xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 8a10bc9d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64 
65 /* By default, RFC2861 behavior.  */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67 
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70 
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 			   int push_one, gfp_t gfp);
73 
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 	struct inet_connection_sock *icsk = inet_csk(sk);
78 	struct tcp_sock *tp = tcp_sk(sk);
79 	unsigned int prior_packets = tp->packets_out;
80 
81 	tcp_advance_send_head(sk, skb);
82 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83 
84 	tp->packets_out += tcp_skb_pcount(skb);
85 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 		tcp_rearm_rto(sk);
88 	}
89 }
90 
91 /* SND.NXT, if window was not shrunk.
92  * If window has been shrunk, what should we make? It is not clear at all.
93  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95  * invalid. OK, let's make this for now:
96  */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 	const struct tcp_sock *tp = tcp_sk(sk);
100 
101 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism. */
141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
142 {
143 	struct tcp_sock *tp = tcp_sk(sk);
144 	s32 delta = tcp_time_stamp - tp->lsndtime;
145 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
146 	u32 cwnd = tp->snd_cwnd;
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tp->snd_cwnd = max(cwnd, restart_cwnd);
156 	tp->snd_cwnd_stamp = tcp_time_stamp;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_time_stamp;
166 	const struct dst_entry *dst = __sk_dst_get(sk);
167 
168 	if (sysctl_tcp_slow_start_after_idle &&
169 	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
171 
172 	tp->lsndtime = now;
173 
174 	/* If it is a reply for ato after last received
175 	 * packet, enter pingpong mode.
176 	 */
177 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
178 	    (!dst || !dst_metric(dst, RTAX_QUICKACK)))
179 			icsk->icsk_ack.pingpong = 1;
180 }
181 
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
184 {
185 	tcp_dec_quickack_mode(sk, pkts);
186 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
187 }
188 
189 
190 u32 tcp_default_init_rwnd(u32 mss)
191 {
192 	/* Initial receive window should be twice of TCP_INIT_CWND to
193 	 * enable proper sending of new unsent data during fast recovery
194 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 	 * limit when mss is larger than 1460.
196 	 */
197 	u32 init_rwnd = TCP_INIT_CWND * 2;
198 
199 	if (mss > 1460)
200 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201 	return init_rwnd;
202 }
203 
204 /* Determine a window scaling and initial window to offer.
205  * Based on the assumption that the given amount of space
206  * will be offered. Store the results in the tp structure.
207  * NOTE: for smooth operation initial space offering should
208  * be a multiple of mss if possible. We assume here that mss >= 1.
209  * This MUST be enforced by all callers.
210  */
211 void tcp_select_initial_window(int __space, __u32 mss,
212 			       __u32 *rcv_wnd, __u32 *window_clamp,
213 			       int wscale_ok, __u8 *rcv_wscale,
214 			       __u32 init_rcv_wnd)
215 {
216 	unsigned int space = (__space < 0 ? 0 : __space);
217 
218 	/* If no clamp set the clamp to the max possible scaled window */
219 	if (*window_clamp == 0)
220 		(*window_clamp) = (65535 << 14);
221 	space = min(*window_clamp, space);
222 
223 	/* Quantize space offering to a multiple of mss if possible. */
224 	if (space > mss)
225 		space = (space / mss) * mss;
226 
227 	/* NOTE: offering an initial window larger than 32767
228 	 * will break some buggy TCP stacks. If the admin tells us
229 	 * it is likely we could be speaking with such a buggy stack
230 	 * we will truncate our initial window offering to 32K-1
231 	 * unless the remote has sent us a window scaling option,
232 	 * which we interpret as a sign the remote TCP is not
233 	 * misinterpreting the window field as a signed quantity.
234 	 */
235 	if (sysctl_tcp_workaround_signed_windows)
236 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 	else
238 		(*rcv_wnd) = space;
239 
240 	(*rcv_wscale) = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window
243 		 * See RFC1323 for an explanation of the limit to 14
244 		 */
245 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
246 		space = min_t(u32, space, *window_clamp);
247 		while (space > 65535 && (*rcv_wscale) < 14) {
248 			space >>= 1;
249 			(*rcv_wscale)++;
250 		}
251 	}
252 
253 	if (mss > (1 << *rcv_wscale)) {
254 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
255 			init_rcv_wnd = tcp_default_init_rwnd(mss);
256 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
257 	}
258 
259 	/* Set the clamp no higher than max representable value */
260 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
261 }
262 EXPORT_SYMBOL(tcp_select_initial_window);
263 
264 /* Chose a new window to advertise, update state in tcp_sock for the
265  * socket, and return result with RFC1323 scaling applied.  The return
266  * value can be stuffed directly into th->window for an outgoing
267  * frame.
268  */
269 static u16 tcp_select_window(struct sock *sk)
270 {
271 	struct tcp_sock *tp = tcp_sk(sk);
272 	u32 cur_win = tcp_receive_window(tp);
273 	u32 new_win = __tcp_select_window(sk);
274 
275 	/* Never shrink the offered window */
276 	if (new_win < cur_win) {
277 		/* Danger Will Robinson!
278 		 * Don't update rcv_wup/rcv_wnd here or else
279 		 * we will not be able to advertise a zero
280 		 * window in time.  --DaveM
281 		 *
282 		 * Relax Will Robinson.
283 		 */
284 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
285 	}
286 	tp->rcv_wnd = new_win;
287 	tp->rcv_wup = tp->rcv_nxt;
288 
289 	/* Make sure we do not exceed the maximum possible
290 	 * scaled window.
291 	 */
292 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
293 		new_win = min(new_win, MAX_TCP_WINDOW);
294 	else
295 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
296 
297 	/* RFC1323 scaling applied */
298 	new_win >>= tp->rx_opt.rcv_wscale;
299 
300 	/* If we advertise zero window, disable fast path. */
301 	if (new_win == 0)
302 		tp->pred_flags = 0;
303 
304 	return new_win;
305 }
306 
307 /* Packet ECN state for a SYN-ACK */
308 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
309 {
310 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
311 	if (!(tp->ecn_flags & TCP_ECN_OK))
312 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
313 }
314 
315 /* Packet ECN state for a SYN.  */
316 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
317 {
318 	struct tcp_sock *tp = tcp_sk(sk);
319 
320 	tp->ecn_flags = 0;
321 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
322 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
323 		tp->ecn_flags = TCP_ECN_OK;
324 	}
325 }
326 
327 static __inline__ void
328 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
329 {
330 	if (inet_rsk(req)->ecn_ok)
331 		th->ece = 1;
332 }
333 
334 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
335  * be sent.
336  */
337 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
338 				int tcp_header_len)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 
342 	if (tp->ecn_flags & TCP_ECN_OK) {
343 		/* Not-retransmitted data segment: set ECT and inject CWR. */
344 		if (skb->len != tcp_header_len &&
345 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
346 			INET_ECN_xmit(sk);
347 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
348 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
349 				tcp_hdr(skb)->cwr = 1;
350 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
351 			}
352 		} else {
353 			/* ACK or retransmitted segment: clear ECT|CE */
354 			INET_ECN_dontxmit(sk);
355 		}
356 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
357 			tcp_hdr(skb)->ece = 1;
358 	}
359 }
360 
361 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
362  * auto increment end seqno.
363  */
364 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
365 {
366 	struct skb_shared_info *shinfo = skb_shinfo(skb);
367 
368 	skb->ip_summed = CHECKSUM_PARTIAL;
369 	skb->csum = 0;
370 
371 	TCP_SKB_CB(skb)->tcp_flags = flags;
372 	TCP_SKB_CB(skb)->sacked = 0;
373 
374 	shinfo->gso_segs = 1;
375 	shinfo->gso_size = 0;
376 	shinfo->gso_type = 0;
377 
378 	TCP_SKB_CB(skb)->seq = seq;
379 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
380 		seq++;
381 	TCP_SKB_CB(skb)->end_seq = seq;
382 }
383 
384 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
385 {
386 	return tp->snd_una != tp->snd_up;
387 }
388 
389 #define OPTION_SACK_ADVERTISE	(1 << 0)
390 #define OPTION_TS		(1 << 1)
391 #define OPTION_MD5		(1 << 2)
392 #define OPTION_WSCALE		(1 << 3)
393 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
394 
395 struct tcp_out_options {
396 	u16 options;		/* bit field of OPTION_* */
397 	u16 mss;		/* 0 to disable */
398 	u8 ws;			/* window scale, 0 to disable */
399 	u8 num_sack_blocks;	/* number of SACK blocks to include */
400 	u8 hash_size;		/* bytes in hash_location */
401 	__u8 *hash_location;	/* temporary pointer, overloaded */
402 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
403 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
404 };
405 
406 /* Write previously computed TCP options to the packet.
407  *
408  * Beware: Something in the Internet is very sensitive to the ordering of
409  * TCP options, we learned this through the hard way, so be careful here.
410  * Luckily we can at least blame others for their non-compliance but from
411  * inter-operability perspective it seems that we're somewhat stuck with
412  * the ordering which we have been using if we want to keep working with
413  * those broken things (not that it currently hurts anybody as there isn't
414  * particular reason why the ordering would need to be changed).
415  *
416  * At least SACK_PERM as the first option is known to lead to a disaster
417  * (but it may well be that other scenarios fail similarly).
418  */
419 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
420 			      struct tcp_out_options *opts)
421 {
422 	u16 options = opts->options;	/* mungable copy */
423 
424 	if (unlikely(OPTION_MD5 & options)) {
425 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
426 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
427 		/* overload cookie hash location */
428 		opts->hash_location = (__u8 *)ptr;
429 		ptr += 4;
430 	}
431 
432 	if (unlikely(opts->mss)) {
433 		*ptr++ = htonl((TCPOPT_MSS << 24) |
434 			       (TCPOLEN_MSS << 16) |
435 			       opts->mss);
436 	}
437 
438 	if (likely(OPTION_TS & options)) {
439 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
440 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
441 				       (TCPOLEN_SACK_PERM << 16) |
442 				       (TCPOPT_TIMESTAMP << 8) |
443 				       TCPOLEN_TIMESTAMP);
444 			options &= ~OPTION_SACK_ADVERTISE;
445 		} else {
446 			*ptr++ = htonl((TCPOPT_NOP << 24) |
447 				       (TCPOPT_NOP << 16) |
448 				       (TCPOPT_TIMESTAMP << 8) |
449 				       TCPOLEN_TIMESTAMP);
450 		}
451 		*ptr++ = htonl(opts->tsval);
452 		*ptr++ = htonl(opts->tsecr);
453 	}
454 
455 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
456 		*ptr++ = htonl((TCPOPT_NOP << 24) |
457 			       (TCPOPT_NOP << 16) |
458 			       (TCPOPT_SACK_PERM << 8) |
459 			       TCPOLEN_SACK_PERM);
460 	}
461 
462 	if (unlikely(OPTION_WSCALE & options)) {
463 		*ptr++ = htonl((TCPOPT_NOP << 24) |
464 			       (TCPOPT_WINDOW << 16) |
465 			       (TCPOLEN_WINDOW << 8) |
466 			       opts->ws);
467 	}
468 
469 	if (unlikely(opts->num_sack_blocks)) {
470 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
471 			tp->duplicate_sack : tp->selective_acks;
472 		int this_sack;
473 
474 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
475 			       (TCPOPT_NOP  << 16) |
476 			       (TCPOPT_SACK <<  8) |
477 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
478 						     TCPOLEN_SACK_PERBLOCK)));
479 
480 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
481 		     ++this_sack) {
482 			*ptr++ = htonl(sp[this_sack].start_seq);
483 			*ptr++ = htonl(sp[this_sack].end_seq);
484 		}
485 
486 		tp->rx_opt.dsack = 0;
487 	}
488 
489 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
490 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
491 
492 		*ptr++ = htonl((TCPOPT_EXP << 24) |
493 			       ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
494 			       TCPOPT_FASTOPEN_MAGIC);
495 
496 		memcpy(ptr, foc->val, foc->len);
497 		if ((foc->len & 3) == 2) {
498 			u8 *align = ((u8 *)ptr) + foc->len;
499 			align[0] = align[1] = TCPOPT_NOP;
500 		}
501 		ptr += (foc->len + 3) >> 2;
502 	}
503 }
504 
505 /* Compute TCP options for SYN packets. This is not the final
506  * network wire format yet.
