1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 #include <linux/static_key.h> 45 46 #include <trace/events/tcp.h> 47 48 /* Refresh clocks of a TCP socket, 49 * ensuring monotically increasing values. 50 */ 51 void tcp_mstamp_refresh(struct tcp_sock *tp) 52 { 53 u64 val = tcp_clock_ns(); 54 55 if (val > tp->tcp_clock_cache) 56 tp->tcp_clock_cache = val; 57 58 val = div_u64(val, NSEC_PER_USEC); 59 if (val > tp->tcp_mstamp) 60 tp->tcp_mstamp = val; 61 } 62 63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 64 int push_one, gfp_t gfp); 65 66 /* Account for new data that has been sent to the network. */ 67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 68 { 69 struct inet_connection_sock *icsk = inet_csk(sk); 70 struct tcp_sock *tp = tcp_sk(sk); 71 unsigned int prior_packets = tp->packets_out; 72 73 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 74 75 __skb_unlink(skb, &sk->sk_write_queue); 76 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 80 tcp_rearm_rto(sk); 81 82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 83 tcp_skb_pcount(skb)); 84 } 85 86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 87 * window scaling factor due to loss of precision. 88 * If window has been shrunk, what should we make? It is not clear at all. 89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 91 * invalid. OK, let's make this for now: 92 */ 93 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 94 { 95 const struct tcp_sock *tp = tcp_sk(sk); 96 97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 98 (tp->rx_opt.wscale_ok && 99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 100 return tp->snd_nxt; 101 else 102 return tcp_wnd_end(tp); 103 } 104 105 /* Calculate mss to advertise in SYN segment. 106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 107 * 108 * 1. It is independent of path mtu. 109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 111 * attached devices, because some buggy hosts are confused by 112 * large MSS. 113 * 4. We do not make 3, we advertise MSS, calculated from first 114 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 115 * This may be overridden via information stored in routing table. 116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 117 * probably even Jumbo". 118 */ 119 static __u16 tcp_advertise_mss(struct sock *sk) 120 { 121 struct tcp_sock *tp = tcp_sk(sk); 122 const struct dst_entry *dst = __sk_dst_get(sk); 123 int mss = tp->advmss; 124 125 if (dst) { 126 unsigned int metric = dst_metric_advmss(dst); 127 128 if (metric < mss) { 129 mss = metric; 130 tp->advmss = mss; 131 } 132 } 133 134 return (__u16)mss; 135 } 136 137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 138 * This is the first part of cwnd validation mechanism. 139 */ 140 void tcp_cwnd_restart(struct sock *sk, s32 delta) 141 { 142 struct tcp_sock *tp = tcp_sk(sk); 143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 144 u32 cwnd = tp->snd_cwnd; 145 146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 147 148 tp->snd_ssthresh = tcp_current_ssthresh(sk); 149 restart_cwnd = min(restart_cwnd, cwnd); 150 151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 152 cwnd >>= 1; 153 tp->snd_cwnd = max(cwnd, restart_cwnd); 154 tp->snd_cwnd_stamp = tcp_jiffies32; 155 tp->snd_cwnd_used = 0; 156 } 157 158 /* Congestion state accounting after a packet has been sent. */ 159 static void tcp_event_data_sent(struct tcp_sock *tp, 160 struct sock *sk) 161 { 162 struct inet_connection_sock *icsk = inet_csk(sk); 163 const u32 now = tcp_jiffies32; 164 165 if (tcp_packets_in_flight(tp) == 0) 166 tcp_ca_event(sk, CA_EVENT_TX_START); 167 168 tp->lsndtime = now; 169 170 /* If it is a reply for ato after last received 171 * packet, enter pingpong mode. 172 */ 173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 174 icsk->icsk_ack.pingpong = 1; 175 } 176 177 /* Account for an ACK we sent. */ 178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 179 u32 rcv_nxt) 180 { 181 struct tcp_sock *tp = tcp_sk(sk); 182 183 if (unlikely(tp->compressed_ack)) { 184 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 185 tp->compressed_ack); 186 tp->compressed_ack = 0; 187 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 188 __sock_put(sk); 189 } 190 191 if (unlikely(rcv_nxt != tp->rcv_nxt)) 192 return; /* Special ACK sent by DCTCP to reflect ECN */ 193 tcp_dec_quickack_mode(sk, pkts); 194 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 195 } 196 197 /* Determine a window scaling and initial window to offer. 198 * Based on the assumption that the given amount of space 199 * will be offered. Store the results in the tp structure. 200 * NOTE: for smooth operation initial space offering should 201 * be a multiple of mss if possible. We assume here that mss >= 1. 202 * This MUST be enforced by all callers. 203 */ 204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 205 __u32 *rcv_wnd, __u32 *window_clamp, 206 int wscale_ok, __u8 *rcv_wscale, 207 __u32 init_rcv_wnd) 208 { 209 unsigned int space = (__space < 0 ? 0 : __space); 210 211 /* If no clamp set the clamp to the max possible scaled window */ 212 if (*window_clamp == 0) 213 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 214 space = min(*window_clamp, space); 215 216 /* Quantize space offering to a multiple of mss if possible. */ 217 if (space > mss) 218 space = rounddown(space, mss); 219 220 /* NOTE: offering an initial window larger than 32767 221 * will break some buggy TCP stacks. If the admin tells us 222 * it is likely we could be speaking with such a buggy stack 223 * we will truncate our initial window offering to 32K-1 224 * unless the remote has sent us a window scaling option, 225 * which we interpret as a sign the remote TCP is not 226 * misinterpreting the window field as a signed quantity. 227 */ 228 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 229 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 230 else 231 (*rcv_wnd) = min_t(u32, space, U16_MAX); 232 233 if (init_rcv_wnd) 234 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 235 236 (*rcv_wscale) = 0; 237 if (wscale_ok) { 238 /* Set window scaling on max possible window */ 239 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 240 space = max_t(u32, space, sysctl_rmem_max); 241 space = min_t(u32, space, *window_clamp); 242 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 243 space >>= 1; 244 (*rcv_wscale)++; 245 } 246 } 247 /* Set the clamp no higher than max representable value */ 248 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 249 } 250 EXPORT_SYMBOL(tcp_select_initial_window); 251 252 /* Chose a new window to advertise, update state in tcp_sock for the 253 * socket, and return result with RFC1323 scaling applied. The return 254 * value can be stuffed directly into th->window for an outgoing 255 * frame. 256 */ 257 static u16 tcp_select_window(struct sock *sk) 258 { 259 struct tcp_sock *tp = tcp_sk(sk); 260 u32 old_win = tp->rcv_wnd; 261 u32 cur_win = tcp_receive_window(tp); 262 u32 new_win = __tcp_select_window(sk); 263 264 /* Never shrink the offered window */ 265 if (new_win < cur_win) { 266 /* Danger Will Robinson! 267 * Don't update rcv_wup/rcv_wnd here or else 268 * we will not be able to advertise a zero 269 * window in time. --DaveM 270 * 271 * Relax Will Robinson. 272 */ 273 if (new_win == 0) 274 NET_INC_STATS(sock_net(sk), 275 LINUX_MIB_TCPWANTZEROWINDOWADV); 276 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 277 } 278 tp->rcv_wnd = new_win; 279 tp->rcv_wup = tp->rcv_nxt; 280 281 /* Make sure we do not exceed the maximum possible 282 * scaled window. 283 */ 284 if (!tp->rx_opt.rcv_wscale && 285 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 286 new_win = min(new_win, MAX_TCP_WINDOW); 287 else 288 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 289 290 /* RFC1323 scaling applied */ 291 new_win >>= tp->rx_opt.rcv_wscale; 292 293 /* If we advertise zero window, disable fast path. */ 294 if (new_win == 0) { 295 tp->pred_flags = 0; 296 if (old_win) 297 NET_INC_STATS(sock_net(sk), 298 LINUX_MIB_TCPTOZEROWINDOWADV); 299 } else if (old_win == 0) { 300 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 301 } 302 303 return new_win; 304 } 305 306 /* Packet ECN state for a SYN-ACK */ 307 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 308 { 309 const struct tcp_sock *tp = tcp_sk(sk); 310 311 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 312 if (!(tp->ecn_flags & TCP_ECN_OK)) 313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 314 else if (tcp_ca_needs_ecn(sk) || 315 tcp_bpf_ca_needs_ecn(sk)) 316 INET_ECN_xmit(sk); 317 } 318 319 /* Packet ECN state for a SYN. */ 320 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 321 { 322 struct tcp_sock *tp = tcp_sk(sk); 323 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 324 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 325 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 326 327 if (!use_ecn) { 328 const struct dst_entry *dst = __sk_dst_get(sk); 329 330 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 331 use_ecn = true; 332 } 333 334 tp->ecn_flags = 0; 335 336 if (use_ecn) { 337 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 338 tp->ecn_flags = TCP_ECN_OK; 339 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 340 INET_ECN_xmit(sk); 341 } 342 } 343 344 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 345 { 346 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 347 /* tp->ecn_flags are cleared at a later point in time when 348 * SYN ACK is ultimatively being received. 349 */ 350 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 351 } 352 353 static void 354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 355 { 356 if (inet_rsk(req)->ecn_ok) 357 th->ece = 1; 358 } 359 360 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 361 * be sent. 362 */ 363 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 364 struct tcphdr *th, int tcp_header_len) 365 { 366 struct tcp_sock *tp = tcp_sk(sk); 367 368 if (tp->ecn_flags & TCP_ECN_OK) { 369 /* Not-retransmitted data segment: set ECT and inject CWR. */ 370 if (skb->len != tcp_header_len && 371 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 372 INET_ECN_xmit(sk); 373 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 374 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 375 th->cwr = 1; 376 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 377 } 378 } else if (!tcp_ca_needs_ecn(sk)) { 379 /* ACK or retransmitted segment: clear ECT|CE */ 380 INET_ECN_dontxmit(sk); 381 } 382 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 383 th->ece = 1; 384 } 385 } 386 387 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 388 * auto increment end seqno. 389 */ 390 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 391 { 392 skb->ip_summed = CHECKSUM_PARTIAL; 393 394 TCP_SKB_CB(skb)->tcp_flags = flags; 395 TCP_SKB_CB(skb)->sacked = 0; 396 397 tcp_skb_pcount_set(skb, 1); 398 399 TCP_SKB_CB(skb)->seq = seq; 400 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 401 seq++; 402 TCP_SKB_CB(skb)->end_seq = seq; 403 } 404 405 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 406 { 407 return tp->snd_una != tp->snd_up; 408 } 409 410 #define OPTION_SACK_ADVERTISE (1 << 0) 411 #define OPTION_TS (1 << 1) 412 #define OPTION_MD5 (1 << 2) 413 #define OPTION_WSCALE (1 << 3) 414 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 415 #define OPTION_SMC (1 << 9) 416 417 static void smc_options_write(__be32 *ptr, u16 *options) 418 { 419 #if IS_ENABLED(CONFIG_SMC) 420 if (static_branch_unlikely(&tcp_have_smc)) { 421 if (unlikely(OPTION_SMC & *options)) { 422 *ptr++ = htonl((TCPOPT_NOP << 24) | 423 (TCPOPT_NOP << 16) | 424 (TCPOPT_EXP << 8) | 425 (TCPOLEN_EXP_SMC_BASE)); 426 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 427 } 428 } 429 #endif 430 } 431 432 struct tcp_out_options { 433 u16 options; /* bit field of OPTION_* */ 434 u16 mss; /* 0 to disable */ 435 u8 ws; /* window scale, 0 to disable */ 436 u8 num_sack_blocks; /* number of SACK blocks to include */ 437 u8 hash_size; /* bytes in hash_location */ 438 __u8 *hash_location; /* temporary pointer, overloaded */ 439 __u32 tsval, tsecr; /* need to include OPTION_TS */ 440 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 441 }; 442 443 /* Write previously computed TCP options to the packet. 444 * 445 * Beware: Something in the Internet is very sensitive to the ordering of 446 * TCP options, we learned this through the hard way, so be careful here. 447 * Luckily we can at least blame others for their non-compliance but from 448 * inter-operability perspective it seems that we're somewhat stuck with 449 * the ordering which we have been using if we want to keep working with 450 * those broken things (not that it currently hurts anybody as there isn't 451 * particular reason why the ordering would need to be changed). 452 * 453 * At least SACK_PERM as the first option is known to lead to a disaster 454 * (but it may well be that other scenarios fail similarly). 