1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 66 int push_one, gfp_t gfp); 67 68 /* Account for new data that has been sent to the network. */ 69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 70 { 71 struct inet_connection_sock *icsk = inet_csk(sk); 72 struct tcp_sock *tp = tcp_sk(sk); 73 unsigned int prior_packets = tp->packets_out; 74 75 tcp_advance_send_head(sk, skb); 76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 80 tcp_rearm_rto(sk); 81 82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 83 tcp_skb_pcount(skb)); 84 } 85 86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 87 * window scaling factor due to loss of precision. 88 * If window has been shrunk, what should we make? It is not clear at all. 89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 91 * invalid. OK, let's make this for now: 92 */ 93 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 94 { 95 const struct tcp_sock *tp = tcp_sk(sk); 96 97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 98 (tp->rx_opt.wscale_ok && 99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 100 return tp->snd_nxt; 101 else 102 return tcp_wnd_end(tp); 103 } 104 105 /* Calculate mss to advertise in SYN segment. 106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 107 * 108 * 1. It is independent of path mtu. 109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 111 * attached devices, because some buggy hosts are confused by 112 * large MSS. 113 * 4. We do not make 3, we advertise MSS, calculated from first 114 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 115 * This may be overridden via information stored in routing table. 116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 117 * probably even Jumbo". 118 */ 119 static __u16 tcp_advertise_mss(struct sock *sk) 120 { 121 struct tcp_sock *tp = tcp_sk(sk); 122 const struct dst_entry *dst = __sk_dst_get(sk); 123 int mss = tp->advmss; 124 125 if (dst) { 126 unsigned int metric = dst_metric_advmss(dst); 127 128 if (metric < mss) { 129 mss = metric; 130 tp->advmss = mss; 131 } 132 } 133 134 return (__u16)mss; 135 } 136 137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 138 * This is the first part of cwnd validation mechanism. 139 */ 140 void tcp_cwnd_restart(struct sock *sk, s32 delta) 141 { 142 struct tcp_sock *tp = tcp_sk(sk); 143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 144 u32 cwnd = tp->snd_cwnd; 145 146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 147 148 tp->snd_ssthresh = tcp_current_ssthresh(sk); 149 restart_cwnd = min(restart_cwnd, cwnd); 150 151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 152 cwnd >>= 1; 153 tp->snd_cwnd = max(cwnd, restart_cwnd); 154 tp->snd_cwnd_stamp = tcp_jiffies32; 155 tp->snd_cwnd_used = 0; 156 } 157 158 /* Congestion state accounting after a packet has been sent. */ 159 static void tcp_event_data_sent(struct tcp_sock *tp, 160 struct sock *sk) 161 { 162 struct inet_connection_sock *icsk = inet_csk(sk); 163 const u32 now = tcp_jiffies32; 164 165 if (tcp_packets_in_flight(tp) == 0) 166 tcp_ca_event(sk, CA_EVENT_TX_START); 167 168 tp->lsndtime = now; 169 170 /* If it is a reply for ato after last received 171 * packet, enter pingpong mode. 172 */ 173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 174 icsk->icsk_ack.pingpong = 1; 175 } 176 177 /* Account for an ACK we sent. */ 178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 179 { 180 tcp_dec_quickack_mode(sk, pkts); 181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 182 } 183 184 185 u32 tcp_default_init_rwnd(u32 mss) 186 { 187 /* Initial receive window should be twice of TCP_INIT_CWND to 188 * enable proper sending of new unsent data during fast recovery 189 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 190 * limit when mss is larger than 1460. 191 */ 192 u32 init_rwnd = TCP_INIT_CWND * 2; 193 194 if (mss > 1460) 195 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 196 return init_rwnd; 197 } 198 199 /* Determine a window scaling and initial window to offer. 200 * Based on the assumption that the given amount of space 201 * will be offered. Store the results in the tp structure. 202 * NOTE: for smooth operation initial space offering should 203 * be a multiple of mss if possible. We assume here that mss >= 1. 204 * This MUST be enforced by all callers. 205 */ 206 void tcp_select_initial_window(int __space, __u32 mss, 207 __u32 *rcv_wnd, __u32 *window_clamp, 208 int wscale_ok, __u8 *rcv_wscale, 209 __u32 init_rcv_wnd) 210 { 211 unsigned int space = (__space < 0 ? 0 : __space); 212 213 /* If no clamp set the clamp to the max possible scaled window */ 214 if (*window_clamp == 0) 215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 216 space = min(*window_clamp, space); 217 218 /* Quantize space offering to a multiple of mss if possible. */ 219 if (space > mss) 220 space = rounddown(space, mss); 221 222 /* NOTE: offering an initial window larger than 32767 223 * will break some buggy TCP stacks. If the admin tells us 224 * it is likely we could be speaking with such a buggy stack 225 * we will truncate our initial window offering to 32K-1 226 * unless the remote has sent us a window scaling option, 227 * which we interpret as a sign the remote TCP is not 228 * misinterpreting the window field as a signed quantity. 229 */ 230 if (sysctl_tcp_workaround_signed_windows) 231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 232 else 233 (*rcv_wnd) = space; 234 235 (*rcv_wscale) = 0; 236 if (wscale_ok) { 237 /* Set window scaling on max possible window */ 238 space = max_t(u32, space, sysctl_tcp_rmem[2]); 239 space = max_t(u32, space, sysctl_rmem_max); 240 space = min_t(u32, space, *window_clamp); 241 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 242 space >>= 1; 243 (*rcv_wscale)++; 244 } 245 } 246 247 if (mss > (1 << *rcv_wscale)) { 248 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 249 init_rcv_wnd = tcp_default_init_rwnd(mss); 250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 251 } 252 253 /* Set the clamp no higher than max representable value */ 254 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 255 } 256 EXPORT_SYMBOL(tcp_select_initial_window); 257 258 /* Chose a new window to advertise, update state in tcp_sock for the 259 * socket, and return result with RFC1323 scaling applied. The return 260 * value can be stuffed directly into th->window for an outgoing 261 * frame. 262 */ 263 static u16 tcp_select_window(struct sock *sk) 264 { 265 struct tcp_sock *tp = tcp_sk(sk); 266 u32 old_win = tp->rcv_wnd; 267 u32 cur_win = tcp_receive_window(tp); 268 u32 new_win = __tcp_select_window(sk); 269 270 /* Never shrink the offered window */ 271 if (new_win < cur_win) { 272 /* Danger Will Robinson! 273 * Don't update rcv_wup/rcv_wnd here or else 274 * we will not be able to advertise a zero 275 * window in time. --DaveM 276 * 277 * Relax Will Robinson. 278 */ 279 if (new_win == 0) 280 NET_INC_STATS(sock_net(sk), 281 LINUX_MIB_TCPWANTZEROWINDOWADV); 282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 283 } 284 tp->rcv_wnd = new_win; 285 tp->rcv_wup = tp->rcv_nxt; 286 287 /* Make sure we do not exceed the maximum possible 288 * scaled window. 289 */ 290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 291 new_win = min(new_win, MAX_TCP_WINDOW); 292 else 293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 294 295 /* RFC1323 scaling applied */ 296 new_win >>= tp->rx_opt.rcv_wscale; 297 298 /* If we advertise zero window, disable fast path. */ 299 if (new_win == 0) { 300 tp->pred_flags = 0; 301 if (old_win) 302 NET_INC_STATS(sock_net(sk), 303 LINUX_MIB_TCPTOZEROWINDOWADV); 304 } else if (old_win == 0) { 305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 306 } 307 308 return new_win; 309 } 310 311 /* Packet ECN state for a SYN-ACK */ 312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 313 { 314 const struct tcp_sock *tp = tcp_sk(sk); 315 316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 317 if (!(tp->ecn_flags & TCP_ECN_OK)) 318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 319 else if (tcp_ca_needs_ecn(sk) || 320 tcp_bpf_ca_needs_ecn(sk)) 321 INET_ECN_xmit(sk); 322 } 323 324 /* Packet ECN state for a SYN. */ 325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 326 { 327 struct tcp_sock *tp = tcp_sk(sk); 328 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 329 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 330 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 331 332 if (!use_ecn) { 333 const struct dst_entry *dst = __sk_dst_get(sk); 334 335 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 336 use_ecn = true; 337 } 338 339 tp->ecn_flags = 0; 340 341 if (use_ecn) { 342 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 343 tp->ecn_flags = TCP_ECN_OK; 344 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 345 INET_ECN_xmit(sk); 346 } 347 } 348 349 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 350 { 351 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 352 /* tp->ecn_flags are cleared at a later point in time when 353 * SYN ACK is ultimatively being received. 354 */ 355 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 356 } 357 358 static void 359 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 360 { 361 if (inet_rsk(req)->ecn_ok) 362 th->ece = 1; 363 } 364 365 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 366 * be sent. 367 */ 368 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 369 struct tcphdr *th, int tcp_header_len) 370 { 371 struct tcp_sock *tp = tcp_sk(sk); 372 373 if (tp->ecn_flags & TCP_ECN_OK) { 374 /* Not-retransmitted data segment: set ECT and inject CWR. */ 375 if (skb->len != tcp_header_len && 376 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 377 INET_ECN_xmit(sk); 378 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 379 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 380 th->cwr = 1; 381 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 382 } 383 } else if (!tcp_ca_needs_ecn(sk)) { 384 /* ACK or retransmitted segment: clear ECT|CE */ 385 INET_ECN_dontxmit(sk); 386 } 387 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 388 th->ece = 1; 389 } 390 } 391 392 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 393 * auto increment end seqno. 394 */ 395 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 396 { 397 skb->ip_summed = CHECKSUM_PARTIAL; 398 skb->csum = 0; 399 400 TCP_SKB_CB(skb)->tcp_flags = flags; 401 TCP_SKB_CB(skb)->sacked = 0; 402 403 tcp_skb_pcount_set(skb, 1); 404 405 TCP_SKB_CB(skb)->seq = seq; 406 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 407 seq++; 408 TCP_SKB_CB(skb)->end_seq = seq; 409 } 410 411 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 412 { 413 return tp->snd_una != tp->snd_up; 414 } 415 416 #define OPTION_SACK_ADVERTISE (1 << 0) 417 #define OPTION_TS (1 << 1) 418 #define OPTION_MD5 (1 << 2) 419 #define OPTION_WSCALE (1 << 3) 420 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 421 422 struct tcp_out_options { 423 u16 options; /* bit field of OPTION_* */ 424 u16 mss; /* 0 to disable */ 425 u8 ws; /* window scale, 0 to disable */ 426 u8 num_sack_blocks; /* number of SACK blocks to include */ 427 u8 hash_size; /* bytes in hash_location */ 428 __u8 *hash_location; /* temporary pointer, overloaded */ 429 __u32 tsval, tsecr; /* need to include OPTION_TS */ 430 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 431 }; 432 433 /* Write previously computed TCP options to the packet. 434 * 435 * Beware: Something in the Internet is very sensitive to the ordering of 436 * TCP options, we learned this through the hard way, so be careful here. 437 * Luckily we can at least blame others for their non-compliance but from 438 * inter-operability perspective it seems that we're somewhat stuck with 439 * the ordering which we have been using if we want to keep working with 440 * those broken things (not that it currently hurts anybody as there isn't 441 * particular reason why the ordering would need to be changed). 442 * 443 * At least SACK_PERM as the first option is known to lead to a disaster 444 * (but it may well be that other scenarios fail similarly). 445 */ 446 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 447 struct tcp_out_options *opts) 448 { 449 u16 options = opts->options; /* mungable copy */ 450 451 if (unlikely(OPTION_MD5 & options)) { 452 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 453 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 454 /* overload cookie hash location */ 455 opts->hash_location = (__u8 *)ptr; 456 ptr += 4; 457 } 458 459 if (unlikely(opts->mss)) { 460 *ptr++ = htonl((TCPOPT_MSS << 24) | 461 (TCPOLEN_MSS << 16) | 462 opts->mss); 463 } 464 465 if (likely(OPTION_TS & options)) { 466 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 467 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 468 (TCPOLEN_SACK_PERM << 16) | 469 (TCPOPT_TIMESTAMP << 8) | 470 TCPOLEN_TIMESTAMP); 471 options &= ~OPTION_SACK_ADVERTISE; 472 } else { 473 *ptr++ = htonl((TCPOPT_NOP << 24) | 474 (TCPOPT_NOP << 16) | 475 (TCPOPT_TIMESTAMP << 8) | 476 TCPOLEN_TIMESTAMP); 477 } 478 *ptr++ = htonl(opts->tsval); 479 *ptr++ = htonl(opts->tsecr); 480 } 481 482 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 483 *ptr++ = htonl((TCPOPT_NOP << 24) | 484 (TCPOPT_NOP << 16) | 485 (TCPOPT_SACK_PERM << 8) | 486 TCPOLEN_SACK_PERM); 487 } 488 489 if (unlikely(OPTION_WSCALE & options)) { 490 *ptr++ = htonl((TCPOPT_NOP << 24) | 491 (TCPOPT_WINDOW << 16) | 492 (TCPOLEN_WINDOW << 8) | 493 opts->ws); 494 } 495 496 if (unlikely(opts->num_sack_blocks)) { 497 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 498 tp->duplicate_sack : tp->selective_acks; 499 int this_sack; 500 501 *ptr++ = htonl((TCPOPT_NOP << 24) | 502 (TCPOPT_NOP << 16) | 503 (TCPOPT_SACK << 8) | 504 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 505 TCPOLEN_SACK_PERBLOCK))); 506 507 for (this_sack = 0; this_sack < opts->num_sack_blocks; 508 ++this_sack) { 509 *ptr++ = htonl(sp[this_sack].start_seq); 510 *ptr++ = htonl(sp[this_sack].end_seq); 511 } 512 513 tp->rx_opt.dsack = 0; 514 } 515 516 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 517 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 518 u8 *p = (u8 *)ptr; 519 u32 len; /* Fast Open option length */ 520 521 if (foc->exp) { 522 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 523 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 524 TCPOPT_FASTOPEN_MAGIC); 525 p += TCPOLEN_EXP_FASTOPEN_BASE; 526 } else { 527 len = TCPOLEN_FASTOPEN_BASE + foc->len; 528 *p++ = TCPOPT_FASTOPEN; 529 *p++ = len; 530 } 531 532 memcpy(p, foc->val, foc->len); 533 if ((len & 3) == 2) { 534 p[foc->len] = TCPOPT_NOP; 535 p[foc->len + 1] = TCPOPT_NOP; 536 } 537 ptr += (len + 3) >> 2; 538 } 539 } 540 541 /* Compute TCP options for SYN packets. This is not the final 542 * network wire format yet. 543 */ 544 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 545 struct tcp_out_options *opts, 546 struct tcp_md5sig_key **md5) 547 { 548 struct tcp_sock *tp = tcp_sk(sk); 549 unsigned int remaining = MAX_TCP_OPTION_SPACE; 550 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 551 552 #ifdef CONFIG_TCP_MD5SIG 553 *md5 = tp->af_specific->md5_lookup(sk, sk); 554 if (*md5) { 555 opts->options |= OPTION_MD5; 556 remaining -= TCPOLEN_MD5SIG_ALIGNED; 557 } 558 #else 559 *md5 = NULL; 560 #endif 561 562 /* We always get an MSS option. The option bytes which will be seen in 563 * normal data packets should timestamps be used, must be in the MSS 564 * advertised. But we subtract them from tp->mss_cache so that 565 * calculations in tcp_sendmsg are simpler etc. So account for this 566 * fact here if necessary. If we don't do this correctly, as a 567 * receiver we won't recognize data packets as being full sized when we 568 * should, and thus we won't abide by the delayed ACK rules correctly. 