1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of two TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 int sysctl_tcp_mtu_probing __read_mostly = 0; 63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS; 64 65 /* By default, RFC2861 behavior. */ 66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 67 68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX; 69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat); 70 71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 72 int push_one, gfp_t gfp); 73 74 /* Account for new data that has been sent to the network. */ 75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 76 { 77 struct inet_connection_sock *icsk = inet_csk(sk); 78 struct tcp_sock *tp = tcp_sk(sk); 79 unsigned int prior_packets = tp->packets_out; 80 81 tcp_advance_send_head(sk, skb); 82 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 83 84 tp->packets_out += tcp_skb_pcount(skb); 85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 86 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 87 tcp_rearm_rto(sk); 88 } 89 } 90 91 /* SND.NXT, if window was not shrunk. 92 * If window has been shrunk, what should we make? It is not clear at all. 93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 95 * invalid. OK, let's make this for now: 96 */ 97 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 98 { 99 const struct tcp_sock *tp = tcp_sk(sk); 100 101 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. */ 141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 s32 delta = tcp_time_stamp - tp->lsndtime; 145 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 146 u32 cwnd = tp->snd_cwnd; 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tp->snd_cwnd = max(cwnd, restart_cwnd); 156 tp->snd_cwnd_stamp = tcp_time_stamp; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_time_stamp; 166 const struct dst_entry *dst = __sk_dst_get(sk); 167 168 if (sysctl_tcp_slow_start_after_idle && 169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 170 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 171 172 tp->lsndtime = now; 173 174 /* If it is a reply for ato after last received 175 * packet, enter pingpong mode. 176 */ 177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato && 178 (!dst || !dst_metric(dst, RTAX_QUICKACK))) 179 icsk->icsk_ack.pingpong = 1; 180 } 181 182 /* Account for an ACK we sent. */ 183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 184 { 185 tcp_dec_quickack_mode(sk, pkts); 186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 187 } 188 189 190 u32 tcp_default_init_rwnd(u32 mss) 191 { 192 /* Initial receive window should be twice of TCP_INIT_CWND to 193 * enable proper sending of new unsent data during fast recovery 194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 195 * limit when mss is larger than 1460. 196 */ 197 u32 init_rwnd = TCP_INIT_CWND * 2; 198 199 if (mss > 1460) 200 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 201 return init_rwnd; 202 } 203 204 /* Determine a window scaling and initial window to offer. 205 * Based on the assumption that the given amount of space 206 * will be offered. Store the results in the tp structure. 207 * NOTE: for smooth operation initial space offering should 208 * be a multiple of mss if possible. We assume here that mss >= 1. 209 * This MUST be enforced by all callers. 210 */ 211 void tcp_select_initial_window(int __space, __u32 mss, 212 __u32 *rcv_wnd, __u32 *window_clamp, 213 int wscale_ok, __u8 *rcv_wscale, 214 __u32 init_rcv_wnd) 215 { 216 unsigned int space = (__space < 0 ? 0 : __space); 217 218 /* If no clamp set the clamp to the max possible scaled window */ 219 if (*window_clamp == 0) 220 (*window_clamp) = (65535 << 14); 221 space = min(*window_clamp, space); 222 223 /* Quantize space offering to a multiple of mss if possible. */ 224 if (space > mss) 225 space = (space / mss) * mss; 226 227 /* NOTE: offering an initial window larger than 32767 228 * will break some buggy TCP stacks. If the admin tells us 229 * it is likely we could be speaking with such a buggy stack 230 * we will truncate our initial window offering to 32K-1 231 * unless the remote has sent us a window scaling option, 232 * which we interpret as a sign the remote TCP is not 233 * misinterpreting the window field as a signed quantity. 234 */ 235 if (sysctl_tcp_workaround_signed_windows) 236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 237 else 238 (*rcv_wnd) = space; 239 240 (*rcv_wscale) = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window 243 * See RFC1323 for an explanation of the limit to 14 244 */ 245 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 246 space = min_t(u32, space, *window_clamp); 247 while (space > 65535 && (*rcv_wscale) < 14) { 248 space >>= 1; 249 (*rcv_wscale)++; 250 } 251 } 252 253 if (mss > (1 << *rcv_wscale)) { 254 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 255 init_rcv_wnd = tcp_default_init_rwnd(mss); 256 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 257 } 258 259 /* Set the clamp no higher than max representable value */ 260 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 261 } 262 EXPORT_SYMBOL(tcp_select_initial_window); 263 264 /* Chose a new window to advertise, update state in tcp_sock for the 265 * socket, and return result with RFC1323 scaling applied. The return 266 * value can be stuffed directly into th->window for an outgoing 267 * frame. 268 */ 269 static u16 tcp_select_window(struct sock *sk) 270 { 271 struct tcp_sock *tp = tcp_sk(sk); 272 u32 cur_win = tcp_receive_window(tp); 273 u32 new_win = __tcp_select_window(sk); 274 275 /* Never shrink the offered window */ 276 if (new_win < cur_win) { 277 /* Danger Will Robinson! 278 * Don't update rcv_wup/rcv_wnd here or else 279 * we will not be able to advertise a zero 280 * window in time. --DaveM 281 * 282 * Relax Will Robinson. 283 */ 284 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 285 } 286 tp->rcv_wnd = new_win; 287 tp->rcv_wup = tp->rcv_nxt; 288 289 /* Make sure we do not exceed the maximum possible 290 * scaled window. 291 */ 292 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 293 new_win = min(new_win, MAX_TCP_WINDOW); 294 else 295 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 296 297 /* RFC1323 scaling applied */ 298 new_win >>= tp->rx_opt.rcv_wscale; 299 300 /* If we advertise zero window, disable fast path. */ 301 if (new_win == 0) 302 tp->pred_flags = 0; 303 304 return new_win; 305 } 306 307 /* Packet ECN state for a SYN-ACK */ 308 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb) 309 { 310 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 311 if (!(tp->ecn_flags & TCP_ECN_OK)) 312 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 313 } 314 315 /* Packet ECN state for a SYN. */ 316 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb) 317 { 318 struct tcp_sock *tp = tcp_sk(sk); 319 320 tp->ecn_flags = 0; 321 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) { 322 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 323 tp->ecn_flags = TCP_ECN_OK; 324 } 325 } 326 327 static __inline__ void 328 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th) 329 { 330 if (inet_rsk(req)->ecn_ok) 331 th->ece = 1; 332 } 333 334 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 335 * be sent. 336 */ 337 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb, 338 int tcp_header_len) 339 { 340 struct tcp_sock *tp = tcp_sk(sk); 341 342 if (tp->ecn_flags & TCP_ECN_OK) { 343 /* Not-retransmitted data segment: set ECT and inject CWR. */ 344 if (skb->len != tcp_header_len && 345 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 346 INET_ECN_xmit(sk); 347 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 348 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 349 tcp_hdr(skb)->cwr = 1; 350 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 351 } 352 } else { 353 /* ACK or retransmitted segment: clear ECT|CE */ 354 INET_ECN_dontxmit(sk); 355 } 356 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 357 tcp_hdr(skb)->ece = 1; 358 } 359 } 360 361 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 362 * auto increment end seqno. 363 */ 364 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 365 { 366 struct skb_shared_info *shinfo = skb_shinfo(skb); 367 368 skb->ip_summed = CHECKSUM_PARTIAL; 369 skb->csum = 0; 370 371 TCP_SKB_CB(skb)->tcp_flags = flags; 372 TCP_SKB_CB(skb)->sacked = 0; 373 374 shinfo->gso_segs = 1; 375 shinfo->gso_size = 0; 376 shinfo->gso_type = 0; 377 378 TCP_SKB_CB(skb)->seq = seq; 379 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 380 seq++; 381 TCP_SKB_CB(skb)->end_seq = seq; 382 } 383 384 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 385 { 386 return tp->snd_una != tp->snd_up; 387 } 388 389 #define OPTION_SACK_ADVERTISE (1 << 0) 390 #define OPTION_TS (1 << 1) 391 #define OPTION_MD5 (1 << 2) 392 #define OPTION_WSCALE (1 << 3) 393 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 394 395 struct tcp_out_options { 396 u16 options; /* bit field of OPTION_* */ 397 u16 mss; /* 0 to disable */ 398 u8 ws; /* window scale, 0 to disable */ 399 u8 num_sack_blocks; /* number of SACK blocks to include */ 400 u8 hash_size; /* bytes in hash_location */ 401 __u8 *hash_location; /* temporary pointer, overloaded */ 402 __u32 tsval, tsecr; /* need to include OPTION_TS */ 403 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 404 }; 405 406 /* Write previously computed TCP options to the packet. 407 * 408 * Beware: Something in the Internet is very sensitive to the ordering of 409 * TCP options, we learned this through the hard way, so be careful here. 410 * Luckily we can at least blame others for their non-compliance but from 411 * inter-operability perspective it seems that we're somewhat stuck with 412 * the ordering which we have been using if we want to keep working with 413 * those broken things (not that it currently hurts anybody as there isn't 414 * particular reason why the ordering would need to be changed). 415 * 416 * At least SACK_PERM as the first option is known to lead to a disaster 417 * (but it may well be that other scenarios fail similarly). 418 */ 419 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 420 struct tcp_out_options *opts) 421 { 422 u16 options = opts->options; /* mungable copy */ 423 424 if (unlikely(OPTION_MD5 & options)) { 425 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 426 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 427 /* overload cookie hash location */ 428 opts->hash_location = (__u8 *)ptr; 429 ptr += 4; 430 } 431 432 if (unlikely(opts->mss)) { 433 *ptr++ = htonl((TCPOPT_MSS << 24) | 434 (TCPOLEN_MSS << 16) | 435 opts->mss); 436 } 437 438 if (likely(OPTION_TS & options)) { 439 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 440 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 441 (TCPOLEN_SACK_PERM << 16) | 442 (TCPOPT_TIMESTAMP << 8) | 443 TCPOLEN_TIMESTAMP); 444 options &= ~OPTION_SACK_ADVERTISE; 445 } else { 446 *ptr++ = htonl((TCPOPT_NOP << 24) | 447 (TCPOPT_NOP << 16) | 448 (TCPOPT_TIMESTAMP << 8) | 449 TCPOLEN_TIMESTAMP); 450 } 451 *ptr++ = htonl(opts->tsval); 452 *ptr++ = htonl(opts->tsecr); 453 } 454 455 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 456 *ptr++ = htonl((TCPOPT_NOP << 24) | 457 (TCPOPT_NOP << 16) | 458 (TCPOPT_SACK_PERM << 8) | 459 TCPOLEN_SACK_PERM); 460 } 461 462 if (unlikely(OPTION_WSCALE & options)) { 463 *ptr++ = htonl((TCPOPT_NOP << 24) | 464 (TCPOPT_WINDOW << 16) | 465 (TCPOLEN_WINDOW << 8) | 466 opts->ws); 467 } 468 469 if (unlikely(opts->num_sack_blocks)) { 470 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 471 tp->duplicate_sack : tp->selective_acks; 472 int this_sack; 473 474 *ptr++ = htonl((TCPOPT_NOP << 24) | 475 (TCPOPT_NOP << 16) | 476 (TCPOPT_SACK << 8) | 477 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 478 TCPOLEN_SACK_PERBLOCK))); 479 480 for (this_sack = 0; this_sack < opts->num_sack_blocks; 481 ++this_sack) { 482 *ptr++ = htonl(sp[this_sack].start_seq); 483 *ptr++ = htonl(sp[this_sack].end_seq); 484 } 485 486 tp->rx_opt.dsack = 0; 487 } 488 489 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 490 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 491 492 *ptr++ = htonl((TCPOPT_EXP << 24) | 493 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) | 494 TCPOPT_FASTOPEN_MAGIC); 495 496 memcpy(ptr, foc->val, foc->len); 497 if ((foc->len & 3) == 2) { 498 u8 *align = ((u8 *)ptr) + foc->len; 499 align[0] = align[1] = TCPOPT_NOP; 500 } 501 ptr += (foc->len + 3) >> 2; 502 } 503 } 504 505 /* Compute TCP options for SYN packets. This is not the final 506 * network wire format yet. 507 */ 508 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 509 struct tcp_out_options *opts, 510 struct tcp_md5sig_key **md5) 511 { 512 struct tcp_sock *tp = tcp_sk(sk); 513 unsigned int remaining = MAX_TCP_OPTION_SPACE; 514 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 515 516 #ifdef CONFIG_TCP_MD5SIG 517 *md5 = tp->af_specific->md5_lookup(sk, sk); 518 if (*md5) { 519 opts->options |= OPTION_MD5; 520 remaining -= TCPOLEN_MD5SIG_ALIGNED; 521 } 522 #else 523 *md5 = NULL; 524 #endif 525 526 /* We always get an MSS option. The option bytes which will be seen in 527 * normal data packets should timestamps be used, must be in the MSS 528 * advertised. But we subtract them from tp->mss_cache so that 529 * calculations in tcp_sendmsg are simpler etc. So account for this 530 * fact here if necessary. If we don't do this correctly, as a 531 * receiver we won't recognize data packets as being full sized when we 532 * should, and thus we won't abide by the delayed ACK rules correctly. 