455 */ 456 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 457 struct tcp_out_options *opts) 458 { 459 u16 options = opts->options; /* mungable copy */ 460 461 if (unlikely(OPTION_MD5 & options)) { 462 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 463 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 464 /* overload cookie hash location */ 465 opts->hash_location = (__u8 *)ptr; 466 ptr += 4; 467 } 468 469 if (unlikely(opts->mss)) { 470 *ptr++ = htonl((TCPOPT_MSS << 24) | 471 (TCPOLEN_MSS << 16) | 472 opts->mss); 473 } 474 475 if (likely(OPTION_TS & options)) { 476 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 477 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 478 (TCPOLEN_SACK_PERM << 16) | 479 (TCPOPT_TIMESTAMP << 8) | 480 TCPOLEN_TIMESTAMP); 481 options &= ~OPTION_SACK_ADVERTISE; 482 } else { 483 *ptr++ = htonl((TCPOPT_NOP << 24) | 484 (TCPOPT_NOP << 16) | 485 (TCPOPT_TIMESTAMP << 8) | 486 TCPOLEN_TIMESTAMP); 487 } 488 *ptr++ = htonl(opts->tsval); 489 *ptr++ = htonl(opts->tsecr); 490 } 491 492 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 493 *ptr++ = htonl((TCPOPT_NOP << 24) | 494 (TCPOPT_NOP << 16) | 495 (TCPOPT_SACK_PERM << 8) | 496 TCPOLEN_SACK_PERM); 497 } 498 499 if (unlikely(OPTION_WSCALE & options)) { 500 *ptr++ = htonl((TCPOPT_NOP << 24) | 501 (TCPOPT_WINDOW << 16) | 502 (TCPOLEN_WINDOW << 8) | 503 opts->ws); 504 } 505 506 if (unlikely(opts->num_sack_blocks)) { 507 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 508 tp->duplicate_sack : tp->selective_acks; 509 int this_sack; 510 511 *ptr++ = htonl((TCPOPT_NOP << 24) | 512 (TCPOPT_NOP << 16) | 513 (TCPOPT_SACK << 8) | 514 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 515 TCPOLEN_SACK_PERBLOCK))); 516 517 for (this_sack = 0; this_sack < opts->num_sack_blocks; 518 ++this_sack) { 519 *ptr++ = htonl(sp[this_sack].start_seq); 520 *ptr++ = htonl(sp[this_sack].end_seq); 521 } 522 523 tp->rx_opt.dsack = 0; 524 } 525 526 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 527 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 528 u8 *p = (u8 *)ptr; 529 u32 len; /* Fast Open option length */ 530 531 if (foc->exp) { 532 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 533 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 534 TCPOPT_FASTOPEN_MAGIC); 535 p += TCPOLEN_EXP_FASTOPEN_BASE; 536 } else { 537 len = TCPOLEN_FASTOPEN_BASE + foc->len; 538 *p++ = TCPOPT_FASTOPEN; 539 *p++ = len; 540 } 541 542 memcpy(p, foc->val, foc->len); 543 if ((len & 3) == 2) { 544 p[foc->len] = TCPOPT_NOP; 545 p[foc->len + 1] = TCPOPT_NOP; 546 } 547 ptr += (len + 3) >> 2; 548 } 549 550 smc_options_write(ptr, &options); 551 } 552 553 static void smc_set_option(const struct tcp_sock *tp, 554 struct tcp_out_options *opts, 555 unsigned int *remaining) 556 { 557 #if IS_ENABLED(CONFIG_SMC) 558 if (static_branch_unlikely(&tcp_have_smc)) { 559 if (tp->syn_smc) { 560 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 561 opts->options |= OPTION_SMC; 562 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 563 } 564 } 565 } 566 #endif 567 } 568 569 static void smc_set_option_cond(const struct tcp_sock *tp, 570 const struct inet_request_sock *ireq, 571 struct tcp_out_options *opts, 572 unsigned int *remaining) 573 { 574 #if IS_ENABLED(CONFIG_SMC) 575 if (static_branch_unlikely(&tcp_have_smc)) { 576 if (tp->syn_smc && ireq->smc_ok) { 577 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 578 opts->options |= OPTION_SMC; 579 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 580 } 581 } 582 } 583 #endif 584 } 585 586 /* Compute TCP options for SYN packets. This is not the final 587 * network wire format yet. 588 */ 589 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 590 struct tcp_out_options *opts, 591 struct tcp_md5sig_key **md5) 592 { 593 struct tcp_sock *tp = tcp_sk(sk); 594 unsigned int remaining = MAX_TCP_OPTION_SPACE; 595 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 596 597 *md5 = NULL; 598 #ifdef CONFIG_TCP_MD5SIG 599 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 600 *md5 = tp->af_specific->md5_lookup(sk, sk); 601 if (*md5) { 602 opts->options |= OPTION_MD5; 603 remaining -= TCPOLEN_MD5SIG_ALIGNED; 604 } 605 } 606 #endif 607 608 /* We always get an MSS option. The option bytes which will be seen in 609 * normal data packets should timestamps be used, must be in the MSS 610 * advertised. But we subtract them from tp->mss_cache so that 611 * calculations in tcp_sendmsg are simpler etc. So account for this 612 * fact here if necessary. If we don't do this correctly, as a 613 * receiver we won't recognize data packets as being full sized when we 614 * should, and thus we won't abide by the delayed ACK rules correctly. 615 * SACKs don't matter, we never delay an ACK when we have any of those 616 * going out. */ 617 opts->mss = tcp_advertise_mss(sk); 618 remaining -= TCPOLEN_MSS_ALIGNED; 619 620 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 621 opts->options |= OPTION_TS; 622 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 623 opts->tsecr = tp->rx_opt.ts_recent; 624 remaining -= TCPOLEN_TSTAMP_ALIGNED; 625 } 626 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 627 opts->ws = tp->rx_opt.rcv_wscale; 628 opts->options |= OPTION_WSCALE; 629 remaining -= TCPOLEN_WSCALE_ALIGNED; 630 } 631 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 632 opts->options |= OPTION_SACK_ADVERTISE; 633 if (unlikely(!(OPTION_TS & opts->options))) 634 remaining -= TCPOLEN_SACKPERM_ALIGNED; 635 } 636 637 if (fastopen && fastopen->cookie.len >= 0) { 638 u32 need = fastopen->cookie.len; 639 640 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 641 TCPOLEN_FASTOPEN_BASE; 642 need = (need + 3) & ~3U; /* Align to 32 bits */ 643 if (remaining >= need) { 644 opts->options |= OPTION_FAST_OPEN_COOKIE; 645 opts->fastopen_cookie = &fastopen->cookie; 646 remaining -= need; 647 tp->syn_fastopen = 1; 648 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 649 } 650 } 651 652 smc_set_option(tp, opts, &remaining); 653 654 return MAX_TCP_OPTION_SPACE - remaining; 655 } 656 657 /* Set up TCP options for SYN-ACKs. */ 658 static unsigned int tcp_synack_options(const struct sock *sk, 659 struct request_sock *req, 660 unsigned int mss, struct sk_buff *skb, 661 struct tcp_out_options *opts, 662 const struct tcp_md5sig_key *md5, 663 struct tcp_fastopen_cookie *foc) 664 { 665 struct inet_request_sock *ireq = inet_rsk(req); 666 unsigned int remaining = MAX_TCP_OPTION_SPACE; 667 668 #ifdef CONFIG_TCP_MD5SIG 669 if (md5) { 670 opts->options |= OPTION_MD5; 671 remaining -= TCPOLEN_MD5SIG_ALIGNED; 672 673 /* We can't fit any SACK blocks in a packet with MD5 + TS 674 * options. There was discussion about disabling SACK 675 * rather than TS in order to fit in better with old, 676 * buggy kernels, but that was deemed to be unnecessary. 677 */ 678 ireq->tstamp_ok &= !ireq->sack_ok; 679 } 680 #endif 681 682 /* We always send an MSS option. */ 683 opts->mss = mss; 684 remaining -= TCPOLEN_MSS_ALIGNED; 685 686 if (likely(ireq->wscale_ok)) { 687 opts->ws = ireq->rcv_wscale; 688 opts->options |= OPTION_WSCALE; 689 remaining -= TCPOLEN_WSCALE_ALIGNED; 690 } 691 if (likely(ireq->tstamp_ok)) { 692 opts->options |= OPTION_TS; 693 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 694 opts->tsecr = req->ts_recent; 695 remaining -= TCPOLEN_TSTAMP_ALIGNED; 696 } 697 if (likely(ireq->sack_ok)) { 698 opts->options |= OPTION_SACK_ADVERTISE; 699 if (unlikely(!ireq->tstamp_ok)) 700 remaining -= TCPOLEN_SACKPERM_ALIGNED; 701 } 702 if (foc != NULL && foc->len >= 0) { 703 u32 need = foc->len; 704 705 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 706 TCPOLEN_FASTOPEN_BASE; 707 need = (need + 3) & ~3U; /* Align to 32 bits */ 708 if (remaining >= need) { 709 opts->options |= OPTION_FAST_OPEN_COOKIE; 710 opts->fastopen_cookie = foc; 711 remaining -= need; 712 } 713 } 714 715 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 716 717 return MAX_TCP_OPTION_SPACE - remaining; 718 } 719 720 /* Compute TCP options for ESTABLISHED sockets. This is not the 721 * final wire format yet. 722 */ 723 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 724 struct tcp_out_options *opts, 725 struct tcp_md5sig_key **md5) 726 { 727 struct tcp_sock *tp = tcp_sk(sk); 728 unsigned int size = 0; 729 unsigned int eff_sacks; 730 731 opts->options = 0; 732 733 *md5 = NULL; 734 #ifdef CONFIG_TCP_MD5SIG 735 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 736 *md5 = tp->af_specific->md5_lookup(sk, sk); 737 if (*md5) { 738 opts->options |= OPTION_MD5; 739 size += TCPOLEN_MD5SIG_ALIGNED; 740 } 741 } 742 #endif 743 744 if (likely(tp->rx_opt.tstamp_ok)) { 745 opts->options |= OPTION_TS; 746 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 747 opts->tsecr = tp->rx_opt.ts_recent; 748 size += TCPOLEN_TSTAMP_ALIGNED; 749 } 750 751 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 752 if (unlikely(eff_sacks)) { 753 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 754 opts->num_sack_blocks = 755 min_t(unsigned int, eff_sacks, 756 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 757 TCPOLEN_SACK_PERBLOCK); 758 size += TCPOLEN_SACK_BASE_ALIGNED + 759 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 760 } 761 762 return size; 763 } 764 765 766 /* TCP SMALL QUEUES (TSQ) 767 * 768 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 769 * to reduce RTT and bufferbloat. 770 * We do this using a special skb destructor (tcp_wfree). 771 * 772 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 773 * needs to be reallocated in a driver. 774 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 775 * 776 * Since transmit from skb destructor is forbidden, we use a tasklet 777 * to process all sockets that eventually need to send more skbs. 778 * We use one tasklet per cpu, with its own queue of sockets. 779 */ 780 struct tsq_tasklet { 781 struct tasklet_struct tasklet; 782 struct list_head head; /* queue of tcp sockets */ 783 }; 784 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 785 786 static void tcp_tsq_write(struct sock *sk) 787 { 788 if ((1 << sk->sk_state) & 789 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 790 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 791 struct tcp_sock *tp = tcp_sk(sk); 792 793 if (tp->lost_out > tp->retrans_out && 794 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 795 tcp_mstamp_refresh(tp); 796 tcp_xmit_retransmit_queue(sk); 797 } 798 799 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 800 0, GFP_ATOMIC); 801 } 802 } 803 804 static void tcp_tsq_handler(struct sock *sk) 805 { 806 bh_lock_sock(sk); 807 if (!sock_owned_by_user(sk)) 808 tcp_tsq_write(sk); 809 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 810 sock_hold(sk); 811 bh_unlock_sock(sk); 812 } 813 /* 814 * One tasklet per cpu tries to send more skbs. 815 * We run in tasklet context but need to disable irqs when 816 * transferring tsq->head because tcp_wfree() might 817 * interrupt us (non NAPI drivers) 818 */ 819 static void tcp_tasklet_func(unsigned long data) 820 { 821 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 822 LIST_HEAD(list); 823 unsigned long flags; 824 struct list_head *q, *n; 825 struct tcp_sock *tp; 826 struct sock *sk; 827 828 local_irq_save(flags); 829 list_splice_init(&tsq->head, &list); 830 local_irq_restore(flags); 831 832 list_for_each_safe(q, n, &list) { 833 tp = list_entry(q, struct tcp_sock, tsq_node); 834 list_del(&tp->tsq_node); 835 836 sk = (struct sock *)tp; 837 smp_mb__before_atomic(); 838 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 839 840 tcp_tsq_handler(sk); 841 sk_free(sk); 842 } 843 } 844 845 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 846 TCPF_WRITE_TIMER_DEFERRED | \ 847 TCPF_DELACK_TIMER_DEFERRED | \ 848 TCPF_MTU_REDUCED_DEFERRED) 849 /** 850 * tcp_release_cb - tcp release_sock() callback 851 * @sk: socket 852 * 853 * called from release_sock() to perform protocol dependent 854 * actions before socket release. 855 */ 856 void tcp_release_cb(struct sock *sk) 857 { 858 unsigned long flags, nflags; 859 860 /* perform an atomic operation only if at least one flag is set */ 861 do { 862 flags = sk->sk_tsq_flags; 863 if (!(flags & TCP_DEFERRED_ALL)) 864 return; 865 nflags = flags & ~TCP_DEFERRED_ALL; 866 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 867 868 if (flags & TCPF_TSQ_DEFERRED) { 869 tcp_tsq_write(sk); 870 __sock_put(sk); 871 } 872 /* Here begins the tricky part : 873 * We are called from release_sock() with : 874 * 1) BH disabled 875 * 2) sk_lock.slock spinlock held 876 * 3) socket owned by us (sk->sk_lock.owned == 1) 877 * 878 * But following code is meant to be called from BH handlers, 879 * so we should keep BH disabled, but early release socket ownership 880 */ 881 sock_release_ownership(sk); 882 883 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 884 tcp_write_timer_handler(sk); 885 __sock_put(sk); 886 } 887 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 888 tcp_delack_timer_handler(sk); 889 __sock_put(sk); 890 } 891 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 892 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 893 __sock_put(sk); 894 } 895 } 896 EXPORT_SYMBOL(tcp_release_cb); 897 898 void __init tcp_tasklet_init(void) 899 { 900 int i; 901 902 for_each_possible_cpu(i) { 903 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 904 905 INIT_LIST_HEAD(&tsq->head); 906 tasklet_init(&tsq->tasklet, 907 tcp_tasklet_func, 908 (unsigned long)tsq); 909 } 910 } 911 912 /* 913 * Write buffer destructor automatically called from kfree_skb. 914 * We can't xmit new skbs from this context, as we might already 915 * hold qdisc lock. 916 */ 917 void tcp_wfree(struct sk_buff *skb) 918 { 919 struct sock *sk = skb->sk; 920 struct tcp_sock *tp = tcp_sk(sk); 921 unsigned long flags, nval, oval; 922 923 /* Keep one reference on sk_wmem_alloc. 924 * Will be released by sk_free() from here or tcp_tasklet_func() 925 */ 926 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 927 928 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 929 * Wait until our queues (qdisc + devices) are drained. 930 * This gives : 931 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 932 * - chance for incoming ACK (processed by another cpu maybe) 933 * to migrate this flow (skb->ooo_okay will be eventually set) 934 */ 935 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 936 goto out; 937 938 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 939 struct tsq_tasklet *tsq; 940 bool empty; 941 942 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 943 goto out; 944 945 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 946 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 947 if (nval != oval) 948 continue; 949 950 /* queue this socket to tasklet queue */ 951 local_irq_save(flags); 952 tsq = this_cpu_ptr(&tsq_tasklet); 953 empty = list_empty(&tsq->head); 954 list_add(&tp->tsq_node, &tsq->head); 955 if (empty) 956 tasklet_schedule(&tsq->tasklet); 957 local_irq_restore(flags); 958 return; 959 } 960 out: 961 sk_free(sk); 962 } 963 964 /* Note: Called under soft irq. 965 * We can call TCP stack right away, unless socket is owned by user. 966 */ 967 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 968 { 969 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 970 struct sock *sk = (struct sock *)tp; 971 972 tcp_tsq_handler(sk); 973 sock_put(sk); 974 975 return HRTIMER_NORESTART; 976 } 977 978 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 979 u64 prior_wstamp) 980 { 981 struct tcp_sock *tp = tcp_sk(sk); 982 983 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 984 if (sk->sk_pacing_status != SK_PACING_NONE) { 985 unsigned long rate = sk->sk_pacing_rate; 986 987 /* Original sch_fq does not pace first 10 MSS 988 * Note that tp->data_segs_out overflows after 2^32 packets, 989 * this is a minor annoyance. 990 */ 991 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 992 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 993 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 994 995 /* take into account OS jitter */ 996 len_ns -= min_t(u64, len_ns / 2, credit); 997 tp->tcp_wstamp_ns += len_ns; 998 } 999 } 1000 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1001 } 1002 1003 /* This routine actually transmits TCP packets queued in by 1004 * tcp_do_sendmsg(). This is used by both the initial 1005 * transmission and possible later retransmissions. 1006 * All SKB's seen here are completely headerless. It is our 1007 * job to build the TCP header, and pass the packet down to 1008 * IP so it can do the same plus pass the packet off to the 1009 * device. 