1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 66 int push_one, gfp_t gfp); 67 68 /* Account for new data that has been sent to the network. */ 69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 70 { 71 struct inet_connection_sock *icsk = inet_csk(sk); 72 struct tcp_sock *tp = tcp_sk(sk); 73 unsigned int prior_packets = tp->packets_out; 74 75 tcp_advance_send_head(sk, skb); 76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 80 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 81 tcp_rearm_rto(sk); 82 } 83 84 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 85 tcp_skb_pcount(skb)); 86 } 87 88 /* SND.NXT, if window was not shrunk. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 99 return tp->snd_nxt; 100 else 101 return tcp_wnd_end(tp); 102 } 103 104 /* Calculate mss to advertise in SYN segment. 105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 106 * 107 * 1. It is independent of path mtu. 108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 110 * attached devices, because some buggy hosts are confused by 111 * large MSS. 112 * 4. We do not make 3, we advertise MSS, calculated from first 113 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 114 * This may be overridden via information stored in routing table. 115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 116 * probably even Jumbo". 117 */ 118 static __u16 tcp_advertise_mss(struct sock *sk) 119 { 120 struct tcp_sock *tp = tcp_sk(sk); 121 const struct dst_entry *dst = __sk_dst_get(sk); 122 int mss = tp->advmss; 123 124 if (dst) { 125 unsigned int metric = dst_metric_advmss(dst); 126 127 if (metric < mss) { 128 mss = metric; 129 tp->advmss = mss; 130 } 131 } 132 133 return (__u16)mss; 134 } 135 136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 137 * This is the first part of cwnd validation mechanism. 138 */ 139 void tcp_cwnd_restart(struct sock *sk, s32 delta) 140 { 141 struct tcp_sock *tp = tcp_sk(sk); 142 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 143 u32 cwnd = tp->snd_cwnd; 144 145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 146 147 tp->snd_ssthresh = tcp_current_ssthresh(sk); 148 restart_cwnd = min(restart_cwnd, cwnd); 149 150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 151 cwnd >>= 1; 152 tp->snd_cwnd = max(cwnd, restart_cwnd); 153 tp->snd_cwnd_stamp = tcp_time_stamp; 154 tp->snd_cwnd_used = 0; 155 } 156 157 /* Congestion state accounting after a packet has been sent. */ 158 static void tcp_event_data_sent(struct tcp_sock *tp, 159 struct sock *sk) 160 { 161 struct inet_connection_sock *icsk = inet_csk(sk); 162 const u32 now = tcp_time_stamp; 163 164 if (tcp_packets_in_flight(tp) == 0) 165 tcp_ca_event(sk, CA_EVENT_TX_START); 166 167 tp->lsndtime = now; 168 169 /* If it is a reply for ato after last received 170 * packet, enter pingpong mode. 171 */ 172 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 173 icsk->icsk_ack.pingpong = 1; 174 } 175 176 /* Account for an ACK we sent. */ 177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 178 { 179 tcp_dec_quickack_mode(sk, pkts); 180 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 181 } 182 183 184 u32 tcp_default_init_rwnd(u32 mss) 185 { 186 /* Initial receive window should be twice of TCP_INIT_CWND to 187 * enable proper sending of new unsent data during fast recovery 188 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 189 * limit when mss is larger than 1460. 190 */ 191 u32 init_rwnd = TCP_INIT_CWND * 2; 192 193 if (mss > 1460) 194 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 195 return init_rwnd; 196 } 197 198 /* Determine a window scaling and initial window to offer. 199 * Based on the assumption that the given amount of space 200 * will be offered. Store the results in the tp structure. 201 * NOTE: for smooth operation initial space offering should 202 * be a multiple of mss if possible. We assume here that mss >= 1. 203 * This MUST be enforced by all callers. 204 */ 205 void tcp_select_initial_window(int __space, __u32 mss, 206 __u32 *rcv_wnd, __u32 *window_clamp, 207 int wscale_ok, __u8 *rcv_wscale, 208 __u32 init_rcv_wnd) 209 { 210 unsigned int space = (__space < 0 ? 0 : __space); 211 212 /* If no clamp set the clamp to the max possible scaled window */ 213 if (*window_clamp == 0) 214 (*window_clamp) = (65535 << 14); 215 space = min(*window_clamp, space); 216 217 /* Quantize space offering to a multiple of mss if possible. */ 218 if (space > mss) 219 space = (space / mss) * mss; 220 221 /* NOTE: offering an initial window larger than 32767 222 * will break some buggy TCP stacks. If the admin tells us 223 * it is likely we could be speaking with such a buggy stack 224 * we will truncate our initial window offering to 32K-1 225 * unless the remote has sent us a window scaling option, 226 * which we interpret as a sign the remote TCP is not 227 * misinterpreting the window field as a signed quantity. 228 */ 229 if (sysctl_tcp_workaround_signed_windows) 230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 231 else 232 (*rcv_wnd) = space; 233 234 (*rcv_wscale) = 0; 235 if (wscale_ok) { 236 /* Set window scaling on max possible window 237 * See RFC1323 for an explanation of the limit to 14 238 */ 239 space = max_t(u32, space, sysctl_tcp_rmem[2]); 240 space = max_t(u32, space, sysctl_rmem_max); 241 space = min_t(u32, space, *window_clamp); 242 while (space > 65535 && (*rcv_wscale) < 14) { 243 space >>= 1; 244 (*rcv_wscale)++; 245 } 246 } 247 248 if (mss > (1 << *rcv_wscale)) { 249 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 250 init_rcv_wnd = tcp_default_init_rwnd(mss); 251 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 252 } 253 254 /* Set the clamp no higher than max representable value */ 255 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 256 } 257 EXPORT_SYMBOL(tcp_select_initial_window); 258 259 /* Chose a new window to advertise, update state in tcp_sock for the 260 * socket, and return result with RFC1323 scaling applied. The return 261 * value can be stuffed directly into th->window for an outgoing 262 * frame. 263 */ 264 static u16 tcp_select_window(struct sock *sk) 265 { 266 struct tcp_sock *tp = tcp_sk(sk); 267 u32 old_win = tp->rcv_wnd; 268 u32 cur_win = tcp_receive_window(tp); 269 u32 new_win = __tcp_select_window(sk); 270 271 /* Never shrink the offered window */ 272 if (new_win < cur_win) { 273 /* Danger Will Robinson! 274 * Don't update rcv_wup/rcv_wnd here or else 275 * we will not be able to advertise a zero 276 * window in time. --DaveM 277 * 278 * Relax Will Robinson. 279 */ 280 if (new_win == 0) 281 NET_INC_STATS(sock_net(sk), 282 LINUX_MIB_TCPWANTZEROWINDOWADV); 283 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 284 } 285 tp->rcv_wnd = new_win; 286 tp->rcv_wup = tp->rcv_nxt; 287 288 /* Make sure we do not exceed the maximum possible 289 * scaled window. 290 */ 291 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 292 new_win = min(new_win, MAX_TCP_WINDOW); 293 else 294 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 295 296 /* RFC1323 scaling applied */ 297 new_win >>= tp->rx_opt.rcv_wscale; 298 299 /* If we advertise zero window, disable fast path. */ 300 if (new_win == 0) { 301 tp->pred_flags = 0; 302 if (old_win) 303 NET_INC_STATS(sock_net(sk), 304 LINUX_MIB_TCPTOZEROWINDOWADV); 305 } else if (old_win == 0) { 306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 307 } 308 309 return new_win; 310 } 311 312 /* Packet ECN state for a SYN-ACK */ 313 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 314 { 315 const struct tcp_sock *tp = tcp_sk(sk); 316 317 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 318 if (!(tp->ecn_flags & TCP_ECN_OK)) 319 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 320 else if (tcp_ca_needs_ecn(sk)) 321 INET_ECN_xmit(sk); 322 } 323 324 /* Packet ECN state for a SYN. */ 325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 326 { 327 struct tcp_sock *tp = tcp_sk(sk); 328 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 329 tcp_ca_needs_ecn(sk); 330 331 if (!use_ecn) { 332 const struct dst_entry *dst = __sk_dst_get(sk); 333 334 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 335 use_ecn = true; 336 } 337 338 tp->ecn_flags = 0; 339 340 if (use_ecn) { 341 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 342 tp->ecn_flags = TCP_ECN_OK; 343 if (tcp_ca_needs_ecn(sk)) 344 INET_ECN_xmit(sk); 345 } 346 } 347 348 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 349 { 350 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 351 /* tp->ecn_flags are cleared at a later point in time when 352 * SYN ACK is ultimatively being received. 353 */ 354 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 355 } 356 357 static void 358 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 359 { 360 if (inet_rsk(req)->ecn_ok) 361 th->ece = 1; 362 } 363 364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 365 * be sent. 366 */ 367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 368 struct tcphdr *th, int tcp_header_len) 369 { 370 struct tcp_sock *tp = tcp_sk(sk); 371 372 if (tp->ecn_flags & TCP_ECN_OK) { 373 /* Not-retransmitted data segment: set ECT and inject CWR. */ 374 if (skb->len != tcp_header_len && 375 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 376 INET_ECN_xmit(sk); 377 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 378 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 379 th->cwr = 1; 380 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 381 } 382 } else if (!tcp_ca_needs_ecn(sk)) { 383 /* ACK or retransmitted segment: clear ECT|CE */ 384 INET_ECN_dontxmit(sk); 385 } 386 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 387 th->ece = 1; 388 } 389 } 390 391 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 392 * auto increment end seqno. 393 */ 394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 395 { 396 skb->ip_summed = CHECKSUM_PARTIAL; 397 skb->csum = 0; 398 399 TCP_SKB_CB(skb)->tcp_flags = flags; 400 TCP_SKB_CB(skb)->sacked = 0; 401 402 tcp_skb_pcount_set(skb, 1); 403 404 TCP_SKB_CB(skb)->seq = seq; 405 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 406 seq++; 407 TCP_SKB_CB(skb)->end_seq = seq; 408 } 409 410 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 411 { 412 return tp->snd_una != tp->snd_up; 413 } 414 415 #define OPTION_SACK_ADVERTISE (1 << 0) 416 #define OPTION_TS (1 << 1) 417 #define OPTION_MD5 (1 << 2) 418 #define OPTION_WSCALE (1 << 3) 419 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 420 421 struct tcp_out_options { 422 u16 options; /* bit field of OPTION_* */ 423 u16 mss; /* 0 to disable */ 424 u8 ws; /* window scale, 0 to disable */ 425 u8 num_sack_blocks; /* number of SACK blocks to include */ 426 u8 hash_size; /* bytes in hash_location */ 427 __u8 *hash_location; /* temporary pointer, overloaded */ 428 __u32 tsval, tsecr; /* need to include OPTION_TS */ 429 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 430 }; 431 432 /* Write previously computed TCP options to the packet. 433 * 434 * Beware: Something in the Internet is very sensitive to the ordering of 435 * TCP options, we learned this through the hard way, so be careful here. 436 * Luckily we can at least blame others for their non-compliance but from 437 * inter-operability perspective it seems that we're somewhat stuck with 438 * the ordering which we have been using if we want to keep working with 439 * those broken things (not that it currently hurts anybody as there isn't 440 * particular reason why the ordering would need to be changed). 441 * 442 * At least SACK_PERM as the first option is known to lead to a disaster 443 * (but it may well be that other scenarios fail similarly). 444 */ 445 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 446 struct tcp_out_options *opts) 447 { 448 u16 options = opts->options; /* mungable copy */ 449 450 if (unlikely(OPTION_MD5 & options)) { 451 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 452 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 453 /* overload cookie hash location */ 454 opts->hash_location = (__u8 *)ptr; 455 ptr += 4; 456 } 457 458 if (unlikely(opts->mss)) { 459 *ptr++ = htonl((TCPOPT_MSS << 24) | 460 (TCPOLEN_MSS << 16) | 461 opts->mss); 462 } 463 464 if (likely(OPTION_TS & options)) { 465 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 466 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 467 (TCPOLEN_SACK_PERM << 16) | 468 (TCPOPT_TIMESTAMP << 8) | 469 TCPOLEN_TIMESTAMP); 470 options &= ~OPTION_SACK_ADVERTISE; 471 } else { 472 *ptr++ = htonl((TCPOPT_NOP << 24) | 473 (TCPOPT_NOP << 16) | 474 (TCPOPT_TIMESTAMP << 8) | 475 TCPOLEN_TIMESTAMP); 476 } 477 *ptr++ = htonl(opts->tsval); 478 *ptr++ = htonl(opts->tsecr); 479 } 480 481 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 482 *ptr++ = htonl((TCPOPT_NOP << 24) | 483 (TCPOPT_NOP << 16) | 484 (TCPOPT_SACK_PERM << 8) | 485 TCPOLEN_SACK_PERM); 486 } 487 488 if (unlikely(OPTION_WSCALE & options)) { 489 *ptr++ = htonl((TCPOPT_NOP << 24) | 490 (TCPOPT_WINDOW << 16) | 491 (TCPOLEN_WINDOW << 8) | 492 opts->ws); 493 } 494 495 if (unlikely(opts->num_sack_blocks)) { 496 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 497 tp->duplicate_sack : tp->selective_acks; 498 int this_sack; 499 500 *ptr++ = htonl((TCPOPT_NOP << 24) | 501 (TCPOPT_NOP << 16) | 502 (TCPOPT_SACK << 8) | 503 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 504 TCPOLEN_SACK_PERBLOCK))); 505 506 for (this_sack = 0; this_sack < opts->num_sack_blocks; 507 ++this_sack) { 508 *ptr++ = htonl(sp[this_sack].start_seq); 509 *ptr++ = htonl(sp[this_sack].end_seq); 510 } 511 512 tp->rx_opt.dsack = 0; 513 } 514 515 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 516 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 517 u8 *p = (u8 *)ptr; 518 u32 len; /* Fast Open option length */ 519 520 if (foc->exp) { 521 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 522 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 523 TCPOPT_FASTOPEN_MAGIC); 524 p += TCPOLEN_EXP_FASTOPEN_BASE; 525 } else { 526 len = TCPOLEN_FASTOPEN_BASE + foc->len; 527 *p++ = TCPOPT_FASTOPEN; 528 *p++ = len; 529 } 530 531 memcpy(p, foc->val, foc->len); 532 if ((len & 3) == 2) { 533 p[foc->len] = TCPOPT_NOP; 534 p[foc->len + 1] = TCPOPT_NOP; 535 } 536 ptr += (len + 3) >> 2; 537 } 538 } 539 540 /* Compute TCP options for SYN packets. This is not the final 541 * network wire format yet. 542 */ 543 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 544 struct tcp_out_options *opts, 545 struct tcp_md5sig_key **md5) 546 { 547 struct tcp_sock *tp = tcp_sk(sk); 548 unsigned int remaining = MAX_TCP_OPTION_SPACE; 549 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 550 551 #ifdef CONFIG_TCP_MD5SIG 552 *md5 = tp->af_specific->md5_lookup(sk, sk); 553 if (*md5) { 554 opts->options |= OPTION_MD5; 555 remaining -= TCPOLEN_MD5SIG_ALIGNED; 556 } 557 #else 558 *md5 = NULL; 559 #endif 560 561 /* We always get an MSS option. The option bytes which will be seen in 562 * normal data packets should timestamps be used, must be in the MSS 563 * advertised. But we subtract them from tp->mss_cache so that 564 * calculations in tcp_sendmsg are simpler etc. So account for this 565 * fact here if necessary. If we don't do this correctly, as a 566 * receiver we won't recognize data packets as being full sized when we 567 * should, and thus we won't abide by the delayed ACK rules correctly. 