xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 80483c3a)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 			   int push_one, gfp_t gfp);
67 
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 	struct inet_connection_sock *icsk = inet_csk(sk);
72 	struct tcp_sock *tp = tcp_sk(sk);
73 	unsigned int prior_packets = tp->packets_out;
74 
75 	tcp_advance_send_head(sk, skb);
76 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
80 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
81 		tcp_rearm_rto(sk);
82 	}
83 
84 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 		      tcp_skb_pcount(skb));
86 }
87 
88 /* SND.NXT, if window was not shrunk.
89  * If window has been shrunk, what should we make? It is not clear at all.
90  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92  * invalid. OK, let's make this for now:
93  */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 	const struct tcp_sock *tp = tcp_sk(sk);
97 
98 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 		return tp->snd_nxt;
100 	else
101 		return tcp_wnd_end(tp);
102 }
103 
104 /* Calculate mss to advertise in SYN segment.
105  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106  *
107  * 1. It is independent of path mtu.
108  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110  *    attached devices, because some buggy hosts are confused by
111  *    large MSS.
112  * 4. We do not make 3, we advertise MSS, calculated from first
113  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
114  *    This may be overridden via information stored in routing table.
115  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116  *    probably even Jumbo".
117  */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 	struct tcp_sock *tp = tcp_sk(sk);
121 	const struct dst_entry *dst = __sk_dst_get(sk);
122 	int mss = tp->advmss;
123 
124 	if (dst) {
125 		unsigned int metric = dst_metric_advmss(dst);
126 
127 		if (metric < mss) {
128 			mss = metric;
129 			tp->advmss = mss;
130 		}
131 	}
132 
133 	return (__u16)mss;
134 }
135 
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137  * This is the first part of cwnd validation mechanism.
138  */
139 void tcp_cwnd_restart(struct sock *sk, s32 delta)
140 {
141 	struct tcp_sock *tp = tcp_sk(sk);
142 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
143 	u32 cwnd = tp->snd_cwnd;
144 
145 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146 
147 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 	restart_cwnd = min(restart_cwnd, cwnd);
149 
150 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 		cwnd >>= 1;
152 	tp->snd_cwnd = max(cwnd, restart_cwnd);
153 	tp->snd_cwnd_stamp = tcp_time_stamp;
154 	tp->snd_cwnd_used = 0;
155 }
156 
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 				struct sock *sk)
160 {
161 	struct inet_connection_sock *icsk = inet_csk(sk);
162 	const u32 now = tcp_time_stamp;
163 
164 	if (tcp_packets_in_flight(tp) == 0)
165 		tcp_ca_event(sk, CA_EVENT_TX_START);
166 
167 	tp->lsndtime = now;
168 
169 	/* If it is a reply for ato after last received
170 	 * packet, enter pingpong mode.
171 	 */
172 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
173 		icsk->icsk_ack.pingpong = 1;
174 }
175 
176 /* Account for an ACK we sent. */
177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
178 {
179 	tcp_dec_quickack_mode(sk, pkts);
180 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
181 }
182 
183 
184 u32 tcp_default_init_rwnd(u32 mss)
185 {
186 	/* Initial receive window should be twice of TCP_INIT_CWND to
187 	 * enable proper sending of new unsent data during fast recovery
188 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
189 	 * limit when mss is larger than 1460.
190 	 */
191 	u32 init_rwnd = TCP_INIT_CWND * 2;
192 
193 	if (mss > 1460)
194 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
195 	return init_rwnd;
196 }
197 
198 /* Determine a window scaling and initial window to offer.
199  * Based on the assumption that the given amount of space
200  * will be offered. Store the results in the tp structure.
201  * NOTE: for smooth operation initial space offering should
202  * be a multiple of mss if possible. We assume here that mss >= 1.
203  * This MUST be enforced by all callers.
204  */
205 void tcp_select_initial_window(int __space, __u32 mss,
206 			       __u32 *rcv_wnd, __u32 *window_clamp,
207 			       int wscale_ok, __u8 *rcv_wscale,
208 			       __u32 init_rcv_wnd)
209 {
210 	unsigned int space = (__space < 0 ? 0 : __space);
211 
212 	/* If no clamp set the clamp to the max possible scaled window */
213 	if (*window_clamp == 0)
214 		(*window_clamp) = (65535 << 14);
215 	space = min(*window_clamp, space);
216 
217 	/* Quantize space offering to a multiple of mss if possible. */
218 	if (space > mss)
219 		space = (space / mss) * mss;
220 
221 	/* NOTE: offering an initial window larger than 32767
222 	 * will break some buggy TCP stacks. If the admin tells us
223 	 * it is likely we could be speaking with such a buggy stack
224 	 * we will truncate our initial window offering to 32K-1
225 	 * unless the remote has sent us a window scaling option,
226 	 * which we interpret as a sign the remote TCP is not
227 	 * misinterpreting the window field as a signed quantity.