507  */
508 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
509 				struct tcp_out_options *opts,
510 				struct tcp_md5sig_key **md5)
511 {
512 	struct tcp_sock *tp = tcp_sk(sk);
513 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
514 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
515 
516 #ifdef CONFIG_TCP_MD5SIG
517 	*md5 = tp->af_specific->md5_lookup(sk, sk);
518 	if (*md5) {
519 		opts->options |= OPTION_MD5;
520 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
521 	}
522 #else
523 	*md5 = NULL;
524 #endif
525 
526 	/* We always get an MSS option.  The option bytes which will be seen in
527 	 * normal data packets should timestamps be used, must be in the MSS
528 	 * advertised.  But we subtract them from tp->mss_cache so that
529 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
530 	 * fact here if necessary.  If we don't do this correctly, as a
531 	 * receiver we won't recognize data packets as being full sized when we
532 	 * should, and thus we won't abide by the delayed ACK rules correctly.
533 	 * SACKs don't matter, we never delay an ACK when we have any of those
534 	 * going out.  */
535 	opts->mss = tcp_advertise_mss(sk);
536 	remaining -= TCPOLEN_MSS_ALIGNED;
537 
538 	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
539 		opts->options |= OPTION_TS;
540 		opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
541 		opts->tsecr = tp->rx_opt.ts_recent;
542 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
543 	}
544 	if (likely(sysctl_tcp_window_scaling)) {
545 		opts->ws = tp->rx_opt.rcv_wscale;
546 		opts->options |= OPTION_WSCALE;
547 		remaining -= TCPOLEN_WSCALE_ALIGNED;
548 	}
549 	if (likely(sysctl_tcp_sack)) {
550 		opts->options |= OPTION_SACK_ADVERTISE;
551 		if (unlikely(!(OPTION_TS & opts->options)))
552 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
553 	}
554 
555 	if (fastopen && fastopen->cookie.len >= 0) {
556 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
557 		need = (need + 3) & ~3U;  /* Align to 32 bits */
558 		if (remaining >= need) {
559 			opts->options |= OPTION_FAST_OPEN_COOKIE;
560 			opts->fastopen_cookie = &fastopen->cookie;
561 			remaining -= need;
562 			tp->syn_fastopen = 1;
563 		}
564 	}
565 
566 	return MAX_TCP_OPTION_SPACE - remaining;
567 }
568 
569 /* Set up TCP options for SYN-ACKs. */
570 static unsigned int tcp_synack_options(struct sock *sk,
571 				   struct request_sock *req,
572 				   unsigned int mss, struct sk_buff *skb,
573 				   struct tcp_out_options *opts,
574 				   struct tcp_md5sig_key **md5,
575 				   struct tcp_fastopen_cookie *foc)
576 {
577 	struct inet_request_sock *ireq = inet_rsk(req);
578 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
579 
580 #ifdef CONFIG_TCP_MD5SIG
581 	*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
582 	if (*md5) {
583 		opts->options |= OPTION_MD5;
584 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
585 
586 		/* We can't fit any SACK blocks in a packet with MD5 + TS
587 		 * options. There was discussion about disabling SACK
588 		 * rather than TS in order to fit in better with old,
589 		 * buggy kernels, but that was deemed to be unnecessary.
590 		 */
591 		ireq->tstamp_ok &= !ireq->sack_ok;
592 	}
593 #else
594 	*md5 = NULL;
595 #endif
596 
597 	/* We always send an MSS option. */
598 	opts->mss = mss;
599 	remaining -= TCPOLEN_MSS_ALIGNED;
600 
601 	if (likely(ireq->wscale_ok)) {
602 		opts->ws = ireq->rcv_wscale;
603 		opts->options |= OPTION_WSCALE;
604 		remaining -= TCPOLEN_WSCALE_ALIGNED;
605 	}
606 	if (likely(ireq->tstamp_ok)) {
607 		opts->options |= OPTION_TS;
608 		opts->tsval = TCP_SKB_CB(skb)->when;
609 		opts->tsecr = req->ts_recent;
610 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
611 	}
612 	if (likely(ireq->sack_ok)) {
613 		opts->options |= OPTION_SACK_ADVERTISE;
614 		if (unlikely(!ireq->tstamp_ok))
615 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
616 	}
617 	if (foc != NULL) {
618 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
619 		need = (need + 3) & ~3U;  /* Align to 32 bits */
620 		if (remaining >= need) {
621 			opts->options |= OPTION_FAST_OPEN_COOKIE;
622 			opts->fastopen_cookie = foc;
623 			remaining -= need;
624 		}
625 	}
626 
627 	return MAX_TCP_OPTION_SPACE - remaining;
628 }
629 
630 /* Compute TCP options for ESTABLISHED sockets. This is not the
631  * final wire format yet.
632  */
633 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
634 					struct tcp_out_options *opts,
635 					struct tcp_md5sig_key **md5)
636 {
637 	struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
638 	struct tcp_sock *tp = tcp_sk(sk);
639 	unsigned int size = 0;
640 	unsigned int eff_sacks;
641 
642 	opts->options = 0;
643 
644 #ifdef CONFIG_TCP_MD5SIG
645 	*md5 = tp->af_specific->md5_lookup(sk, sk);
646 	if (unlikely(*md5)) {
647 		opts->options |= OPTION_MD5;
648 		size += TCPOLEN_MD5SIG_ALIGNED;
649 	}
650 #else
651 	*md5 = NULL;
652 #endif
653 
654 	if (likely(tp->rx_opt.tstamp_ok)) {
655 		opts->options |= OPTION_TS;
656 		opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
657 		opts->tsecr = tp->rx_opt.ts_recent;
658 		size += TCPOLEN_TSTAMP_ALIGNED;
659 	}
660 
661 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
662 	if (unlikely(eff_sacks)) {
663 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
664 		opts->num_sack_blocks =
665 			min_t(unsigned int, eff_sacks,
666 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
667 			      TCPOLEN_SACK_PERBLOCK);
668 		size += TCPOLEN_SACK_BASE_ALIGNED +
669 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
670 	}
671 
672 	return size;
673 }
674 
675 
676 /* TCP SMALL QUEUES (TSQ)
677  *
678  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
679  * to reduce RTT and bufferbloat.
680  * We do this using a special skb destructor (tcp_wfree).
681  *
682  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
683  * needs to be reallocated in a driver.
684  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
685  *
686  * Since transmit from skb destructor is forbidden, we use a tasklet
687  * to process all sockets that eventually need to send more skbs.
688  * We use one tasklet per cpu, with its own queue of sockets.
689  */
690 struct tsq_tasklet {
691 	struct tasklet_struct	tasklet;
692 	struct list_head	head; /* queue of tcp sockets */
693 };
694 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
695 
696 static void tcp_tsq_handler(struct sock *sk)
697 {
698 	if ((1 << sk->sk_state) &
699 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
700 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
701 		tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC);
702 }
703 /*
704  * One tasklet per cpu tries to send more skbs.
705  * We run in tasklet context but need to disable irqs when
706  * transferring tsq->head because tcp_wfree() might
707  * interrupt us (non NAPI drivers)
708  */
709 static void tcp_tasklet_func(unsigned long data)
710 {
711 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
712 	LIST_HEAD(list);
713 	unsigned long flags;
714 	struct list_head *q, *n;
715 	struct tcp_sock *tp;
716 	struct sock *sk;
717 
718 	local_irq_save(flags);
719 	list_splice_init(&tsq->head, &list);
720 	local_irq_restore(flags);
721 
722 	list_for_each_safe(q, n, &list) {
723 		tp = list_entry(q, struct tcp_sock, tsq_node);
724 		list_del(&tp->tsq_node);
725 
726 		sk = (struct sock *)tp;
727 		bh_lock_sock(sk);
728 
729 		if (!sock_owned_by_user(sk)) {
730 			tcp_tsq_handler(sk);
731 		} else {
732 			/* defer the work to tcp_release_cb() */
733 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
734 		}
735 		bh_unlock_sock(sk);
736 
737 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
738 		sk_free(sk);
739 	}
740 }
741 
742 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
743 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
744 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
745 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
746 /**
747  * tcp_release_cb - tcp release_sock() callback
748  * @sk: socket
749  *
750  * called from release_sock() to perform protocol dependent
751  * actions before socket release.
752  */
753 void tcp_release_cb(struct sock *sk)
754 {
755 	struct tcp_sock *tp = tcp_sk(sk);
756 	unsigned long flags, nflags;
757 
758 	/* perform an atomic operation only if at least one flag is set */
759 	do {
760 		flags = tp->tsq_flags;
761 		if (!(flags & TCP_DEFERRED_ALL))
762 			return;
763 		nflags = flags & ~TCP_DEFERRED_ALL;
764 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
765 
766 	if (flags & (1UL << TCP_TSQ_DEFERRED))
767 		tcp_tsq_handler(sk);
768 
769 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
770 		tcp_write_timer_handler(sk);
771 		__sock_put(sk);
772 	}
773 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
774 		tcp_delack_timer_handler(sk);
775 		__sock_put(sk);
776 	}
777 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
778 		sk->sk_prot->mtu_reduced(sk);
779 		__sock_put(sk);
780 	}
781 }
782 EXPORT_SYMBOL(tcp_release_cb);
783 
784 void __init tcp_tasklet_init(void)
785 {
786 	int i;
787 
788 	for_each_possible_cpu(i) {
789 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
790 
791 		INIT_LIST_HEAD(&tsq->head);
792 		tasklet_init(&tsq->tasklet,
793 			     tcp_tasklet_func,
794 			     (unsigned long)tsq);
795 	}
796 }
797 
798 /*
799  * Write buffer destructor automatically called from kfree_skb.
800  * We can't xmit new skbs from this context, as we might already
801  * hold qdisc lock.
802  */
803 void tcp_wfree(struct sk_buff *skb)
804 {
805 	struct sock *sk = skb->sk;
806 	struct tcp_sock *tp = tcp_sk(sk);
807 
808 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
809 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
810 		unsigned long flags;
811 		struct tsq_tasklet *tsq;
812 
813 		/* Keep a ref on socket.
814 		 * This last ref will be released in tcp_tasklet_func()
815 		 */
816 		atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
817 
818 		/* queue this socket to tasklet queue */
819 		local_irq_save(flags);
820 		tsq = &__get_cpu_var(tsq_tasklet);
821 		list_add(&tp->tsq_node, &tsq->head);
822 		tasklet_schedule(&tsq->tasklet);
823 		local_irq_restore(flags);
824 	} else {
825 		sock_wfree(skb);
826 	}
827 }
828 
829 /* This routine actually transmits TCP packets queued in by
830  * tcp_do_sendmsg().  This is used by both the initial
831  * transmission and possible later retransmissions.
832  * All SKB's seen here are completely headerless.  It is our
833  * job to build the TCP header, and pass the packet down to
834  * IP so it can do the same plus pass the packet off to the
835  * device.
836  *
837  * We are working here with either a clone of the original
838  * SKB, or a fresh unique copy made by the retransmit engine.
839  */
840 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
841 			    gfp_t gfp_mask)
842 {
843 	const struct inet_connection_sock *icsk = inet_csk(sk);
844 	struct inet_sock *inet;
845 	struct tcp_sock *tp;
846 	struct tcp_skb_cb *tcb;
847 	struct tcp_out_options opts;
848 	unsigned int tcp_options_size, tcp_header_size;
849 	struct tcp_md5sig_key *md5;
850 	struct tcphdr *th;
851 	int err;
852 
853 	BUG_ON(!skb || !tcp_skb_pcount(skb));
854 
855 	if (clone_it) {
856 		const struct sk_buff *fclone = skb + 1;
857 
858 		/* If congestion control is doing timestamping, we must
859 		 * take such a timestamp before we potentially clone/copy.
860 		 */
861 		if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
862 			__net_timestamp(skb);
863 
864 		if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
865 			     fclone->fclone == SKB_FCLONE_CLONE))
866 			NET_INC_STATS_BH(sock_net(sk),
867 					 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
868 
869 		if (unlikely(skb_cloned(skb)))
870 			skb = pskb_copy(skb, gfp_mask);
871 		else
872 			skb = skb_clone(skb, gfp_mask);
873 		if (unlikely(!skb))
874 			return -ENOBUFS;
875 	}
876 
877 	inet = inet_sk(sk);
878 	tp = tcp_sk(sk);
879 	tcb = TCP_SKB_CB(skb);
880 	memset(&opts, 0, sizeof(opts));
881 
882 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
883 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
884 	else
885 		tcp_options_size = tcp_established_options(sk, skb, &opts,
886 							   &md5);
887 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
888 
889 	if (tcp_packets_in_flight(tp) == 0)
890 		tcp_ca_event(sk, CA_EVENT_TX_START);
891 
892 	/* if no packet is in qdisc/device queue, then allow XPS to select
893 	 * another queue.