533 * SACKs don't matter, we never delay an ACK when we have any of those 534 * going out. */ 535 opts->mss = tcp_advertise_mss(sk); 536 remaining -= TCPOLEN_MSS_ALIGNED; 537 538 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 539 opts->options |= OPTION_TS; 540 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset; 541 opts->tsecr = tp->rx_opt.ts_recent; 542 remaining -= TCPOLEN_TSTAMP_ALIGNED; 543 } 544 if (likely(sysctl_tcp_window_scaling)) { 545 opts->ws = tp->rx_opt.rcv_wscale; 546 opts->options |= OPTION_WSCALE; 547 remaining -= TCPOLEN_WSCALE_ALIGNED; 548 } 549 if (likely(sysctl_tcp_sack)) { 550 opts->options |= OPTION_SACK_ADVERTISE; 551 if (unlikely(!(OPTION_TS & opts->options))) 552 remaining -= TCPOLEN_SACKPERM_ALIGNED; 553 } 554 555 if (fastopen && fastopen->cookie.len >= 0) { 556 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len; 557 need = (need + 3) & ~3U; /* Align to 32 bits */ 558 if (remaining >= need) { 559 opts->options |= OPTION_FAST_OPEN_COOKIE; 560 opts->fastopen_cookie = &fastopen->cookie; 561 remaining -= need; 562 tp->syn_fastopen = 1; 563 } 564 } 565 566 return MAX_TCP_OPTION_SPACE - remaining; 567 } 568 569 /* Set up TCP options for SYN-ACKs. */ 570 static unsigned int tcp_synack_options(struct sock *sk, 571 struct request_sock *req, 572 unsigned int mss, struct sk_buff *skb, 573 struct tcp_out_options *opts, 574 struct tcp_md5sig_key **md5, 575 struct tcp_fastopen_cookie *foc) 576 { 577 struct inet_request_sock *ireq = inet_rsk(req); 578 unsigned int remaining = MAX_TCP_OPTION_SPACE; 579 580 #ifdef CONFIG_TCP_MD5SIG 581 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 582 if (*md5) { 583 opts->options |= OPTION_MD5; 584 remaining -= TCPOLEN_MD5SIG_ALIGNED; 585 586 /* We can't fit any SACK blocks in a packet with MD5 + TS 587 * options. There was discussion about disabling SACK 588 * rather than TS in order to fit in better with old, 589 * buggy kernels, but that was deemed to be unnecessary. 590 */ 591 ireq->tstamp_ok &= !ireq->sack_ok; 592 } 593 #else 594 *md5 = NULL; 595 #endif 596 597 /* We always send an MSS option. */ 598 opts->mss = mss; 599 remaining -= TCPOLEN_MSS_ALIGNED; 600 601 if (likely(ireq->wscale_ok)) { 602 opts->ws = ireq->rcv_wscale; 603 opts->options |= OPTION_WSCALE; 604 remaining -= TCPOLEN_WSCALE_ALIGNED; 605 } 606 if (likely(ireq->tstamp_ok)) { 607 opts->options |= OPTION_TS; 608 opts->tsval = TCP_SKB_CB(skb)->when; 609 opts->tsecr = req->ts_recent; 610 remaining -= TCPOLEN_TSTAMP_ALIGNED; 611 } 612 if (likely(ireq->sack_ok)) { 613 opts->options |= OPTION_SACK_ADVERTISE; 614 if (unlikely(!ireq->tstamp_ok)) 615 remaining -= TCPOLEN_SACKPERM_ALIGNED; 616 } 617 if (foc != NULL) { 618 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 619 need = (need + 3) & ~3U; /* Align to 32 bits */ 620 if (remaining >= need) { 621 opts->options |= OPTION_FAST_OPEN_COOKIE; 622 opts->fastopen_cookie = foc; 623 remaining -= need; 624 } 625 } 626 627 return MAX_TCP_OPTION_SPACE - remaining; 628 } 629 630 /* Compute TCP options for ESTABLISHED sockets. This is not the 631 * final wire format yet. 632 */ 633 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 634 struct tcp_out_options *opts, 635 struct tcp_md5sig_key **md5) 636 { 637 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL; 638 struct tcp_sock *tp = tcp_sk(sk); 639 unsigned int size = 0; 640 unsigned int eff_sacks; 641 642 opts->options = 0; 643 644 #ifdef CONFIG_TCP_MD5SIG 645 *md5 = tp->af_specific->md5_lookup(sk, sk); 646 if (unlikely(*md5)) { 647 opts->options |= OPTION_MD5; 648 size += TCPOLEN_MD5SIG_ALIGNED; 649 } 650 #else 651 *md5 = NULL; 652 #endif 653 654 if (likely(tp->rx_opt.tstamp_ok)) { 655 opts->options |= OPTION_TS; 656 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0; 657 opts->tsecr = tp->rx_opt.ts_recent; 658 size += TCPOLEN_TSTAMP_ALIGNED; 659 } 660 661 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 662 if (unlikely(eff_sacks)) { 663 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 664 opts->num_sack_blocks = 665 min_t(unsigned int, eff_sacks, 666 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 667 TCPOLEN_SACK_PERBLOCK); 668 size += TCPOLEN_SACK_BASE_ALIGNED + 669 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 670 } 671 672 return size; 673 } 674 675 676 /* TCP SMALL QUEUES (TSQ) 677 * 678 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 679 * to reduce RTT and bufferbloat. 680 * We do this using a special skb destructor (tcp_wfree). 681 * 682 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 683 * needs to be reallocated in a driver. 684 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 685 * 686 * Since transmit from skb destructor is forbidden, we use a tasklet 687 * to process all sockets that eventually need to send more skbs. 688 * We use one tasklet per cpu, with its own queue of sockets. 689 */ 690 struct tsq_tasklet { 691 struct tasklet_struct tasklet; 692 struct list_head head; /* queue of tcp sockets */ 693 }; 694 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 695 696 static void tcp_tsq_handler(struct sock *sk) 697 { 698 if ((1 << sk->sk_state) & 699 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 700 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 701 tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC); 702 } 703 /* 704 * One tasklet per cpu tries to send more skbs. 705 * We run in tasklet context but need to disable irqs when 706 * transferring tsq->head because tcp_wfree() might 707 * interrupt us (non NAPI drivers) 708 */ 709 static void tcp_tasklet_func(unsigned long data) 710 { 711 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 712 LIST_HEAD(list); 713 unsigned long flags; 714 struct list_head *q, *n; 715 struct tcp_sock *tp; 716 struct sock *sk; 717 718 local_irq_save(flags); 719 list_splice_init(&tsq->head, &list); 720 local_irq_restore(flags); 721 722 list_for_each_safe(q, n, &list) { 723 tp = list_entry(q, struct tcp_sock, tsq_node); 724 list_del(&tp->tsq_node); 725 726 sk = (struct sock *)tp; 727 bh_lock_sock(sk); 728 729 if (!sock_owned_by_user(sk)) { 730 tcp_tsq_handler(sk); 731 } else { 732 /* defer the work to tcp_release_cb() */ 733 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 734 } 735 bh_unlock_sock(sk); 736 737 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 738 sk_free(sk); 739 } 740 } 741 742 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 743 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 744 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 745 (1UL << TCP_MTU_REDUCED_DEFERRED)) 746 /** 747 * tcp_release_cb - tcp release_sock() callback 748 * @sk: socket 749 * 750 * called from release_sock() to perform protocol dependent 751 * actions before socket release. 752 */ 753 void tcp_release_cb(struct sock *sk) 754 { 755 struct tcp_sock *tp = tcp_sk(sk); 756 unsigned long flags, nflags; 757 758 /* perform an atomic operation only if at least one flag is set */ 759 do { 760 flags = tp->tsq_flags; 761 if (!(flags & TCP_DEFERRED_ALL)) 762 return; 763 nflags = flags & ~TCP_DEFERRED_ALL; 764 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 765 766 if (flags & (1UL << TCP_TSQ_DEFERRED)) 767 tcp_tsq_handler(sk); 768 769 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 770 tcp_write_timer_handler(sk); 771 __sock_put(sk); 772 } 773 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 774 tcp_delack_timer_handler(sk); 775 __sock_put(sk); 776 } 777 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 778 sk->sk_prot->mtu_reduced(sk); 779 __sock_put(sk); 780 } 781 } 782 EXPORT_SYMBOL(tcp_release_cb); 783 784 void __init tcp_tasklet_init(void) 785 { 786 int i; 787 788 for_each_possible_cpu(i) { 789 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 790 791 INIT_LIST_HEAD(&tsq->head); 792 tasklet_init(&tsq->tasklet, 793 tcp_tasklet_func, 794 (unsigned long)tsq); 795 } 796 } 797 798 /* 799 * Write buffer destructor automatically called from kfree_skb. 800 * We can't xmit new skbs from this context, as we might already 801 * hold qdisc lock. 802 */ 803 void tcp_wfree(struct sk_buff *skb) 804 { 805 struct sock *sk = skb->sk; 806 struct tcp_sock *tp = tcp_sk(sk); 807 808 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 809 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 810 unsigned long flags; 811 struct tsq_tasklet *tsq; 812 813 /* Keep a ref on socket. 814 * This last ref will be released in tcp_tasklet_func() 815 */ 816 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc); 817 818 /* queue this socket to tasklet queue */ 819 local_irq_save(flags); 820 tsq = &__get_cpu_var(tsq_tasklet); 821 list_add(&tp->tsq_node, &tsq->head); 822 tasklet_schedule(&tsq->tasklet); 823 local_irq_restore(flags); 824 } else { 825 sock_wfree(skb); 826 } 827 } 828 829 /* This routine actually transmits TCP packets queued in by 830 * tcp_do_sendmsg(). This is used by both the initial 831 * transmission and possible later retransmissions. 832 * All SKB's seen here are completely headerless. It is our 833 * job to build the TCP header, and pass the packet down to 834 * IP so it can do the same plus pass the packet off to the 835 * device. 836 * 837 * We are working here with either a clone of the original 838 * SKB, or a fresh unique copy made by the retransmit engine. 839 */ 840 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 841 gfp_t gfp_mask) 842 { 843 const struct inet_connection_sock *icsk = inet_csk(sk); 844 struct inet_sock *inet; 845 struct tcp_sock *tp; 846 struct tcp_skb_cb *tcb; 847 struct tcp_out_options opts; 848 unsigned int tcp_options_size, tcp_header_size; 849 struct tcp_md5sig_key *md5; 850 struct tcphdr *th; 851 int err; 852 853 BUG_ON(!skb || !tcp_skb_pcount(skb)); 854 855 if (clone_it) { 856 const struct sk_buff *fclone = skb + 1; 857 858 /* If congestion control is doing timestamping, we must 859 * take such a timestamp before we potentially clone/copy. 860 */ 861 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP) 862 __net_timestamp(skb); 863 864 if (unlikely(skb->fclone == SKB_FCLONE_ORIG && 865 fclone->fclone == SKB_FCLONE_CLONE)) 866 NET_INC_STATS_BH(sock_net(sk), 867 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 868 869 if (unlikely(skb_cloned(skb))) 870 skb = pskb_copy(skb, gfp_mask); 871 else 872 skb = skb_clone(skb, gfp_mask); 873 if (unlikely(!skb)) 874 return -ENOBUFS; 875 } 876 877 inet = inet_sk(sk); 878 tp = tcp_sk(sk); 879 tcb = TCP_SKB_CB(skb); 880 memset(&opts, 0, sizeof(opts)); 881 882 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 883 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 884 else 885 tcp_options_size = tcp_established_options(sk, skb, &opts, 886 &md5); 887 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 888 889 if (tcp_packets_in_flight(tp) == 0) 890 tcp_ca_event(sk, CA_EVENT_TX_START); 891 892 /* if no packet is in qdisc/device queue, then allow XPS to select 893 * another queue. 