568 * SACKs don't matter, we never delay an ACK when we have any of those 569 * going out. */ 570 opts->mss = tcp_advertise_mss(sk); 571 remaining -= TCPOLEN_MSS_ALIGNED; 572 573 if (likely(sysctl_tcp_timestamps && !*md5)) { 574 opts->options |= OPTION_TS; 575 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 576 opts->tsecr = tp->rx_opt.ts_recent; 577 remaining -= TCPOLEN_TSTAMP_ALIGNED; 578 } 579 if (likely(sysctl_tcp_window_scaling)) { 580 opts->ws = tp->rx_opt.rcv_wscale; 581 opts->options |= OPTION_WSCALE; 582 remaining -= TCPOLEN_WSCALE_ALIGNED; 583 } 584 if (likely(sysctl_tcp_sack)) { 585 opts->options |= OPTION_SACK_ADVERTISE; 586 if (unlikely(!(OPTION_TS & opts->options))) 587 remaining -= TCPOLEN_SACKPERM_ALIGNED; 588 } 589 590 if (fastopen && fastopen->cookie.len >= 0) { 591 u32 need = fastopen->cookie.len; 592 593 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 594 TCPOLEN_FASTOPEN_BASE; 595 need = (need + 3) & ~3U; /* Align to 32 bits */ 596 if (remaining >= need) { 597 opts->options |= OPTION_FAST_OPEN_COOKIE; 598 opts->fastopen_cookie = &fastopen->cookie; 599 remaining -= need; 600 tp->syn_fastopen = 1; 601 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 602 } 603 } 604 605 return MAX_TCP_OPTION_SPACE - remaining; 606 } 607 608 /* Set up TCP options for SYN-ACKs. */ 609 static unsigned int tcp_synack_options(struct request_sock *req, 610 unsigned int mss, struct sk_buff *skb, 611 struct tcp_out_options *opts, 612 const struct tcp_md5sig_key *md5, 613 struct tcp_fastopen_cookie *foc) 614 { 615 struct inet_request_sock *ireq = inet_rsk(req); 616 unsigned int remaining = MAX_TCP_OPTION_SPACE; 617 618 #ifdef CONFIG_TCP_MD5SIG 619 if (md5) { 620 opts->options |= OPTION_MD5; 621 remaining -= TCPOLEN_MD5SIG_ALIGNED; 622 623 /* We can't fit any SACK blocks in a packet with MD5 + TS 624 * options. There was discussion about disabling SACK 625 * rather than TS in order to fit in better with old, 626 * buggy kernels, but that was deemed to be unnecessary. 627 */ 628 ireq->tstamp_ok &= !ireq->sack_ok; 629 } 630 #endif 631 632 /* We always send an MSS option. */ 633 opts->mss = mss; 634 remaining -= TCPOLEN_MSS_ALIGNED; 635 636 if (likely(ireq->wscale_ok)) { 637 opts->ws = ireq->rcv_wscale; 638 opts->options |= OPTION_WSCALE; 639 remaining -= TCPOLEN_WSCALE_ALIGNED; 640 } 641 if (likely(ireq->tstamp_ok)) { 642 opts->options |= OPTION_TS; 643 opts->tsval = tcp_skb_timestamp(skb); 644 opts->tsecr = req->ts_recent; 645 remaining -= TCPOLEN_TSTAMP_ALIGNED; 646 } 647 if (likely(ireq->sack_ok)) { 648 opts->options |= OPTION_SACK_ADVERTISE; 649 if (unlikely(!ireq->tstamp_ok)) 650 remaining -= TCPOLEN_SACKPERM_ALIGNED; 651 } 652 if (foc != NULL && foc->len >= 0) { 653 u32 need = foc->len; 654 655 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 656 TCPOLEN_FASTOPEN_BASE; 657 need = (need + 3) & ~3U; /* Align to 32 bits */ 658 if (remaining >= need) { 659 opts->options |= OPTION_FAST_OPEN_COOKIE; 660 opts->fastopen_cookie = foc; 661 remaining -= need; 662 } 663 } 664 665 return MAX_TCP_OPTION_SPACE - remaining; 666 } 667 668 /* Compute TCP options for ESTABLISHED sockets. This is not the 669 * final wire format yet. 670 */ 671 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 672 struct tcp_out_options *opts, 673 struct tcp_md5sig_key **md5) 674 { 675 struct tcp_sock *tp = tcp_sk(sk); 676 unsigned int size = 0; 677 unsigned int eff_sacks; 678 679 opts->options = 0; 680 681 #ifdef CONFIG_TCP_MD5SIG 682 *md5 = tp->af_specific->md5_lookup(sk, sk); 683 if (unlikely(*md5)) { 684 opts->options |= OPTION_MD5; 685 size += TCPOLEN_MD5SIG_ALIGNED; 686 } 687 #else 688 *md5 = NULL; 689 #endif 690 691 if (likely(tp->rx_opt.tstamp_ok)) { 692 opts->options |= OPTION_TS; 693 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 694 opts->tsecr = tp->rx_opt.ts_recent; 695 size += TCPOLEN_TSTAMP_ALIGNED; 696 } 697 698 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 699 if (unlikely(eff_sacks)) { 700 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 701 opts->num_sack_blocks = 702 min_t(unsigned int, eff_sacks, 703 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 704 TCPOLEN_SACK_PERBLOCK); 705 size += TCPOLEN_SACK_BASE_ALIGNED + 706 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 707 } 708 709 return size; 710 } 711 712 713 /* TCP SMALL QUEUES (TSQ) 714 * 715 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 716 * to reduce RTT and bufferbloat. 717 * We do this using a special skb destructor (tcp_wfree). 718 * 719 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 720 * needs to be reallocated in a driver. 721 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 722 * 723 * Since transmit from skb destructor is forbidden, we use a tasklet 724 * to process all sockets that eventually need to send more skbs. 725 * We use one tasklet per cpu, with its own queue of sockets. 726 */ 727 struct tsq_tasklet { 728 struct tasklet_struct tasklet; 729 struct list_head head; /* queue of tcp sockets */ 730 }; 731 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 732 733 static void tcp_tsq_handler(struct sock *sk) 734 { 735 if ((1 << sk->sk_state) & 736 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 737 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 738 struct tcp_sock *tp = tcp_sk(sk); 739 740 if (tp->lost_out > tp->retrans_out && 741 tp->snd_cwnd > tcp_packets_in_flight(tp)) 742 tcp_xmit_retransmit_queue(sk); 743 744 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 745 0, GFP_ATOMIC); 746 } 747 } 748 /* 749 * One tasklet per cpu tries to send more skbs. 750 * We run in tasklet context but need to disable irqs when 751 * transferring tsq->head because tcp_wfree() might 752 * interrupt us (non NAPI drivers) 753 */ 754 static void tcp_tasklet_func(unsigned long data) 755 { 756 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 757 LIST_HEAD(list); 758 unsigned long flags; 759 struct list_head *q, *n; 760 struct tcp_sock *tp; 761 struct sock *sk; 762 763 local_irq_save(flags); 764 list_splice_init(&tsq->head, &list); 765 local_irq_restore(flags); 766 767 list_for_each_safe(q, n, &list) { 768 tp = list_entry(q, struct tcp_sock, tsq_node); 769 list_del(&tp->tsq_node); 770 771 sk = (struct sock *)tp; 772 bh_lock_sock(sk); 773 774 if (!sock_owned_by_user(sk)) { 775 tcp_tsq_handler(sk); 776 } else { 777 /* defer the work to tcp_release_cb() */ 778 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 779 } 780 bh_unlock_sock(sk); 781 782 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 783 sk_free(sk); 784 } 785 } 786 787 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 788 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 789 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 790 (1UL << TCP_MTU_REDUCED_DEFERRED)) 791 /** 792 * tcp_release_cb - tcp release_sock() callback 793 * @sk: socket 794 * 795 * called from release_sock() to perform protocol dependent 796 * actions before socket release. 797 */ 798 void tcp_release_cb(struct sock *sk) 799 { 800 struct tcp_sock *tp = tcp_sk(sk); 801 unsigned long flags, nflags; 802 803 /* perform an atomic operation only if at least one flag is set */ 804 do { 805 flags = tp->tsq_flags; 806 if (!(flags & TCP_DEFERRED_ALL)) 807 return; 808 nflags = flags & ~TCP_DEFERRED_ALL; 809 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 810 811 if (flags & (1UL << TCP_TSQ_DEFERRED)) 812 tcp_tsq_handler(sk); 813 814 /* Here begins the tricky part : 815 * We are called from release_sock() with : 816 * 1) BH disabled 817 * 2) sk_lock.slock spinlock held 818 * 3) socket owned by us (sk->sk_lock.owned == 1) 819 * 820 * But following code is meant to be called from BH handlers, 821 * so we should keep BH disabled, but early release socket ownership 822 */ 823 sock_release_ownership(sk); 824 825 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 826 tcp_write_timer_handler(sk); 827 __sock_put(sk); 828 } 829 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 830 tcp_delack_timer_handler(sk); 831 __sock_put(sk); 832 } 833 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 834 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 835 __sock_put(sk); 836 } 837 } 838 EXPORT_SYMBOL(tcp_release_cb); 839 840 void __init tcp_tasklet_init(void) 841 { 842 int i; 843 844 for_each_possible_cpu(i) { 845 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 846 847 INIT_LIST_HEAD(&tsq->head); 848 tasklet_init(&tsq->tasklet, 849 tcp_tasklet_func, 850 (unsigned long)tsq); 851 } 852 } 853 854 /* 855 * Write buffer destructor automatically called from kfree_skb. 856 * We can't xmit new skbs from this context, as we might already 857 * hold qdisc lock. 858 */ 859 void tcp_wfree(struct sk_buff *skb) 860 { 861 struct sock *sk = skb->sk; 862 struct tcp_sock *tp = tcp_sk(sk); 863 int wmem; 864 865 /* Keep one reference on sk_wmem_alloc. 866 * Will be released by sk_free() from here or tcp_tasklet_func() 867 */ 868 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 869 870 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 871 * Wait until our queues (qdisc + devices) are drained. 872 * This gives : 873 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 874 * - chance for incoming ACK (processed by another cpu maybe) 875 * to migrate this flow (skb->ooo_okay will be eventually set) 876 */ 877 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 878 goto out; 879 880 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 881 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 882 unsigned long flags; 883 struct tsq_tasklet *tsq; 884 885 /* queue this socket to tasklet queue */ 886 local_irq_save(flags); 887 tsq = this_cpu_ptr(&tsq_tasklet); 888 list_add(&tp->tsq_node, &tsq->head); 889 tasklet_schedule(&tsq->tasklet); 890 local_irq_restore(flags); 891 return; 892 } 893 out: 894 sk_free(sk); 895 } 896 897 /* This routine actually transmits TCP packets queued in by 898 * tcp_do_sendmsg(). This is used by both the initial 899 * transmission and possible later retransmissions. 900 * All SKB's seen here are completely headerless. It is our 901 * job to build the TCP header, and pass the packet down to 902 * IP so it can do the same plus pass the packet off to the 903 * device. 904 * 905 * We are working here with either a clone of the original 906 * SKB, or a fresh unique copy made by the retransmit engine. 907 */ 908 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 909 gfp_t gfp_mask) 910 { 911 const struct inet_connection_sock *icsk = inet_csk(sk); 912 struct inet_sock *inet; 913 struct tcp_sock *tp; 914 struct tcp_skb_cb *tcb; 915 struct tcp_out_options opts; 916 unsigned int tcp_options_size, tcp_header_size; 917 struct tcp_md5sig_key *md5; 918 struct tcphdr *th; 919 int err; 920 921 BUG_ON(!skb || !tcp_skb_pcount(skb)); 922 tp = tcp_sk(sk); 923 924 if (clone_it) { 925 skb_mstamp_get(&skb->skb_mstamp); 926 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 927 - tp->snd_una; 928 tcp_rate_skb_sent(sk, skb); 929 930 if (unlikely(skb_cloned(skb))) 931 skb = pskb_copy(skb, gfp_mask); 932 else 933 skb = skb_clone(skb, gfp_mask); 934 if (unlikely(!skb)) 935 return -ENOBUFS; 936 } 937 938 inet = inet_sk(sk); 939 tcb = TCP_SKB_CB(skb); 940 memset(&opts, 0, sizeof(opts)); 941 942 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 943 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 944 else 945 tcp_options_size = tcp_established_options(sk, skb, &opts, 946 &md5); 947 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 948 949 /* if no packet is in qdisc/device queue, then allow XPS to select 950 * another queue. We can be called from tcp_tsq_handler() 951 * which holds one reference to sk_wmem_alloc. 952 * 953 * TODO: Ideally, in-flight pure ACK packets should not matter here. 954 * One way to get this would be to set skb->truesize = 2 on them. 955 */ 956 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 957 958 skb_push(skb, tcp_header_size); 959 skb_reset_transport_header(skb); 960 961 skb_orphan(skb); 962 skb->sk = sk; 963 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 964 skb_set_hash_from_sk(skb, sk); 965 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 966 967 /* Build TCP header and checksum it. */ 968 th = (struct tcphdr *)skb->data; 969 th->source = inet->inet_sport; 970 th->dest = inet->inet_dport; 971 th->seq = htonl(tcb->seq); 972 th->ack_seq = htonl(tp->rcv_nxt); 973 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 974 tcb->tcp_flags); 975 976 th->check = 0; 977 th->urg_ptr = 0; 978 979 /* The urg_mode check is necessary during a below snd_una win probe */ 980 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 981 if (before(tp->snd_up, tcb->seq + 0x10000)) { 982 th->urg_ptr = htons(tp->snd_up - tcb->seq); 983 th->urg = 1; 984 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 985 th->urg_ptr = htons(0xFFFF); 986 th->urg = 1; 987 } 988 } 989 990 tcp_options_write((__be32 *)(th + 1), tp, &opts); 991 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 992 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 993 th->window = htons(tcp_select_window(sk)); 994 tcp_ecn_send(sk, skb, th, tcp_header_size); 995 } else { 996 /* RFC1323: The window in SYN & SYN/ACK segments 997 * is never scaled. 