569 * SACKs don't matter, we never delay an ACK when we have any of those 570 * going out. */ 571 opts->mss = tcp_advertise_mss(sk); 572 remaining -= TCPOLEN_MSS_ALIGNED; 573 574 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 575 opts->options |= OPTION_TS; 576 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 577 opts->tsecr = tp->rx_opt.ts_recent; 578 remaining -= TCPOLEN_TSTAMP_ALIGNED; 579 } 580 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 581 opts->ws = tp->rx_opt.rcv_wscale; 582 opts->options |= OPTION_WSCALE; 583 remaining -= TCPOLEN_WSCALE_ALIGNED; 584 } 585 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 586 opts->options |= OPTION_SACK_ADVERTISE; 587 if (unlikely(!(OPTION_TS & opts->options))) 588 remaining -= TCPOLEN_SACKPERM_ALIGNED; 589 } 590 591 if (fastopen && fastopen->cookie.len >= 0) { 592 u32 need = fastopen->cookie.len; 593 594 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 595 TCPOLEN_FASTOPEN_BASE; 596 need = (need + 3) & ~3U; /* Align to 32 bits */ 597 if (remaining >= need) { 598 opts->options |= OPTION_FAST_OPEN_COOKIE; 599 opts->fastopen_cookie = &fastopen->cookie; 600 remaining -= need; 601 tp->syn_fastopen = 1; 602 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 603 } 604 } 605 606 return MAX_TCP_OPTION_SPACE - remaining; 607 } 608 609 /* Set up TCP options for SYN-ACKs. */ 610 static unsigned int tcp_synack_options(struct request_sock *req, 611 unsigned int mss, struct sk_buff *skb, 612 struct tcp_out_options *opts, 613 const struct tcp_md5sig_key *md5, 614 struct tcp_fastopen_cookie *foc) 615 { 616 struct inet_request_sock *ireq = inet_rsk(req); 617 unsigned int remaining = MAX_TCP_OPTION_SPACE; 618 619 #ifdef CONFIG_TCP_MD5SIG 620 if (md5) { 621 opts->options |= OPTION_MD5; 622 remaining -= TCPOLEN_MD5SIG_ALIGNED; 623 624 /* We can't fit any SACK blocks in a packet with MD5 + TS 625 * options. There was discussion about disabling SACK 626 * rather than TS in order to fit in better with old, 627 * buggy kernels, but that was deemed to be unnecessary. 628 */ 629 ireq->tstamp_ok &= !ireq->sack_ok; 630 } 631 #endif 632 633 /* We always send an MSS option. */ 634 opts->mss = mss; 635 remaining -= TCPOLEN_MSS_ALIGNED; 636 637 if (likely(ireq->wscale_ok)) { 638 opts->ws = ireq->rcv_wscale; 639 opts->options |= OPTION_WSCALE; 640 remaining -= TCPOLEN_WSCALE_ALIGNED; 641 } 642 if (likely(ireq->tstamp_ok)) { 643 opts->options |= OPTION_TS; 644 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 645 opts->tsecr = req->ts_recent; 646 remaining -= TCPOLEN_TSTAMP_ALIGNED; 647 } 648 if (likely(ireq->sack_ok)) { 649 opts->options |= OPTION_SACK_ADVERTISE; 650 if (unlikely(!ireq->tstamp_ok)) 651 remaining -= TCPOLEN_SACKPERM_ALIGNED; 652 } 653 if (foc != NULL && foc->len >= 0) { 654 u32 need = foc->len; 655 656 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 657 TCPOLEN_FASTOPEN_BASE; 658 need = (need + 3) & ~3U; /* Align to 32 bits */ 659 if (remaining >= need) { 660 opts->options |= OPTION_FAST_OPEN_COOKIE; 661 opts->fastopen_cookie = foc; 662 remaining -= need; 663 } 664 } 665 666 return MAX_TCP_OPTION_SPACE - remaining; 667 } 668 669 /* Compute TCP options for ESTABLISHED sockets. This is not the 670 * final wire format yet. 671 */ 672 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 673 struct tcp_out_options *opts, 674 struct tcp_md5sig_key **md5) 675 { 676 struct tcp_sock *tp = tcp_sk(sk); 677 unsigned int size = 0; 678 unsigned int eff_sacks; 679 680 opts->options = 0; 681 682 #ifdef CONFIG_TCP_MD5SIG 683 *md5 = tp->af_specific->md5_lookup(sk, sk); 684 if (unlikely(*md5)) { 685 opts->options |= OPTION_MD5; 686 size += TCPOLEN_MD5SIG_ALIGNED; 687 } 688 #else 689 *md5 = NULL; 690 #endif 691 692 if (likely(tp->rx_opt.tstamp_ok)) { 693 opts->options |= OPTION_TS; 694 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 695 opts->tsecr = tp->rx_opt.ts_recent; 696 size += TCPOLEN_TSTAMP_ALIGNED; 697 } 698 699 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 700 if (unlikely(eff_sacks)) { 701 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 702 opts->num_sack_blocks = 703 min_t(unsigned int, eff_sacks, 704 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 705 TCPOLEN_SACK_PERBLOCK); 706 size += TCPOLEN_SACK_BASE_ALIGNED + 707 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 708 } 709 710 return size; 711 } 712 713 714 /* TCP SMALL QUEUES (TSQ) 715 * 716 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 717 * to reduce RTT and bufferbloat. 718 * We do this using a special skb destructor (tcp_wfree). 719 * 720 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 721 * needs to be reallocated in a driver. 722 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 723 * 724 * Since transmit from skb destructor is forbidden, we use a tasklet 725 * to process all sockets that eventually need to send more skbs. 726 * We use one tasklet per cpu, with its own queue of sockets. 727 */ 728 struct tsq_tasklet { 729 struct tasklet_struct tasklet; 730 struct list_head head; /* queue of tcp sockets */ 731 }; 732 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 733 734 static void tcp_tsq_handler(struct sock *sk) 735 { 736 if ((1 << sk->sk_state) & 737 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 738 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 739 struct tcp_sock *tp = tcp_sk(sk); 740 741 if (tp->lost_out > tp->retrans_out && 742 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 743 tcp_mstamp_refresh(tp); 744 tcp_xmit_retransmit_queue(sk); 745 } 746 747 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 748 0, GFP_ATOMIC); 749 } 750 } 751 /* 752 * One tasklet per cpu tries to send more skbs. 753 * We run in tasklet context but need to disable irqs when 754 * transferring tsq->head because tcp_wfree() might 755 * interrupt us (non NAPI drivers) 756 */ 757 static void tcp_tasklet_func(unsigned long data) 758 { 759 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 760 LIST_HEAD(list); 761 unsigned long flags; 762 struct list_head *q, *n; 763 struct tcp_sock *tp; 764 struct sock *sk; 765 766 local_irq_save(flags); 767 list_splice_init(&tsq->head, &list); 768 local_irq_restore(flags); 769 770 list_for_each_safe(q, n, &list) { 771 tp = list_entry(q, struct tcp_sock, tsq_node); 772 list_del(&tp->tsq_node); 773 774 sk = (struct sock *)tp; 775 smp_mb__before_atomic(); 776 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 777 778 if (!sk->sk_lock.owned && 779 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) { 780 bh_lock_sock(sk); 781 if (!sock_owned_by_user(sk)) { 782 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 783 tcp_tsq_handler(sk); 784 } 785 bh_unlock_sock(sk); 786 } 787 788 sk_free(sk); 789 } 790 } 791 792 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 793 TCPF_WRITE_TIMER_DEFERRED | \ 794 TCPF_DELACK_TIMER_DEFERRED | \ 795 TCPF_MTU_REDUCED_DEFERRED) 796 /** 797 * tcp_release_cb - tcp release_sock() callback 798 * @sk: socket 799 * 800 * called from release_sock() to perform protocol dependent 801 * actions before socket release. 802 */ 803 void tcp_release_cb(struct sock *sk) 804 { 805 unsigned long flags, nflags; 806 807 /* perform an atomic operation only if at least one flag is set */ 808 do { 809 flags = sk->sk_tsq_flags; 810 if (!(flags & TCP_DEFERRED_ALL)) 811 return; 812 nflags = flags & ~TCP_DEFERRED_ALL; 813 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 814 815 if (flags & TCPF_TSQ_DEFERRED) 816 tcp_tsq_handler(sk); 817 818 /* Here begins the tricky part : 819 * We are called from release_sock() with : 820 * 1) BH disabled 821 * 2) sk_lock.slock spinlock held 822 * 3) socket owned by us (sk->sk_lock.owned == 1) 823 * 824 * But following code is meant to be called from BH handlers, 825 * so we should keep BH disabled, but early release socket ownership 826 */ 827 sock_release_ownership(sk); 828 829 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 830 tcp_write_timer_handler(sk); 831 __sock_put(sk); 832 } 833 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 834 tcp_delack_timer_handler(sk); 835 __sock_put(sk); 836 } 837 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 838 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 839 __sock_put(sk); 840 } 841 } 842 EXPORT_SYMBOL(tcp_release_cb); 843 844 void __init tcp_tasklet_init(void) 845 { 846 int i; 847 848 for_each_possible_cpu(i) { 849 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 850 851 INIT_LIST_HEAD(&tsq->head); 852 tasklet_init(&tsq->tasklet, 853 tcp_tasklet_func, 854 (unsigned long)tsq); 855 } 856 } 857 858 /* 859 * Write buffer destructor automatically called from kfree_skb. 860 * We can't xmit new skbs from this context, as we might already 861 * hold qdisc lock. 862 */ 863 void tcp_wfree(struct sk_buff *skb) 864 { 865 struct sock *sk = skb->sk; 866 struct tcp_sock *tp = tcp_sk(sk); 867 unsigned long flags, nval, oval; 868 869 /* Keep one reference on sk_wmem_alloc. 870 * Will be released by sk_free() from here or tcp_tasklet_func() 871 */ 872 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 873 874 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 875 * Wait until our queues (qdisc + devices) are drained. 876 * This gives : 877 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 878 * - chance for incoming ACK (processed by another cpu maybe) 879 * to migrate this flow (skb->ooo_okay will be eventually set) 880 */ 881 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 882 goto out; 883 884 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 885 struct tsq_tasklet *tsq; 886 bool empty; 887 888 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 889 goto out; 890 891 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 892 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 893 if (nval != oval) 894 continue; 895 896 /* queue this socket to tasklet queue */ 897 local_irq_save(flags); 898 tsq = this_cpu_ptr(&tsq_tasklet); 899 empty = list_empty(&tsq->head); 900 list_add(&tp->tsq_node, &tsq->head); 901 if (empty) 902 tasklet_schedule(&tsq->tasklet); 903 local_irq_restore(flags); 904 return; 905 } 906 out: 907 sk_free(sk); 908 } 909 910 /* Note: Called under hard irq. 911 * We can not call TCP stack right away. 912 */ 913 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 914 { 915 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 916 struct sock *sk = (struct sock *)tp; 917 unsigned long nval, oval; 918 919 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 920 struct tsq_tasklet *tsq; 921 bool empty; 922 923 if (oval & TSQF_QUEUED) 924 break; 925 926 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 927 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 928 if (nval != oval) 929 continue; 930 931 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc)) 932 break; 933 /* queue this socket to tasklet queue */ 934 tsq = this_cpu_ptr(&tsq_tasklet); 935 empty = list_empty(&tsq->head); 936 list_add(&tp->tsq_node, &tsq->head); 937 if (empty) 938 tasklet_schedule(&tsq->tasklet); 939 break; 940 } 941 return HRTIMER_NORESTART; 942 } 943 944 /* BBR congestion control needs pacing. 945 * Same remark for SO_MAX_PACING_RATE. 946 * sch_fq packet scheduler is efficiently handling pacing, 947 * but is not always installed/used. 948 * Return true if TCP stack should pace packets itself. 949 */ 950 static bool tcp_needs_internal_pacing(const struct sock *sk) 951 { 952 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 953 } 954 955 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) 956 { 957 u64 len_ns; 958 u32 rate; 959 960 if (!tcp_needs_internal_pacing(sk)) 961 return; 962 rate = sk->sk_pacing_rate; 963 if (!rate || rate == ~0U) 964 return; 965 966 /* Should account for header sizes as sch_fq does, 967 * but lets make things simple. 968 */ 969 len_ns = (u64)skb->len * NSEC_PER_SEC; 970 do_div(len_ns, rate); 971 hrtimer_start(&tcp_sk(sk)->pacing_timer, 972 ktime_add_ns(ktime_get(), len_ns), 973 HRTIMER_MODE_ABS_PINNED); 974 } 975 976 /* This routine actually transmits TCP packets queued in by 977 * tcp_do_sendmsg(). This is used by both the initial 978 * transmission and possible later retransmissions. 979 * All SKB's seen here are completely headerless. It is our 980 * job to build the TCP header, and pass the packet down to 981 * IP so it can do the same plus pass the packet off to the 982 * device. 983 * 984 * We are working here with either a clone of the original 985 * SKB, or a fresh unique copy made by the retransmit engine. 