfp)
2231 {
2232 	struct tcp_sock *tp = tcp_sk(sk);
2233 	struct sk_buff *skb;
2234 	unsigned int tso_segs, sent_pkts;
2235 	int cwnd_quota;
2236 	int result;
2237 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2238 	u32 max_segs;
2239 
2240 	sent_pkts = 0;
2241 
2242 	tcp_mstamp_refresh(tp);
2243 	if (!push_one) {
2244 		/* Do MTU probing. */
2245 		result = tcp_mtu_probe(sk);
2246 		if (!result) {
2247 			return false;
2248 		} else if (result > 0) {
2249 			sent_pkts = 1;
2250 		}
2251 	}
2252 
2253 	max_segs = tcp_tso_segs(sk, mss_now);
2254 	while ((skb = tcp_send_head(sk))) {
2255 		unsigned int limit;
2256 
2257 		if (tcp_pacing_check(sk))
2258 			break;
2259 
2260 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2261 		BUG_ON(!tso_segs);
2262 
2263 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2264 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2265 			skb->skb_mstamp = tp->tcp_mstamp;
2266 			goto repair; /* Skip network transmission */
2267 		}
2268 
2269 		cwnd_quota = tcp_cwnd_test(tp, skb);
2270 		if (!cwnd_quota) {
2271 			if (push_one == 2)
2272 				/* Force out a loss probe pkt. */
2273 				cwnd_quota = 1;
2274 			else
2275 				break;
2276 		}
2277 
2278 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2279 			is_rwnd_limited = true;
2280 			break;
2281 		}
2282 
2283 		if (tso_segs == 1) {
2284 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2285 						     (tcp_skb_is_last(sk, skb) ?
2286 						      nonagle : TCP_NAGLE_PUSH))))
2287 				break;
2288 		} else {
2289 			if (!push_one &&
2290 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2291 						 max_segs))
2292 				break;
2293 		}
2294 
2295 		limit = mss_now;
2296 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2297 			limit = tcp_mss_split_point(sk, skb, mss_now,
2298 						    min_t(unsigned int,
2299 							  cwnd_quota,
2300 							  max_segs),
2301 						    nonagle);
2302 
2303 		if (skb->len > limit &&
2304 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2305 			break;
2306 
2307 		if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2308 			clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2309 		if (tcp_small_queue_check(sk, skb, 0))
2310 			break;
2311 
2312 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2313 			break;
2314 
2315 repair:
2316 		/* Advance the send_head.  This one is sent out.
2317 		 * This call will increment packets_out.
2318 		 */
2319 		tcp_event_new_data_sent(sk, skb);
2320 
2321 		tcp_minshall_update(tp, mss_now, skb);
2322 		sent_pkts += tcp_skb_pcount(skb);
2323 
2324 		if (push_one)
2325 			break;
2326 	}
2327 
2328 	if (is_rwnd_limited)
2329 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2330 	else
2331 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2332 
2333 	if (likely(sent_pkts)) {
2334 		if (tcp_in_cwnd_reduction(sk))
2335 			tp->prr_out += sent_pkts;
2336 
2337 		/* Send one loss probe per tail loss episode. */
2338 		if (push_one != 2)
2339 			tcp_schedule_loss_probe(sk);
2340 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2341 		tcp_cwnd_validate(sk, is_cwnd_limited);
2342 		return false;
2343 	}
2344 	return !tp->packets_out && tcp_send_head(sk);
2345 }
2346 
2347 bool tcp_schedule_loss_probe(struct sock *sk)
2348 {
2349 	struct inet_connection_sock *icsk = inet_csk(sk);
2350 	struct tcp_sock *tp = tcp_sk(sk);
2351 	u32 timeout, rto_delta_us;
2352 
2353 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2354 	 * finishes.
2355 	 */
2356 	if (tp->fastopen_rsk)
2357 		return false;
2358 
2359 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2360 	 * in Open state, that are either limited by cwnd or application.
2361 	 */
2362 	if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2363 	    !tp->packets_out || !tcp_is_sack(tp) ||
2364 	    icsk->icsk_ca_state != TCP_CA_Open)
2365 		return false;
2366 
2367 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2368 	     tcp_send_head(sk))
2369 		return false;
2370 
2371 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2372 	 * for delayed ack when there's one outstanding packet. If no RTT
2373 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2374 	 */
2375 	if (tp->srtt_us) {
2376 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2377 		if (tp->packets_out == 1)
2378 			timeout += TCP_RTO_MIN;
2379 		else
2380 			timeout += TCP_TIMEOUT_MIN;
2381 	} else {
2382 		timeout = TCP_TIMEOUT_INIT;
2383 	}
2384 
2385 	/* If the RTO formula yields an earlier time, then use that time. */
2386 	rto_delta_us = tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2387 	if (rto_delta_us > 0)
2388 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2389 
2390 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2391 				  TCP_RTO_MAX);
2392 	return true;
2393 }
2394 
2395 /* Thanks to skb fast clones, we can detect if a prior transmit of
2396  * a packet is still in a qdisc or driver queue.
2397  * In this case, there is very little point doing a retransmit !
2398  */
2399 static bool skb_still_in_host_queue(const struct sock *sk,
2400 				    const struct sk_buff *skb)
2401 {
2402 	if (unlikely(skb_fclone_busy(sk, skb))) {
2403 		NET_INC_STATS(sock_net(sk),
2404 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2405 		return true;
2406 	}
2407 	return false;
2408 }
2409 
2410 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2411  * retransmit the last segment.