998 */ 999 th->window = htons(min(tp->rcv_wnd, 65535U)); 1000 } 1001 #ifdef CONFIG_TCP_MD5SIG 1002 /* Calculate the MD5 hash, as we have all we need now */ 1003 if (md5) { 1004 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1005 tp->af_specific->calc_md5_hash(opts.hash_location, 1006 md5, sk, skb); 1007 } 1008 #endif 1009 1010 icsk->icsk_af_ops->send_check(sk, skb); 1011 1012 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1013 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1014 1015 if (skb->len != tcp_header_size) { 1016 tcp_event_data_sent(tp, sk); 1017 tp->data_segs_out += tcp_skb_pcount(skb); 1018 } 1019 1020 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1021 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1022 tcp_skb_pcount(skb)); 1023 1024 tp->segs_out += tcp_skb_pcount(skb); 1025 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1026 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1027 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1028 1029 /* Our usage of tstamp should remain private */ 1030 skb->tstamp.tv64 = 0; 1031 1032 /* Cleanup our debris for IP stacks */ 1033 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1034 sizeof(struct inet6_skb_parm))); 1035 1036 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1037 1038 if (likely(err <= 0)) 1039 return err; 1040 1041 tcp_enter_cwr(sk); 1042 1043 return net_xmit_eval(err); 1044 } 1045 1046 /* This routine just queues the buffer for sending. 1047 * 1048 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1049 * otherwise socket can stall. 1050 */ 1051 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1052 { 1053 struct tcp_sock *tp = tcp_sk(sk); 1054 1055 /* Advance write_seq and place onto the write_queue. */ 1056 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1057 __skb_header_release(skb); 1058 tcp_add_write_queue_tail(sk, skb); 1059 sk->sk_wmem_queued += skb->truesize; 1060 sk_mem_charge(sk, skb->truesize); 1061 } 1062 1063 /* Initialize TSO segments for a packet. */ 1064 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1065 { 1066 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1067 /* Avoid the costly divide in the normal 1068 * non-TSO case. 1069 */ 1070 tcp_skb_pcount_set(skb, 1); 1071 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1072 } else { 1073 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1074 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1075 } 1076 } 1077 1078 /* When a modification to fackets out becomes necessary, we need to check 1079 * skb is counted to fackets_out or not. 1080 */ 1081 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1082 int decr) 1083 { 1084 struct tcp_sock *tp = tcp_sk(sk); 1085 1086 if (!tp->sacked_out || tcp_is_reno(tp)) 1087 return; 1088 1089 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1090 tp->fackets_out -= decr; 1091 } 1092 1093 /* Pcount in the middle of the write queue got changed, we need to do various 1094 * tweaks to fix counters 1095 */ 1096 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1097 { 1098 struct tcp_sock *tp = tcp_sk(sk); 1099 1100 tp->packets_out -= decr; 1101 1102 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1103 tp->sacked_out -= decr; 1104 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1105 tp->retrans_out -= decr; 1106 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1107 tp->lost_out -= decr; 1108 1109 /* Reno case is special. Sigh... */ 1110 if (tcp_is_reno(tp) && decr > 0) 1111 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1112 1113 tcp_adjust_fackets_out(sk, skb, decr); 1114 1115 if (tp->lost_skb_hint && 1116 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1117 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1118 tp->lost_cnt_hint -= decr; 1119 1120 tcp_verify_left_out(tp); 1121 } 1122 1123 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1124 { 1125 return TCP_SKB_CB(skb)->txstamp_ack || 1126 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1127 } 1128 1129 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1130 { 1131 struct skb_shared_info *shinfo = skb_shinfo(skb); 1132 1133 if (unlikely(tcp_has_tx_tstamp(skb)) && 1134 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1135 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1136 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1137 1138 shinfo->tx_flags &= ~tsflags; 1139 shinfo2->tx_flags |= tsflags; 1140 swap(shinfo->tskey, shinfo2->tskey); 1141 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1142 TCP_SKB_CB(skb)->txstamp_ack = 0; 1143 } 1144 } 1145 1146 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1147 { 1148 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1149 TCP_SKB_CB(skb)->eor = 0; 1150 } 1151 1152 /* Function to create two new TCP segments. Shrinks the given segment 1153 * to the specified size and appends a new segment with the rest of the 1154 * packet to the list. This won't be called frequently, I hope. 1155 * Remember, these are still headerless SKBs at this point. 1156 */ 1157 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1158 unsigned int mss_now, gfp_t gfp) 1159 { 1160 struct tcp_sock *tp = tcp_sk(sk); 1161 struct sk_buff *buff; 1162 int nsize, old_factor; 1163 int nlen; 1164 u8 flags; 1165 1166 if (WARN_ON(len > skb->len)) 1167 return -EINVAL; 1168 1169 nsize = skb_headlen(skb) - len; 1170 if (nsize < 0) 1171 nsize = 0; 1172 1173 if (skb_unclone(skb, gfp)) 1174 return -ENOMEM; 1175 1176 /* Get a new skb... force flag on. */ 1177 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1178 if (!buff) 1179 return -ENOMEM; /* We'll just try again later. */ 1180 1181 sk->sk_wmem_queued += buff->truesize; 1182 sk_mem_charge(sk, buff->truesize); 1183 nlen = skb->len - len - nsize; 1184 buff->truesize += nlen; 1185 skb->truesize -= nlen; 1186 1187 /* Correct the sequence numbers. */ 1188 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1189 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1190 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1191 1192 /* PSH and FIN should only be set in the second packet. */ 1193 flags = TCP_SKB_CB(skb)->tcp_flags; 1194 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1195 TCP_SKB_CB(buff)->tcp_flags = flags; 1196 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1197 tcp_skb_fragment_eor(skb, buff); 1198 1199 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1200 /* Copy and checksum data tail into the new buffer. */ 1201 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1202 skb_put(buff, nsize), 1203 nsize, 0); 1204 1205 skb_trim(skb, len); 1206 1207 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1208 } else { 1209 skb->ip_summed = CHECKSUM_PARTIAL; 1210 skb_split(skb, buff, len); 1211 } 1212 1213 buff->ip_summed = skb->ip_summed; 1214 1215 buff->tstamp = skb->tstamp; 1216 tcp_fragment_tstamp(skb, buff); 1217 1218 old_factor = tcp_skb_pcount(skb); 1219 1220 /* Fix up tso_factor for both original and new SKB. */ 1221 tcp_set_skb_tso_segs(skb, mss_now); 1222 tcp_set_skb_tso_segs(buff, mss_now); 1223 1224 /* Update delivered info for the new segment */ 1225 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1226 1227 /* If this packet has been sent out already, we must 1228 * adjust the various packet counters. 1229 */ 1230 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1231 int diff = old_factor - tcp_skb_pcount(skb) - 1232 tcp_skb_pcount(buff); 1233 1234 if (diff) 1235 tcp_adjust_pcount(sk, skb, diff); 1236 } 1237 1238 /* Link BUFF into the send queue. */ 1239 __skb_header_release(buff); 1240 tcp_insert_write_queue_after(skb, buff, sk); 1241 1242 return 0; 1243 } 1244 1245 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1246 * eventually). The difference is that pulled data not copied, but 1247 * immediately discarded. 1248 */ 1249 static void __pskb_trim_head(struct sk_buff *skb, int len) 1250 { 1251 struct skb_shared_info *shinfo; 1252 int i, k, eat; 1253 1254 eat = min_t(int, len, skb_headlen(skb)); 1255 if (eat) { 1256 __skb_pull(skb, eat); 1257 len -= eat; 1258 if (!len) 1259 return; 1260 } 1261 eat = len; 1262 k = 0; 1263 shinfo = skb_shinfo(skb); 1264 for (i = 0; i < shinfo->nr_frags; i++) { 1265 int size = skb_frag_size(&shinfo->frags[i]); 1266 1267 if (size <= eat) { 1268 skb_frag_unref(skb, i); 1269 eat -= size; 1270 } else { 1271 shinfo->frags[k] = shinfo->frags[i]; 1272 if (eat) { 1273 shinfo->frags[k].page_offset += eat; 1274 skb_frag_size_sub(&shinfo->frags[k], eat); 1275 eat = 0; 1276 } 1277 k++; 1278 } 1279 } 1280 shinfo->nr_frags = k; 1281 1282 skb_reset_tail_pointer(skb); 1283 skb->data_len -= len; 1284 skb->len = skb->data_len; 1285 } 1286 1287 /* Remove acked data from a packet in the transmit queue. */ 1288 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1289 { 1290 if (skb_unclone(skb, GFP_ATOMIC)) 1291 return -ENOMEM; 1292 1293 __pskb_trim_head(skb, len); 1294 1295 TCP_SKB_CB(skb)->seq += len; 1296 skb->ip_summed = CHECKSUM_PARTIAL; 1297 1298 skb->truesize -= len; 1299 sk->sk_wmem_queued -= len; 1300 sk_mem_uncharge(sk, len); 1301 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1302 1303 /* Any change of skb->len requires recalculation of tso factor. */ 1304 if (tcp_skb_pcount(skb) > 1) 1305 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1306 1307 return 0; 1308 } 1309 1310 /* Calculate MSS not accounting any TCP options. */ 1311 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1312 { 1313 const struct tcp_sock *tp = tcp_sk(sk); 1314 const struct inet_connection_sock *icsk = inet_csk(sk); 1315 int mss_now; 1316 1317 /* Calculate base mss without TCP options: 1318 It is MMS_S - sizeof(tcphdr) of rfc1122 1319 */ 1320 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1321 1322 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1323 if (icsk->icsk_af_ops->net_frag_header_len) { 1324 const struct dst_entry *dst = __sk_dst_get(sk); 1325 1326 if (dst && dst_allfrag(dst)) 1327 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1328 } 1329 1330 /* Clamp it (mss_clamp does not include tcp options) */ 1331 if (mss_now > tp->rx_opt.mss_clamp) 1332 mss_now = tp->rx_opt.mss_clamp; 1333 1334 /* Now subtract optional transport overhead */ 1335 mss_now -= icsk->icsk_ext_hdr_len; 1336 1337 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1338 if (mss_now < 48) 1339 mss_now = 48; 1340 return mss_now; 1341 } 1342 1343 /* Calculate MSS. Not accounting for SACKs here. */ 1344 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1345 { 1346 /* Subtract TCP options size, not including SACKs */ 1347 return __tcp_mtu_to_mss(sk, pmtu) - 1348 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1349 } 1350 1351 /* Inverse of above */ 1352 int tcp_mss_to_mtu(struct sock *sk, int mss) 1353 { 1354 const struct tcp_sock *tp = tcp_sk(sk); 1355 const struct inet_connection_sock *icsk = inet_csk(sk); 1356 int mtu; 1357 1358 mtu = mss + 1359 tp->tcp_header_len + 1360 icsk->icsk_ext_hdr_len + 1361 icsk->icsk_af_ops->net_header_len; 1362 1363 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1364 if (icsk->icsk_af_ops->net_frag_header_len) { 1365 const struct dst_entry *dst = __sk_dst_get(sk); 1366 1367 if (dst && dst_allfrag(dst)) 1368 mtu += icsk->icsk_af_ops->net_frag_header_len; 1369 } 1370 return mtu; 1371 } 1372 EXPORT_SYMBOL(tcp_mss_to_mtu); 1373 1374 /* MTU probing init per socket */ 1375 void tcp_mtup_init(struct sock *sk) 1376 { 1377 struct tcp_sock *tp = tcp_sk(sk); 1378 struct inet_connection_sock *icsk = inet_csk(sk); 1379 struct net *net = sock_net(sk); 1380 1381 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1382 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1383 icsk->icsk_af_ops->net_header_len; 1384 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1385 icsk->icsk_mtup.probe_size = 0; 1386 if (icsk->icsk_mtup.enabled) 1387 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1388 } 1389 EXPORT_SYMBOL(tcp_mtup_init); 1390 1391 /* This function synchronize snd mss to current pmtu/exthdr set. 1392 1393 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1394 for TCP options, but includes only bare TCP header. 1395 1396 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1397 It is minimum of user_mss and mss received with SYN. 1398 It also does not include TCP options. 1399 1400 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1401 1402 tp->mss_cache is current effective sending mss, including 1403 all tcp options except for SACKs. It is evaluated, 1404 taking into account current pmtu, but never exceeds 1405 tp->rx_opt.mss_clamp. 1406 1407 NOTE1. rfc1122 clearly states that advertised MSS 1408 DOES NOT include either tcp or ip options. 1409 1410 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1411 are READ ONLY outside this function. --ANK (980731) 1412 */ 1413 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1414 { 1415 struct tcp_sock *tp = tcp_sk(sk); 1416 struct inet_connection_sock *icsk = inet_csk(sk); 1417 int mss_now; 1418 1419 if (icsk->icsk_mtup.search_high > pmtu) 1420 icsk->icsk_mtup.search_high = pmtu; 1421 1422 mss_now = tcp_mtu_to_mss(sk, pmtu); 1423 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1424 1425 /* And store cached results */ 1426 icsk->icsk_pmtu_cookie = pmtu; 1427 if (icsk->icsk_mtup.enabled) 1428 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1429 tp->mss_cache = mss_now; 1430 1431 return mss_now; 1432 } 1433 EXPORT_SYMBOL(tcp_sync_mss); 1434 1435 /* Compute the current effective MSS, taking SACKs and IP options, 1436 * and even PMTU discovery events into account. 