xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 861e10be)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64 
65 /* By default, RFC2861 behavior.  */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67 
68 int sysctl_tcp_cookie_size __read_mostly = 0; /* TCP_COOKIE_MAX */
69 EXPORT_SYMBOL_GPL(sysctl_tcp_cookie_size);
70 
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 			   int push_one, gfp_t gfp);
73 
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 	struct tcp_sock *tp = tcp_sk(sk);
78 	unsigned int prior_packets = tp->packets_out;
79 
80 	tcp_advance_send_head(sk, skb);
81 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
82 
83 	/* Don't override Nagle indefinitely with F-RTO */
84 	if (tp->frto_counter == 2)
85 		tp->frto_counter = 3;
86 
87 	tp->packets_out += tcp_skb_pcount(skb);
88 	if (!prior_packets || tp->early_retrans_delayed)
89 		tcp_rearm_rto(sk);
90 }
91 
92 /* SND.NXT, if window was not shrunk.
93  * If window has been shrunk, what should we make? It is not clear at all.
94  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
95  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
96  * invalid. OK, let's make this for now:
97  */
98 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
99 {
100 	const struct tcp_sock *tp = tcp_sk(sk);
101 
102 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
103 		return tp->snd_nxt;
104 	else
105 		return tcp_wnd_end(tp);
106 }
107 
108 /* Calculate mss to advertise in SYN segment.
109  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
110  *
111  * 1. It is independent of path mtu.
112  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
113  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
114  *    attached devices, because some buggy hosts are confused by
115  *    large MSS.
116  * 4. We do not make 3, we advertise MSS, calculated from first
117  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
118  *    This may be overridden via information stored in routing table.
119  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
120  *    probably even Jumbo".
121  */
122 static __u16 tcp_advertise_mss(struct sock *sk)
123 {
124 	struct tcp_sock *tp = tcp_sk(sk);
125 	const struct dst_entry *dst = __sk_dst_get(sk);
126 	int mss = tp->advmss;
127 
128 	if (dst) {
129 		unsigned int metric = dst_metric_advmss(dst);
130 
131 		if (metric < mss) {
132 			mss = metric;
133 			tp->advmss = mss;
134 		}
135 	}
136 
137 	return (__u16)mss;
138 }
139 
140 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
141  * This is the first part of cwnd validation mechanism. */
142 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	s32 delta = tcp_time_stamp - tp->lsndtime;
146 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
147 	u32 cwnd = tp->snd_cwnd;
148 
149 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
150 
151 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
152 	restart_cwnd = min(restart_cwnd, cwnd);
153 
154 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
155 		cwnd >>= 1;
156 	tp->snd_cwnd = max(cwnd, restart_cwnd);
157 	tp->snd_cwnd_stamp = tcp_time_stamp;
158 	tp->snd_cwnd_used = 0;
159 }
160 
161 /* Congestion state accounting after a packet has been sent. */
162 static void tcp_event_data_sent(struct tcp_sock *tp,
163 				struct sock *sk)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	const u32 now = tcp_time_stamp;
167 
168 	if (sysctl_tcp_slow_start_after_idle &&
169 	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
171 
172 	tp->lsndtime = now;
173 
174 	/* If it is a reply for ato after last received
175 	 * packet, enter pingpong mode.
176 	 */
177 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178 		icsk->icsk_ack.pingpong = 1;
179 }
180 
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
183 {
184 	tcp_dec_quickack_mode(sk, pkts);
185 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
186 }
187 
188 /* Determine a window scaling and initial window to offer.
189  * Based on the assumption that the given amount of space
190  * will be offered. Store the results in the tp structure.
191  * NOTE: for smooth operation initial space offering should
192  * be a multiple of mss if possible. We assume here that mss >= 1.
193  * This MUST be enforced by all callers.
194  */
195 void tcp_select_initial_window(int __space, __u32 mss,
196 			       __u32 *rcv_wnd, __u32 *window_clamp,
197 			       int wscale_ok, __u8 *rcv_wscale,
198 			       __u32 init_rcv_wnd)
199 {
200 	unsigned int space = (__space < 0 ? 0 : __space);
201 
202 	/* If no clamp set the clamp to the max possible scaled window */
203 	if (*window_clamp == 0)
204 		(*window_clamp) = (65535 << 14);
205 	space = min(*window_clamp, space);
206 
207 	/* Quantize space offering to a multiple of mss if possible. */
208 	if (space > mss)
209 		space = (space / mss) * mss;
210 
211 	/* NOTE: offering an initial window larger than 32767
212 	 * will break some buggy TCP stacks. If the admin tells us
213 	 * it is likely we could be speaking with such a buggy stack
214 	 * we will truncate our initial window offering to 32K-1
215 	 * unless the remote has sent us a window scaling option,
216 	 * which we interpret as a sign the remote TCP is not
217 	 * misinterpreting the window field as a signed quantity.
218 	 */
219 	if (sysctl_tcp_workaround_signed_windows)
220 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
221 	else
222 		(*rcv_wnd) = space;
223 
224 	(*rcv_wscale) = 0;
225 	if (wscale_ok) {
226 		/* Set window scaling on max possible window
227 		 * See RFC1323 for an explanation of the limit to 14
228 		 */
229 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
230 		space = min_t(u32, space, *window_clamp);
231 		while (space > 65535 && (*rcv_wscale) < 14) {
232 			space >>= 1;
233 			(*rcv_wscale)++;
234 		}
235 	}
236 
237 	/* Set initial window to a value enough for senders starting with
238 	 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place
239 	 * a limit on the initial window when mss is larger than 1460.
240 	 */
241 	if (mss > (1 << *rcv_wscale)) {
242 		int init_cwnd = TCP_DEFAULT_INIT_RCVWND;
243 		if (mss > 1460)
244 			init_cwnd =
245 			max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
246 		/* when initializing use the value from init_rcv_wnd
247 		 * rather than the default from above
248 		 */
249 		if (init_rcv_wnd)
250 			*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 		else
252 			*rcv_wnd = min(*rcv_wnd, init_cwnd * mss);
253 	}
254 
255 	/* Set the clamp no higher than max representable value */
256 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
257 }
258 EXPORT_SYMBOL(tcp_select_initial_window);
259 
260 /* Chose a new window to advertise, update state in tcp_sock for the
261  * socket, and return result with RFC1323 scaling applied.  The return
262  * value can be stuffed directly into th->window for an outgoing
263  * frame.
264  */
265 static u16 tcp_select_window(struct sock *sk)
266 {
267 	struct tcp_sock *tp = tcp_sk(sk);
268 	u32 cur_win = tcp_receive_window(tp);
269 	u32 new_win = __tcp_select_window(sk);
270 
271 	/* Never shrink the offered window */
272 	if (new_win < cur_win) {
273 		/* Danger Will Robinson!
274 		 * Don't update rcv_wup/rcv_wnd here or else
275 		 * we will not be able to advertise a zero
276 		 * window in time.  --DaveM
277 		 *
278 		 * Relax Will Robinson.
279 		 */
280 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
281 	}
282 	tp->rcv_wnd = new_win;
283 	tp->rcv_wup = tp->rcv_nxt;
284 
285 	/* Make sure we do not exceed the maximum possible
286 	 * scaled window.
287 	 */
288 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
289 		new_win = min(new_win, MAX_TCP_WINDOW);
290 	else
291 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
292 
293 	/* RFC1323 scaling applied */
294 	new_win >>= tp->rx_opt.rcv_wscale;
295 
296 	/* If we advertise zero window, disable fast path. */
297 	if (new_win == 0)
298 		tp->pred_flags = 0;
299 
300 	return new_win;
301 }
302 
303 /* Packet ECN state for a SYN-ACK */
304 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
305 {
306 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
307 	if (!(tp->ecn_flags & TCP_ECN_OK))
308 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
309 }
310 
311 /* Packet ECN state for a SYN.  */
312 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
313 {
314 	struct tcp_sock *tp = tcp_sk(sk);
315 
316 	tp->ecn_flags = 0;
317 	if (sysctl_tcp_ecn == 1) {
318 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
319 		tp->ecn_flags = TCP_ECN_OK;
320 	}
321 }
322 
323 static __inline__ void
324 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
325 {
326 	if (inet_rsk(req)->ecn_ok)
327 		th->ece = 1;
328 }
329 
330 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
331  * be sent.
332  */
333 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
334 				int tcp_header_len)
335 {
336 	struct tcp_sock *tp = tcp_sk(sk);
337 
338 	if (tp->ecn_flags & TCP_ECN_OK) {
339 		/* Not-retransmitted data segment: set ECT and inject CWR. */
340 		if (skb->len != tcp_header_len &&
341 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
342 			INET_ECN_xmit(sk);
343 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
344 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
345 				tcp_hdr(skb)->cwr = 1;
346 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
347 			}
348 		} else {
349 			/* ACK or retransmitted segment: clear ECT|CE */
350 			INET_ECN_dontxmit(sk);
351 		}
352 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
353 			tcp_hdr(skb)->ece = 1;
354 	}
355 }
356 
357 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
358  * auto increment end seqno.
359  */
360 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
361 {
362 	skb->ip_summed = CHECKSUM_PARTIAL;
363 	skb->csum = 0;
364 
365 	TCP_SKB_CB(skb)->tcp_flags = flags;
366 	TCP_SKB_CB(skb)->sacked = 0;
367 
368 	skb_shinfo(skb)->gso_segs = 1;
369 	skb_shinfo(skb)->gso_size = 0;
370 	skb_shinfo(skb)->gso_type = 0;
371 
372 	TCP_SKB_CB(skb)->seq = seq;
373 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
374 		seq++;
375 	TCP_SKB_CB(skb)->end_seq = seq;
376 }
377 
378 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
379 {
380 	return tp->snd_una != tp->snd_up;
381 }
382 
383 #define OPTION_SACK_ADVERTISE	(1 << 0)
384 #define OPTION_TS		(1 << 1)
385 #define OPTION_MD5		(1 << 2)
386 #define OPTION_WSCALE		(1 << 3)
387 #define OPTION_COOKIE_EXTENSION	(1 << 4)
388 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
389 
390 struct tcp_out_options {
391 	u16 options;		/* bit field of OPTION_* */
392 	u16 mss;		/* 0 to disable */
393 	u8 ws;			/* window scale, 0 to disable */
394 	u8 num_sack_blocks;	/* number of SACK blocks to include */
395 	u8 hash_size;		/* bytes in hash_location */
396 	__u8 *hash_location;	/* temporary pointer, overloaded */
397 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
398 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
399 };
400 
401 /* The sysctl int routines are generic, so check consistency here.
402  */
403 static u8 tcp_cookie_size_check(u8 desired)
404 {
405 	int cookie_size;
406 
407 	if (desired > 0)
408 		/* previously specified */
409 		return desired;
410 
411 	cookie_size = ACCESS_ONCE(sysctl_tcp_cookie_size);
412 	if (cookie_size <= 0)
413 		/* no default specified */
414 		return 0;
415 
416 	if (cookie_size <= TCP_COOKIE_MIN)
417 		/* value too small, specify minimum */
418 		return TCP_COOKIE_MIN;
419 
420 	if (cookie_size >= TCP_COOKIE_MAX)
421 		/* value too large, specify maximum */
422 		return TCP_COOKIE_MAX;
423 
424 	if (cookie_size & 1)
425 		/* 8-bit multiple, illegal, fix it */
426 		cookie_size++;
427 
428 	return (u8)cookie_size;
429 }
430 
431 /* Write previously computed TCP options to the packet.
432  *
433  * Beware: Something in the Internet is very sensitive to the ordering of
434  * TCP options, we learned this through the hard way, so be careful here.
435  * Luckily we can at least blame others for their non-compliance but from
436  * inter-operatibility perspective it seems that we're somewhat stuck with
437  * the ordering which we have been using if we want to keep working with
438  * those broken things (not that it currently hurts anybody as there isn't
439  * particular reason why the ordering would need to be changed).
440  *
441  * At least SACK_PERM as the first option is known to lead to a disaster
442  * (but it may well be that other scenarios fail similarly).
443  */
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 			      struct tcp_out_options *opts)
446 {
447 	u16 options = opts->options;	/* mungable copy */
448 
449 	/* Having both authentication and cookies for security is redundant,
450 	 * and there's certainly not enough room.  Instead, the cookie-less
451 	 * extension variant is proposed.