894 	 */
895 	skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
896 
897 	skb_push(skb, tcp_header_size);
898 	skb_reset_transport_header(skb);
899 
900 	skb_orphan(skb);
901 	skb->sk = sk;
902 	skb->destructor = tcp_wfree;
903 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
904 
905 	/* Build TCP header and checksum it. */
906 	th = tcp_hdr(skb);
907 	th->source		= inet->inet_sport;
908 	th->dest		= inet->inet_dport;
909 	th->seq			= htonl(tcb->seq);
910 	th->ack_seq		= htonl(tp->rcv_nxt);
911 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
912 					tcb->tcp_flags);
913 
914 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
915 		/* RFC1323: The window in SYN & SYN/ACK segments
916 		 * is never scaled.
917 		 */
918 		th->window	= htons(min(tp->rcv_wnd, 65535U));
919 	} else {
920 		th->window	= htons(tcp_select_window(sk));
921 	}
922 	th->check		= 0;
923 	th->urg_ptr		= 0;
924 
925 	/* The urg_mode check is necessary during a below snd_una win probe */
926 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
927 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
928 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
929 			th->urg = 1;
930 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
931 			th->urg_ptr = htons(0xFFFF);
932 			th->urg = 1;
933 		}
934 	}
935 
936 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
937 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
938 		TCP_ECN_send(sk, skb, tcp_header_size);
939 
940 #ifdef CONFIG_TCP_MD5SIG
941 	/* Calculate the MD5 hash, as we have all we need now */
942 	if (md5) {
943 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
944 		tp->af_specific->calc_md5_hash(opts.hash_location,
945 					       md5, sk, NULL, skb);
946 	}
947 #endif
948 
949 	icsk->icsk_af_ops->send_check(sk, skb);
950 
951 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
952 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
953 
954 	if (skb->len != tcp_header_size)
955 		tcp_event_data_sent(tp, sk);
956 
957 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
958 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
959 			      tcp_skb_pcount(skb));
960 
961 	err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
962 	if (likely(err <= 0))
963 		return err;
964 
965 	tcp_enter_cwr(sk, 1);
966 
967 	return net_xmit_eval(err);
968 }
969 
970 /* This routine just queues the buffer for sending.
971  *
972  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
973  * otherwise socket can stall.
974  */
975 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
976 {
977 	struct tcp_sock *tp = tcp_sk(sk);
978 
979 	/* Advance write_seq and place onto the write_queue. */
980 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
981 	skb_header_release(skb);
982 	tcp_add_write_queue_tail(sk, skb);
983 	sk->sk_wmem_queued += skb->truesize;
984 	sk_mem_charge(sk, skb->truesize);
985 }
986 
987 /* Initialize TSO segments for a packet. */
988 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
989 				 unsigned int mss_now)
990 {
991 	struct skb_shared_info *shinfo = skb_shinfo(skb);
992 
993 	/* Make sure we own this skb before messing gso_size/gso_segs */
994 	WARN_ON_ONCE(skb_cloned(skb));
995 
996 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
997 		/* Avoid the costly divide in the normal
998 		 * non-TSO case.
999 		 */
1000 		shinfo->gso_segs = 1;
1001 		shinfo->gso_size = 0;
1002 		shinfo->gso_type = 0;
1003 	} else {
1004 		shinfo->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1005 		shinfo->gso_size = mss_now;
1006 		shinfo->gso_type = sk->sk_gso_type;
1007 	}
1008 }
1009 
1010 /* When a modification to fackets out becomes necessary, we need to check
1011  * skb is counted to fackets_out or not.
1012  */
1013 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1014 				   int decr)
1015 {
1016 	struct tcp_sock *tp = tcp_sk(sk);
1017 
1018 	if (!tp->sacked_out || tcp_is_reno(tp))
1019 		return;
1020 
1021 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1022 		tp->fackets_out -= decr;
1023 }
1024 
1025 /* Pcount in the middle of the write queue got changed, we need to do various
1026  * tweaks to fix counters
1027  */
1028 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1029 {
1030 	struct tcp_sock *tp = tcp_sk(sk);
1031 
1032 	tp->packets_out -= decr;
1033 
1034 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1035 		tp->sacked_out -= decr;
1036 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1037 		tp->retrans_out -= decr;
1038 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1039 		tp->lost_out -= decr;
1040 
1041 	/* Reno case is special. Sigh... */
1042 	if (tcp_is_reno(tp) && decr > 0)
1043 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1044 
1045 	tcp_adjust_fackets_out(sk, skb, decr);
1046 
1047 	if (tp->lost_skb_hint &&
1048 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1049 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1050 		tp->lost_cnt_hint -= decr;
1051 
1052 	tcp_verify_left_out(tp);
1053 }
1054 
1055 /* Function to create two new TCP segments.  Shrinks the given segment
1056  * to the specified size and appends a new segment with the rest of the
1057  * packet to the list.  This won't be called frequently, I hope.
1058  * Remember, these are still headerless SKBs at this point.
1059  */
1060 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1061 		 unsigned int mss_now)
1062 {
1063 	struct tcp_sock *tp = tcp_sk(sk);
1064 	struct sk_buff *buff;
1065 	int nsize, old_factor;
1066 	int nlen;
1067 	u8 flags;
1068 
1069 	if (WARN_ON(len > skb->len))
1070 		return -EINVAL;
1071 
1072 	nsize = skb_headlen(skb) - len;
1073 	if (nsize < 0)
1074 		nsize = 0;
1075 
1076 	if (skb_unclone(skb, GFP_ATOMIC))
1077 		return -ENOMEM;
1078 
1079 	/* Get a new skb... force flag on. */
1080 	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1081 	if (buff == NULL)
1082 		return -ENOMEM; /* We'll just try again later. */
1083 
1084 	sk->sk_wmem_queued += buff->truesize;
1085 	sk_mem_charge(sk, buff->truesize);
1086 	nlen = skb->len - len - nsize;
1087 	buff->truesize += nlen;
1088 	skb->truesize -= nlen;
1089 
1090 	/* Correct the sequence numbers. */
1091 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1092 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1093 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1094 
1095 	/* PSH and FIN should only be set in the second packet. */
1096 	flags = TCP_SKB_CB(skb)->tcp_flags;
1097 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1098 	TCP_SKB_CB(buff)->tcp_flags = flags;
1099 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1100 
1101 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1102 		/* Copy and checksum data tail into the new buffer. */
1103 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1104 						       skb_put(buff, nsize),
1105 						       nsize, 0);
1106 
1107 		skb_trim(skb, len);
1108 
1109 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1110 	} else {
1111 		skb->ip_summed = CHECKSUM_PARTIAL;
1112 		skb_split(skb, buff, len);
1113 	}
1114 
1115 	buff->ip_summed = skb->ip_summed;
1116 
1117 	/* Looks stupid, but our code really uses when of
1118 	 * skbs, which it never sent before. --ANK
1119 	 */
1120 	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1121 	buff->tstamp = skb->tstamp;
1122 
1123 	old_factor = tcp_skb_pcount(skb);
1124 
1125 	/* Fix up tso_factor for both original and new SKB.  */
1126 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1127 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1128 
1129 	/* If this packet has been sent out already, we must
1130 	 * adjust the various packet counters.
1131 	 */
1132 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1133 		int diff = old_factor - tcp_skb_pcount(skb) -
1134 			tcp_skb_pcount(buff);
1135 
1136 		if (diff)
1137 			tcp_adjust_pcount(sk, skb, diff);
1138 	}
1139 
1140 	/* Link BUFF into the send queue. */
1141 	skb_header_release(buff);
1142 	tcp_insert_write_queue_after(skb, buff, sk);
1143 
1144 	return 0;
1145 }
1146 
1147 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1148  * eventually). The difference is that pulled data not copied, but
1149  * immediately discarded.
1150  */
1151 static void __pskb_trim_head(struct sk_buff *skb, int len)
1152 {
1153 	struct skb_shared_info *shinfo;
1154 	int i, k, eat;
1155 
1156 	eat = min_t(int, len, skb_headlen(skb));
1157 	if (eat) {
1158 		__skb_pull(skb, eat);
1159 		len -= eat;
1160 		if (!len)
1161 			return;
1162 	}
1163 	eat = len;
1164 	k = 0;
1165 	shinfo = skb_shinfo(skb);
1166 	for (i = 0; i < shinfo->nr_frags; i++) {
1167 		int size = skb_frag_size(&shinfo->frags[i]);
1168 
1169 		if (size <= eat) {
1170 			skb_frag_unref(skb, i);
1171 			eat -= size;
1172 		} else {
1173 			shinfo->frags[k] = shinfo->frags[i];
1174 			if (eat) {
1175 				shinfo->frags[k].page_offset += eat;
1176 				skb_frag_size_sub(&shinfo->frags[k], eat);
1177 				eat = 0;
1178 			}
1179 			k++;
1180 		}
1181 	}
1182 	shinfo->nr_frags = k;
1183 
1184 	skb_reset_tail_pointer(skb);
1185 	skb->data_len -= len;
1186 	skb->len = skb->data_len;
1187 }
1188 
1189 /* Remove acked data from a packet in the transmit queue. */
1190 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1191 {
1192 	if (skb_unclone(skb, GFP_ATOMIC))
1193 		return -ENOMEM;
1194 
1195 	__pskb_trim_head(skb, len);
1196 
1197 	TCP_SKB_CB(skb)->seq += len;
1198 	skb->ip_summed = CHECKSUM_PARTIAL;
1199 
1200 	skb->truesize	     -= len;
1201 	sk->sk_wmem_queued   -= len;
1202 	sk_mem_uncharge(sk, len);
1203 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1204 
1205 	/* Any change of skb->len requires recalculation of tso factor. */
1206 	if (tcp_skb_pcount(skb) > 1)
1207 		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1208 
1209 	return 0;
1210 }
1211 
1212 /* Calculate MSS not accounting any TCP options.  */
1213 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1214 {
1215 	const struct tcp_sock *tp = tcp_sk(sk);
1216 	const struct inet_connection_sock *icsk = inet_csk(sk);
1217 	int mss_now;
1218 
1219 	/* Calculate base mss without TCP options:
1220 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1221 	 */
1222 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1223 
1224 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1225 	if (icsk->icsk_af_ops->net_frag_header_len) {
1226 		const struct dst_entry *dst = __sk_dst_get(sk);
1227 
1228 		if (dst && dst_allfrag(dst))
1229 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1230 	}
1231 
1232 	/* Clamp it (mss_clamp does not include tcp options) */
1233 	if (mss_now > tp->rx_opt.mss_clamp)
1234 		mss_now = tp->rx_opt.mss_clamp;
1235 
1236 	/* Now subtract optional transport overhead */
1237 	mss_now -= icsk->icsk_ext_hdr_len;
1238 
1239 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1240 	if (mss_now < 48)
1241 		mss_now = 48;
1242 	return mss_now;
1243 }
1244 
1245 /* Calculate MSS. Not accounting for SACKs here.  */
1246 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1247 {
1248 	/* Subtract TCP options size, not including SACKs */
1249 	return __tcp_mtu_to_mss(sk, pmtu) -
1250 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1251 }
1252 
1253 /* Inverse of above */
1254 int tcp_mss_to_mtu(struct sock *sk, int mss)
1255 {
1256 	const struct tcp_sock *tp = tcp_sk(sk);
1257 	const struct inet_connection_sock *icsk = inet_csk(sk);
1258 	int mtu;
1259 
1260 	mtu = mss +
1261 	      tp->tcp_header_len +
1262 	      icsk->icsk_ext_hdr_len +
1263 	      icsk->icsk_af_ops->net_header_len;
1264 
1265 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1266 	if (icsk->icsk_af_ops->net_frag_header_len) {
1267 		const struct dst_entry *dst = __sk_dst_get(sk);
1268 
1269 		if (dst && dst_allfrag(dst))
1270 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1271 	}
1272 	return mtu;
1273 }
1274 
1275 /* MTU probing init per socket */
1276 void tcp_mtup_init(struct sock *sk)
1277 {
1278 	struct tcp_sock *tp = tcp_sk(sk);
1279 	struct inet_connection_sock *icsk = inet_csk(sk);
1280 
1281 	icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1282 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1283 			       icsk->icsk_af_ops->net_header_len;
1284 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1285 	icsk->icsk_mtup.probe_size = 0;
1286 }
1287 EXPORT_SYMBOL(tcp_mtup_init);
1288 
1289 /* This function synchronize snd mss to current pmtu/exthdr set.