1437 */ 1438 unsigned int tcp_current_mss(struct sock *sk) 1439 { 1440 const struct tcp_sock *tp = tcp_sk(sk); 1441 const struct dst_entry *dst = __sk_dst_get(sk); 1442 u32 mss_now; 1443 unsigned int header_len; 1444 struct tcp_out_options opts; 1445 struct tcp_md5sig_key *md5; 1446 1447 mss_now = tp->mss_cache; 1448 1449 if (dst) { 1450 u32 mtu = dst_mtu(dst); 1451 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1452 mss_now = tcp_sync_mss(sk, mtu); 1453 } 1454 1455 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1456 sizeof(struct tcphdr); 1457 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1458 * some common options. If this is an odd packet (because we have SACK 1459 * blocks etc) then our calculated header_len will be different, and 1460 * we have to adjust mss_now correspondingly */ 1461 if (header_len != tp->tcp_header_len) { 1462 int delta = (int) header_len - tp->tcp_header_len; 1463 mss_now -= delta; 1464 } 1465 1466 return mss_now; 1467 } 1468 1469 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1470 * As additional protections, we do not touch cwnd in retransmission phases, 1471 * and if application hit its sndbuf limit recently. 1472 */ 1473 static void tcp_cwnd_application_limited(struct sock *sk) 1474 { 1475 struct tcp_sock *tp = tcp_sk(sk); 1476 1477 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1478 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1479 /* Limited by application or receiver window. */ 1480 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1481 u32 win_used = max(tp->snd_cwnd_used, init_win); 1482 if (win_used < tp->snd_cwnd) { 1483 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1484 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1485 } 1486 tp->snd_cwnd_used = 0; 1487 } 1488 tp->snd_cwnd_stamp = tcp_time_stamp; 1489 } 1490 1491 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1492 { 1493 struct tcp_sock *tp = tcp_sk(sk); 1494 1495 /* Track the maximum number of outstanding packets in each 1496 * window, and remember whether we were cwnd-limited then. 1497 */ 1498 if (!before(tp->snd_una, tp->max_packets_seq) || 1499 tp->packets_out > tp->max_packets_out) { 1500 tp->max_packets_out = tp->packets_out; 1501 tp->max_packets_seq = tp->snd_nxt; 1502 tp->is_cwnd_limited = is_cwnd_limited; 1503 } 1504 1505 if (tcp_is_cwnd_limited(sk)) { 1506 /* Network is feed fully. */ 1507 tp->snd_cwnd_used = 0; 1508 tp->snd_cwnd_stamp = tcp_time_stamp; 1509 } else { 1510 /* Network starves. */ 1511 if (tp->packets_out > tp->snd_cwnd_used) 1512 tp->snd_cwnd_used = tp->packets_out; 1513 1514 if (sysctl_tcp_slow_start_after_idle && 1515 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1516 tcp_cwnd_application_limited(sk); 1517 } 1518 } 1519 1520 /* Minshall's variant of the Nagle send check. */ 1521 static bool tcp_minshall_check(const struct tcp_sock *tp) 1522 { 1523 return after(tp->snd_sml, tp->snd_una) && 1524 !after(tp->snd_sml, tp->snd_nxt); 1525 } 1526 1527 /* Update snd_sml if this skb is under mss 1528 * Note that a TSO packet might end with a sub-mss segment 1529 * The test is really : 1530 * if ((skb->len % mss) != 0) 1531 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1532 * But we can avoid doing the divide again given we already have 1533 * skb_pcount = skb->len / mss_now 1534 */ 1535 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1536 const struct sk_buff *skb) 1537 { 1538 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1539 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1540 } 1541 1542 /* Return false, if packet can be sent now without violation Nagle's rules: 1543 * 1. It is full sized. (provided by caller in %partial bool) 1544 * 2. Or it contains FIN. (already checked by caller) 1545 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1546 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1547 * With Minshall's modification: all sent small packets are ACKed. 1548 */ 1549 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1550 int nonagle) 1551 { 1552 return partial && 1553 ((nonagle & TCP_NAGLE_CORK) || 1554 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1555 } 1556 1557 /* Return how many segs we'd like on a TSO packet, 1558 * to send one TSO packet per ms 1559 */ 1560 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1561 int min_tso_segs) 1562 { 1563 u32 bytes, segs; 1564 1565 bytes = min(sk->sk_pacing_rate >> 10, 1566 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1567 1568 /* Goal is to send at least one packet per ms, 1569 * not one big TSO packet every 100 ms. 1570 * This preserves ACK clocking and is consistent 1571 * with tcp_tso_should_defer() heuristic. 1572 */ 1573 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1574 1575 return min_t(u32, segs, sk->sk_gso_max_segs); 1576 } 1577 EXPORT_SYMBOL(tcp_tso_autosize); 1578 1579 /* Return the number of segments we want in the skb we are transmitting. 1580 * See if congestion control module wants to decide; otherwise, autosize. 1581 */ 1582 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1583 { 1584 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1585 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0; 1586 1587 return tso_segs ? : 1588 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs); 1589 } 1590 1591 /* Returns the portion of skb which can be sent right away */ 1592 static unsigned int tcp_mss_split_point(const struct sock *sk, 1593 const struct sk_buff *skb, 1594 unsigned int mss_now, 1595 unsigned int max_segs, 1596 int nonagle) 1597 { 1598 const struct tcp_sock *tp = tcp_sk(sk); 1599 u32 partial, needed, window, max_len; 1600 1601 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1602 max_len = mss_now * max_segs; 1603 1604 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1605 return max_len; 1606 1607 needed = min(skb->len, window); 1608 1609 if (max_len <= needed) 1610 return max_len; 1611 1612 partial = needed % mss_now; 1613 /* If last segment is not a full MSS, check if Nagle rules allow us 1614 * to include this last segment in this skb. 1615 * Otherwise, we'll split the skb at last MSS boundary 1616 */ 1617 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1618 return needed - partial; 1619 1620 return needed; 1621 } 1622 1623 /* Can at least one segment of SKB be sent right now, according to the 1624 * congestion window rules? If so, return how many segments are allowed. 1625 */ 1626 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1627 const struct sk_buff *skb) 1628 { 1629 u32 in_flight, cwnd, halfcwnd; 1630 1631 /* Don't be strict about the congestion window for the final FIN. */ 1632 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1633 tcp_skb_pcount(skb) == 1) 1634 return 1; 1635 1636 in_flight = tcp_packets_in_flight(tp); 1637 cwnd = tp->snd_cwnd; 1638 if (in_flight >= cwnd) 1639 return 0; 1640 1641 /* For better scheduling, ensure we have at least 1642 * 2 GSO packets in flight. 1643 */ 1644 halfcwnd = max(cwnd >> 1, 1U); 1645 return min(halfcwnd, cwnd - in_flight); 1646 } 1647 1648 /* Initialize TSO state of a skb. 1649 * This must be invoked the first time we consider transmitting 1650 * SKB onto the wire. 1651 */ 1652 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1653 { 1654 int tso_segs = tcp_skb_pcount(skb); 1655 1656 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1657 tcp_set_skb_tso_segs(skb, mss_now); 1658 tso_segs = tcp_skb_pcount(skb); 1659 } 1660 return tso_segs; 1661 } 1662 1663 1664 /* Return true if the Nagle test allows this packet to be 1665 * sent now. 1666 */ 1667 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1668 unsigned int cur_mss, int nonagle) 1669 { 1670 /* Nagle rule does not apply to frames, which sit in the middle of the 1671 * write_queue (they have no chances to get new data). 1672 * 1673 * This is implemented in the callers, where they modify the 'nonagle' 1674 * argument based upon the location of SKB in the send queue. 1675 */ 1676 if (nonagle & TCP_NAGLE_PUSH) 1677 return true; 1678 1679 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1680 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1681 return true; 1682 1683 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1684 return true; 1685 1686 return false; 1687 } 1688 1689 /* Does at least the first segment of SKB fit into the send window? */ 1690 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1691 const struct sk_buff *skb, 1692 unsigned int cur_mss) 1693 { 1694 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1695 1696 if (skb->len > cur_mss) 1697 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1698 1699 return !after(end_seq, tcp_wnd_end(tp)); 1700 } 1701 1702 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1703 * should be put on the wire right now. If so, it returns the number of 1704 * packets allowed by the congestion window. 1705 */ 1706 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1707 unsigned int cur_mss, int nonagle) 1708 { 1709 const struct tcp_sock *tp = tcp_sk(sk); 1710 unsigned int cwnd_quota; 1711 1712 tcp_init_tso_segs(skb, cur_mss); 1713 1714 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1715 return 0; 1716 1717 cwnd_quota = tcp_cwnd_test(tp, skb); 1718 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1719 cwnd_quota = 0; 1720 1721 return cwnd_quota; 1722 } 1723 1724 /* Test if sending is allowed right now. */ 1725 bool tcp_may_send_now(struct sock *sk) 1726 { 1727 const struct tcp_sock *tp = tcp_sk(sk); 1728 struct sk_buff *skb = tcp_send_head(sk); 1729 1730 return skb && 1731 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1732 (tcp_skb_is_last(sk, skb) ? 1733 tp->nonagle : TCP_NAGLE_PUSH)); 1734 } 1735 1736 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1737 * which is put after SKB on the list. It is very much like 1738 * tcp_fragment() except that it may make several kinds of assumptions 1739 * in order to speed up the splitting operation. In particular, we 1740 * know that all the data is in scatter-gather pages, and that the 1741 * packet has never been sent out before (and thus is not cloned). 1742 */ 1743 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1744 unsigned int mss_now, gfp_t gfp) 1745 { 1746 struct sk_buff *buff; 1747 int nlen = skb->len - len; 1748 u8 flags; 1749 1750 /* All of a TSO frame must be composed of paged data. */ 1751 if (skb->len != skb->data_len) 1752 return tcp_fragment(sk, skb, len, mss_now, gfp); 1753 1754 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1755 if (unlikely(!buff)) 1756 return -ENOMEM; 1757 1758 sk->sk_wmem_queued += buff->truesize; 1759 sk_mem_charge(sk, buff->truesize); 1760 buff->truesize += nlen; 1761 skb->truesize -= nlen; 1762 1763 /* Correct the sequence numbers. */ 1764 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1765 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1766 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1767 1768 /* PSH and FIN should only be set in the second packet. */ 1769 flags = TCP_SKB_CB(skb)->tcp_flags; 1770 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1771 TCP_SKB_CB(buff)->tcp_flags = flags; 1772 1773 /* This packet was never sent out yet, so no SACK bits. */ 1774 TCP_SKB_CB(buff)->sacked = 0; 1775 1776 tcp_skb_fragment_eor(skb, buff); 1777 1778 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1779 skb_split(skb, buff, len); 1780 tcp_fragment_tstamp(skb, buff); 1781 1782 /* Fix up tso_factor for both original and new SKB. */ 1783 tcp_set_skb_tso_segs(skb, mss_now); 1784 tcp_set_skb_tso_segs(buff, mss_now); 1785 1786 /* Link BUFF into the send queue. */ 1787 __skb_header_release(buff); 1788 tcp_insert_write_queue_after(skb, buff, sk); 1789 1790 return 0; 1791 } 1792 1793 /* Try to defer sending, if possible, in order to minimize the amount 1794 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1795 * 1796 * This algorithm is from John Heffner. 1797 */ 1798 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1799 bool *is_cwnd_limited, u32 max_segs) 1800 { 1801 const struct inet_connection_sock *icsk = inet_csk(sk); 1802 u32 age, send_win, cong_win, limit, in_flight; 1803 struct tcp_sock *tp = tcp_sk(sk); 1804 struct skb_mstamp now; 1805 struct sk_buff *head; 1806 int win_divisor; 1807 1808 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1809 goto send_now; 1810 1811 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1812 goto send_now; 1813 1814 /* Avoid bursty behavior by allowing defer 1815 * only if the last write was recent. 1816 */ 1817 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0) 1818 goto send_now; 1819 1820 in_flight = tcp_packets_in_flight(tp); 1821 1822 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1823 1824 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1825 1826 /* From in_flight test above, we know that cwnd > in_flight. */ 1827 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1828 1829 limit = min(send_win, cong_win); 1830 1831 /* If a full-sized TSO skb can be sent, do it. */ 1832 if (limit >= max_segs * tp->mss_cache) 1833 goto send_now; 1834 1835 /* Middle in queue won't get any more data, full sendable already? */ 1836 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1837 goto send_now; 1838 1839 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1840 if (win_divisor) { 1841 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1842 1843 /* If at least some fraction of a window is available, 1844 * just use it. 1845 */ 1846 chunk /= win_divisor; 1847 if (limit >= chunk) 1848 goto send_now; 1849 } else { 1850 /* Different approach, try not to defer past a single 1851 * ACK. Receiver should ACK every other full sized 1852 * frame, so if we have space for more than 3 frames 1853 * then send now. 1854 */ 1855 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1856 goto send_now; 1857 } 1858 1859 head = tcp_write_queue_head(sk); 1860 skb_mstamp_get(&now); 1861 age = skb_mstamp_us_delta(&now, &head->skb_mstamp); 1862 /* If next ACK is likely to come too late (half srtt), do not defer */ 1863 if (age < (tp->srtt_us >> 4)) 1864 goto send_now; 1865 1866 /* Ok, it looks like it is advisable to defer. */ 1867 1868 if (cong_win < send_win && cong_win <= skb->len) 1869 *is_cwnd_limited = true; 1870 1871 return true; 1872 1873 send_now: 1874 return false; 1875 } 1876 1877 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1878 { 1879 struct inet_connection_sock *icsk = inet_csk(sk); 1880 struct tcp_sock *tp = tcp_sk(sk); 1881 struct net *net = sock_net(sk); 1882 u32 interval; 1883 s32 delta; 1884 1885 interval = net->ipv4.sysctl_tcp_probe_interval; 1886 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp; 1887 if (unlikely(delta >= interval * HZ)) { 1888 int mss = tcp_current_mss(sk); 1889 1890 /* Update current search range */ 1891 icsk->icsk_mtup.probe_size = 0; 1892 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1893 sizeof(struct tcphdr) + 1894 icsk->icsk_af_ops->net_header_len; 1895 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1896 1897 /* Update probe time stamp */ 1898 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1899 } 1900 } 1901 1902 /* Create a new MTU probe if we are ready. 