894 */ 895 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0; 896 897 skb_push(skb, tcp_header_size); 898 skb_reset_transport_header(skb); 899 900 skb_orphan(skb); 901 skb->sk = sk; 902 skb->destructor = tcp_wfree; 903 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 904 905 /* Build TCP header and checksum it. */ 906 th = tcp_hdr(skb); 907 th->source = inet->inet_sport; 908 th->dest = inet->inet_dport; 909 th->seq = htonl(tcb->seq); 910 th->ack_seq = htonl(tp->rcv_nxt); 911 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 912 tcb->tcp_flags); 913 914 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 915 /* RFC1323: The window in SYN & SYN/ACK segments 916 * is never scaled. 917 */ 918 th->window = htons(min(tp->rcv_wnd, 65535U)); 919 } else { 920 th->window = htons(tcp_select_window(sk)); 921 } 922 th->check = 0; 923 th->urg_ptr = 0; 924 925 /* The urg_mode check is necessary during a below snd_una win probe */ 926 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 927 if (before(tp->snd_up, tcb->seq + 0x10000)) { 928 th->urg_ptr = htons(tp->snd_up - tcb->seq); 929 th->urg = 1; 930 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 931 th->urg_ptr = htons(0xFFFF); 932 th->urg = 1; 933 } 934 } 935 936 tcp_options_write((__be32 *)(th + 1), tp, &opts); 937 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 938 TCP_ECN_send(sk, skb, tcp_header_size); 939 940 #ifdef CONFIG_TCP_MD5SIG 941 /* Calculate the MD5 hash, as we have all we need now */ 942 if (md5) { 943 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 944 tp->af_specific->calc_md5_hash(opts.hash_location, 945 md5, sk, NULL, skb); 946 } 947 #endif 948 949 icsk->icsk_af_ops->send_check(sk, skb); 950 951 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 952 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 953 954 if (skb->len != tcp_header_size) 955 tcp_event_data_sent(tp, sk); 956 957 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 958 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 959 tcp_skb_pcount(skb)); 960 961 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl); 962 if (likely(err <= 0)) 963 return err; 964 965 tcp_enter_cwr(sk, 1); 966 967 return net_xmit_eval(err); 968 } 969 970 /* This routine just queues the buffer for sending. 971 * 972 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 973 * otherwise socket can stall. 974 */ 975 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 976 { 977 struct tcp_sock *tp = tcp_sk(sk); 978 979 /* Advance write_seq and place onto the write_queue. */ 980 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 981 skb_header_release(skb); 982 tcp_add_write_queue_tail(sk, skb); 983 sk->sk_wmem_queued += skb->truesize; 984 sk_mem_charge(sk, skb->truesize); 985 } 986 987 /* Initialize TSO segments for a packet. */ 988 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 989 unsigned int mss_now) 990 { 991 struct skb_shared_info *shinfo = skb_shinfo(skb); 992 993 /* Make sure we own this skb before messing gso_size/gso_segs */ 994 WARN_ON_ONCE(skb_cloned(skb)); 995 996 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 997 /* Avoid the costly divide in the normal 998 * non-TSO case. 999 */ 1000 shinfo->gso_segs = 1; 1001 shinfo->gso_size = 0; 1002 shinfo->gso_type = 0; 1003 } else { 1004 shinfo->gso_segs = DIV_ROUND_UP(skb->len, mss_now); 1005 shinfo->gso_size = mss_now; 1006 shinfo->gso_type = sk->sk_gso_type; 1007 } 1008 } 1009 1010 /* When a modification to fackets out becomes necessary, we need to check 1011 * skb is counted to fackets_out or not. 1012 */ 1013 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1014 int decr) 1015 { 1016 struct tcp_sock *tp = tcp_sk(sk); 1017 1018 if (!tp->sacked_out || tcp_is_reno(tp)) 1019 return; 1020 1021 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1022 tp->fackets_out -= decr; 1023 } 1024 1025 /* Pcount in the middle of the write queue got changed, we need to do various 1026 * tweaks to fix counters 1027 */ 1028 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1029 { 1030 struct tcp_sock *tp = tcp_sk(sk); 1031 1032 tp->packets_out -= decr; 1033 1034 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1035 tp->sacked_out -= decr; 1036 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1037 tp->retrans_out -= decr; 1038 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1039 tp->lost_out -= decr; 1040 1041 /* Reno case is special. Sigh... */ 1042 if (tcp_is_reno(tp) && decr > 0) 1043 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1044 1045 tcp_adjust_fackets_out(sk, skb, decr); 1046 1047 if (tp->lost_skb_hint && 1048 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1049 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1050 tp->lost_cnt_hint -= decr; 1051 1052 tcp_verify_left_out(tp); 1053 } 1054 1055 /* Function to create two new TCP segments. Shrinks the given segment 1056 * to the specified size and appends a new segment with the rest of the 1057 * packet to the list. This won't be called frequently, I hope. 1058 * Remember, these are still headerless SKBs at this point. 1059 */ 1060 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1061 unsigned int mss_now) 1062 { 1063 struct tcp_sock *tp = tcp_sk(sk); 1064 struct sk_buff *buff; 1065 int nsize, old_factor; 1066 int nlen; 1067 u8 flags; 1068 1069 if (WARN_ON(len > skb->len)) 1070 return -EINVAL; 1071 1072 nsize = skb_headlen(skb) - len; 1073 if (nsize < 0) 1074 nsize = 0; 1075 1076 if (skb_unclone(skb, GFP_ATOMIC)) 1077 return -ENOMEM; 1078 1079 /* Get a new skb... force flag on. */ 1080 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 1081 if (buff == NULL) 1082 return -ENOMEM; /* We'll just try again later. */ 1083 1084 sk->sk_wmem_queued += buff->truesize; 1085 sk_mem_charge(sk, buff->truesize); 1086 nlen = skb->len - len - nsize; 1087 buff->truesize += nlen; 1088 skb->truesize -= nlen; 1089 1090 /* Correct the sequence numbers. */ 1091 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1092 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1093 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1094 1095 /* PSH and FIN should only be set in the second packet. */ 1096 flags = TCP_SKB_CB(skb)->tcp_flags; 1097 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1098 TCP_SKB_CB(buff)->tcp_flags = flags; 1099 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1100 1101 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1102 /* Copy and checksum data tail into the new buffer. */ 1103 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1104 skb_put(buff, nsize), 1105 nsize, 0); 1106 1107 skb_trim(skb, len); 1108 1109 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1110 } else { 1111 skb->ip_summed = CHECKSUM_PARTIAL; 1112 skb_split(skb, buff, len); 1113 } 1114 1115 buff->ip_summed = skb->ip_summed; 1116 1117 /* Looks stupid, but our code really uses when of 1118 * skbs, which it never sent before. --ANK 1119 */ 1120 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 1121 buff->tstamp = skb->tstamp; 1122 1123 old_factor = tcp_skb_pcount(skb); 1124 1125 /* Fix up tso_factor for both original and new SKB. */ 1126 tcp_set_skb_tso_segs(sk, skb, mss_now); 1127 tcp_set_skb_tso_segs(sk, buff, mss_now); 1128 1129 /* If this packet has been sent out already, we must 1130 * adjust the various packet counters. 1131 */ 1132 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1133 int diff = old_factor - tcp_skb_pcount(skb) - 1134 tcp_skb_pcount(buff); 1135 1136 if (diff) 1137 tcp_adjust_pcount(sk, skb, diff); 1138 } 1139 1140 /* Link BUFF into the send queue. */ 1141 skb_header_release(buff); 1142 tcp_insert_write_queue_after(skb, buff, sk); 1143 1144 return 0; 1145 } 1146 1147 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1148 * eventually). The difference is that pulled data not copied, but 1149 * immediately discarded. 1150 */ 1151 static void __pskb_trim_head(struct sk_buff *skb, int len) 1152 { 1153 struct skb_shared_info *shinfo; 1154 int i, k, eat; 1155 1156 eat = min_t(int, len, skb_headlen(skb)); 1157 if (eat) { 1158 __skb_pull(skb, eat); 1159 len -= eat; 1160 if (!len) 1161 return; 1162 } 1163 eat = len; 1164 k = 0; 1165 shinfo = skb_shinfo(skb); 1166 for (i = 0; i < shinfo->nr_frags; i++) { 1167 int size = skb_frag_size(&shinfo->frags[i]); 1168 1169 if (size <= eat) { 1170 skb_frag_unref(skb, i); 1171 eat -= size; 1172 } else { 1173 shinfo->frags[k] = shinfo->frags[i]; 1174 if (eat) { 1175 shinfo->frags[k].page_offset += eat; 1176 skb_frag_size_sub(&shinfo->frags[k], eat); 1177 eat = 0; 1178 } 1179 k++; 1180 } 1181 } 1182 shinfo->nr_frags = k; 1183 1184 skb_reset_tail_pointer(skb); 1185 skb->data_len -= len; 1186 skb->len = skb->data_len; 1187 } 1188 1189 /* Remove acked data from a packet in the transmit queue. */ 1190 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1191 { 1192 if (skb_unclone(skb, GFP_ATOMIC)) 1193 return -ENOMEM; 1194 1195 __pskb_trim_head(skb, len); 1196 1197 TCP_SKB_CB(skb)->seq += len; 1198 skb->ip_summed = CHECKSUM_PARTIAL; 1199 1200 skb->truesize -= len; 1201 sk->sk_wmem_queued -= len; 1202 sk_mem_uncharge(sk, len); 1203 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1204 1205 /* Any change of skb->len requires recalculation of tso factor. */ 1206 if (tcp_skb_pcount(skb) > 1) 1207 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1208 1209 return 0; 1210 } 1211 1212 /* Calculate MSS not accounting any TCP options. */ 1213 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1214 { 1215 const struct tcp_sock *tp = tcp_sk(sk); 1216 const struct inet_connection_sock *icsk = inet_csk(sk); 1217 int mss_now; 1218 1219 /* Calculate base mss without TCP options: 1220 It is MMS_S - sizeof(tcphdr) of rfc1122 1221 */ 1222 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1223 1224 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1225 if (icsk->icsk_af_ops->net_frag_header_len) { 1226 const struct dst_entry *dst = __sk_dst_get(sk); 1227 1228 if (dst && dst_allfrag(dst)) 1229 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1230 } 1231 1232 /* Clamp it (mss_clamp does not include tcp options) */ 1233 if (mss_now > tp->rx_opt.mss_clamp) 1234 mss_now = tp->rx_opt.mss_clamp; 1235 1236 /* Now subtract optional transport overhead */ 1237 mss_now -= icsk->icsk_ext_hdr_len; 1238 1239 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1240 if (mss_now < 48) 1241 mss_now = 48; 1242 return mss_now; 1243 } 1244 1245 /* Calculate MSS. Not accounting for SACKs here. */ 1246 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1247 { 1248 /* Subtract TCP options size, not including SACKs */ 1249 return __tcp_mtu_to_mss(sk, pmtu) - 1250 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1251 } 1252 1253 /* Inverse of above */ 1254 int tcp_mss_to_mtu(struct sock *sk, int mss) 1255 { 1256 const struct tcp_sock *tp = tcp_sk(sk); 1257 const struct inet_connection_sock *icsk = inet_csk(sk); 1258 int mtu; 1259 1260 mtu = mss + 1261 tp->tcp_header_len + 1262 icsk->icsk_ext_hdr_len + 1263 icsk->icsk_af_ops->net_header_len; 1264 1265 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1266 if (icsk->icsk_af_ops->net_frag_header_len) { 1267 const struct dst_entry *dst = __sk_dst_get(sk); 1268 1269 if (dst && dst_allfrag(dst)) 1270 mtu += icsk->icsk_af_ops->net_frag_header_len; 1271 } 1272 return mtu; 1273 } 1274 1275 /* MTU probing init per socket */ 1276 void tcp_mtup_init(struct sock *sk) 1277 { 1278 struct tcp_sock *tp = tcp_sk(sk); 1279 struct inet_connection_sock *icsk = inet_csk(sk); 1280 1281 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 1282 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1283 icsk->icsk_af_ops->net_header_len; 1284 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 1285 icsk->icsk_mtup.probe_size = 0; 1286 } 1287 EXPORT_SYMBOL(tcp_mtup_init); 1288 1289 /* This function synchronize snd mss to current pmtu/exthdr set. 1290 1291 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1292 for TCP options, but includes only bare TCP header. 1293 1294 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1295 It is minimum of user_mss and mss received with SYN. 1296 It also does not include TCP options. 1297 1298 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1299 1300 tp->mss_cache is current effective sending mss, including 1301 all tcp options except for SACKs. It is evaluated, 1302 taking into account current pmtu, but never exceeds 1303 tp->rx_opt.mss_clamp. 