452 	 *
453 	 * Consider the pessimal case with authentication.  The options
454 	 * could look like:
455 	 *   COOKIE|MD5(20) + MSS(4) + SACK|TS(12) + WSCALE(4) == 40
456 	 */
457 	if (unlikely(OPTION_MD5 & options)) {
458 		if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
459 			*ptr++ = htonl((TCPOPT_COOKIE << 24) |
460 				       (TCPOLEN_COOKIE_BASE << 16) |
461 				       (TCPOPT_MD5SIG << 8) |
462 				       TCPOLEN_MD5SIG);
463 		} else {
464 			*ptr++ = htonl((TCPOPT_NOP << 24) |
465 				       (TCPOPT_NOP << 16) |
466 				       (TCPOPT_MD5SIG << 8) |
467 				       TCPOLEN_MD5SIG);
468 		}
469 		options &= ~OPTION_COOKIE_EXTENSION;
470 		/* overload cookie hash location */
471 		opts->hash_location = (__u8 *)ptr;
472 		ptr += 4;
473 	}
474 
475 	if (unlikely(opts->mss)) {
476 		*ptr++ = htonl((TCPOPT_MSS << 24) |
477 			       (TCPOLEN_MSS << 16) |
478 			       opts->mss);
479 	}
480 
481 	if (likely(OPTION_TS & options)) {
482 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
483 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
484 				       (TCPOLEN_SACK_PERM << 16) |
485 				       (TCPOPT_TIMESTAMP << 8) |
486 				       TCPOLEN_TIMESTAMP);
487 			options &= ~OPTION_SACK_ADVERTISE;
488 		} else {
489 			*ptr++ = htonl((TCPOPT_NOP << 24) |
490 				       (TCPOPT_NOP << 16) |
491 				       (TCPOPT_TIMESTAMP << 8) |
492 				       TCPOLEN_TIMESTAMP);
493 		}
494 		*ptr++ = htonl(opts->tsval);
495 		*ptr++ = htonl(opts->tsecr);
496 	}
497 
498 	/* Specification requires after timestamp, so do it now.
499 	 *
500 	 * Consider the pessimal case without authentication.  The options
501 	 * could look like:
502 	 *   MSS(4) + SACK|TS(12) + COOKIE(20) + WSCALE(4) == 40
503 	 */
504 	if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
505 		__u8 *cookie_copy = opts->hash_location;
506 		u8 cookie_size = opts->hash_size;
507 
508 		/* 8-bit multiple handled in tcp_cookie_size_check() above,
509 		 * and elsewhere.
510 		 */
511 		if (0x2 & cookie_size) {
512 			__u8 *p = (__u8 *)ptr;
513 
514 			/* 16-bit multiple */
515 			*p++ = TCPOPT_COOKIE;
516 			*p++ = TCPOLEN_COOKIE_BASE + cookie_size;
517 			*p++ = *cookie_copy++;
518 			*p++ = *cookie_copy++;
519 			ptr++;
520 			cookie_size -= 2;
521 		} else {
522 			/* 32-bit multiple */
523 			*ptr++ = htonl(((TCPOPT_NOP << 24) |
524 					(TCPOPT_NOP << 16) |
525 					(TCPOPT_COOKIE << 8) |
526 					TCPOLEN_COOKIE_BASE) +
527 				       cookie_size);
528 		}
529 
530 		if (cookie_size > 0) {
531 			memcpy(ptr, cookie_copy, cookie_size);
532 			ptr += (cookie_size / 4);
533 		}
534 	}
535 
536 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
537 		*ptr++ = htonl((TCPOPT_NOP << 24) |
538 			       (TCPOPT_NOP << 16) |
539 			       (TCPOPT_SACK_PERM << 8) |
540 			       TCPOLEN_SACK_PERM);
541 	}
542 
543 	if (unlikely(OPTION_WSCALE & options)) {
544 		*ptr++ = htonl((TCPOPT_NOP << 24) |
545 			       (TCPOPT_WINDOW << 16) |
546 			       (TCPOLEN_WINDOW << 8) |
547 			       opts->ws);
548 	}
549 
550 	if (unlikely(opts->num_sack_blocks)) {
551 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
552 			tp->duplicate_sack : tp->selective_acks;
553 		int this_sack;
554 
555 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
556 			       (TCPOPT_NOP  << 16) |
557 			       (TCPOPT_SACK <<  8) |
558 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
559 						     TCPOLEN_SACK_PERBLOCK)));
560 
561 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
562 		     ++this_sack) {
563 			*ptr++ = htonl(sp[this_sack].start_seq);
564 			*ptr++ = htonl(sp[this_sack].end_seq);
565 		}
566 
567 		tp->rx_opt.dsack = 0;
568 	}
569 
570 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
571 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
572 
573 		*ptr++ = htonl((TCPOPT_EXP << 24) |
574 			       ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
575 			       TCPOPT_FASTOPEN_MAGIC);
576 
577 		memcpy(ptr, foc->val, foc->len);
578 		if ((foc->len & 3) == 2) {
579 			u8 *align = ((u8 *)ptr) + foc->len;
580 			align[0] = align[1] = TCPOPT_NOP;
581 		}
582 		ptr += (foc->len + 3) >> 2;
583 	}
584 }
585 
586 /* Compute TCP options for SYN packets. This is not the final
587  * network wire format yet.
588  */
589 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
590 				struct tcp_out_options *opts,
591 				struct tcp_md5sig_key **md5)
592 {
593 	struct tcp_sock *tp = tcp_sk(sk);
594 	struct tcp_cookie_values *cvp = tp->cookie_values;
595 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
596 	u8 cookie_size = (!tp->rx_opt.cookie_out_never && cvp != NULL) ?
597 			 tcp_cookie_size_check(cvp->cookie_desired) :
598 			 0;
599 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
600 
601 #ifdef CONFIG_TCP_MD5SIG
602 	*md5 = tp->af_specific->md5_lookup(sk, sk);
603 	if (*md5) {
604 		opts->options |= OPTION_MD5;
605 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
606 	}
607 #else
608 	*md5 = NULL;
609 #endif
610 
611 	/* We always get an MSS option.  The option bytes which will be seen in
612 	 * normal data packets should timestamps be used, must be in the MSS
613 	 * advertised.  But we subtract them from tp->mss_cache so that
614 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
615 	 * fact here if necessary.  If we don't do this correctly, as a
616 	 * receiver we won't recognize data packets as being full sized when we
617 	 * should, and thus we won't abide by the delayed ACK rules correctly.
618 	 * SACKs don't matter, we never delay an ACK when we have any of those
619 	 * going out.  */
620 	opts->mss = tcp_advertise_mss(sk);
621 	remaining -= TCPOLEN_MSS_ALIGNED;
622 
623 	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
624 		opts->options |= OPTION_TS;
625 		opts->tsval = TCP_SKB_CB(skb)->when;
626 		opts->tsecr = tp->rx_opt.ts_recent;
627 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
628 	}
629 	if (likely(sysctl_tcp_window_scaling)) {
630 		opts->ws = tp->rx_opt.rcv_wscale;
631 		opts->options |= OPTION_WSCALE;
632 		remaining -= TCPOLEN_WSCALE_ALIGNED;
633 	}
634 	if (likely(sysctl_tcp_sack)) {
635 		opts->options |= OPTION_SACK_ADVERTISE;
636 		if (unlikely(!(OPTION_TS & opts->options)))
637 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
638 	}
639 
640 	if (fastopen && fastopen->cookie.len >= 0) {
641 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
642 		need = (need + 3) & ~3U;  /* Align to 32 bits */
643 		if (remaining >= need) {
644 			opts->options |= OPTION_FAST_OPEN_COOKIE;
645 			opts->fastopen_cookie = &fastopen->cookie;
646 			remaining -= need;
647 			tp->syn_fastopen = 1;
648 		}
649 	}
650 	/* Note that timestamps are required by the specification.
651 	 *
652 	 * Odd numbers of bytes are prohibited by the specification, ensuring
653 	 * that the cookie is 16-bit aligned, and the resulting cookie pair is
654 	 * 32-bit aligned.
655 	 */
656 	if (*md5 == NULL &&
657 	    (OPTION_TS & opts->options) &&
658 	    cookie_size > 0) {
659 		int need = TCPOLEN_COOKIE_BASE + cookie_size;
660 
661 		if (0x2 & need) {
662 			/* 32-bit multiple */
663 			need += 2; /* NOPs */
664 
665 			if (need > remaining) {
666 				/* try shrinking cookie to fit */
667 				cookie_size -= 2;
668 				need -= 4;
669 			}
670 		}
671 		while (need > remaining && TCP_COOKIE_MIN <= cookie_size) {
672 			cookie_size -= 4;
673 			need -= 4;
674 		}
675 		if (TCP_COOKIE_MIN <= cookie_size) {
676 			opts->options |= OPTION_COOKIE_EXTENSION;
677 			opts->hash_location = (__u8 *)&cvp->cookie_pair[0];
678 			opts->hash_size = cookie_size;
679 
680 			/* Remember for future incarnations. */
681 			cvp->cookie_desired = cookie_size;
682 
683 			if (cvp->cookie_desired != cvp->cookie_pair_size) {
684 				/* Currently use random bytes as a nonce,
685 				 * assuming these are completely unpredictable
686 				 * by hostile users of the same system.
687 				 */
688 				get_random_bytes(&cvp->cookie_pair[0],
689 						 cookie_size);
690 				cvp->cookie_pair_size = cookie_size;
691 			}
692 
693 			remaining -= need;
694 		}
695 	}
696 	return MAX_TCP_OPTION_SPACE - remaining;
697 }
698 
699 /* Set up TCP options for SYN-ACKs. */
700 static unsigned int tcp_synack_options(struct sock *sk,
701 				   struct request_sock *req,
702 				   unsigned int mss, struct sk_buff *skb,
703 				   struct tcp_out_options *opts,
704 				   struct tcp_md5sig_key **md5,
705 				   struct tcp_extend_values *xvp,
706 				   struct tcp_fastopen_cookie *foc)
707 {
708 	struct inet_request_sock *ireq = inet_rsk(req);
709 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
710 	u8 cookie_plus = (xvp != NULL && !xvp->cookie_out_never) ?
711 			 xvp->cookie_plus :
712 			 0;
713 
714 #ifdef CONFIG_TCP_MD5SIG
715 	*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
716 	if (*md5) {
717 		opts->options |= OPTION_MD5;
718 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
719 
720 		/* We can't fit any SACK blocks in a packet with MD5 + TS
721 		 * options. There was discussion about disabling SACK
722 		 * rather than TS in order to fit in better with old,
723 		 * buggy kernels, but that was deemed to be unnecessary.
724 		 */
725 		ireq->tstamp_ok &= !ireq->sack_ok;
726 	}
727 #else
728 	*md5 = NULL;
729 #endif
730 
731 	/* We always send an MSS option. */
732 	opts->mss = mss;
733 	remaining -= TCPOLEN_MSS_ALIGNED;
734 
735 	if (likely(ireq->wscale_ok)) {
736 		opts->ws = ireq->rcv_wscale;
737 		opts->options |= OPTION_WSCALE;
738 		remaining -= TCPOLEN_WSCALE_ALIGNED;
739 	}
740 	if (likely(ireq->tstamp_ok)) {
741 		opts->options |= OPTION_TS;
742 		opts->tsval = TCP_SKB_CB(skb)->when;
743 		opts->tsecr = req->ts_recent;
744 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
745 	}
746 	if (likely(ireq->sack_ok)) {
747 		opts->options |= OPTION_SACK_ADVERTISE;
748 		if (unlikely(!ireq->tstamp_ok))
749 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
750 	}
751 	if (foc != NULL) {
752 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
753 		need = (need + 3) & ~3U;  /* Align to 32 bits */
754 		if (remaining >= need) {
755 			opts->options |= OPTION_FAST_OPEN_COOKIE;
756 			opts->fastopen_cookie = foc;
757 			remaining -= need;
758 		}
759 	}
760 	/* Similar rationale to tcp_syn_options() applies here, too.
761 	 * If the <SYN> options fit, the same options should fit now!
762 	 */
763 	if (*md5 == NULL &&
764 	    ireq->tstamp_ok &&
765 	    cookie_plus > TCPOLEN_COOKIE_BASE) {
766 		int need = cookie_plus; /* has TCPOLEN_COOKIE_BASE */
767 
768 		if (0x2 & need) {
769 			/* 32-bit multiple */
770 			need += 2; /* NOPs */
771 		}
772 		if (need <= remaining) {
773 			opts->options |= OPTION_COOKIE_EXTENSION;
774 			opts->hash_size = cookie_plus - TCPOLEN_COOKIE_BASE;
775 			remaining -= need;
776 		} else {
777 			/* There's no error return, so flag it. */
778 			xvp->cookie_out_never = 1; /* true */
779 			opts->hash_size = 0;
780 		}
781 	}
782 	return MAX_TCP_OPTION_SPACE - remaining;
783 }
784 
785 /* Compute TCP options for ESTABLISHED sockets. This is not the
786  * final wire format yet.
787  */
788 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
789 					struct tcp_out_options *opts,
790 					struct tcp_md5sig_key **md5)
791 {
792 	struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
793 	struct tcp_sock *tp = tcp_sk(sk);
794 	unsigned int size = 0;
795 	unsigned int eff_sacks;
796 
797 #ifdef CONFIG_TCP_MD5SIG
798 	*md5 = tp->af_specific->md5_lookup(sk, sk);
799 	if (unlikely(*md5)) {
800 		opts->options |= OPTION_MD5;
801 		size += TCPOLEN_MD5SIG_ALIGNED;
802 	}
803 #else
804 	*md5 = NULL;
805 #endif
806 
807 	if (likely(tp->rx_opt.tstamp_ok)) {
808 		opts->options |= OPTION_TS;
809 		opts->tsval = tcb ? tcb->when : 0;
810 		opts->tsecr = tp->rx_opt.ts_recent;
811 		size += TCPOLEN_TSTAMP_ALIGNED;
812 	}
813 
814 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
815 	if (unlikely(eff_sacks)) {
816 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
817 		opts->num_sack_blocks =
818 			min_t(unsigned int, eff_sacks,
819 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
820 			      TCPOLEN_SACK_PERBLOCK);
821 		size += TCPOLEN_SACK_BASE_ALIGNED +
822 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
823 	}
824 
825 	return size;
826 }
827 
828 
829 /* TCP SMALL QUEUES (TSQ)
830  *
831  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
832  * to reduce RTT and bufferbloat.