2412  */
2413 void tcp_send_loss_probe(struct sock *sk)
2414 {
2415 	struct tcp_sock *tp = tcp_sk(sk);
2416 	struct sk_buff *skb;
2417 	int pcount;
2418 	int mss = tcp_current_mss(sk);
2419 
2420 	skb = tcp_send_head(sk);
2421 	if (skb) {
2422 		if (tcp_snd_wnd_test(tp, skb, mss)) {
2423 			pcount = tp->packets_out;
2424 			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2425 			if (tp->packets_out > pcount)
2426 				goto probe_sent;
2427 			goto rearm_timer;
2428 		}
2429 		skb = tcp_write_queue_prev(sk, skb);
2430 	} else {
2431 		skb = tcp_write_queue_tail(sk);
2432 	}
2433 
2434 	/* At most one outstanding TLP retransmission. */
2435 	if (tp->tlp_high_seq)
2436 		goto rearm_timer;
2437 
2438 	/* Retransmit last segment. */
2439 	if (WARN_ON(!skb))
2440 		goto rearm_timer;
2441 
2442 	if (skb_still_in_host_queue(sk, skb))
2443 		goto rearm_timer;
2444 
2445 	pcount = tcp_skb_pcount(skb);
2446 	if (WARN_ON(!pcount))
2447 		goto rearm_timer;
2448 
2449 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2450 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2451 					  GFP_ATOMIC)))
2452 			goto rearm_timer;
2453 		skb = tcp_write_queue_next(sk, skb);
2454 	}
2455 
2456 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2457 		goto rearm_timer;
2458 
2459 	if (__tcp_retransmit_skb(sk, skb, 1))
2460 		goto rearm_timer;
2461 
2462 	/* Record snd_nxt for loss detection. */
2463 	tp->tlp_high_seq = tp->snd_nxt;
2464 
2465 probe_sent:
2466 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2467 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2468 	inet_csk(sk)->icsk_pending = 0;
2469 rearm_timer:
2470 	tcp_rearm_rto(sk);
2471 }
2472 
2473 /* Push out any pending frames which were held back due to
2474  * TCP_CORK or attempt at coalescing tiny packets.
2475  * The socket must be locked by the caller.
2476  */
2477 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2478 			       int nonagle)
2479 {
2480 	/* If we are closed, the bytes will have to remain here.
2481 	 * In time closedown will finish, we empty the write queue and
2482 	 * all will be happy.
2483 	 */
2484 	if (unlikely(sk->sk_state == TCP_CLOSE))
2485 		return;
2486 
2487 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2488 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2489 		tcp_check_probe_timer(sk);
2490 }
2491 
2492 /* Send _single_ skb sitting at the send head. This function requires
2493  * true push pending frames to setup probe timer etc.
2494  */
2495 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2496 {
2497 	struct sk_buff *skb = tcp_send_head(sk);
2498 
2499 	BUG_ON(!skb || skb->len < mss_now);
2500 
2501 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2502 }
2503 
2504 /* This function returns the amount that we can raise the
2505  * usable window based on the following constraints
2506  *
2507  * 1. The window can never be shrunk once it is offered (RFC 793)
2508  * 2. We limit memory per socket
2509  *
2510  * RFC 1122:
2511  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2512  *  RECV.NEXT + RCV.WIN fixed until:
2513  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2514  *
2515  * i.e. don't raise the right edge of the window until you can raise
2516  * it at least MSS bytes.
2517  *
2518  * Unfortunately, the recommended algorithm breaks header prediction,
2519  * since header prediction assumes th->window stays fixed.
2520  *
2521  * Strictly speaking, keeping th->window fixed violates the receiver
2522  * side SWS prevention criteria. The problem is that under this rule
2523  * a stream of single byte packets will cause the right side of the
2524  * window to always advance by a single byte.
2525  *
2526  * Of course, if the sender implements sender side SWS prevention
2527  * then this will not be a problem.
2528  *
2529  * BSD seems to make the following compromise:
2530  *
2531  *	If the free space is less than the 1/4 of the maximum
2532  *	space available and the free space is less than 1/2 mss,
2533  *	then set the window to 0.
2534  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2535  *	Otherwise, just prevent the window from shrinking
2536  *	and from being larger than the largest representable value.
2537  *
2538  * This prevents incremental opening of the window in the regime
2539  * where TCP is limited by the speed of the reader side taking
2540  * data out of the TCP receive queue. It does nothing about
2541  * those cases where the window is constrained on the sender side
2542  * because the pipeline is full.
2543  *
2544  * BSD also seems to "accidentally" limit itself to windows that are a
2545  * multiple of MSS, at least until the free space gets quite small.
2546  * This would appear to be a side effect of the mbuf implementation.
2547  * Combining these two algorithms results in the observed behavior
2548  * of having a fixed window size at almost all times.
2549  *
2550  * Below we obtain similar behavior by forcing the offered window to
2551  * a multiple of the mss when it is feasible to do so.
2552  *
2553  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2554  * Regular options like TIMESTAMP are taken into account.
2555  */
2556 u32 __tcp_select_window(struct sock *sk)
2557 {
2558 	struct inet_connection_sock *icsk = inet_csk(sk);
2559 	struct tcp_sock *tp = tcp_sk(sk);
2560 	/* MSS for the peer's data.  Previous versions used mss_clamp
2561 	 * here.  I don't know if the value based on our guesses
2562 	 * of peer's MSS is better for the performance.  It's more correct
2563 	 * but may be worse for the performance because of rcv_mss
2564 	 * fluctuations.  --SAW  1998/11/1
2565 	 */
2566 	int mss = icsk->icsk_ack.rcv_mss;
2567 	int free_space = tcp_space(sk);
2568 	int allowed_space = tcp_full_space(sk);
2569 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2570 	int window;
2571 
2572 	if (unlikely(mss > full_space)) {
2573 		mss = full_space;
2574 		if (mss <= 0)
2575 			return 0;
2576 	}
2577 	if (free_space < (full_space >> 1)) {
2578 		icsk->icsk_ack.quick = 0;
2579 
2580 		if (tcp_under_memory_pressure(sk))
2581 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2582 					       4U * tp->advmss);
2583 
2584 		/* free_space might become our new window, make sure we don't
2585 		 * increase it due to wscale.
2586 		 */
2587 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2588 
2589 		/* if free space is less than mss estimate, or is below 1/16th
2590 		 * of the maximum allowed, try to move to zero-window, else
2591 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2592 		 * new incoming data is dropped due to memory limits.
2593 		 * With large window, mss test triggers way too late in order
2594 		 * to announce zero window in time before rmem limit kicks in.