1304 1305 NOTE1. rfc1122 clearly states that advertised MSS 1306 DOES NOT include either tcp or ip options. 1307 1308 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1309 are READ ONLY outside this function. --ANK (980731) 1310 */ 1311 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1312 { 1313 struct tcp_sock *tp = tcp_sk(sk); 1314 struct inet_connection_sock *icsk = inet_csk(sk); 1315 int mss_now; 1316 1317 if (icsk->icsk_mtup.search_high > pmtu) 1318 icsk->icsk_mtup.search_high = pmtu; 1319 1320 mss_now = tcp_mtu_to_mss(sk, pmtu); 1321 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1322 1323 /* And store cached results */ 1324 icsk->icsk_pmtu_cookie = pmtu; 1325 if (icsk->icsk_mtup.enabled) 1326 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1327 tp->mss_cache = mss_now; 1328 1329 return mss_now; 1330 } 1331 EXPORT_SYMBOL(tcp_sync_mss); 1332 1333 /* Compute the current effective MSS, taking SACKs and IP options, 1334 * and even PMTU discovery events into account. 1335 */ 1336 unsigned int tcp_current_mss(struct sock *sk) 1337 { 1338 const struct tcp_sock *tp = tcp_sk(sk); 1339 const struct dst_entry *dst = __sk_dst_get(sk); 1340 u32 mss_now; 1341 unsigned int header_len; 1342 struct tcp_out_options opts; 1343 struct tcp_md5sig_key *md5; 1344 1345 mss_now = tp->mss_cache; 1346 1347 if (dst) { 1348 u32 mtu = dst_mtu(dst); 1349 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1350 mss_now = tcp_sync_mss(sk, mtu); 1351 } 1352 1353 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1354 sizeof(struct tcphdr); 1355 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1356 * some common options. If this is an odd packet (because we have SACK 1357 * blocks etc) then our calculated header_len will be different, and 1358 * we have to adjust mss_now correspondingly */ 1359 if (header_len != tp->tcp_header_len) { 1360 int delta = (int) header_len - tp->tcp_header_len; 1361 mss_now -= delta; 1362 } 1363 1364 return mss_now; 1365 } 1366 1367 /* Congestion window validation. (RFC2861) */ 1368 static void tcp_cwnd_validate(struct sock *sk) 1369 { 1370 struct tcp_sock *tp = tcp_sk(sk); 1371 1372 if (tp->packets_out >= tp->snd_cwnd) { 1373 /* Network is feed fully. */ 1374 tp->snd_cwnd_used = 0; 1375 tp->snd_cwnd_stamp = tcp_time_stamp; 1376 } else { 1377 /* Network starves. */ 1378 if (tp->packets_out > tp->snd_cwnd_used) 1379 tp->snd_cwnd_used = tp->packets_out; 1380 1381 if (sysctl_tcp_slow_start_after_idle && 1382 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1383 tcp_cwnd_application_limited(sk); 1384 } 1385 } 1386 1387 /* Minshall's variant of the Nagle send check. */ 1388 static bool tcp_minshall_check(const struct tcp_sock *tp) 1389 { 1390 return after(tp->snd_sml, tp->snd_una) && 1391 !after(tp->snd_sml, tp->snd_nxt); 1392 } 1393 1394 /* Update snd_sml if this skb is under mss 1395 * Note that a TSO packet might end with a sub-mss segment 1396 * The test is really : 1397 * if ((skb->len % mss) != 0) 1398 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1399 * But we can avoid doing the divide again given we already have 1400 * skb_pcount = skb->len / mss_now 1401 */ 1402 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1403 const struct sk_buff *skb) 1404 { 1405 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1406 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1407 } 1408 1409 /* Return false, if packet can be sent now without violation Nagle's rules: 1410 * 1. It is full sized. (provided by caller in %partial bool) 1411 * 2. Or it contains FIN. (already checked by caller) 1412 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1413 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1414 * With Minshall's modification: all sent small packets are ACKed. 1415 */ 1416 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1417 unsigned int mss_now, int nonagle) 1418 { 1419 return partial && 1420 ((nonagle & TCP_NAGLE_CORK) || 1421 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1422 } 1423 /* Returns the portion of skb which can be sent right away */ 1424 static unsigned int tcp_mss_split_point(const struct sock *sk, 1425 const struct sk_buff *skb, 1426 unsigned int mss_now, 1427 unsigned int max_segs, 1428 int nonagle) 1429 { 1430 const struct tcp_sock *tp = tcp_sk(sk); 1431 u32 partial, needed, window, max_len; 1432 1433 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1434 max_len = mss_now * max_segs; 1435 1436 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1437 return max_len; 1438 1439 needed = min(skb->len, window); 1440 1441 if (max_len <= needed) 1442 return max_len; 1443 1444 partial = needed % mss_now; 1445 /* If last segment is not a full MSS, check if Nagle rules allow us 1446 * to include this last segment in this skb. 1447 * Otherwise, we'll split the skb at last MSS boundary 1448 */ 1449 if (tcp_nagle_check(partial != 0, tp, mss_now, nonagle)) 1450 return needed - partial; 1451 1452 return needed; 1453 } 1454 1455 /* Can at least one segment of SKB be sent right now, according to the 1456 * congestion window rules? If so, return how many segments are allowed. 1457 */ 1458 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1459 const struct sk_buff *skb) 1460 { 1461 u32 in_flight, cwnd; 1462 1463 /* Don't be strict about the congestion window for the final FIN. */ 1464 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1465 tcp_skb_pcount(skb) == 1) 1466 return 1; 1467 1468 in_flight = tcp_packets_in_flight(tp); 1469 cwnd = tp->snd_cwnd; 1470 if (in_flight < cwnd) 1471 return (cwnd - in_flight); 1472 1473 return 0; 1474 } 1475 1476 /* Initialize TSO state of a skb. 1477 * This must be invoked the first time we consider transmitting 1478 * SKB onto the wire. 1479 */ 1480 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1481 unsigned int mss_now) 1482 { 1483 int tso_segs = tcp_skb_pcount(skb); 1484 1485 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1486 tcp_set_skb_tso_segs(sk, skb, mss_now); 1487 tso_segs = tcp_skb_pcount(skb); 1488 } 1489 return tso_segs; 1490 } 1491 1492 1493 /* Return true if the Nagle test allows this packet to be 1494 * sent now. 1495 */ 1496 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1497 unsigned int cur_mss, int nonagle) 1498 { 1499 /* Nagle rule does not apply to frames, which sit in the middle of the 1500 * write_queue (they have no chances to get new data). 1501 * 1502 * This is implemented in the callers, where they modify the 'nonagle' 1503 * argument based upon the location of SKB in the send queue. 1504 */ 1505 if (nonagle & TCP_NAGLE_PUSH) 1506 return true; 1507 1508 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1509 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1510 return true; 1511 1512 if (!tcp_nagle_check(skb->len < cur_mss, tp, cur_mss, nonagle)) 1513 return true; 1514 1515 return false; 1516 } 1517 1518 /* Does at least the first segment of SKB fit into the send window? */ 1519 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1520 const struct sk_buff *skb, 1521 unsigned int cur_mss) 1522 { 1523 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1524 1525 if (skb->len > cur_mss) 1526 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1527 1528 return !after(end_seq, tcp_wnd_end(tp)); 1529 } 1530 1531 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1532 * should be put on the wire right now. If so, it returns the number of 1533 * packets allowed by the congestion window. 1534 */ 1535 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1536 unsigned int cur_mss, int nonagle) 1537 { 1538 const struct tcp_sock *tp = tcp_sk(sk); 1539 unsigned int cwnd_quota; 1540 1541 tcp_init_tso_segs(sk, skb, cur_mss); 1542 1543 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1544 return 0; 1545 1546 cwnd_quota = tcp_cwnd_test(tp, skb); 1547 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1548 cwnd_quota = 0; 1549 1550 return cwnd_quota; 1551 } 1552 1553 /* Test if sending is allowed right now. */ 1554 bool tcp_may_send_now(struct sock *sk) 1555 { 1556 const struct tcp_sock *tp = tcp_sk(sk); 1557 struct sk_buff *skb = tcp_send_head(sk); 1558 1559 return skb && 1560 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1561 (tcp_skb_is_last(sk, skb) ? 1562 tp->nonagle : TCP_NAGLE_PUSH)); 1563 } 1564 1565 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1566 * which is put after SKB on the list. It is very much like 1567 * tcp_fragment() except that it may make several kinds of assumptions 1568 * in order to speed up the splitting operation. In particular, we 1569 * know that all the data is in scatter-gather pages, and that the 1570 * packet has never been sent out before (and thus is not cloned). 1571 */ 1572 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1573 unsigned int mss_now, gfp_t gfp) 1574 { 1575 struct sk_buff *buff; 1576 int nlen = skb->len - len; 1577 u8 flags; 1578 1579 /* All of a TSO frame must be composed of paged data. */ 1580 if (skb->len != skb->data_len) 1581 return tcp_fragment(sk, skb, len, mss_now); 1582 1583 buff = sk_stream_alloc_skb(sk, 0, gfp); 1584 if (unlikely(buff == NULL)) 1585 return -ENOMEM; 1586 1587 sk->sk_wmem_queued += buff->truesize; 1588 sk_mem_charge(sk, buff->truesize); 1589 buff->truesize += nlen; 1590 skb->truesize -= nlen; 1591 1592 /* Correct the sequence numbers. */ 1593 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1594 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1595 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1596 1597 /* PSH and FIN should only be set in the second packet. */ 1598 flags = TCP_SKB_CB(skb)->tcp_flags; 1599 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1600 TCP_SKB_CB(buff)->tcp_flags = flags; 1601 1602 /* This packet was never sent out yet, so no SACK bits. */ 1603 TCP_SKB_CB(buff)->sacked = 0; 1604 1605 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1606 skb_split(skb, buff, len); 1607 1608 /* Fix up tso_factor for both original and new SKB. */ 1609 tcp_set_skb_tso_segs(sk, skb, mss_now); 1610 tcp_set_skb_tso_segs(sk, buff, mss_now); 1611 1612 /* Link BUFF into the send queue. */ 1613 skb_header_release(buff); 1614 tcp_insert_write_queue_after(skb, buff, sk); 1615 1616 return 0; 1617 } 1618 1619 /* Try to defer sending, if possible, in order to minimize the amount 1620 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1621 * 1622 * This algorithm is from John Heffner. 1623 */ 1624 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb) 1625 { 1626 struct tcp_sock *tp = tcp_sk(sk); 1627 const struct inet_connection_sock *icsk = inet_csk(sk); 1628 u32 send_win, cong_win, limit, in_flight; 1629 int win_divisor; 1630 1631 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1632 goto send_now; 1633 1634 if (icsk->icsk_ca_state != TCP_CA_Open) 1635 goto send_now; 1636 1637 /* Defer for less than two clock ticks. */ 1638 if (tp->tso_deferred && 1639 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1640 goto send_now; 1641 1642 in_flight = tcp_packets_in_flight(tp); 1643 1644 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1645 1646 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1647 1648 /* From in_flight test above, we know that cwnd > in_flight. */ 1649 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1650 1651 limit = min(send_win, cong_win); 1652 1653 /* If a full-sized TSO skb can be sent, do it. */ 1654 if (limit >= min_t(unsigned int, sk->sk_gso_max_size, 1655 tp->xmit_size_goal_segs * tp->mss_cache)) 1656 goto send_now; 1657 1658 /* Middle in queue won't get any more data, full sendable already? */ 1659 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1660 goto send_now; 1661 1662 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1663 if (win_divisor) { 1664 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1665 1666 /* If at least some fraction of a window is available, 1667 * just use it. 1668 */ 1669 chunk /= win_divisor; 1670 if (limit >= chunk) 1671 goto send_now; 1672 } else { 1673 /* Different approach, try not to defer past a single 1674 * ACK. Receiver should ACK every other full sized 1675 * frame, so if we have space for more than 3 frames 1676 * then send now. 1677 */ 1678 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1679 goto send_now; 1680 } 1681 1682 /* Ok, it looks like it is advisable to defer. 