1010 * 1011 * We are working here with either a clone of the original 1012 * SKB, or a fresh unique copy made by the retransmit engine. 1013 */ 1014 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1015 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1016 { 1017 const struct inet_connection_sock *icsk = inet_csk(sk); 1018 struct inet_sock *inet; 1019 struct tcp_sock *tp; 1020 struct tcp_skb_cb *tcb; 1021 struct tcp_out_options opts; 1022 unsigned int tcp_options_size, tcp_header_size; 1023 struct sk_buff *oskb = NULL; 1024 struct tcp_md5sig_key *md5; 1025 struct tcphdr *th; 1026 u64 prior_wstamp; 1027 int err; 1028 1029 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1030 tp = tcp_sk(sk); 1031 1032 if (clone_it) { 1033 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1034 - tp->snd_una; 1035 oskb = skb; 1036 1037 tcp_skb_tsorted_save(oskb) { 1038 if (unlikely(skb_cloned(oskb))) 1039 skb = pskb_copy(oskb, gfp_mask); 1040 else 1041 skb = skb_clone(oskb, gfp_mask); 1042 } tcp_skb_tsorted_restore(oskb); 1043 1044 if (unlikely(!skb)) 1045 return -ENOBUFS; 1046 } 1047 1048 prior_wstamp = tp->tcp_wstamp_ns; 1049 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1050 1051 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1052 1053 inet = inet_sk(sk); 1054 tcb = TCP_SKB_CB(skb); 1055 memset(&opts, 0, sizeof(opts)); 1056 1057 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1058 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1059 else 1060 tcp_options_size = tcp_established_options(sk, skb, &opts, 1061 &md5); 1062 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1063 1064 /* if no packet is in qdisc/device queue, then allow XPS to select 1065 * another queue. We can be called from tcp_tsq_handler() 1066 * which holds one reference to sk. 1067 * 1068 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1069 * One way to get this would be to set skb->truesize = 2 on them. 1070 */ 1071 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1072 1073 /* If we had to use memory reserve to allocate this skb, 1074 * this might cause drops if packet is looped back : 1075 * Other socket might not have SOCK_MEMALLOC. 1076 * Packets not looped back do not care about pfmemalloc. 1077 */ 1078 skb->pfmemalloc = 0; 1079 1080 skb_push(skb, tcp_header_size); 1081 skb_reset_transport_header(skb); 1082 1083 skb_orphan(skb); 1084 skb->sk = sk; 1085 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1086 skb_set_hash_from_sk(skb, sk); 1087 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1088 1089 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1090 1091 /* Build TCP header and checksum it. */ 1092 th = (struct tcphdr *)skb->data; 1093 th->source = inet->inet_sport; 1094 th->dest = inet->inet_dport; 1095 th->seq = htonl(tcb->seq); 1096 th->ack_seq = htonl(rcv_nxt); 1097 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1098 tcb->tcp_flags); 1099 1100 th->check = 0; 1101 th->urg_ptr = 0; 1102 1103 /* The urg_mode check is necessary during a below snd_una win probe */ 1104 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1105 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1106 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1107 th->urg = 1; 1108 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1109 th->urg_ptr = htons(0xFFFF); 1110 th->urg = 1; 1111 } 1112 } 1113 1114 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1115 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1116 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1117 th->window = htons(tcp_select_window(sk)); 1118 tcp_ecn_send(sk, skb, th, tcp_header_size); 1119 } else { 1120 /* RFC1323: The window in SYN & SYN/ACK segments 1121 * is never scaled. 1122 */ 1123 th->window = htons(min(tp->rcv_wnd, 65535U)); 1124 } 1125 #ifdef CONFIG_TCP_MD5SIG 1126 /* Calculate the MD5 hash, as we have all we need now */ 1127 if (md5) { 1128 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1129 tp->af_specific->calc_md5_hash(opts.hash_location, 1130 md5, sk, skb); 1131 } 1132 #endif 1133 1134 icsk->icsk_af_ops->send_check(sk, skb); 1135 1136 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1137 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1138 1139 if (skb->len != tcp_header_size) { 1140 tcp_event_data_sent(tp, sk); 1141 tp->data_segs_out += tcp_skb_pcount(skb); 1142 tp->bytes_sent += skb->len - tcp_header_size; 1143 } 1144 1145 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1146 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1147 tcp_skb_pcount(skb)); 1148 1149 tp->segs_out += tcp_skb_pcount(skb); 1150 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1151 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1152 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1153 1154 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1155 1156 /* Cleanup our debris for IP stacks */ 1157 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1158 sizeof(struct inet6_skb_parm))); 1159 1160 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1161 1162 if (unlikely(err > 0)) { 1163 tcp_enter_cwr(sk); 1164 err = net_xmit_eval(err); 1165 } 1166 if (!err && oskb) { 1167 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1168 tcp_rate_skb_sent(sk, oskb); 1169 } 1170 return err; 1171 } 1172 1173 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1174 gfp_t gfp_mask) 1175 { 1176 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1177 tcp_sk(sk)->rcv_nxt); 1178 } 1179 1180 /* This routine just queues the buffer for sending. 1181 * 1182 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1183 * otherwise socket can stall. 1184 */ 1185 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1186 { 1187 struct tcp_sock *tp = tcp_sk(sk); 1188 1189 /* Advance write_seq and place onto the write_queue. */ 1190 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1191 __skb_header_release(skb); 1192 tcp_add_write_queue_tail(sk, skb); 1193 sk->sk_wmem_queued += skb->truesize; 1194 sk_mem_charge(sk, skb->truesize); 1195 } 1196 1197 /* Initialize TSO segments for a packet. */ 1198 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1199 { 1200 if (skb->len <= mss_now) { 1201 /* Avoid the costly divide in the normal 1202 * non-TSO case. 1203 */ 1204 tcp_skb_pcount_set(skb, 1); 1205 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1206 } else { 1207 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1208 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1209 } 1210 } 1211 1212 /* Pcount in the middle of the write queue got changed, we need to do various 1213 * tweaks to fix counters 1214 */ 1215 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1216 { 1217 struct tcp_sock *tp = tcp_sk(sk); 1218 1219 tp->packets_out -= decr; 1220 1221 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1222 tp->sacked_out -= decr; 1223 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1224 tp->retrans_out -= decr; 1225 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1226 tp->lost_out -= decr; 1227 1228 /* Reno case is special. Sigh... */ 1229 if (tcp_is_reno(tp) && decr > 0) 1230 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1231 1232 if (tp->lost_skb_hint && 1233 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1234 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1235 tp->lost_cnt_hint -= decr; 1236 1237 tcp_verify_left_out(tp); 1238 } 1239 1240 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1241 { 1242 return TCP_SKB_CB(skb)->txstamp_ack || 1243 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1244 } 1245 1246 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1247 { 1248 struct skb_shared_info *shinfo = skb_shinfo(skb); 1249 1250 if (unlikely(tcp_has_tx_tstamp(skb)) && 1251 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1252 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1253 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1254 1255 shinfo->tx_flags &= ~tsflags; 1256 shinfo2->tx_flags |= tsflags; 1257 swap(shinfo->tskey, shinfo2->tskey); 1258 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1259 TCP_SKB_CB(skb)->txstamp_ack = 0; 1260 } 1261 } 1262 1263 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1264 { 1265 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1266 TCP_SKB_CB(skb)->eor = 0; 1267 } 1268 1269 /* Insert buff after skb on the write or rtx queue of sk. */ 1270 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1271 struct sk_buff *buff, 1272 struct sock *sk, 1273 enum tcp_queue tcp_queue) 1274 { 1275 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1276 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1277 else 1278 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1279 } 1280 1281 /* Function to create two new TCP segments. Shrinks the given segment 1282 * to the specified size and appends a new segment with the rest of the 1283 * packet to the list. This won't be called frequently, I hope. 1284 * Remember, these are still headerless SKBs at this point. 1285 */ 1286 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1287 struct sk_buff *skb, u32 len, 1288 unsigned int mss_now, gfp_t gfp) 1289 { 1290 struct tcp_sock *tp = tcp_sk(sk); 1291 struct sk_buff *buff; 1292 int nsize, old_factor; 1293 int nlen; 1294 u8 flags; 1295 1296 if (WARN_ON(len > skb->len)) 1297 return -EINVAL; 1298 1299 nsize = skb_headlen(skb) - len; 1300 if (nsize < 0) 1301 nsize = 0; 1302 1303 if (skb_unclone(skb, gfp)) 1304 return -ENOMEM; 1305 1306 /* Get a new skb... force flag on. */ 1307 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1308 if (!buff) 1309 return -ENOMEM; /* We'll just try again later. */ 1310 1311 sk->sk_wmem_queued += buff->truesize; 1312 sk_mem_charge(sk, buff->truesize); 1313 nlen = skb->len - len - nsize; 1314 buff->truesize += nlen; 1315 skb->truesize -= nlen; 1316 1317 /* Correct the sequence numbers. */ 1318 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1319 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1320 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1321 1322 /* PSH and FIN should only be set in the second packet. */ 1323 flags = TCP_SKB_CB(skb)->tcp_flags; 1324 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1325 TCP_SKB_CB(buff)->tcp_flags = flags; 1326 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1327 tcp_skb_fragment_eor(skb, buff); 1328 1329 skb_split(skb, buff, len); 1330 1331 buff->ip_summed = CHECKSUM_PARTIAL; 1332 1333 buff->tstamp = skb->tstamp; 1334 tcp_fragment_tstamp(skb, buff); 1335 1336 old_factor = tcp_skb_pcount(skb); 1337 1338 /* Fix up tso_factor for both original and new SKB. */ 1339 tcp_set_skb_tso_segs(skb, mss_now); 1340 tcp_set_skb_tso_segs(buff, mss_now); 1341 1342 /* Update delivered info for the new segment */ 1343 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1344 1345 /* If this packet has been sent out already, we must 1346 * adjust the various packet counters. 1347 */ 1348 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1349 int diff = old_factor - tcp_skb_pcount(skb) - 1350 tcp_skb_pcount(buff); 1351 1352 if (diff) 1353 tcp_adjust_pcount(sk, skb, diff); 1354 } 1355 1356 /* Link BUFF into the send queue. */ 1357 __skb_header_release(buff); 1358 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1359 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1360 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1361 1362 return 0; 1363 } 1364 1365 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1366 * data is not copied, but immediately discarded. 1367 */ 1368 static int __pskb_trim_head(struct sk_buff *skb, int len) 1369 { 1370 struct skb_shared_info *shinfo; 1371 int i, k, eat; 1372 1373 eat = min_t(int, len, skb_headlen(skb)); 1374 if (eat) { 1375 __skb_pull(skb, eat); 1376 len -= eat; 1377 if (!len) 1378 return 0; 1379 } 1380 eat = len; 1381 k = 0; 1382 shinfo = skb_shinfo(skb); 1383 for (i = 0; i < shinfo->nr_frags; i++) { 1384 int size = skb_frag_size(&shinfo->frags[i]); 1385 1386 if (size <= eat) { 1387 skb_frag_unref(skb, i); 1388 eat -= size; 1389 } else { 1390 shinfo->frags[k] = shinfo->frags[i]; 1391 if (eat) { 1392 shinfo->frags[k].page_offset += eat; 1393 skb_frag_size_sub(&shinfo->frags[k], eat); 1394 eat = 0; 1395 } 1396 k++; 1397 } 1398 } 1399 shinfo->nr_frags = k; 1400 1401 skb->data_len -= len; 1402 skb->len = skb->data_len; 1403 return len; 1404 } 1405 1406 /* Remove acked data from a packet in the transmit queue. */ 1407 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1408 { 1409 u32 delta_truesize; 1410 1411 if (skb_unclone(skb, GFP_ATOMIC)) 1412 return -ENOMEM; 1413 1414 delta_truesize = __pskb_trim_head(skb, len); 1415 1416 TCP_SKB_CB(skb)->seq += len; 1417 skb->ip_summed = CHECKSUM_PARTIAL; 1418 1419 if (delta_truesize) { 1420 skb->truesize -= delta_truesize; 1421 sk->sk_wmem_queued -= delta_truesize; 1422 sk_mem_uncharge(sk, delta_truesize); 1423 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1424 } 1425 1426 /* Any change of skb->len requires recalculation of tso factor. */ 1427 if (tcp_skb_pcount(skb) > 1) 1428 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1429 1430 return 0; 1431 } 1432 1433 /* Calculate MSS not accounting any TCP options. */ 1434 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1435 { 1436 const struct tcp_sock *tp = tcp_sk(sk); 1437 const struct inet_connection_sock *icsk = inet_csk(sk); 1438 int mss_now; 1439 1440 /* Calculate base mss without TCP options: 1441 It is MMS_S - sizeof(tcphdr) of rfc1122 1442 */ 1443 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1444 1445 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1446 if (icsk->icsk_af_ops->net_frag_header_len) { 1447 const struct dst_entry *dst = __sk_dst_get(sk); 1448 1449 if (dst && dst_allfrag(dst)) 1450 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1451 } 1452 1453 /* Clamp it (mss_clamp does not include tcp options) */ 1454 if (mss_now > tp->rx_opt.mss_clamp) 1455 mss_now = tp->rx_opt.mss_clamp; 1456 1457 /* Now subtract optional transport overhead */ 1458 mss_now -= icsk->icsk_ext_hdr_len; 1459 1460 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1461 if (mss_now < 48) 1462 mss_now = 48; 1463 return mss_now; 1464 } 1465 1466 /* Calculate MSS. Not accounting for SACKs here. */ 1467 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1468 { 1469 /* Subtract TCP options size, not including SACKs */ 1470 return __tcp_mtu_to_mss(sk, pmtu) - 1471 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1472 } 1473 1474 /* Inverse of above */ 1475 int tcp_mss_to_mtu(struct sock *sk, int mss) 1476 { 1477 const struct tcp_sock *tp = tcp_sk(sk); 1478 const struct inet_connection_sock *icsk = inet_csk(sk); 1479 int mtu; 1480 1481 mtu = mss + 1482 tp->tcp_header_len + 1483 icsk->icsk_ext_hdr_len + 1484 icsk->icsk_af_ops->net_header_len; 1485 1486 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1487 if (icsk->icsk_af_ops->net_frag_header_len) { 1488 const struct dst_entry *dst = __sk_dst_get(sk); 1489 1490 if (dst && dst_allfrag(dst)) 1491 mtu += icsk->icsk_af_ops->net_frag_header_len; 1492 } 1493 return mtu; 1494 } 1495 EXPORT_SYMBOL(tcp_mss_to_mtu); 1496 1497 /* MTU probing init per socket */ 1498 void tcp_mtup_init(struct sock *sk) 1499 { 1500 struct tcp_sock *tp = tcp_sk(sk); 1501 struct inet_connection_sock *icsk = inet_csk(sk); 1502 struct net *net = sock_net(sk); 1503 1504 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1505 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1506 icsk->icsk_af_ops->net_header_len; 1507 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1508 icsk->icsk_mtup.probe_size = 0; 1509 if (icsk->icsk_mtup.enabled) 1510 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1511 } 1512 EXPORT_SYMBOL(tcp_mtup_init); 1513 1514 /* This function synchronize snd mss to current pmtu/exthdr set. 1515 1516 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1517 for TCP options, but includes only bare TCP header. 