2595 		 */
2596 		if (free_space < (allowed_space >> 4) || free_space < mss)
2597 			return 0;
2598 	}
2599 
2600 	if (free_space > tp->rcv_ssthresh)
2601 		free_space = tp->rcv_ssthresh;
2602 
2603 	/* Don't do rounding if we are using window scaling, since the
2604 	 * scaled window will not line up with the MSS boundary anyway.
2605 	 */
2606 	if (tp->rx_opt.rcv_wscale) {
2607 		window = free_space;
2608 
2609 		/* Advertise enough space so that it won't get scaled away.
2610 		 * Import case: prevent zero window announcement if
2611 		 * 1<<rcv_wscale > mss.
2612 		 */
2613 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2614 	} else {
2615 		window = tp->rcv_wnd;
2616 		/* Get the largest window that is a nice multiple of mss.
2617 		 * Window clamp already applied above.
2618 		 * If our current window offering is within 1 mss of the
2619 		 * free space we just keep it. This prevents the divide
2620 		 * and multiply from happening most of the time.
2621 		 * We also don't do any window rounding when the free space
2622 		 * is too small.
2623 		 */
2624 		if (window <= free_space - mss || window > free_space)
2625 			window = rounddown(free_space, mss);
2626 		else if (mss == full_space &&
2627 			 free_space > window + (full_space >> 1))
2628 			window = free_space;
2629 	}
2630 
2631 	return window;
2632 }
2633 
2634 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2635 			     const struct sk_buff *next_skb)
2636 {
2637 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2638 		const struct skb_shared_info *next_shinfo =
2639 			skb_shinfo(next_skb);
2640 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2641 
2642 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2643 		shinfo->tskey = next_shinfo->tskey;
2644 		TCP_SKB_CB(skb)->txstamp_ack |=
2645 			TCP_SKB_CB(next_skb)->txstamp_ack;
2646 	}
2647 }
2648 
2649 /* Collapses two adjacent SKB's during retransmission. */
2650 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2651 {
2652 	struct tcp_sock *tp = tcp_sk(sk);
2653 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2654 	int skb_size, next_skb_size;
2655 
2656 	skb_size = skb->len;
2657 	next_skb_size = next_skb->len;
2658 
2659 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2660 
2661 	if (next_skb_size) {
2662 		if (next_skb_size <= skb_availroom(skb))
2663 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2664 				      next_skb_size);
2665 		else if (!skb_shift(skb, next_skb, next_skb_size))
2666 			return false;
2667 	}
2668 	tcp_highest_sack_combine(sk, next_skb, skb);
2669 
2670 	tcp_unlink_write_queue(next_skb, sk);
2671 
2672 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2673 		skb->ip_summed = CHECKSUM_PARTIAL;
2674 
2675 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2676 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2677 
2678 	/* Update sequence range on original skb. */
2679 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2680 
2681 	/* Merge over control information. This moves PSH/FIN etc. over */
2682 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2683 
2684 	/* All done, get rid of second SKB and account for it so
2685 	 * packet counting does not break.
2686 	 */
2687 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2688 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2689 
2690 	/* changed transmit queue under us so clear hints */
2691 	tcp_clear_retrans_hints_partial(tp);
2692 	if (next_skb == tp->retransmit_skb_hint)
2693 		tp->retransmit_skb_hint = skb;
2694 
2695 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2696 
2697 	tcp_skb_collapse_tstamp(skb, next_skb);
2698 
2699 	sk_wmem_free_skb(sk, next_skb);
2700 	return true;
2701 }
2702 
2703 /* Check if coalescing SKBs is legal. */
2704 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2705 {
2706 	if (tcp_skb_pcount(skb) > 1)
2707 		return false;
2708 	if (skb_cloned(skb))
2709 		return false;
2710 	if (skb == tcp_send_head(sk))
2711 		return false;
2712 	/* Some heuristics for collapsing over SACK'd could be invented */
2713 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2714 		return false;
2715 
2716 	return true;
2717 }
2718 
2719 /* Collapse packets in the retransmit queue to make to create
2720  * less packets on the wire. This is only done on retransmission.
2721  */
2722 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2723 				     int space)
2724 {
2725 	struct tcp_sock *tp = tcp_sk(sk);
2726 	struct sk_buff *skb = to, *tmp;
2727 	bool first = true;
2728 
2729 	if (!sysctl_tcp_retrans_collapse)
2730 		return;
2731 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2732 		return;
2733 
2734 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2735 		if (!tcp_can_collapse(sk, skb))
2736 			break;
2737 
2738 		if (!tcp_skb_can_collapse_to(to))
2739 			break;
2740 
2741 		space -= skb->len;
2742 
2743 		if (first) {
2744 			first = false;
2745 			continue;
2746 		}
2747 
2748 		if (space < 0)
2749 			break;
2750 
2751 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2752 			break;
2753 
2754 		if (!tcp_collapse_retrans(sk, to))
2755 			break;
2756 	}
2757 }
2758 
2759 /* This retransmits one SKB.  Policy decisions and retransmit queue
2760  * state updates are done by the caller.  Returns non-zero if an
2761  * error occurred which prevented the send.
2762  */
2763 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2764 {
2765 	struct inet_connection_sock *icsk = inet_csk(sk);
2766 	struct tcp_sock *tp = tcp_sk(sk);
2767 	unsigned int cur_mss;
2768 	int diff, len, err;
2769 
2770 
2771 	/* Inconclusive MTU probe */
2772 	if (icsk->icsk_mtup.probe_size)
2773 		icsk->icsk_mtup.probe_size = 0;
2774 
2775 	/* Do not sent more than we queued. 1/4 is reserved for possible
2776 	 * copying overhead: fragmentation, tunneling, mangling etc.