833  * We do this using a special skb destructor (tcp_wfree).
834  *
835  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
836  * needs to be reallocated in a driver.
837  * The invariant being skb->truesize substracted from sk->sk_wmem_alloc
838  *
839  * Since transmit from skb destructor is forbidden, we use a tasklet
840  * to process all sockets that eventually need to send more skbs.
841  * We use one tasklet per cpu, with its own queue of sockets.
842  */
843 struct tsq_tasklet {
844 	struct tasklet_struct	tasklet;
845 	struct list_head	head; /* queue of tcp sockets */
846 };
847 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
848 
849 static void tcp_tsq_handler(struct sock *sk)
850 {
851 	if ((1 << sk->sk_state) &
852 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
853 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
854 		tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC);
855 }
856 /*
857  * One tasklest per cpu tries to send more skbs.
858  * We run in tasklet context but need to disable irqs when
859  * transfering tsq->head because tcp_wfree() might
860  * interrupt us (non NAPI drivers)
861  */
862 static void tcp_tasklet_func(unsigned long data)
863 {
864 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
865 	LIST_HEAD(list);
866 	unsigned long flags;
867 	struct list_head *q, *n;
868 	struct tcp_sock *tp;
869 	struct sock *sk;
870 
871 	local_irq_save(flags);
872 	list_splice_init(&tsq->head, &list);
873 	local_irq_restore(flags);
874 
875 	list_for_each_safe(q, n, &list) {
876 		tp = list_entry(q, struct tcp_sock, tsq_node);
877 		list_del(&tp->tsq_node);
878 
879 		sk = (struct sock *)tp;
880 		bh_lock_sock(sk);
881 
882 		if (!sock_owned_by_user(sk)) {
883 			tcp_tsq_handler(sk);
884 		} else {
885 			/* defer the work to tcp_release_cb() */
886 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
887 		}
888 		bh_unlock_sock(sk);
889 
890 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
891 		sk_free(sk);
892 	}
893 }
894 
895 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
896 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
897 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
898 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
899 /**
900  * tcp_release_cb - tcp release_sock() callback
901  * @sk: socket
902  *
903  * called from release_sock() to perform protocol dependent
904  * actions before socket release.
905  */
906 void tcp_release_cb(struct sock *sk)
907 {
908 	struct tcp_sock *tp = tcp_sk(sk);
909 	unsigned long flags, nflags;
910 
911 	/* perform an atomic operation only if at least one flag is set */
912 	do {
913 		flags = tp->tsq_flags;
914 		if (!(flags & TCP_DEFERRED_ALL))
915 			return;
916 		nflags = flags & ~TCP_DEFERRED_ALL;
917 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
918 
919 	if (flags & (1UL << TCP_TSQ_DEFERRED))
920 		tcp_tsq_handler(sk);
921 
922 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
923 		tcp_write_timer_handler(sk);
924 		__sock_put(sk);
925 	}
926 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
927 		tcp_delack_timer_handler(sk);
928 		__sock_put(sk);
929 	}
930 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
931 		sk->sk_prot->mtu_reduced(sk);
932 		__sock_put(sk);
933 	}
934 }
935 EXPORT_SYMBOL(tcp_release_cb);
936 
937 void __init tcp_tasklet_init(void)
938 {
939 	int i;
940 
941 	for_each_possible_cpu(i) {
942 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
943 
944 		INIT_LIST_HEAD(&tsq->head);
945 		tasklet_init(&tsq->tasklet,
946 			     tcp_tasklet_func,
947 			     (unsigned long)tsq);
948 	}
949 }
950 
951 /*
952  * Write buffer destructor automatically called from kfree_skb.
953  * We cant xmit new skbs from this context, as we might already
954  * hold qdisc lock.
955  */
956 static void tcp_wfree(struct sk_buff *skb)
957 {
958 	struct sock *sk = skb->sk;
959 	struct tcp_sock *tp = tcp_sk(sk);
960 
961 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
962 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
963 		unsigned long flags;
964 		struct tsq_tasklet *tsq;
965 
966 		/* Keep a ref on socket.
967 		 * This last ref will be released in tcp_tasklet_func()
968 		 */
969 		atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
970 
971 		/* queue this socket to tasklet queue */
972 		local_irq_save(flags);
973 		tsq = &__get_cpu_var(tsq_tasklet);
974 		list_add(&tp->tsq_node, &tsq->head);
975 		tasklet_schedule(&tsq->tasklet);
976 		local_irq_restore(flags);
977 	} else {
978 		sock_wfree(skb);
979 	}
980 }
981 
982 /* This routine actually transmits TCP packets queued in by
983  * tcp_do_sendmsg().  This is used by both the initial
984  * transmission and possible later retransmissions.
985  * All SKB's seen here are completely headerless.  It is our
986  * job to build the TCP header, and pass the packet down to
987  * IP so it can do the same plus pass the packet off to the
988  * device.
989  *
990  * We are working here with either a clone of the original
991  * SKB, or a fresh unique copy made by the retransmit engine.
992  */
993 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
994 			    gfp_t gfp_mask)
995 {
996 	const struct inet_connection_sock *icsk = inet_csk(sk);
997 	struct inet_sock *inet;
998 	struct tcp_sock *tp;
999 	struct tcp_skb_cb *tcb;
1000 	struct tcp_out_options opts;
1001 	unsigned int tcp_options_size, tcp_header_size;
1002 	struct tcp_md5sig_key *md5;
1003 	struct tcphdr *th;
1004 	int err;
1005 
1006 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1007 
1008 	/* If congestion control is doing timestamping, we must
1009 	 * take such a timestamp before we potentially clone/copy.
1010 	 */
1011 	if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
1012 		__net_timestamp(skb);
1013 
1014 	if (likely(clone_it)) {
1015 		if (unlikely(skb_cloned(skb)))
1016 			skb = pskb_copy(skb, gfp_mask);
1017 		else
1018 			skb = skb_clone(skb, gfp_mask);
1019 		if (unlikely(!skb))
1020 			return -ENOBUFS;
1021 	}
1022 
1023 	inet = inet_sk(sk);
1024 	tp = tcp_sk(sk);
1025 	tcb = TCP_SKB_CB(skb);
1026 	memset(&opts, 0, sizeof(opts));
1027 
1028 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1029 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1030 	else
1031 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1032 							   &md5);
1033 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1034 
1035 	if (tcp_packets_in_flight(tp) == 0) {
1036 		tcp_ca_event(sk, CA_EVENT_TX_START);
1037 		skb->ooo_okay = 1;
1038 	} else
1039 		skb->ooo_okay = 0;
1040 
1041 	skb_push(skb, tcp_header_size);
1042 	skb_reset_transport_header(skb);
1043 
1044 	skb_orphan(skb);
1045 	skb->sk = sk;
1046 	skb->destructor = (sysctl_tcp_limit_output_bytes > 0) ?
1047 			  tcp_wfree : sock_wfree;
1048 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1049 
1050 	/* Build TCP header and checksum it. */
1051 	th = tcp_hdr(skb);
1052 	th->source		= inet->inet_sport;
1053 	th->dest		= inet->inet_dport;
1054 	th->seq			= htonl(tcb->seq);
1055 	th->ack_seq		= htonl(tp->rcv_nxt);
1056 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1057 					tcb->tcp_flags);
1058 
1059 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1060 		/* RFC1323: The window in SYN & SYN/ACK segments
1061 		 * is never scaled.
1062 		 */
1063 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1064 	} else {
1065 		th->window	= htons(tcp_select_window(sk));
1066 	}
1067 	th->check		= 0;
1068 	th->urg_ptr		= 0;
1069 
1070 	/* The urg_mode check is necessary during a below snd_una win probe */
1071 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1072 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1073 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1074 			th->urg = 1;
1075 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1076 			th->urg_ptr = htons(0xFFFF);
1077 			th->urg = 1;
1078 		}
1079 	}
1080 
1081 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1082 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
1083 		TCP_ECN_send(sk, skb, tcp_header_size);
1084 
1085 #ifdef CONFIG_TCP_MD5SIG
1086 	/* Calculate the MD5 hash, as we have all we need now */
1087 	if (md5) {
1088 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1089 		tp->af_specific->calc_md5_hash(opts.hash_location,
1090 					       md5, sk, NULL, skb);
1091 	}
1092 #endif
1093 
1094 	icsk->icsk_af_ops->send_check(sk, skb);
1095 
1096 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1097 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1098 
1099 	if (skb->len != tcp_header_size)
1100 		tcp_event_data_sent(tp, sk);
1101 
1102 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1103 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1104 			      tcp_skb_pcount(skb));
1105 
1106 	err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
1107 	if (likely(err <= 0))
1108 		return err;
1109 
1110 	tcp_enter_cwr(sk, 1);
1111 
1112 	return net_xmit_eval(err);
1113 }
1114 
1115 /* This routine just queues the buffer for sending.
1116  *
1117  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1118  * otherwise socket can stall.
1119  */
1120 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1121 {
1122 	struct tcp_sock *tp = tcp_sk(sk);
1123 
1124 	/* Advance write_seq and place onto the write_queue. */
1125 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1126 	skb_header_release(skb);
1127 	tcp_add_write_queue_tail(sk, skb);
1128 	sk->sk_wmem_queued += skb->truesize;
1129 	sk_mem_charge(sk, skb->truesize);
1130 }
1131 
1132 /* Initialize TSO segments for a packet. */
1133 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1134 				 unsigned int mss_now)
1135 {
1136 	if (skb->len <= mss_now || !sk_can_gso(sk) ||
1137 	    skb->ip_summed == CHECKSUM_NONE) {
1138 		/* Avoid the costly divide in the normal
1139 		 * non-TSO case.
1140 		 */
1141 		skb_shinfo(skb)->gso_segs = 1;
1142 		skb_shinfo(skb)->gso_size = 0;
1143 		skb_shinfo(skb)->gso_type = 0;
1144 	} else {
1145 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1146 		skb_shinfo(skb)->gso_size = mss_now;
1147 		skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1148 	}
1149 }
1150 
1151 /* When a modification to fackets out becomes necessary, we need to check
1152  * skb is counted to fackets_out or not.
1153  */
1154 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1155 				   int decr)
1156 {
1157 	struct tcp_sock *tp = tcp_sk(sk);
1158 
1159 	if (!tp->sacked_out || tcp_is_reno(tp))
1160 		return;
1161 
1162 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1163 		tp->fackets_out -= decr;
1164 }
1165 
1166 /* Pcount in the middle of the write queue got changed, we need to do various
1167  * tweaks to fix counters
1168  */
1169 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1170 {
1171 	struct tcp_sock *tp = tcp_sk(sk);
1172 
1173 	tp->packets_out -= decr;
1174 
1175 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1176 		tp->sacked_out -= decr;
1177 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1178 		tp->retrans_out -= decr;
1179 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1180 		tp->lost_out -= decr;
1181 
1182 	/* Reno case is special. Sigh... */
1183 	if (tcp_is_reno(tp) && decr > 0)
1184 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1185 
1186 	tcp_adjust_fackets_out(sk, skb, decr);
1187 
1188 	if (tp->lost_skb_hint &&
1189 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1190 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1191 		tp->lost_cnt_hint -= decr;
1192 
1193 	tcp_verify_left_out(tp);
1194 }
1195 
1196 /* Function to create two new TCP segments.  Shrinks the given segment
1197  * to the specified size and appends a new segment with the rest of the
1198  * packet to the list.  This won't be called frequently, I hope.
1199  * Remember, these are still headerless SKBs at this point.
1200  */
1201 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1202 		 unsigned int mss_now)
1203 {
1204 	struct tcp_sock *tp = tcp_sk(sk);
1205 	struct sk_buff *buff;
1206 	int nsize, old_factor;
1207 	int nlen;
1208 	u8 flags;
1209 
1210 	if (WARN_ON(len > skb->len))
1211 		return -EINVAL;
1212 
1213 	nsize = skb_headlen(skb) - len;
1214 	if (nsize < 0)
1215 		nsize = 0;
1216 
1217 	if (skb_cloned(skb) &&
1218 	    skb_is_nonlinear(skb) &&
1219 	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1220 		return -ENOMEM;
1221 
1222 	/* Get a new skb... force flag on. */
1223 	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1224 	if (buff == NULL)
1225 		return -ENOMEM; /* We'll just try again later. */
1226 
1227 	sk->sk_wmem_queued += buff->truesize;
1228 	sk_mem_charge(sk, buff->truesize);
1229 	nlen = skb->len - len - nsize;
1230 	buff->truesize += nlen;
1231 	skb->truesize -= nlen;
1232 
1233 	/* Correct the sequence numbers. */
1234 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1235 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1236 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1237 
1238 	/* PSH and FIN should only be set in the second packet. */
1239 	flags = TCP_SKB_CB(skb)->tcp_flags;
1240 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1241 	TCP_SKB_CB(buff)->tcp_flags = flags;
1242 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1243 
1244 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1245 		/* Copy and checksum data tail into the new buffer. */
1246 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1247 						       skb_put(buff, nsize),
1248 						       nsize, 0);
1249 
1250 		skb_trim(skb, len);
1251 
1252 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1253 	} else {
1254 		skb->ip_summed = CHECKSUM_PARTIAL;
1255 		skb_split(skb, buff, len);
1256 	}
1257 
1258 	buff->ip_summed = skb->ip_summed;
1259 
1260 	/* Looks stupid, but our code really uses when of
1261 	 * skbs, which it never sent before. --ANK
1262 	 */
1263 	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1264 	buff->tstamp = skb->tstamp;
1265 
1266 	old_factor = tcp_skb_pcount(skb);
1267 
1268 	/* Fix up tso_factor for both original and new SKB.  */
1269 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1270 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1271 
1272 	/* If this packet has been sent out already, we must
1273 	 * adjust the various packet counters.