1683 * Do not rearm the timer if already set to not break TCP ACK clocking. 1684 */ 1685 if (!tp->tso_deferred) 1686 tp->tso_deferred = 1 | (jiffies << 1); 1687 1688 return true; 1689 1690 send_now: 1691 tp->tso_deferred = 0; 1692 return false; 1693 } 1694 1695 /* Create a new MTU probe if we are ready. 1696 * MTU probe is regularly attempting to increase the path MTU by 1697 * deliberately sending larger packets. This discovers routing 1698 * changes resulting in larger path MTUs. 1699 * 1700 * Returns 0 if we should wait to probe (no cwnd available), 1701 * 1 if a probe was sent, 1702 * -1 otherwise 1703 */ 1704 static int tcp_mtu_probe(struct sock *sk) 1705 { 1706 struct tcp_sock *tp = tcp_sk(sk); 1707 struct inet_connection_sock *icsk = inet_csk(sk); 1708 struct sk_buff *skb, *nskb, *next; 1709 int len; 1710 int probe_size; 1711 int size_needed; 1712 int copy; 1713 int mss_now; 1714 1715 /* Not currently probing/verifying, 1716 * not in recovery, 1717 * have enough cwnd, and 1718 * not SACKing (the variable headers throw things off) */ 1719 if (!icsk->icsk_mtup.enabled || 1720 icsk->icsk_mtup.probe_size || 1721 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1722 tp->snd_cwnd < 11 || 1723 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1724 return -1; 1725 1726 /* Very simple search strategy: just double the MSS. */ 1727 mss_now = tcp_current_mss(sk); 1728 probe_size = 2 * tp->mss_cache; 1729 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1730 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1731 /* TODO: set timer for probe_converge_event */ 1732 return -1; 1733 } 1734 1735 /* Have enough data in the send queue to probe? */ 1736 if (tp->write_seq - tp->snd_nxt < size_needed) 1737 return -1; 1738 1739 if (tp->snd_wnd < size_needed) 1740 return -1; 1741 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1742 return 0; 1743 1744 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1745 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1746 if (!tcp_packets_in_flight(tp)) 1747 return -1; 1748 else 1749 return 0; 1750 } 1751 1752 /* We're allowed to probe. Build it now. */ 1753 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1754 return -1; 1755 sk->sk_wmem_queued += nskb->truesize; 1756 sk_mem_charge(sk, nskb->truesize); 1757 1758 skb = tcp_send_head(sk); 1759 1760 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1761 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1762 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1763 TCP_SKB_CB(nskb)->sacked = 0; 1764 nskb->csum = 0; 1765 nskb->ip_summed = skb->ip_summed; 1766 1767 tcp_insert_write_queue_before(nskb, skb, sk); 1768 1769 len = 0; 1770 tcp_for_write_queue_from_safe(skb, next, sk) { 1771 copy = min_t(int, skb->len, probe_size - len); 1772 if (nskb->ip_summed) 1773 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1774 else 1775 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1776 skb_put(nskb, copy), 1777 copy, nskb->csum); 1778 1779 if (skb->len <= copy) { 1780 /* We've eaten all the data from this skb. 1781 * Throw it away. */ 1782 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1783 tcp_unlink_write_queue(skb, sk); 1784 sk_wmem_free_skb(sk, skb); 1785 } else { 1786 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1787 ~(TCPHDR_FIN|TCPHDR_PSH); 1788 if (!skb_shinfo(skb)->nr_frags) { 1789 skb_pull(skb, copy); 1790 if (skb->ip_summed != CHECKSUM_PARTIAL) 1791 skb->csum = csum_partial(skb->data, 1792 skb->len, 0); 1793 } else { 1794 __pskb_trim_head(skb, copy); 1795 tcp_set_skb_tso_segs(sk, skb, mss_now); 1796 } 1797 TCP_SKB_CB(skb)->seq += copy; 1798 } 1799 1800 len += copy; 1801 1802 if (len >= probe_size) 1803 break; 1804 } 1805 tcp_init_tso_segs(sk, nskb, nskb->len); 1806 1807 /* We're ready to send. If this fails, the probe will 1808 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1809 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1810 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1811 /* Decrement cwnd here because we are sending 1812 * effectively two packets. */ 1813 tp->snd_cwnd--; 1814 tcp_event_new_data_sent(sk, nskb); 1815 1816 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1817 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1818 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1819 1820 return 1; 1821 } 1822 1823 return -1; 1824 } 1825 1826 /* This routine writes packets to the network. It advances the 1827 * send_head. This happens as incoming acks open up the remote 1828 * window for us. 1829 * 1830 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1831 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1832 * account rare use of URG, this is not a big flaw. 1833 * 1834 * Send at most one packet when push_one > 0. Temporarily ignore 1835 * cwnd limit to force at most one packet out when push_one == 2. 1836 1837 * Returns true, if no segments are in flight and we have queued segments, 1838 * but cannot send anything now because of SWS or another problem. 1839 */ 1840 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1841 int push_one, gfp_t gfp) 1842 { 1843 struct tcp_sock *tp = tcp_sk(sk); 1844 struct sk_buff *skb; 1845 unsigned int tso_segs, sent_pkts; 1846 int cwnd_quota; 1847 int result; 1848 1849 sent_pkts = 0; 1850 1851 if (!push_one) { 1852 /* Do MTU probing. */ 1853 result = tcp_mtu_probe(sk); 1854 if (!result) { 1855 return false; 1856 } else if (result > 0) { 1857 sent_pkts = 1; 1858 } 1859 } 1860 1861 while ((skb = tcp_send_head(sk))) { 1862 unsigned int limit; 1863 1864 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1865 BUG_ON(!tso_segs); 1866 1867 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) 1868 goto repair; /* Skip network transmission */ 1869 1870 cwnd_quota = tcp_cwnd_test(tp, skb); 1871 if (!cwnd_quota) { 1872 if (push_one == 2) 1873 /* Force out a loss probe pkt. */ 1874 cwnd_quota = 1; 1875 else 1876 break; 1877 } 1878 1879 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1880 break; 1881 1882 if (tso_segs == 1) { 1883 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1884 (tcp_skb_is_last(sk, skb) ? 1885 nonagle : TCP_NAGLE_PUSH)))) 1886 break; 1887 } else { 1888 if (!push_one && tcp_tso_should_defer(sk, skb)) 1889 break; 1890 } 1891 1892 /* TCP Small Queues : 1893 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 1894 * This allows for : 1895 * - better RTT estimation and ACK scheduling 1896 * - faster recovery 1897 * - high rates 1898 * Alas, some drivers / subsystems require a fair amount 1899 * of queued bytes to ensure line rate. 1900 * One example is wifi aggregation (802.11 AMPDU) 1901 */ 1902 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes, 1903 sk->sk_pacing_rate >> 10); 1904 1905 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 1906 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 1907 break; 1908 } 1909 1910 limit = mss_now; 1911 if (tso_segs > 1 && !tcp_urg_mode(tp)) 1912 limit = tcp_mss_split_point(sk, skb, mss_now, 1913 min_t(unsigned int, 1914 cwnd_quota, 1915 sk->sk_gso_max_segs), 1916 nonagle); 1917 1918 if (skb->len > limit && 1919 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 1920 break; 1921 1922 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1923 1924 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 1925 break; 1926 1927 repair: 1928 /* Advance the send_head. This one is sent out. 1929 * This call will increment packets_out. 1930 */ 1931 tcp_event_new_data_sent(sk, skb); 1932 1933 tcp_minshall_update(tp, mss_now, skb); 1934 sent_pkts += tcp_skb_pcount(skb); 1935 1936 if (push_one) 1937 break; 1938 } 1939 1940 if (likely(sent_pkts)) { 1941 if (tcp_in_cwnd_reduction(sk)) 1942 tp->prr_out += sent_pkts; 1943 1944 /* Send one loss probe per tail loss episode. */ 1945 if (push_one != 2) 1946 tcp_schedule_loss_probe(sk); 1947 tcp_cwnd_validate(sk); 1948 return false; 1949 } 1950 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk)); 1951 } 1952 1953 bool tcp_schedule_loss_probe(struct sock *sk) 1954 { 1955 struct inet_connection_sock *icsk = inet_csk(sk); 1956 struct tcp_sock *tp = tcp_sk(sk); 1957 u32 timeout, tlp_time_stamp, rto_time_stamp; 1958 u32 rtt = tp->srtt >> 3; 1959 1960 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 1961 return false; 1962 /* No consecutive loss probes. */ 1963 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 1964 tcp_rearm_rto(sk); 1965 return false; 1966 } 1967 /* Don't do any loss probe on a Fast Open connection before 3WHS 1968 * finishes. 1969 */ 1970 if (sk->sk_state == TCP_SYN_RECV) 1971 return false; 1972 1973 /* TLP is only scheduled when next timer event is RTO. */ 1974 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 1975 return false; 1976 1977 /* Schedule a loss probe in 2*RTT for SACK capable connections 1978 * in Open state, that are either limited by cwnd or application. 1979 */ 1980 if (sysctl_tcp_early_retrans < 3 || !rtt || !tp->packets_out || 1981 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 1982 return false; 1983 1984 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 1985 tcp_send_head(sk)) 1986 return false; 1987 1988 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 1989 * for delayed ack when there's one outstanding packet. 1990 */ 1991 timeout = rtt << 1; 1992 if (tp->packets_out == 1) 1993 timeout = max_t(u32, timeout, 1994 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 1995 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 1996 1997 /* If RTO is shorter, just schedule TLP in its place. */ 1998 tlp_time_stamp = tcp_time_stamp + timeout; 1999 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2000 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2001 s32 delta = rto_time_stamp - tcp_time_stamp; 2002 if (delta > 0) 2003 timeout = delta; 2004 } 2005 2006 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2007 TCP_RTO_MAX); 2008 return true; 2009 } 2010 2011 /* When probe timeout (PTO) fires, send a new segment if one exists, else 2012 * retransmit the last segment. 2013 */ 2014 void tcp_send_loss_probe(struct sock *sk) 2015 { 2016 struct tcp_sock *tp = tcp_sk(sk); 2017 struct sk_buff *skb; 2018 int pcount; 2019 int mss = tcp_current_mss(sk); 2020 int err = -1; 2021 2022 if (tcp_send_head(sk) != NULL) { 2023 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2024 goto rearm_timer; 2025 } 2026 2027 /* At most one outstanding TLP retransmission. */ 2028 if (tp->tlp_high_seq) 2029 goto rearm_timer; 2030 2031 /* Retransmit last segment. */ 2032 skb = tcp_write_queue_tail(sk); 2033 if (WARN_ON(!skb)) 2034 goto rearm_timer; 2035 2036 pcount = tcp_skb_pcount(skb); 2037 if (WARN_ON(!pcount)) 2038 goto rearm_timer; 2039 2040 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2041 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss))) 2042 goto rearm_timer; 2043 skb = tcp_write_queue_tail(sk); 2044 } 2045 2046 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2047 goto rearm_timer; 2048 2049 /* Probe with zero data doesn't trigger fast recovery. */ 2050 if (skb->len > 0) 2051 err = __tcp_retransmit_skb(sk, skb); 2052 2053 /* Record snd_nxt for loss detection. */ 2054 if (likely(!err)) 2055 tp->tlp_high_seq = tp->snd_nxt; 2056 2057 rearm_timer: 2058 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2059 inet_csk(sk)->icsk_rto, 2060 TCP_RTO_MAX); 2061 2062 if (likely(!err)) 2063 NET_INC_STATS_BH(sock_net(sk), 2064 LINUX_MIB_TCPLOSSPROBES); 2065 return; 2066 } 2067 2068 /* Push out any pending frames which were held back due to 2069 * TCP_CORK or attempt at coalescing tiny packets. 2070 * The socket must be locked by the caller. 2071 */ 2072 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2073 int nonagle) 2074 { 2075 /* If we are closed, the bytes will have to remain here. 2076 * In time closedown will finish, we empty the write queue and 2077 * all will be happy. 