2777 	 */
2778 	if (refcount_read(&sk->sk_wmem_alloc) >
2779 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2780 		  sk->sk_sndbuf))
2781 		return -EAGAIN;
2782 
2783 	if (skb_still_in_host_queue(sk, skb))
2784 		return -EBUSY;
2785 
2786 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2787 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2788 			BUG();
2789 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2790 			return -ENOMEM;
2791 	}
2792 
2793 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2794 		return -EHOSTUNREACH; /* Routing failure or similar. */
2795 
2796 	cur_mss = tcp_current_mss(sk);
2797 
2798 	/* If receiver has shrunk his window, and skb is out of
2799 	 * new window, do not retransmit it. The exception is the
2800 	 * case, when window is shrunk to zero. In this case
2801 	 * our retransmit serves as a zero window probe.
2802 	 */
2803 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2804 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2805 		return -EAGAIN;
2806 
2807 	len = cur_mss * segs;
2808 	if (skb->len > len) {
2809 		if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2810 			return -ENOMEM; /* We'll try again later. */
2811 	} else {
2812 		if (skb_unclone(skb, GFP_ATOMIC))
2813 			return -ENOMEM;
2814 
2815 		diff = tcp_skb_pcount(skb);
2816 		tcp_set_skb_tso_segs(skb, cur_mss);
2817 		diff -= tcp_skb_pcount(skb);
2818 		if (diff)
2819 			tcp_adjust_pcount(sk, skb, diff);
2820 		if (skb->len < cur_mss)
2821 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2822 	}
2823 
2824 	/* RFC3168, section 6.1.1.1. ECN fallback */
2825 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2826 		tcp_ecn_clear_syn(sk, skb);
2827 
2828 	/* Update global and local TCP statistics. */
2829 	segs = tcp_skb_pcount(skb);
2830 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2831 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2832 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2833 	tp->total_retrans += segs;
2834 
2835 	/* make sure skb->data is aligned on arches that require it
2836 	 * and check if ack-trimming & collapsing extended the headroom
2837 	 * beyond what csum_start can cover.
2838 	 */
2839 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2840 		     skb_headroom(skb) >= 0xFFFF)) {
2841 		struct sk_buff *nskb;
2842 
2843 		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2844 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2845 			     -ENOBUFS;
2846 		if (!err) {
2847 			skb->skb_mstamp = tp->tcp_mstamp;
2848 			tcp_rate_skb_sent(sk, skb);
2849 		}
2850 	} else {
2851 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2852 	}
2853 
2854 	if (likely(!err)) {
2855 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2856 	} else if (err != -EBUSY) {
2857 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2858 	}
2859 	return err;
2860 }
2861 
2862 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2863 {
2864 	struct tcp_sock *tp = tcp_sk(sk);
2865 	int err = __tcp_retransmit_skb(sk, skb, segs);
2866 
2867 	if (err == 0) {
2868 #if FASTRETRANS_DEBUG > 0
2869 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2870 			net_dbg_ratelimited("retrans_out leaked\n");
2871 		}
2872 #endif
2873 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2874 		tp->retrans_out += tcp_skb_pcount(skb);
2875 
2876 		/* Save stamp of the first retransmit. */
2877 		if (!tp->retrans_stamp)
2878 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2879 
2880 	}
2881 
2882 	if (tp->undo_retrans < 0)
2883 		tp->undo_retrans = 0;
2884 	tp->undo_retrans += tcp_skb_pcount(skb);
2885 	return err;
2886 }
2887 
2888 /* This gets called after a retransmit timeout, and the initially
2889  * retransmitted data is acknowledged.  It tries to continue
2890  * resending the rest of the retransmit queue, until either
2891  * we've sent it all or the congestion window limit is reached.
2892  * If doing SACK, the first ACK which comes back for a timeout
2893  * based retransmit packet might feed us FACK information again.
2894  * If so, we use it to avoid unnecessarily retransmissions.
2895  */
2896 void tcp_xmit_retransmit_queue(struct sock *sk)
2897 {
2898 	const struct inet_connection_sock *icsk = inet_csk(sk);
2899 	struct tcp_sock *tp = tcp_sk(sk);
2900 	struct sk_buff *skb;
2901 	struct sk_buff *hole = NULL;
2902 	u32 max_segs;
2903 	int mib_idx;
2904 
2905 	if (!tp->packets_out)
2906 		return;
2907 
2908 	if (tp->retransmit_skb_hint) {
2909 		skb = tp->retransmit_skb_hint;
2910 	} else {
2911 		skb = tcp_write_queue_head(sk);
2912 	}
2913 
2914 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2915 	tcp_for_write_queue_from(skb, sk) {
2916 		__u8 sacked;
2917 		int segs;
2918 
2919 		if (skb == tcp_send_head(sk))
2920 			break;
2921 
2922 		if (tcp_pacing_check(sk))
2923 			break;
2924 
2925 		/* we could do better than to assign each time */
2926 		if (!hole)
2927 			tp->retransmit_skb_hint = skb;
2928 
2929 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2930 		if (segs <= 0)
2931 			return;
2932 		sacked = TCP_SKB_CB(skb)->sacked;
2933 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2934 		 * we need to make sure not sending too bigs TSO packets
2935 		 */
2936 		segs = min_t(int, segs, max_segs);
2937 
2938 		if (tp->retrans_out >= tp->lost_out) {
2939 			break;
2940 		} else if (!(sacked & TCPCB_LOST)) {
2941 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2942 				hole = skb;
2943 			continue;
2944 
2945 		} else {
2946 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2947 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2948 			else
2949 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2950 		}
2951 
2952 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2953 			continue;
2954 
2955 		if (tcp_small_queue_check(sk, skb, 1))
2956 			return;
2957 
2958 		if (tcp_retransmit_skb(sk, skb, segs))
2959 			return;
2960 
2961 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2962 
2963 		if (tcp_in_cwnd_reduction(sk))
2964 			tp->prr_out += tcp_skb_pcount(skb);
2965 
2966 		if (skb == tcp_write_queue_head(sk) &&
2967 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
2968 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2969 						  inet_csk(sk)->icsk_rto,
2970 						  TCP_RTO_MAX);
2971 	}
2972 }
2973 
2974 /* We allow to exceed memory limits for FIN packets to expedite
2975  * connection tear down and (memory) recovery.
2976  * Otherwise tcp_send_fin() could be tempted to either delay FIN
2977  * or even be forced to close flow without any FIN.