986 */ 987 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 988 gfp_t gfp_mask) 989 { 990 const struct inet_connection_sock *icsk = inet_csk(sk); 991 struct inet_sock *inet; 992 struct tcp_sock *tp; 993 struct tcp_skb_cb *tcb; 994 struct tcp_out_options opts; 995 unsigned int tcp_options_size, tcp_header_size; 996 struct sk_buff *oskb = NULL; 997 struct tcp_md5sig_key *md5; 998 struct tcphdr *th; 999 int err; 1000 1001 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1002 tp = tcp_sk(sk); 1003 1004 if (clone_it) { 1005 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1006 - tp->snd_una; 1007 oskb = skb; 1008 if (unlikely(skb_cloned(skb))) 1009 skb = pskb_copy(skb, gfp_mask); 1010 else 1011 skb = skb_clone(skb, gfp_mask); 1012 if (unlikely(!skb)) 1013 return -ENOBUFS; 1014 } 1015 skb->skb_mstamp = tp->tcp_mstamp; 1016 1017 inet = inet_sk(sk); 1018 tcb = TCP_SKB_CB(skb); 1019 memset(&opts, 0, sizeof(opts)); 1020 1021 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1022 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1023 else 1024 tcp_options_size = tcp_established_options(sk, skb, &opts, 1025 &md5); 1026 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1027 1028 /* if no packet is in qdisc/device queue, then allow XPS to select 1029 * another queue. We can be called from tcp_tsq_handler() 1030 * which holds one reference to sk_wmem_alloc. 1031 * 1032 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1033 * One way to get this would be to set skb->truesize = 2 on them. 1034 */ 1035 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1036 1037 /* If we had to use memory reserve to allocate this skb, 1038 * this might cause drops if packet is looped back : 1039 * Other socket might not have SOCK_MEMALLOC. 1040 * Packets not looped back do not care about pfmemalloc. 1041 */ 1042 skb->pfmemalloc = 0; 1043 1044 skb_push(skb, tcp_header_size); 1045 skb_reset_transport_header(skb); 1046 1047 skb_orphan(skb); 1048 skb->sk = sk; 1049 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1050 skb_set_hash_from_sk(skb, sk); 1051 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1052 1053 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1054 1055 /* Build TCP header and checksum it. */ 1056 th = (struct tcphdr *)skb->data; 1057 th->source = inet->inet_sport; 1058 th->dest = inet->inet_dport; 1059 th->seq = htonl(tcb->seq); 1060 th->ack_seq = htonl(tp->rcv_nxt); 1061 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1062 tcb->tcp_flags); 1063 1064 th->check = 0; 1065 th->urg_ptr = 0; 1066 1067 /* The urg_mode check is necessary during a below snd_una win probe */ 1068 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1069 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1070 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1071 th->urg = 1; 1072 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1073 th->urg_ptr = htons(0xFFFF); 1074 th->urg = 1; 1075 } 1076 } 1077 1078 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1079 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1080 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1081 th->window = htons(tcp_select_window(sk)); 1082 tcp_ecn_send(sk, skb, th, tcp_header_size); 1083 } else { 1084 /* RFC1323: The window in SYN & SYN/ACK segments 1085 * is never scaled. 1086 */ 1087 th->window = htons(min(tp->rcv_wnd, 65535U)); 1088 } 1089 #ifdef CONFIG_TCP_MD5SIG 1090 /* Calculate the MD5 hash, as we have all we need now */ 1091 if (md5) { 1092 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1093 tp->af_specific->calc_md5_hash(opts.hash_location, 1094 md5, sk, skb); 1095 } 1096 #endif 1097 1098 icsk->icsk_af_ops->send_check(sk, skb); 1099 1100 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1101 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1102 1103 if (skb->len != tcp_header_size) { 1104 tcp_event_data_sent(tp, sk); 1105 tp->data_segs_out += tcp_skb_pcount(skb); 1106 tcp_internal_pacing(sk, skb); 1107 } 1108 1109 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1110 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1111 tcp_skb_pcount(skb)); 1112 1113 tp->segs_out += tcp_skb_pcount(skb); 1114 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1115 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1116 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1117 1118 /* Our usage of tstamp should remain private */ 1119 skb->tstamp = 0; 1120 1121 /* Cleanup our debris for IP stacks */ 1122 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1123 sizeof(struct inet6_skb_parm))); 1124 1125 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1126 1127 if (unlikely(err > 0)) { 1128 tcp_enter_cwr(sk); 1129 err = net_xmit_eval(err); 1130 } 1131 if (!err && oskb) { 1132 oskb->skb_mstamp = tp->tcp_mstamp; 1133 tcp_rate_skb_sent(sk, oskb); 1134 } 1135 return err; 1136 } 1137 1138 /* This routine just queues the buffer for sending. 1139 * 1140 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1141 * otherwise socket can stall. 1142 */ 1143 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1144 { 1145 struct tcp_sock *tp = tcp_sk(sk); 1146 1147 /* Advance write_seq and place onto the write_queue. */ 1148 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1149 __skb_header_release(skb); 1150 tcp_add_write_queue_tail(sk, skb); 1151 sk->sk_wmem_queued += skb->truesize; 1152 sk_mem_charge(sk, skb->truesize); 1153 } 1154 1155 /* Initialize TSO segments for a packet. */ 1156 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1157 { 1158 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1159 /* Avoid the costly divide in the normal 1160 * non-TSO case. 1161 */ 1162 tcp_skb_pcount_set(skb, 1); 1163 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1164 } else { 1165 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1166 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1167 } 1168 } 1169 1170 /* When a modification to fackets out becomes necessary, we need to check 1171 * skb is counted to fackets_out or not. 1172 */ 1173 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1174 int decr) 1175 { 1176 struct tcp_sock *tp = tcp_sk(sk); 1177 1178 if (!tp->sacked_out || tcp_is_reno(tp)) 1179 return; 1180 1181 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1182 tp->fackets_out -= decr; 1183 } 1184 1185 /* Pcount in the middle of the write queue got changed, we need to do various 1186 * tweaks to fix counters 1187 */ 1188 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1189 { 1190 struct tcp_sock *tp = tcp_sk(sk); 1191 1192 tp->packets_out -= decr; 1193 1194 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1195 tp->sacked_out -= decr; 1196 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1197 tp->retrans_out -= decr; 1198 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1199 tp->lost_out -= decr; 1200 1201 /* Reno case is special. Sigh... */ 1202 if (tcp_is_reno(tp) && decr > 0) 1203 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1204 1205 tcp_adjust_fackets_out(sk, skb, decr); 1206 1207 if (tp->lost_skb_hint && 1208 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1209 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1210 tp->lost_cnt_hint -= decr; 1211 1212 tcp_verify_left_out(tp); 1213 } 1214 1215 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1216 { 1217 return TCP_SKB_CB(skb)->txstamp_ack || 1218 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1219 } 1220 1221 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1222 { 1223 struct skb_shared_info *shinfo = skb_shinfo(skb); 1224 1225 if (unlikely(tcp_has_tx_tstamp(skb)) && 1226 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1227 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1228 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1229 1230 shinfo->tx_flags &= ~tsflags; 1231 shinfo2->tx_flags |= tsflags; 1232 swap(shinfo->tskey, shinfo2->tskey); 1233 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1234 TCP_SKB_CB(skb)->txstamp_ack = 0; 1235 } 1236 } 1237 1238 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1239 { 1240 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1241 TCP_SKB_CB(skb)->eor = 0; 1242 } 1243 1244 /* Function to create two new TCP segments. Shrinks the given segment 1245 * to the specified size and appends a new segment with the rest of the 1246 * packet to the list. This won't be called frequently, I hope. 1247 * Remember, these are still headerless SKBs at this point. 1248 */ 1249 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1250 unsigned int mss_now, gfp_t gfp) 1251 { 1252 struct tcp_sock *tp = tcp_sk(sk); 1253 struct sk_buff *buff; 1254 int nsize, old_factor; 1255 int nlen; 1256 u8 flags; 1257 1258 if (WARN_ON(len > skb->len)) 1259 return -EINVAL; 1260 1261 nsize = skb_headlen(skb) - len; 1262 if (nsize < 0) 1263 nsize = 0; 1264 1265 if (skb_unclone(skb, gfp)) 1266 return -ENOMEM; 1267 1268 /* Get a new skb... force flag on. */ 1269 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1270 if (!buff) 1271 return -ENOMEM; /* We'll just try again later. */ 1272 1273 sk->sk_wmem_queued += buff->truesize; 1274 sk_mem_charge(sk, buff->truesize); 1275 nlen = skb->len - len - nsize; 1276 buff->truesize += nlen; 1277 skb->truesize -= nlen; 1278 1279 /* Correct the sequence numbers. */ 1280 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1281 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1282 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1283 1284 /* PSH and FIN should only be set in the second packet. */ 1285 flags = TCP_SKB_CB(skb)->tcp_flags; 1286 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1287 TCP_SKB_CB(buff)->tcp_flags = flags; 1288 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1289 tcp_skb_fragment_eor(skb, buff); 1290 1291 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1292 /* Copy and checksum data tail into the new buffer. */ 1293 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1294 skb_put(buff, nsize), 1295 nsize, 0); 1296 1297 skb_trim(skb, len); 1298 1299 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1300 } else { 1301 skb->ip_summed = CHECKSUM_PARTIAL; 1302 skb_split(skb, buff, len); 1303 } 1304 1305 buff->ip_summed = skb->ip_summed; 1306 1307 buff->tstamp = skb->tstamp; 1308 tcp_fragment_tstamp(skb, buff); 1309 1310 old_factor = tcp_skb_pcount(skb); 1311 1312 /* Fix up tso_factor for both original and new SKB. */ 1313 tcp_set_skb_tso_segs(skb, mss_now); 1314 tcp_set_skb_tso_segs(buff, mss_now); 1315 1316 /* Update delivered info for the new segment */ 1317 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1318 1319 /* If this packet has been sent out already, we must 1320 * adjust the various packet counters. 1321 */ 1322 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1323 int diff = old_factor - tcp_skb_pcount(skb) - 1324 tcp_skb_pcount(buff); 1325 1326 if (diff) 1327 tcp_adjust_pcount(sk, skb, diff); 1328 } 1329 1330 /* Link BUFF into the send queue. */ 1331 __skb_header_release(buff); 1332 tcp_insert_write_queue_after(skb, buff, sk); 1333 1334 return 0; 1335 } 1336 1337 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1338 * data is not copied, but immediately discarded. 1339 */ 1340 static int __pskb_trim_head(struct sk_buff *skb, int len) 1341 { 1342 struct skb_shared_info *shinfo; 1343 int i, k, eat; 1344 1345 eat = min_t(int, len, skb_headlen(skb)); 1346 if (eat) { 1347 __skb_pull(skb, eat); 1348 len -= eat; 1349 if (!len) 1350 return 0; 1351 } 1352 eat = len; 1353 k = 0; 1354 shinfo = skb_shinfo(skb); 1355 for (i = 0; i < shinfo->nr_frags; i++) { 1356 int size = skb_frag_size(&shinfo->frags[i]); 1357 1358 if (size <= eat) { 1359 skb_frag_unref(skb, i); 1360 eat -= size; 1361 } else { 1362 shinfo->frags[k] = shinfo->frags[i]; 1363 if (eat) { 1364 shinfo->frags[k].page_offset += eat; 1365 skb_frag_size_sub(&shinfo->frags[k], eat); 1366 eat = 0; 1367 } 1368 k++; 1369 } 1370 } 1371 shinfo->nr_frags = k; 1372 1373 skb->data_len -= len; 1374 skb->len = skb->data_len; 1375 return len; 1376 } 1377 1378 /* Remove acked data from a packet in the transmit queue. */ 1379 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1380 { 1381 u32 delta_truesize; 1382 1383 if (skb_unclone(skb, GFP_ATOMIC)) 1384 return -ENOMEM; 1385 1386 delta_truesize = __pskb_trim_head(skb, len); 1387 1388 TCP_SKB_CB(skb)->seq += len; 1389 skb->ip_summed = CHECKSUM_PARTIAL; 1390 1391 if (delta_truesize) { 1392 skb->truesize -= delta_truesize; 1393 sk->sk_wmem_queued -= delta_truesize; 1394 sk_mem_uncharge(sk, delta_truesize); 1395 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1396 } 1397 1398 /* Any change of skb->len requires recalculation of tso factor. */ 1399 if (tcp_skb_pcount(skb) > 1) 1400 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1401 1402 return 0; 1403 } 1404 1405 /* Calculate MSS not accounting any TCP options. */ 1406 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1407 { 1408 const struct tcp_sock *tp = tcp_sk(sk); 1409 const struct inet_connection_sock *icsk = inet_csk(sk); 1410 int mss_now; 1411 1412 /* Calculate base mss without TCP options: 1413 It is MMS_S - sizeof(tcphdr) of rfc1122 1414 */ 1415 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1416 1417 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1418 if (icsk->icsk_af_ops->net_frag_header_len) { 1419 const struct dst_entry *dst = __sk_dst_get(sk); 1420 1421 if (dst && dst_allfrag(dst)) 1422 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1423 } 1424 1425 /* Clamp it (mss_clamp does not include tcp options) */ 1426 if (mss_now > tp->rx_opt.mss_clamp) 1427 mss_now = tp->rx_opt.mss_clamp; 1428 1429 /* Now subtract optional transport overhead */ 1430 mss_now -= icsk->icsk_ext_hdr_len; 1431 1432 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1433 if (mss_now < 48) 1434 mss_now = 48; 1435 return mss_now; 1436 } 1437 1438 /* Calculate MSS. Not accounting for SACKs here. */ 1439 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1440 { 1441 /* Subtract TCP options size, not including SACKs */ 1442 return __tcp_mtu_to_mss(sk, pmtu) - 1443 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1444 } 1445 1446 /* Inverse of above */ 1447 int tcp_mss_to_mtu(struct sock *sk, int mss) 1448 { 1449 const struct tcp_sock *tp = tcp_sk(sk); 1450 const struct inet_connection_sock *icsk = inet_csk(sk); 1451 int mtu; 1452 1453 mtu = mss + 1454 tp->tcp_header_len + 1455 icsk->icsk_ext_hdr_len + 1456 icsk->icsk_af_ops->net_header_len; 1457 1458 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1459 if (icsk->icsk_af_ops->net_frag_header_len) { 1460 const struct dst_entry *dst = __sk_dst_get(sk); 1461 1462 if (dst && dst_allfrag(dst)) 1463 mtu += icsk->icsk_af_ops->net_frag_header_len; 1464 } 1465 return mtu; 1466 } 1467 EXPORT_SYMBOL(tcp_mss_to_mtu); 1468 1469 /* MTU probing init per socket */ 1470 void tcp_mtup_init(struct sock *sk) 1471 { 1472 struct tcp_sock *tp = tcp_sk(sk); 1473 struct inet_connection_sock *icsk = inet_csk(sk); 1474 struct net *net = sock_net(sk); 1475 1476 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1477 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1478 icsk->icsk_af_ops->net_header_len; 1479 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1480 icsk->icsk_mtup.probe_size = 0; 1481 if (icsk->icsk_mtup.enabled) 1482 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1483 } 1484 EXPORT_SYMBOL(tcp_mtup_init); 1485 1486 /* This function synchronize snd mss to current pmtu/exthdr set. 1487 1488 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1489 for TCP options, but includes only bare TCP header. 