1903 * MTU probe is regularly attempting to increase the path MTU by 1904 * deliberately sending larger packets. This discovers routing 1905 * changes resulting in larger path MTUs. 1906 * 1907 * Returns 0 if we should wait to probe (no cwnd available), 1908 * 1 if a probe was sent, 1909 * -1 otherwise 1910 */ 1911 static int tcp_mtu_probe(struct sock *sk) 1912 { 1913 struct tcp_sock *tp = tcp_sk(sk); 1914 struct inet_connection_sock *icsk = inet_csk(sk); 1915 struct sk_buff *skb, *nskb, *next; 1916 struct net *net = sock_net(sk); 1917 int len; 1918 int probe_size; 1919 int size_needed; 1920 int copy; 1921 int mss_now; 1922 int interval; 1923 1924 /* Not currently probing/verifying, 1925 * not in recovery, 1926 * have enough cwnd, and 1927 * not SACKing (the variable headers throw things off) */ 1928 if (!icsk->icsk_mtup.enabled || 1929 icsk->icsk_mtup.probe_size || 1930 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1931 tp->snd_cwnd < 11 || 1932 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1933 return -1; 1934 1935 /* Use binary search for probe_size between tcp_mss_base, 1936 * and current mss_clamp. if (search_high - search_low) 1937 * smaller than a threshold, backoff from probing. 1938 */ 1939 mss_now = tcp_current_mss(sk); 1940 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 1941 icsk->icsk_mtup.search_low) >> 1); 1942 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1943 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 1944 /* When misfortune happens, we are reprobing actively, 1945 * and then reprobe timer has expired. We stick with current 1946 * probing process by not resetting search range to its orignal. 1947 */ 1948 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 1949 interval < net->ipv4.sysctl_tcp_probe_threshold) { 1950 /* Check whether enough time has elaplased for 1951 * another round of probing. 1952 */ 1953 tcp_mtu_check_reprobe(sk); 1954 return -1; 1955 } 1956 1957 /* Have enough data in the send queue to probe? */ 1958 if (tp->write_seq - tp->snd_nxt < size_needed) 1959 return -1; 1960 1961 if (tp->snd_wnd < size_needed) 1962 return -1; 1963 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1964 return 0; 1965 1966 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1967 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1968 if (!tcp_packets_in_flight(tp)) 1969 return -1; 1970 else 1971 return 0; 1972 } 1973 1974 /* We're allowed to probe. Build it now. */ 1975 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 1976 if (!nskb) 1977 return -1; 1978 sk->sk_wmem_queued += nskb->truesize; 1979 sk_mem_charge(sk, nskb->truesize); 1980 1981 skb = tcp_send_head(sk); 1982 1983 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1984 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1985 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1986 TCP_SKB_CB(nskb)->sacked = 0; 1987 nskb->csum = 0; 1988 nskb->ip_summed = skb->ip_summed; 1989 1990 tcp_insert_write_queue_before(nskb, skb, sk); 1991 1992 len = 0; 1993 tcp_for_write_queue_from_safe(skb, next, sk) { 1994 copy = min_t(int, skb->len, probe_size - len); 1995 if (nskb->ip_summed) { 1996 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1997 } else { 1998 __wsum csum = skb_copy_and_csum_bits(skb, 0, 1999 skb_put(nskb, copy), 2000 copy, 0); 2001 nskb->csum = csum_block_add(nskb->csum, csum, len); 2002 } 2003 2004 if (skb->len <= copy) { 2005 /* We've eaten all the data from this skb. 2006 * Throw it away. */ 2007 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2008 tcp_unlink_write_queue(skb, sk); 2009 sk_wmem_free_skb(sk, skb); 2010 } else { 2011 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2012 ~(TCPHDR_FIN|TCPHDR_PSH); 2013 if (!skb_shinfo(skb)->nr_frags) { 2014 skb_pull(skb, copy); 2015 if (skb->ip_summed != CHECKSUM_PARTIAL) 2016 skb->csum = csum_partial(skb->data, 2017 skb->len, 0); 2018 } else { 2019 __pskb_trim_head(skb, copy); 2020 tcp_set_skb_tso_segs(skb, mss_now); 2021 } 2022 TCP_SKB_CB(skb)->seq += copy; 2023 } 2024 2025 len += copy; 2026 2027 if (len >= probe_size) 2028 break; 2029 } 2030 tcp_init_tso_segs(nskb, nskb->len); 2031 2032 /* We're ready to send. If this fails, the probe will 2033 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2034 */ 2035 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2036 /* Decrement cwnd here because we are sending 2037 * effectively two packets. */ 2038 tp->snd_cwnd--; 2039 tcp_event_new_data_sent(sk, nskb); 2040 2041 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2042 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2043 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2044 2045 return 1; 2046 } 2047 2048 return -1; 2049 } 2050 2051 /* TCP Small Queues : 2052 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2053 * (These limits are doubled for retransmits) 2054 * This allows for : 2055 * - better RTT estimation and ACK scheduling 2056 * - faster recovery 2057 * - high rates 2058 * Alas, some drivers / subsystems require a fair amount 2059 * of queued bytes to ensure line rate. 2060 * One example is wifi aggregation (802.11 AMPDU) 2061 */ 2062 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2063 unsigned int factor) 2064 { 2065 unsigned int limit; 2066 2067 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2068 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2069 limit <<= factor; 2070 2071 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2072 set_bit(TSQ_THROTTLED, &tcp_sk(sk)->tsq_flags); 2073 /* It is possible TX completion already happened 2074 * before we set TSQ_THROTTLED, so we must 2075 * test again the condition. 2076 */ 2077 smp_mb__after_atomic(); 2078 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2079 return true; 2080 } 2081 return false; 2082 } 2083 2084 /* This routine writes packets to the network. It advances the 2085 * send_head. This happens as incoming acks open up the remote 2086 * window for us. 2087 * 2088 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2089 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2090 * account rare use of URG, this is not a big flaw. 2091 * 2092 * Send at most one packet when push_one > 0. Temporarily ignore 2093 * cwnd limit to force at most one packet out when push_one == 2. 2094 2095 * Returns true, if no segments are in flight and we have queued segments, 2096 * but cannot send anything now because of SWS or another problem. 2097 */ 2098 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2099 int push_one, gfp_t gfp) 2100 { 2101 struct tcp_sock *tp = tcp_sk(sk); 2102 struct sk_buff *skb; 2103 unsigned int tso_segs, sent_pkts; 2104 int cwnd_quota; 2105 int result; 2106 bool is_cwnd_limited = false; 2107 u32 max_segs; 2108 2109 sent_pkts = 0; 2110 2111 if (!push_one) { 2112 /* Do MTU probing. */ 2113 result = tcp_mtu_probe(sk); 2114 if (!result) { 2115 return false; 2116 } else if (result > 0) { 2117 sent_pkts = 1; 2118 } 2119 } 2120 2121 max_segs = tcp_tso_segs(sk, mss_now); 2122 while ((skb = tcp_send_head(sk))) { 2123 unsigned int limit; 2124 2125 tso_segs = tcp_init_tso_segs(skb, mss_now); 2126 BUG_ON(!tso_segs); 2127 2128 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2129 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2130 skb_mstamp_get(&skb->skb_mstamp); 2131 goto repair; /* Skip network transmission */ 2132 } 2133 2134 cwnd_quota = tcp_cwnd_test(tp, skb); 2135 if (!cwnd_quota) { 2136 if (push_one == 2) 2137 /* Force out a loss probe pkt. */ 2138 cwnd_quota = 1; 2139 else 2140 break; 2141 } 2142 2143 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 2144 break; 2145 2146 if (tso_segs == 1) { 2147 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2148 (tcp_skb_is_last(sk, skb) ? 2149 nonagle : TCP_NAGLE_PUSH)))) 2150 break; 2151 } else { 2152 if (!push_one && 2153 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2154 max_segs)) 2155 break; 2156 } 2157 2158 limit = mss_now; 2159 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2160 limit = tcp_mss_split_point(sk, skb, mss_now, 2161 min_t(unsigned int, 2162 cwnd_quota, 2163 max_segs), 2164 nonagle); 2165 2166 if (skb->len > limit && 2167 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2168 break; 2169 2170 if (tcp_small_queue_check(sk, skb, 0)) 2171 break; 2172 2173 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2174 break; 2175 2176 repair: 2177 /* Advance the send_head. This one is sent out. 2178 * This call will increment packets_out. 2179 */ 2180 tcp_event_new_data_sent(sk, skb); 2181 2182 tcp_minshall_update(tp, mss_now, skb); 2183 sent_pkts += tcp_skb_pcount(skb); 2184 2185 if (push_one) 2186 break; 2187 } 2188 2189 if (likely(sent_pkts)) { 2190 if (tcp_in_cwnd_reduction(sk)) 2191 tp->prr_out += sent_pkts; 2192 2193 /* Send one loss probe per tail loss episode. */ 2194 if (push_one != 2) 2195 tcp_schedule_loss_probe(sk); 2196 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2197 tcp_cwnd_validate(sk, is_cwnd_limited); 2198 return false; 2199 } 2200 return !tp->packets_out && tcp_send_head(sk); 2201 } 2202 2203 bool tcp_schedule_loss_probe(struct sock *sk) 2204 { 2205 struct inet_connection_sock *icsk = inet_csk(sk); 2206 struct tcp_sock *tp = tcp_sk(sk); 2207 u32 timeout, tlp_time_stamp, rto_time_stamp; 2208 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2209 2210 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 2211 return false; 2212 /* No consecutive loss probes. */ 2213 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2214 tcp_rearm_rto(sk); 2215 return false; 2216 } 2217 /* Don't do any loss probe on a Fast Open connection before 3WHS 2218 * finishes. 2219 */ 2220 if (tp->fastopen_rsk) 2221 return false; 2222 2223 /* TLP is only scheduled when next timer event is RTO. */ 2224 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2225 return false; 2226 2227 /* Schedule a loss probe in 2*RTT for SACK capable connections 2228 * in Open state, that are either limited by cwnd or application. 2229 */ 2230 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out || 2231 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2232 return false; 2233 2234 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2235 tcp_send_head(sk)) 2236 return false; 2237 2238 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2239 * for delayed ack when there's one outstanding packet. If no RTT 2240 * sample is available then probe after TCP_TIMEOUT_INIT. 2241 */ 2242 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT; 2243 if (tp->packets_out == 1) 2244 timeout = max_t(u32, timeout, 2245 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2246 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2247 2248 /* If RTO is shorter, just schedule TLP in its place. */ 2249 tlp_time_stamp = tcp_time_stamp + timeout; 2250 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2251 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2252 s32 delta = rto_time_stamp - tcp_time_stamp; 2253 if (delta > 0) 2254 timeout = delta; 2255 } 2256 2257 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2258 TCP_RTO_MAX); 2259 return true; 2260 } 2261 2262 /* Thanks to skb fast clones, we can detect if a prior transmit of 2263 * a packet is still in a qdisc or driver queue. 2264 * In this case, there is very little point doing a retransmit ! 2265 */ 2266 static bool skb_still_in_host_queue(const struct sock *sk, 2267 const struct sk_buff *skb) 2268 { 2269 if (unlikely(skb_fclone_busy(sk, skb))) { 2270 NET_INC_STATS(sock_net(sk), 2271 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2272 return true; 2273 } 2274 return false; 2275 } 2276 2277 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2278 * retransmit the last segment. 2279 */ 2280 void tcp_send_loss_probe(struct sock *sk) 2281 { 2282 struct tcp_sock *tp = tcp_sk(sk); 2283 struct sk_buff *skb; 2284 int pcount; 2285 int mss = tcp_current_mss(sk); 2286 2287 skb = tcp_send_head(sk); 2288 if (skb) { 2289 if (tcp_snd_wnd_test(tp, skb, mss)) { 2290 pcount = tp->packets_out; 2291 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2292 if (tp->packets_out > pcount) 2293 goto probe_sent; 2294 goto rearm_timer; 2295 } 2296 skb = tcp_write_queue_prev(sk, skb); 2297 } else { 2298 skb = tcp_write_queue_tail(sk); 2299 } 2300 2301 /* At most one outstanding TLP retransmission. */ 2302 if (tp->tlp_high_seq) 2303 goto rearm_timer; 2304 2305 /* Retransmit last segment. */ 2306 if (WARN_ON(!skb)) 2307 goto rearm_timer; 2308 2309 if (skb_still_in_host_queue(sk, skb)) 2310 goto rearm_timer; 2311 2312 pcount = tcp_skb_pcount(skb); 2313 if (WARN_ON(!pcount)) 2314 goto rearm_timer; 2315 2316 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2317 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2318 GFP_ATOMIC))) 2319 goto rearm_timer; 2320 skb = tcp_write_queue_next(sk, skb); 2321 } 2322 2323 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2324 goto rearm_timer; 2325 2326 if (__tcp_retransmit_skb(sk, skb, 1)) 2327 goto rearm_timer; 2328 2329 /* Record snd_nxt for loss detection. */ 2330 tp->tlp_high_seq = tp->snd_nxt; 2331 2332 probe_sent: 2333 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2334 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2335 inet_csk(sk)->icsk_pending = 0; 2336 rearm_timer: 2337 tcp_rearm_rto(sk); 2338 } 2339 2340 /* Push out any pending frames which were held back due to 2341 * TCP_CORK or attempt at coalescing tiny packets. 