2078 */ 2079 if (unlikely(sk->sk_state == TCP_CLOSE)) 2080 return; 2081 2082 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2083 sk_gfp_atomic(sk, GFP_ATOMIC))) 2084 tcp_check_probe_timer(sk); 2085 } 2086 2087 /* Send _single_ skb sitting at the send head. This function requires 2088 * true push pending frames to setup probe timer etc. 2089 */ 2090 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2091 { 2092 struct sk_buff *skb = tcp_send_head(sk); 2093 2094 BUG_ON(!skb || skb->len < mss_now); 2095 2096 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2097 } 2098 2099 /* This function returns the amount that we can raise the 2100 * usable window based on the following constraints 2101 * 2102 * 1. The window can never be shrunk once it is offered (RFC 793) 2103 * 2. We limit memory per socket 2104 * 2105 * RFC 1122: 2106 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2107 * RECV.NEXT + RCV.WIN fixed until: 2108 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2109 * 2110 * i.e. don't raise the right edge of the window until you can raise 2111 * it at least MSS bytes. 2112 * 2113 * Unfortunately, the recommended algorithm breaks header prediction, 2114 * since header prediction assumes th->window stays fixed. 2115 * 2116 * Strictly speaking, keeping th->window fixed violates the receiver 2117 * side SWS prevention criteria. The problem is that under this rule 2118 * a stream of single byte packets will cause the right side of the 2119 * window to always advance by a single byte. 2120 * 2121 * Of course, if the sender implements sender side SWS prevention 2122 * then this will not be a problem. 2123 * 2124 * BSD seems to make the following compromise: 2125 * 2126 * If the free space is less than the 1/4 of the maximum 2127 * space available and the free space is less than 1/2 mss, 2128 * then set the window to 0. 2129 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2130 * Otherwise, just prevent the window from shrinking 2131 * and from being larger than the largest representable value. 2132 * 2133 * This prevents incremental opening of the window in the regime 2134 * where TCP is limited by the speed of the reader side taking 2135 * data out of the TCP receive queue. It does nothing about 2136 * those cases where the window is constrained on the sender side 2137 * because the pipeline is full. 2138 * 2139 * BSD also seems to "accidentally" limit itself to windows that are a 2140 * multiple of MSS, at least until the free space gets quite small. 2141 * This would appear to be a side effect of the mbuf implementation. 2142 * Combining these two algorithms results in the observed behavior 2143 * of having a fixed window size at almost all times. 2144 * 2145 * Below we obtain similar behavior by forcing the offered window to 2146 * a multiple of the mss when it is feasible to do so. 2147 * 2148 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2149 * Regular options like TIMESTAMP are taken into account. 2150 */ 2151 u32 __tcp_select_window(struct sock *sk) 2152 { 2153 struct inet_connection_sock *icsk = inet_csk(sk); 2154 struct tcp_sock *tp = tcp_sk(sk); 2155 /* MSS for the peer's data. Previous versions used mss_clamp 2156 * here. I don't know if the value based on our guesses 2157 * of peer's MSS is better for the performance. It's more correct 2158 * but may be worse for the performance because of rcv_mss 2159 * fluctuations. --SAW 1998/11/1 2160 */ 2161 int mss = icsk->icsk_ack.rcv_mss; 2162 int free_space = tcp_space(sk); 2163 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 2164 int window; 2165 2166 if (mss > full_space) 2167 mss = full_space; 2168 2169 if (free_space < (full_space >> 1)) { 2170 icsk->icsk_ack.quick = 0; 2171 2172 if (sk_under_memory_pressure(sk)) 2173 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2174 4U * tp->advmss); 2175 2176 if (free_space < mss) 2177 return 0; 2178 } 2179 2180 if (free_space > tp->rcv_ssthresh) 2181 free_space = tp->rcv_ssthresh; 2182 2183 /* Don't do rounding if we are using window scaling, since the 2184 * scaled window will not line up with the MSS boundary anyway. 2185 */ 2186 window = tp->rcv_wnd; 2187 if (tp->rx_opt.rcv_wscale) { 2188 window = free_space; 2189 2190 /* Advertise enough space so that it won't get scaled away. 2191 * Import case: prevent zero window announcement if 2192 * 1<<rcv_wscale > mss. 2193 */ 2194 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2195 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2196 << tp->rx_opt.rcv_wscale); 2197 } else { 2198 /* Get the largest window that is a nice multiple of mss. 2199 * Window clamp already applied above. 2200 * If our current window offering is within 1 mss of the 2201 * free space we just keep it. This prevents the divide 2202 * and multiply from happening most of the time. 2203 * We also don't do any window rounding when the free space 2204 * is too small. 2205 */ 2206 if (window <= free_space - mss || window > free_space) 2207 window = (free_space / mss) * mss; 2208 else if (mss == full_space && 2209 free_space > window + (full_space >> 1)) 2210 window = free_space; 2211 } 2212 2213 return window; 2214 } 2215 2216 /* Collapses two adjacent SKB's during retransmission. */ 2217 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2218 { 2219 struct tcp_sock *tp = tcp_sk(sk); 2220 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2221 int skb_size, next_skb_size; 2222 2223 skb_size = skb->len; 2224 next_skb_size = next_skb->len; 2225 2226 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2227 2228 tcp_highest_sack_combine(sk, next_skb, skb); 2229 2230 tcp_unlink_write_queue(next_skb, sk); 2231 2232 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2233 next_skb_size); 2234 2235 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2236 skb->ip_summed = CHECKSUM_PARTIAL; 2237 2238 if (skb->ip_summed != CHECKSUM_PARTIAL) 2239 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2240 2241 /* Update sequence range on original skb. */ 2242 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2243 2244 /* Merge over control information. This moves PSH/FIN etc. over */ 2245 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2246 2247 /* All done, get rid of second SKB and account for it so 2248 * packet counting does not break. 2249 */ 2250 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2251 2252 /* changed transmit queue under us so clear hints */ 2253 tcp_clear_retrans_hints_partial(tp); 2254 if (next_skb == tp->retransmit_skb_hint) 2255 tp->retransmit_skb_hint = skb; 2256 2257 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2258 2259 sk_wmem_free_skb(sk, next_skb); 2260 } 2261 2262 /* Check if coalescing SKBs is legal. */ 2263 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2264 { 2265 if (tcp_skb_pcount(skb) > 1) 2266 return false; 2267 /* TODO: SACK collapsing could be used to remove this condition */ 2268 if (skb_shinfo(skb)->nr_frags != 0) 2269 return false; 2270 if (skb_cloned(skb)) 2271 return false; 2272 if (skb == tcp_send_head(sk)) 2273 return false; 2274 /* Some heurestics for collapsing over SACK'd could be invented */ 2275 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2276 return false; 2277 2278 return true; 2279 } 2280 2281 /* Collapse packets in the retransmit queue to make to create 2282 * less packets on the wire. This is only done on retransmission. 2283 */ 2284 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2285 int space) 2286 { 2287 struct tcp_sock *tp = tcp_sk(sk); 2288 struct sk_buff *skb = to, *tmp; 2289 bool first = true; 2290 2291 if (!sysctl_tcp_retrans_collapse) 2292 return; 2293 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2294 return; 2295 2296 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2297 if (!tcp_can_collapse(sk, skb)) 2298 break; 2299 2300 space -= skb->len; 2301 2302 if (first) { 2303 first = false; 2304 continue; 2305 } 2306 2307 if (space < 0) 2308 break; 2309 /* Punt if not enough space exists in the first SKB for 2310 * the data in the second 2311 */ 2312 if (skb->len > skb_availroom(to)) 2313 break; 2314 2315 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2316 break; 2317 2318 tcp_collapse_retrans(sk, to); 2319 } 2320 } 2321 2322 /* This retransmits one SKB. Policy decisions and retransmit queue 2323 * state updates are done by the caller. Returns non-zero if an 2324 * error occurred which prevented the send. 2325 */ 2326 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2327 { 2328 struct tcp_sock *tp = tcp_sk(sk); 2329 struct inet_connection_sock *icsk = inet_csk(sk); 2330 unsigned int cur_mss; 2331 2332 /* Inconslusive MTU probe */ 2333 if (icsk->icsk_mtup.probe_size) { 2334 icsk->icsk_mtup.probe_size = 0; 2335 } 2336 2337 /* Do not sent more than we queued. 1/4 is reserved for possible 2338 * copying overhead: fragmentation, tunneling, mangling etc. 2339 */ 2340 if (atomic_read(&sk->sk_wmem_alloc) > 2341 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2342 return -EAGAIN; 2343 2344 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2345 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2346 BUG(); 2347 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2348 return -ENOMEM; 2349 } 2350 2351 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2352 return -EHOSTUNREACH; /* Routing failure or similar. */ 2353 2354 cur_mss = tcp_current_mss(sk); 2355 2356 /* If receiver has shrunk his window, and skb is out of 2357 * new window, do not retransmit it. The exception is the 2358 * case, when window is shrunk to zero. In this case 2359 * our retransmit serves as a zero window probe. 2360 */ 2361 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2362 TCP_SKB_CB(skb)->seq != tp->snd_una) 2363 return -EAGAIN; 2364 2365 if (skb->len > cur_mss) { 2366 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 2367 return -ENOMEM; /* We'll try again later. */ 2368 } else { 2369 int oldpcount = tcp_skb_pcount(skb); 2370 2371 if (unlikely(oldpcount > 1)) { 2372 if (skb_unclone(skb, GFP_ATOMIC)) 2373 return -ENOMEM; 2374 tcp_init_tso_segs(sk, skb, cur_mss); 2375 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2376 } 2377 } 2378 2379 tcp_retrans_try_collapse(sk, skb, cur_mss); 2380 2381 /* Make a copy, if the first transmission SKB clone we made 2382 * is still in somebody's hands, else make a clone. 2383 */ 2384 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2385 2386 /* make sure skb->data is aligned on arches that require it 2387 * and check if ack-trimming & collapsing extended the headroom 2388 * beyond what csum_start can cover. 2389 */ 2390 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2391 skb_headroom(skb) >= 0xFFFF)) { 2392 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2393 GFP_ATOMIC); 2394 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2395 -ENOBUFS; 2396 } else { 2397 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2398 } 2399 } 2400 2401 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2402 { 2403 struct tcp_sock *tp = tcp_sk(sk); 2404 int err = __tcp_retransmit_skb(sk, skb); 2405 2406 if (err == 0) { 2407 /* Update global TCP statistics. */ 2408 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2409 2410 tp->total_retrans++; 2411 2412 #if FASTRETRANS_DEBUG > 0 2413 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2414 net_dbg_ratelimited("retrans_out leaked\n"); 2415 } 2416 #endif 2417 if (!tp->retrans_out) 2418 tp->lost_retrans_low = tp->snd_nxt; 2419 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2420 tp->retrans_out += tcp_skb_pcount(skb); 2421 2422 /* Save stamp of the first retransmit. */ 2423 if (!tp->retrans_stamp) 2424 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 2425 2426 tp->undo_retrans += tcp_skb_pcount(skb); 2427 2428 /* snd_nxt is stored to detect loss of retransmitted segment, 2429 * see tcp_input.c tcp_sacktag_write_queue(). 2430 */ 2431 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2432 } else { 2433 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2434 } 2435 return err; 2436 } 2437 2438 /* Check if we forward retransmits are possible in the current 2439 * window/congestion state. 2440 */ 2441 static bool tcp_can_forward_retransmit(struct sock *sk) 2442 { 2443 const struct inet_connection_sock *icsk = inet_csk(sk); 2444 const struct tcp_sock *tp = tcp_sk(sk); 2445 2446 /* Forward retransmissions are possible only during Recovery. */ 2447 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2448 return false; 2449 2450 /* No forward retransmissions in Reno are possible. */ 2451 if (tcp_is_reno(tp)) 2452 return false; 2453 2454 /* Yeah, we have to make difficult choice between forward transmission 2455 * and retransmission... Both ways have their merits... 