1274 	 */
1275 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1276 		int diff = old_factor - tcp_skb_pcount(skb) -
1277 			tcp_skb_pcount(buff);
1278 
1279 		if (diff)
1280 			tcp_adjust_pcount(sk, skb, diff);
1281 	}
1282 
1283 	/* Link BUFF into the send queue. */
1284 	skb_header_release(buff);
1285 	tcp_insert_write_queue_after(skb, buff, sk);
1286 
1287 	return 0;
1288 }
1289 
1290 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1291  * eventually). The difference is that pulled data not copied, but
1292  * immediately discarded.
1293  */
1294 static void __pskb_trim_head(struct sk_buff *skb, int len)
1295 {
1296 	int i, k, eat;
1297 
1298 	eat = min_t(int, len, skb_headlen(skb));
1299 	if (eat) {
1300 		__skb_pull(skb, eat);
1301 		skb->avail_size -= eat;
1302 		len -= eat;
1303 		if (!len)
1304 			return;
1305 	}
1306 	eat = len;
1307 	k = 0;
1308 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1309 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1310 
1311 		if (size <= eat) {
1312 			skb_frag_unref(skb, i);
1313 			eat -= size;
1314 		} else {
1315 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1316 			if (eat) {
1317 				skb_shinfo(skb)->frags[k].page_offset += eat;
1318 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1319 				eat = 0;
1320 			}
1321 			k++;
1322 		}
1323 	}
1324 	skb_shinfo(skb)->nr_frags = k;
1325 
1326 	skb_reset_tail_pointer(skb);
1327 	skb->data_len -= len;
1328 	skb->len = skb->data_len;
1329 }
1330 
1331 /* Remove acked data from a packet in the transmit queue. */
1332 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1333 {
1334 	if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1335 		return -ENOMEM;
1336 
1337 	__pskb_trim_head(skb, len);
1338 
1339 	TCP_SKB_CB(skb)->seq += len;
1340 	skb->ip_summed = CHECKSUM_PARTIAL;
1341 
1342 	skb->truesize	     -= len;
1343 	sk->sk_wmem_queued   -= len;
1344 	sk_mem_uncharge(sk, len);
1345 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1346 
1347 	/* Any change of skb->len requires recalculation of tso factor. */
1348 	if (tcp_skb_pcount(skb) > 1)
1349 		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1350 
1351 	return 0;
1352 }
1353 
1354 /* Calculate MSS. Not accounting for SACKs here.  */
1355 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1356 {
1357 	const struct tcp_sock *tp = tcp_sk(sk);
1358 	const struct inet_connection_sock *icsk = inet_csk(sk);
1359 	int mss_now;
1360 
1361 	/* Calculate base mss without TCP options:
1362 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1363 	 */
1364 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1365 
1366 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1367 	if (icsk->icsk_af_ops->net_frag_header_len) {
1368 		const struct dst_entry *dst = __sk_dst_get(sk);
1369 
1370 		if (dst && dst_allfrag(dst))
1371 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1372 	}
1373 
1374 	/* Clamp it (mss_clamp does not include tcp options) */
1375 	if (mss_now > tp->rx_opt.mss_clamp)
1376 		mss_now = tp->rx_opt.mss_clamp;
1377 
1378 	/* Now subtract optional transport overhead */
1379 	mss_now -= icsk->icsk_ext_hdr_len;
1380 
1381 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1382 	if (mss_now < 48)
1383 		mss_now = 48;
1384 
1385 	/* Now subtract TCP options size, not including SACKs */
1386 	mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
1387 
1388 	return mss_now;
1389 }
1390 
1391 /* Inverse of above */
1392 int tcp_mss_to_mtu(struct sock *sk, int mss)
1393 {
1394 	const struct tcp_sock *tp = tcp_sk(sk);
1395 	const struct inet_connection_sock *icsk = inet_csk(sk);
1396 	int mtu;
1397 
1398 	mtu = mss +
1399 	      tp->tcp_header_len +
1400 	      icsk->icsk_ext_hdr_len +
1401 	      icsk->icsk_af_ops->net_header_len;
1402 
1403 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1404 	if (icsk->icsk_af_ops->net_frag_header_len) {
1405 		const struct dst_entry *dst = __sk_dst_get(sk);
1406 
1407 		if (dst && dst_allfrag(dst))
1408 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1409 	}
1410 	return mtu;
1411 }
1412 
1413 /* MTU probing init per socket */
1414 void tcp_mtup_init(struct sock *sk)
1415 {
1416 	struct tcp_sock *tp = tcp_sk(sk);
1417 	struct inet_connection_sock *icsk = inet_csk(sk);
1418 
1419 	icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1420 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1421 			       icsk->icsk_af_ops->net_header_len;
1422 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1423 	icsk->icsk_mtup.probe_size = 0;
1424 }
1425 EXPORT_SYMBOL(tcp_mtup_init);
1426 
1427 /* This function synchronize snd mss to current pmtu/exthdr set.
1428 
1429    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1430    for TCP options, but includes only bare TCP header.
1431 
1432    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1433    It is minimum of user_mss and mss received with SYN.
1434    It also does not include TCP options.
1435 
1436    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1437 
1438    tp->mss_cache is current effective sending mss, including
1439    all tcp options except for SACKs. It is evaluated,
1440    taking into account current pmtu, but never exceeds
1441    tp->rx_opt.mss_clamp.
1442 
1443    NOTE1. rfc1122 clearly states that advertised MSS
1444    DOES NOT include either tcp or ip options.
1445 
1446    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1447    are READ ONLY outside this function.		--ANK (980731)
1448  */
1449 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1450 {
1451 	struct tcp_sock *tp = tcp_sk(sk);
1452 	struct inet_connection_sock *icsk = inet_csk(sk);
1453 	int mss_now;
1454 
1455 	if (icsk->icsk_mtup.search_high > pmtu)
1456 		icsk->icsk_mtup.search_high = pmtu;
1457 
1458 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1459 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1460 
1461 	/* And store cached results */
1462 	icsk->icsk_pmtu_cookie = pmtu;
1463 	if (icsk->icsk_mtup.enabled)
1464 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1465 	tp->mss_cache = mss_now;
1466 
1467 	return mss_now;
1468 }
1469 EXPORT_SYMBOL(tcp_sync_mss);
1470 
1471 /* Compute the current effective MSS, taking SACKs and IP options,
1472  * and even PMTU discovery events into account.
1473  */
1474 unsigned int tcp_current_mss(struct sock *sk)
1475 {
1476 	const struct tcp_sock *tp = tcp_sk(sk);
1477 	const struct dst_entry *dst = __sk_dst_get(sk);
1478 	u32 mss_now;
1479 	unsigned int header_len;
1480 	struct tcp_out_options opts;
1481 	struct tcp_md5sig_key *md5;
1482 
1483 	mss_now = tp->mss_cache;
1484 
1485 	if (dst) {
1486 		u32 mtu = dst_mtu(dst);
1487 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1488 			mss_now = tcp_sync_mss(sk, mtu);
1489 	}
1490 
1491 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1492 		     sizeof(struct tcphdr);
1493 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1494 	 * some common options. If this is an odd packet (because we have SACK
1495 	 * blocks etc) then our calculated header_len will be different, and
1496 	 * we have to adjust mss_now correspondingly */
1497 	if (header_len != tp->tcp_header_len) {
1498 		int delta = (int) header_len - tp->tcp_header_len;
1499 		mss_now -= delta;
1500 	}
1501 
1502 	return mss_now;
1503 }
1504 
1505 /* Congestion window validation. (RFC2861) */
1506 static void tcp_cwnd_validate(struct sock *sk)
1507 {
1508 	struct tcp_sock *tp = tcp_sk(sk);
1509 
1510 	if (tp->packets_out >= tp->snd_cwnd) {
1511 		/* Network is feed fully. */
1512 		tp->snd_cwnd_used = 0;
1513 		tp->snd_cwnd_stamp = tcp_time_stamp;
1514 	} else {
1515 		/* Network starves. */
1516 		if (tp->packets_out > tp->snd_cwnd_used)
1517 			tp->snd_cwnd_used = tp->packets_out;
1518 
1519 		if (sysctl_tcp_slow_start_after_idle &&
1520 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1521 			tcp_cwnd_application_limited(sk);
1522 	}
1523 }
1524 
1525 /* Returns the portion of skb which can be sent right away without
1526  * introducing MSS oddities to segment boundaries. In rare cases where
1527  * mss_now != mss_cache, we will request caller to create a small skb
1528  * per input skb which could be mostly avoided here (if desired).
1529  *
1530  * We explicitly want to create a request for splitting write queue tail
1531  * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1532  * thus all the complexity (cwnd_len is always MSS multiple which we
1533  * return whenever allowed by the other factors). Basically we need the
1534  * modulo only when the receiver window alone is the limiting factor or
1535  * when we would be allowed to send the split-due-to-Nagle skb fully.
1536  */
1537 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1538 					unsigned int mss_now, unsigned int max_segs)
1539 {
1540 	const struct tcp_sock *tp = tcp_sk(sk);
1541 	u32 needed, window, max_len;
1542 
1543 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1544 	max_len = mss_now * max_segs;
1545 
1546 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1547 		return max_len;
1548 
1549 	needed = min(skb->len, window);
1550 
1551 	if (max_len <= needed)
1552 		return max_len;
1553 
1554 	return needed - needed % mss_now;
1555 }
1556 
1557 /* Can at least one segment of SKB be sent right now, according to the
1558  * congestion window rules?  If so, return how many segments are allowed.
1559  */
1560 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1561 					 const struct sk_buff *skb)
1562 {
1563 	u32 in_flight, cwnd;
1564 
1565 	/* Don't be strict about the congestion window for the final FIN.  */
1566 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1567 	    tcp_skb_pcount(skb) == 1)
1568 		return 1;
1569 
1570 	in_flight = tcp_packets_in_flight(tp);
1571 	cwnd = tp->snd_cwnd;
1572 	if (in_flight < cwnd)
1573 		return (cwnd - in_flight);
1574 
1575 	return 0;
1576 }
1577 
1578 /* Initialize TSO state of a skb.
1579  * This must be invoked the first time we consider transmitting
1580  * SKB onto the wire.
1581  */
1582 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1583 			     unsigned int mss_now)
1584 {
1585 	int tso_segs = tcp_skb_pcount(skb);
1586 
1587 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1588 		tcp_set_skb_tso_segs(sk, skb, mss_now);
1589 		tso_segs = tcp_skb_pcount(skb);
1590 	}
1591 	return tso_segs;
1592 }
1593 
1594 /* Minshall's variant of the Nagle send check. */
1595 static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1596 {
1597 	return after(tp->snd_sml, tp->snd_una) &&
1598 		!after(tp->snd_sml, tp->snd_nxt);
1599 }
1600 
1601 /* Return false, if packet can be sent now without violation Nagle's rules:
1602  * 1. It is full sized.
1603  * 2. Or it contains FIN. (already checked by caller)
1604  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1605  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1606  *    With Minshall's modification: all sent small packets are ACKed.
1607  */
1608 static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1609 				  const struct sk_buff *skb,
1610 				  unsigned int mss_now, int nonagle)
1611 {
1612 	return skb->len < mss_now &&
1613 		((nonagle & TCP_NAGLE_CORK) ||
1614 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1615 }
1616 
1617 /* Return true if the Nagle test allows this packet to be
1618  * sent now.
1619  */
1620 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1621 				  unsigned int cur_mss, int nonagle)
1622 {
1623 	/* Nagle rule does not apply to frames, which sit in the middle of the
1624 	 * write_queue (they have no chances to get new data).
1625 	 *
1626 	 * This is implemented in the callers, where they modify the 'nonagle'
1627 	 * argument based upon the location of SKB in the send queue.
1628 	 */
1629 	if (nonagle & TCP_NAGLE_PUSH)
1630 		return true;
1631 
1632 	/* Don't use the nagle rule for urgent data (or for the final FIN).
1633 	 * Nagle can be ignored during F-RTO too (see RFC4138).
1634 	 */
1635 	if (tcp_urg_mode(tp) || (tp->frto_counter == 2) ||
1636 	    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1637 		return true;
1638 
1639 	if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1640 		return true;
1641 
1642 	return false;
1643 }
1644 
1645 /* Does at least the first segment of SKB fit into the send window? */
1646 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1647 			     const struct sk_buff *skb,
1648 			     unsigned int cur_mss)
1649 {
1650 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1651 
1652 	if (skb->len > cur_mss)
1653 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1654 
1655 	return !after(end_seq, tcp_wnd_end(tp));
1656 }
1657 
1658 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1659  * should be put on the wire right now.  If so, it returns the number of
1660  * packets allowed by the congestion window.