2342 * The socket must be locked by the caller. 2343 */ 2344 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2345 int nonagle) 2346 { 2347 /* If we are closed, the bytes will have to remain here. 2348 * In time closedown will finish, we empty the write queue and 2349 * all will be happy. 2350 */ 2351 if (unlikely(sk->sk_state == TCP_CLOSE)) 2352 return; 2353 2354 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2355 sk_gfp_mask(sk, GFP_ATOMIC))) 2356 tcp_check_probe_timer(sk); 2357 } 2358 2359 /* Send _single_ skb sitting at the send head. This function requires 2360 * true push pending frames to setup probe timer etc. 2361 */ 2362 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2363 { 2364 struct sk_buff *skb = tcp_send_head(sk); 2365 2366 BUG_ON(!skb || skb->len < mss_now); 2367 2368 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2369 } 2370 2371 /* This function returns the amount that we can raise the 2372 * usable window based on the following constraints 2373 * 2374 * 1. The window can never be shrunk once it is offered (RFC 793) 2375 * 2. We limit memory per socket 2376 * 2377 * RFC 1122: 2378 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2379 * RECV.NEXT + RCV.WIN fixed until: 2380 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2381 * 2382 * i.e. don't raise the right edge of the window until you can raise 2383 * it at least MSS bytes. 2384 * 2385 * Unfortunately, the recommended algorithm breaks header prediction, 2386 * since header prediction assumes th->window stays fixed. 2387 * 2388 * Strictly speaking, keeping th->window fixed violates the receiver 2389 * side SWS prevention criteria. The problem is that under this rule 2390 * a stream of single byte packets will cause the right side of the 2391 * window to always advance by a single byte. 2392 * 2393 * Of course, if the sender implements sender side SWS prevention 2394 * then this will not be a problem. 2395 * 2396 * BSD seems to make the following compromise: 2397 * 2398 * If the free space is less than the 1/4 of the maximum 2399 * space available and the free space is less than 1/2 mss, 2400 * then set the window to 0. 2401 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2402 * Otherwise, just prevent the window from shrinking 2403 * and from being larger than the largest representable value. 2404 * 2405 * This prevents incremental opening of the window in the regime 2406 * where TCP is limited by the speed of the reader side taking 2407 * data out of the TCP receive queue. It does nothing about 2408 * those cases where the window is constrained on the sender side 2409 * because the pipeline is full. 2410 * 2411 * BSD also seems to "accidentally" limit itself to windows that are a 2412 * multiple of MSS, at least until the free space gets quite small. 2413 * This would appear to be a side effect of the mbuf implementation. 2414 * Combining these two algorithms results in the observed behavior 2415 * of having a fixed window size at almost all times. 2416 * 2417 * Below we obtain similar behavior by forcing the offered window to 2418 * a multiple of the mss when it is feasible to do so. 2419 * 2420 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2421 * Regular options like TIMESTAMP are taken into account. 2422 */ 2423 u32 __tcp_select_window(struct sock *sk) 2424 { 2425 struct inet_connection_sock *icsk = inet_csk(sk); 2426 struct tcp_sock *tp = tcp_sk(sk); 2427 /* MSS for the peer's data. Previous versions used mss_clamp 2428 * here. I don't know if the value based on our guesses 2429 * of peer's MSS is better for the performance. It's more correct 2430 * but may be worse for the performance because of rcv_mss 2431 * fluctuations. --SAW 1998/11/1 2432 */ 2433 int mss = icsk->icsk_ack.rcv_mss; 2434 int free_space = tcp_space(sk); 2435 int allowed_space = tcp_full_space(sk); 2436 int full_space = min_t(int, tp->window_clamp, allowed_space); 2437 int window; 2438 2439 if (mss > full_space) 2440 mss = full_space; 2441 2442 if (free_space < (full_space >> 1)) { 2443 icsk->icsk_ack.quick = 0; 2444 2445 if (tcp_under_memory_pressure(sk)) 2446 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2447 4U * tp->advmss); 2448 2449 /* free_space might become our new window, make sure we don't 2450 * increase it due to wscale. 2451 */ 2452 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2453 2454 /* if free space is less than mss estimate, or is below 1/16th 2455 * of the maximum allowed, try to move to zero-window, else 2456 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2457 * new incoming data is dropped due to memory limits. 2458 * With large window, mss test triggers way too late in order 2459 * to announce zero window in time before rmem limit kicks in. 2460 */ 2461 if (free_space < (allowed_space >> 4) || free_space < mss) 2462 return 0; 2463 } 2464 2465 if (free_space > tp->rcv_ssthresh) 2466 free_space = tp->rcv_ssthresh; 2467 2468 /* Don't do rounding if we are using window scaling, since the 2469 * scaled window will not line up with the MSS boundary anyway. 2470 */ 2471 window = tp->rcv_wnd; 2472 if (tp->rx_opt.rcv_wscale) { 2473 window = free_space; 2474 2475 /* Advertise enough space so that it won't get scaled away. 2476 * Import case: prevent zero window announcement if 2477 * 1<<rcv_wscale > mss. 2478 */ 2479 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2480 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2481 << tp->rx_opt.rcv_wscale); 2482 } else { 2483 /* Get the largest window that is a nice multiple of mss. 2484 * Window clamp already applied above. 2485 * If our current window offering is within 1 mss of the 2486 * free space we just keep it. This prevents the divide 2487 * and multiply from happening most of the time. 2488 * We also don't do any window rounding when the free space 2489 * is too small. 2490 */ 2491 if (window <= free_space - mss || window > free_space) 2492 window = (free_space / mss) * mss; 2493 else if (mss == full_space && 2494 free_space > window + (full_space >> 1)) 2495 window = free_space; 2496 } 2497 2498 return window; 2499 } 2500 2501 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2502 const struct sk_buff *next_skb) 2503 { 2504 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2505 const struct skb_shared_info *next_shinfo = 2506 skb_shinfo(next_skb); 2507 struct skb_shared_info *shinfo = skb_shinfo(skb); 2508 2509 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2510 shinfo->tskey = next_shinfo->tskey; 2511 TCP_SKB_CB(skb)->txstamp_ack |= 2512 TCP_SKB_CB(next_skb)->txstamp_ack; 2513 } 2514 } 2515 2516 /* Collapses two adjacent SKB's during retransmission. */ 2517 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2518 { 2519 struct tcp_sock *tp = tcp_sk(sk); 2520 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2521 int skb_size, next_skb_size; 2522 2523 skb_size = skb->len; 2524 next_skb_size = next_skb->len; 2525 2526 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2527 2528 tcp_highest_sack_combine(sk, next_skb, skb); 2529 2530 tcp_unlink_write_queue(next_skb, sk); 2531 2532 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2533 next_skb_size); 2534 2535 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2536 skb->ip_summed = CHECKSUM_PARTIAL; 2537 2538 if (skb->ip_summed != CHECKSUM_PARTIAL) 2539 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2540 2541 /* Update sequence range on original skb. */ 2542 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2543 2544 /* Merge over control information. This moves PSH/FIN etc. over */ 2545 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2546 2547 /* All done, get rid of second SKB and account for it so 2548 * packet counting does not break. 2549 */ 2550 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2551 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2552 2553 /* changed transmit queue under us so clear hints */ 2554 tcp_clear_retrans_hints_partial(tp); 2555 if (next_skb == tp->retransmit_skb_hint) 2556 tp->retransmit_skb_hint = skb; 2557 2558 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2559 2560 tcp_skb_collapse_tstamp(skb, next_skb); 2561 2562 sk_wmem_free_skb(sk, next_skb); 2563 } 2564 2565 /* Check if coalescing SKBs is legal. */ 2566 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2567 { 2568 if (tcp_skb_pcount(skb) > 1) 2569 return false; 2570 /* TODO: SACK collapsing could be used to remove this condition */ 2571 if (skb_shinfo(skb)->nr_frags != 0) 2572 return false; 2573 if (skb_cloned(skb)) 2574 return false; 2575 if (skb == tcp_send_head(sk)) 2576 return false; 2577 /* Some heurestics for collapsing over SACK'd could be invented */ 2578 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2579 return false; 2580 2581 return true; 2582 } 2583 2584 /* Collapse packets in the retransmit queue to make to create 2585 * less packets on the wire. This is only done on retransmission. 2586 */ 2587 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2588 int space) 2589 { 2590 struct tcp_sock *tp = tcp_sk(sk); 2591 struct sk_buff *skb = to, *tmp; 2592 bool first = true; 2593 2594 if (!sysctl_tcp_retrans_collapse) 2595 return; 2596 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2597 return; 2598 2599 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2600 if (!tcp_can_collapse(sk, skb)) 2601 break; 2602 2603 if (!tcp_skb_can_collapse_to(to)) 2604 break; 2605 2606 space -= skb->len; 2607 2608 if (first) { 2609 first = false; 2610 continue; 2611 } 2612 2613 if (space < 0) 2614 break; 2615 /* Punt if not enough space exists in the first SKB for 2616 * the data in the second 2617 */ 2618 if (skb->len > skb_availroom(to)) 2619 break; 2620 2621 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2622 break; 2623 2624 tcp_collapse_retrans(sk, to); 2625 } 2626 } 2627 2628 /* This retransmits one SKB. Policy decisions and retransmit queue 2629 * state updates are done by the caller. Returns non-zero if an 2630 * error occurred which prevented the send. 2631 */ 2632 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2633 { 2634 struct inet_connection_sock *icsk = inet_csk(sk); 2635 struct tcp_sock *tp = tcp_sk(sk); 2636 unsigned int cur_mss; 2637 int diff, len, err; 2638 2639 2640 /* Inconclusive MTU probe */ 2641 if (icsk->icsk_mtup.probe_size) 2642 icsk->icsk_mtup.probe_size = 0; 2643 2644 /* Do not sent more than we queued. 1/4 is reserved for possible 2645 * copying overhead: fragmentation, tunneling, mangling etc. 2646 */ 2647 if (atomic_read(&sk->sk_wmem_alloc) > 2648 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2649 sk->sk_sndbuf)) 2650 return -EAGAIN; 2651 2652 if (skb_still_in_host_queue(sk, skb)) 2653 return -EBUSY; 2654 2655 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2656 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2657 BUG(); 2658 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2659 return -ENOMEM; 2660 } 2661 2662 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2663 return -EHOSTUNREACH; /* Routing failure or similar. */ 2664 2665 cur_mss = tcp_current_mss(sk); 2666 2667 /* If receiver has shrunk his window, and skb is out of 2668 * new window, do not retransmit it. The exception is the 2669 * case, when window is shrunk to zero. In this case 2670 * our retransmit serves as a zero window probe. 2671 */ 2672 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2673 TCP_SKB_CB(skb)->seq != tp->snd_una) 2674 return -EAGAIN; 2675 2676 len = cur_mss * segs; 2677 if (skb->len > len) { 2678 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC)) 2679 return -ENOMEM; /* We'll try again later. */ 2680 } else { 2681 if (skb_unclone(skb, GFP_ATOMIC)) 2682 return -ENOMEM; 2683 2684 diff = tcp_skb_pcount(skb); 2685 tcp_set_skb_tso_segs(skb, cur_mss); 2686 diff -= tcp_skb_pcount(skb); 2687 if (diff) 2688 tcp_adjust_pcount(sk, skb, diff); 2689 if (skb->len < cur_mss) 2690 tcp_retrans_try_collapse(sk, skb, cur_mss); 2691 } 2692 2693 /* RFC3168, section 6.1.1.1. ECN fallback */ 2694 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2695 tcp_ecn_clear_syn(sk, skb); 2696 2697 /* make sure skb->data is aligned on arches that require it 2698 * and check if ack-trimming & collapsing extended the headroom 2699 * beyond what csum_start can cover. 2700 */ 2701 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2702 skb_headroom(skb) >= 0xFFFF)) { 2703 struct sk_buff *nskb; 2704 2705 skb_mstamp_get(&skb->skb_mstamp); 2706 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2707 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2708 -ENOBUFS; 2709 } else { 2710 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2711 } 2712 2713 if (likely(!err)) { 2714 segs = tcp_skb_pcount(skb); 2715 2716 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2717 /* Update global TCP statistics. */ 2718 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2719 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2720 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2721 tp->total_retrans += segs; 2722 } 2723 return err; 2724 } 2725 2726 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2727 { 2728 struct tcp_sock *tp = tcp_sk(sk); 2729 int err = __tcp_retransmit_skb(sk, skb, segs); 2730 2731 if (err == 0) { 2732 #if FASTRETRANS_DEBUG > 0 2733 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2734 net_dbg_ratelimited("retrans_out leaked\n"); 2735 } 2736 #endif 2737 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2738 tp->retrans_out += tcp_skb_pcount(skb); 2739 2740 /* Save stamp of the first retransmit. */ 2741 if (!tp->retrans_stamp) 2742 tp->retrans_stamp = tcp_skb_timestamp(skb); 2743 2744 } else if (err != -EBUSY) { 2745 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2746 } 2747 2748 if (tp->undo_retrans < 0) 2749 tp->undo_retrans = 0; 2750 tp->undo_retrans += tcp_skb_pcount(skb); 2751 return err; 2752 } 2753 2754 /* Check if we forward retransmits are possible in the current 2755 * window/congestion state. 