1518 1519 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1520 It is minimum of user_mss and mss received with SYN. 1521 It also does not include TCP options. 1522 1523 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1524 1525 tp->mss_cache is current effective sending mss, including 1526 all tcp options except for SACKs. It is evaluated, 1527 taking into account current pmtu, but never exceeds 1528 tp->rx_opt.mss_clamp. 1529 1530 NOTE1. rfc1122 clearly states that advertised MSS 1531 DOES NOT include either tcp or ip options. 1532 1533 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1534 are READ ONLY outside this function. --ANK (980731) 1535 */ 1536 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1537 { 1538 struct tcp_sock *tp = tcp_sk(sk); 1539 struct inet_connection_sock *icsk = inet_csk(sk); 1540 int mss_now; 1541 1542 if (icsk->icsk_mtup.search_high > pmtu) 1543 icsk->icsk_mtup.search_high = pmtu; 1544 1545 mss_now = tcp_mtu_to_mss(sk, pmtu); 1546 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1547 1548 /* And store cached results */ 1549 icsk->icsk_pmtu_cookie = pmtu; 1550 if (icsk->icsk_mtup.enabled) 1551 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1552 tp->mss_cache = mss_now; 1553 1554 return mss_now; 1555 } 1556 EXPORT_SYMBOL(tcp_sync_mss); 1557 1558 /* Compute the current effective MSS, taking SACKs and IP options, 1559 * and even PMTU discovery events into account. 1560 */ 1561 unsigned int tcp_current_mss(struct sock *sk) 1562 { 1563 const struct tcp_sock *tp = tcp_sk(sk); 1564 const struct dst_entry *dst = __sk_dst_get(sk); 1565 u32 mss_now; 1566 unsigned int header_len; 1567 struct tcp_out_options opts; 1568 struct tcp_md5sig_key *md5; 1569 1570 mss_now = tp->mss_cache; 1571 1572 if (dst) { 1573 u32 mtu = dst_mtu(dst); 1574 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1575 mss_now = tcp_sync_mss(sk, mtu); 1576 } 1577 1578 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1579 sizeof(struct tcphdr); 1580 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1581 * some common options. If this is an odd packet (because we have SACK 1582 * blocks etc) then our calculated header_len will be different, and 1583 * we have to adjust mss_now correspondingly */ 1584 if (header_len != tp->tcp_header_len) { 1585 int delta = (int) header_len - tp->tcp_header_len; 1586 mss_now -= delta; 1587 } 1588 1589 return mss_now; 1590 } 1591 1592 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1593 * As additional protections, we do not touch cwnd in retransmission phases, 1594 * and if application hit its sndbuf limit recently. 1595 */ 1596 static void tcp_cwnd_application_limited(struct sock *sk) 1597 { 1598 struct tcp_sock *tp = tcp_sk(sk); 1599 1600 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1601 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1602 /* Limited by application or receiver window. */ 1603 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1604 u32 win_used = max(tp->snd_cwnd_used, init_win); 1605 if (win_used < tp->snd_cwnd) { 1606 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1607 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1608 } 1609 tp->snd_cwnd_used = 0; 1610 } 1611 tp->snd_cwnd_stamp = tcp_jiffies32; 1612 } 1613 1614 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1615 { 1616 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1617 struct tcp_sock *tp = tcp_sk(sk); 1618 1619 /* Track the maximum number of outstanding packets in each 1620 * window, and remember whether we were cwnd-limited then. 1621 */ 1622 if (!before(tp->snd_una, tp->max_packets_seq) || 1623 tp->packets_out > tp->max_packets_out) { 1624 tp->max_packets_out = tp->packets_out; 1625 tp->max_packets_seq = tp->snd_nxt; 1626 tp->is_cwnd_limited = is_cwnd_limited; 1627 } 1628 1629 if (tcp_is_cwnd_limited(sk)) { 1630 /* Network is feed fully. */ 1631 tp->snd_cwnd_used = 0; 1632 tp->snd_cwnd_stamp = tcp_jiffies32; 1633 } else { 1634 /* Network starves. */ 1635 if (tp->packets_out > tp->snd_cwnd_used) 1636 tp->snd_cwnd_used = tp->packets_out; 1637 1638 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1639 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1640 !ca_ops->cong_control) 1641 tcp_cwnd_application_limited(sk); 1642 1643 /* The following conditions together indicate the starvation 1644 * is caused by insufficient sender buffer: 1645 * 1) just sent some data (see tcp_write_xmit) 1646 * 2) not cwnd limited (this else condition) 1647 * 3) no more data to send (tcp_write_queue_empty()) 1648 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1649 */ 1650 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1651 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1652 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1653 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1654 } 1655 } 1656 1657 /* Minshall's variant of the Nagle send check. */ 1658 static bool tcp_minshall_check(const struct tcp_sock *tp) 1659 { 1660 return after(tp->snd_sml, tp->snd_una) && 1661 !after(tp->snd_sml, tp->snd_nxt); 1662 } 1663 1664 /* Update snd_sml if this skb is under mss 1665 * Note that a TSO packet might end with a sub-mss segment 1666 * The test is really : 1667 * if ((skb->len % mss) != 0) 1668 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1669 * But we can avoid doing the divide again given we already have 1670 * skb_pcount = skb->len / mss_now 1671 */ 1672 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1673 const struct sk_buff *skb) 1674 { 1675 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1676 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1677 } 1678 1679 /* Return false, if packet can be sent now without violation Nagle's rules: 1680 * 1. It is full sized. (provided by caller in %partial bool) 1681 * 2. Or it contains FIN. (already checked by caller) 1682 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1683 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1684 * With Minshall's modification: all sent small packets are ACKed. 1685 */ 1686 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1687 int nonagle) 1688 { 1689 return partial && 1690 ((nonagle & TCP_NAGLE_CORK) || 1691 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1692 } 1693 1694 /* Return how many segs we'd like on a TSO packet, 1695 * to send one TSO packet per ms 1696 */ 1697 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1698 int min_tso_segs) 1699 { 1700 u32 bytes, segs; 1701 1702 bytes = min_t(unsigned long, 1703 sk->sk_pacing_rate >> sk->sk_pacing_shift, 1704 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1705 1706 /* Goal is to send at least one packet per ms, 1707 * not one big TSO packet every 100 ms. 1708 * This preserves ACK clocking and is consistent 1709 * with tcp_tso_should_defer() heuristic. 1710 */ 1711 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1712 1713 return segs; 1714 } 1715 1716 /* Return the number of segments we want in the skb we are transmitting. 1717 * See if congestion control module wants to decide; otherwise, autosize. 1718 */ 1719 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1720 { 1721 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1722 u32 min_tso, tso_segs; 1723 1724 min_tso = ca_ops->min_tso_segs ? 1725 ca_ops->min_tso_segs(sk) : 1726 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1727 1728 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1729 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1730 } 1731 1732 /* Returns the portion of skb which can be sent right away */ 1733 static unsigned int tcp_mss_split_point(const struct sock *sk, 1734 const struct sk_buff *skb, 1735 unsigned int mss_now, 1736 unsigned int max_segs, 1737 int nonagle) 1738 { 1739 const struct tcp_sock *tp = tcp_sk(sk); 1740 u32 partial, needed, window, max_len; 1741 1742 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1743 max_len = mss_now * max_segs; 1744 1745 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1746 return max_len; 1747 1748 needed = min(skb->len, window); 1749 1750 if (max_len <= needed) 1751 return max_len; 1752 1753 partial = needed % mss_now; 1754 /* If last segment is not a full MSS, check if Nagle rules allow us 1755 * to include this last segment in this skb. 1756 * Otherwise, we'll split the skb at last MSS boundary 1757 */ 1758 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1759 return needed - partial; 1760 1761 return needed; 1762 } 1763 1764 /* Can at least one segment of SKB be sent right now, according to the 1765 * congestion window rules? If so, return how many segments are allowed. 1766 */ 1767 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1768 const struct sk_buff *skb) 1769 { 1770 u32 in_flight, cwnd, halfcwnd; 1771 1772 /* Don't be strict about the congestion window for the final FIN. */ 1773 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1774 tcp_skb_pcount(skb) == 1) 1775 return 1; 1776 1777 in_flight = tcp_packets_in_flight(tp); 1778 cwnd = tp->snd_cwnd; 1779 if (in_flight >= cwnd) 1780 return 0; 1781 1782 /* For better scheduling, ensure we have at least 1783 * 2 GSO packets in flight. 1784 */ 1785 halfcwnd = max(cwnd >> 1, 1U); 1786 return min(halfcwnd, cwnd - in_flight); 1787 } 1788 1789 /* Initialize TSO state of a skb. 1790 * This must be invoked the first time we consider transmitting 1791 * SKB onto the wire. 1792 */ 1793 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1794 { 1795 int tso_segs = tcp_skb_pcount(skb); 1796 1797 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1798 tcp_set_skb_tso_segs(skb, mss_now); 1799 tso_segs = tcp_skb_pcount(skb); 1800 } 1801 return tso_segs; 1802 } 1803 1804 1805 /* Return true if the Nagle test allows this packet to be 1806 * sent now. 1807 */ 1808 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1809 unsigned int cur_mss, int nonagle) 1810 { 1811 /* Nagle rule does not apply to frames, which sit in the middle of the 1812 * write_queue (they have no chances to get new data). 1813 * 1814 * This is implemented in the callers, where they modify the 'nonagle' 1815 * argument based upon the location of SKB in the send queue. 1816 */ 1817 if (nonagle & TCP_NAGLE_PUSH) 1818 return true; 1819 1820 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1821 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1822 return true; 1823 1824 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1825 return true; 1826 1827 return false; 1828 } 1829 1830 /* Does at least the first segment of SKB fit into the send window? */ 1831 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1832 const struct sk_buff *skb, 1833 unsigned int cur_mss) 1834 { 1835 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1836 1837 if (skb->len > cur_mss) 1838 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1839 1840 return !after(end_seq, tcp_wnd_end(tp)); 1841 } 1842 1843 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1844 * which is put after SKB on the list. It is very much like 1845 * tcp_fragment() except that it may make several kinds of assumptions 1846 * in order to speed up the splitting operation. In particular, we 1847 * know that all the data is in scatter-gather pages, and that the 1848 * packet has never been sent out before (and thus is not cloned). 1849 */ 1850 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1851 struct sk_buff *skb, unsigned int len, 1852 unsigned int mss_now, gfp_t gfp) 1853 { 1854 struct sk_buff *buff; 1855 int nlen = skb->len - len; 1856 u8 flags; 1857 1858 /* All of a TSO frame must be composed of paged data. */ 1859 if (skb->len != skb->data_len) 1860 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp); 1861 1862 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1863 if (unlikely(!buff)) 1864 return -ENOMEM; 1865 1866 sk->sk_wmem_queued += buff->truesize; 1867 sk_mem_charge(sk, buff->truesize); 1868 buff->truesize += nlen; 1869 skb->truesize -= nlen; 1870 1871 /* Correct the sequence numbers. */ 1872 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1873 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1874 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1875 1876 /* PSH and FIN should only be set in the second packet. */ 1877 flags = TCP_SKB_CB(skb)->tcp_flags; 1878 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1879 TCP_SKB_CB(buff)->tcp_flags = flags; 1880 1881 /* This packet was never sent out yet, so no SACK bits. */ 1882 TCP_SKB_CB(buff)->sacked = 0; 1883 1884 tcp_skb_fragment_eor(skb, buff); 1885 1886 buff->ip_summed = CHECKSUM_PARTIAL; 1887 skb_split(skb, buff, len); 1888 tcp_fragment_tstamp(skb, buff); 1889 1890 /* Fix up tso_factor for both original and new SKB. */ 1891 tcp_set_skb_tso_segs(skb, mss_now); 1892 tcp_set_skb_tso_segs(buff, mss_now); 1893 1894 /* Link BUFF into the send queue. */ 1895 __skb_header_release(buff); 1896 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1897 1898 return 0; 1899 } 1900 1901 /* Try to defer sending, if possible, in order to minimize the amount 1902 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1903 * 1904 * This algorithm is from John Heffner. 1905 */ 1906 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1907 bool *is_cwnd_limited, u32 max_segs) 1908 { 1909 const struct inet_connection_sock *icsk = inet_csk(sk); 1910 u32 age, send_win, cong_win, limit, in_flight; 1911 struct tcp_sock *tp = tcp_sk(sk); 1912 struct sk_buff *head; 1913 int win_divisor; 1914 1915 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1916 goto send_now; 1917 1918 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1919 goto send_now; 1920 1921 /* Avoid bursty behavior by allowing defer 1922 * only if the last write was recent. 