1661  */
1662 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1663 				 unsigned int cur_mss, int nonagle)
1664 {
1665 	const struct tcp_sock *tp = tcp_sk(sk);
1666 	unsigned int cwnd_quota;
1667 
1668 	tcp_init_tso_segs(sk, skb, cur_mss);
1669 
1670 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1671 		return 0;
1672 
1673 	cwnd_quota = tcp_cwnd_test(tp, skb);
1674 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1675 		cwnd_quota = 0;
1676 
1677 	return cwnd_quota;
1678 }
1679 
1680 /* Test if sending is allowed right now. */
1681 bool tcp_may_send_now(struct sock *sk)
1682 {
1683 	const struct tcp_sock *tp = tcp_sk(sk);
1684 	struct sk_buff *skb = tcp_send_head(sk);
1685 
1686 	return skb &&
1687 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1688 			     (tcp_skb_is_last(sk, skb) ?
1689 			      tp->nonagle : TCP_NAGLE_PUSH));
1690 }
1691 
1692 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1693  * which is put after SKB on the list.  It is very much like
1694  * tcp_fragment() except that it may make several kinds of assumptions
1695  * in order to speed up the splitting operation.  In particular, we
1696  * know that all the data is in scatter-gather pages, and that the
1697  * packet has never been sent out before (and thus is not cloned).
1698  */
1699 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1700 			unsigned int mss_now, gfp_t gfp)
1701 {
1702 	struct sk_buff *buff;
1703 	int nlen = skb->len - len;
1704 	u8 flags;
1705 
1706 	/* All of a TSO frame must be composed of paged data.  */
1707 	if (skb->len != skb->data_len)
1708 		return tcp_fragment(sk, skb, len, mss_now);
1709 
1710 	buff = sk_stream_alloc_skb(sk, 0, gfp);
1711 	if (unlikely(buff == NULL))
1712 		return -ENOMEM;
1713 
1714 	sk->sk_wmem_queued += buff->truesize;
1715 	sk_mem_charge(sk, buff->truesize);
1716 	buff->truesize += nlen;
1717 	skb->truesize -= nlen;
1718 
1719 	/* Correct the sequence numbers. */
1720 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1721 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1722 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1723 
1724 	/* PSH and FIN should only be set in the second packet. */
1725 	flags = TCP_SKB_CB(skb)->tcp_flags;
1726 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1727 	TCP_SKB_CB(buff)->tcp_flags = flags;
1728 
1729 	/* This packet was never sent out yet, so no SACK bits. */
1730 	TCP_SKB_CB(buff)->sacked = 0;
1731 
1732 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1733 	skb_split(skb, buff, len);
1734 
1735 	/* Fix up tso_factor for both original and new SKB.  */
1736 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1737 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1738 
1739 	/* Link BUFF into the send queue. */
1740 	skb_header_release(buff);
1741 	tcp_insert_write_queue_after(skb, buff, sk);
1742 
1743 	return 0;
1744 }
1745 
1746 /* Try to defer sending, if possible, in order to minimize the amount
1747  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1748  *
1749  * This algorithm is from John Heffner.
1750  */
1751 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1752 {
1753 	struct tcp_sock *tp = tcp_sk(sk);
1754 	const struct inet_connection_sock *icsk = inet_csk(sk);
1755 	u32 send_win, cong_win, limit, in_flight;
1756 	int win_divisor;
1757 
1758 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1759 		goto send_now;
1760 
1761 	if (icsk->icsk_ca_state != TCP_CA_Open)
1762 		goto send_now;
1763 
1764 	/* Defer for less than two clock ticks. */
1765 	if (tp->tso_deferred &&
1766 	    (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1767 		goto send_now;
1768 
1769 	in_flight = tcp_packets_in_flight(tp);
1770 
1771 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1772 
1773 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1774 
1775 	/* From in_flight test above, we know that cwnd > in_flight.  */
1776 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1777 
1778 	limit = min(send_win, cong_win);
1779 
1780 	/* If a full-sized TSO skb can be sent, do it. */
1781 	if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1782 			   sk->sk_gso_max_segs * tp->mss_cache))
1783 		goto send_now;
1784 
1785 	/* Middle in queue won't get any more data, full sendable already? */
1786 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1787 		goto send_now;
1788 
1789 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1790 	if (win_divisor) {
1791 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1792 
1793 		/* If at least some fraction of a window is available,
1794 		 * just use it.
1795 		 */
1796 		chunk /= win_divisor;
1797 		if (limit >= chunk)
1798 			goto send_now;
1799 	} else {
1800 		/* Different approach, try not to defer past a single
1801 		 * ACK.  Receiver should ACK every other full sized
1802 		 * frame, so if we have space for more than 3 frames
1803 		 * then send now.
1804 		 */
1805 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1806 			goto send_now;
1807 	}
1808 
1809 	/* Ok, it looks like it is advisable to defer.  */
1810 	tp->tso_deferred = 1 | (jiffies << 1);
1811 
1812 	return true;
1813 
1814 send_now:
1815 	tp->tso_deferred = 0;
1816 	return false;
1817 }
1818 
1819 /* Create a new MTU probe if we are ready.
1820  * MTU probe is regularly attempting to increase the path MTU by
1821  * deliberately sending larger packets.  This discovers routing
1822  * changes resulting in larger path MTUs.
1823  *
1824  * Returns 0 if we should wait to probe (no cwnd available),
1825  *         1 if a probe was sent,
1826  *         -1 otherwise
1827  */
1828 static int tcp_mtu_probe(struct sock *sk)
1829 {
1830 	struct tcp_sock *tp = tcp_sk(sk);
1831 	struct inet_connection_sock *icsk = inet_csk(sk);
1832 	struct sk_buff *skb, *nskb, *next;
1833 	int len;
1834 	int probe_size;
1835 	int size_needed;
1836 	int copy;
1837 	int mss_now;
1838 
1839 	/* Not currently probing/verifying,
1840 	 * not in recovery,
1841 	 * have enough cwnd, and
1842 	 * not SACKing (the variable headers throw things off) */
1843 	if (!icsk->icsk_mtup.enabled ||
1844 	    icsk->icsk_mtup.probe_size ||
1845 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1846 	    tp->snd_cwnd < 11 ||
1847 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1848 		return -1;
1849 
1850 	/* Very simple search strategy: just double the MSS. */
1851 	mss_now = tcp_current_mss(sk);
1852 	probe_size = 2 * tp->mss_cache;
1853 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1854 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1855 		/* TODO: set timer for probe_converge_event */
1856 		return -1;
1857 	}
1858 
1859 	/* Have enough data in the send queue to probe? */
1860 	if (tp->write_seq - tp->snd_nxt < size_needed)
1861 		return -1;
1862 
1863 	if (tp->snd_wnd < size_needed)
1864 		return -1;
1865 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1866 		return 0;
1867 
1868 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1869 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1870 		if (!tcp_packets_in_flight(tp))
1871 			return -1;
1872 		else
1873 			return 0;
1874 	}
1875 
1876 	/* We're allowed to probe.  Build it now. */
1877 	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1878 		return -1;
1879 	sk->sk_wmem_queued += nskb->truesize;
1880 	sk_mem_charge(sk, nskb->truesize);
1881 
1882 	skb = tcp_send_head(sk);
1883 
1884 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1885 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1886 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1887 	TCP_SKB_CB(nskb)->sacked = 0;
1888 	nskb->csum = 0;
1889 	nskb->ip_summed = skb->ip_summed;
1890 
1891 	tcp_insert_write_queue_before(nskb, skb, sk);
1892 
1893 	len = 0;
1894 	tcp_for_write_queue_from_safe(skb, next, sk) {
1895 		copy = min_t(int, skb->len, probe_size - len);
1896 		if (nskb->ip_summed)
1897 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1898 		else
1899 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1900 							    skb_put(nskb, copy),
1901 							    copy, nskb->csum);
1902 
1903 		if (skb->len <= copy) {
1904 			/* We've eaten all the data from this skb.
1905 			 * Throw it away. */
1906 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1907 			tcp_unlink_write_queue(skb, sk);
1908 			sk_wmem_free_skb(sk, skb);
1909 		} else {
1910 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1911 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1912 			if (!skb_shinfo(skb)->nr_frags) {
1913 				skb_pull(skb, copy);
1914 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1915 					skb->csum = csum_partial(skb->data,
1916 								 skb->len, 0);
1917 			} else {
1918 				__pskb_trim_head(skb, copy);
1919 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1920 			}
1921 			TCP_SKB_CB(skb)->seq += copy;
1922 		}
1923 
1924 		len += copy;
1925 
1926 		if (len >= probe_size)
1927 			break;
1928 	}
1929 	tcp_init_tso_segs(sk, nskb, nskb->len);
1930 
1931 	/* We're ready to send.  If this fails, the probe will
1932 	 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1933 	TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1934 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1935 		/* Decrement cwnd here because we are sending
1936 		 * effectively two packets. */
1937 		tp->snd_cwnd--;
1938 		tcp_event_new_data_sent(sk, nskb);
1939 
1940 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1941 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1942 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1943 
1944 		return 1;
1945 	}
1946 
1947 	return -1;
1948 }
1949 
1950 /* This routine writes packets to the network.  It advances the
1951  * send_head.  This happens as incoming acks open up the remote
1952  * window for us.
1953  *
1954  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1955  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1956  * account rare use of URG, this is not a big flaw.
1957  *
1958  * Returns true, if no segments are in flight and we have queued segments,
1959  * but cannot send anything now because of SWS or another problem.
1960  */
1961 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1962 			   int push_one, gfp_t gfp)
1963 {
1964 	struct tcp_sock *tp = tcp_sk(sk);
1965 	struct sk_buff *skb;
1966 	unsigned int tso_segs, sent_pkts;
1967 	int cwnd_quota;
1968 	int result;
1969 
1970 	sent_pkts = 0;
1971 
1972 	if (!push_one) {
1973 		/* Do MTU probing. */
1974 		result = tcp_mtu_probe(sk);
1975 		if (!result) {
1976 			return false;
1977 		} else if (result > 0) {
1978 			sent_pkts = 1;
1979 		}
1980 	}
1981 
1982 	while ((skb = tcp_send_head(sk))) {
1983 		unsigned int limit;
1984 
1985 
1986 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1987 		BUG_ON(!tso_segs);
1988 
1989 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1990 			goto repair; /* Skip network transmission */
1991 
1992 		cwnd_quota = tcp_cwnd_test(tp, skb);
1993 		if (!cwnd_quota)
1994 			break;
1995 
1996 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1997 			break;
1998 
1999 		if (tso_segs == 1) {
2000 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2001 						     (tcp_skb_is_last(sk, skb) ?
2002 						      nonagle : TCP_NAGLE_PUSH))))
2003 				break;
2004 		} else {
2005 			if (!push_one && tcp_tso_should_defer(sk, skb))
2006 				break;
2007 		}
2008 
2009 		/* TSQ : sk_wmem_alloc accounts skb truesize,
2010 		 * including skb overhead. But thats OK.
2011 		 */
2012 		if (atomic_read(&sk->sk_wmem_alloc) >= sysctl_tcp_limit_output_bytes) {
2013 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2014 			break;
2015 		}
2016 		limit = mss_now;
2017 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2018 			limit = tcp_mss_split_point(sk, skb, mss_now,
2019 						    min_t(unsigned int,
2020 							  cwnd_quota,
2021 							  sk->sk_gso_max_segs));
2022 
2023 		if (skb->len > limit &&
2024 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2025 			break;
2026 
2027 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
2028 
2029 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2030 			break;
2031 
2032 repair:
2033 		/* Advance the send_head.  This one is sent out.
2034 		 * This call will increment packets_out.
2035 		 */
2036 		tcp_event_new_data_sent(sk, skb);
2037 
2038 		tcp_minshall_update(tp, mss_now, skb);
2039 		sent_pkts += tcp_skb_pcount(skb);
2040 
2041 		if (push_one)
2042 			break;
2043 	}
2044 
2045 	if (likely(sent_pkts)) {
2046 		if (tcp_in_cwnd_reduction(sk))
2047 			tp->prr_out += sent_pkts;
2048 		tcp_cwnd_validate(sk);
2049 		return false;
2050 	}
2051 	return !tp->packets_out && tcp_send_head(sk);
2052 }
2053 
2054 /* Push out any pending frames which were held back due to
2055  * TCP_CORK or attempt at coalescing tiny packets.
2056  * The socket must be locked by the caller.
2057  */
2058 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2059 			       int nonagle)
2060 {
2061 	/* If we are closed, the bytes will have to remain here.
2062 	 * In time closedown will finish, we empty the write queue and
2063 	 * all will be happy.
2064 	 */
2065 	if (unlikely(sk->sk_state == TCP_CLOSE))
2066 		return;
2067 
2068 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2069 			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2070 		tcp_check_probe_timer(sk);
2071 }
2072 
2073 /* Send _single_ skb sitting at the send head. This function requires
2074  * true push pending frames to setup probe timer etc.