1290 
1291    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1292    for TCP options, but includes only bare TCP header.
1293 
1294    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1295    It is minimum of user_mss and mss received with SYN.
1296    It also does not include TCP options.
1297 
1298    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1299 
1300    tp->mss_cache is current effective sending mss, including
1301    all tcp options except for SACKs. It is evaluated,
1302    taking into account current pmtu, but never exceeds
1303    tp->rx_opt.mss_clamp.
1304 
1305    NOTE1. rfc1122 clearly states that advertised MSS
1306    DOES NOT include either tcp or ip options.
1307 
1308    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1309    are READ ONLY outside this function.		--ANK (980731)
1310  */
1311 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1312 {
1313 	struct tcp_sock *tp = tcp_sk(sk);
1314 	struct inet_connection_sock *icsk = inet_csk(sk);
1315 	int mss_now;
1316 
1317 	if (icsk->icsk_mtup.search_high > pmtu)
1318 		icsk->icsk_mtup.search_high = pmtu;
1319 
1320 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1321 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1322 
1323 	/* And store cached results */
1324 	icsk->icsk_pmtu_cookie = pmtu;
1325 	if (icsk->icsk_mtup.enabled)
1326 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1327 	tp->mss_cache = mss_now;
1328 
1329 	return mss_now;
1330 }
1331 EXPORT_SYMBOL(tcp_sync_mss);
1332 
1333 /* Compute the current effective MSS, taking SACKs and IP options,
1334  * and even PMTU discovery events into account.
1335  */
1336 unsigned int tcp_current_mss(struct sock *sk)
1337 {
1338 	const struct tcp_sock *tp = tcp_sk(sk);
1339 	const struct dst_entry *dst = __sk_dst_get(sk);
1340 	u32 mss_now;
1341 	unsigned int header_len;
1342 	struct tcp_out_options opts;
1343 	struct tcp_md5sig_key *md5;
1344 
1345 	mss_now = tp->mss_cache;
1346 
1347 	if (dst) {
1348 		u32 mtu = dst_mtu(dst);
1349 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1350 			mss_now = tcp_sync_mss(sk, mtu);
1351 	}
1352 
1353 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1354 		     sizeof(struct tcphdr);
1355 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1356 	 * some common options. If this is an odd packet (because we have SACK
1357 	 * blocks etc) then our calculated header_len will be different, and
1358 	 * we have to adjust mss_now correspondingly */
1359 	if (header_len != tp->tcp_header_len) {
1360 		int delta = (int) header_len - tp->tcp_header_len;
1361 		mss_now -= delta;
1362 	}
1363 
1364 	return mss_now;
1365 }
1366 
1367 /* Congestion window validation. (RFC2861) */
1368 static void tcp_cwnd_validate(struct sock *sk)
1369 {
1370 	struct tcp_sock *tp = tcp_sk(sk);
1371 
1372 	if (tp->packets_out >= tp->snd_cwnd) {
1373 		/* Network is feed fully. */
1374 		tp->snd_cwnd_used = 0;
1375 		tp->snd_cwnd_stamp = tcp_time_stamp;
1376 	} else {
1377 		/* Network starves. */
1378 		if (tp->packets_out > tp->snd_cwnd_used)
1379 			tp->snd_cwnd_used = tp->packets_out;
1380 
1381 		if (sysctl_tcp_slow_start_after_idle &&
1382 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1383 			tcp_cwnd_application_limited(sk);
1384 	}
1385 }
1386 
1387 /* Minshall's variant of the Nagle send check. */
1388 static bool tcp_minshall_check(const struct tcp_sock *tp)
1389 {
1390 	return after(tp->snd_sml, tp->snd_una) &&
1391 		!after(tp->snd_sml, tp->snd_nxt);
1392 }
1393 
1394 /* Update snd_sml if this skb is under mss
1395  * Note that a TSO packet might end with a sub-mss segment
1396  * The test is really :
1397  * if ((skb->len % mss) != 0)
1398  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1399  * But we can avoid doing the divide again given we already have
1400  *  skb_pcount = skb->len / mss_now
1401  */
1402 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1403 				const struct sk_buff *skb)
1404 {
1405 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1406 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1407 }
1408 
1409 /* Return false, if packet can be sent now without violation Nagle's rules:
1410  * 1. It is full sized. (provided by caller in %partial bool)
1411  * 2. Or it contains FIN. (already checked by caller)
1412  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1413  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1414  *    With Minshall's modification: all sent small packets are ACKed.
1415  */
1416 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1417 			    unsigned int mss_now, int nonagle)
1418 {
1419 	return partial &&
1420 		((nonagle & TCP_NAGLE_CORK) ||
1421 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1422 }
1423 /* Returns the portion of skb which can be sent right away */
1424 static unsigned int tcp_mss_split_point(const struct sock *sk,
1425 					const struct sk_buff *skb,
1426 					unsigned int mss_now,
1427 					unsigned int max_segs,
1428 					int nonagle)
1429 {
1430 	const struct tcp_sock *tp = tcp_sk(sk);
1431 	u32 partial, needed, window, max_len;
1432 
1433 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1434 	max_len = mss_now * max_segs;
1435 
1436 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1437 		return max_len;
1438 
1439 	needed = min(skb->len, window);
1440 
1441 	if (max_len <= needed)
1442 		return max_len;
1443 
1444 	partial = needed % mss_now;
1445 	/* If last segment is not a full MSS, check if Nagle rules allow us
1446 	 * to include this last segment in this skb.
1447 	 * Otherwise, we'll split the skb at last MSS boundary
1448 	 */
1449 	if (tcp_nagle_check(partial != 0, tp, mss_now, nonagle))
1450 		return needed - partial;
1451 
1452 	return needed;
1453 }
1454 
1455 /* Can at least one segment of SKB be sent right now, according to the
1456  * congestion window rules?  If so, return how many segments are allowed.
1457  */
1458 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1459 					 const struct sk_buff *skb)
1460 {
1461 	u32 in_flight, cwnd;
1462 
1463 	/* Don't be strict about the congestion window for the final FIN.  */
1464 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1465 	    tcp_skb_pcount(skb) == 1)
1466 		return 1;
1467 
1468 	in_flight = tcp_packets_in_flight(tp);
1469 	cwnd = tp->snd_cwnd;
1470 	if (in_flight < cwnd)
1471 		return (cwnd - in_flight);
1472 
1473 	return 0;
1474 }
1475 
1476 /* Initialize TSO state of a skb.
1477  * This must be invoked the first time we consider transmitting
1478  * SKB onto the wire.
1479  */
1480 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1481 			     unsigned int mss_now)
1482 {
1483 	int tso_segs = tcp_skb_pcount(skb);
1484 
1485 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1486 		tcp_set_skb_tso_segs(sk, skb, mss_now);
1487 		tso_segs = tcp_skb_pcount(skb);
1488 	}
1489 	return tso_segs;
1490 }
1491 
1492 
1493 /* Return true if the Nagle test allows this packet to be
1494  * sent now.
1495  */
1496 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1497 				  unsigned int cur_mss, int nonagle)
1498 {
1499 	/* Nagle rule does not apply to frames, which sit in the middle of the
1500 	 * write_queue (they have no chances to get new data).
1501 	 *
1502 	 * This is implemented in the callers, where they modify the 'nonagle'
1503 	 * argument based upon the location of SKB in the send queue.
1504 	 */
1505 	if (nonagle & TCP_NAGLE_PUSH)
1506 		return true;
1507 
1508 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1509 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1510 		return true;
1511 
1512 	if (!tcp_nagle_check(skb->len < cur_mss, tp, cur_mss, nonagle))
1513 		return true;
1514 
1515 	return false;
1516 }
1517 
1518 /* Does at least the first segment of SKB fit into the send window? */
1519 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1520 			     const struct sk_buff *skb,
1521 			     unsigned int cur_mss)
1522 {
1523 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1524 
1525 	if (skb->len > cur_mss)
1526 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1527 
1528 	return !after(end_seq, tcp_wnd_end(tp));
1529 }
1530 
1531 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1532  * should be put on the wire right now.  If so, it returns the number of
1533  * packets allowed by the congestion window.
1534  */
1535 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1536 				 unsigned int cur_mss, int nonagle)
1537 {
1538 	const struct tcp_sock *tp = tcp_sk(sk);
1539 	unsigned int cwnd_quota;
1540 
1541 	tcp_init_tso_segs(sk, skb, cur_mss);
1542 
1543 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1544 		return 0;
1545 
1546 	cwnd_quota = tcp_cwnd_test(tp, skb);
1547 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1548 		cwnd_quota = 0;
1549 
1550 	return cwnd_quota;
1551 }
1552 
1553 /* Test if sending is allowed right now. */
1554 bool tcp_may_send_now(struct sock *sk)
1555 {
1556 	const struct tcp_sock *tp = tcp_sk(sk);
1557 	struct sk_buff *skb = tcp_send_head(sk);
1558 
1559 	return skb &&
1560 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1561 			     (tcp_skb_is_last(sk, skb) ?
1562 			      tp->nonagle : TCP_NAGLE_PUSH));
1563 }
1564 
1565 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1566  * which is put after SKB on the list.  It is very much like
1567  * tcp_fragment() except that it may make several kinds of assumptions
1568  * in order to speed up the splitting operation.  In particular, we
1569  * know that all the data is in scatter-gather pages, and that the
1570  * packet has never been sent out before (and thus is not cloned).
1571  */
1572 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1573 			unsigned int mss_now, gfp_t gfp)
1574 {
1575 	struct sk_buff *buff;
1576 	int nlen = skb->len - len;
1577 	u8 flags;
1578 
1579 	/* All of a TSO frame must be composed of paged data.  */
1580 	if (skb->len != skb->data_len)
1581 		return tcp_fragment(sk, skb, len, mss_now);
1582 
1583 	buff = sk_stream_alloc_skb(sk, 0, gfp);
1584 	if (unlikely(buff == NULL))
1585 		return -ENOMEM;
1586 
1587 	sk->sk_wmem_queued += buff->truesize;
1588 	sk_mem_charge(sk, buff->truesize);
1589 	buff->truesize += nlen;
1590 	skb->truesize -= nlen;
1591 
1592 	/* Correct the sequence numbers. */
1593 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1594 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1595 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1596 
1597 	/* PSH and FIN should only be set in the second packet. */
1598 	flags = TCP_SKB_CB(skb)->tcp_flags;
1599 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1600 	TCP_SKB_CB(buff)->tcp_flags = flags;
1601 
1602 	/* This packet was never sent out yet, so no SACK bits. */
1603 	TCP_SKB_CB(buff)->sacked = 0;
1604 
1605 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1606 	skb_split(skb, buff, len);
1607 
1608 	/* Fix up tso_factor for both original and new SKB.  */
1609 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1610 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1611 
1612 	/* Link BUFF into the send queue. */
1613 	skb_header_release(buff);
1614 	tcp_insert_write_queue_after(skb, buff, sk);
1615 
1616 	return 0;
1617 }
1618 
1619 /* Try to defer sending, if possible, in order to minimize the amount
1620  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1621  *
1622  * This algorithm is from John Heffner.
1623  */
1624 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1625 {
1626 	struct tcp_sock *tp = tcp_sk(sk);
1627 	const struct inet_connection_sock *icsk = inet_csk(sk);
1628 	u32 send_win, cong_win, limit, in_flight;
1629 	int win_divisor;
1630 
1631 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1632 		goto send_now;
1633 
1634 	if (icsk->icsk_ca_state != TCP_CA_Open)
1635 		goto send_now;
1636 
1637 	/* Defer for less than two clock ticks. */
1638 	if (tp->tso_deferred &&
1639 	    (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1640 		goto send_now;
1641 
1642 	in_flight = tcp_packets_in_flight(tp);
1643 
1644 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1645 
1646 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1647 
1648 	/* From in_flight test above, we know that cwnd > in_flight.  */
1649 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1650 
1651 	limit = min(send_win, cong_win);
1652 
1653 	/* If a full-sized TSO skb can be sent, do it. */
1654 	if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1655 			   tp->xmit_size_goal_segs * tp->mss_cache))
1656 		goto send_now;
1657 
1658 	/* Middle in queue won't get any more data, full sendable already? */
1659 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1660 		goto send_now;
1661 
1662 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1663 	if (win_divisor) {
1664 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1665 
1666 		/* If at least some fraction of a window is available,
1667 		 * just use it.
1668 		 */
1669 		chunk /= win_divisor;
1670 		if (limit >= chunk)
1671 			goto send_now;
1672 	} else {
1673 		/* Different approach, try not to defer past a single
1674 		 * ACK.  Receiver should ACK every other full sized
1675 		 * frame, so if we have space for more than 3 frames
1676 		 * then send now.