2756 */ 2757 static bool tcp_can_forward_retransmit(struct sock *sk) 2758 { 2759 const struct inet_connection_sock *icsk = inet_csk(sk); 2760 const struct tcp_sock *tp = tcp_sk(sk); 2761 2762 /* Forward retransmissions are possible only during Recovery. */ 2763 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2764 return false; 2765 2766 /* No forward retransmissions in Reno are possible. */ 2767 if (tcp_is_reno(tp)) 2768 return false; 2769 2770 /* Yeah, we have to make difficult choice between forward transmission 2771 * and retransmission... Both ways have their merits... 2772 * 2773 * For now we do not retransmit anything, while we have some new 2774 * segments to send. In the other cases, follow rule 3 for 2775 * NextSeg() specified in RFC3517. 2776 */ 2777 2778 if (tcp_may_send_now(sk)) 2779 return false; 2780 2781 return true; 2782 } 2783 2784 /* This gets called after a retransmit timeout, and the initially 2785 * retransmitted data is acknowledged. It tries to continue 2786 * resending the rest of the retransmit queue, until either 2787 * we've sent it all or the congestion window limit is reached. 2788 * If doing SACK, the first ACK which comes back for a timeout 2789 * based retransmit packet might feed us FACK information again. 2790 * If so, we use it to avoid unnecessarily retransmissions. 2791 */ 2792 void tcp_xmit_retransmit_queue(struct sock *sk) 2793 { 2794 const struct inet_connection_sock *icsk = inet_csk(sk); 2795 struct tcp_sock *tp = tcp_sk(sk); 2796 struct sk_buff *skb; 2797 struct sk_buff *hole = NULL; 2798 u32 max_segs, last_lost; 2799 int mib_idx; 2800 int fwd_rexmitting = 0; 2801 2802 if (!tp->packets_out) 2803 return; 2804 2805 if (!tp->lost_out) 2806 tp->retransmit_high = tp->snd_una; 2807 2808 if (tp->retransmit_skb_hint) { 2809 skb = tp->retransmit_skb_hint; 2810 last_lost = TCP_SKB_CB(skb)->end_seq; 2811 if (after(last_lost, tp->retransmit_high)) 2812 last_lost = tp->retransmit_high; 2813 } else { 2814 skb = tcp_write_queue_head(sk); 2815 last_lost = tp->snd_una; 2816 } 2817 2818 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2819 tcp_for_write_queue_from(skb, sk) { 2820 __u8 sacked; 2821 int segs; 2822 2823 if (skb == tcp_send_head(sk)) 2824 break; 2825 /* we could do better than to assign each time */ 2826 if (!hole) 2827 tp->retransmit_skb_hint = skb; 2828 2829 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2830 if (segs <= 0) 2831 return; 2832 sacked = TCP_SKB_CB(skb)->sacked; 2833 /* In case tcp_shift_skb_data() have aggregated large skbs, 2834 * we need to make sure not sending too bigs TSO packets 2835 */ 2836 segs = min_t(int, segs, max_segs); 2837 2838 if (fwd_rexmitting) { 2839 begin_fwd: 2840 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2841 break; 2842 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2843 2844 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2845 tp->retransmit_high = last_lost; 2846 if (!tcp_can_forward_retransmit(sk)) 2847 break; 2848 /* Backtrack if necessary to non-L'ed skb */ 2849 if (hole) { 2850 skb = hole; 2851 hole = NULL; 2852 } 2853 fwd_rexmitting = 1; 2854 goto begin_fwd; 2855 2856 } else if (!(sacked & TCPCB_LOST)) { 2857 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2858 hole = skb; 2859 continue; 2860 2861 } else { 2862 last_lost = TCP_SKB_CB(skb)->end_seq; 2863 if (icsk->icsk_ca_state != TCP_CA_Loss) 2864 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2865 else 2866 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2867 } 2868 2869 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2870 continue; 2871 2872 if (tcp_small_queue_check(sk, skb, 1)) 2873 return; 2874 2875 if (tcp_retransmit_skb(sk, skb, segs)) 2876 return; 2877 2878 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 2879 2880 if (tcp_in_cwnd_reduction(sk)) 2881 tp->prr_out += tcp_skb_pcount(skb); 2882 2883 if (skb == tcp_write_queue_head(sk)) 2884 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2885 inet_csk(sk)->icsk_rto, 2886 TCP_RTO_MAX); 2887 } 2888 } 2889 2890 /* We allow to exceed memory limits for FIN packets to expedite 2891 * connection tear down and (memory) recovery. 2892 * Otherwise tcp_send_fin() could be tempted to either delay FIN 2893 * or even be forced to close flow without any FIN. 2894 * In general, we want to allow one skb per socket to avoid hangs 2895 * with edge trigger epoll() 2896 */ 2897 void sk_forced_mem_schedule(struct sock *sk, int size) 2898 { 2899 int amt; 2900 2901 if (size <= sk->sk_forward_alloc) 2902 return; 2903 amt = sk_mem_pages(size); 2904 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2905 sk_memory_allocated_add(sk, amt); 2906 2907 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2908 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 2909 } 2910 2911 /* Send a FIN. The caller locks the socket for us. 2912 * We should try to send a FIN packet really hard, but eventually give up. 2913 */ 2914 void tcp_send_fin(struct sock *sk) 2915 { 2916 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 2917 struct tcp_sock *tp = tcp_sk(sk); 2918 2919 /* Optimization, tack on the FIN if we have one skb in write queue and 2920 * this skb was not yet sent, or we are under memory pressure. 2921 * Note: in the latter case, FIN packet will be sent after a timeout, 2922 * as TCP stack thinks it has already been transmitted. 2923 */ 2924 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) { 2925 coalesce: 2926 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 2927 TCP_SKB_CB(tskb)->end_seq++; 2928 tp->write_seq++; 2929 if (!tcp_send_head(sk)) { 2930 /* This means tskb was already sent. 2931 * Pretend we included the FIN on previous transmit. 2932 * We need to set tp->snd_nxt to the value it would have 2933 * if FIN had been sent. This is because retransmit path 2934 * does not change tp->snd_nxt. 2935 */ 2936 tp->snd_nxt++; 2937 return; 2938 } 2939 } else { 2940 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 2941 if (unlikely(!skb)) { 2942 if (tskb) 2943 goto coalesce; 2944 return; 2945 } 2946 skb_reserve(skb, MAX_TCP_HEADER); 2947 sk_forced_mem_schedule(sk, skb->truesize); 2948 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2949 tcp_init_nondata_skb(skb, tp->write_seq, 2950 TCPHDR_ACK | TCPHDR_FIN); 2951 tcp_queue_skb(sk, skb); 2952 } 2953 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 2954 } 2955 2956 /* We get here when a process closes a file descriptor (either due to 2957 * an explicit close() or as a byproduct of exit()'ing) and there 2958 * was unread data in the receive queue. This behavior is recommended 2959 * by RFC 2525, section 2.17. -DaveM 2960 */ 2961 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2962 { 2963 struct sk_buff *skb; 2964 2965 /* NOTE: No TCP options attached and we never retransmit this. */ 2966 skb = alloc_skb(MAX_TCP_HEADER, priority); 2967 if (!skb) { 2968 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2969 return; 2970 } 2971 2972 /* Reserve space for headers and prepare control bits. */ 2973 skb_reserve(skb, MAX_TCP_HEADER); 2974 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2975 TCPHDR_ACK | TCPHDR_RST); 2976 skb_mstamp_get(&skb->skb_mstamp); 2977 /* Send it off. */ 2978 if (tcp_transmit_skb(sk, skb, 0, priority)) 2979 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2980 2981 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2982 } 2983 2984 /* Send a crossed SYN-ACK during socket establishment. 2985 * WARNING: This routine must only be called when we have already sent 2986 * a SYN packet that crossed the incoming SYN that caused this routine 2987 * to get called. If this assumption fails then the initial rcv_wnd 2988 * and rcv_wscale values will not be correct. 2989 */ 2990 int tcp_send_synack(struct sock *sk) 2991 { 2992 struct sk_buff *skb; 2993 2994 skb = tcp_write_queue_head(sk); 2995 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2996 pr_debug("%s: wrong queue state\n", __func__); 2997 return -EFAULT; 2998 } 2999 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3000 if (skb_cloned(skb)) { 3001 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 3002 if (!nskb) 3003 return -ENOMEM; 3004 tcp_unlink_write_queue(skb, sk); 3005 __skb_header_release(nskb); 3006 __tcp_add_write_queue_head(sk, nskb); 3007 sk_wmem_free_skb(sk, skb); 3008 sk->sk_wmem_queued += nskb->truesize; 3009 sk_mem_charge(sk, nskb->truesize); 3010 skb = nskb; 3011 } 3012 3013 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3014 tcp_ecn_send_synack(sk, skb); 3015 } 3016 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3017 } 3018 3019 /** 3020 * tcp_make_synack - Prepare a SYN-ACK. 3021 * sk: listener socket 3022 * dst: dst entry attached to the SYNACK 3023 * req: request_sock pointer 3024 * 3025 * Allocate one skb and build a SYNACK packet. 3026 * @dst is consumed : Caller should not use it again. 3027 */ 3028 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3029 struct request_sock *req, 3030 struct tcp_fastopen_cookie *foc, 3031 enum tcp_synack_type synack_type) 3032 { 3033 struct inet_request_sock *ireq = inet_rsk(req); 3034 const struct tcp_sock *tp = tcp_sk(sk); 3035 struct tcp_md5sig_key *md5 = NULL; 3036 struct tcp_out_options opts; 3037 struct sk_buff *skb; 3038 int tcp_header_size; 3039 struct tcphdr *th; 3040 u16 user_mss; 3041 int mss; 3042 3043 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3044 if (unlikely(!skb)) { 3045 dst_release(dst); 3046 return NULL; 3047 } 3048 /* Reserve space for headers. */ 3049 skb_reserve(skb, MAX_TCP_HEADER); 3050 3051 switch (synack_type) { 3052 case TCP_SYNACK_NORMAL: 3053 skb_set_owner_w(skb, req_to_sk(req)); 3054 break; 3055 case TCP_SYNACK_COOKIE: 3056 /* Under synflood, we do not attach skb to a socket, 3057 * to avoid false sharing. 3058 */ 3059 break; 3060 case TCP_SYNACK_FASTOPEN: 3061 /* sk is a const pointer, because we want to express multiple 3062 * cpu might call us concurrently. 3063 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3064 */ 3065 skb_set_owner_w(skb, (struct sock *)sk); 3066 break; 3067 } 3068 skb_dst_set(skb, dst); 3069 3070 mss = dst_metric_advmss(dst); 3071 user_mss = READ_ONCE(tp->rx_opt.user_mss); 3072 if (user_mss && user_mss < mss) 3073 mss = user_mss; 3074 3075 memset(&opts, 0, sizeof(opts)); 3076 #ifdef CONFIG_SYN_COOKIES 3077 if (unlikely(req->cookie_ts)) 3078 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 3079 else 3080 #endif 3081 skb_mstamp_get(&skb->skb_mstamp); 3082 3083 #ifdef CONFIG_TCP_MD5SIG 3084 rcu_read_lock(); 3085 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3086 #endif 3087 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3088 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) + 3089 sizeof(*th); 3090 3091 skb_push(skb, tcp_header_size); 3092 skb_reset_transport_header(skb); 3093 3094 th = (struct tcphdr *)skb->data; 3095 memset(th, 0, sizeof(struct tcphdr)); 3096 th->syn = 1; 3097 th->ack = 1; 3098 tcp_ecn_make_synack(req, th); 3099 th->source = htons(ireq->ir_num); 3100 th->dest = ireq->ir_rmt_port; 3101 /* Setting of flags are superfluous here for callers (and ECE is 3102 * not even correctly set) 3103 */ 3104 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3105 TCPHDR_SYN | TCPHDR_ACK); 3106 3107 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3108 /* XXX data is queued and acked as is. No buffer/window check */ 3109 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3110 3111 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3112 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3113 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3114 th->doff = (tcp_header_size >> 2); 3115 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3116 3117 #ifdef CONFIG_TCP_MD5SIG 3118 /* Okay, we have all we need - do the md5 hash if needed */ 3119 if (md5) 3120 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3121 md5, req_to_sk(req), skb); 3122 rcu_read_unlock(); 3123 #endif 3124 3125 /* Do not fool tcpdump (if any), clean our debris */ 3126 skb->tstamp.tv64 = 0; 3127 return skb; 3128 } 3129 EXPORT_SYMBOL(tcp_make_synack); 3130 3131 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3132 { 3133 struct inet_connection_sock *icsk = inet_csk(sk); 3134 const struct tcp_congestion_ops *ca; 3135 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3136 3137 if (ca_key == TCP_CA_UNSPEC) 3138 return; 3139 3140 rcu_read_lock(); 3141 ca = tcp_ca_find_key(ca_key); 3142 if (likely(ca && try_module_get(ca->owner))) { 3143 module_put(icsk->icsk_ca_ops->owner); 3144 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3145 icsk->icsk_ca_ops = ca; 3146 } 3147 rcu_read_unlock(); 3148 } 3149 3150 /* Do all connect socket setups that can be done AF independent. */ 3151 static void tcp_connect_init(struct sock *sk) 3152 { 3153 const struct dst_entry *dst = __sk_dst_get(sk); 3154 struct tcp_sock *tp = tcp_sk(sk); 3155 __u8 rcv_wscale; 3156 3157 /* We'll fix this up when we get a response from the other end. 3158 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3159 */ 3160 tp->tcp_header_len = sizeof(struct tcphdr) + 3161 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 3162 3163 #ifdef CONFIG_TCP_MD5SIG 3164 if (tp->af_specific->md5_lookup(sk, sk)) 3165 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3166 #endif 3167 3168 /* If user gave his TCP_MAXSEG, record it to clamp */ 3169 if (tp->rx_opt.user_mss) 3170 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3171 tp->max_window = 0; 3172 tcp_mtup_init(sk); 3173 tcp_sync_mss(sk, dst_mtu(dst)); 3174 3175 tcp_ca_dst_init(sk, dst); 3176 3177 if (!tp->window_clamp) 3178 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3179 tp->advmss = dst_metric_advmss(dst); 3180 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 3181 tp->advmss = tp->rx_opt.user_mss; 3182 3183 tcp_initialize_rcv_mss(sk); 3184 3185 /* limit the window selection if the user enforce a smaller rx buffer */ 3186 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3187 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3188 tp->window_clamp = tcp_full_space(sk); 3189 3190 tcp_select_initial_window(tcp_full_space(sk), 3191 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3192 &tp->rcv_wnd, 3193 &tp->window_clamp, 3194 sysctl_tcp_window_scaling, 3195 &rcv_wscale, 3196 dst_metric(dst, RTAX_INITRWND)); 3197 3198 tp->rx_opt.rcv_wscale = rcv_wscale; 3199 tp->rcv_ssthresh = tp->rcv_wnd; 3200 3201 sk->sk_err = 0; 3202 sock_reset_flag(sk, SOCK_DONE); 3203 tp->snd_wnd = 0; 3204 tcp_init_wl(tp, 0); 3205 tp->snd_una = tp->write_seq; 3206 tp->snd_sml = tp->write_seq; 3207 tp->snd_up = tp->write_seq; 3208 tp->snd_nxt = tp->write_seq; 3209 3210 if (likely(!tp->repair)) 3211 tp->rcv_nxt = 0; 3212 else 3213 tp->rcv_tstamp = tcp_time_stamp; 3214 tp->rcv_wup = tp->rcv_nxt; 3215 tp->copied_seq = tp->rcv_nxt; 3216 3217 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3218 inet_csk(sk)->icsk_retransmits = 0; 3219 tcp_clear_retrans(tp); 3220 } 3221 3222 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3223 { 3224 struct tcp_sock *tp = tcp_sk(sk); 3225 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3226 3227 tcb->end_seq += skb->len; 3228 __skb_header_release(skb); 3229 __tcp_add_write_queue_tail(sk, skb); 3230 sk->sk_wmem_queued += skb->truesize; 3231 sk_mem_charge(sk, skb->truesize); 3232 tp->write_seq = tcb->end_seq; 3233 tp->packets_out += tcp_skb_pcount(skb); 3234 } 3235 3236 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3237 * queue a data-only packet after the regular SYN, such that regular SYNs 3238 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3239 * only the SYN sequence, the data are retransmitted in the first ACK. 3240 * If cookie is not cached or other error occurs, falls back to send a 3241 * regular SYN with Fast Open cookie request option. 