2075  */
2076 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2077 {
2078 	struct sk_buff *skb = tcp_send_head(sk);
2079 
2080 	BUG_ON(!skb || skb->len < mss_now);
2081 
2082 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2083 }
2084 
2085 /* This function returns the amount that we can raise the
2086  * usable window based on the following constraints
2087  *
2088  * 1. The window can never be shrunk once it is offered (RFC 793)
2089  * 2. We limit memory per socket
2090  *
2091  * RFC 1122:
2092  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2093  *  RECV.NEXT + RCV.WIN fixed until:
2094  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2095  *
2096  * i.e. don't raise the right edge of the window until you can raise
2097  * it at least MSS bytes.
2098  *
2099  * Unfortunately, the recommended algorithm breaks header prediction,
2100  * since header prediction assumes th->window stays fixed.
2101  *
2102  * Strictly speaking, keeping th->window fixed violates the receiver
2103  * side SWS prevention criteria. The problem is that under this rule
2104  * a stream of single byte packets will cause the right side of the
2105  * window to always advance by a single byte.
2106  *
2107  * Of course, if the sender implements sender side SWS prevention
2108  * then this will not be a problem.
2109  *
2110  * BSD seems to make the following compromise:
2111  *
2112  *	If the free space is less than the 1/4 of the maximum
2113  *	space available and the free space is less than 1/2 mss,
2114  *	then set the window to 0.
2115  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2116  *	Otherwise, just prevent the window from shrinking
2117  *	and from being larger than the largest representable value.
2118  *
2119  * This prevents incremental opening of the window in the regime
2120  * where TCP is limited by the speed of the reader side taking
2121  * data out of the TCP receive queue. It does nothing about
2122  * those cases where the window is constrained on the sender side
2123  * because the pipeline is full.
2124  *
2125  * BSD also seems to "accidentally" limit itself to windows that are a
2126  * multiple of MSS, at least until the free space gets quite small.
2127  * This would appear to be a side effect of the mbuf implementation.
2128  * Combining these two algorithms results in the observed behavior
2129  * of having a fixed window size at almost all times.
2130  *
2131  * Below we obtain similar behavior by forcing the offered window to
2132  * a multiple of the mss when it is feasible to do so.
2133  *
2134  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2135  * Regular options like TIMESTAMP are taken into account.
2136  */
2137 u32 __tcp_select_window(struct sock *sk)
2138 {
2139 	struct inet_connection_sock *icsk = inet_csk(sk);
2140 	struct tcp_sock *tp = tcp_sk(sk);
2141 	/* MSS for the peer's data.  Previous versions used mss_clamp
2142 	 * here.  I don't know if the value based on our guesses
2143 	 * of peer's MSS is better for the performance.  It's more correct
2144 	 * but may be worse for the performance because of rcv_mss
2145 	 * fluctuations.  --SAW  1998/11/1
2146 	 */
2147 	int mss = icsk->icsk_ack.rcv_mss;
2148 	int free_space = tcp_space(sk);
2149 	int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2150 	int window;
2151 
2152 	if (mss > full_space)
2153 		mss = full_space;
2154 
2155 	if (free_space < (full_space >> 1)) {
2156 		icsk->icsk_ack.quick = 0;
2157 
2158 		if (sk_under_memory_pressure(sk))
2159 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2160 					       4U * tp->advmss);
2161 
2162 		if (free_space < mss)
2163 			return 0;
2164 	}
2165 
2166 	if (free_space > tp->rcv_ssthresh)
2167 		free_space = tp->rcv_ssthresh;
2168 
2169 	/* Don't do rounding if we are using window scaling, since the
2170 	 * scaled window will not line up with the MSS boundary anyway.
2171 	 */
2172 	window = tp->rcv_wnd;
2173 	if (tp->rx_opt.rcv_wscale) {
2174 		window = free_space;
2175 
2176 		/* Advertise enough space so that it won't get scaled away.
2177 		 * Import case: prevent zero window announcement if
2178 		 * 1<<rcv_wscale > mss.
2179 		 */
2180 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2181 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2182 				  << tp->rx_opt.rcv_wscale);
2183 	} else {
2184 		/* Get the largest window that is a nice multiple of mss.
2185 		 * Window clamp already applied above.
2186 		 * If our current window offering is within 1 mss of the
2187 		 * free space we just keep it. This prevents the divide
2188 		 * and multiply from happening most of the time.
2189 		 * We also don't do any window rounding when the free space
2190 		 * is too small.
2191 		 */
2192 		if (window <= free_space - mss || window > free_space)
2193 			window = (free_space / mss) * mss;
2194 		else if (mss == full_space &&
2195 			 free_space > window + (full_space >> 1))
2196 			window = free_space;
2197 	}
2198 
2199 	return window;
2200 }
2201 
2202 /* Collapses two adjacent SKB's during retransmission. */
2203 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2204 {
2205 	struct tcp_sock *tp = tcp_sk(sk);
2206 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2207 	int skb_size, next_skb_size;
2208 
2209 	skb_size = skb->len;
2210 	next_skb_size = next_skb->len;
2211 
2212 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2213 
2214 	tcp_highest_sack_combine(sk, next_skb, skb);
2215 
2216 	tcp_unlink_write_queue(next_skb, sk);
2217 
2218 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2219 				  next_skb_size);
2220 
2221 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2222 		skb->ip_summed = CHECKSUM_PARTIAL;
2223 
2224 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2225 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2226 
2227 	/* Update sequence range on original skb. */
2228 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2229 
2230 	/* Merge over control information. This moves PSH/FIN etc. over */
2231 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2232 
2233 	/* All done, get rid of second SKB and account for it so
2234 	 * packet counting does not break.
2235 	 */
2236 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2237 
2238 	/* changed transmit queue under us so clear hints */
2239 	tcp_clear_retrans_hints_partial(tp);
2240 	if (next_skb == tp->retransmit_skb_hint)
2241 		tp->retransmit_skb_hint = skb;
2242 
2243 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2244 
2245 	sk_wmem_free_skb(sk, next_skb);
2246 }
2247 
2248 /* Check if coalescing SKBs is legal. */
2249 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2250 {
2251 	if (tcp_skb_pcount(skb) > 1)
2252 		return false;
2253 	/* TODO: SACK collapsing could be used to remove this condition */
2254 	if (skb_shinfo(skb)->nr_frags != 0)
2255 		return false;
2256 	if (skb_cloned(skb))
2257 		return false;
2258 	if (skb == tcp_send_head(sk))
2259 		return false;
2260 	/* Some heurestics for collapsing over SACK'd could be invented */
2261 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2262 		return false;
2263 
2264 	return true;
2265 }
2266 
2267 /* Collapse packets in the retransmit queue to make to create
2268  * less packets on the wire. This is only done on retransmission.
2269  */
2270 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2271 				     int space)
2272 {
2273 	struct tcp_sock *tp = tcp_sk(sk);
2274 	struct sk_buff *skb = to, *tmp;
2275 	bool first = true;
2276 
2277 	if (!sysctl_tcp_retrans_collapse)
2278 		return;
2279 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2280 		return;
2281 
2282 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2283 		if (!tcp_can_collapse(sk, skb))
2284 			break;
2285 
2286 		space -= skb->len;
2287 
2288 		if (first) {
2289 			first = false;
2290 			continue;
2291 		}
2292 
2293 		if (space < 0)
2294 			break;
2295 		/* Punt if not enough space exists in the first SKB for
2296 		 * the data in the second
2297 		 */
2298 		if (skb->len > skb_availroom(to))
2299 			break;
2300 
2301 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2302 			break;
2303 
2304 		tcp_collapse_retrans(sk, to);
2305 	}
2306 }
2307 
2308 /* This retransmits one SKB.  Policy decisions and retransmit queue
2309  * state updates are done by the caller.  Returns non-zero if an
2310  * error occurred which prevented the send.
2311  */
2312 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2313 {
2314 	struct tcp_sock *tp = tcp_sk(sk);
2315 	struct inet_connection_sock *icsk = inet_csk(sk);
2316 	unsigned int cur_mss;
2317 
2318 	/* Inconslusive MTU probe */
2319 	if (icsk->icsk_mtup.probe_size) {
2320 		icsk->icsk_mtup.probe_size = 0;
2321 	}
2322 
2323 	/* Do not sent more than we queued. 1/4 is reserved for possible
2324 	 * copying overhead: fragmentation, tunneling, mangling etc.
2325 	 */
2326 	if (atomic_read(&sk->sk_wmem_alloc) >
2327 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2328 		return -EAGAIN;
2329 
2330 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2331 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2332 			BUG();
2333 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2334 			return -ENOMEM;
2335 	}
2336 
2337 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2338 		return -EHOSTUNREACH; /* Routing failure or similar. */
2339 
2340 	cur_mss = tcp_current_mss(sk);
2341 
2342 	/* If receiver has shrunk his window, and skb is out of
2343 	 * new window, do not retransmit it. The exception is the
2344 	 * case, when window is shrunk to zero. In this case
2345 	 * our retransmit serves as a zero window probe.
2346 	 */
2347 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2348 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2349 		return -EAGAIN;
2350 
2351 	if (skb->len > cur_mss) {
2352 		if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2353 			return -ENOMEM; /* We'll try again later. */
2354 	} else {
2355 		int oldpcount = tcp_skb_pcount(skb);
2356 
2357 		if (unlikely(oldpcount > 1)) {
2358 			tcp_init_tso_segs(sk, skb, cur_mss);
2359 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2360 		}
2361 	}
2362 
2363 	tcp_retrans_try_collapse(sk, skb, cur_mss);
2364 
2365 	/* Some Solaris stacks overoptimize and ignore the FIN on a
2366 	 * retransmit when old data is attached.  So strip it off
2367 	 * since it is cheap to do so and saves bytes on the network.
2368 	 */
2369 	if (skb->len > 0 &&
2370 	    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2371 	    tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2372 		if (!pskb_trim(skb, 0)) {
2373 			/* Reuse, even though it does some unnecessary work */
2374 			tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2375 					     TCP_SKB_CB(skb)->tcp_flags);
2376 			skb->ip_summed = CHECKSUM_NONE;
2377 		}
2378 	}
2379 
2380 	/* Make a copy, if the first transmission SKB clone we made
2381 	 * is still in somebody's hands, else make a clone.
2382 	 */
2383 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2384 
2385 	/* make sure skb->data is aligned on arches that require it */
2386 	if (unlikely(NET_IP_ALIGN && ((unsigned long)skb->data & 3))) {
2387 		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2388 						   GFP_ATOMIC);
2389 		return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2390 			      -ENOBUFS;
2391 	} else {
2392 		return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2393 	}
2394 }
2395 
2396 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2397 {
2398 	struct tcp_sock *tp = tcp_sk(sk);
2399 	int err = __tcp_retransmit_skb(sk, skb);
2400 
2401 	if (err == 0) {
2402 		/* Update global TCP statistics. */
2403 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2404 
2405 		tp->total_retrans++;
2406 
2407 #if FASTRETRANS_DEBUG > 0
2408 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2409 			net_dbg_ratelimited("retrans_out leaked\n");
2410 		}
2411 #endif
2412 		if (!tp->retrans_out)
2413 			tp->lost_retrans_low = tp->snd_nxt;
2414 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2415 		tp->retrans_out += tcp_skb_pcount(skb);
2416 
2417 		/* Save stamp of the first retransmit. */
2418 		if (!tp->retrans_stamp)
2419 			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2420 
2421 		tp->undo_retrans += tcp_skb_pcount(skb);
2422 
2423 		/* snd_nxt is stored to detect loss of retransmitted segment,
2424 		 * see tcp_input.c tcp_sacktag_write_queue().
2425 		 */
2426 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2427 	}
2428 	return err;
2429 }
2430 
2431 /* Check if we forward retransmits are possible in the current
2432  * window/congestion state.
2433  */
2434 static bool tcp_can_forward_retransmit(struct sock *sk)
2435 {
2436 	const struct inet_connection_sock *icsk = inet_csk(sk);
2437 	const struct tcp_sock *tp = tcp_sk(sk);
2438 
2439 	/* Forward retransmissions are possible only during Recovery. */
2440 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2441 		return false;
2442 
2443 	/* No forward retransmissions in Reno are possible. */
2444 	if (tcp_is_reno(tp))
2445 		return false;
2446 
2447 	/* Yeah, we have to make difficult choice between forward transmission
2448 	 * and retransmission... Both ways have their merits...
2449 	 *
2450 	 * For now we do not retransmit anything, while we have some new
2451 	 * segments to send. In the other cases, follow rule 3 for
2452 	 * NextSeg() specified in RFC3517.
2453 	 */
2454 
2455 	if (tcp_may_send_now(sk))
2456 		return false;
2457 
2458 	return true;
2459 }
2460 
2461 /* This gets called after a retransmit timeout, and the initially
2462  * retransmitted data is acknowledged.  It tries to continue
2463  * resending the rest of the retransmit queue, until either
2464  * we've sent it all or the congestion window limit is reached.
2465  * If doing SACK, the first ACK which comes back for a timeout
2466  * based retransmit packet might feed us FACK information again.
2467  * If so, we use it to avoid unnecessarily retransmissions.