1490 1491 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1492 It is minimum of user_mss and mss received with SYN. 1493 It also does not include TCP options. 1494 1495 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1496 1497 tp->mss_cache is current effective sending mss, including 1498 all tcp options except for SACKs. It is evaluated, 1499 taking into account current pmtu, but never exceeds 1500 tp->rx_opt.mss_clamp. 1501 1502 NOTE1. rfc1122 clearly states that advertised MSS 1503 DOES NOT include either tcp or ip options. 1504 1505 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1506 are READ ONLY outside this function. --ANK (980731) 1507 */ 1508 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1509 { 1510 struct tcp_sock *tp = tcp_sk(sk); 1511 struct inet_connection_sock *icsk = inet_csk(sk); 1512 int mss_now; 1513 1514 if (icsk->icsk_mtup.search_high > pmtu) 1515 icsk->icsk_mtup.search_high = pmtu; 1516 1517 mss_now = tcp_mtu_to_mss(sk, pmtu); 1518 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1519 1520 /* And store cached results */ 1521 icsk->icsk_pmtu_cookie = pmtu; 1522 if (icsk->icsk_mtup.enabled) 1523 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1524 tp->mss_cache = mss_now; 1525 1526 return mss_now; 1527 } 1528 EXPORT_SYMBOL(tcp_sync_mss); 1529 1530 /* Compute the current effective MSS, taking SACKs and IP options, 1531 * and even PMTU discovery events into account. 1532 */ 1533 unsigned int tcp_current_mss(struct sock *sk) 1534 { 1535 const struct tcp_sock *tp = tcp_sk(sk); 1536 const struct dst_entry *dst = __sk_dst_get(sk); 1537 u32 mss_now; 1538 unsigned int header_len; 1539 struct tcp_out_options opts; 1540 struct tcp_md5sig_key *md5; 1541 1542 mss_now = tp->mss_cache; 1543 1544 if (dst) { 1545 u32 mtu = dst_mtu(dst); 1546 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1547 mss_now = tcp_sync_mss(sk, mtu); 1548 } 1549 1550 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1551 sizeof(struct tcphdr); 1552 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1553 * some common options. If this is an odd packet (because we have SACK 1554 * blocks etc) then our calculated header_len will be different, and 1555 * we have to adjust mss_now correspondingly */ 1556 if (header_len != tp->tcp_header_len) { 1557 int delta = (int) header_len - tp->tcp_header_len; 1558 mss_now -= delta; 1559 } 1560 1561 return mss_now; 1562 } 1563 1564 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1565 * As additional protections, we do not touch cwnd in retransmission phases, 1566 * and if application hit its sndbuf limit recently. 1567 */ 1568 static void tcp_cwnd_application_limited(struct sock *sk) 1569 { 1570 struct tcp_sock *tp = tcp_sk(sk); 1571 1572 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1573 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1574 /* Limited by application or receiver window. */ 1575 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1576 u32 win_used = max(tp->snd_cwnd_used, init_win); 1577 if (win_used < tp->snd_cwnd) { 1578 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1579 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1580 } 1581 tp->snd_cwnd_used = 0; 1582 } 1583 tp->snd_cwnd_stamp = tcp_jiffies32; 1584 } 1585 1586 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1587 { 1588 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1589 struct tcp_sock *tp = tcp_sk(sk); 1590 1591 /* Track the maximum number of outstanding packets in each 1592 * window, and remember whether we were cwnd-limited then. 1593 */ 1594 if (!before(tp->snd_una, tp->max_packets_seq) || 1595 tp->packets_out > tp->max_packets_out) { 1596 tp->max_packets_out = tp->packets_out; 1597 tp->max_packets_seq = tp->snd_nxt; 1598 tp->is_cwnd_limited = is_cwnd_limited; 1599 } 1600 1601 if (tcp_is_cwnd_limited(sk)) { 1602 /* Network is feed fully. */ 1603 tp->snd_cwnd_used = 0; 1604 tp->snd_cwnd_stamp = tcp_jiffies32; 1605 } else { 1606 /* Network starves. */ 1607 if (tp->packets_out > tp->snd_cwnd_used) 1608 tp->snd_cwnd_used = tp->packets_out; 1609 1610 if (sysctl_tcp_slow_start_after_idle && 1611 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1612 !ca_ops->cong_control) 1613 tcp_cwnd_application_limited(sk); 1614 1615 /* The following conditions together indicate the starvation 1616 * is caused by insufficient sender buffer: 1617 * 1) just sent some data (see tcp_write_xmit) 1618 * 2) not cwnd limited (this else condition) 1619 * 3) no more data to send (null tcp_send_head ) 1620 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1621 */ 1622 if (!tcp_send_head(sk) && sk->sk_socket && 1623 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1624 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1625 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1626 } 1627 } 1628 1629 /* Minshall's variant of the Nagle send check. */ 1630 static bool tcp_minshall_check(const struct tcp_sock *tp) 1631 { 1632 return after(tp->snd_sml, tp->snd_una) && 1633 !after(tp->snd_sml, tp->snd_nxt); 1634 } 1635 1636 /* Update snd_sml if this skb is under mss 1637 * Note that a TSO packet might end with a sub-mss segment 1638 * The test is really : 1639 * if ((skb->len % mss) != 0) 1640 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1641 * But we can avoid doing the divide again given we already have 1642 * skb_pcount = skb->len / mss_now 1643 */ 1644 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1645 const struct sk_buff *skb) 1646 { 1647 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1648 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1649 } 1650 1651 /* Return false, if packet can be sent now without violation Nagle's rules: 1652 * 1. It is full sized. (provided by caller in %partial bool) 1653 * 2. Or it contains FIN. (already checked by caller) 1654 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1655 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1656 * With Minshall's modification: all sent small packets are ACKed. 1657 */ 1658 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1659 int nonagle) 1660 { 1661 return partial && 1662 ((nonagle & TCP_NAGLE_CORK) || 1663 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1664 } 1665 1666 /* Return how many segs we'd like on a TSO packet, 1667 * to send one TSO packet per ms 1668 */ 1669 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1670 int min_tso_segs) 1671 { 1672 u32 bytes, segs; 1673 1674 bytes = min(sk->sk_pacing_rate >> 10, 1675 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1676 1677 /* Goal is to send at least one packet per ms, 1678 * not one big TSO packet every 100 ms. 1679 * This preserves ACK clocking and is consistent 1680 * with tcp_tso_should_defer() heuristic. 1681 */ 1682 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1683 1684 return min_t(u32, segs, sk->sk_gso_max_segs); 1685 } 1686 EXPORT_SYMBOL(tcp_tso_autosize); 1687 1688 /* Return the number of segments we want in the skb we are transmitting. 1689 * See if congestion control module wants to decide; otherwise, autosize. 1690 */ 1691 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1692 { 1693 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1694 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0; 1695 1696 return tso_segs ? : 1697 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs); 1698 } 1699 1700 /* Returns the portion of skb which can be sent right away */ 1701 static unsigned int tcp_mss_split_point(const struct sock *sk, 1702 const struct sk_buff *skb, 1703 unsigned int mss_now, 1704 unsigned int max_segs, 1705 int nonagle) 1706 { 1707 const struct tcp_sock *tp = tcp_sk(sk); 1708 u32 partial, needed, window, max_len; 1709 1710 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1711 max_len = mss_now * max_segs; 1712 1713 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1714 return max_len; 1715 1716 needed = min(skb->len, window); 1717 1718 if (max_len <= needed) 1719 return max_len; 1720 1721 partial = needed % mss_now; 1722 /* If last segment is not a full MSS, check if Nagle rules allow us 1723 * to include this last segment in this skb. 1724 * Otherwise, we'll split the skb at last MSS boundary 1725 */ 1726 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1727 return needed - partial; 1728 1729 return needed; 1730 } 1731 1732 /* Can at least one segment of SKB be sent right now, according to the 1733 * congestion window rules? If so, return how many segments are allowed. 1734 */ 1735 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1736 const struct sk_buff *skb) 1737 { 1738 u32 in_flight, cwnd, halfcwnd; 1739 1740 /* Don't be strict about the congestion window for the final FIN. */ 1741 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1742 tcp_skb_pcount(skb) == 1) 1743 return 1; 1744 1745 in_flight = tcp_packets_in_flight(tp); 1746 cwnd = tp->snd_cwnd; 1747 if (in_flight >= cwnd) 1748 return 0; 1749 1750 /* For better scheduling, ensure we have at least 1751 * 2 GSO packets in flight. 1752 */ 1753 halfcwnd = max(cwnd >> 1, 1U); 1754 return min(halfcwnd, cwnd - in_flight); 1755 } 1756 1757 /* Initialize TSO state of a skb. 1758 * This must be invoked the first time we consider transmitting 1759 * SKB onto the wire. 1760 */ 1761 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1762 { 1763 int tso_segs = tcp_skb_pcount(skb); 1764 1765 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1766 tcp_set_skb_tso_segs(skb, mss_now); 1767 tso_segs = tcp_skb_pcount(skb); 1768 } 1769 return tso_segs; 1770 } 1771 1772 1773 /* Return true if the Nagle test allows this packet to be 1774 * sent now. 1775 */ 1776 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1777 unsigned int cur_mss, int nonagle) 1778 { 1779 /* Nagle rule does not apply to frames, which sit in the middle of the 1780 * write_queue (they have no chances to get new data). 1781 * 1782 * This is implemented in the callers, where they modify the 'nonagle' 1783 * argument based upon the location of SKB in the send queue. 1784 */ 1785 if (nonagle & TCP_NAGLE_PUSH) 1786 return true; 1787 1788 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1789 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1790 return true; 1791 1792 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1793 return true; 1794 1795 return false; 1796 } 1797 1798 /* Does at least the first segment of SKB fit into the send window? */ 1799 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1800 const struct sk_buff *skb, 1801 unsigned int cur_mss) 1802 { 1803 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1804 1805 if (skb->len > cur_mss) 1806 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1807 1808 return !after(end_seq, tcp_wnd_end(tp)); 1809 } 1810 1811 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1812 * which is put after SKB on the list. It is very much like 1813 * tcp_fragment() except that it may make several kinds of assumptions 1814 * in order to speed up the splitting operation. In particular, we 1815 * know that all the data is in scatter-gather pages, and that the 1816 * packet has never been sent out before (and thus is not cloned). 1817 */ 1818 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1819 unsigned int mss_now, gfp_t gfp) 1820 { 1821 struct sk_buff *buff; 1822 int nlen = skb->len - len; 1823 u8 flags; 1824 1825 /* All of a TSO frame must be composed of paged data. */ 1826 if (skb->len != skb->data_len) 1827 return tcp_fragment(sk, skb, len, mss_now, gfp); 1828 1829 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1830 if (unlikely(!buff)) 1831 return -ENOMEM; 1832 1833 sk->sk_wmem_queued += buff->truesize; 1834 sk_mem_charge(sk, buff->truesize); 1835 buff->truesize += nlen; 1836 skb->truesize -= nlen; 1837 1838 /* Correct the sequence numbers. */ 1839 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1840 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1841 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1842 1843 /* PSH and FIN should only be set in the second packet. */ 1844 flags = TCP_SKB_CB(skb)->tcp_flags; 1845 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1846 TCP_SKB_CB(buff)->tcp_flags = flags; 1847 1848 /* This packet was never sent out yet, so no SACK bits. */ 1849 TCP_SKB_CB(buff)->sacked = 0; 1850 1851 tcp_skb_fragment_eor(skb, buff); 1852 1853 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1854 skb_split(skb, buff, len); 1855 tcp_fragment_tstamp(skb, buff); 1856 1857 /* Fix up tso_factor for both original and new SKB. */ 1858 tcp_set_skb_tso_segs(skb, mss_now); 1859 tcp_set_skb_tso_segs(buff, mss_now); 1860 1861 /* Link BUFF into the send queue. */ 1862 __skb_header_release(buff); 1863 tcp_insert_write_queue_after(skb, buff, sk); 1864 1865 return 0; 1866 } 1867 1868 /* Try to defer sending, if possible, in order to minimize the amount 1869 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1870 * 1871 * This algorithm is from John Heffner. 1872 */ 1873 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1874 bool *is_cwnd_limited, u32 max_segs) 1875 { 1876 const struct inet_connection_sock *icsk = inet_csk(sk); 1877 u32 age, send_win, cong_win, limit, in_flight; 1878 struct tcp_sock *tp = tcp_sk(sk); 1879 struct sk_buff *head; 1880 int win_divisor; 1881 1882 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1883 goto send_now; 1884 1885 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1886 goto send_now; 1887 1888 /* Avoid bursty behavior by allowing defer 1889 * only if the last write was recent. 