2978  * In general, we want to allow one skb per socket to avoid hangs
2979  * with edge trigger epoll()
2980  */
2981 void sk_forced_mem_schedule(struct sock *sk, int size)
2982 {
2983 	int amt;
2984 
2985 	if (size <= sk->sk_forward_alloc)
2986 		return;
2987 	amt = sk_mem_pages(size);
2988 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2989 	sk_memory_allocated_add(sk, amt);
2990 
2991 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2992 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2993 }
2994 
2995 /* Send a FIN. The caller locks the socket for us.
2996  * We should try to send a FIN packet really hard, but eventually give up.
2997  */
2998 void tcp_send_fin(struct sock *sk)
2999 {
3000 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3001 	struct tcp_sock *tp = tcp_sk(sk);
3002 
3003 	/* Optimization, tack on the FIN if we have one skb in write queue and
3004 	 * this skb was not yet sent, or we are under memory pressure.
3005 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3006 	 * as TCP stack thinks it has already been transmitted.
3007 	 */
3008 	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
3009 coalesce:
3010 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3011 		TCP_SKB_CB(tskb)->end_seq++;
3012 		tp->write_seq++;
3013 		if (!tcp_send_head(sk)) {
3014 			/* This means tskb was already sent.
3015 			 * Pretend we included the FIN on previous transmit.
3016 			 * We need to set tp->snd_nxt to the value it would have
3017 			 * if FIN had been sent. This is because retransmit path
3018 			 * does not change tp->snd_nxt.
3019 			 */
3020 			tp->snd_nxt++;
3021 			return;
3022 		}
3023 	} else {
3024 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3025 		if (unlikely(!skb)) {
3026 			if (tskb)
3027 				goto coalesce;
3028 			return;
3029 		}
3030 		skb_reserve(skb, MAX_TCP_HEADER);
3031 		sk_forced_mem_schedule(sk, skb->truesize);
3032 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3033 		tcp_init_nondata_skb(skb, tp->write_seq,
3034 				     TCPHDR_ACK | TCPHDR_FIN);
3035 		tcp_queue_skb(sk, skb);
3036 	}
3037 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3038 }
3039 
3040 /* We get here when a process closes a file descriptor (either due to
3041  * an explicit close() or as a byproduct of exit()'ing) and there
3042  * was unread data in the receive queue.  This behavior is recommended
3043  * by RFC 2525, section 2.17.  -DaveM
3044  */
3045 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3046 {
3047 	struct sk_buff *skb;
3048 
3049 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3050 
3051 	/* NOTE: No TCP options attached and we never retransmit this. */
3052 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3053 	if (!skb) {
3054 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3055 		return;
3056 	}
3057 
3058 	/* Reserve space for headers and prepare control bits. */
3059 	skb_reserve(skb, MAX_TCP_HEADER);
3060 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3061 			     TCPHDR_ACK | TCPHDR_RST);
3062 	tcp_mstamp_refresh(tcp_sk(sk));
3063 	/* Send it off. */
3064 	if (tcp_transmit_skb(sk, skb, 0, priority))
3065 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3066 }
3067 
3068 /* Send a crossed SYN-ACK during socket establishment.
3069  * WARNING: This routine must only be called when we have already sent
3070  * a SYN packet that crossed the incoming SYN that caused this routine
3071  * to get called. If this assumption fails then the initial rcv_wnd
3072  * and rcv_wscale values will not be correct.
3073  */
3074 int tcp_send_synack(struct sock *sk)
3075 {
3076 	struct sk_buff *skb;
3077 
3078 	skb = tcp_write_queue_head(sk);
3079 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3080 		pr_debug("%s: wrong queue state\n", __func__);
3081 		return -EFAULT;
3082 	}
3083 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3084 		if (skb_cloned(skb)) {
3085 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3086 			if (!nskb)
3087 				return -ENOMEM;
3088 			tcp_unlink_write_queue(skb, sk);
3089 			__skb_header_release(nskb);
3090 			__tcp_add_write_queue_head(sk, nskb);
3091 			sk_wmem_free_skb(sk, skb);
3092 			sk->sk_wmem_queued += nskb->truesize;
3093 			sk_mem_charge(sk, nskb->truesize);
3094 			skb = nskb;
3095 		}
3096 
3097 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3098 		tcp_ecn_send_synack(sk, skb);
3099 	}
3100 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3101 }
3102 
3103 /**
3104  * tcp_make_synack - Prepare a SYN-ACK.
3105  * sk: listener socket
3106  * dst: dst entry attached to the SYNACK
3107  * req: request_sock pointer
3108  *
3109  * Allocate one skb and build a SYNACK packet.
3110  * @dst is consumed : Caller should not use it again.
3111  */
3112 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3113 				struct request_sock *req,
3114 				struct tcp_fastopen_cookie *foc,
3115 				enum tcp_synack_type synack_type)
3116 {
3117 	struct inet_request_sock *ireq = inet_rsk(req);
3118 	const struct tcp_sock *tp = tcp_sk(sk);
3119 	struct tcp_md5sig_key *md5 = NULL;
3120 	struct tcp_out_options opts;
3121 	struct sk_buff *skb;
3122 	int tcp_header_size;
3123 	struct tcphdr *th;
3124 	int mss;
3125 
3126 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3127 	if (unlikely(!skb)) {
3128 		dst_release(dst);
3129 		return NULL;
3130 	}
3131 	/* Reserve space for headers. */
3132 	skb_reserve(skb, MAX_TCP_HEADER);
3133 
3134 	switch (synack_type) {
3135 	case TCP_SYNACK_NORMAL:
3136 		skb_set_owner_w(skb, req_to_sk(req));
3137 		break;
3138 	case TCP_SYNACK_COOKIE:
3139 		/* Under synflood, we do not attach skb to a socket,
3140 		 * to avoid false sharing.
3141 		 */
3142 		break;
3143 	case TCP_SYNACK_FASTOPEN:
3144 		/* sk is a const pointer, because we want to express multiple
3145 		 * cpu might call us concurrently.