3242 */ 3243 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3244 { 3245 struct tcp_sock *tp = tcp_sk(sk); 3246 struct tcp_fastopen_request *fo = tp->fastopen_req; 3247 int syn_loss = 0, space, err = 0; 3248 unsigned long last_syn_loss = 0; 3249 struct sk_buff *syn_data; 3250 3251 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3252 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 3253 &syn_loss, &last_syn_loss); 3254 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 3255 if (syn_loss > 1 && 3256 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 3257 fo->cookie.len = -1; 3258 goto fallback; 3259 } 3260 3261 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 3262 fo->cookie.len = -1; 3263 else if (fo->cookie.len <= 0) 3264 goto fallback; 3265 3266 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3267 * user-MSS. Reserve maximum option space for middleboxes that add 3268 * private TCP options. The cost is reduced data space in SYN :( 3269 */ 3270 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 3271 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3272 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3273 MAX_TCP_OPTION_SPACE; 3274 3275 space = min_t(size_t, space, fo->size); 3276 3277 /* limit to order-0 allocations */ 3278 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3279 3280 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3281 if (!syn_data) 3282 goto fallback; 3283 syn_data->ip_summed = CHECKSUM_PARTIAL; 3284 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3285 if (space) { 3286 int copied = copy_from_iter(skb_put(syn_data, space), space, 3287 &fo->data->msg_iter); 3288 if (unlikely(!copied)) { 3289 kfree_skb(syn_data); 3290 goto fallback; 3291 } 3292 if (copied != space) { 3293 skb_trim(syn_data, copied); 3294 space = copied; 3295 } 3296 } 3297 /* No more data pending in inet_wait_for_connect() */ 3298 if (space == fo->size) 3299 fo->data = NULL; 3300 fo->copied = space; 3301 3302 tcp_connect_queue_skb(sk, syn_data); 3303 3304 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3305 3306 syn->skb_mstamp = syn_data->skb_mstamp; 3307 3308 /* Now full SYN+DATA was cloned and sent (or not), 3309 * remove the SYN from the original skb (syn_data) 3310 * we keep in write queue in case of a retransmit, as we 3311 * also have the SYN packet (with no data) in the same queue. 3312 */ 3313 TCP_SKB_CB(syn_data)->seq++; 3314 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3315 if (!err) { 3316 tp->syn_data = (fo->copied > 0); 3317 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3318 goto done; 3319 } 3320 3321 fallback: 3322 /* Send a regular SYN with Fast Open cookie request option */ 3323 if (fo->cookie.len > 0) 3324 fo->cookie.len = 0; 3325 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3326 if (err) 3327 tp->syn_fastopen = 0; 3328 done: 3329 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3330 return err; 3331 } 3332 3333 /* Build a SYN and send it off. */ 3334 int tcp_connect(struct sock *sk) 3335 { 3336 struct tcp_sock *tp = tcp_sk(sk); 3337 struct sk_buff *buff; 3338 int err; 3339 3340 tcp_connect_init(sk); 3341 3342 if (unlikely(tp->repair)) { 3343 tcp_finish_connect(sk, NULL); 3344 return 0; 3345 } 3346 3347 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3348 if (unlikely(!buff)) 3349 return -ENOBUFS; 3350 3351 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3352 tp->retrans_stamp = tcp_time_stamp; 3353 tcp_connect_queue_skb(sk, buff); 3354 tcp_ecn_send_syn(sk, buff); 3355 3356 /* Send off SYN; include data in Fast Open. */ 3357 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3358 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3359 if (err == -ECONNREFUSED) 3360 return err; 3361 3362 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3363 * in order to make this packet get counted in tcpOutSegs. 3364 */ 3365 tp->snd_nxt = tp->write_seq; 3366 tp->pushed_seq = tp->write_seq; 3367 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3368 3369 /* Timer for repeating the SYN until an answer. */ 3370 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3371 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3372 return 0; 3373 } 3374 EXPORT_SYMBOL(tcp_connect); 3375 3376 /* Send out a delayed ack, the caller does the policy checking 3377 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3378 * for details. 3379 */ 3380 void tcp_send_delayed_ack(struct sock *sk) 3381 { 3382 struct inet_connection_sock *icsk = inet_csk(sk); 3383 int ato = icsk->icsk_ack.ato; 3384 unsigned long timeout; 3385 3386 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3387 3388 if (ato > TCP_DELACK_MIN) { 3389 const struct tcp_sock *tp = tcp_sk(sk); 3390 int max_ato = HZ / 2; 3391 3392 if (icsk->icsk_ack.pingpong || 3393 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3394 max_ato = TCP_DELACK_MAX; 3395 3396 /* Slow path, intersegment interval is "high". */ 3397 3398 /* If some rtt estimate is known, use it to bound delayed ack. 3399 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3400 * directly. 3401 */ 3402 if (tp->srtt_us) { 3403 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3404 TCP_DELACK_MIN); 3405 3406 if (rtt < max_ato) 3407 max_ato = rtt; 3408 } 3409 3410 ato = min(ato, max_ato); 3411 } 3412 3413 /* Stay within the limit we were given */ 3414 timeout = jiffies + ato; 3415 3416 /* Use new timeout only if there wasn't a older one earlier. */ 3417 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3418 /* If delack timer was blocked or is about to expire, 3419 * send ACK now. 3420 */ 3421 if (icsk->icsk_ack.blocked || 3422 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3423 tcp_send_ack(sk); 3424 return; 3425 } 3426 3427 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3428 timeout = icsk->icsk_ack.timeout; 3429 } 3430 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3431 icsk->icsk_ack.timeout = timeout; 3432 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3433 } 3434 3435 /* This routine sends an ack and also updates the window. */ 3436 void tcp_send_ack(struct sock *sk) 3437 { 3438 struct sk_buff *buff; 3439 3440 /* If we have been reset, we may not send again. */ 3441 if (sk->sk_state == TCP_CLOSE) 3442 return; 3443 3444 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3445 3446 /* We are not putting this on the write queue, so 3447 * tcp_transmit_skb() will set the ownership to this 3448 * sock. 3449 */ 3450 buff = alloc_skb(MAX_TCP_HEADER, 3451 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3452 if (unlikely(!buff)) { 3453 inet_csk_schedule_ack(sk); 3454 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3455 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3456 TCP_DELACK_MAX, TCP_RTO_MAX); 3457 return; 3458 } 3459 3460 /* Reserve space for headers and prepare control bits. */ 3461 skb_reserve(buff, MAX_TCP_HEADER); 3462 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3463 3464 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3465 * too much. 3466 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3467 * We also avoid tcp_wfree() overhead (cache line miss accessing 3468 * tp->tsq_flags) by using regular sock_wfree() 3469 */ 3470 skb_set_tcp_pure_ack(buff); 3471 3472 /* Send it off, this clears delayed acks for us. */ 3473 skb_mstamp_get(&buff->skb_mstamp); 3474 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3475 } 3476 EXPORT_SYMBOL_GPL(tcp_send_ack); 3477 3478 /* This routine sends a packet with an out of date sequence 3479 * number. It assumes the other end will try to ack it. 3480 * 3481 * Question: what should we make while urgent mode? 3482 * 4.4BSD forces sending single byte of data. We cannot send 3483 * out of window data, because we have SND.NXT==SND.MAX... 3484 * 3485 * Current solution: to send TWO zero-length segments in urgent mode: 3486 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3487 * out-of-date with SND.UNA-1 to probe window. 3488 */ 3489 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3490 { 3491 struct tcp_sock *tp = tcp_sk(sk); 3492 struct sk_buff *skb; 3493 3494 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3495 skb = alloc_skb(MAX_TCP_HEADER, 3496 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3497 if (!skb) 3498 return -1; 3499 3500 /* Reserve space for headers and set control bits. */ 3501 skb_reserve(skb, MAX_TCP_HEADER); 3502 /* Use a previous sequence. This should cause the other 3503 * end to send an ack. Don't queue or clone SKB, just 3504 * send it. 3505 */ 3506 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3507 skb_mstamp_get(&skb->skb_mstamp); 3508 NET_INC_STATS(sock_net(sk), mib); 3509 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3510 } 3511 3512 void tcp_send_window_probe(struct sock *sk) 3513 { 3514 if (sk->sk_state == TCP_ESTABLISHED) { 3515 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3516 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3517 } 3518 } 3519 3520 /* Initiate keepalive or window probe from timer. */ 3521 int tcp_write_wakeup(struct sock *sk, int mib) 3522 { 3523 struct tcp_sock *tp = tcp_sk(sk); 3524 struct sk_buff *skb; 3525 3526 if (sk->sk_state == TCP_CLOSE) 3527 return -1; 3528 3529 skb = tcp_send_head(sk); 3530 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3531 int err; 3532 unsigned int mss = tcp_current_mss(sk); 3533 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3534 3535 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3536 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3537 3538 /* We are probing the opening of a window 3539 * but the window size is != 0 3540 * must have been a result SWS avoidance ( sender ) 3541 */ 3542 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3543 skb->len > mss) { 3544 seg_size = min(seg_size, mss); 3545 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3546 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3547 return -1; 3548 } else if (!tcp_skb_pcount(skb)) 3549 tcp_set_skb_tso_segs(skb, mss); 3550 3551 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3552 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3553 if (!err) 3554 tcp_event_new_data_sent(sk, skb); 3555 return err; 3556 } else { 3557 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3558 tcp_xmit_probe_skb(sk, 1, mib); 3559 return tcp_xmit_probe_skb(sk, 0, mib); 3560 } 3561 } 3562 3563 /* A window probe timeout has occurred. If window is not closed send 3564 * a partial packet else a zero probe. 3565 */ 3566 void tcp_send_probe0(struct sock *sk) 3567 { 3568 struct inet_connection_sock *icsk = inet_csk(sk); 3569 struct tcp_sock *tp = tcp_sk(sk); 3570 struct net *net = sock_net(sk); 3571 unsigned long probe_max; 3572 int err; 3573 3574 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3575 3576 if (tp->packets_out || !tcp_send_head(sk)) { 3577 /* Cancel probe timer, if it is not required. */ 3578 icsk->icsk_probes_out = 0; 3579 icsk->icsk_backoff = 0; 3580 return; 3581 } 3582 3583 if (err <= 0) { 3584 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3585 icsk->icsk_backoff++; 3586 icsk->icsk_probes_out++; 3587 probe_max = TCP_RTO_MAX; 3588 } else { 3589 /* If packet was not sent due to local congestion, 3590 * do not backoff and do not remember icsk_probes_out. 3591 * Let local senders to fight for local resources. 3592 * 3593 * Use accumulated backoff yet. 3594 */ 3595 if (!icsk->icsk_probes_out) 3596 icsk->icsk_probes_out = 1; 3597 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3598 } 3599 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3600 tcp_probe0_when(sk, probe_max), 3601 TCP_RTO_MAX); 3602 } 3603 3604 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3605 { 3606 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3607 struct flowi fl; 3608 int res; 3609 3610 tcp_rsk(req)->txhash = net_tx_rndhash(); 3611 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3612 if (!res) { 3613 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3614 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3615 if (unlikely(tcp_passive_fastopen(sk))) 3616 tcp_sk(sk)->total_retrans++; 3617 } 3618 return res; 3619 } 3620 EXPORT_SYMBOL(tcp_rtx_synack); 3621