2456 * 2457 * For now we do not retransmit anything, while we have some new 2458 * segments to send. In the other cases, follow rule 3 for 2459 * NextSeg() specified in RFC3517. 2460 */ 2461 2462 if (tcp_may_send_now(sk)) 2463 return false; 2464 2465 return true; 2466 } 2467 2468 /* This gets called after a retransmit timeout, and the initially 2469 * retransmitted data is acknowledged. It tries to continue 2470 * resending the rest of the retransmit queue, until either 2471 * we've sent it all or the congestion window limit is reached. 2472 * If doing SACK, the first ACK which comes back for a timeout 2473 * based retransmit packet might feed us FACK information again. 2474 * If so, we use it to avoid unnecessarily retransmissions. 2475 */ 2476 void tcp_xmit_retransmit_queue(struct sock *sk) 2477 { 2478 const struct inet_connection_sock *icsk = inet_csk(sk); 2479 struct tcp_sock *tp = tcp_sk(sk); 2480 struct sk_buff *skb; 2481 struct sk_buff *hole = NULL; 2482 u32 last_lost; 2483 int mib_idx; 2484 int fwd_rexmitting = 0; 2485 2486 if (!tp->packets_out) 2487 return; 2488 2489 if (!tp->lost_out) 2490 tp->retransmit_high = tp->snd_una; 2491 2492 if (tp->retransmit_skb_hint) { 2493 skb = tp->retransmit_skb_hint; 2494 last_lost = TCP_SKB_CB(skb)->end_seq; 2495 if (after(last_lost, tp->retransmit_high)) 2496 last_lost = tp->retransmit_high; 2497 } else { 2498 skb = tcp_write_queue_head(sk); 2499 last_lost = tp->snd_una; 2500 } 2501 2502 tcp_for_write_queue_from(skb, sk) { 2503 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2504 2505 if (skb == tcp_send_head(sk)) 2506 break; 2507 /* we could do better than to assign each time */ 2508 if (hole == NULL) 2509 tp->retransmit_skb_hint = skb; 2510 2511 /* Assume this retransmit will generate 2512 * only one packet for congestion window 2513 * calculation purposes. This works because 2514 * tcp_retransmit_skb() will chop up the 2515 * packet to be MSS sized and all the 2516 * packet counting works out. 2517 */ 2518 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2519 return; 2520 2521 if (fwd_rexmitting) { 2522 begin_fwd: 2523 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2524 break; 2525 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2526 2527 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2528 tp->retransmit_high = last_lost; 2529 if (!tcp_can_forward_retransmit(sk)) 2530 break; 2531 /* Backtrack if necessary to non-L'ed skb */ 2532 if (hole != NULL) { 2533 skb = hole; 2534 hole = NULL; 2535 } 2536 fwd_rexmitting = 1; 2537 goto begin_fwd; 2538 2539 } else if (!(sacked & TCPCB_LOST)) { 2540 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2541 hole = skb; 2542 continue; 2543 2544 } else { 2545 last_lost = TCP_SKB_CB(skb)->end_seq; 2546 if (icsk->icsk_ca_state != TCP_CA_Loss) 2547 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2548 else 2549 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2550 } 2551 2552 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2553 continue; 2554 2555 if (tcp_retransmit_skb(sk, skb)) 2556 return; 2557 2558 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2559 2560 if (tcp_in_cwnd_reduction(sk)) 2561 tp->prr_out += tcp_skb_pcount(skb); 2562 2563 if (skb == tcp_write_queue_head(sk)) 2564 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2565 inet_csk(sk)->icsk_rto, 2566 TCP_RTO_MAX); 2567 } 2568 } 2569 2570 /* Send a fin. The caller locks the socket for us. This cannot be 2571 * allowed to fail queueing a FIN frame under any circumstances. 2572 */ 2573 void tcp_send_fin(struct sock *sk) 2574 { 2575 struct tcp_sock *tp = tcp_sk(sk); 2576 struct sk_buff *skb = tcp_write_queue_tail(sk); 2577 int mss_now; 2578 2579 /* Optimization, tack on the FIN if we have a queue of 2580 * unsent frames. But be careful about outgoing SACKS 2581 * and IP options. 2582 */ 2583 mss_now = tcp_current_mss(sk); 2584 2585 if (tcp_send_head(sk) != NULL) { 2586 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN; 2587 TCP_SKB_CB(skb)->end_seq++; 2588 tp->write_seq++; 2589 } else { 2590 /* Socket is locked, keep trying until memory is available. */ 2591 for (;;) { 2592 skb = alloc_skb_fclone(MAX_TCP_HEADER, 2593 sk->sk_allocation); 2594 if (skb) 2595 break; 2596 yield(); 2597 } 2598 2599 /* Reserve space for headers and prepare control bits. */ 2600 skb_reserve(skb, MAX_TCP_HEADER); 2601 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2602 tcp_init_nondata_skb(skb, tp->write_seq, 2603 TCPHDR_ACK | TCPHDR_FIN); 2604 tcp_queue_skb(sk, skb); 2605 } 2606 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2607 } 2608 2609 /* We get here when a process closes a file descriptor (either due to 2610 * an explicit close() or as a byproduct of exit()'ing) and there 2611 * was unread data in the receive queue. This behavior is recommended 2612 * by RFC 2525, section 2.17. -DaveM 2613 */ 2614 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2615 { 2616 struct sk_buff *skb; 2617 2618 /* NOTE: No TCP options attached and we never retransmit this. */ 2619 skb = alloc_skb(MAX_TCP_HEADER, priority); 2620 if (!skb) { 2621 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2622 return; 2623 } 2624 2625 /* Reserve space for headers and prepare control bits. */ 2626 skb_reserve(skb, MAX_TCP_HEADER); 2627 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2628 TCPHDR_ACK | TCPHDR_RST); 2629 /* Send it off. */ 2630 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2631 if (tcp_transmit_skb(sk, skb, 0, priority)) 2632 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2633 2634 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2635 } 2636 2637 /* Send a crossed SYN-ACK during socket establishment. 2638 * WARNING: This routine must only be called when we have already sent 2639 * a SYN packet that crossed the incoming SYN that caused this routine 2640 * to get called. If this assumption fails then the initial rcv_wnd 2641 * and rcv_wscale values will not be correct. 2642 */ 2643 int tcp_send_synack(struct sock *sk) 2644 { 2645 struct sk_buff *skb; 2646 2647 skb = tcp_write_queue_head(sk); 2648 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2649 pr_debug("%s: wrong queue state\n", __func__); 2650 return -EFAULT; 2651 } 2652 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2653 if (skb_cloned(skb)) { 2654 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2655 if (nskb == NULL) 2656 return -ENOMEM; 2657 tcp_unlink_write_queue(skb, sk); 2658 skb_header_release(nskb); 2659 __tcp_add_write_queue_head(sk, nskb); 2660 sk_wmem_free_skb(sk, skb); 2661 sk->sk_wmem_queued += nskb->truesize; 2662 sk_mem_charge(sk, nskb->truesize); 2663 skb = nskb; 2664 } 2665 2666 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2667 TCP_ECN_send_synack(tcp_sk(sk), skb); 2668 } 2669 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2670 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2671 } 2672 2673 /** 2674 * tcp_make_synack - Prepare a SYN-ACK. 2675 * sk: listener socket 2676 * dst: dst entry attached to the SYNACK 2677 * req: request_sock pointer 2678 * 2679 * Allocate one skb and build a SYNACK packet. 2680 * @dst is consumed : Caller should not use it again. 2681 */ 2682 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2683 struct request_sock *req, 2684 struct tcp_fastopen_cookie *foc) 2685 { 2686 struct tcp_out_options opts; 2687 struct inet_request_sock *ireq = inet_rsk(req); 2688 struct tcp_sock *tp = tcp_sk(sk); 2689 struct tcphdr *th; 2690 struct sk_buff *skb; 2691 struct tcp_md5sig_key *md5; 2692 int tcp_header_size; 2693 int mss; 2694 2695 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); 2696 if (unlikely(!skb)) { 2697 dst_release(dst); 2698 return NULL; 2699 } 2700 /* Reserve space for headers. */ 2701 skb_reserve(skb, MAX_TCP_HEADER); 2702 2703 skb_dst_set(skb, dst); 2704 security_skb_owned_by(skb, sk); 2705 2706 mss = dst_metric_advmss(dst); 2707 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2708 mss = tp->rx_opt.user_mss; 2709 2710 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 2711 __u8 rcv_wscale; 2712 /* Set this up on the first call only */ 2713 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 2714 2715 /* limit the window selection if the user enforce a smaller rx buffer */ 2716 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2717 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0)) 2718 req->window_clamp = tcp_full_space(sk); 2719 2720 /* tcp_full_space because it is guaranteed to be the first packet */ 2721 tcp_select_initial_window(tcp_full_space(sk), 2722 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 2723 &req->rcv_wnd, 2724 &req->window_clamp, 2725 ireq->wscale_ok, 2726 &rcv_wscale, 2727 dst_metric(dst, RTAX_INITRWND)); 2728 ireq->rcv_wscale = rcv_wscale; 2729 } 2730 2731 memset(&opts, 0, sizeof(opts)); 2732 #ifdef CONFIG_SYN_COOKIES 2733 if (unlikely(req->cookie_ts)) 2734 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req); 2735 else 2736 #endif 2737 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2738 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5, 2739 foc) + sizeof(*th); 2740 2741 skb_push(skb, tcp_header_size); 2742 skb_reset_transport_header(skb); 2743 2744 th = tcp_hdr(skb); 2745 memset(th, 0, sizeof(struct tcphdr)); 2746 th->syn = 1; 2747 th->ack = 1; 2748 TCP_ECN_make_synack(req, th); 2749 th->source = htons(ireq->ir_num); 2750 th->dest = ireq->ir_rmt_port; 2751 /* Setting of flags are superfluous here for callers (and ECE is 2752 * not even correctly set) 2753 */ 2754 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2755 TCPHDR_SYN | TCPHDR_ACK); 2756 2757 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2758 /* XXX data is queued and acked as is. No buffer/window check */ 2759 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 2760 2761 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2762 th->window = htons(min(req->rcv_wnd, 65535U)); 2763 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2764 th->doff = (tcp_header_size >> 2); 2765 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb)); 2766 2767 #ifdef CONFIG_TCP_MD5SIG 2768 /* Okay, we have all we need - do the md5 hash if needed */ 2769 if (md5) { 2770 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2771 md5, NULL, req, skb); 2772 } 2773 #endif 2774 2775 return skb; 2776 } 2777 EXPORT_SYMBOL(tcp_make_synack); 2778 2779 /* Do all connect socket setups that can be done AF independent. */ 2780 static void tcp_connect_init(struct sock *sk) 2781 { 2782 const struct dst_entry *dst = __sk_dst_get(sk); 2783 struct tcp_sock *tp = tcp_sk(sk); 2784 __u8 rcv_wscale; 2785 2786 /* We'll fix this up when we get a response from the other end. 2787 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2788 */ 2789 tp->tcp_header_len = sizeof(struct tcphdr) + 2790 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2791 2792 #ifdef CONFIG_TCP_MD5SIG 2793 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2794 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2795 #endif 2796 2797 /* If user gave his TCP_MAXSEG, record it to clamp */ 2798 if (tp->rx_opt.user_mss) 2799 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2800 tp->max_window = 0; 2801 tcp_mtup_init(sk); 2802 tcp_sync_mss(sk, dst_mtu(dst)); 2803 2804 if (!tp->window_clamp) 2805 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2806 tp->advmss = dst_metric_advmss(dst); 2807 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2808 tp->advmss = tp->rx_opt.user_mss; 2809 2810 tcp_initialize_rcv_mss(sk); 2811 2812 /* limit the window selection if the user enforce a smaller rx buffer */ 2813 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2814 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 2815 tp->window_clamp = tcp_full_space(sk); 2816 2817 tcp_select_initial_window(tcp_full_space(sk), 2818 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2819 &tp->rcv_wnd, 2820 &tp->window_clamp, 2821 sysctl_tcp_window_scaling, 2822 &rcv_wscale, 2823 dst_metric(dst, RTAX_INITRWND)); 2824 2825 tp->rx_opt.rcv_wscale = rcv_wscale; 2826 tp->rcv_ssthresh = tp->rcv_wnd; 2827 2828 sk->sk_err = 0; 2829 sock_reset_flag(sk, SOCK_DONE); 2830 tp->snd_wnd = 0; 2831 tcp_init_wl(tp, 0); 2832 tp->snd_una = tp->write_seq; 2833 tp->snd_sml = tp->write_seq; 2834 tp->snd_up = tp->write_seq; 2835 tp->snd_nxt = tp->write_seq; 2836 2837 if (likely(!tp->repair)) 2838 tp->rcv_nxt = 0; 2839 else 2840 tp->rcv_tstamp = tcp_time_stamp; 2841 tp->rcv_wup = tp->rcv_nxt; 2842 tp->copied_seq = tp->rcv_nxt; 2843 2844 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2845 inet_csk(sk)->icsk_retransmits = 0; 2846 tcp_clear_retrans(tp); 2847 } 2848 2849 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 2850 { 2851 struct tcp_sock *tp = tcp_sk(sk); 2852 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 2853 2854 tcb->end_seq += skb->len; 2855 skb_header_release(skb); 2856 __tcp_add_write_queue_tail(sk, skb); 2857 sk->sk_wmem_queued += skb->truesize; 2858 sk_mem_charge(sk, skb->truesize); 2859 tp->write_seq = tcb->end_seq; 2860 tp->packets_out += tcp_skb_pcount(skb); 2861 } 2862 2863 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 2864 * queue a data-only packet after the regular SYN, such that regular SYNs 2865 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 2866 * only the SYN sequence, the data are retransmitted in the first ACK. 2867 * If cookie is not cached or other error occurs, falls back to send a 2868 * regular SYN with Fast Open cookie request option. 