1677 		 */
1678 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1679 			goto send_now;
1680 	}
1681 
1682 	/* Ok, it looks like it is advisable to defer.
1683 	 * Do not rearm the timer if already set to not break TCP ACK clocking.
1684 	 */
1685 	if (!tp->tso_deferred)
1686 		tp->tso_deferred = 1 | (jiffies << 1);
1687 
1688 	return true;
1689 
1690 send_now:
1691 	tp->tso_deferred = 0;
1692 	return false;
1693 }
1694 
1695 /* Create a new MTU probe if we are ready.
1696  * MTU probe is regularly attempting to increase the path MTU by
1697  * deliberately sending larger packets.  This discovers routing
1698  * changes resulting in larger path MTUs.
1699  *
1700  * Returns 0 if we should wait to probe (no cwnd available),
1701  *         1 if a probe was sent,
1702  *         -1 otherwise
1703  */
1704 static int tcp_mtu_probe(struct sock *sk)
1705 {
1706 	struct tcp_sock *tp = tcp_sk(sk);
1707 	struct inet_connection_sock *icsk = inet_csk(sk);
1708 	struct sk_buff *skb, *nskb, *next;
1709 	int len;
1710 	int probe_size;
1711 	int size_needed;
1712 	int copy;
1713 	int mss_now;
1714 
1715 	/* Not currently probing/verifying,
1716 	 * not in recovery,
1717 	 * have enough cwnd, and
1718 	 * not SACKing (the variable headers throw things off) */
1719 	if (!icsk->icsk_mtup.enabled ||
1720 	    icsk->icsk_mtup.probe_size ||
1721 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1722 	    tp->snd_cwnd < 11 ||
1723 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1724 		return -1;
1725 
1726 	/* Very simple search strategy: just double the MSS. */
1727 	mss_now = tcp_current_mss(sk);
1728 	probe_size = 2 * tp->mss_cache;
1729 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1730 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1731 		/* TODO: set timer for probe_converge_event */
1732 		return -1;
1733 	}
1734 
1735 	/* Have enough data in the send queue to probe? */
1736 	if (tp->write_seq - tp->snd_nxt < size_needed)
1737 		return -1;
1738 
1739 	if (tp->snd_wnd < size_needed)
1740 		return -1;
1741 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1742 		return 0;
1743 
1744 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1745 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1746 		if (!tcp_packets_in_flight(tp))
1747 			return -1;
1748 		else
1749 			return 0;
1750 	}
1751 
1752 	/* We're allowed to probe.  Build it now. */
1753 	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1754 		return -1;
1755 	sk->sk_wmem_queued += nskb->truesize;
1756 	sk_mem_charge(sk, nskb->truesize);
1757 
1758 	skb = tcp_send_head(sk);
1759 
1760 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1761 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1762 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1763 	TCP_SKB_CB(nskb)->sacked = 0;
1764 	nskb->csum = 0;
1765 	nskb->ip_summed = skb->ip_summed;
1766 
1767 	tcp_insert_write_queue_before(nskb, skb, sk);
1768 
1769 	len = 0;
1770 	tcp_for_write_queue_from_safe(skb, next, sk) {
1771 		copy = min_t(int, skb->len, probe_size - len);
1772 		if (nskb->ip_summed)
1773 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1774 		else
1775 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1776 							    skb_put(nskb, copy),
1777 							    copy, nskb->csum);
1778 
1779 		if (skb->len <= copy) {
1780 			/* We've eaten all the data from this skb.
1781 			 * Throw it away. */
1782 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1783 			tcp_unlink_write_queue(skb, sk);
1784 			sk_wmem_free_skb(sk, skb);
1785 		} else {
1786 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1787 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1788 			if (!skb_shinfo(skb)->nr_frags) {
1789 				skb_pull(skb, copy);
1790 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1791 					skb->csum = csum_partial(skb->data,
1792 								 skb->len, 0);
1793 			} else {
1794 				__pskb_trim_head(skb, copy);
1795 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1796 			}
1797 			TCP_SKB_CB(skb)->seq += copy;
1798 		}
1799 
1800 		len += copy;
1801 
1802 		if (len >= probe_size)
1803 			break;
1804 	}
1805 	tcp_init_tso_segs(sk, nskb, nskb->len);
1806 
1807 	/* We're ready to send.  If this fails, the probe will
1808 	 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1809 	TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1810 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1811 		/* Decrement cwnd here because we are sending
1812 		 * effectively two packets. */
1813 		tp->snd_cwnd--;
1814 		tcp_event_new_data_sent(sk, nskb);
1815 
1816 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1817 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1818 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1819 
1820 		return 1;
1821 	}
1822 
1823 	return -1;
1824 }
1825 
1826 /* This routine writes packets to the network.  It advances the
1827  * send_head.  This happens as incoming acks open up the remote
1828  * window for us.
1829  *
1830  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1831  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1832  * account rare use of URG, this is not a big flaw.
1833  *
1834  * Send at most one packet when push_one > 0. Temporarily ignore
1835  * cwnd limit to force at most one packet out when push_one == 2.
1836 
1837  * Returns true, if no segments are in flight and we have queued segments,
1838  * but cannot send anything now because of SWS or another problem.
1839  */
1840 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1841 			   int push_one, gfp_t gfp)
1842 {
1843 	struct tcp_sock *tp = tcp_sk(sk);
1844 	struct sk_buff *skb;
1845 	unsigned int tso_segs, sent_pkts;
1846 	int cwnd_quota;
1847 	int result;
1848 
1849 	sent_pkts = 0;
1850 
1851 	if (!push_one) {
1852 		/* Do MTU probing. */
1853 		result = tcp_mtu_probe(sk);
1854 		if (!result) {
1855 			return false;
1856 		} else if (result > 0) {
1857 			sent_pkts = 1;
1858 		}
1859 	}
1860 
1861 	while ((skb = tcp_send_head(sk))) {
1862 		unsigned int limit;
1863 
1864 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1865 		BUG_ON(!tso_segs);
1866 
1867 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1868 			goto repair; /* Skip network transmission */
1869 
1870 		cwnd_quota = tcp_cwnd_test(tp, skb);
1871 		if (!cwnd_quota) {
1872 			if (push_one == 2)
1873 				/* Force out a loss probe pkt. */
1874 				cwnd_quota = 1;
1875 			else
1876 				break;
1877 		}
1878 
1879 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1880 			break;
1881 
1882 		if (tso_segs == 1) {
1883 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1884 						     (tcp_skb_is_last(sk, skb) ?
1885 						      nonagle : TCP_NAGLE_PUSH))))
1886 				break;
1887 		} else {
1888 			if (!push_one && tcp_tso_should_defer(sk, skb))
1889 				break;
1890 		}
1891 
1892 		/* TCP Small Queues :
1893 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1894 		 * This allows for :
1895 		 *  - better RTT estimation and ACK scheduling
1896 		 *  - faster recovery
1897 		 *  - high rates
1898 		 * Alas, some drivers / subsystems require a fair amount
1899 		 * of queued bytes to ensure line rate.
1900 		 * One example is wifi aggregation (802.11 AMPDU)
1901 		 */
1902 		limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
1903 			      sk->sk_pacing_rate >> 10);
1904 
1905 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1906 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1907 			break;
1908 		}
1909 
1910 		limit = mss_now;
1911 		if (tso_segs > 1 && !tcp_urg_mode(tp))
1912 			limit = tcp_mss_split_point(sk, skb, mss_now,
1913 						    min_t(unsigned int,
1914 							  cwnd_quota,
1915 							  sk->sk_gso_max_segs),
1916 						    nonagle);
1917 
1918 		if (skb->len > limit &&
1919 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1920 			break;
1921 
1922 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1923 
1924 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1925 			break;
1926 
1927 repair:
1928 		/* Advance the send_head.  This one is sent out.
1929 		 * This call will increment packets_out.
1930 		 */
1931 		tcp_event_new_data_sent(sk, skb);
1932 
1933 		tcp_minshall_update(tp, mss_now, skb);
1934 		sent_pkts += tcp_skb_pcount(skb);
1935 
1936 		if (push_one)
1937 			break;
1938 	}
1939 
1940 	if (likely(sent_pkts)) {
1941 		if (tcp_in_cwnd_reduction(sk))
1942 			tp->prr_out += sent_pkts;
1943 
1944 		/* Send one loss probe per tail loss episode. */
1945 		if (push_one != 2)
1946 			tcp_schedule_loss_probe(sk);
1947 		tcp_cwnd_validate(sk);
1948 		return false;
1949 	}
1950 	return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1951 }
1952 
1953 bool tcp_schedule_loss_probe(struct sock *sk)
1954 {
1955 	struct inet_connection_sock *icsk = inet_csk(sk);
1956 	struct tcp_sock *tp = tcp_sk(sk);
1957 	u32 timeout, tlp_time_stamp, rto_time_stamp;
1958 	u32 rtt = tp->srtt >> 3;
1959 
1960 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
1961 		return false;
1962 	/* No consecutive loss probes. */
1963 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
1964 		tcp_rearm_rto(sk);
1965 		return false;
1966 	}
1967 	/* Don't do any loss probe on a Fast Open connection before 3WHS
1968 	 * finishes.
1969 	 */
1970 	if (sk->sk_state == TCP_SYN_RECV)
1971 		return false;
1972 
1973 	/* TLP is only scheduled when next timer event is RTO. */
1974 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
1975 		return false;
1976 
1977 	/* Schedule a loss probe in 2*RTT for SACK capable connections
1978 	 * in Open state, that are either limited by cwnd or application.
1979 	 */
1980 	if (sysctl_tcp_early_retrans < 3 || !rtt || !tp->packets_out ||
1981 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
1982 		return false;
1983 
1984 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
1985 	     tcp_send_head(sk))
1986 		return false;
1987 
1988 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
1989 	 * for delayed ack when there's one outstanding packet.
1990 	 */
1991 	timeout = rtt << 1;
1992 	if (tp->packets_out == 1)
1993 		timeout = max_t(u32, timeout,
1994 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
1995 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
1996 
1997 	/* If RTO is shorter, just schedule TLP in its place. */
1998 	tlp_time_stamp = tcp_time_stamp + timeout;
1999 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2000 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2001 		s32 delta = rto_time_stamp - tcp_time_stamp;
2002 		if (delta > 0)
2003 			timeout = delta;
2004 	}
2005 
2006 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2007 				  TCP_RTO_MAX);
2008 	return true;
2009 }
2010 
2011 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2012  * retransmit the last segment.
2013  */
2014 void tcp_send_loss_probe(struct sock *sk)
2015 {
2016 	struct tcp_sock *tp = tcp_sk(sk);
2017 	struct sk_buff *skb;
2018 	int pcount;
2019 	int mss = tcp_current_mss(sk);
2020 	int err = -1;
2021 
2022 	if (tcp_send_head(sk) != NULL) {
2023 		err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2024 		goto rearm_timer;
2025 	}
2026 
2027 	/* At most one outstanding TLP retransmission. */
2028 	if (tp->tlp_high_seq)
2029 		goto rearm_timer;
2030 
2031 	/* Retransmit last segment. */
2032 	skb = tcp_write_queue_tail(sk);
2033 	if (WARN_ON(!skb))
2034 		goto rearm_timer;
2035 
2036 	pcount = tcp_skb_pcount(skb);
2037 	if (WARN_ON(!pcount))
2038 		goto rearm_timer;
2039 
2040 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2041 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
2042 			goto rearm_timer;
2043 		skb = tcp_write_queue_tail(sk);
2044 	}
2045 
2046 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2047 		goto rearm_timer;
2048 
2049 	/* Probe with zero data doesn't trigger fast recovery. */
2050 	if (skb->len > 0)
2051 		err = __tcp_retransmit_skb(sk, skb);
2052 
2053 	/* Record snd_nxt for loss detection. */
2054 	if (likely(!err))
2055 		tp->tlp_high_seq = tp->snd_nxt;
2056 
2057 rearm_timer:
2058 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2059 				  inet_csk(sk)->icsk_rto,
2060 				  TCP_RTO_MAX);
2061 
2062 	if (likely(!err))
2063 		NET_INC_STATS_BH(sock_net(sk),
2064 				 LINUX_MIB_TCPLOSSPROBES);
2065 	return;
2066 }
2067 
2068 /* Push out any pending frames which were held back due to
2069  * TCP_CORK or attempt at coalescing tiny packets.
2070  * The socket must be locked by the caller.