1890 */ 1891 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1892 goto send_now; 1893 1894 in_flight = tcp_packets_in_flight(tp); 1895 1896 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1897 1898 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1899 1900 /* From in_flight test above, we know that cwnd > in_flight. */ 1901 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1902 1903 limit = min(send_win, cong_win); 1904 1905 /* If a full-sized TSO skb can be sent, do it. */ 1906 if (limit >= max_segs * tp->mss_cache) 1907 goto send_now; 1908 1909 /* Middle in queue won't get any more data, full sendable already? */ 1910 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1911 goto send_now; 1912 1913 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1914 if (win_divisor) { 1915 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1916 1917 /* If at least some fraction of a window is available, 1918 * just use it. 1919 */ 1920 chunk /= win_divisor; 1921 if (limit >= chunk) 1922 goto send_now; 1923 } else { 1924 /* Different approach, try not to defer past a single 1925 * ACK. Receiver should ACK every other full sized 1926 * frame, so if we have space for more than 3 frames 1927 * then send now. 1928 */ 1929 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1930 goto send_now; 1931 } 1932 1933 head = tcp_write_queue_head(sk); 1934 1935 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); 1936 /* If next ACK is likely to come too late (half srtt), do not defer */ 1937 if (age < (tp->srtt_us >> 4)) 1938 goto send_now; 1939 1940 /* Ok, it looks like it is advisable to defer. */ 1941 1942 if (cong_win < send_win && cong_win <= skb->len) 1943 *is_cwnd_limited = true; 1944 1945 return true; 1946 1947 send_now: 1948 return false; 1949 } 1950 1951 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1952 { 1953 struct inet_connection_sock *icsk = inet_csk(sk); 1954 struct tcp_sock *tp = tcp_sk(sk); 1955 struct net *net = sock_net(sk); 1956 u32 interval; 1957 s32 delta; 1958 1959 interval = net->ipv4.sysctl_tcp_probe_interval; 1960 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 1961 if (unlikely(delta >= interval * HZ)) { 1962 int mss = tcp_current_mss(sk); 1963 1964 /* Update current search range */ 1965 icsk->icsk_mtup.probe_size = 0; 1966 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1967 sizeof(struct tcphdr) + 1968 icsk->icsk_af_ops->net_header_len; 1969 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1970 1971 /* Update probe time stamp */ 1972 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1973 } 1974 } 1975 1976 /* Create a new MTU probe if we are ready. 1977 * MTU probe is regularly attempting to increase the path MTU by 1978 * deliberately sending larger packets. This discovers routing 1979 * changes resulting in larger path MTUs. 1980 * 1981 * Returns 0 if we should wait to probe (no cwnd available), 1982 * 1 if a probe was sent, 1983 * -1 otherwise 1984 */ 1985 static int tcp_mtu_probe(struct sock *sk) 1986 { 1987 struct inet_connection_sock *icsk = inet_csk(sk); 1988 struct tcp_sock *tp = tcp_sk(sk); 1989 struct sk_buff *skb, *nskb, *next; 1990 struct net *net = sock_net(sk); 1991 int probe_size; 1992 int size_needed; 1993 int copy, len; 1994 int mss_now; 1995 int interval; 1996 1997 /* Not currently probing/verifying, 1998 * not in recovery, 1999 * have enough cwnd, and 2000 * not SACKing (the variable headers throw things off) 2001 */ 2002 if (likely(!icsk->icsk_mtup.enabled || 2003 icsk->icsk_mtup.probe_size || 2004 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2005 tp->snd_cwnd < 11 || 2006 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2007 return -1; 2008 2009 /* Use binary search for probe_size between tcp_mss_base, 2010 * and current mss_clamp. if (search_high - search_low) 2011 * smaller than a threshold, backoff from probing. 2012 */ 2013 mss_now = tcp_current_mss(sk); 2014 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2015 icsk->icsk_mtup.search_low) >> 1); 2016 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2017 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2018 /* When misfortune happens, we are reprobing actively, 2019 * and then reprobe timer has expired. We stick with current 2020 * probing process by not resetting search range to its orignal. 2021 */ 2022 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2023 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2024 /* Check whether enough time has elaplased for 2025 * another round of probing. 2026 */ 2027 tcp_mtu_check_reprobe(sk); 2028 return -1; 2029 } 2030 2031 /* Have enough data in the send queue to probe? */ 2032 if (tp->write_seq - tp->snd_nxt < size_needed) 2033 return -1; 2034 2035 if (tp->snd_wnd < size_needed) 2036 return -1; 2037 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2038 return 0; 2039 2040 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2041 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2042 if (!tcp_packets_in_flight(tp)) 2043 return -1; 2044 else 2045 return 0; 2046 } 2047 2048 /* We're allowed to probe. Build it now. */ 2049 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2050 if (!nskb) 2051 return -1; 2052 sk->sk_wmem_queued += nskb->truesize; 2053 sk_mem_charge(sk, nskb->truesize); 2054 2055 skb = tcp_send_head(sk); 2056 2057 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2058 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2059 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2060 TCP_SKB_CB(nskb)->sacked = 0; 2061 nskb->csum = 0; 2062 nskb->ip_summed = skb->ip_summed; 2063 2064 tcp_insert_write_queue_before(nskb, skb, sk); 2065 2066 len = 0; 2067 tcp_for_write_queue_from_safe(skb, next, sk) { 2068 copy = min_t(int, skb->len, probe_size - len); 2069 if (nskb->ip_summed) { 2070 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2071 } else { 2072 __wsum csum = skb_copy_and_csum_bits(skb, 0, 2073 skb_put(nskb, copy), 2074 copy, 0); 2075 nskb->csum = csum_block_add(nskb->csum, csum, len); 2076 } 2077 2078 if (skb->len <= copy) { 2079 /* We've eaten all the data from this skb. 2080 * Throw it away. */ 2081 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2082 tcp_unlink_write_queue(skb, sk); 2083 sk_wmem_free_skb(sk, skb); 2084 } else { 2085 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2086 ~(TCPHDR_FIN|TCPHDR_PSH); 2087 if (!skb_shinfo(skb)->nr_frags) { 2088 skb_pull(skb, copy); 2089 if (skb->ip_summed != CHECKSUM_PARTIAL) 2090 skb->csum = csum_partial(skb->data, 2091 skb->len, 0); 2092 } else { 2093 __pskb_trim_head(skb, copy); 2094 tcp_set_skb_tso_segs(skb, mss_now); 2095 } 2096 TCP_SKB_CB(skb)->seq += copy; 2097 } 2098 2099 len += copy; 2100 2101 if (len >= probe_size) 2102 break; 2103 } 2104 tcp_init_tso_segs(nskb, nskb->len); 2105 2106 /* We're ready to send. If this fails, the probe will 2107 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2108 */ 2109 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2110 /* Decrement cwnd here because we are sending 2111 * effectively two packets. */ 2112 tp->snd_cwnd--; 2113 tcp_event_new_data_sent(sk, nskb); 2114 2115 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2116 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2117 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2118 2119 return 1; 2120 } 2121 2122 return -1; 2123 } 2124 2125 static bool tcp_pacing_check(const struct sock *sk) 2126 { 2127 return tcp_needs_internal_pacing(sk) && 2128 hrtimer_active(&tcp_sk(sk)->pacing_timer); 2129 } 2130 2131 /* TCP Small Queues : 2132 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2133 * (These limits are doubled for retransmits) 2134 * This allows for : 2135 * - better RTT estimation and ACK scheduling 2136 * - faster recovery 2137 * - high rates 2138 * Alas, some drivers / subsystems require a fair amount 2139 * of queued bytes to ensure line rate. 2140 * One example is wifi aggregation (802.11 AMPDU) 2141 */ 2142 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2143 unsigned int factor) 2144 { 2145 unsigned int limit; 2146 2147 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2148 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2149 limit <<= factor; 2150 2151 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2152 /* Always send the 1st or 2nd skb in write queue. 2153 * No need to wait for TX completion to call us back, 2154 * after softirq/tasklet schedule. 2155 * This helps when TX completions are delayed too much. 2156 */ 2157 if (skb == sk->sk_write_queue.next || 2158 skb->prev == sk->sk_write_queue.next) 2159 return false; 2160 2161 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2162 /* It is possible TX completion already happened 2163 * before we set TSQ_THROTTLED, so we must 2164 * test again the condition. 2165 */ 2166 smp_mb__after_atomic(); 2167 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2168 return true; 2169 } 2170 return false; 2171 } 2172 2173 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2174 { 2175 const u32 now = tcp_jiffies32; 2176 enum tcp_chrono old = tp->chrono_type; 2177 2178 if (old > TCP_CHRONO_UNSPEC) 2179 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2180 tp->chrono_start = now; 2181 tp->chrono_type = new; 2182 } 2183 2184 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2185 { 2186 struct tcp_sock *tp = tcp_sk(sk); 2187 2188 /* If there are multiple conditions worthy of tracking in a 2189 * chronograph then the highest priority enum takes precedence 2190 * over the other conditions. So that if something "more interesting" 2191 * starts happening, stop the previous chrono and start a new one. 2192 */ 2193 if (type > tp->chrono_type) 2194 tcp_chrono_set(tp, type); 2195 } 2196 2197 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2198 { 2199 struct tcp_sock *tp = tcp_sk(sk); 2200 2201 2202 /* There are multiple conditions worthy of tracking in a 2203 * chronograph, so that the highest priority enum takes 2204 * precedence over the other conditions (see tcp_chrono_start). 2205 * If a condition stops, we only stop chrono tracking if 2206 * it's the "most interesting" or current chrono we are 2207 * tracking and starts busy chrono if we have pending data. 2208 */ 2209 if (tcp_write_queue_empty(sk)) 2210 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2211 else if (type == tp->chrono_type) 2212 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2213 } 2214 2215 /* This routine writes packets to the network. It advances the 2216 * send_head. This happens as incoming acks open up the remote 2217 * window for us. 2218 * 2219 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2220 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2221 * account rare use of URG, this is not a big flaw. 2222 * 2223 * Send at most one packet when push_one > 0. Temporarily ignore 2224 * cwnd limit to force at most one packet out when push_one == 2. 2225 2226 * Returns true, if no segments are in flight and we have queued segments, 2227 * but cannot send anything now because of SWS or another problem. 2228 */ 2229 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2230 int push_one, gfp_t gfp) 2231 { 2232 struct tcp_sock *tp = tcp_sk(sk); 2233 struct sk_buff *skb; 2234 unsigned int tso_segs, sent_pkts; 2235 int cwnd_quota; 2236 int result; 2237 bool is_cwnd_limited = false, is_rwnd_limited = false; 2238 u32 max_segs; 2239 2240 sent_pkts = 0; 2241 2242 tcp_mstamp_refresh(tp); 2243 if (!push_one) { 2244 /* Do MTU probing. */ 2245 result = tcp_mtu_probe(sk); 2246 if (!result) { 2247 return false; 2248 } else if (result > 0) { 2249 sent_pkts = 1; 2250 } 2251 } 2252 2253 max_segs = tcp_tso_segs(sk, mss_now); 2254 while ((skb = tcp_send_head(sk))) { 2255 unsigned int limit; 2256 2257 if (tcp_pacing_check(sk)) 2258 break; 2259 2260 tso_segs = tcp_init_tso_segs(skb, mss_now); 2261 BUG_ON(!tso_segs); 2262 2263 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2264 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2265 skb->skb_mstamp = tp->tcp_mstamp; 2266 goto repair; /* Skip network transmission */ 2267 } 2268 2269 cwnd_quota = tcp_cwnd_test(tp, skb); 2270 if (!cwnd_quota) { 2271 if (push_one == 2) 2272 /* Force out a loss probe pkt. */ 2273 cwnd_quota = 1; 2274 else 2275 break; 2276 } 2277 2278 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2279 is_rwnd_limited = true; 2280 break; 2281 } 2282 2283 if (tso_segs == 1) { 2284 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2285 (tcp_skb_is_last(sk, skb) ? 2286 nonagle : TCP_NAGLE_PUSH)))) 2287 break; 2288 } else { 2289 if (!push_one && 2290 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2291 max_segs)) 2292 break; 2293 } 2294 2295 limit = mss_now; 2296 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2297 limit = tcp_mss_split_point(sk, skb, mss_now, 2298 min_t(unsigned int, 2299 cwnd_quota, 2300 max_segs), 2301 nonagle); 2302 2303 if (skb->len > limit && 2304 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2305 break; 2306 2307 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 2308 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 2309 if (tcp_small_queue_check(sk, skb, 0)) 2310 break; 2311 2312 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2313 break; 2314 2315 repair: 2316 /* Advance the send_head. This one is sent out. 2317 * This call will increment packets_out. 2318 */ 2319 tcp_event_new_data_sent(sk, skb); 2320 2321 tcp_minshall_update(tp, mss_now, skb); 2322 sent_pkts += tcp_skb_pcount(skb); 2323 2324 if (push_one) 2325 break; 2326 } 2327 2328 if (is_rwnd_limited) 2329 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2330 else 2331 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2332 2333 if (likely(sent_pkts)) { 2334 if (tcp_in_cwnd_reduction(sk)) 2335 tp->prr_out += sent_pkts; 2336 2337 /* Send one loss probe per tail loss episode. */ 2338 if (push_one != 2) 2339 tcp_schedule_loss_probe(sk); 2340 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2341 tcp_cwnd_validate(sk, is_cwnd_limited); 2342 return false; 2343 } 2344 return !tp->packets_out && tcp_send_head(sk); 2345 } 2346 2347 bool tcp_schedule_loss_probe(struct sock *sk) 2348 { 2349 struct inet_connection_sock *icsk = inet_csk(sk); 2350 struct tcp_sock *tp = tcp_sk(sk); 2351 u32 timeout, rto_delta_us; 2352 2353 /* Don't do any loss probe on a Fast Open connection before 3WHS 2354 * finishes. 2355 */ 2356 if (tp->fastopen_rsk) 2357 return false; 2358 2359 /* Schedule a loss probe in 2*RTT for SACK capable connections 2360 * in Open state, that are either limited by cwnd or application. 