2869 */ 2870 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 2871 { 2872 struct tcp_sock *tp = tcp_sk(sk); 2873 struct tcp_fastopen_request *fo = tp->fastopen_req; 2874 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen; 2875 struct sk_buff *syn_data = NULL, *data; 2876 unsigned long last_syn_loss = 0; 2877 2878 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 2879 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 2880 &syn_loss, &last_syn_loss); 2881 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 2882 if (syn_loss > 1 && 2883 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 2884 fo->cookie.len = -1; 2885 goto fallback; 2886 } 2887 2888 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 2889 fo->cookie.len = -1; 2890 else if (fo->cookie.len <= 0) 2891 goto fallback; 2892 2893 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 2894 * user-MSS. Reserve maximum option space for middleboxes that add 2895 * private TCP options. The cost is reduced data space in SYN :( 2896 */ 2897 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 2898 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2899 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 2900 MAX_TCP_OPTION_SPACE; 2901 2902 syn_data = skb_copy_expand(syn, skb_headroom(syn), space, 2903 sk->sk_allocation); 2904 if (syn_data == NULL) 2905 goto fallback; 2906 2907 for (i = 0; i < iovlen && syn_data->len < space; ++i) { 2908 struct iovec *iov = &fo->data->msg_iov[i]; 2909 unsigned char __user *from = iov->iov_base; 2910 int len = iov->iov_len; 2911 2912 if (syn_data->len + len > space) 2913 len = space - syn_data->len; 2914 else if (i + 1 == iovlen) 2915 /* No more data pending in inet_wait_for_connect() */ 2916 fo->data = NULL; 2917 2918 if (skb_add_data(syn_data, from, len)) 2919 goto fallback; 2920 } 2921 2922 /* Queue a data-only packet after the regular SYN for retransmission */ 2923 data = pskb_copy(syn_data, sk->sk_allocation); 2924 if (data == NULL) 2925 goto fallback; 2926 TCP_SKB_CB(data)->seq++; 2927 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN; 2928 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH); 2929 tcp_connect_queue_skb(sk, data); 2930 fo->copied = data->len; 2931 2932 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) { 2933 tp->syn_data = (fo->copied > 0); 2934 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 2935 goto done; 2936 } 2937 syn_data = NULL; 2938 2939 fallback: 2940 /* Send a regular SYN with Fast Open cookie request option */ 2941 if (fo->cookie.len > 0) 2942 fo->cookie.len = 0; 2943 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 2944 if (err) 2945 tp->syn_fastopen = 0; 2946 kfree_skb(syn_data); 2947 done: 2948 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 2949 return err; 2950 } 2951 2952 /* Build a SYN and send it off. */ 2953 int tcp_connect(struct sock *sk) 2954 { 2955 struct tcp_sock *tp = tcp_sk(sk); 2956 struct sk_buff *buff; 2957 int err; 2958 2959 tcp_connect_init(sk); 2960 2961 if (unlikely(tp->repair)) { 2962 tcp_finish_connect(sk, NULL); 2963 return 0; 2964 } 2965 2966 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 2967 if (unlikely(buff == NULL)) 2968 return -ENOBUFS; 2969 2970 /* Reserve space for headers. */ 2971 skb_reserve(buff, MAX_TCP_HEADER); 2972 2973 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 2974 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp; 2975 tcp_connect_queue_skb(sk, buff); 2976 TCP_ECN_send_syn(sk, buff); 2977 2978 /* Send off SYN; include data in Fast Open. */ 2979 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 2980 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 2981 if (err == -ECONNREFUSED) 2982 return err; 2983 2984 /* We change tp->snd_nxt after the tcp_transmit_skb() call 2985 * in order to make this packet get counted in tcpOutSegs. 2986 */ 2987 tp->snd_nxt = tp->write_seq; 2988 tp->pushed_seq = tp->write_seq; 2989 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 2990 2991 /* Timer for repeating the SYN until an answer. */ 2992 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2993 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2994 return 0; 2995 } 2996 EXPORT_SYMBOL(tcp_connect); 2997 2998 /* Send out a delayed ack, the caller does the policy checking 2999 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3000 * for details. 3001 */ 3002 void tcp_send_delayed_ack(struct sock *sk) 3003 { 3004 struct inet_connection_sock *icsk = inet_csk(sk); 3005 int ato = icsk->icsk_ack.ato; 3006 unsigned long timeout; 3007 3008 if (ato > TCP_DELACK_MIN) { 3009 const struct tcp_sock *tp = tcp_sk(sk); 3010 int max_ato = HZ / 2; 3011 3012 if (icsk->icsk_ack.pingpong || 3013 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3014 max_ato = TCP_DELACK_MAX; 3015 3016 /* Slow path, intersegment interval is "high". */ 3017 3018 /* If some rtt estimate is known, use it to bound delayed ack. 3019 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3020 * directly. 3021 */ 3022 if (tp->srtt) { 3023 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN); 3024 3025 if (rtt < max_ato) 3026 max_ato = rtt; 3027 } 3028 3029 ato = min(ato, max_ato); 3030 } 3031 3032 /* Stay within the limit we were given */ 3033 timeout = jiffies + ato; 3034 3035 /* Use new timeout only if there wasn't a older one earlier. */ 3036 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3037 /* If delack timer was blocked or is about to expire, 3038 * send ACK now. 3039 */ 3040 if (icsk->icsk_ack.blocked || 3041 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3042 tcp_send_ack(sk); 3043 return; 3044 } 3045 3046 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3047 timeout = icsk->icsk_ack.timeout; 3048 } 3049 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3050 icsk->icsk_ack.timeout = timeout; 3051 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3052 } 3053 3054 /* This routine sends an ack and also updates the window. */ 3055 void tcp_send_ack(struct sock *sk) 3056 { 3057 struct sk_buff *buff; 3058 3059 /* If we have been reset, we may not send again. */ 3060 if (sk->sk_state == TCP_CLOSE) 3061 return; 3062 3063 /* We are not putting this on the write queue, so 3064 * tcp_transmit_skb() will set the ownership to this 3065 * sock. 3066 */ 3067 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3068 if (buff == NULL) { 3069 inet_csk_schedule_ack(sk); 3070 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3071 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3072 TCP_DELACK_MAX, TCP_RTO_MAX); 3073 return; 3074 } 3075 3076 /* Reserve space for headers and prepare control bits. */ 3077 skb_reserve(buff, MAX_TCP_HEADER); 3078 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3079 3080 /* Send it off, this clears delayed acks for us. */ 3081 TCP_SKB_CB(buff)->when = tcp_time_stamp; 3082 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC)); 3083 } 3084 3085 /* This routine sends a packet with an out of date sequence 3086 * number. It assumes the other end will try to ack it. 3087 * 3088 * Question: what should we make while urgent mode? 3089 * 4.4BSD forces sending single byte of data. We cannot send 3090 * out of window data, because we have SND.NXT==SND.MAX... 3091 * 3092 * Current solution: to send TWO zero-length segments in urgent mode: 3093 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3094 * out-of-date with SND.UNA-1 to probe window. 3095 */ 3096 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 3097 { 3098 struct tcp_sock *tp = tcp_sk(sk); 3099 struct sk_buff *skb; 3100 3101 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3102 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3103 if (skb == NULL) 3104 return -1; 3105 3106 /* Reserve space for headers and set control bits. */ 3107 skb_reserve(skb, MAX_TCP_HEADER); 3108 /* Use a previous sequence. This should cause the other 3109 * end to send an ack. Don't queue or clone SKB, just 3110 * send it. 3111 */ 3112 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3113 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3114 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3115 } 3116 3117 void tcp_send_window_probe(struct sock *sk) 3118 { 3119 if (sk->sk_state == TCP_ESTABLISHED) { 3120 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3121 tcp_xmit_probe_skb(sk, 0); 3122 } 3123 } 3124 3125 /* Initiate keepalive or window probe from timer. */ 3126 int tcp_write_wakeup(struct sock *sk) 3127 { 3128 struct tcp_sock *tp = tcp_sk(sk); 3129 struct sk_buff *skb; 3130 3131 if (sk->sk_state == TCP_CLOSE) 3132 return -1; 3133 3134 if ((skb = tcp_send_head(sk)) != NULL && 3135 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3136 int err; 3137 unsigned int mss = tcp_current_mss(sk); 3138 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3139 3140 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3141 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3142 3143 /* We are probing the opening of a window 3144 * but the window size is != 0 3145 * must have been a result SWS avoidance ( sender ) 3146 */ 3147 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3148 skb->len > mss) { 3149 seg_size = min(seg_size, mss); 3150 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3151 if (tcp_fragment(sk, skb, seg_size, mss)) 3152 return -1; 3153 } else if (!tcp_skb_pcount(skb)) 3154 tcp_set_skb_tso_segs(sk, skb, mss); 3155 3156 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3157 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3158 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3159 if (!err) 3160 tcp_event_new_data_sent(sk, skb); 3161 return err; 3162 } else { 3163 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3164 tcp_xmit_probe_skb(sk, 1); 3165 return tcp_xmit_probe_skb(sk, 0); 3166 } 3167 } 3168 3169 /* A window probe timeout has occurred. If window is not closed send 3170 * a partial packet else a zero probe. 3171 */ 3172 void tcp_send_probe0(struct sock *sk) 3173 { 3174 struct inet_connection_sock *icsk = inet_csk(sk); 3175 struct tcp_sock *tp = tcp_sk(sk); 3176 int err; 3177 3178 err = tcp_write_wakeup(sk); 3179 3180 if (tp->packets_out || !tcp_send_head(sk)) { 3181 /* Cancel probe timer, if it is not required. */ 3182 icsk->icsk_probes_out = 0; 3183 icsk->icsk_backoff = 0; 3184 return; 3185 } 3186 3187 if (err <= 0) { 3188 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3189 icsk->icsk_backoff++; 3190 icsk->icsk_probes_out++; 3191 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3192 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3193 TCP_RTO_MAX); 3194 } else { 3195 /* If packet was not sent due to local congestion, 3196 * do not backoff and do not remember icsk_probes_out. 3197 * Let local senders to fight for local resources. 3198 * 3199 * Use accumulated backoff yet. 3200 */ 3201 if (!icsk->icsk_probes_out) 3202 icsk->icsk_probes_out = 1; 3203 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3204 min(icsk->icsk_rto << icsk->icsk_backoff, 3205 TCP_RESOURCE_PROBE_INTERVAL), 3206 TCP_RTO_MAX); 3207 } 3208 } 3209