2071  */
2072 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2073 			       int nonagle)
2074 {
2075 	/* If we are closed, the bytes will have to remain here.
2076 	 * In time closedown will finish, we empty the write queue and
2077 	 * all will be happy.
2078 	 */
2079 	if (unlikely(sk->sk_state == TCP_CLOSE))
2080 		return;
2081 
2082 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2083 			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2084 		tcp_check_probe_timer(sk);
2085 }
2086 
2087 /* Send _single_ skb sitting at the send head. This function requires
2088  * true push pending frames to setup probe timer etc.
2089  */
2090 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2091 {
2092 	struct sk_buff *skb = tcp_send_head(sk);
2093 
2094 	BUG_ON(!skb || skb->len < mss_now);
2095 
2096 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2097 }
2098 
2099 /* This function returns the amount that we can raise the
2100  * usable window based on the following constraints
2101  *
2102  * 1. The window can never be shrunk once it is offered (RFC 793)
2103  * 2. We limit memory per socket
2104  *
2105  * RFC 1122:
2106  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2107  *  RECV.NEXT + RCV.WIN fixed until:
2108  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2109  *
2110  * i.e. don't raise the right edge of the window until you can raise
2111  * it at least MSS bytes.
2112  *
2113  * Unfortunately, the recommended algorithm breaks header prediction,
2114  * since header prediction assumes th->window stays fixed.
2115  *
2116  * Strictly speaking, keeping th->window fixed violates the receiver
2117  * side SWS prevention criteria. The problem is that under this rule
2118  * a stream of single byte packets will cause the right side of the
2119  * window to always advance by a single byte.
2120  *
2121  * Of course, if the sender implements sender side SWS prevention
2122  * then this will not be a problem.
2123  *
2124  * BSD seems to make the following compromise:
2125  *
2126  *	If the free space is less than the 1/4 of the maximum
2127  *	space available and the free space is less than 1/2 mss,
2128  *	then set the window to 0.
2129  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2130  *	Otherwise, just prevent the window from shrinking
2131  *	and from being larger than the largest representable value.
2132  *
2133  * This prevents incremental opening of the window in the regime
2134  * where TCP is limited by the speed of the reader side taking
2135  * data out of the TCP receive queue. It does nothing about
2136  * those cases where the window is constrained on the sender side
2137  * because the pipeline is full.
2138  *
2139  * BSD also seems to "accidentally" limit itself to windows that are a
2140  * multiple of MSS, at least until the free space gets quite small.
2141  * This would appear to be a side effect of the mbuf implementation.
2142  * Combining these two algorithms results in the observed behavior
2143  * of having a fixed window size at almost all times.
2144  *
2145  * Below we obtain similar behavior by forcing the offered window to
2146  * a multiple of the mss when it is feasible to do so.
2147  *
2148  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2149  * Regular options like TIMESTAMP are taken into account.
2150  */
2151 u32 __tcp_select_window(struct sock *sk)
2152 {
2153 	struct inet_connection_sock *icsk = inet_csk(sk);
2154 	struct tcp_sock *tp = tcp_sk(sk);
2155 	/* MSS for the peer's data.  Previous versions used mss_clamp
2156 	 * here.  I don't know if the value based on our guesses
2157 	 * of peer's MSS is better for the performance.  It's more correct
2158 	 * but may be worse for the performance because of rcv_mss
2159 	 * fluctuations.  --SAW  1998/11/1
2160 	 */
2161 	int mss = icsk->icsk_ack.rcv_mss;
2162 	int free_space = tcp_space(sk);
2163 	int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2164 	int window;
2165 
2166 	if (mss > full_space)
2167 		mss = full_space;
2168 
2169 	if (free_space < (full_space >> 1)) {
2170 		icsk->icsk_ack.quick = 0;
2171 
2172 		if (sk_under_memory_pressure(sk))
2173 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2174 					       4U * tp->advmss);
2175 
2176 		if (free_space < mss)
2177 			return 0;
2178 	}
2179 
2180 	if (free_space > tp->rcv_ssthresh)
2181 		free_space = tp->rcv_ssthresh;
2182 
2183 	/* Don't do rounding if we are using window scaling, since the
2184 	 * scaled window will not line up with the MSS boundary anyway.
2185 	 */
2186 	window = tp->rcv_wnd;
2187 	if (tp->rx_opt.rcv_wscale) {
2188 		window = free_space;
2189 
2190 		/* Advertise enough space so that it won't get scaled away.
2191 		 * Import case: prevent zero window announcement if
2192 		 * 1<<rcv_wscale > mss.
2193 		 */
2194 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2195 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2196 				  << tp->rx_opt.rcv_wscale);
2197 	} else {
2198 		/* Get the largest window that is a nice multiple of mss.
2199 		 * Window clamp already applied above.
2200 		 * If our current window offering is within 1 mss of the
2201 		 * free space we just keep it. This prevents the divide
2202 		 * and multiply from happening most of the time.
2203 		 * We also don't do any window rounding when the free space
2204 		 * is too small.
2205 		 */
2206 		if (window <= free_space - mss || window > free_space)
2207 			window = (free_space / mss) * mss;
2208 		else if (mss == full_space &&
2209 			 free_space > window + (full_space >> 1))
2210 			window = free_space;
2211 	}
2212 
2213 	return window;
2214 }
2215 
2216 /* Collapses two adjacent SKB's during retransmission. */
2217 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2218 {
2219 	struct tcp_sock *tp = tcp_sk(sk);
2220 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2221 	int skb_size, next_skb_size;
2222 
2223 	skb_size = skb->len;
2224 	next_skb_size = next_skb->len;
2225 
2226 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2227 
2228 	tcp_highest_sack_combine(sk, next_skb, skb);
2229 
2230 	tcp_unlink_write_queue(next_skb, sk);
2231 
2232 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2233 				  next_skb_size);
2234 
2235 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2236 		skb->ip_summed = CHECKSUM_PARTIAL;
2237 
2238 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2239 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2240 
2241 	/* Update sequence range on original skb. */
2242 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2243 
2244 	/* Merge over control information. This moves PSH/FIN etc. over */
2245 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2246 
2247 	/* All done, get rid of second SKB and account for it so
2248 	 * packet counting does not break.
2249 	 */
2250 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2251 
2252 	/* changed transmit queue under us so clear hints */
2253 	tcp_clear_retrans_hints_partial(tp);
2254 	if (next_skb == tp->retransmit_skb_hint)
2255 		tp->retransmit_skb_hint = skb;
2256 
2257 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2258 
2259 	sk_wmem_free_skb(sk, next_skb);
2260 }
2261 
2262 /* Check if coalescing SKBs is legal. */
2263 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2264 {
2265 	if (tcp_skb_pcount(skb) > 1)
2266 		return false;
2267 	/* TODO: SACK collapsing could be used to remove this condition */
2268 	if (skb_shinfo(skb)->nr_frags != 0)
2269 		return false;
2270 	if (skb_cloned(skb))
2271 		return false;
2272 	if (skb == tcp_send_head(sk))
2273 		return false;
2274 	/* Some heurestics for collapsing over SACK'd could be invented */
2275 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2276 		return false;
2277 
2278 	return true;
2279 }
2280 
2281 /* Collapse packets in the retransmit queue to make to create
2282  * less packets on the wire. This is only done on retransmission.
2283  */
2284 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2285 				     int space)
2286 {
2287 	struct tcp_sock *tp = tcp_sk(sk);
2288 	struct sk_buff *skb = to, *tmp;
2289 	bool first = true;
2290 
2291 	if (!sysctl_tcp_retrans_collapse)
2292 		return;
2293 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2294 		return;
2295 
2296 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2297 		if (!tcp_can_collapse(sk, skb))
2298 			break;
2299 
2300 		space -= skb->len;
2301 
2302 		if (first) {
2303 			first = false;
2304 			continue;
2305 		}
2306 
2307 		if (space < 0)
2308 			break;
2309 		/* Punt if not enough space exists in the first SKB for
2310 		 * the data in the second
2311 		 */
2312 		if (skb->len > skb_availroom(to))
2313 			break;
2314 
2315 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2316 			break;
2317 
2318 		tcp_collapse_retrans(sk, to);
2319 	}
2320 }
2321 
2322 /* This retransmits one SKB.  Policy decisions and retransmit queue
2323  * state updates are done by the caller.  Returns non-zero if an
2324  * error occurred which prevented the send.
2325  */
2326 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2327 {
2328 	struct tcp_sock *tp = tcp_sk(sk);
2329 	struct inet_connection_sock *icsk = inet_csk(sk);
2330 	unsigned int cur_mss;
2331 
2332 	/* Inconslusive MTU probe */
2333 	if (icsk->icsk_mtup.probe_size) {
2334 		icsk->icsk_mtup.probe_size = 0;
2335 	}
2336 
2337 	/* Do not sent more than we queued. 1/4 is reserved for possible
2338 	 * copying overhead: fragmentation, tunneling, mangling etc.
2339 	 */
2340 	if (atomic_read(&sk->sk_wmem_alloc) >
2341 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2342 		return -EAGAIN;
2343 
2344 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2345 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2346 			BUG();
2347 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2348 			return -ENOMEM;
2349 	}
2350 
2351 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2352 		return -EHOSTUNREACH; /* Routing failure or similar. */
2353 
2354 	cur_mss = tcp_current_mss(sk);
2355 
2356 	/* If receiver has shrunk his window, and skb is out of
2357 	 * new window, do not retransmit it. The exception is the
2358 	 * case, when window is shrunk to zero. In this case
2359 	 * our retransmit serves as a zero window probe.
2360 	 */
2361 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2362 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2363 		return -EAGAIN;
2364 
2365 	if (skb->len > cur_mss) {
2366 		if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2367 			return -ENOMEM; /* We'll try again later. */
2368 	} else {
2369 		int oldpcount = tcp_skb_pcount(skb);
2370 
2371 		if (unlikely(oldpcount > 1)) {
2372 			if (skb_unclone(skb, GFP_ATOMIC))
2373 				return -ENOMEM;
2374 			tcp_init_tso_segs(sk, skb, cur_mss);
2375 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2376 		}
2377 	}
2378 
2379 	tcp_retrans_try_collapse(sk, skb, cur_mss);
2380 
2381 	/* Make a copy, if the first transmission SKB clone we made
2382 	 * is still in somebody's hands, else make a clone.
2383 	 */
2384 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2385 
2386 	/* make sure skb->data is aligned on arches that require it
2387 	 * and check if ack-trimming & collapsing extended the headroom
2388 	 * beyond what csum_start can cover.
2389 	 */
2390 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2391 		     skb_headroom(skb) >= 0xFFFF)) {
2392 		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2393 						   GFP_ATOMIC);
2394 		return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2395 			      -ENOBUFS;
2396 	} else {
2397 		return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2398 	}
2399 }
2400 
2401 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2402 {
2403 	struct tcp_sock *tp = tcp_sk(sk);
2404 	int err = __tcp_retransmit_skb(sk, skb);
2405 
2406 	if (err == 0) {
2407 		/* Update global TCP statistics. */
2408 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2409 
2410 		tp->total_retrans++;
2411 
2412 #if FASTRETRANS_DEBUG > 0
2413 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2414 			net_dbg_ratelimited("retrans_out leaked\n");
2415 		}
2416 #endif
2417 		if (!tp->retrans_out)
2418 			tp->lost_retrans_low = tp->snd_nxt;
2419 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2420 		tp->retrans_out += tcp_skb_pcount(skb);
2421 
2422 		/* Save stamp of the first retransmit. */
2423 		if (!tp->retrans_stamp)
2424 			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2425 
2426 		tp->undo_retrans += tcp_skb_pcount(skb);
2427 
2428 		/* snd_nxt is stored to detect loss of retransmitted segment,
2429 		 * see tcp_input.c tcp_sacktag_write_queue().
2430 		 */
2431 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2432 	} else {
2433 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2434 	}
2435 	return err;
2436 }
2437 
2438 /* Check if we forward retransmits are possible in the current
2439  * window/congestion state.
2440  */
2441 static bool tcp_can_forward_retransmit(struct sock *sk)
2442 {
2443 	const struct inet_connection_sock *icsk = inet_csk(sk);
2444 	const struct tcp_sock *tp = tcp_sk(sk);
2445 
2446 	/* Forward retransmissions are possible only during Recovery. */
2447 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2448 		return false;
2449 
2450 	/* No forward retransmissions in Reno are possible. */
2451 	if (tcp_is_reno(tp))
2452 		return false;
2453 
2454 	/* Yeah, we have to make difficult choice between forward transmission
2455 	 * and retransmission... Both ways have their merits...