1923 */ 1924 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1925 goto send_now; 1926 1927 in_flight = tcp_packets_in_flight(tp); 1928 1929 BUG_ON(tcp_skb_pcount(skb) <= 1); 1930 BUG_ON(tp->snd_cwnd <= in_flight); 1931 1932 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1933 1934 /* From in_flight test above, we know that cwnd > in_flight. */ 1935 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1936 1937 limit = min(send_win, cong_win); 1938 1939 /* If a full-sized TSO skb can be sent, do it. */ 1940 if (limit >= max_segs * tp->mss_cache) 1941 goto send_now; 1942 1943 /* Middle in queue won't get any more data, full sendable already? */ 1944 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1945 goto send_now; 1946 1947 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1948 if (win_divisor) { 1949 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1950 1951 /* If at least some fraction of a window is available, 1952 * just use it. 1953 */ 1954 chunk /= win_divisor; 1955 if (limit >= chunk) 1956 goto send_now; 1957 } else { 1958 /* Different approach, try not to defer past a single 1959 * ACK. Receiver should ACK every other full sized 1960 * frame, so if we have space for more than 3 frames 1961 * then send now. 1962 */ 1963 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1964 goto send_now; 1965 } 1966 1967 /* TODO : use tsorted_sent_queue ? */ 1968 head = tcp_rtx_queue_head(sk); 1969 if (!head) 1970 goto send_now; 1971 age = tcp_stamp_us_delta(tp->tcp_mstamp, tcp_skb_timestamp_us(head)); 1972 /* If next ACK is likely to come too late (half srtt), do not defer */ 1973 if (age < (tp->srtt_us >> 4)) 1974 goto send_now; 1975 1976 /* Ok, it looks like it is advisable to defer. */ 1977 1978 if (cong_win < send_win && cong_win <= skb->len) 1979 *is_cwnd_limited = true; 1980 1981 return true; 1982 1983 send_now: 1984 return false; 1985 } 1986 1987 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1988 { 1989 struct inet_connection_sock *icsk = inet_csk(sk); 1990 struct tcp_sock *tp = tcp_sk(sk); 1991 struct net *net = sock_net(sk); 1992 u32 interval; 1993 s32 delta; 1994 1995 interval = net->ipv4.sysctl_tcp_probe_interval; 1996 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 1997 if (unlikely(delta >= interval * HZ)) { 1998 int mss = tcp_current_mss(sk); 1999 2000 /* Update current search range */ 2001 icsk->icsk_mtup.probe_size = 0; 2002 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2003 sizeof(struct tcphdr) + 2004 icsk->icsk_af_ops->net_header_len; 2005 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2006 2007 /* Update probe time stamp */ 2008 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2009 } 2010 } 2011 2012 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2013 { 2014 struct sk_buff *skb, *next; 2015 2016 skb = tcp_send_head(sk); 2017 tcp_for_write_queue_from_safe(skb, next, sk) { 2018 if (len <= skb->len) 2019 break; 2020 2021 if (unlikely(TCP_SKB_CB(skb)->eor)) 2022 return false; 2023 2024 len -= skb->len; 2025 } 2026 2027 return true; 2028 } 2029 2030 /* Create a new MTU probe if we are ready. 2031 * MTU probe is regularly attempting to increase the path MTU by 2032 * deliberately sending larger packets. This discovers routing 2033 * changes resulting in larger path MTUs. 2034 * 2035 * Returns 0 if we should wait to probe (no cwnd available), 2036 * 1 if a probe was sent, 2037 * -1 otherwise 2038 */ 2039 static int tcp_mtu_probe(struct sock *sk) 2040 { 2041 struct inet_connection_sock *icsk = inet_csk(sk); 2042 struct tcp_sock *tp = tcp_sk(sk); 2043 struct sk_buff *skb, *nskb, *next; 2044 struct net *net = sock_net(sk); 2045 int probe_size; 2046 int size_needed; 2047 int copy, len; 2048 int mss_now; 2049 int interval; 2050 2051 /* Not currently probing/verifying, 2052 * not in recovery, 2053 * have enough cwnd, and 2054 * not SACKing (the variable headers throw things off) 2055 */ 2056 if (likely(!icsk->icsk_mtup.enabled || 2057 icsk->icsk_mtup.probe_size || 2058 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2059 tp->snd_cwnd < 11 || 2060 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2061 return -1; 2062 2063 /* Use binary search for probe_size between tcp_mss_base, 2064 * and current mss_clamp. if (search_high - search_low) 2065 * smaller than a threshold, backoff from probing. 2066 */ 2067 mss_now = tcp_current_mss(sk); 2068 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2069 icsk->icsk_mtup.search_low) >> 1); 2070 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2071 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2072 /* When misfortune happens, we are reprobing actively, 2073 * and then reprobe timer has expired. We stick with current 2074 * probing process by not resetting search range to its orignal. 2075 */ 2076 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2077 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2078 /* Check whether enough time has elaplased for 2079 * another round of probing. 2080 */ 2081 tcp_mtu_check_reprobe(sk); 2082 return -1; 2083 } 2084 2085 /* Have enough data in the send queue to probe? */ 2086 if (tp->write_seq - tp->snd_nxt < size_needed) 2087 return -1; 2088 2089 if (tp->snd_wnd < size_needed) 2090 return -1; 2091 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2092 return 0; 2093 2094 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2095 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2096 if (!tcp_packets_in_flight(tp)) 2097 return -1; 2098 else 2099 return 0; 2100 } 2101 2102 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2103 return -1; 2104 2105 /* We're allowed to probe. Build it now. */ 2106 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2107 if (!nskb) 2108 return -1; 2109 sk->sk_wmem_queued += nskb->truesize; 2110 sk_mem_charge(sk, nskb->truesize); 2111 2112 skb = tcp_send_head(sk); 2113 2114 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2115 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2116 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2117 TCP_SKB_CB(nskb)->sacked = 0; 2118 nskb->csum = 0; 2119 nskb->ip_summed = CHECKSUM_PARTIAL; 2120 2121 tcp_insert_write_queue_before(nskb, skb, sk); 2122 tcp_highest_sack_replace(sk, skb, nskb); 2123 2124 len = 0; 2125 tcp_for_write_queue_from_safe(skb, next, sk) { 2126 copy = min_t(int, skb->len, probe_size - len); 2127 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2128 2129 if (skb->len <= copy) { 2130 /* We've eaten all the data from this skb. 2131 * Throw it away. */ 2132 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2133 /* If this is the last SKB we copy and eor is set 2134 * we need to propagate it to the new skb. 2135 */ 2136 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2137 tcp_unlink_write_queue(skb, sk); 2138 sk_wmem_free_skb(sk, skb); 2139 } else { 2140 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2141 ~(TCPHDR_FIN|TCPHDR_PSH); 2142 if (!skb_shinfo(skb)->nr_frags) { 2143 skb_pull(skb, copy); 2144 } else { 2145 __pskb_trim_head(skb, copy); 2146 tcp_set_skb_tso_segs(skb, mss_now); 2147 } 2148 TCP_SKB_CB(skb)->seq += copy; 2149 } 2150 2151 len += copy; 2152 2153 if (len >= probe_size) 2154 break; 2155 } 2156 tcp_init_tso_segs(nskb, nskb->len); 2157 2158 /* We're ready to send. If this fails, the probe will 2159 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2160 */ 2161 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2162 /* Decrement cwnd here because we are sending 2163 * effectively two packets. */ 2164 tp->snd_cwnd--; 2165 tcp_event_new_data_sent(sk, nskb); 2166 2167 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2168 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2169 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2170 2171 return 1; 2172 } 2173 2174 return -1; 2175 } 2176 2177 static bool tcp_pacing_check(struct sock *sk) 2178 { 2179 struct tcp_sock *tp = tcp_sk(sk); 2180 2181 if (!tcp_needs_internal_pacing(sk)) 2182 return false; 2183 2184 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2185 return false; 2186 2187 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2188 hrtimer_start(&tp->pacing_timer, 2189 ns_to_ktime(tp->tcp_wstamp_ns), 2190 HRTIMER_MODE_ABS_PINNED_SOFT); 2191 sock_hold(sk); 2192 } 2193 return true; 2194 } 2195 2196 /* TCP Small Queues : 2197 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2198 * (These limits are doubled for retransmits) 2199 * This allows for : 2200 * - better RTT estimation and ACK scheduling 2201 * - faster recovery 2202 * - high rates 2203 * Alas, some drivers / subsystems require a fair amount 2204 * of queued bytes to ensure line rate. 2205 * One example is wifi aggregation (802.11 AMPDU) 2206 */ 2207 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2208 unsigned int factor) 2209 { 2210 unsigned long limit; 2211 2212 limit = max_t(unsigned long, 2213 2 * skb->truesize, 2214 sk->sk_pacing_rate >> sk->sk_pacing_shift); 2215 limit = min_t(unsigned long, limit, 2216 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2217 limit <<= factor; 2218 2219 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2220 /* Always send skb if rtx queue is empty. 2221 * No need to wait for TX completion to call us back, 2222 * after softirq/tasklet schedule. 2223 * This helps when TX completions are delayed too much. 2224 */ 2225 if (tcp_rtx_queue_empty(sk)) 2226 return false; 2227 2228 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2229 /* It is possible TX completion already happened 2230 * before we set TSQ_THROTTLED, so we must 2231 * test again the condition. 2232 */ 2233 smp_mb__after_atomic(); 2234 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2235 return true; 2236 } 2237 return false; 2238 } 2239 2240 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2241 { 2242 const u32 now = tcp_jiffies32; 2243 enum tcp_chrono old = tp->chrono_type; 2244 2245 if (old > TCP_CHRONO_UNSPEC) 2246 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2247 tp->chrono_start = now; 2248 tp->chrono_type = new; 2249 } 2250 2251 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2252 { 2253 struct tcp_sock *tp = tcp_sk(sk); 2254 2255 /* If there are multiple conditions worthy of tracking in a 2256 * chronograph then the highest priority enum takes precedence 2257 * over the other conditions. So that if something "more interesting" 2258 * starts happening, stop the previous chrono and start a new one. 2259 */ 2260 if (type > tp->chrono_type) 2261 tcp_chrono_set(tp, type); 2262 } 2263 2264 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2265 { 2266 struct tcp_sock *tp = tcp_sk(sk); 2267 2268 2269 /* There are multiple conditions worthy of tracking in a 2270 * chronograph, so that the highest priority enum takes 2271 * precedence over the other conditions (see tcp_chrono_start). 2272 * If a condition stops, we only stop chrono tracking if 2273 * it's the "most interesting" or current chrono we are 2274 * tracking and starts busy chrono if we have pending data. 2275 */ 2276 if (tcp_rtx_and_write_queues_empty(sk)) 2277 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2278 else if (type == tp->chrono_type) 2279 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2280 } 2281 2282 /* This routine writes packets to the network. It advances the 2283 * send_head. This happens as incoming acks open up the remote 2284 * window for us. 2285 * 2286 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2287 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2288 * account rare use of URG, this is not a big flaw. 2289 * 2290 * Send at most one packet when push_one > 0. Temporarily ignore 2291 * cwnd limit to force at most one packet out when push_one == 2. 2292 2293 * Returns true, if no segments are in flight and we have queued segments, 2294 * but cannot send anything now because of SWS or another problem. 2295 */ 2296 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2297 int push_one, gfp_t gfp) 2298 { 2299 struct tcp_sock *tp = tcp_sk(sk); 2300 struct sk_buff *skb; 2301 unsigned int tso_segs, sent_pkts; 2302 int cwnd_quota; 2303 int result; 2304 bool is_cwnd_limited = false, is_rwnd_limited = false; 2305 u32 max_segs; 2306 2307 sent_pkts = 0; 2308 2309 tcp_mstamp_refresh(tp); 2310 if (!push_one) { 2311 /* Do MTU probing. */ 2312 result = tcp_mtu_probe(sk); 2313 if (!result) { 2314 return false; 2315 } else if (result > 0) { 2316 sent_pkts = 1; 2317 } 2318 } 2319 2320 max_segs = tcp_tso_segs(sk, mss_now); 2321 while ((skb = tcp_send_head(sk))) { 2322 unsigned int limit; 2323 2324 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2325 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2326 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2327 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2328 goto repair; /* Skip network transmission */ 2329 } 2330 2331 if (tcp_pacing_check(sk)) 2332 break; 2333 2334 tso_segs = tcp_init_tso_segs(skb, mss_now); 2335 BUG_ON(!tso_segs); 2336 2337 cwnd_quota = tcp_cwnd_test(tp, skb); 2338 if (!cwnd_quota) { 2339 if (push_one == 2) 2340 /* Force out a loss probe pkt. */ 2341 cwnd_quota = 1; 2342 else 2343 break; 2344 } 2345 2346 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2347 is_rwnd_limited = true; 2348 break; 2349 } 2350 2351 if (tso_segs == 1) { 2352 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2353 (tcp_skb_is_last(sk, skb) ? 2354 nonagle : TCP_NAGLE_PUSH)))) 2355 break; 2356 } else { 2357 if (!push_one && 2358 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2359 max_segs)) 2360 break; 2361 } 2362 2363 limit = mss_now; 2364 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2365 limit = tcp_mss_split_point(sk, skb, mss_now, 2366 min_t(unsigned int, 2367 cwnd_quota, 2368 max_segs), 2369 nonagle); 2370 2371 if (skb->len > limit && 2372 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2373 skb, limit, mss_now, gfp))) 2374 break; 2375 2376 if (tcp_small_queue_check(sk, skb, 0)) 2377 break; 2378 2379 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2380 break; 2381 2382 repair: 2383 /* Advance the send_head. This one is sent out. 2384 * This call will increment packets_out. 2385 */ 2386 tcp_event_new_data_sent(sk, skb); 2387 2388 tcp_minshall_update(tp, mss_now, skb); 2389 sent_pkts += tcp_skb_pcount(skb); 2390 2391 if (push_one) 2392 break; 2393 } 2394 2395 if (is_rwnd_limited) 2396 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2397 else 2398 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2399 2400 if (likely(sent_pkts)) { 2401 if (tcp_in_cwnd_reduction(sk)) 2402 tp->prr_out += sent_pkts; 2403 2404 /* Send one loss probe per tail loss episode. */ 2405 if (push_one != 2) 2406 tcp_schedule_loss_probe(sk, false); 2407 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2408 tcp_cwnd_validate(sk, is_cwnd_limited); 2409 return false; 2410 } 2411 return !tp->packets_out && !tcp_write_queue_empty(sk); 2412 } 2413 2414 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2415 { 2416 struct inet_connection_sock *icsk = inet_csk(sk); 2417 struct tcp_sock *tp = tcp_sk(sk); 2418 u32 timeout, rto_delta_us; 2419 int early_retrans; 2420 2421 /* Don't do any loss probe on a Fast Open connection before 3WHS 2422 * finishes. 