3146 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3147 		 */
3148 		skb_set_owner_w(skb, (struct sock *)sk);
3149 		break;
3150 	}
3151 	skb_dst_set(skb, dst);
3152 
3153 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3154 
3155 	memset(&opts, 0, sizeof(opts));
3156 #ifdef CONFIG_SYN_COOKIES
3157 	if (unlikely(req->cookie_ts))
3158 		skb->skb_mstamp = cookie_init_timestamp(req);
3159 	else
3160 #endif
3161 		skb->skb_mstamp = tcp_clock_us();
3162 
3163 #ifdef CONFIG_TCP_MD5SIG
3164 	rcu_read_lock();
3165 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3166 #endif
3167 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3168 	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3169 			  sizeof(*th);
3170 
3171 	skb_push(skb, tcp_header_size);
3172 	skb_reset_transport_header(skb);
3173 
3174 	th = (struct tcphdr *)skb->data;
3175 	memset(th, 0, sizeof(struct tcphdr));
3176 	th->syn = 1;
3177 	th->ack = 1;
3178 	tcp_ecn_make_synack(req, th);
3179 	th->source = htons(ireq->ir_num);
3180 	th->dest = ireq->ir_rmt_port;
3181 	skb->mark = ireq->ir_mark;
3182 	/* Setting of flags are superfluous here for callers (and ECE is
3183 	 * not even correctly set)
3184 	 */
3185 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3186 			     TCPHDR_SYN | TCPHDR_ACK);
3187 
3188 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3189 	/* XXX data is queued and acked as is. No buffer/window check */
3190 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3191 
3192 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3193 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3194 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3195 	th->doff = (tcp_header_size >> 2);
3196 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3197 
3198 #ifdef CONFIG_TCP_MD5SIG
3199 	/* Okay, we have all we need - do the md5 hash if needed */
3200 	if (md5)
3201 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3202 					       md5, req_to_sk(req), skb);
3203 	rcu_read_unlock();
3204 #endif
3205 
3206 	/* Do not fool tcpdump (if any), clean our debris */
3207 	skb->tstamp = 0;
3208 	return skb;
3209 }
3210 EXPORT_SYMBOL(tcp_make_synack);
3211 
3212 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3213 {
3214 	struct inet_connection_sock *icsk = inet_csk(sk);
3215 	const struct tcp_congestion_ops *ca;
3216 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3217 
3218 	if (ca_key == TCP_CA_UNSPEC)
3219 		return;
3220 
3221 	rcu_read_lock();
3222 	ca = tcp_ca_find_key(ca_key);
3223 	if (likely(ca && try_module_get(ca->owner))) {
3224 		module_put(icsk->icsk_ca_ops->owner);
3225 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3226 		icsk->icsk_ca_ops = ca;
3227 	}
3228 	rcu_read_unlock();
3229 }
3230 
3231 /* Do all connect socket setups that can be done AF independent. */
3232 static void tcp_connect_init(struct sock *sk)
3233 {
3234 	const struct dst_entry *dst = __sk_dst_get(sk);
3235 	struct tcp_sock *tp = tcp_sk(sk);
3236 	__u8 rcv_wscale;
3237 	u32 rcv_wnd;
3238 
3239 	/* We'll fix this up when we get a response from the other end.
3240 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3241 	 */
3242 	tp->tcp_header_len = sizeof(struct tcphdr);
3243 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3244 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3245 
3246 #ifdef CONFIG_TCP_MD5SIG
3247 	if (tp->af_specific->md5_lookup(sk, sk))
3248 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3249 #endif
3250 
3251 	/* If user gave his TCP_MAXSEG, record it to clamp */
3252 	if (tp->rx_opt.user_mss)
3253 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3254 	tp->max_window = 0;
3255 	tcp_mtup_init(sk);
3256 	tcp_sync_mss(sk, dst_mtu(dst));
3257 
3258 	tcp_ca_dst_init(sk, dst);
3259 
3260 	if (!tp->window_clamp)
3261 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3262 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3263 
3264 	tcp_initialize_rcv_mss(sk);
3265 
3266 	/* limit the window selection if the user enforce a smaller rx buffer */
3267 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3268 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3269 		tp->window_clamp = tcp_full_space(sk);
3270 
3271 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3272 	if (rcv_wnd == 0)
3273 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3274 
3275 	tcp_select_initial_window(tcp_full_space(sk),
3276 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3277 				  &tp->rcv_wnd,
3278 				  &tp->window_clamp,
3279 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3280 				  &rcv_wscale,
3281 				  rcv_wnd);
3282 
3283 	tp->rx_opt.rcv_wscale = rcv_wscale;
3284 	tp->rcv_ssthresh = tp->rcv_wnd;
3285 
3286 	sk->sk_err = 0;
3287 	sock_reset_flag(sk, SOCK_DONE);
3288 	tp->snd_wnd = 0;
3289 	tcp_init_wl(tp, 0);
3290 	tp->snd_una = tp->write_seq;
3291 	tp->snd_sml = tp->write_seq;
3292 	tp->snd_up = tp->write_seq;
3293 	tp->snd_nxt = tp->write_seq;
3294 
3295 	if (likely(!tp->repair))
3296 		tp->rcv_nxt = 0;
3297 	else
3298 		tp->rcv_tstamp = tcp_jiffies32;
3299 	tp->rcv_wup = tp->rcv_nxt;
3300 	tp->copied_seq = tp->rcv_nxt;
3301 
3302 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3303 	inet_csk(sk)->icsk_retransmits = 0;
3304 	tcp_clear_retrans(tp);
3305 }
3306 
3307 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3308 {
3309 	struct tcp_sock *tp = tcp_sk(sk);
3310 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3311 
3312 	tcb->end_seq += skb->len;
3313 	__skb_header_release(skb);
3314 	__tcp_add_write_queue_tail(sk, skb);
3315 	sk->sk_wmem_queued += skb->truesize;
3316 	sk_mem_charge(sk, skb->truesize);
3317 	tp->write_seq = tcb->end_seq;
3318 	tp->packets_out += tcp_skb_pcount(skb);
3319 }
3320 
3321 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3322  * queue a data-only packet after the regular SYN, such that regular SYNs
3323  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3324  * only the SYN sequence, the data are retransmitted in the first ACK.