2361 */ 2362 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) || 2363 !tp->packets_out || !tcp_is_sack(tp) || 2364 icsk->icsk_ca_state != TCP_CA_Open) 2365 return false; 2366 2367 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2368 tcp_send_head(sk)) 2369 return false; 2370 2371 /* Probe timeout is 2*rtt. Add minimum RTO to account 2372 * for delayed ack when there's one outstanding packet. If no RTT 2373 * sample is available then probe after TCP_TIMEOUT_INIT. 2374 */ 2375 if (tp->srtt_us) { 2376 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2377 if (tp->packets_out == 1) 2378 timeout += TCP_RTO_MIN; 2379 else 2380 timeout += TCP_TIMEOUT_MIN; 2381 } else { 2382 timeout = TCP_TIMEOUT_INIT; 2383 } 2384 2385 /* If the RTO formula yields an earlier time, then use that time. */ 2386 rto_delta_us = tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2387 if (rto_delta_us > 0) 2388 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2389 2390 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2391 TCP_RTO_MAX); 2392 return true; 2393 } 2394 2395 /* Thanks to skb fast clones, we can detect if a prior transmit of 2396 * a packet is still in a qdisc or driver queue. 2397 * In this case, there is very little point doing a retransmit ! 2398 */ 2399 static bool skb_still_in_host_queue(const struct sock *sk, 2400 const struct sk_buff *skb) 2401 { 2402 if (unlikely(skb_fclone_busy(sk, skb))) { 2403 NET_INC_STATS(sock_net(sk), 2404 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2405 return true; 2406 } 2407 return false; 2408 } 2409 2410 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2411 * retransmit the last segment. 2412 */ 2413 void tcp_send_loss_probe(struct sock *sk) 2414 { 2415 struct tcp_sock *tp = tcp_sk(sk); 2416 struct sk_buff *skb; 2417 int pcount; 2418 int mss = tcp_current_mss(sk); 2419 2420 skb = tcp_send_head(sk); 2421 if (skb) { 2422 if (tcp_snd_wnd_test(tp, skb, mss)) { 2423 pcount = tp->packets_out; 2424 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2425 if (tp->packets_out > pcount) 2426 goto probe_sent; 2427 goto rearm_timer; 2428 } 2429 skb = tcp_write_queue_prev(sk, skb); 2430 } else { 2431 skb = tcp_write_queue_tail(sk); 2432 } 2433 2434 /* At most one outstanding TLP retransmission. */ 2435 if (tp->tlp_high_seq) 2436 goto rearm_timer; 2437 2438 /* Retransmit last segment. */ 2439 if (WARN_ON(!skb)) 2440 goto rearm_timer; 2441 2442 if (skb_still_in_host_queue(sk, skb)) 2443 goto rearm_timer; 2444 2445 pcount = tcp_skb_pcount(skb); 2446 if (WARN_ON(!pcount)) 2447 goto rearm_timer; 2448 2449 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2450 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2451 GFP_ATOMIC))) 2452 goto rearm_timer; 2453 skb = tcp_write_queue_next(sk, skb); 2454 } 2455 2456 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2457 goto rearm_timer; 2458 2459 if (__tcp_retransmit_skb(sk, skb, 1)) 2460 goto rearm_timer; 2461 2462 /* Record snd_nxt for loss detection. */ 2463 tp->tlp_high_seq = tp->snd_nxt; 2464 2465 probe_sent: 2466 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2467 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2468 inet_csk(sk)->icsk_pending = 0; 2469 rearm_timer: 2470 tcp_rearm_rto(sk); 2471 } 2472 2473 /* Push out any pending frames which were held back due to 2474 * TCP_CORK or attempt at coalescing tiny packets. 2475 * The socket must be locked by the caller. 2476 */ 2477 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2478 int nonagle) 2479 { 2480 /* If we are closed, the bytes will have to remain here. 2481 * In time closedown will finish, we empty the write queue and 2482 * all will be happy. 2483 */ 2484 if (unlikely(sk->sk_state == TCP_CLOSE)) 2485 return; 2486 2487 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2488 sk_gfp_mask(sk, GFP_ATOMIC))) 2489 tcp_check_probe_timer(sk); 2490 } 2491 2492 /* Send _single_ skb sitting at the send head. This function requires 2493 * true push pending frames to setup probe timer etc. 2494 */ 2495 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2496 { 2497 struct sk_buff *skb = tcp_send_head(sk); 2498 2499 BUG_ON(!skb || skb->len < mss_now); 2500 2501 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2502 } 2503 2504 /* This function returns the amount that we can raise the 2505 * usable window based on the following constraints 2506 * 2507 * 1. The window can never be shrunk once it is offered (RFC 793) 2508 * 2. We limit memory per socket 2509 * 2510 * RFC 1122: 2511 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2512 * RECV.NEXT + RCV.WIN fixed until: 2513 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2514 * 2515 * i.e. don't raise the right edge of the window until you can raise 2516 * it at least MSS bytes. 2517 * 2518 * Unfortunately, the recommended algorithm breaks header prediction, 2519 * since header prediction assumes th->window stays fixed. 2520 * 2521 * Strictly speaking, keeping th->window fixed violates the receiver 2522 * side SWS prevention criteria. The problem is that under this rule 2523 * a stream of single byte packets will cause the right side of the 2524 * window to always advance by a single byte. 2525 * 2526 * Of course, if the sender implements sender side SWS prevention 2527 * then this will not be a problem. 2528 * 2529 * BSD seems to make the following compromise: 2530 * 2531 * If the free space is less than the 1/4 of the maximum 2532 * space available and the free space is less than 1/2 mss, 2533 * then set the window to 0. 2534 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2535 * Otherwise, just prevent the window from shrinking 2536 * and from being larger than the largest representable value. 2537 * 2538 * This prevents incremental opening of the window in the regime 2539 * where TCP is limited by the speed of the reader side taking 2540 * data out of the TCP receive queue. It does nothing about 2541 * those cases where the window is constrained on the sender side 2542 * because the pipeline is full. 2543 * 2544 * BSD also seems to "accidentally" limit itself to windows that are a 2545 * multiple of MSS, at least until the free space gets quite small. 2546 * This would appear to be a side effect of the mbuf implementation. 2547 * Combining these two algorithms results in the observed behavior 2548 * of having a fixed window size at almost all times. 2549 * 2550 * Below we obtain similar behavior by forcing the offered window to 2551 * a multiple of the mss when it is feasible to do so. 2552 * 2553 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2554 * Regular options like TIMESTAMP are taken into account. 2555 */ 2556 u32 __tcp_select_window(struct sock *sk) 2557 { 2558 struct inet_connection_sock *icsk = inet_csk(sk); 2559 struct tcp_sock *tp = tcp_sk(sk); 2560 /* MSS for the peer's data. Previous versions used mss_clamp 2561 * here. I don't know if the value based on our guesses 2562 * of peer's MSS is better for the performance. It's more correct 2563 * but may be worse for the performance because of rcv_mss 2564 * fluctuations. --SAW 1998/11/1 2565 */ 2566 int mss = icsk->icsk_ack.rcv_mss; 2567 int free_space = tcp_space(sk); 2568 int allowed_space = tcp_full_space(sk); 2569 int full_space = min_t(int, tp->window_clamp, allowed_space); 2570 int window; 2571 2572 if (unlikely(mss > full_space)) { 2573 mss = full_space; 2574 if (mss <= 0) 2575 return 0; 2576 } 2577 if (free_space < (full_space >> 1)) { 2578 icsk->icsk_ack.quick = 0; 2579 2580 if (tcp_under_memory_pressure(sk)) 2581 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2582 4U * tp->advmss); 2583 2584 /* free_space might become our new window, make sure we don't 2585 * increase it due to wscale. 2586 */ 2587 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2588 2589 /* if free space is less than mss estimate, or is below 1/16th 2590 * of the maximum allowed, try to move to zero-window, else 2591 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2592 * new incoming data is dropped due to memory limits. 2593 * With large window, mss test triggers way too late in order 2594 * to announce zero window in time before rmem limit kicks in. 2595 */ 2596 if (free_space < (allowed_space >> 4) || free_space < mss) 2597 return 0; 2598 } 2599 2600 if (free_space > tp->rcv_ssthresh) 2601 free_space = tp->rcv_ssthresh; 2602 2603 /* Don't do rounding if we are using window scaling, since the 2604 * scaled window will not line up with the MSS boundary anyway. 2605 */ 2606 if (tp->rx_opt.rcv_wscale) { 2607 window = free_space; 2608 2609 /* Advertise enough space so that it won't get scaled away. 2610 * Import case: prevent zero window announcement if 2611 * 1<<rcv_wscale > mss. 2612 */ 2613 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2614 } else { 2615 window = tp->rcv_wnd; 2616 /* Get the largest window that is a nice multiple of mss. 2617 * Window clamp already applied above. 2618 * If our current window offering is within 1 mss of the 2619 * free space we just keep it. This prevents the divide 2620 * and multiply from happening most of the time. 2621 * We also don't do any window rounding when the free space 2622 * is too small. 2623 */ 2624 if (window <= free_space - mss || window > free_space) 2625 window = rounddown(free_space, mss); 2626 else if (mss == full_space && 2627 free_space > window + (full_space >> 1)) 2628 window = free_space; 2629 } 2630 2631 return window; 2632 } 2633 2634 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2635 const struct sk_buff *next_skb) 2636 { 2637 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2638 const struct skb_shared_info *next_shinfo = 2639 skb_shinfo(next_skb); 2640 struct skb_shared_info *shinfo = skb_shinfo(skb); 2641 2642 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2643 shinfo->tskey = next_shinfo->tskey; 2644 TCP_SKB_CB(skb)->txstamp_ack |= 2645 TCP_SKB_CB(next_skb)->txstamp_ack; 2646 } 2647 } 2648 2649 /* Collapses two adjacent SKB's during retransmission. */ 2650 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2651 { 2652 struct tcp_sock *tp = tcp_sk(sk); 2653 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2654 int skb_size, next_skb_size; 2655 2656 skb_size = skb->len; 2657 next_skb_size = next_skb->len; 2658 2659 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2660 2661 if (next_skb_size) { 2662 if (next_skb_size <= skb_availroom(skb)) 2663 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2664 next_skb_size); 2665 else if (!skb_shift(skb, next_skb, next_skb_size)) 2666 return false; 2667 } 2668 tcp_highest_sack_combine(sk, next_skb, skb); 2669 2670 tcp_unlink_write_queue(next_skb, sk); 2671 2672 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2673 skb->ip_summed = CHECKSUM_PARTIAL; 2674 2675 if (skb->ip_summed != CHECKSUM_PARTIAL) 2676 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2677 2678 /* Update sequence range on original skb. */ 2679 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2680 2681 /* Merge over control information. This moves PSH/FIN etc. over */ 2682 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2683 2684 /* All done, get rid of second SKB and account for it so 2685 * packet counting does not break. 2686 */ 2687 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2688 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2689 2690 /* changed transmit queue under us so clear hints */ 2691 tcp_clear_retrans_hints_partial(tp); 2692 if (next_skb == tp->retransmit_skb_hint) 2693 tp->retransmit_skb_hint = skb; 2694 2695 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2696 2697 tcp_skb_collapse_tstamp(skb, next_skb); 2698 2699 sk_wmem_free_skb(sk, next_skb); 2700 return true; 2701 } 2702 2703 /* Check if coalescing SKBs is legal. */ 2704 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2705 { 2706 if (tcp_skb_pcount(skb) > 1) 2707 return false; 2708 if (skb_cloned(skb)) 2709 return false; 2710 if (skb == tcp_send_head(sk)) 2711 return false; 2712 /* Some heuristics for collapsing over SACK'd could be invented */ 2713 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2714 return false; 2715 2716 return true; 2717 } 2718 2719 /* Collapse packets in the retransmit queue to make to create 2720 * less packets on the wire. This is only done on retransmission. 2721 */ 2722 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2723 int space) 2724 { 2725 struct tcp_sock *tp = tcp_sk(sk); 2726 struct sk_buff *skb = to, *tmp; 2727 bool first = true; 2728 2729 if (!sysctl_tcp_retrans_collapse) 2730 return; 2731 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2732 return; 2733 2734 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2735 if (!tcp_can_collapse(sk, skb)) 2736 break; 2737 2738 if (!tcp_skb_can_collapse_to(to)) 2739 break; 2740 2741 space -= skb->len; 2742 2743 if (first) { 2744 first = false; 2745 continue; 2746 } 2747 2748 if (space < 0) 2749 break; 2750 2751 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2752 break; 2753 2754 if (!tcp_collapse_retrans(sk, to)) 2755 break; 2756 } 2757 } 2758 2759 /* This retransmits one SKB. Policy decisions and retransmit queue 2760 * state updates are done by the caller. Returns non-zero if an 2761 * error occurred which prevented the send. 2762 */ 2763 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2764 { 2765 struct inet_connection_sock *icsk = inet_csk(sk); 2766 struct tcp_sock *tp = tcp_sk(sk); 2767 unsigned int cur_mss; 2768 int diff, len, err; 2769 2770 2771 /* Inconclusive MTU probe */ 2772 if (icsk->icsk_mtup.probe_size) 2773 icsk->icsk_mtup.probe_size = 0; 2774 2775 /* Do not sent more than we queued. 1/4 is reserved for possible 2776 * copying overhead: fragmentation, tunneling, mangling etc. 2777 */ 2778 if (refcount_read(&sk->sk_wmem_alloc) > 2779 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2780 sk->sk_sndbuf)) 2781 return -EAGAIN; 2782 2783 if (skb_still_in_host_queue(sk, skb)) 2784 return -EBUSY; 2785 2786 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2787 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2788 BUG(); 2789 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2790 return -ENOMEM; 2791 } 2792 2793 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2794 return -EHOSTUNREACH; /* Routing failure or similar. */ 2795 2796 cur_mss = tcp_current_mss(sk); 2797 2798 /* If receiver has shrunk his window, and skb is out of 2799 * new window, do not retransmit it. The exception is the 2800 * case, when window is shrunk to zero. In this case 2801 * our retransmit serves as a zero window probe. 