2468  */
2469 void tcp_xmit_retransmit_queue(struct sock *sk)
2470 {
2471 	const struct inet_connection_sock *icsk = inet_csk(sk);
2472 	struct tcp_sock *tp = tcp_sk(sk);
2473 	struct sk_buff *skb;
2474 	struct sk_buff *hole = NULL;
2475 	u32 last_lost;
2476 	int mib_idx;
2477 	int fwd_rexmitting = 0;
2478 
2479 	if (!tp->packets_out)
2480 		return;
2481 
2482 	if (!tp->lost_out)
2483 		tp->retransmit_high = tp->snd_una;
2484 
2485 	if (tp->retransmit_skb_hint) {
2486 		skb = tp->retransmit_skb_hint;
2487 		last_lost = TCP_SKB_CB(skb)->end_seq;
2488 		if (after(last_lost, tp->retransmit_high))
2489 			last_lost = tp->retransmit_high;
2490 	} else {
2491 		skb = tcp_write_queue_head(sk);
2492 		last_lost = tp->snd_una;
2493 	}
2494 
2495 	tcp_for_write_queue_from(skb, sk) {
2496 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2497 
2498 		if (skb == tcp_send_head(sk))
2499 			break;
2500 		/* we could do better than to assign each time */
2501 		if (hole == NULL)
2502 			tp->retransmit_skb_hint = skb;
2503 
2504 		/* Assume this retransmit will generate
2505 		 * only one packet for congestion window
2506 		 * calculation purposes.  This works because
2507 		 * tcp_retransmit_skb() will chop up the
2508 		 * packet to be MSS sized and all the
2509 		 * packet counting works out.
2510 		 */
2511 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2512 			return;
2513 
2514 		if (fwd_rexmitting) {
2515 begin_fwd:
2516 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2517 				break;
2518 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2519 
2520 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2521 			tp->retransmit_high = last_lost;
2522 			if (!tcp_can_forward_retransmit(sk))
2523 				break;
2524 			/* Backtrack if necessary to non-L'ed skb */
2525 			if (hole != NULL) {
2526 				skb = hole;
2527 				hole = NULL;
2528 			}
2529 			fwd_rexmitting = 1;
2530 			goto begin_fwd;
2531 
2532 		} else if (!(sacked & TCPCB_LOST)) {
2533 			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2534 				hole = skb;
2535 			continue;
2536 
2537 		} else {
2538 			last_lost = TCP_SKB_CB(skb)->end_seq;
2539 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2540 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2541 			else
2542 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2543 		}
2544 
2545 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2546 			continue;
2547 
2548 		if (tcp_retransmit_skb(sk, skb)) {
2549 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2550 			return;
2551 		}
2552 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2553 
2554 		if (tcp_in_cwnd_reduction(sk))
2555 			tp->prr_out += tcp_skb_pcount(skb);
2556 
2557 		if (skb == tcp_write_queue_head(sk))
2558 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2559 						  inet_csk(sk)->icsk_rto,
2560 						  TCP_RTO_MAX);
2561 	}
2562 }
2563 
2564 /* Send a fin.  The caller locks the socket for us.  This cannot be
2565  * allowed to fail queueing a FIN frame under any circumstances.
2566  */
2567 void tcp_send_fin(struct sock *sk)
2568 {
2569 	struct tcp_sock *tp = tcp_sk(sk);
2570 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2571 	int mss_now;
2572 
2573 	/* Optimization, tack on the FIN if we have a queue of
2574 	 * unsent frames.  But be careful about outgoing SACKS
2575 	 * and IP options.
2576 	 */
2577 	mss_now = tcp_current_mss(sk);
2578 
2579 	if (tcp_send_head(sk) != NULL) {
2580 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2581 		TCP_SKB_CB(skb)->end_seq++;
2582 		tp->write_seq++;
2583 	} else {
2584 		/* Socket is locked, keep trying until memory is available. */
2585 		for (;;) {
2586 			skb = alloc_skb_fclone(MAX_TCP_HEADER,
2587 					       sk->sk_allocation);
2588 			if (skb)
2589 				break;
2590 			yield();
2591 		}
2592 
2593 		/* Reserve space for headers and prepare control bits. */
2594 		skb_reserve(skb, MAX_TCP_HEADER);
2595 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2596 		tcp_init_nondata_skb(skb, tp->write_seq,
2597 				     TCPHDR_ACK | TCPHDR_FIN);
2598 		tcp_queue_skb(sk, skb);
2599 	}
2600 	__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2601 }
2602 
2603 /* We get here when a process closes a file descriptor (either due to
2604  * an explicit close() or as a byproduct of exit()'ing) and there
2605  * was unread data in the receive queue.  This behavior is recommended
2606  * by RFC 2525, section 2.17.  -DaveM
2607  */
2608 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2609 {
2610 	struct sk_buff *skb;
2611 
2612 	/* NOTE: No TCP options attached and we never retransmit this. */
2613 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2614 	if (!skb) {
2615 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2616 		return;
2617 	}
2618 
2619 	/* Reserve space for headers and prepare control bits. */
2620 	skb_reserve(skb, MAX_TCP_HEADER);
2621 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2622 			     TCPHDR_ACK | TCPHDR_RST);
2623 	/* Send it off. */
2624 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2625 	if (tcp_transmit_skb(sk, skb, 0, priority))
2626 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2627 
2628 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2629 }
2630 
2631 /* Send a crossed SYN-ACK during socket establishment.
2632  * WARNING: This routine must only be called when we have already sent
2633  * a SYN packet that crossed the incoming SYN that caused this routine
2634  * to get called. If this assumption fails then the initial rcv_wnd
2635  * and rcv_wscale values will not be correct.
2636  */
2637 int tcp_send_synack(struct sock *sk)
2638 {
2639 	struct sk_buff *skb;
2640 
2641 	skb = tcp_write_queue_head(sk);
2642 	if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2643 		pr_debug("%s: wrong queue state\n", __func__);
2644 		return -EFAULT;
2645 	}
2646 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2647 		if (skb_cloned(skb)) {
2648 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2649 			if (nskb == NULL)
2650 				return -ENOMEM;
2651 			tcp_unlink_write_queue(skb, sk);
2652 			skb_header_release(nskb);
2653 			__tcp_add_write_queue_head(sk, nskb);
2654 			sk_wmem_free_skb(sk, skb);
2655 			sk->sk_wmem_queued += nskb->truesize;
2656 			sk_mem_charge(sk, nskb->truesize);
2657 			skb = nskb;
2658 		}
2659 
2660 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2661 		TCP_ECN_send_synack(tcp_sk(sk), skb);
2662 	}
2663 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2664 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2665 }
2666 
2667 /**
2668  * tcp_make_synack - Prepare a SYN-ACK.
2669  * sk: listener socket
2670  * dst: dst entry attached to the SYNACK
2671  * req: request_sock pointer
2672  * rvp: request_values pointer
2673  *
2674  * Allocate one skb and build a SYNACK packet.
2675  * @dst is consumed : Caller should not use it again.
2676  */
2677 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2678 				struct request_sock *req,
2679 				struct request_values *rvp,
2680 				struct tcp_fastopen_cookie *foc)
2681 {
2682 	struct tcp_out_options opts;
2683 	struct tcp_extend_values *xvp = tcp_xv(rvp);
2684 	struct inet_request_sock *ireq = inet_rsk(req);
2685 	struct tcp_sock *tp = tcp_sk(sk);
2686 	const struct tcp_cookie_values *cvp = tp->cookie_values;
2687 	struct tcphdr *th;
2688 	struct sk_buff *skb;
2689 	struct tcp_md5sig_key *md5;
2690 	int tcp_header_size;
2691 	int mss;
2692 	int s_data_desired = 0;
2693 
2694 	if (cvp != NULL && cvp->s_data_constant && cvp->s_data_desired)
2695 		s_data_desired = cvp->s_data_desired;
2696 	skb = alloc_skb(MAX_TCP_HEADER + 15 + s_data_desired,
2697 			sk_gfp_atomic(sk, GFP_ATOMIC));
2698 	if (unlikely(!skb)) {
2699 		dst_release(dst);
2700 		return NULL;
2701 	}
2702 	/* Reserve space for headers. */
2703 	skb_reserve(skb, MAX_TCP_HEADER);
2704 
2705 	skb_dst_set(skb, dst);
2706 
2707 	mss = dst_metric_advmss(dst);
2708 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2709 		mss = tp->rx_opt.user_mss;
2710 
2711 	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2712 		__u8 rcv_wscale;
2713 		/* Set this up on the first call only */
2714 		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2715 
2716 		/* limit the window selection if the user enforce a smaller rx buffer */
2717 		if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2718 		    (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2719 			req->window_clamp = tcp_full_space(sk);
2720 
2721 		/* tcp_full_space because it is guaranteed to be the first packet */
2722 		tcp_select_initial_window(tcp_full_space(sk),
2723 			mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2724 			&req->rcv_wnd,
2725 			&req->window_clamp,
2726 			ireq->wscale_ok,
2727 			&rcv_wscale,
2728 			dst_metric(dst, RTAX_INITRWND));
2729 		ireq->rcv_wscale = rcv_wscale;
2730 	}
2731 
2732 	memset(&opts, 0, sizeof(opts));
2733 #ifdef CONFIG_SYN_COOKIES
2734 	if (unlikely(req->cookie_ts))
2735 		TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2736 	else
2737 #endif
2738 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2739 	tcp_header_size = tcp_synack_options(sk, req, mss,
2740 					     skb, &opts, &md5, xvp, foc)
2741 			+ sizeof(*th);
2742 
2743 	skb_push(skb, tcp_header_size);
2744 	skb_reset_transport_header(skb);
2745 
2746 	th = tcp_hdr(skb);
2747 	memset(th, 0, sizeof(struct tcphdr));
2748 	th->syn = 1;
2749 	th->ack = 1;
2750 	TCP_ECN_make_synack(req, th);
2751 	th->source = ireq->loc_port;
2752 	th->dest = ireq->rmt_port;
2753 	/* Setting of flags are superfluous here for callers (and ECE is
2754 	 * not even correctly set)
2755 	 */
2756 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2757 			     TCPHDR_SYN | TCPHDR_ACK);
2758 
2759 	if (OPTION_COOKIE_EXTENSION & opts.options) {
2760 		if (s_data_desired) {
2761 			u8 *buf = skb_put(skb, s_data_desired);
2762 
2763 			/* copy data directly from the listening socket. */
2764 			memcpy(buf, cvp->s_data_payload, s_data_desired);
2765 			TCP_SKB_CB(skb)->end_seq += s_data_desired;
2766 		}
2767 
2768 		if (opts.hash_size > 0) {
2769 			__u32 workspace[SHA_WORKSPACE_WORDS];
2770 			u32 *mess = &xvp->cookie_bakery[COOKIE_DIGEST_WORDS];
2771 			u32 *tail = &mess[COOKIE_MESSAGE_WORDS-1];
2772 
2773 			/* Secret recipe depends on the Timestamp, (future)
2774 			 * Sequence and Acknowledgment Numbers, Initiator
2775 			 * Cookie, and others handled by IP variant caller.
2776 			 */
2777 			*tail-- ^= opts.tsval;
2778 			*tail-- ^= tcp_rsk(req)->rcv_isn + 1;
2779 			*tail-- ^= TCP_SKB_CB(skb)->seq + 1;
2780 
2781 			/* recommended */
2782 			*tail-- ^= (((__force u32)th->dest << 16) | (__force u32)th->source);
2783 			*tail-- ^= (u32)(unsigned long)cvp; /* per sockopt */
2784 
2785 			sha_transform((__u32 *)&xvp->cookie_bakery[0],
2786 				      (char *)mess,
2787 				      &workspace[0]);
2788 			opts.hash_location =
2789 				(__u8 *)&xvp->cookie_bakery[0];
2790 		}
2791 	}
2792 
2793 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2794 	/* XXX data is queued and acked as is. No buffer/window check */
2795 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2796 
2797 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2798 	th->window = htons(min(req->rcv_wnd, 65535U));
2799 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
2800 	th->doff = (tcp_header_size >> 2);
2801 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2802 
2803 #ifdef CONFIG_TCP_MD5SIG
2804 	/* Okay, we have all we need - do the md5 hash if needed */
2805 	if (md5) {
2806 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2807 					       md5, NULL, req, skb);
2808 	}
2809 #endif
2810 
2811 	return skb;
2812 }
2813 EXPORT_SYMBOL(tcp_make_synack);
2814 
2815 /* Do all connect socket setups that can be done AF independent. */
2816 void tcp_connect_init(struct sock *sk)
2817 {
2818 	const struct dst_entry *dst = __sk_dst_get(sk);
2819 	struct tcp_sock *tp = tcp_sk(sk);
2820 	__u8 rcv_wscale;
2821 
2822 	/* We'll fix this up when we get a response from the other end.