3325  * If cookie is not cached or other error occurs, falls back to send a
3326  * regular SYN with Fast Open cookie request option.
3327  */
3328 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3329 {
3330 	struct tcp_sock *tp = tcp_sk(sk);
3331 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3332 	int space, err = 0;
3333 	struct sk_buff *syn_data;
3334 
3335 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3336 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3337 		goto fallback;
3338 
3339 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3340 	 * user-MSS. Reserve maximum option space for middleboxes that add
3341 	 * private TCP options. The cost is reduced data space in SYN :(
3342 	 */
3343 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3344 
3345 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3346 		MAX_TCP_OPTION_SPACE;
3347 
3348 	space = min_t(size_t, space, fo->size);
3349 
3350 	/* limit to order-0 allocations */
3351 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3352 
3353 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3354 	if (!syn_data)
3355 		goto fallback;
3356 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3357 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3358 	if (space) {
3359 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3360 					    &fo->data->msg_iter);
3361 		if (unlikely(!copied)) {
3362 			kfree_skb(syn_data);
3363 			goto fallback;
3364 		}
3365 		if (copied != space) {
3366 			skb_trim(syn_data, copied);
3367 			space = copied;
3368 		}
3369 	}
3370 	/* No more data pending in inet_wait_for_connect() */
3371 	if (space == fo->size)
3372 		fo->data = NULL;
3373 	fo->copied = space;
3374 
3375 	tcp_connect_queue_skb(sk, syn_data);
3376 	if (syn_data->len)
3377 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3378 
3379 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3380 
3381 	syn->skb_mstamp = syn_data->skb_mstamp;
3382 
3383 	/* Now full SYN+DATA was cloned and sent (or not),
3384 	 * remove the SYN from the original skb (syn_data)
3385 	 * we keep in write queue in case of a retransmit, as we
3386 	 * also have the SYN packet (with no data) in the same queue.
3387 	 */
3388 	TCP_SKB_CB(syn_data)->seq++;
3389 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3390 	if (!err) {
3391 		tp->syn_data = (fo->copied > 0);
3392 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3393 		goto done;
3394 	}
3395 
3396 	/* data was not sent, this is our new send_head */
3397 	sk->sk_send_head = syn_data;
3398 	tp->packets_out -= tcp_skb_pcount(syn_data);
3399 
3400 fallback:
3401 	/* Send a regular SYN with Fast Open cookie request option */
3402 	if (fo->cookie.len > 0)
3403 		fo->cookie.len = 0;
3404 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3405 	if (err)
3406 		tp->syn_fastopen = 0;
3407 done:
3408 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3409 	return err;
3410 }
3411 
3412 /* Build a SYN and send it off. */
3413 int tcp_connect(struct sock *sk)
3414 {
3415 	struct tcp_sock *tp = tcp_sk(sk);
3416 	struct sk_buff *buff;
3417 	int err;
3418 
3419 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
3420 
3421 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3422 		return -EHOSTUNREACH; /* Routing failure or similar. */
3423 
3424 	tcp_connect_init(sk);
3425 
3426 	if (unlikely(tp->repair)) {
3427 		tcp_finish_connect(sk, NULL);
3428 		return 0;
3429 	}
3430 
3431 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3432 	if (unlikely(!buff))
3433 		return -ENOBUFS;
3434 
3435 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3436 	tcp_mstamp_refresh(tp);
3437 	tp->retrans_stamp = tcp_time_stamp(tp);
3438 	tcp_connect_queue_skb(sk, buff);
3439 	tcp_ecn_send_syn(sk, buff);
3440 
3441 	/* Send off SYN; include data in Fast Open. */
3442 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3443 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3444 	if (err == -ECONNREFUSED)
3445 		return err;
3446 
3447 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3448 	 * in order to make this packet get counted in tcpOutSegs.
3449 	 */
3450 	tp->snd_nxt = tp->write_seq;
3451 	tp->pushed_seq = tp->write_seq;
3452 	buff = tcp_send_head(sk);
3453 	if (unlikely(buff)) {
3454 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3455 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3456 	}
3457 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3458 
3459 	/* Timer for repeating the SYN until an answer. */
3460 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3461 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3462 	return 0;
3463 }
3464 EXPORT_SYMBOL(tcp_connect);
3465 
3466 /* Send out a delayed ack, the caller does the policy checking
3467  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3468  * for details.
3469  */
3470 void tcp_send_delayed_ack(struct sock *sk)
3471 {
3472 	struct inet_connection_sock *icsk = inet_csk(sk);
3473 	int ato = icsk->icsk_ack.ato;
3474 	unsigned long timeout;
3475 
3476 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3477 
3478 	if (ato > TCP_DELACK_MIN) {
3479 		const struct tcp_sock *tp = tcp_sk(sk);
3480 		int max_ato = HZ / 2;
3481 
3482 		if (icsk->icsk_ack.pingpong ||
3483 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3484 			max_ato = TCP_DELACK_MAX;
3485 
3486 		/* Slow path, intersegment interval is "high". */
3487 
3488 		/* If some rtt estimate is known, use it to bound delayed ack.
3489 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3490 		 * directly.
3491 		 */
3492 		if (tp->srtt_us) {
3493 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3494 					TCP_DELACK_MIN);
3495 
3496 			if (rtt < max_ato)
3497 				max_ato = rtt;
3498 		}
3499 
3500 		ato = min(ato, max_ato);
3501 	}
3502 
3503 	/* Stay within the limit we were given */
3504 	timeout = jiffies + ato;
3505 
3506 	/* Use new timeout only if there wasn't a older one earlier. */
3507 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3508 		/* If delack timer was blocked or is about to expire,
3509 		 * send ACK now.