2802 */ 2803 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2804 TCP_SKB_CB(skb)->seq != tp->snd_una) 2805 return -EAGAIN; 2806 2807 len = cur_mss * segs; 2808 if (skb->len > len) { 2809 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC)) 2810 return -ENOMEM; /* We'll try again later. */ 2811 } else { 2812 if (skb_unclone(skb, GFP_ATOMIC)) 2813 return -ENOMEM; 2814 2815 diff = tcp_skb_pcount(skb); 2816 tcp_set_skb_tso_segs(skb, cur_mss); 2817 diff -= tcp_skb_pcount(skb); 2818 if (diff) 2819 tcp_adjust_pcount(sk, skb, diff); 2820 if (skb->len < cur_mss) 2821 tcp_retrans_try_collapse(sk, skb, cur_mss); 2822 } 2823 2824 /* RFC3168, section 6.1.1.1. ECN fallback */ 2825 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2826 tcp_ecn_clear_syn(sk, skb); 2827 2828 /* Update global and local TCP statistics. */ 2829 segs = tcp_skb_pcount(skb); 2830 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2831 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2832 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2833 tp->total_retrans += segs; 2834 2835 /* make sure skb->data is aligned on arches that require it 2836 * and check if ack-trimming & collapsing extended the headroom 2837 * beyond what csum_start can cover. 2838 */ 2839 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2840 skb_headroom(skb) >= 0xFFFF)) { 2841 struct sk_buff *nskb; 2842 2843 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2844 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2845 -ENOBUFS; 2846 if (!err) { 2847 skb->skb_mstamp = tp->tcp_mstamp; 2848 tcp_rate_skb_sent(sk, skb); 2849 } 2850 } else { 2851 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2852 } 2853 2854 if (likely(!err)) { 2855 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2856 } else if (err != -EBUSY) { 2857 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2858 } 2859 return err; 2860 } 2861 2862 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2863 { 2864 struct tcp_sock *tp = tcp_sk(sk); 2865 int err = __tcp_retransmit_skb(sk, skb, segs); 2866 2867 if (err == 0) { 2868 #if FASTRETRANS_DEBUG > 0 2869 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2870 net_dbg_ratelimited("retrans_out leaked\n"); 2871 } 2872 #endif 2873 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2874 tp->retrans_out += tcp_skb_pcount(skb); 2875 2876 /* Save stamp of the first retransmit. */ 2877 if (!tp->retrans_stamp) 2878 tp->retrans_stamp = tcp_skb_timestamp(skb); 2879 2880 } 2881 2882 if (tp->undo_retrans < 0) 2883 tp->undo_retrans = 0; 2884 tp->undo_retrans += tcp_skb_pcount(skb); 2885 return err; 2886 } 2887 2888 /* This gets called after a retransmit timeout, and the initially 2889 * retransmitted data is acknowledged. It tries to continue 2890 * resending the rest of the retransmit queue, until either 2891 * we've sent it all or the congestion window limit is reached. 2892 * If doing SACK, the first ACK which comes back for a timeout 2893 * based retransmit packet might feed us FACK information again. 2894 * If so, we use it to avoid unnecessarily retransmissions. 2895 */ 2896 void tcp_xmit_retransmit_queue(struct sock *sk) 2897 { 2898 const struct inet_connection_sock *icsk = inet_csk(sk); 2899 struct tcp_sock *tp = tcp_sk(sk); 2900 struct sk_buff *skb; 2901 struct sk_buff *hole = NULL; 2902 u32 max_segs; 2903 int mib_idx; 2904 2905 if (!tp->packets_out) 2906 return; 2907 2908 if (tp->retransmit_skb_hint) { 2909 skb = tp->retransmit_skb_hint; 2910 } else { 2911 skb = tcp_write_queue_head(sk); 2912 } 2913 2914 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2915 tcp_for_write_queue_from(skb, sk) { 2916 __u8 sacked; 2917 int segs; 2918 2919 if (skb == tcp_send_head(sk)) 2920 break; 2921 2922 if (tcp_pacing_check(sk)) 2923 break; 2924 2925 /* we could do better than to assign each time */ 2926 if (!hole) 2927 tp->retransmit_skb_hint = skb; 2928 2929 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2930 if (segs <= 0) 2931 return; 2932 sacked = TCP_SKB_CB(skb)->sacked; 2933 /* In case tcp_shift_skb_data() have aggregated large skbs, 2934 * we need to make sure not sending too bigs TSO packets 2935 */ 2936 segs = min_t(int, segs, max_segs); 2937 2938 if (tp->retrans_out >= tp->lost_out) { 2939 break; 2940 } else if (!(sacked & TCPCB_LOST)) { 2941 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2942 hole = skb; 2943 continue; 2944 2945 } else { 2946 if (icsk->icsk_ca_state != TCP_CA_Loss) 2947 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2948 else 2949 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2950 } 2951 2952 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2953 continue; 2954 2955 if (tcp_small_queue_check(sk, skb, 1)) 2956 return; 2957 2958 if (tcp_retransmit_skb(sk, skb, segs)) 2959 return; 2960 2961 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 2962 2963 if (tcp_in_cwnd_reduction(sk)) 2964 tp->prr_out += tcp_skb_pcount(skb); 2965 2966 if (skb == tcp_write_queue_head(sk) && 2967 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 2968 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2969 inet_csk(sk)->icsk_rto, 2970 TCP_RTO_MAX); 2971 } 2972 } 2973 2974 /* We allow to exceed memory limits for FIN packets to expedite 2975 * connection tear down and (memory) recovery. 2976 * Otherwise tcp_send_fin() could be tempted to either delay FIN 2977 * or even be forced to close flow without any FIN. 2978 * In general, we want to allow one skb per socket to avoid hangs 2979 * with edge trigger epoll() 2980 */ 2981 void sk_forced_mem_schedule(struct sock *sk, int size) 2982 { 2983 int amt; 2984 2985 if (size <= sk->sk_forward_alloc) 2986 return; 2987 amt = sk_mem_pages(size); 2988 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2989 sk_memory_allocated_add(sk, amt); 2990 2991 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2992 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 2993 } 2994 2995 /* Send a FIN. The caller locks the socket for us. 2996 * We should try to send a FIN packet really hard, but eventually give up. 2997 */ 2998 void tcp_send_fin(struct sock *sk) 2999 { 3000 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3001 struct tcp_sock *tp = tcp_sk(sk); 3002 3003 /* Optimization, tack on the FIN if we have one skb in write queue and 3004 * this skb was not yet sent, or we are under memory pressure. 3005 * Note: in the latter case, FIN packet will be sent after a timeout, 3006 * as TCP stack thinks it has already been transmitted. 3007 */ 3008 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) { 3009 coalesce: 3010 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3011 TCP_SKB_CB(tskb)->end_seq++; 3012 tp->write_seq++; 3013 if (!tcp_send_head(sk)) { 3014 /* This means tskb was already sent. 3015 * Pretend we included the FIN on previous transmit. 3016 * We need to set tp->snd_nxt to the value it would have 3017 * if FIN had been sent. This is because retransmit path 3018 * does not change tp->snd_nxt. 3019 */ 3020 tp->snd_nxt++; 3021 return; 3022 } 3023 } else { 3024 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3025 if (unlikely(!skb)) { 3026 if (tskb) 3027 goto coalesce; 3028 return; 3029 } 3030 skb_reserve(skb, MAX_TCP_HEADER); 3031 sk_forced_mem_schedule(sk, skb->truesize); 3032 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3033 tcp_init_nondata_skb(skb, tp->write_seq, 3034 TCPHDR_ACK | TCPHDR_FIN); 3035 tcp_queue_skb(sk, skb); 3036 } 3037 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3038 } 3039 3040 /* We get here when a process closes a file descriptor (either due to 3041 * an explicit close() or as a byproduct of exit()'ing) and there 3042 * was unread data in the receive queue. This behavior is recommended 3043 * by RFC 2525, section 2.17. -DaveM 3044 */ 3045 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3046 { 3047 struct sk_buff *skb; 3048 3049 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3050 3051 /* NOTE: No TCP options attached and we never retransmit this. */ 3052 skb = alloc_skb(MAX_TCP_HEADER, priority); 3053 if (!skb) { 3054 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3055 return; 3056 } 3057 3058 /* Reserve space for headers and prepare control bits. */ 3059 skb_reserve(skb, MAX_TCP_HEADER); 3060 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3061 TCPHDR_ACK | TCPHDR_RST); 3062 tcp_mstamp_refresh(tcp_sk(sk)); 3063 /* Send it off. */ 3064 if (tcp_transmit_skb(sk, skb, 0, priority)) 3065 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3066 } 3067 3068 /* Send a crossed SYN-ACK during socket establishment. 3069 * WARNING: This routine must only be called when we have already sent 3070 * a SYN packet that crossed the incoming SYN that caused this routine 3071 * to get called. If this assumption fails then the initial rcv_wnd 3072 * and rcv_wscale values will not be correct. 3073 */ 3074 int tcp_send_synack(struct sock *sk) 3075 { 3076 struct sk_buff *skb; 3077 3078 skb = tcp_write_queue_head(sk); 3079 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3080 pr_debug("%s: wrong queue state\n", __func__); 3081 return -EFAULT; 3082 } 3083 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3084 if (skb_cloned(skb)) { 3085 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 3086 if (!nskb) 3087 return -ENOMEM; 3088 tcp_unlink_write_queue(skb, sk); 3089 __skb_header_release(nskb); 3090 __tcp_add_write_queue_head(sk, nskb); 3091 sk_wmem_free_skb(sk, skb); 3092 sk->sk_wmem_queued += nskb->truesize; 3093 sk_mem_charge(sk, nskb->truesize); 3094 skb = nskb; 3095 } 3096 3097 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3098 tcp_ecn_send_synack(sk, skb); 3099 } 3100 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3101 } 3102 3103 /** 3104 * tcp_make_synack - Prepare a SYN-ACK. 3105 * sk: listener socket 3106 * dst: dst entry attached to the SYNACK 3107 * req: request_sock pointer 3108 * 3109 * Allocate one skb and build a SYNACK packet. 3110 * @dst is consumed : Caller should not use it again. 3111 */ 3112 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3113 struct request_sock *req, 3114 struct tcp_fastopen_cookie *foc, 3115 enum tcp_synack_type synack_type) 3116 { 3117 struct inet_request_sock *ireq = inet_rsk(req); 3118 const struct tcp_sock *tp = tcp_sk(sk); 3119 struct tcp_md5sig_key *md5 = NULL; 3120 struct tcp_out_options opts; 3121 struct sk_buff *skb; 3122 int tcp_header_size; 3123 struct tcphdr *th; 3124 int mss; 3125 3126 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3127 if (unlikely(!skb)) { 3128 dst_release(dst); 3129 return NULL; 3130 } 3131 /* Reserve space for headers. */ 3132 skb_reserve(skb, MAX_TCP_HEADER); 3133 3134 switch (synack_type) { 3135 case TCP_SYNACK_NORMAL: 3136 skb_set_owner_w(skb, req_to_sk(req)); 3137 break; 3138 case TCP_SYNACK_COOKIE: 3139 /* Under synflood, we do not attach skb to a socket, 3140 * to avoid false sharing. 3141 */ 3142 break; 3143 case TCP_SYNACK_FASTOPEN: 3144 /* sk is a const pointer, because we want to express multiple 3145 * cpu might call us concurrently. 3146 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3147 */ 3148 skb_set_owner_w(skb, (struct sock *)sk); 3149 break; 3150 } 3151 skb_dst_set(skb, dst); 3152 3153 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3154 3155 memset(&opts, 0, sizeof(opts)); 3156 #ifdef CONFIG_SYN_COOKIES 3157 if (unlikely(req->cookie_ts)) 3158 skb->skb_mstamp = cookie_init_timestamp(req); 3159 else 3160 #endif 3161 skb->skb_mstamp = tcp_clock_us(); 3162 3163 #ifdef CONFIG_TCP_MD5SIG 3164 rcu_read_lock(); 3165 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3166 #endif 3167 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3168 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) + 3169 sizeof(*th); 3170 3171 skb_push(skb, tcp_header_size); 3172 skb_reset_transport_header(skb); 3173 3174 th = (struct tcphdr *)skb->data; 3175 memset(th, 0, sizeof(struct tcphdr)); 3176 th->syn = 1; 3177 th->ack = 1; 3178 tcp_ecn_make_synack(req, th); 3179 th->source = htons(ireq->ir_num); 3180 th->dest = ireq->ir_rmt_port; 3181 skb->mark = ireq->ir_mark; 3182 /* Setting of flags are superfluous here for callers (and ECE is 3183 * not even correctly set) 3184 */ 3185 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3186 TCPHDR_SYN | TCPHDR_ACK); 3187 3188 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3189 /* XXX data is queued and acked as is. No buffer/window check */ 3190 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3191 3192 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3193 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3194 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3195 th->doff = (tcp_header_size >> 2); 3196 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3197 3198 #ifdef CONFIG_TCP_MD5SIG 3199 /* Okay, we have all we need - do the md5 hash if needed */ 3200 if (md5) 3201 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3202 md5, req_to_sk(req), skb); 3203 rcu_read_unlock(); 3204 #endif 3205 3206 /* Do not fool tcpdump (if any), clean our debris */ 3207 skb->tstamp = 0; 3208 return skb; 3209 } 3210 EXPORT_SYMBOL(tcp_make_synack); 3211 3212 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3213 { 3214 struct inet_connection_sock *icsk = inet_csk(sk); 3215 const struct tcp_congestion_ops *ca; 3216 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3217 3218 if (ca_key == TCP_CA_UNSPEC) 3219 return; 3220 3221 rcu_read_lock(); 3222 ca = tcp_ca_find_key(ca_key); 3223 if (likely(ca && try_module_get(ca->owner))) { 3224 module_put(icsk->icsk_ca_ops->owner); 3225 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3226 icsk->icsk_ca_ops = ca; 3227 } 3228 rcu_read_unlock(); 3229 } 3230 3231 /* Do all connect socket setups that can be done AF independent. */ 3232 static void tcp_connect_init(struct sock *sk) 3233 { 3234 const struct dst_entry *dst = __sk_dst_get(sk); 3235 struct tcp_sock *tp = tcp_sk(sk); 3236 __u8 rcv_wscale; 3237 u32 rcv_wnd; 3238 3239 /* We'll fix this up when we get a response from the other end. 3240 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3241 */ 3242 tp->tcp_header_len = sizeof(struct tcphdr); 3243 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3244 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3245 3246 #ifdef CONFIG_TCP_MD5SIG 3247 if (tp->af_specific->md5_lookup(sk, sk)) 3248 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3249 #endif 3250 3251 /* If user gave his TCP_MAXSEG, record it to clamp */ 3252 if (tp->rx_opt.user_mss) 3253 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3254 tp->max_window = 0; 3255 tcp_mtup_init(sk); 3256 tcp_sync_mss(sk, dst_mtu(dst)); 3257 3258 tcp_ca_dst_init(sk, dst); 3259 3260 if (!tp->window_clamp) 3261 