2456 	 *
2457 	 * For now we do not retransmit anything, while we have some new
2458 	 * segments to send. In the other cases, follow rule 3 for
2459 	 * NextSeg() specified in RFC3517.
2460 	 */
2461 
2462 	if (tcp_may_send_now(sk))
2463 		return false;
2464 
2465 	return true;
2466 }
2467 
2468 /* This gets called after a retransmit timeout, and the initially
2469  * retransmitted data is acknowledged.  It tries to continue
2470  * resending the rest of the retransmit queue, until either
2471  * we've sent it all or the congestion window limit is reached.
2472  * If doing SACK, the first ACK which comes back for a timeout
2473  * based retransmit packet might feed us FACK information again.
2474  * If so, we use it to avoid unnecessarily retransmissions.
2475  */
2476 void tcp_xmit_retransmit_queue(struct sock *sk)
2477 {
2478 	const struct inet_connection_sock *icsk = inet_csk(sk);
2479 	struct tcp_sock *tp = tcp_sk(sk);
2480 	struct sk_buff *skb;
2481 	struct sk_buff *hole = NULL;
2482 	u32 last_lost;
2483 	int mib_idx;
2484 	int fwd_rexmitting = 0;
2485 
2486 	if (!tp->packets_out)
2487 		return;
2488 
2489 	if (!tp->lost_out)
2490 		tp->retransmit_high = tp->snd_una;
2491 
2492 	if (tp->retransmit_skb_hint) {
2493 		skb = tp->retransmit_skb_hint;
2494 		last_lost = TCP_SKB_CB(skb)->end_seq;
2495 		if (after(last_lost, tp->retransmit_high))
2496 			last_lost = tp->retransmit_high;
2497 	} else {
2498 		skb = tcp_write_queue_head(sk);
2499 		last_lost = tp->snd_una;
2500 	}
2501 
2502 	tcp_for_write_queue_from(skb, sk) {
2503 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2504 
2505 		if (skb == tcp_send_head(sk))
2506 			break;
2507 		/* we could do better than to assign each time */
2508 		if (hole == NULL)
2509 			tp->retransmit_skb_hint = skb;
2510 
2511 		/* Assume this retransmit will generate
2512 		 * only one packet for congestion window
2513 		 * calculation purposes.  This works because
2514 		 * tcp_retransmit_skb() will chop up the
2515 		 * packet to be MSS sized and all the
2516 		 * packet counting works out.
2517 		 */
2518 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2519 			return;
2520 
2521 		if (fwd_rexmitting) {
2522 begin_fwd:
2523 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2524 				break;
2525 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2526 
2527 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2528 			tp->retransmit_high = last_lost;
2529 			if (!tcp_can_forward_retransmit(sk))
2530 				break;
2531 			/* Backtrack if necessary to non-L'ed skb */
2532 			if (hole != NULL) {
2533 				skb = hole;
2534 				hole = NULL;
2535 			}
2536 			fwd_rexmitting = 1;
2537 			goto begin_fwd;
2538 
2539 		} else if (!(sacked & TCPCB_LOST)) {
2540 			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2541 				hole = skb;
2542 			continue;
2543 
2544 		} else {
2545 			last_lost = TCP_SKB_CB(skb)->end_seq;
2546 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2547 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2548 			else
2549 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2550 		}
2551 
2552 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2553 			continue;
2554 
2555 		if (tcp_retransmit_skb(sk, skb))
2556 			return;
2557 
2558 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2559 
2560 		if (tcp_in_cwnd_reduction(sk))
2561 			tp->prr_out += tcp_skb_pcount(skb);
2562 
2563 		if (skb == tcp_write_queue_head(sk))
2564 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2565 						  inet_csk(sk)->icsk_rto,
2566 						  TCP_RTO_MAX);
2567 	}
2568 }
2569 
2570 /* Send a fin.  The caller locks the socket for us.  This cannot be
2571  * allowed to fail queueing a FIN frame under any circumstances.
2572  */
2573 void tcp_send_fin(struct sock *sk)
2574 {
2575 	struct tcp_sock *tp = tcp_sk(sk);
2576 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2577 	int mss_now;
2578 
2579 	/* Optimization, tack on the FIN if we have a queue of
2580 	 * unsent frames.  But be careful about outgoing SACKS
2581 	 * and IP options.
2582 	 */
2583 	mss_now = tcp_current_mss(sk);
2584 
2585 	if (tcp_send_head(sk) != NULL) {
2586 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2587 		TCP_SKB_CB(skb)->end_seq++;
2588 		tp->write_seq++;
2589 	} else {
2590 		/* Socket is locked, keep trying until memory is available. */
2591 		for (;;) {
2592 			skb = alloc_skb_fclone(MAX_TCP_HEADER,
2593 					       sk->sk_allocation);
2594 			if (skb)
2595 				break;
2596 			yield();
2597 		}
2598 
2599 		/* Reserve space for headers and prepare control bits. */
2600 		skb_reserve(skb, MAX_TCP_HEADER);
2601 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2602 		tcp_init_nondata_skb(skb, tp->write_seq,
2603 				     TCPHDR_ACK | TCPHDR_FIN);
2604 		tcp_queue_skb(sk, skb);
2605 	}
2606 	__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2607 }
2608 
2609 /* We get here when a process closes a file descriptor (either due to
2610  * an explicit close() or as a byproduct of exit()'ing) and there
2611  * was unread data in the receive queue.  This behavior is recommended
2612  * by RFC 2525, section 2.17.  -DaveM
2613  */
2614 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2615 {
2616 	struct sk_buff *skb;
2617 
2618 	/* NOTE: No TCP options attached and we never retransmit this. */
2619 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2620 	if (!skb) {
2621 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2622 		return;
2623 	}
2624 
2625 	/* Reserve space for headers and prepare control bits. */
2626 	skb_reserve(skb, MAX_TCP_HEADER);
2627 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2628 			     TCPHDR_ACK | TCPHDR_RST);
2629 	/* Send it off. */
2630 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2631 	if (tcp_transmit_skb(sk, skb, 0, priority))
2632 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2633 
2634 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2635 }
2636 
2637 /* Send a crossed SYN-ACK during socket establishment.
2638  * WARNING: This routine must only be called when we have already sent
2639  * a SYN packet that crossed the incoming SYN that caused this routine
2640  * to get called. If this assumption fails then the initial rcv_wnd
2641  * and rcv_wscale values will not be correct.
2642  */
2643 int tcp_send_synack(struct sock *sk)
2644 {
2645 	struct sk_buff *skb;
2646 
2647 	skb = tcp_write_queue_head(sk);
2648 	if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2649 		pr_debug("%s: wrong queue state\n", __func__);
2650 		return -EFAULT;
2651 	}
2652 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2653 		if (skb_cloned(skb)) {
2654 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2655 			if (nskb == NULL)
2656 				return -ENOMEM;
2657 			tcp_unlink_write_queue(skb, sk);
2658 			skb_header_release(nskb);
2659 			__tcp_add_write_queue_head(sk, nskb);
2660 			sk_wmem_free_skb(sk, skb);
2661 			sk->sk_wmem_queued += nskb->truesize;
2662 			sk_mem_charge(sk, nskb->truesize);
2663 			skb = nskb;
2664 		}
2665 
2666 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2667 		TCP_ECN_send_synack(tcp_sk(sk), skb);
2668 	}
2669 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2670 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2671 }
2672 
2673 /**
2674  * tcp_make_synack - Prepare a SYN-ACK.
2675  * sk: listener socket
2676  * dst: dst entry attached to the SYNACK
2677  * req: request_sock pointer
2678  *
2679  * Allocate one skb and build a SYNACK packet.
2680  * @dst is consumed : Caller should not use it again.
2681  */
2682 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2683 				struct request_sock *req,
2684 				struct tcp_fastopen_cookie *foc)
2685 {
2686 	struct tcp_out_options opts;
2687 	struct inet_request_sock *ireq = inet_rsk(req);
2688 	struct tcp_sock *tp = tcp_sk(sk);
2689 	struct tcphdr *th;
2690 	struct sk_buff *skb;
2691 	struct tcp_md5sig_key *md5;
2692 	int tcp_header_size;
2693 	int mss;
2694 
2695 	skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2696 	if (unlikely(!skb)) {
2697 		dst_release(dst);
2698 		return NULL;
2699 	}
2700 	/* Reserve space for headers. */
2701 	skb_reserve(skb, MAX_TCP_HEADER);
2702 
2703 	skb_dst_set(skb, dst);
2704 	security_skb_owned_by(skb, sk);
2705 
2706 	mss = dst_metric_advmss(dst);
2707 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2708 		mss = tp->rx_opt.user_mss;
2709 
2710 	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2711 		__u8 rcv_wscale;
2712 		/* Set this up on the first call only */
2713 		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2714 
2715 		/* limit the window selection if the user enforce a smaller rx buffer */
2716 		if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2717 		    (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2718 			req->window_clamp = tcp_full_space(sk);
2719 
2720 		/* tcp_full_space because it is guaranteed to be the first packet */
2721 		tcp_select_initial_window(tcp_full_space(sk),
2722 			mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2723 			&req->rcv_wnd,
2724 			&req->window_clamp,
2725 			ireq->wscale_ok,
2726 			&rcv_wscale,
2727 			dst_metric(dst, RTAX_INITRWND));
2728 		ireq->rcv_wscale = rcv_wscale;
2729 	}
2730 
2731 	memset(&opts, 0, sizeof(opts));
2732 #ifdef CONFIG_SYN_COOKIES
2733 	if (unlikely(req->cookie_ts))
2734 		TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2735 	else
2736 #endif
2737 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2738 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2739 					     foc) + sizeof(*th);
2740 
2741 	skb_push(skb, tcp_header_size);
2742 	skb_reset_transport_header(skb);
2743 
2744 	th = tcp_hdr(skb);
2745 	memset(th, 0, sizeof(struct tcphdr));
2746 	th->syn = 1;
2747 	th->ack = 1;
2748 	TCP_ECN_make_synack(req, th);
2749 	th->source = htons(ireq->ir_num);
2750 	th->dest = ireq->ir_rmt_port;
2751 	/* Setting of flags are superfluous here for callers (and ECE is
2752 	 * not even correctly set)
2753 	 */
2754 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2755 			     TCPHDR_SYN | TCPHDR_ACK);
2756 
2757 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2758 	/* XXX data is queued and acked as is. No buffer/window check */
2759 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2760 
2761 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2762 	th->window = htons(min(req->rcv_wnd, 65535U));
2763 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
2764 	th->doff = (tcp_header_size >> 2);
2765 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2766 
2767 #ifdef CONFIG_TCP_MD5SIG
2768 	/* Okay, we have all we need - do the md5 hash if needed */
2769 	if (md5) {
2770 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2771 					       md5, NULL, req, skb);
2772 	}
2773 #endif
2774 
2775 	return skb;
2776 }
2777 EXPORT_SYMBOL(tcp_make_synack);
2778 
2779 /* Do all connect socket setups that can be done AF independent. */
2780 static void tcp_connect_init(struct sock *sk)
2781 {
2782 	const struct dst_entry *dst = __sk_dst_get(sk);
2783 	struct tcp_sock *tp = tcp_sk(sk);
2784 	__u8 rcv_wscale;
2785 
2786 	/* We'll fix this up when we get a response from the other end.