3510 		 */
3511 		if (icsk->icsk_ack.blocked ||
3512 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3513 			tcp_send_ack(sk);
3514 			return;
3515 		}
3516 
3517 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3518 			timeout = icsk->icsk_ack.timeout;
3519 	}
3520 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3521 	icsk->icsk_ack.timeout = timeout;
3522 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3523 }
3524 
3525 /* This routine sends an ack and also updates the window. */
3526 void tcp_send_ack(struct sock *sk)
3527 {
3528 	struct sk_buff *buff;
3529 
3530 	/* If we have been reset, we may not send again. */
3531 	if (sk->sk_state == TCP_CLOSE)
3532 		return;
3533 
3534 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3535 
3536 	/* We are not putting this on the write queue, so
3537 	 * tcp_transmit_skb() will set the ownership to this
3538 	 * sock.
3539 	 */
3540 	buff = alloc_skb(MAX_TCP_HEADER,
3541 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3542 	if (unlikely(!buff)) {
3543 		inet_csk_schedule_ack(sk);
3544 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3545 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3546 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3547 		return;
3548 	}
3549 
3550 	/* Reserve space for headers and prepare control bits. */
3551 	skb_reserve(buff, MAX_TCP_HEADER);
3552 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3553 
3554 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3555 	 * too much.
3556 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3557 	 */
3558 	skb_set_tcp_pure_ack(buff);
3559 
3560 	/* Send it off, this clears delayed acks for us. */
3561 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3562 }
3563 EXPORT_SYMBOL_GPL(tcp_send_ack);
3564 
3565 /* This routine sends a packet with an out of date sequence
3566  * number. It assumes the other end will try to ack it.
3567  *
3568  * Question: what should we make while urgent mode?
3569  * 4.4BSD forces sending single byte of data. We cannot send
3570  * out of window data, because we have SND.NXT==SND.MAX...
3571  *
3572  * Current solution: to send TWO zero-length segments in urgent mode:
3573  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3574  * out-of-date with SND.UNA-1 to probe window.
3575  */
3576 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3577 {
3578 	struct tcp_sock *tp = tcp_sk(sk);
3579 	struct sk_buff *skb;
3580 
3581 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3582 	skb = alloc_skb(MAX_TCP_HEADER,
3583 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3584 	if (!skb)
3585 		return -1;
3586 
3587 	/* Reserve space for headers and set control bits. */
3588 	skb_reserve(skb, MAX_TCP_HEADER);
3589 	/* Use a previous sequence.  This should cause the other
3590 	 * end to send an ack.  Don't queue or clone SKB, just
3591 	 * send it.
3592 	 */
3593 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3594 	NET_INC_STATS(sock_net(sk), mib);
3595 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3596 }
3597 
3598 /* Called from setsockopt( ... TCP_REPAIR ) */
3599 void tcp_send_window_probe(struct sock *sk)
3600 {
3601 	if (sk->sk_state == TCP_ESTABLISHED) {
3602 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3603 		tcp_mstamp_refresh(tcp_sk(sk));
3604 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3605 	}
3606 }
3607 
3608 /* Initiate keepalive or window probe from timer. */
3609 int tcp_write_wakeup(struct sock *sk, int mib)
3610 {
3611 	struct tcp_sock *tp = tcp_sk(sk);
3612 	struct sk_buff *skb;
3613 
3614 	if (sk->sk_state == TCP_CLOSE)
3615 		return -1;
3616 
3617 	skb = tcp_send_head(sk);
3618 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3619 		int err;
3620 		unsigned int mss = tcp_current_mss(sk);
3621 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3622 
3623 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3624 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3625 
3626 		/* We are probing the opening of a window
3627 		 * but the window size is != 0
3628 		 * must have been a result SWS avoidance ( sender )
3629 		 */
3630 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3631 		    skb->len > mss) {
3632 			seg_size = min(seg_size, mss);
3633 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3634 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3635 				return -1;
3636 		} else if (!tcp_skb_pcount(skb))
3637 			tcp_set_skb_tso_segs(skb, mss);
3638 
3639 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3640 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3641 		if (!err)
3642 			tcp_event_new_data_sent(sk, skb);
3643 		return err;
3644 	} else {
3645 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3646 			tcp_xmit_probe_skb(sk, 1, mib);
3647 		return tcp_xmit_probe_skb(sk, 0, mib);
3648 	}
3649 }
3650 
3651 /* A window probe timeout has occurred.  If window is not closed send
3652  * a partial packet else a zero probe.
3653  */
3654 void tcp_send_probe0(struct sock *sk)
3655 {
3656 	struct inet_connection_sock *icsk = inet_csk(sk);
3657 	struct tcp_sock *tp = tcp_sk(sk);
3658 	struct net *net = sock_net(sk);
3659 	unsigned long probe_max;
3660 	int err;
3661 
3662 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3663 
3664 	if (tp->packets_out || !tcp_send_head(sk)) {
3665 		/* Cancel probe timer, if it is not required. */
3666 		icsk->icsk_probes_out = 0;
3667 		icsk->icsk_backoff = 0;
3668 		return;
3669 	}
3670 
3671 	if (err <= 0) {
3672 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3673 			icsk->icsk_backoff++;
3674 		icsk->icsk_probes_out++;
3675 		probe_max = TCP_RTO_MAX;
3676 	} else {
3677 		/* If packet was not sent due to local congestion,
3678 		 * do not backoff and do not remember icsk_probes_out.
3679 		 * Let local senders to fight for local resources.
3680 		 *
3681 		 * Use accumulated backoff yet.
3682 		 */
3683 		if (!icsk->icsk_probes_out)
3684 			icsk->icsk_probes_out = 1;
3685 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3686 	}
3687 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3688 				  tcp_probe0_when(sk, probe_max),
3689 				  TCP_RTO_MAX);
3690 }
3691 
3692 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3693 {
3694 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3695 	struct flowi fl;
3696 	int res;
3697 
3698 	tcp_rsk(req)->txhash = net_tx_rndhash();
3699 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3700 	if (!res) {
3701 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3702 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3703 		if (unlikely(tcp_passive_fastopen(sk)))
3704 			tcp_sk(sk)->total_retrans++;
3705 	}
3706 	return res;
3707 }
3708 EXPORT_SYMBOL(tcp_rtx_synack);
3709