2423 */ 2424 if (tp->fastopen_rsk) 2425 return false; 2426 2427 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2428 /* Schedule a loss probe in 2*RTT for SACK capable connections 2429 * not in loss recovery, that are either limited by cwnd or application. 2430 */ 2431 if ((early_retrans != 3 && early_retrans != 4) || 2432 !tp->packets_out || !tcp_is_sack(tp) || 2433 (icsk->icsk_ca_state != TCP_CA_Open && 2434 icsk->icsk_ca_state != TCP_CA_CWR)) 2435 return false; 2436 2437 /* Probe timeout is 2*rtt. Add minimum RTO to account 2438 * for delayed ack when there's one outstanding packet. If no RTT 2439 * sample is available then probe after TCP_TIMEOUT_INIT. 2440 */ 2441 if (tp->srtt_us) { 2442 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2443 if (tp->packets_out == 1) 2444 timeout += TCP_RTO_MIN; 2445 else 2446 timeout += TCP_TIMEOUT_MIN; 2447 } else { 2448 timeout = TCP_TIMEOUT_INIT; 2449 } 2450 2451 /* If the RTO formula yields an earlier time, then use that time. */ 2452 rto_delta_us = advancing_rto ? 2453 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2454 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2455 if (rto_delta_us > 0) 2456 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2457 2458 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2459 TCP_RTO_MAX, NULL); 2460 return true; 2461 } 2462 2463 /* Thanks to skb fast clones, we can detect if a prior transmit of 2464 * a packet is still in a qdisc or driver queue. 2465 * In this case, there is very little point doing a retransmit ! 2466 */ 2467 static bool skb_still_in_host_queue(const struct sock *sk, 2468 const struct sk_buff *skb) 2469 { 2470 if (unlikely(skb_fclone_busy(sk, skb))) { 2471 NET_INC_STATS(sock_net(sk), 2472 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2473 return true; 2474 } 2475 return false; 2476 } 2477 2478 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2479 * retransmit the last segment. 2480 */ 2481 void tcp_send_loss_probe(struct sock *sk) 2482 { 2483 struct tcp_sock *tp = tcp_sk(sk); 2484 struct sk_buff *skb; 2485 int pcount; 2486 int mss = tcp_current_mss(sk); 2487 2488 skb = tcp_send_head(sk); 2489 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2490 pcount = tp->packets_out; 2491 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2492 if (tp->packets_out > pcount) 2493 goto probe_sent; 2494 goto rearm_timer; 2495 } 2496 skb = skb_rb_last(&sk->tcp_rtx_queue); 2497 2498 /* At most one outstanding TLP retransmission. */ 2499 if (tp->tlp_high_seq) 2500 goto rearm_timer; 2501 2502 /* Retransmit last segment. */ 2503 if (WARN_ON(!skb)) 2504 goto rearm_timer; 2505 2506 if (skb_still_in_host_queue(sk, skb)) 2507 goto rearm_timer; 2508 2509 pcount = tcp_skb_pcount(skb); 2510 if (WARN_ON(!pcount)) 2511 goto rearm_timer; 2512 2513 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2514 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2515 (pcount - 1) * mss, mss, 2516 GFP_ATOMIC))) 2517 goto rearm_timer; 2518 skb = skb_rb_next(skb); 2519 } 2520 2521 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2522 goto rearm_timer; 2523 2524 if (__tcp_retransmit_skb(sk, skb, 1)) 2525 goto rearm_timer; 2526 2527 /* Record snd_nxt for loss detection. */ 2528 tp->tlp_high_seq = tp->snd_nxt; 2529 2530 probe_sent: 2531 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2532 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2533 inet_csk(sk)->icsk_pending = 0; 2534 rearm_timer: 2535 tcp_rearm_rto(sk); 2536 } 2537 2538 /* Push out any pending frames which were held back due to 2539 * TCP_CORK or attempt at coalescing tiny packets. 2540 * The socket must be locked by the caller. 2541 */ 2542 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2543 int nonagle) 2544 { 2545 /* If we are closed, the bytes will have to remain here. 2546 * In time closedown will finish, we empty the write queue and 2547 * all will be happy. 2548 */ 2549 if (unlikely(sk->sk_state == TCP_CLOSE)) 2550 return; 2551 2552 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2553 sk_gfp_mask(sk, GFP_ATOMIC))) 2554 tcp_check_probe_timer(sk); 2555 } 2556 2557 /* Send _single_ skb sitting at the send head. This function requires 2558 * true push pending frames to setup probe timer etc. 2559 */ 2560 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2561 { 2562 struct sk_buff *skb = tcp_send_head(sk); 2563 2564 BUG_ON(!skb || skb->len < mss_now); 2565 2566 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2567 } 2568 2569 /* This function returns the amount that we can raise the 2570 * usable window based on the following constraints 2571 * 2572 * 1. The window can never be shrunk once it is offered (RFC 793) 2573 * 2. We limit memory per socket 2574 * 2575 * RFC 1122: 2576 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2577 * RECV.NEXT + RCV.WIN fixed until: 2578 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2579 * 2580 * i.e. don't raise the right edge of the window until you can raise 2581 * it at least MSS bytes. 2582 * 2583 * Unfortunately, the recommended algorithm breaks header prediction, 2584 * since header prediction assumes th->window stays fixed. 2585 * 2586 * Strictly speaking, keeping th->window fixed violates the receiver 2587 * side SWS prevention criteria. The problem is that under this rule 2588 * a stream of single byte packets will cause the right side of the 2589 * window to always advance by a single byte. 2590 * 2591 * Of course, if the sender implements sender side SWS prevention 2592 * then this will not be a problem. 2593 * 2594 * BSD seems to make the following compromise: 2595 * 2596 * If the free space is less than the 1/4 of the maximum 2597 * space available and the free space is less than 1/2 mss, 2598 * then set the window to 0. 2599 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2600 * Otherwise, just prevent the window from shrinking 2601 * and from being larger than the largest representable value. 2602 * 2603 * This prevents incremental opening of the window in the regime 2604 * where TCP is limited by the speed of the reader side taking 2605 * data out of the TCP receive queue. It does nothing about 2606 * those cases where the window is constrained on the sender side 2607 * because the pipeline is full. 2608 * 2609 * BSD also seems to "accidentally" limit itself to windows that are a 2610 * multiple of MSS, at least until the free space gets quite small. 2611 * This would appear to be a side effect of the mbuf implementation. 2612 * Combining these two algorithms results in the observed behavior 2613 * of having a fixed window size at almost all times. 2614 * 2615 * Below we obtain similar behavior by forcing the offered window to 2616 * a multiple of the mss when it is feasible to do so. 2617 * 2618 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2619 * Regular options like TIMESTAMP are taken into account. 2620 */ 2621 u32 __tcp_select_window(struct sock *sk) 2622 { 2623 struct inet_connection_sock *icsk = inet_csk(sk); 2624 struct tcp_sock *tp = tcp_sk(sk); 2625 /* MSS for the peer's data. Previous versions used mss_clamp 2626 * here. I don't know if the value based on our guesses 2627 * of peer's MSS is better for the performance. It's more correct 2628 * but may be worse for the performance because of rcv_mss 2629 * fluctuations. --SAW 1998/11/1 2630 */ 2631 int mss = icsk->icsk_ack.rcv_mss; 2632 int free_space = tcp_space(sk); 2633 int allowed_space = tcp_full_space(sk); 2634 int full_space = min_t(int, tp->window_clamp, allowed_space); 2635 int window; 2636 2637 if (unlikely(mss > full_space)) { 2638 mss = full_space; 2639 if (mss <= 0) 2640 return 0; 2641 } 2642 if (free_space < (full_space >> 1)) { 2643 icsk->icsk_ack.quick = 0; 2644 2645 if (tcp_under_memory_pressure(sk)) 2646 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2647 4U * tp->advmss); 2648 2649 /* free_space might become our new window, make sure we don't 2650 * increase it due to wscale. 2651 */ 2652 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2653 2654 /* if free space is less than mss estimate, or is below 1/16th 2655 * of the maximum allowed, try to move to zero-window, else 2656 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2657 * new incoming data is dropped due to memory limits. 2658 * With large window, mss test triggers way too late in order 2659 * to announce zero window in time before rmem limit kicks in. 2660 */ 2661 if (free_space < (allowed_space >> 4) || free_space < mss) 2662 return 0; 2663 } 2664 2665 if (free_space > tp->rcv_ssthresh) 2666 free_space = tp->rcv_ssthresh; 2667 2668 /* Don't do rounding if we are using window scaling, since the 2669 * scaled window will not line up with the MSS boundary anyway. 2670 */ 2671 if (tp->rx_opt.rcv_wscale) { 2672 window = free_space; 2673 2674 /* Advertise enough space so that it won't get scaled away. 2675 * Import case: prevent zero window announcement if 2676 * 1<<rcv_wscale > mss. 2677 */ 2678 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2679 } else { 2680 window = tp->rcv_wnd; 2681 /* Get the largest window that is a nice multiple of mss. 2682 * Window clamp already applied above. 2683 * If our current window offering is within 1 mss of the 2684 * free space we just keep it. This prevents the divide 2685 * and multiply from happening most of the time. 2686 * We also don't do any window rounding when the free space 2687 * is too small. 2688 */ 2689 if (window <= free_space - mss || window > free_space) 2690 window = rounddown(free_space, mss); 2691 else if (mss == full_space && 2692 free_space > window + (full_space >> 1)) 2693 window = free_space; 2694 } 2695 2696 return window; 2697 } 2698 2699 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2700 const struct sk_buff *next_skb) 2701 { 2702 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2703 const struct skb_shared_info *next_shinfo = 2704 skb_shinfo(next_skb); 2705 struct skb_shared_info *shinfo = skb_shinfo(skb); 2706 2707 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2708 shinfo->tskey = next_shinfo->tskey; 2709 TCP_SKB_CB(skb)->txstamp_ack |= 2710 TCP_SKB_CB(next_skb)->txstamp_ack; 2711 } 2712 } 2713 2714 /* Collapses two adjacent SKB's during retransmission. */ 2715 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2716 { 2717 struct tcp_sock *tp = tcp_sk(sk); 2718 struct sk_buff *next_skb = skb_rb_next(skb); 2719 int next_skb_size; 2720 2721 next_skb_size = next_skb->len; 2722 2723 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2724 2725 if (next_skb_size) { 2726 if (next_skb_size <= skb_availroom(skb)) 2727 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2728 next_skb_size); 2729 else if (!skb_shift(skb, next_skb, next_skb_size)) 2730 return false; 2731 } 2732 tcp_highest_sack_replace(sk, next_skb, skb); 2733 2734 /* Update sequence range on original skb. */ 2735 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2736 2737 /* Merge over control information. This moves PSH/FIN etc. over */ 2738 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2739 2740 /* All done, get rid of second SKB and account for it so 2741 * packet counting does not break. 2742 */ 2743 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2744 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2745 2746 /* changed transmit queue under us so clear hints */ 2747 tcp_clear_retrans_hints_partial(tp); 2748 if (next_skb == tp->retransmit_skb_hint) 2749 tp->retransmit_skb_hint = skb; 2750 2751 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2752 2753 tcp_skb_collapse_tstamp(skb, next_skb); 2754 2755 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2756 return true; 2757 } 2758 2759 /* Check if coalescing SKBs is legal. */ 2760 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2761 { 2762 if (tcp_skb_pcount(skb) > 1) 2763 return false; 2764 if (skb_cloned(skb)) 2765 return false; 2766 /* Some heuristics for collapsing over SACK'd could be invented */ 2767 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2768 return false; 2769 2770 return true; 2771 } 2772 2773 /* Collapse packets in the retransmit queue to make to create 2774 * less packets on the wire. This is only done on retransmission. 2775 */ 2776 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2777 int space) 2778 { 2779 struct tcp_sock *tp = tcp_sk(sk); 2780 struct sk_buff *skb = to, *tmp; 2781 bool first = true; 2782 2783 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2784 return; 2785 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2786 return; 2787 2788 skb_rbtree_walk_from_safe(skb, tmp) { 2789 if (!tcp_can_collapse(sk, skb)) 2790 break; 2791 2792 if (!tcp_skb_can_collapse_to(to)) 2793 break; 2794 2795 space -= skb->len; 2796 2797 if (first) { 2798 first = false; 2799 continue; 2800 } 2801 2802 if (space < 0) 2803 break; 2804 2805 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2806 break; 2807 2808 if (!tcp_collapse_retrans(sk, to)) 2809 break; 2810 } 2811 } 2812 2813 /* This retransmits one SKB. Policy decisions and retransmit queue 2814 * state updates are done by the caller. Returns non-zero if an 2815 * error occurred which prevented the send. 2816 */ 2817 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2818 { 2819 struct inet_connection_sock *icsk = inet_csk(sk); 2820 struct tcp_sock *tp = tcp_sk(sk); 2821 unsigned int cur_mss; 2822 int diff, len, err; 2823 2824 2825 /* Inconclusive MTU probe */ 2826 if (icsk->icsk_mtup.probe_size) 2827 icsk->icsk_mtup.probe_size = 0; 2828 2829 /* Do not sent more than we queued. 1/4 is reserved for possible 2830 * copying overhead: fragmentation, tunneling, mangling etc. 2831 */ 2832 if (refcount_read(&sk->sk_wmem_alloc) > 2833 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2834 sk->sk_sndbuf)) 2835 return -EAGAIN; 2836 2837 if (skb_still_in_host_queue(sk, skb)) 2838 return -EBUSY; 2839 2840 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2841 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2842 WARN_ON_ONCE(1); 2843 return -EINVAL; 2844 } 2845 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2846 return -ENOMEM; 2847 } 2848 2849 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2850 return -EHOSTUNREACH; /* Routing failure or similar. */ 2851 2852 cur_mss = tcp_current_mss(sk); 2853 2854 /* If receiver has shrunk his window, and skb is out of 2855 * new window, do not retransmit it. The exception is the 2856 * case, when window is shrunk to zero. In this case 2857 * our retransmit serves as a zero window probe. 