2787 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2788 	 */
2789 	tp->tcp_header_len = sizeof(struct tcphdr) +
2790 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2791 
2792 #ifdef CONFIG_TCP_MD5SIG
2793 	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2794 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2795 #endif
2796 
2797 	/* If user gave his TCP_MAXSEG, record it to clamp */
2798 	if (tp->rx_opt.user_mss)
2799 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2800 	tp->max_window = 0;
2801 	tcp_mtup_init(sk);
2802 	tcp_sync_mss(sk, dst_mtu(dst));
2803 
2804 	if (!tp->window_clamp)
2805 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2806 	tp->advmss = dst_metric_advmss(dst);
2807 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2808 		tp->advmss = tp->rx_opt.user_mss;
2809 
2810 	tcp_initialize_rcv_mss(sk);
2811 
2812 	/* limit the window selection if the user enforce a smaller rx buffer */
2813 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2814 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2815 		tp->window_clamp = tcp_full_space(sk);
2816 
2817 	tcp_select_initial_window(tcp_full_space(sk),
2818 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2819 				  &tp->rcv_wnd,
2820 				  &tp->window_clamp,
2821 				  sysctl_tcp_window_scaling,
2822 				  &rcv_wscale,
2823 				  dst_metric(dst, RTAX_INITRWND));
2824 
2825 	tp->rx_opt.rcv_wscale = rcv_wscale;
2826 	tp->rcv_ssthresh = tp->rcv_wnd;
2827 
2828 	sk->sk_err = 0;
2829 	sock_reset_flag(sk, SOCK_DONE);
2830 	tp->snd_wnd = 0;
2831 	tcp_init_wl(tp, 0);
2832 	tp->snd_una = tp->write_seq;
2833 	tp->snd_sml = tp->write_seq;
2834 	tp->snd_up = tp->write_seq;
2835 	tp->snd_nxt = tp->write_seq;
2836 
2837 	if (likely(!tp->repair))
2838 		tp->rcv_nxt = 0;
2839 	else
2840 		tp->rcv_tstamp = tcp_time_stamp;
2841 	tp->rcv_wup = tp->rcv_nxt;
2842 	tp->copied_seq = tp->rcv_nxt;
2843 
2844 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2845 	inet_csk(sk)->icsk_retransmits = 0;
2846 	tcp_clear_retrans(tp);
2847 }
2848 
2849 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2850 {
2851 	struct tcp_sock *tp = tcp_sk(sk);
2852 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2853 
2854 	tcb->end_seq += skb->len;
2855 	skb_header_release(skb);
2856 	__tcp_add_write_queue_tail(sk, skb);
2857 	sk->sk_wmem_queued += skb->truesize;
2858 	sk_mem_charge(sk, skb->truesize);
2859 	tp->write_seq = tcb->end_seq;
2860 	tp->packets_out += tcp_skb_pcount(skb);
2861 }
2862 
2863 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2864  * queue a data-only packet after the regular SYN, such that regular SYNs
2865  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2866  * only the SYN sequence, the data are retransmitted in the first ACK.
2867  * If cookie is not cached or other error occurs, falls back to send a
2868  * regular SYN with Fast Open cookie request option.
2869  */
2870 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2871 {
2872 	struct tcp_sock *tp = tcp_sk(sk);
2873 	struct tcp_fastopen_request *fo = tp->fastopen_req;
2874 	int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2875 	struct sk_buff *syn_data = NULL, *data;
2876 	unsigned long last_syn_loss = 0;
2877 
2878 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
2879 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2880 			       &syn_loss, &last_syn_loss);
2881 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
2882 	if (syn_loss > 1 &&
2883 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2884 		fo->cookie.len = -1;
2885 		goto fallback;
2886 	}
2887 
2888 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2889 		fo->cookie.len = -1;
2890 	else if (fo->cookie.len <= 0)
2891 		goto fallback;
2892 
2893 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2894 	 * user-MSS. Reserve maximum option space for middleboxes that add
2895 	 * private TCP options. The cost is reduced data space in SYN :(
2896 	 */
2897 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2898 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2899 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2900 		MAX_TCP_OPTION_SPACE;
2901 
2902 	syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
2903 				   sk->sk_allocation);
2904 	if (syn_data == NULL)
2905 		goto fallback;
2906 
2907 	for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2908 		struct iovec *iov = &fo->data->msg_iov[i];
2909 		unsigned char __user *from = iov->iov_base;
2910 		int len = iov->iov_len;
2911 
2912 		if (syn_data->len + len > space)
2913 			len = space - syn_data->len;
2914 		else if (i + 1 == iovlen)
2915 			/* No more data pending in inet_wait_for_connect() */
2916 			fo->data = NULL;
2917 
2918 		if (skb_add_data(syn_data, from, len))
2919 			goto fallback;
2920 	}
2921 
2922 	/* Queue a data-only packet after the regular SYN for retransmission */
2923 	data = pskb_copy(syn_data, sk->sk_allocation);
2924 	if (data == NULL)
2925 		goto fallback;
2926 	TCP_SKB_CB(data)->seq++;
2927 	TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2928 	TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2929 	tcp_connect_queue_skb(sk, data);
2930 	fo->copied = data->len;
2931 
2932 	if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2933 		tp->syn_data = (fo->copied > 0);
2934 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2935 		goto done;
2936 	}
2937 	syn_data = NULL;
2938 
2939 fallback:
2940 	/* Send a regular SYN with Fast Open cookie request option */
2941 	if (fo->cookie.len > 0)
2942 		fo->cookie.len = 0;
2943 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2944 	if (err)
2945 		tp->syn_fastopen = 0;
2946 	kfree_skb(syn_data);
2947 done:
2948 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
2949 	return err;
2950 }
2951 
2952 /* Build a SYN and send it off. */
2953 int tcp_connect(struct sock *sk)
2954 {
2955 	struct tcp_sock *tp = tcp_sk(sk);
2956 	struct sk_buff *buff;
2957 	int err;
2958 
2959 	tcp_connect_init(sk);
2960 
2961 	if (unlikely(tp->repair)) {
2962 		tcp_finish_connect(sk, NULL);
2963 		return 0;
2964 	}
2965 
2966 	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2967 	if (unlikely(buff == NULL))
2968 		return -ENOBUFS;
2969 
2970 	/* Reserve space for headers. */
2971 	skb_reserve(buff, MAX_TCP_HEADER);
2972 
2973 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
2974 	tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
2975 	tcp_connect_queue_skb(sk, buff);
2976 	TCP_ECN_send_syn(sk, buff);
2977 
2978 	/* Send off SYN; include data in Fast Open. */
2979 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
2980 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2981 	if (err == -ECONNREFUSED)
2982 		return err;
2983 
2984 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
2985 	 * in order to make this packet get counted in tcpOutSegs.
2986 	 */
2987 	tp->snd_nxt = tp->write_seq;
2988 	tp->pushed_seq = tp->write_seq;
2989 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2990 
2991 	/* Timer for repeating the SYN until an answer. */
2992 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2993 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2994 	return 0;
2995 }
2996 EXPORT_SYMBOL(tcp_connect);
2997 
2998 /* Send out a delayed ack, the caller does the policy checking
2999  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3000  * for details.
3001  */
3002 void tcp_send_delayed_ack(struct sock *sk)
3003 {
3004 	struct inet_connection_sock *icsk = inet_csk(sk);
3005 	int ato = icsk->icsk_ack.ato;
3006 	unsigned long timeout;
3007 
3008 	if (ato > TCP_DELACK_MIN) {
3009 		const struct tcp_sock *tp = tcp_sk(sk);
3010 		int max_ato = HZ / 2;
3011 
3012 		if (icsk->icsk_ack.pingpong ||
3013 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3014 			max_ato = TCP_DELACK_MAX;
3015 
3016 		/* Slow path, intersegment interval is "high". */
3017 
3018 		/* If some rtt estimate is known, use it to bound delayed ack.
3019 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3020 		 * directly.
3021 		 */
3022 		if (tp->srtt) {
3023 			int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
3024 
3025 			if (rtt < max_ato)
3026 				max_ato = rtt;
3027 		}
3028 
3029 		ato = min(ato, max_ato);
3030 	}
3031 
3032 	/* Stay within the limit we were given */
3033 	timeout = jiffies + ato;
3034 
3035 	/* Use new timeout only if there wasn't a older one earlier. */
3036 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3037 		/* If delack timer was blocked or is about to expire,
3038 		 * send ACK now.
3039 		 */
3040 		if (icsk->icsk_ack.blocked ||
3041 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3042 			tcp_send_ack(sk);
3043 			return;
3044 		}
3045 
3046 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3047 			timeout = icsk->icsk_ack.timeout;
3048 	}
3049 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3050 	icsk->icsk_ack.timeout = timeout;
3051 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3052 }
3053 
3054 /* This routine sends an ack and also updates the window. */
3055 void tcp_send_ack(struct sock *sk)
3056 {
3057 	struct sk_buff *buff;
3058 
3059 	/* If we have been reset, we may not send again. */
3060 	if (sk->sk_state == TCP_CLOSE)
3061 		return;
3062 
3063 	/* We are not putting this on the write queue, so
3064 	 * tcp_transmit_skb() will set the ownership to this
3065 	 * sock.
3066 	 */
3067 	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3068 	if (buff == NULL) {
3069 		inet_csk_schedule_ack(sk);
3070 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3071 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3072 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3073 		return;
3074 	}
3075 
3076 	/* Reserve space for headers and prepare control bits. */
3077 	skb_reserve(buff, MAX_TCP_HEADER);
3078 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3079 
3080 	/* Send it off, this clears delayed acks for us. */
3081 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
3082 	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3083 }
3084 
3085 /* This routine sends a packet with an out of date sequence
3086  * number. It assumes the other end will try to ack it.
3087  *
3088  * Question: what should we make while urgent mode?
3089  * 4.4BSD forces sending single byte of data. We cannot send
3090  * out of window data, because we have SND.NXT==SND.MAX...
3091  *
3092  * Current solution: to send TWO zero-length segments in urgent mode:
3093  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3094  * out-of-date with SND.UNA-1 to probe window.
3095  */
3096 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3097 {
3098 	struct tcp_sock *tp = tcp_sk(sk);
3099 	struct sk_buff *skb;
3100 
3101 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3102 	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3103 	if (skb == NULL)
3104 		return -1;
3105 
3106 	/* Reserve space for headers and set control bits. */
3107 	skb_reserve(skb, MAX_TCP_HEADER);
3108 	/* Use a previous sequence.  This should cause the other
3109 	 * end to send an ack.  Don't queue or clone SKB, just
3110 	 * send it.
3111 	 */
3112 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3113 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
3114 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3115 }
3116 
3117 void tcp_send_window_probe(struct sock *sk)
3118 {
3119 	if (sk->sk_state == TCP_ESTABLISHED) {
3120 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3121 		tcp_xmit_probe_skb(sk, 0);
3122 	}
3123 }
3124 
3125 /* Initiate keepalive or window probe from timer. */
3126 int tcp_write_wakeup(struct sock *sk)
3127 {
3128 	struct tcp_sock *tp = tcp_sk(sk);
3129 	struct sk_buff *skb;
3130 
3131 	if (sk->sk_state == TCP_CLOSE)
3132 		return -1;
3133 
3134 	if ((skb = tcp_send_head(sk)) != NULL &&
3135 	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3136 		int err;
3137 		unsigned int mss = tcp_current_mss(sk);
3138 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3139 
3140 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3141 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3142 
3143 		/* We are probing the opening of a window
3144 		 * but the window size is != 0
3145 		 * must have been a result SWS avoidance ( sender )
3146 		 */
3147 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3148 		    skb->len > mss) {
3149 			seg_size = min(seg_size, mss);
3150 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3151 			if (tcp_fragment(sk, skb, seg_size, mss))
3152 				return -1;
3153 		} else if (!tcp_skb_pcount(skb))
3154 			tcp_set_skb_tso_segs(sk, skb, mss);
3155 
3156 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3157 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
3158 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3159 		if (!err)
3160 			tcp_event_new_data_sent(sk, skb);
3161 		return err;
3162 	} else {
3163 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3164 			tcp_xmit_probe_skb(sk, 1);
3165 		return tcp_xmit_probe_skb(sk, 0);
3166 	}
3167 }
3168 
3169 /* A window probe timeout has occurred.  If window is not closed send
3170  * a partial packet else a zero probe.
3171  */
3172 void tcp_send_probe0(struct sock *sk)
3173 {
3174 	struct inet_connection_sock *icsk = inet_csk(sk);
3175 	struct tcp_sock *tp = tcp_sk(sk);
3176 	int err;
3177 
3178 	err = tcp_write_wakeup(sk);
3179 
3180 	if (tp->packets_out || !tcp_send_head(sk)) {
3181 		/* Cancel probe timer, if it is not required. */
3182 		icsk->icsk_probes_out = 0;
3183 		icsk->icsk_backoff = 0;
3184 		return;
3185 	}
3186 
3187 	if (err <= 0) {
3188 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3189 			icsk->icsk_backoff++;
3190 		icsk->icsk_probes_out++;
3191 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3192 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3193 					  TCP_RTO_MAX);
3194 	} else {
3195 		/* If packet was not sent due to local congestion,
3196 		 * do not backoff and do not remember icsk_probes_out.
3197 		 * Let local senders to fight for local resources.
3198 		 *
3199 		 * Use accumulated backoff yet.
3200 		 */
3201 		if (!icsk->icsk_probes_out)
3202 			icsk->icsk_probes_out = 1;
3203 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3204 					  min(icsk->icsk_rto << icsk->icsk_backoff,
3205 					      TCP_RESOURCE_PROBE_INTERVAL),
3206 					  TCP_RTO_MAX);
3207 	}
3208 }
3209