228 	 */
229 	if (sysctl_tcp_workaround_signed_windows)
230 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 	else
232 		(*rcv_wnd) = space;
233 
234 	(*rcv_wscale) = 0;
235 	if (wscale_ok) {
236 		/* Set window scaling on max possible window
237 		 * See RFC1323 for an explanation of the limit to 14
238 		 */
239 		space = max_t(u32, space, sysctl_tcp_rmem[2]);
240 		space = max_t(u32, space, sysctl_rmem_max);
241 		space = min_t(u32, space, *window_clamp);
242 		while (space > 65535 && (*rcv_wscale) < 14) {
243 			space >>= 1;
244 			(*rcv_wscale)++;
245 		}
246 	}
247 
248 	if (mss > (1 << *rcv_wscale)) {
249 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
250 			init_rcv_wnd = tcp_default_init_rwnd(mss);
251 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
252 	}
253 
254 	/* Set the clamp no higher than max representable value */
255 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
256 }
257 EXPORT_SYMBOL(tcp_select_initial_window);
258 
259 /* Chose a new window to advertise, update state in tcp_sock for the
260  * socket, and return result with RFC1323 scaling applied.  The return
261  * value can be stuffed directly into th->window for an outgoing
262  * frame.
263  */
264 static u16 tcp_select_window(struct sock *sk)
265 {
266 	struct tcp_sock *tp = tcp_sk(sk);
267 	u32 old_win = tp->rcv_wnd;
268 	u32 cur_win = tcp_receive_window(tp);
269 	u32 new_win = __tcp_select_window(sk);
270 
271 	/* Never shrink the offered window */
272 	if (new_win < cur_win) {
273 		/* Danger Will Robinson!
274 		 * Don't update rcv_wup/rcv_wnd here or else
275 		 * we will not be able to advertise a zero
276 		 * window in time.  --DaveM
277 		 *
278 		 * Relax Will Robinson.
279 		 */
280 		if (new_win == 0)
281 			NET_INC_STATS(sock_net(sk),
282 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
283 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
284 	}
285 	tp->rcv_wnd = new_win;
286 	tp->rcv_wup = tp->rcv_nxt;
287 
288 	/* Make sure we do not exceed the maximum possible
289 	 * scaled window.
290 	 */
291 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
292 		new_win = min(new_win, MAX_TCP_WINDOW);
293 	else
294 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
295 
296 	/* RFC1323 scaling applied */
297 	new_win >>= tp->rx_opt.rcv_wscale;
298 
299 	/* If we advertise zero window, disable fast path. */
300 	if (new_win == 0) {
301 		tp->pred_flags = 0;
302 		if (old_win)
303 			NET_INC_STATS(sock_net(sk),
304 				      LINUX_MIB_TCPTOZEROWINDOWADV);
305 	} else if (old_win == 0) {
306 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
307 	}
308 
309 	return new_win;
310 }
311 
312 /* Packet ECN state for a SYN-ACK */
313 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
314 {
315 	const struct tcp_sock *tp = tcp_sk(sk);
316 
317 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
318 	if (!(tp->ecn_flags & TCP_ECN_OK))
319 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
320 	else if (tcp_ca_needs_ecn(sk))
321 		INET_ECN_xmit(sk);
322 }
323 
324 /* Packet ECN state for a SYN.  */
325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
326 {
327 	struct tcp_sock *tp = tcp_sk(sk);
328 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
329 		       tcp_ca_needs_ecn(sk);
330 
331 	if (!use_ecn) {
332 		const struct dst_entry *dst = __sk_dst_get(sk);
333 
334 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
335 			use_ecn = true;
336 	}
337 
338 	tp->ecn_flags = 0;
339 
340 	if (use_ecn) {
341 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
342 		tp->ecn_flags = TCP_ECN_OK;
343 		if (tcp_ca_needs_ecn(sk))
344 			INET_ECN_xmit(sk);
345 	}
346 }
347 
348 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
349 {
350 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
351 		/* tp->ecn_flags are cleared at a later point in time when
352 		 * SYN ACK is ultimatively being received.
353 		 */
354 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
355 }
356 
357 static void
358 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
359 {
360 	if (inet_rsk(req)->ecn_ok)
361 		th->ece = 1;
362 }
363 
364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365  * be sent.
366  */
367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
368 			 struct tcphdr *th, int tcp_header_len)
369 {
370 	struct tcp_sock *tp = tcp_sk(sk);
371 
372 	if (tp->ecn_flags & TCP_ECN_OK) {
373 		/* Not-retransmitted data segment: set ECT and inject CWR. */
374 		if (skb->len != tcp_header_len &&
375 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
376 			INET_ECN_xmit(sk);
377 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
378 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
379 				th->cwr = 1;
380 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381 			}
382 		} else if (!tcp_ca_needs_ecn(sk)) {
383 			/* ACK or retransmitted segment: clear ECT|CE */
384 			INET_ECN_dontxmit(sk);
385 		}
386 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
387 			th->ece = 1;
388 	}
389 }
390 
391 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
392  * auto increment end seqno.