2858 */ 2859 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2860 TCP_SKB_CB(skb)->seq != tp->snd_una) 2861 return -EAGAIN; 2862 2863 len = cur_mss * segs; 2864 if (skb->len > len) { 2865 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2866 cur_mss, GFP_ATOMIC)) 2867 return -ENOMEM; /* We'll try again later. */ 2868 } else { 2869 if (skb_unclone(skb, GFP_ATOMIC)) 2870 return -ENOMEM; 2871 2872 diff = tcp_skb_pcount(skb); 2873 tcp_set_skb_tso_segs(skb, cur_mss); 2874 diff -= tcp_skb_pcount(skb); 2875 if (diff) 2876 tcp_adjust_pcount(sk, skb, diff); 2877 if (skb->len < cur_mss) 2878 tcp_retrans_try_collapse(sk, skb, cur_mss); 2879 } 2880 2881 /* RFC3168, section 6.1.1.1. ECN fallback */ 2882 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2883 tcp_ecn_clear_syn(sk, skb); 2884 2885 /* Update global and local TCP statistics. */ 2886 segs = tcp_skb_pcount(skb); 2887 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2888 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2889 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2890 tp->total_retrans += segs; 2891 tp->bytes_retrans += skb->len; 2892 2893 /* make sure skb->data is aligned on arches that require it 2894 * and check if ack-trimming & collapsing extended the headroom 2895 * beyond what csum_start can cover. 2896 */ 2897 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2898 skb_headroom(skb) >= 0xFFFF)) { 2899 struct sk_buff *nskb; 2900 2901 tcp_skb_tsorted_save(skb) { 2902 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2903 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2904 -ENOBUFS; 2905 } tcp_skb_tsorted_restore(skb); 2906 2907 if (!err) { 2908 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 2909 tcp_rate_skb_sent(sk, skb); 2910 } 2911 } else { 2912 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2913 } 2914 2915 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2916 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2917 TCP_SKB_CB(skb)->seq, segs, err); 2918 2919 if (likely(!err)) { 2920 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2921 trace_tcp_retransmit_skb(sk, skb); 2922 } else if (err != -EBUSY) { 2923 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2924 } 2925 return err; 2926 } 2927 2928 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2929 { 2930 struct tcp_sock *tp = tcp_sk(sk); 2931 int err = __tcp_retransmit_skb(sk, skb, segs); 2932 2933 if (err == 0) { 2934 #if FASTRETRANS_DEBUG > 0 2935 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2936 net_dbg_ratelimited("retrans_out leaked\n"); 2937 } 2938 #endif 2939 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2940 tp->retrans_out += tcp_skb_pcount(skb); 2941 2942 /* Save stamp of the first retransmit. */ 2943 if (!tp->retrans_stamp) 2944 tp->retrans_stamp = tcp_skb_timestamp(skb); 2945 2946 } 2947 2948 if (tp->undo_retrans < 0) 2949 tp->undo_retrans = 0; 2950 tp->undo_retrans += tcp_skb_pcount(skb); 2951 return err; 2952 } 2953 2954 /* This gets called after a retransmit timeout, and the initially 2955 * retransmitted data is acknowledged. It tries to continue 2956 * resending the rest of the retransmit queue, until either 2957 * we've sent it all or the congestion window limit is reached. 2958 */ 2959 void tcp_xmit_retransmit_queue(struct sock *sk) 2960 { 2961 const struct inet_connection_sock *icsk = inet_csk(sk); 2962 struct sk_buff *skb, *rtx_head, *hole = NULL; 2963 struct tcp_sock *tp = tcp_sk(sk); 2964 u32 max_segs; 2965 int mib_idx; 2966 2967 if (!tp->packets_out) 2968 return; 2969 2970 rtx_head = tcp_rtx_queue_head(sk); 2971 skb = tp->retransmit_skb_hint ?: rtx_head; 2972 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2973 skb_rbtree_walk_from(skb) { 2974 __u8 sacked; 2975 int segs; 2976 2977 if (tcp_pacing_check(sk)) 2978 break; 2979 2980 /* we could do better than to assign each time */ 2981 if (!hole) 2982 tp->retransmit_skb_hint = skb; 2983 2984 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2985 if (segs <= 0) 2986 return; 2987 sacked = TCP_SKB_CB(skb)->sacked; 2988 /* In case tcp_shift_skb_data() have aggregated large skbs, 2989 * we need to make sure not sending too bigs TSO packets 2990 */ 2991 segs = min_t(int, segs, max_segs); 2992 2993 if (tp->retrans_out >= tp->lost_out) { 2994 break; 2995 } else if (!(sacked & TCPCB_LOST)) { 2996 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2997 hole = skb; 2998 continue; 2999 3000 } else { 3001 if (icsk->icsk_ca_state != TCP_CA_Loss) 3002 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3003 else 3004 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3005 } 3006 3007 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3008 continue; 3009 3010 if (tcp_small_queue_check(sk, skb, 1)) 3011 return; 3012 3013 if (tcp_retransmit_skb(sk, skb, segs)) 3014 return; 3015 3016 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3017 3018 if (tcp_in_cwnd_reduction(sk)) 3019 tp->prr_out += tcp_skb_pcount(skb); 3020 3021 if (skb == rtx_head && 3022 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3023 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3024 inet_csk(sk)->icsk_rto, 3025 TCP_RTO_MAX, 3026 skb); 3027 } 3028 } 3029 3030 /* We allow to exceed memory limits for FIN packets to expedite 3031 * connection tear down and (memory) recovery. 3032 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3033 * or even be forced to close flow without any FIN. 3034 * In general, we want to allow one skb per socket to avoid hangs 3035 * with edge trigger epoll() 3036 */ 3037 void sk_forced_mem_schedule(struct sock *sk, int size) 3038 { 3039 int amt; 3040 3041 if (size <= sk->sk_forward_alloc) 3042 return; 3043 amt = sk_mem_pages(size); 3044 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3045 sk_memory_allocated_add(sk, amt); 3046 3047 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3048 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3049 } 3050 3051 /* Send a FIN. The caller locks the socket for us. 3052 * We should try to send a FIN packet really hard, but eventually give up. 3053 */ 3054 void tcp_send_fin(struct sock *sk) 3055 { 3056 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3057 struct tcp_sock *tp = tcp_sk(sk); 3058 3059 /* Optimization, tack on the FIN if we have one skb in write queue and 3060 * this skb was not yet sent, or we are under memory pressure. 3061 * Note: in the latter case, FIN packet will be sent after a timeout, 3062 * as TCP stack thinks it has already been transmitted. 3063 */ 3064 if (!tskb && tcp_under_memory_pressure(sk)) 3065 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3066 3067 if (tskb) { 3068 coalesce: 3069 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3070 TCP_SKB_CB(tskb)->end_seq++; 3071 tp->write_seq++; 3072 if (tcp_write_queue_empty(sk)) { 3073 /* This means tskb was already sent. 3074 * Pretend we included the FIN on previous transmit. 3075 * We need to set tp->snd_nxt to the value it would have 3076 * if FIN had been sent. This is because retransmit path 3077 * does not change tp->snd_nxt. 3078 */ 3079 tp->snd_nxt++; 3080 return; 3081 } 3082 } else { 3083 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3084 if (unlikely(!skb)) { 3085 if (tskb) 3086 goto coalesce; 3087 return; 3088 } 3089 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3090 skb_reserve(skb, MAX_TCP_HEADER); 3091 sk_forced_mem_schedule(sk, skb->truesize); 3092 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3093 tcp_init_nondata_skb(skb, tp->write_seq, 3094 TCPHDR_ACK | TCPHDR_FIN); 3095 tcp_queue_skb(sk, skb); 3096 } 3097 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3098 } 3099 3100 /* We get here when a process closes a file descriptor (either due to 3101 * an explicit close() or as a byproduct of exit()'ing) and there 3102 * was unread data in the receive queue. This behavior is recommended 3103 * by RFC 2525, section 2.17. -DaveM 3104 */ 3105 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3106 { 3107 struct sk_buff *skb; 3108 3109 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3110 3111 /* NOTE: No TCP options attached and we never retransmit this. */ 3112 skb = alloc_skb(MAX_TCP_HEADER, priority); 3113 if (!skb) { 3114 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3115 return; 3116 } 3117 3118 /* Reserve space for headers and prepare control bits. */ 3119 skb_reserve(skb, MAX_TCP_HEADER); 3120 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3121 TCPHDR_ACK | TCPHDR_RST); 3122 tcp_mstamp_refresh(tcp_sk(sk)); 3123 /* Send it off. */ 3124 if (tcp_transmit_skb(sk, skb, 0, priority)) 3125 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3126 3127 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3128 * skb here is different to the troublesome skb, so use NULL 3129 */ 3130 trace_tcp_send_reset(sk, NULL); 3131 } 3132 3133 /* Send a crossed SYN-ACK during socket establishment. 3134 * WARNING: This routine must only be called when we have already sent 3135 * a SYN packet that crossed the incoming SYN that caused this routine 3136 * to get called. If this assumption fails then the initial rcv_wnd 3137 * and rcv_wscale values will not be correct. 3138 */ 3139 int tcp_send_synack(struct sock *sk) 3140 { 3141 struct sk_buff *skb; 3142 3143 skb = tcp_rtx_queue_head(sk); 3144 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3145 pr_err("%s: wrong queue state\n", __func__); 3146 return -EFAULT; 3147 } 3148 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3149 if (skb_cloned(skb)) { 3150 struct sk_buff *nskb; 3151 3152 tcp_skb_tsorted_save(skb) { 3153 nskb = skb_copy(skb, GFP_ATOMIC); 3154 } tcp_skb_tsorted_restore(skb); 3155 if (!nskb) 3156 return -ENOMEM; 3157 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3158 tcp_rtx_queue_unlink_and_free(skb, sk); 3159 __skb_header_release(nskb); 3160 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3161 sk->sk_wmem_queued += nskb->truesize; 3162 sk_mem_charge(sk, nskb->truesize); 3163 skb = nskb; 3164 } 3165 3166 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3167 tcp_ecn_send_synack(sk, skb); 3168 } 3169 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3170 } 3171 3172 /** 3173 * tcp_make_synack - Prepare a SYN-ACK. 3174 * sk: listener socket 3175 * dst: dst entry attached to the SYNACK 3176 * req: request_sock pointer 3177 * 3178 * Allocate one skb and build a SYNACK packet. 3179 * @dst is consumed : Caller should not use it again. 3180 */ 3181 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3182 struct request_sock *req, 3183 struct tcp_fastopen_cookie *foc, 3184 enum tcp_synack_type synack_type) 3185 { 3186 struct inet_request_sock *ireq = inet_rsk(req); 3187 const struct tcp_sock *tp = tcp_sk(sk); 3188 struct tcp_md5sig_key *md5 = NULL; 3189 struct tcp_out_options opts; 3190 struct sk_buff *skb; 3191 int tcp_header_size; 3192 struct tcphdr *th; 3193 int mss; 3194 3195 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3196 if (unlikely(!skb)) { 3197 dst_release(dst); 3198 return NULL; 3199 } 3200 /* Reserve space for headers. */ 3201 skb_reserve(skb, MAX_TCP_HEADER); 3202 3203 switch (synack_type) { 3204 case TCP_SYNACK_NORMAL: 3205 skb_set_owner_w(skb, req_to_sk(req)); 3206 break; 3207 case TCP_SYNACK_COOKIE: 3208 /* Under synflood, we do not attach skb to a socket, 3209 * to avoid false sharing. 3210 */ 3211 break; 3212 case TCP_SYNACK_FASTOPEN: 3213 /* sk is a const pointer, because we want to express multiple 3214 * cpu might call us concurrently. 3215 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3216 */ 3217 skb_set_owner_w(skb, (struct sock *)sk); 3218 break; 3219 } 3220 skb_dst_set(skb, dst); 3221 3222 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3223 3224 memset(&opts, 0, sizeof(opts)); 3225 #ifdef CONFIG_SYN_COOKIES 3226 if (unlikely(req->cookie_ts)) 3227 skb->skb_mstamp_ns = cookie_init_timestamp(req); 3228 else 3229 #endif 3230 skb->skb_mstamp_ns = tcp_clock_ns(); 3231 3232 #ifdef CONFIG_TCP_MD5SIG 3233 rcu_read_lock(); 3234 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3235 #endif 3236 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3237 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3238 foc) + sizeof(*th); 3239 3240 skb_push(skb, tcp_header_size); 3241 skb_reset_transport_header(skb); 3242 3243 th = (struct tcphdr *)skb->data; 3244 memset(th, 0, sizeof(struct tcphdr)); 3245 th->syn = 1; 3246 th->ack = 1; 3247 tcp_ecn_make_synack(req, th); 3248 th->source = htons(ireq->ir_num); 3249 th->dest = ireq->ir_rmt_port; 3250 skb->mark = ireq->ir_mark; 3251 skb->ip_summed = CHECKSUM_PARTIAL; 3252 th->seq = htonl(tcp_rsk(req)->snt_isn); 3253 /* XXX data is queued and acked as is. No buffer/window check */ 3254 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3255 3256 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3257 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3258 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3259 th->doff = (tcp_header_size >> 2); 3260 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3261 3262 #ifdef CONFIG_TCP_MD5SIG 3263 /* Okay, we have all we need - do the md5 hash if needed */ 3264 if (md5) 3265 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3266 md5, req_to_sk(req), skb); 3267 rcu_read_unlock(); 3268 #endif 3269 3270 /* Do not fool tcpdump (if any), clean our debris */ 3271 skb->tstamp = 0; 3272 return skb; 3273 } 3274 EXPORT_SYMBOL(tcp_make_synack); 3275 3276 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3277 { 3278 struct inet_connection_sock *icsk = inet_csk(sk); 3279 const struct tcp_congestion_ops *ca; 3280 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3281 3282 if (ca_key == TCP_CA_UNSPEC) 3283 return; 3284 3285 rcu_read_lock(); 3286 ca = tcp_ca_find_key(ca_key); 3287 if (likely(ca && try_module_get(ca->owner))) { 3288 module_put(icsk->icsk_ca_ops->owner); 3289 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3290 icsk->icsk_ca_ops = ca; 3291 } 3292 rcu_read_unlock(); 3293 } 3294 3295 /* Do all connect socket setups that can be done AF independent. */ 3296 static void tcp_connect_init(struct sock *sk) 3297 { 3298 const struct dst_entry *dst = __sk_dst_get(sk); 3299 struct tcp_sock *tp = tcp_sk(sk); 3300 __u8 rcv_wscale; 3301 u32 rcv_wnd; 3302 3303 /* We'll fix this up when we get a response from the other end. 3304 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3305 */ 3306 tp->tcp_header_len = sizeof(struct tcphdr); 3307 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3308 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3309 3310 #ifdef CONFIG_TCP_MD5SIG 3311 if (tp->af_specific->md5_lookup(sk, sk)) 3312 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3313 #endif 3314 3315 /* If user gave his TCP_MAXSEG, record it to clamp */ 3316 if (tp->rx_opt.user_mss) 3317 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3318 tp->max_window = 0; 3319 tcp_mtup_init(sk); 3320 tcp_sync_mss(sk, dst_mtu(dst)); 3321 3322 tcp_ca_dst_init(sk, dst); 