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3262 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3263 3264 tcp_initialize_rcv_mss(sk); 3265 3266 /* limit the window selection if the user enforce a smaller rx buffer */ 3267 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3268 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3269 tp->window_clamp = tcp_full_space(sk); 3270 3271 rcv_wnd = tcp_rwnd_init_bpf(sk); 3272 if (rcv_wnd == 0) 3273 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3274 3275 tcp_select_initial_window(tcp_full_space(sk), 3276 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3277 &tp->rcv_wnd, 3278 &tp->window_clamp, 3279 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3280 &rcv_wscale, 3281 rcv_wnd); 3282 3283 tp->rx_opt.rcv_wscale = rcv_wscale; 3284 tp->rcv_ssthresh = tp->rcv_wnd; 3285 3286 sk->sk_err = 0; 3287 sock_reset_flag(sk, SOCK_DONE); 3288 tp->snd_wnd = 0; 3289 tcp_init_wl(tp, 0); 3290 tp->snd_una = tp->write_seq; 3291 tp->snd_sml = tp->write_seq; 3292 tp->snd_up = tp->write_seq; 3293 tp->snd_nxt = tp->write_seq; 3294 3295 if (likely(!tp->repair)) 3296 tp->rcv_nxt = 0; 3297 else 3298 tp->rcv_tstamp = tcp_jiffies32; 3299 tp->rcv_wup = tp->rcv_nxt; 3300 tp->copied_seq = tp->rcv_nxt; 3301 3302 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3303 inet_csk(sk)->icsk_retransmits = 0; 3304 tcp_clear_retrans(tp); 3305 } 3306 3307 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3308 { 3309 struct tcp_sock *tp = tcp_sk(sk); 3310 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3311 3312 tcb->end_seq += skb->len; 3313 __skb_header_release(skb); 3314 __tcp_add_write_queue_tail(sk, skb); 3315 sk->sk_wmem_queued += skb->truesize; 3316 sk_mem_charge(sk, skb->truesize); 3317 tp->write_seq = tcb->end_seq; 3318 tp->packets_out += tcp_skb_pcount(skb); 3319 } 3320 3321 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3322 * queue a data-only packet after the regular SYN, such that regular SYNs 3323 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3324 * only the SYN sequence, the data are retransmitted in the first ACK. 3325 * If cookie is not cached or other error occurs, falls back to send a 3326 * regular SYN with Fast Open cookie request option. 3327 */ 3328 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3329 { 3330 struct tcp_sock *tp = tcp_sk(sk); 3331 struct tcp_fastopen_request *fo = tp->fastopen_req; 3332 int space, err = 0; 3333 struct sk_buff *syn_data; 3334 3335 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3336 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3337 goto fallback; 3338 3339 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3340 * user-MSS. Reserve maximum option space for middleboxes that add 3341 * private TCP options. The cost is reduced data space in SYN :( 3342 */ 3343 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3344 3345 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3346 MAX_TCP_OPTION_SPACE; 3347 3348 space = min_t(size_t, space, fo->size); 3349 3350 /* limit to order-0 allocations */ 3351 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3352 3353 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3354 if (!syn_data) 3355 goto fallback; 3356 syn_data->ip_summed = CHECKSUM_PARTIAL; 3357 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3358 if (space) { 3359 int copied = copy_from_iter(skb_put(syn_data, space), space, 3360 &fo->data->msg_iter); 3361 if (unlikely(!copied)) { 3362 kfree_skb(syn_data); 3363 goto fallback; 3364 } 3365 if (copied != space) { 3366 skb_trim(syn_data, copied); 3367 space = copied; 3368 } 3369 } 3370 /* No more data pending in inet_wait_for_connect() */ 3371 if (space == fo->size) 3372 fo->data = NULL; 3373 fo->copied = space; 3374 3375 tcp_connect_queue_skb(sk, syn_data); 3376 if (syn_data->len) 3377 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3378 3379 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3380 3381 syn->skb_mstamp = syn_data->skb_mstamp; 3382 3383 /* Now full SYN+DATA was cloned and sent (or not), 3384 * remove the SYN from the original skb (syn_data) 3385 * we keep in write queue in case of a retransmit, as we 3386 * also have the SYN packet (with no data) in the same queue. 3387 */ 3388 TCP_SKB_CB(syn_data)->seq++; 3389 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3390 if (!err) { 3391 tp->syn_data = (fo->copied > 0); 3392 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3393 goto done; 3394 } 3395 3396 /* data was not sent, this is our new send_head */ 3397 sk->sk_send_head = syn_data; 3398 tp->packets_out -= tcp_skb_pcount(syn_data); 3399 3400 fallback: 3401 /* Send a regular SYN with Fast Open cookie request option */ 3402 if (fo->cookie.len > 0) 3403 fo->cookie.len = 0; 3404 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3405 if (err) 3406 tp->syn_fastopen = 0; 3407 done: 3408 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3409 return err; 3410 } 3411 3412 /* Build a SYN and send it off. */ 3413 int tcp_connect(struct sock *sk) 3414 { 3415 struct tcp_sock *tp = tcp_sk(sk); 3416 struct sk_buff *buff; 3417 int err; 3418 3419 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB); 3420 3421 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3422 return -EHOSTUNREACH; /* Routing failure or similar. */ 3423 3424 tcp_connect_init(sk); 3425 3426 if (unlikely(tp->repair)) { 3427 tcp_finish_connect(sk, NULL); 3428 return 0; 3429 } 3430 3431 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3432 if (unlikely(!buff)) 3433 return -ENOBUFS; 3434 3435 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3436 tcp_mstamp_refresh(tp); 3437 tp->retrans_stamp = tcp_time_stamp(tp); 3438 tcp_connect_queue_skb(sk, buff); 3439 tcp_ecn_send_syn(sk, buff); 3440 3441 /* Send off SYN; include data in Fast Open. */ 3442 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3443 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3444 if (err == -ECONNREFUSED) 3445 return err; 3446 3447 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3448 * in order to make this packet get counted in tcpOutSegs. 3449 */ 3450 tp->snd_nxt = tp->write_seq; 3451 tp->pushed_seq = tp->write_seq; 3452 buff = tcp_send_head(sk); 3453 if (unlikely(buff)) { 3454 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3455 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3456 } 3457 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3458 3459 /* Timer for repeating the SYN until an answer. */ 3460 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3461 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3462 return 0; 3463 } 3464 EXPORT_SYMBOL(tcp_connect); 3465 3466 /* Send out a delayed ack, the caller does the policy checking 3467 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3468 * for details. 3469 */ 3470 void tcp_send_delayed_ack(struct sock *sk) 3471 { 3472 struct inet_connection_sock *icsk = inet_csk(sk); 3473 int ato = icsk->icsk_ack.ato; 3474 unsigned long timeout; 3475 3476 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3477 3478 if (ato > TCP_DELACK_MIN) { 3479 const struct tcp_sock *tp = tcp_sk(sk); 3480 int max_ato = HZ / 2; 3481 3482 if (icsk->icsk_ack.pingpong || 3483 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3484 max_ato = TCP_DELACK_MAX; 3485 3486 /* Slow path, intersegment interval is "high". */ 3487 3488 /* If some rtt estimate is known, use it to bound delayed ack. 3489 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3490 * directly. 3491 */ 3492 if (tp->srtt_us) { 3493 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3494 TCP_DELACK_MIN); 3495 3496 if (rtt < max_ato) 3497 max_ato = rtt; 3498 } 3499 3500 ato = min(ato, max_ato); 3501 } 3502 3503 /* Stay within the limit we were given */ 3504 timeout = jiffies + ato; 3505 3506 /* Use new timeout only if there wasn't a older one earlier. */ 3507 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3508 /* If delack timer was blocked or is about to expire, 3509 * send ACK now. 3510 */ 3511 if (icsk->icsk_ack.blocked || 3512 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3513 tcp_send_ack(sk); 3514 return; 3515 } 3516 3517 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3518 timeout = icsk->icsk_ack.timeout; 3519 } 3520 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3521 icsk->icsk_ack.timeout = timeout; 3522 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3523 } 3524 3525 /* This routine sends an ack and also updates the window. */ 3526 void tcp_send_ack(struct sock *sk) 3527 { 3528 struct sk_buff *buff; 3529 3530 /* If we have been reset, we may not send again. */ 3531 if (sk->sk_state == TCP_CLOSE) 3532 return; 3533 3534 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3535 3536 /* We are not putting this on the write queue, so 3537 * tcp_transmit_skb() will set the ownership to this 3538 * sock. 3539 */ 3540 buff = alloc_skb(MAX_TCP_HEADER, 3541 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3542 if (unlikely(!buff)) { 3543 inet_csk_schedule_ack(sk); 3544 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3545 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3546 TCP_DELACK_MAX, TCP_RTO_MAX); 3547 return; 3548 } 3549 3550 /* Reserve space for headers and prepare control bits. */ 3551 skb_reserve(buff, MAX_TCP_HEADER); 3552 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3553 3554 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3555 * too much. 3556 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3557 */ 3558 skb_set_tcp_pure_ack(buff); 3559 3560 /* Send it off, this clears delayed acks for us. */ 3561 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3562 } 3563 EXPORT_SYMBOL_GPL(tcp_send_ack); 3564 3565 /* This routine sends a packet with an out of date sequence 3566 * number. It assumes the other end will try to ack it. 3567 * 3568 * Question: what should we make while urgent mode? 3569 * 4.4BSD forces sending single byte of data. We cannot send 3570 * out of window data, because we have SND.NXT==SND.MAX... 3571 * 3572 * Current solution: to send TWO zero-length segments in urgent mode: 3573 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3574 * out-of-date with SND.UNA-1 to probe window. 3575 */ 3576 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3577 { 3578 struct tcp_sock *tp = tcp_sk(sk); 3579 struct sk_buff *skb; 3580 3581 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3582 skb = alloc_skb(MAX_TCP_HEADER, 3583 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3584 if (!skb) 3585 return -1; 3586 3587 /* Reserve space for headers and set control bits. */ 3588 skb_reserve(skb, MAX_TCP_HEADER); 3589 /* Use a previous sequence. This should cause the other 3590 * end to send an ack. Don't queue or clone SKB, just 3591 * send it. 3592 */ 3593 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3594 NET_INC_STATS(sock_net(sk), mib); 3595 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3596 } 3597 3598 /* Called from setsockopt( ... TCP_REPAIR ) */ 3599 void tcp_send_window_probe(struct sock *sk) 3600 { 3601 if (sk->sk_state == TCP_ESTABLISHED) { 3602 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3603 tcp_mstamp_refresh(tcp_sk(sk)); 3604 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3605 } 3606 } 3607 3608 /* Initiate keepalive or window probe from timer. */ 3609 int tcp_write_wakeup(struct sock *sk, int mib) 3610 { 3611 struct tcp_sock *tp = tcp_sk(sk); 3612 struct sk_buff *skb; 3613 3614 if (sk->sk_state == TCP_CLOSE) 3615 return -1; 3616 3617 skb = tcp_send_head(sk); 3618 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3619 int err; 3620 unsigned int mss = tcp_current_mss(sk); 3621 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3622 3623 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3624 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3625 3626 /* We are probing the opening of a window 3627 * but the window size is != 0 3628 * must have been a result SWS avoidance ( sender ) 3629 */ 3630 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3631 skb->len > mss) { 3632 seg_size = min(seg_size, mss); 3633 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3634 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3635 return -1; 3636 } else if (!tcp_skb_pcount(skb)) 3637 tcp_set_skb_tso_segs(skb, mss); 3638 3639 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3640 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3641 if (!err) 3642 tcp_event_new_data_sent(sk, skb); 3643 return err; 3644 } else { 3645 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3646 tcp_xmit_probe_skb(sk, 1, mib); 3647 return tcp_xmit_probe_skb(sk, 0, mib); 3648 } 3649 } 3650 3651 /* A window probe timeout has occurred. If window is not closed send 3652 * a partial packet else a zero probe. 3653 */ 3654 void tcp_send_probe0(struct sock *sk) 3655 { 3656 struct inet_connection_sock *icsk = inet_csk(sk); 3657 struct tcp_sock *tp = tcp_sk(sk); 3658 struct net *net = sock_net(sk); 3659 unsigned long probe_max; 3660 int err; 3661 3662 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3663 3664 if (tp->packets_out || !tcp_send_head(sk)) { 3665 /* Cancel probe timer, if it is not required. */ 3666 icsk->icsk_probes_out = 0; 3667 icsk->icsk_backoff = 0; 3668 return; 3669 } 3670 3671 if (err <= 0) { 3672 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3673 icsk->icsk_backoff++; 3674 icsk->icsk_probes_out++; 3675 probe_max = TCP_RTO_MAX; 3676 } else { 3677 /* If packet was not sent due to local congestion, 3678 * do not backoff and do not remember icsk_probes_out. 3679 * Let local senders to fight for local resources. 3680 * 3681 * Use accumulated backoff yet. 3682 */ 3683 if (!icsk->icsk_probes_out) 3684 icsk->icsk_probes_out = 1; 3685 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3686 } 3687 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3688 tcp_probe0_when(sk, probe_max), 3689 TCP_RTO_MAX); 3690 } 3691 3692 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3693 { 3694 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3695 struct flowi fl; 3696 int res; 3697 3698 tcp_rsk(req)->txhash = net_tx_rndhash(); 3699 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3700 if (!res) { 3701 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3702 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3703 if (unlikely(tcp_passive_fastopen(sk))) 3704 tcp_sk(sk)->total_retrans++; 3705 } 3706 return res; 3707 } 3708 EXPORT_SYMBOL(tcp_rtx_synack); 3709