2823 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2824 	 */
2825 	tp->tcp_header_len = sizeof(struct tcphdr) +
2826 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2827 
2828 #ifdef CONFIG_TCP_MD5SIG
2829 	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2830 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2831 #endif
2832 
2833 	/* If user gave his TCP_MAXSEG, record it to clamp */
2834 	if (tp->rx_opt.user_mss)
2835 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2836 	tp->max_window = 0;
2837 	tcp_mtup_init(sk);
2838 	tcp_sync_mss(sk, dst_mtu(dst));
2839 
2840 	if (!tp->window_clamp)
2841 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2842 	tp->advmss = dst_metric_advmss(dst);
2843 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2844 		tp->advmss = tp->rx_opt.user_mss;
2845 
2846 	tcp_initialize_rcv_mss(sk);
2847 
2848 	/* limit the window selection if the user enforce a smaller rx buffer */
2849 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2850 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2851 		tp->window_clamp = tcp_full_space(sk);
2852 
2853 	tcp_select_initial_window(tcp_full_space(sk),
2854 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2855 				  &tp->rcv_wnd,
2856 				  &tp->window_clamp,
2857 				  sysctl_tcp_window_scaling,
2858 				  &rcv_wscale,
2859 				  dst_metric(dst, RTAX_INITRWND));
2860 
2861 	tp->rx_opt.rcv_wscale = rcv_wscale;
2862 	tp->rcv_ssthresh = tp->rcv_wnd;
2863 
2864 	sk->sk_err = 0;
2865 	sock_reset_flag(sk, SOCK_DONE);
2866 	tp->snd_wnd = 0;
2867 	tcp_init_wl(tp, 0);
2868 	tp->snd_una = tp->write_seq;
2869 	tp->snd_sml = tp->write_seq;
2870 	tp->snd_up = tp->write_seq;
2871 	tp->snd_nxt = tp->write_seq;
2872 
2873 	if (likely(!tp->repair))
2874 		tp->rcv_nxt = 0;
2875 	tp->rcv_wup = tp->rcv_nxt;
2876 	tp->copied_seq = tp->rcv_nxt;
2877 
2878 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2879 	inet_csk(sk)->icsk_retransmits = 0;
2880 	tcp_clear_retrans(tp);
2881 }
2882 
2883 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2884 {
2885 	struct tcp_sock *tp = tcp_sk(sk);
2886 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2887 
2888 	tcb->end_seq += skb->len;
2889 	skb_header_release(skb);
2890 	__tcp_add_write_queue_tail(sk, skb);
2891 	sk->sk_wmem_queued += skb->truesize;
2892 	sk_mem_charge(sk, skb->truesize);
2893 	tp->write_seq = tcb->end_seq;
2894 	tp->packets_out += tcp_skb_pcount(skb);
2895 }
2896 
2897 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2898  * queue a data-only packet after the regular SYN, such that regular SYNs
2899  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2900  * only the SYN sequence, the data are retransmitted in the first ACK.
2901  * If cookie is not cached or other error occurs, falls back to send a
2902  * regular SYN with Fast Open cookie request option.
2903  */
2904 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2905 {
2906 	struct tcp_sock *tp = tcp_sk(sk);
2907 	struct tcp_fastopen_request *fo = tp->fastopen_req;
2908 	int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2909 	struct sk_buff *syn_data = NULL, *data;
2910 	unsigned long last_syn_loss = 0;
2911 
2912 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
2913 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2914 			       &syn_loss, &last_syn_loss);
2915 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
2916 	if (syn_loss > 1 &&
2917 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2918 		fo->cookie.len = -1;
2919 		goto fallback;
2920 	}
2921 
2922 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2923 		fo->cookie.len = -1;
2924 	else if (fo->cookie.len <= 0)
2925 		goto fallback;
2926 
2927 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2928 	 * user-MSS. Reserve maximum option space for middleboxes that add
2929 	 * private TCP options. The cost is reduced data space in SYN :(
2930 	 */
2931 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2932 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2933 	space = tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2934 		MAX_TCP_OPTION_SPACE;
2935 
2936 	syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
2937 				   sk->sk_allocation);
2938 	if (syn_data == NULL)
2939 		goto fallback;
2940 
2941 	for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2942 		struct iovec *iov = &fo->data->msg_iov[i];
2943 		unsigned char __user *from = iov->iov_base;
2944 		int len = iov->iov_len;
2945 
2946 		if (syn_data->len + len > space)
2947 			len = space - syn_data->len;
2948 		else if (i + 1 == iovlen)
2949 			/* No more data pending in inet_wait_for_connect() */
2950 			fo->data = NULL;
2951 
2952 		if (skb_add_data(syn_data, from, len))
2953 			goto fallback;
2954 	}
2955 
2956 	/* Queue a data-only packet after the regular SYN for retransmission */
2957 	data = pskb_copy(syn_data, sk->sk_allocation);
2958 	if (data == NULL)
2959 		goto fallback;
2960 	TCP_SKB_CB(data)->seq++;
2961 	TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2962 	TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2963 	tcp_connect_queue_skb(sk, data);
2964 	fo->copied = data->len;
2965 
2966 	if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2967 		tp->syn_data = (fo->copied > 0);
2968 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2969 		goto done;
2970 	}
2971 	syn_data = NULL;
2972 
2973 fallback:
2974 	/* Send a regular SYN with Fast Open cookie request option */
2975 	if (fo->cookie.len > 0)
2976 		fo->cookie.len = 0;
2977 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2978 	if (err)
2979 		tp->syn_fastopen = 0;
2980 	kfree_skb(syn_data);
2981 done:
2982 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
2983 	return err;
2984 }
2985 
2986 /* Build a SYN and send it off. */
2987 int tcp_connect(struct sock *sk)
2988 {
2989 	struct tcp_sock *tp = tcp_sk(sk);
2990 	struct sk_buff *buff;
2991 	int err;
2992 
2993 	tcp_connect_init(sk);
2994 
2995 	if (unlikely(tp->repair)) {
2996 		tcp_finish_connect(sk, NULL);
2997 		return 0;
2998 	}
2999 
3000 	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
3001 	if (unlikely(buff == NULL))
3002 		return -ENOBUFS;
3003 
3004 	/* Reserve space for headers. */
3005 	skb_reserve(buff, MAX_TCP_HEADER);
3006 
3007 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3008 	tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
3009 	tcp_connect_queue_skb(sk, buff);
3010 	TCP_ECN_send_syn(sk, buff);
3011 
3012 	/* Send off SYN; include data in Fast Open. */
3013 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3014 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3015 	if (err == -ECONNREFUSED)
3016 		return err;
3017 
3018 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3019 	 * in order to make this packet get counted in tcpOutSegs.
3020 	 */
3021 	tp->snd_nxt = tp->write_seq;
3022 	tp->pushed_seq = tp->write_seq;
3023 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3024 
3025 	/* Timer for repeating the SYN until an answer. */
3026 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3027 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3028 	return 0;
3029 }
3030 EXPORT_SYMBOL(tcp_connect);
3031 
3032 /* Send out a delayed ack, the caller does the policy checking
3033  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3034  * for details.
3035  */
3036 void tcp_send_delayed_ack(struct sock *sk)
3037 {
3038 	struct inet_connection_sock *icsk = inet_csk(sk);
3039 	int ato = icsk->icsk_ack.ato;
3040 	unsigned long timeout;
3041 
3042 	if (ato > TCP_DELACK_MIN) {
3043 		const struct tcp_sock *tp = tcp_sk(sk);
3044 		int max_ato = HZ / 2;
3045 
3046 		if (icsk->icsk_ack.pingpong ||
3047 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3048 			max_ato = TCP_DELACK_MAX;
3049 
3050 		/* Slow path, intersegment interval is "high". */
3051 
3052 		/* If some rtt estimate is known, use it to bound delayed ack.
3053 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3054 		 * directly.
3055 		 */
3056 		if (tp->srtt) {
3057 			int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
3058 
3059 			if (rtt < max_ato)
3060 				max_ato = rtt;
3061 		}
3062 
3063 		ato = min(ato, max_ato);
3064 	}
3065 
3066 	/* Stay within the limit we were given */
3067 	timeout = jiffies + ato;
3068 
3069 	/* Use new timeout only if there wasn't a older one earlier. */
3070 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3071 		/* If delack timer was blocked or is about to expire,
3072 		 * send ACK now.
3073 		 */
3074 		if (icsk->icsk_ack.blocked ||
3075 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3076 			tcp_send_ack(sk);
3077 			return;
3078 		}
3079 
3080 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3081 			timeout = icsk->icsk_ack.timeout;
3082 	}
3083 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3084 	icsk->icsk_ack.timeout = timeout;
3085 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3086 }
3087 
3088 /* This routine sends an ack and also updates the window. */
3089 void tcp_send_ack(struct sock *sk)
3090 {
3091 	struct sk_buff *buff;
3092 
3093 	/* If we have been reset, we may not send again. */
3094 	if (sk->sk_state == TCP_CLOSE)
3095 		return;
3096 
3097 	/* We are not putting this on the write queue, so
3098 	 * tcp_transmit_skb() will set the ownership to this
3099 	 * sock.
3100 	 */
3101 	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3102 	if (buff == NULL) {
3103 		inet_csk_schedule_ack(sk);
3104 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3105 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3106 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3107 		return;
3108 	}
3109 
3110 	/* Reserve space for headers and prepare control bits. */
3111 	skb_reserve(buff, MAX_TCP_HEADER);
3112 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3113 
3114 	/* Send it off, this clears delayed acks for us. */
3115 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
3116 	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3117 }
3118 
3119 /* This routine sends a packet with an out of date sequence
3120  * number. It assumes the other end will try to ack it.
3121  *
3122  * Question: what should we make while urgent mode?
3123  * 4.4BSD forces sending single byte of data. We cannot send
3124  * out of window data, because we have SND.NXT==SND.MAX...
3125  *
3126  * Current solution: to send TWO zero-length segments in urgent mode:
3127  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3128  * out-of-date with SND.UNA-1 to probe window.
3129  */
3130 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3131 {
3132 	struct tcp_sock *tp = tcp_sk(sk);
3133 	struct sk_buff *skb;
3134 
3135 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3136 	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3137 	if (skb == NULL)
3138 		return -1;
3139 
3140 	/* Reserve space for headers and set control bits. */
3141 	skb_reserve(skb, MAX_TCP_HEADER);
3142 	/* Use a previous sequence.  This should cause the other
3143 	 * end to send an ack.  Don't queue or clone SKB, just
3144 	 * send it.
3145 	 */
3146 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3147 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
3148 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3149 }
3150 
3151 void tcp_send_window_probe(struct sock *sk)
3152 {
3153 	if (sk->sk_state == TCP_ESTABLISHED) {
3154 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3155 		tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq;
3156 		tcp_xmit_probe_skb(sk, 0);
3157 	}
3158 }
3159 
3160 /* Initiate keepalive or window probe from timer. */
3161 int tcp_write_wakeup(struct sock *sk)
3162 {
3163 	struct tcp_sock *tp = tcp_sk(sk);
3164 	struct sk_buff *skb;
3165 
3166 	if (sk->sk_state == TCP_CLOSE)
3167 		return -1;
3168 
3169 	if ((skb = tcp_send_head(sk)) != NULL &&
3170 	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3171 		int err;
3172 		unsigned int mss = tcp_current_mss(sk);
3173 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3174 
3175 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3176 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3177 
3178 		/* We are probing the opening of a window
3179 		 * but the window size is != 0
3180 		 * must have been a result SWS avoidance ( sender )
3181 		 */
3182 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3183 		    skb->len > mss) {
3184 			seg_size = min(seg_size, mss);
3185 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3186 			if (tcp_fragment(sk, skb, seg_size, mss))
3187 				return -1;
3188 		} else if (!tcp_skb_pcount(skb))
3189 			tcp_set_skb_tso_segs(sk, skb, mss);
3190 
3191 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3192 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
3193 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3194 		if (!err)
3195 			tcp_event_new_data_sent(sk, skb);
3196 		return err;
3197 	} else {
3198 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3199 			tcp_xmit_probe_skb(sk, 1);
3200 		return tcp_xmit_probe_skb(sk, 0);
3201 	}
3202 }
3203 
3204 /* A window probe timeout has occurred.  If window is not closed send
3205  * a partial packet else a zero probe.
3206  */
3207 void tcp_send_probe0(struct sock *sk)
3208 {
3209 	struct inet_connection_sock *icsk = inet_csk(sk);
3210 	struct tcp_sock *tp = tcp_sk(sk);
3211 	int err;
3212 
3213 	err = tcp_write_wakeup(sk);
3214 
3215 	if (tp->packets_out || !tcp_send_head(sk)) {
3216 		/* Cancel probe timer, if it is not required. */
3217 		icsk->icsk_probes_out = 0;
3218 		icsk->icsk_backoff = 0;
3219 		return;
3220 	}
3221 
3222 	if (err <= 0) {
3223 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3224 			icsk->icsk_backoff++;
3225 		icsk->icsk_probes_out++;
3226 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3227 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3228 					  TCP_RTO_MAX);
3229 	} else {
3230 		/* If packet was not sent due to local congestion,
3231 		 * do not backoff and do not remember icsk_probes_out.
3232 		 * Let local senders to fight for local resources.
3233 		 *
3234 		 * Use accumulated backoff yet.
3235 		 */
3236 		if (!icsk->icsk_probes_out)
3237 			icsk->icsk_probes_out = 1;
3238 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3239 					  min(icsk->icsk_rto << icsk->icsk_backoff,
3240 					      TCP_RESOURCE_PROBE_INTERVAL),
3241 					  TCP_RTO_MAX);
3242 	}
3243 }
3244