3323 3324 if (!tp->window_clamp) 3325 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3326 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3327 3328 tcp_initialize_rcv_mss(sk); 3329 3330 /* limit the window selection if the user enforce a smaller rx buffer */ 3331 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3332 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3333 tp->window_clamp = tcp_full_space(sk); 3334 3335 rcv_wnd = tcp_rwnd_init_bpf(sk); 3336 if (rcv_wnd == 0) 3337 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3338 3339 tcp_select_initial_window(sk, tcp_full_space(sk), 3340 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3341 &tp->rcv_wnd, 3342 &tp->window_clamp, 3343 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3344 &rcv_wscale, 3345 rcv_wnd); 3346 3347 tp->rx_opt.rcv_wscale = rcv_wscale; 3348 tp->rcv_ssthresh = tp->rcv_wnd; 3349 3350 sk->sk_err = 0; 3351 sock_reset_flag(sk, SOCK_DONE); 3352 tp->snd_wnd = 0; 3353 tcp_init_wl(tp, 0); 3354 tcp_write_queue_purge(sk); 3355 tp->snd_una = tp->write_seq; 3356 tp->snd_sml = tp->write_seq; 3357 tp->snd_up = tp->write_seq; 3358 tp->snd_nxt = tp->write_seq; 3359 3360 if (likely(!tp->repair)) 3361 tp->rcv_nxt = 0; 3362 else 3363 tp->rcv_tstamp = tcp_jiffies32; 3364 tp->rcv_wup = tp->rcv_nxt; 3365 tp->copied_seq = tp->rcv_nxt; 3366 3367 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3368 inet_csk(sk)->icsk_retransmits = 0; 3369 tcp_clear_retrans(tp); 3370 } 3371 3372 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3373 { 3374 struct tcp_sock *tp = tcp_sk(sk); 3375 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3376 3377 tcb->end_seq += skb->len; 3378 __skb_header_release(skb); 3379 sk->sk_wmem_queued += skb->truesize; 3380 sk_mem_charge(sk, skb->truesize); 3381 tp->write_seq = tcb->end_seq; 3382 tp->packets_out += tcp_skb_pcount(skb); 3383 } 3384 3385 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3386 * queue a data-only packet after the regular SYN, such that regular SYNs 3387 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3388 * only the SYN sequence, the data are retransmitted in the first ACK. 3389 * If cookie is not cached or other error occurs, falls back to send a 3390 * regular SYN with Fast Open cookie request option. 3391 */ 3392 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3393 { 3394 struct tcp_sock *tp = tcp_sk(sk); 3395 struct tcp_fastopen_request *fo = tp->fastopen_req; 3396 int space, err = 0; 3397 struct sk_buff *syn_data; 3398 3399 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3400 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3401 goto fallback; 3402 3403 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3404 * user-MSS. Reserve maximum option space for middleboxes that add 3405 * private TCP options. The cost is reduced data space in SYN :( 3406 */ 3407 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3408 3409 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3410 MAX_TCP_OPTION_SPACE; 3411 3412 space = min_t(size_t, space, fo->size); 3413 3414 /* limit to order-0 allocations */ 3415 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3416 3417 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3418 if (!syn_data) 3419 goto fallback; 3420 syn_data->ip_summed = CHECKSUM_PARTIAL; 3421 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3422 if (space) { 3423 int copied = copy_from_iter(skb_put(syn_data, space), space, 3424 &fo->data->msg_iter); 3425 if (unlikely(!copied)) { 3426 tcp_skb_tsorted_anchor_cleanup(syn_data); 3427 kfree_skb(syn_data); 3428 goto fallback; 3429 } 3430 if (copied != space) { 3431 skb_trim(syn_data, copied); 3432 space = copied; 3433 } 3434 } 3435 /* No more data pending in inet_wait_for_connect() */ 3436 if (space == fo->size) 3437 fo->data = NULL; 3438 fo->copied = space; 3439 3440 tcp_connect_queue_skb(sk, syn_data); 3441 if (syn_data->len) 3442 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3443 3444 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3445 3446 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3447 3448 /* Now full SYN+DATA was cloned and sent (or not), 3449 * remove the SYN from the original skb (syn_data) 3450 * we keep in write queue in case of a retransmit, as we 3451 * also have the SYN packet (with no data) in the same queue. 3452 */ 3453 TCP_SKB_CB(syn_data)->seq++; 3454 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3455 if (!err) { 3456 tp->syn_data = (fo->copied > 0); 3457 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3458 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3459 goto done; 3460 } 3461 3462 /* data was not sent, put it in write_queue */ 3463 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3464 tp->packets_out -= tcp_skb_pcount(syn_data); 3465 3466 fallback: 3467 /* Send a regular SYN with Fast Open cookie request option */ 3468 if (fo->cookie.len > 0) 3469 fo->cookie.len = 0; 3470 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3471 if (err) 3472 tp->syn_fastopen = 0; 3473 done: 3474 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3475 return err; 3476 } 3477 3478 /* Build a SYN and send it off. */ 3479 int tcp_connect(struct sock *sk) 3480 { 3481 struct tcp_sock *tp = tcp_sk(sk); 3482 struct sk_buff *buff; 3483 int err; 3484 3485 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3486 3487 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3488 return -EHOSTUNREACH; /* Routing failure or similar. */ 3489 3490 tcp_connect_init(sk); 3491 3492 if (unlikely(tp->repair)) { 3493 tcp_finish_connect(sk, NULL); 3494 return 0; 3495 } 3496 3497 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3498 if (unlikely(!buff)) 3499 return -ENOBUFS; 3500 3501 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3502 tcp_mstamp_refresh(tp); 3503 tp->retrans_stamp = tcp_time_stamp(tp); 3504 tcp_connect_queue_skb(sk, buff); 3505 tcp_ecn_send_syn(sk, buff); 3506 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3507 3508 /* Send off SYN; include data in Fast Open. */ 3509 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3510 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3511 if (err == -ECONNREFUSED) 3512 return err; 3513 3514 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3515 * in order to make this packet get counted in tcpOutSegs. 3516 */ 3517 tp->snd_nxt = tp->write_seq; 3518 tp->pushed_seq = tp->write_seq; 3519 buff = tcp_send_head(sk); 3520 if (unlikely(buff)) { 3521 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3522 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3523 } 3524 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3525 3526 /* Timer for repeating the SYN until an answer. */ 3527 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3528 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3529 return 0; 3530 } 3531 EXPORT_SYMBOL(tcp_connect); 3532 3533 /* Send out a delayed ack, the caller does the policy checking 3534 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3535 * for details. 3536 */ 3537 void tcp_send_delayed_ack(struct sock *sk) 3538 { 3539 struct inet_connection_sock *icsk = inet_csk(sk); 3540 int ato = icsk->icsk_ack.ato; 3541 unsigned long timeout; 3542 3543 if (ato > TCP_DELACK_MIN) { 3544 const struct tcp_sock *tp = tcp_sk(sk); 3545 int max_ato = HZ / 2; 3546 3547 if (icsk->icsk_ack.pingpong || 3548 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3549 max_ato = TCP_DELACK_MAX; 3550 3551 /* Slow path, intersegment interval is "high". */ 3552 3553 /* If some rtt estimate is known, use it to bound delayed ack. 3554 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3555 * directly. 3556 */ 3557 if (tp->srtt_us) { 3558 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3559 TCP_DELACK_MIN); 3560 3561 if (rtt < max_ato) 3562 max_ato = rtt; 3563 } 3564 3565 ato = min(ato, max_ato); 3566 } 3567 3568 /* Stay within the limit we were given */ 3569 timeout = jiffies + ato; 3570 3571 /* Use new timeout only if there wasn't a older one earlier. */ 3572 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3573 /* If delack timer was blocked or is about to expire, 3574 * send ACK now. 3575 */ 3576 if (icsk->icsk_ack.blocked || 3577 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3578 tcp_send_ack(sk); 3579 return; 3580 } 3581 3582 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3583 timeout = icsk->icsk_ack.timeout; 3584 } 3585 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3586 icsk->icsk_ack.timeout = timeout; 3587 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3588 } 3589 3590 /* This routine sends an ack and also updates the window. */ 3591 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3592 { 3593 struct sk_buff *buff; 3594 3595 /* If we have been reset, we may not send again. */ 3596 if (sk->sk_state == TCP_CLOSE) 3597 return; 3598 3599 /* We are not putting this on the write queue, so 3600 * tcp_transmit_skb() will set the ownership to this 3601 * sock. 3602 */ 3603 buff = alloc_skb(MAX_TCP_HEADER, 3604 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3605 if (unlikely(!buff)) { 3606 inet_csk_schedule_ack(sk); 3607 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3608 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3609 TCP_DELACK_MAX, TCP_RTO_MAX); 3610 return; 3611 } 3612 3613 /* Reserve space for headers and prepare control bits. */ 3614 skb_reserve(buff, MAX_TCP_HEADER); 3615 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3616 3617 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3618 * too much. 3619 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3620 */ 3621 skb_set_tcp_pure_ack(buff); 3622 3623 /* Send it off, this clears delayed acks for us. */ 3624 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3625 } 3626 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3627 3628 void tcp_send_ack(struct sock *sk) 3629 { 3630 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3631 } 3632 3633 /* This routine sends a packet with an out of date sequence 3634 * number. It assumes the other end will try to ack it. 3635 * 3636 * Question: what should we make while urgent mode? 3637 * 4.4BSD forces sending single byte of data. We cannot send 3638 * out of window data, because we have SND.NXT==SND.MAX... 3639 * 3640 * Current solution: to send TWO zero-length segments in urgent mode: 3641 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3642 * out-of-date with SND.UNA-1 to probe window. 3643 */ 3644 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3645 { 3646 struct tcp_sock *tp = tcp_sk(sk); 3647 struct sk_buff *skb; 3648 3649 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3650 skb = alloc_skb(MAX_TCP_HEADER, 3651 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3652 if (!skb) 3653 return -1; 3654 3655 /* Reserve space for headers and set control bits. */ 3656 skb_reserve(skb, MAX_TCP_HEADER); 3657 /* Use a previous sequence. This should cause the other 3658 * end to send an ack. Don't queue or clone SKB, just 3659 * send it. 3660 */ 3661 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3662 NET_INC_STATS(sock_net(sk), mib); 3663 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3664 } 3665 3666 /* Called from setsockopt( ... TCP_REPAIR ) */ 3667 void tcp_send_window_probe(struct sock *sk) 3668 { 3669 if (sk->sk_state == TCP_ESTABLISHED) { 3670 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3671 tcp_mstamp_refresh(tcp_sk(sk)); 3672 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3673 } 3674 } 3675 3676 /* Initiate keepalive or window probe from timer. */ 3677 int tcp_write_wakeup(struct sock *sk, int mib) 3678 { 3679 struct tcp_sock *tp = tcp_sk(sk); 3680 struct sk_buff *skb; 3681 3682 if (sk->sk_state == TCP_CLOSE) 3683 return -1; 3684 3685 skb = tcp_send_head(sk); 3686 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3687 int err; 3688 unsigned int mss = tcp_current_mss(sk); 3689 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3690 3691 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3692 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3693 3694 /* We are probing the opening of a window 3695 * but the window size is != 0 3696 * must have been a result SWS avoidance ( sender ) 3697 */ 3698 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3699 skb->len > mss) { 3700 seg_size = min(seg_size, mss); 3701 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3702 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3703 skb, seg_size, mss, GFP_ATOMIC)) 3704 return -1; 3705 } else if (!tcp_skb_pcount(skb)) 3706 tcp_set_skb_tso_segs(skb, mss); 3707 3708 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3709 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3710 if (!err) 3711 tcp_event_new_data_sent(sk, skb); 3712 return err; 3713 } else { 3714 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3715 tcp_xmit_probe_skb(sk, 1, mib); 3716 return tcp_xmit_probe_skb(sk, 0, mib); 3717 } 3718 } 3719 3720 /* A window probe timeout has occurred. If window is not closed send 3721 * a partial packet else a zero probe. 3722 */ 3723 void tcp_send_probe0(struct sock *sk) 3724 { 3725 struct inet_connection_sock *icsk = inet_csk(sk); 3726 struct tcp_sock *tp = tcp_sk(sk); 3727 struct net *net = sock_net(sk); 3728 unsigned long probe_max; 3729 int err; 3730 3731 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3732 3733 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3734 /* Cancel probe timer, if it is not required. */ 3735 icsk->icsk_probes_out = 0; 3736 icsk->icsk_backoff = 0; 3737 return; 3738 } 3739 3740 if (err <= 0) { 3741 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3742 icsk->icsk_backoff++; 3743 icsk->icsk_probes_out++; 3744 probe_max = TCP_RTO_MAX; 3745 } else { 3746 /* If packet was not sent due to local congestion, 3747 * do not backoff and do not remember icsk_probes_out. 3748 * Let local senders to fight for local resources. 3749 * 3750 * Use accumulated backoff yet. 3751 */ 3752 if (!icsk->icsk_probes_out) 3753 icsk->icsk_probes_out = 1; 3754 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3755 } 3756 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3757 tcp_probe0_when(sk, probe_max), 3758 TCP_RTO_MAX, 3759 NULL); 3760 } 3761 3762 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3763 { 3764 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3765 struct flowi fl; 3766 int res; 3767 3768 tcp_rsk(req)->txhash = net_tx_rndhash(); 3769 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3770 if (!res) { 3771 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3772 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3773 if (unlikely(tcp_passive_fastopen(sk))) 3774 tcp_sk(sk)->total_retrans++; 3775 trace_tcp_retransmit_synack(sk, req); 3776 } 3777 return res; 3778 } 3779 EXPORT_SYMBOL(tcp_rtx_synack); 3780