393  */
394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395 {
396 	skb->ip_summed = CHECKSUM_PARTIAL;
397 	skb->csum = 0;
398 
399 	TCP_SKB_CB(skb)->tcp_flags = flags;
400 	TCP_SKB_CB(skb)->sacked = 0;
401 
402 	tcp_skb_pcount_set(skb, 1);
403 
404 	TCP_SKB_CB(skb)->seq = seq;
405 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
406 		seq++;
407 	TCP_SKB_CB(skb)->end_seq = seq;
408 }
409 
410 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
411 {
412 	return tp->snd_una != tp->snd_up;
413 }
414 
415 #define OPTION_SACK_ADVERTISE	(1 << 0)
416 #define OPTION_TS		(1 << 1)
417 #define OPTION_MD5		(1 << 2)
418 #define OPTION_WSCALE		(1 << 3)
419 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
420 
421 struct tcp_out_options {
422 	u16 options;		/* bit field of OPTION_* */
423 	u16 mss;		/* 0 to disable */
424 	u8 ws;			/* window scale, 0 to disable */
425 	u8 num_sack_blocks;	/* number of SACK blocks to include */
426 	u8 hash_size;		/* bytes in hash_location */
427 	__u8 *hash_location;	/* temporary pointer, overloaded */
428 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
429 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
430 };
431 
432 /* Write previously computed TCP options to the packet.
433  *
434  * Beware: Something in the Internet is very sensitive to the ordering of
435  * TCP options, we learned this through the hard way, so be careful here.
436  * Luckily we can at least blame others for their non-compliance but from
437  * inter-operability perspective it seems that we're somewhat stuck with
438  * the ordering which we have been using if we want to keep working with
439  * those broken things (not that it currently hurts anybody as there isn't
440  * particular reason why the ordering would need to be changed).
441  *
442  * At least SACK_PERM as the first option is known to lead to a disaster
443  * (but it may well be that other scenarios fail similarly).
444  */
445 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
446 			      struct tcp_out_options *opts)
447 {
448 	u16 options = opts->options;	/* mungable copy */
449 
450 	if (unlikely(OPTION_MD5 & options)) {
451 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
452 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
453 		/* overload cookie hash location */
454 		opts->hash_location = (__u8 *)ptr;
455 		ptr += 4;
456 	}
457 
458 	if (unlikely(opts->mss)) {
459 		*ptr++ = htonl((TCPOPT_MSS << 24) |
460 			       (TCPOLEN_MSS << 16) |
461 			       opts->mss);
462 	}
463 
464 	if (likely(OPTION_TS & options)) {
465 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
466 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
467 				       (TCPOLEN_SACK_PERM << 16) |
468 				       (TCPOPT_TIMESTAMP << 8) |
469 				       TCPOLEN_TIMESTAMP);
470 			options &= ~OPTION_SACK_ADVERTISE;
471 		} else {
472 			*ptr++ = htonl((TCPOPT_NOP << 24) |
473 				       (TCPOPT_NOP << 16) |
474 				       (TCPOPT_TIMESTAMP << 8) |
475 				       TCPOLEN_TIMESTAMP);
476 		}
477 		*ptr++ = htonl(opts->tsval);
478 		*ptr++ = htonl(opts->tsecr);
479 	}
480 
481 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
482 		*ptr++ = htonl((TCPOPT_NOP << 24) |
483 			       (TCPOPT_NOP << 16) |
484 			       (TCPOPT_SACK_PERM << 8) |
485 			       TCPOLEN_SACK_PERM);
486 	}
487 
488 	if (unlikely(OPTION_WSCALE & options)) {
489 		*ptr++ = htonl((TCPOPT_NOP << 24) |
490 			       (TCPOPT_WINDOW << 16) |
491 			       (TCPOLEN_WINDOW << 8) |
492 			       opts->ws);
493 	}
494 
495 	if (unlikely(opts->num_sack_blocks)) {
496 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
497 			tp->duplicate_sack : tp->selective_acks;
498 		int this_sack;
499 
500 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
501 			       (TCPOPT_NOP  << 16) |
502 			       (TCPOPT_SACK <<  8) |
503 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
504 						     TCPOLEN_SACK_PERBLOCK)));
505 
506 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
507 		     ++this_sack) {
508 			*ptr++ = htonl(sp[this_sack].start_seq);
509 			*ptr++ = htonl(sp[this_sack].end_seq);
510 		}
511 
512 		tp->rx_opt.dsack = 0;
513 	}
514 
515 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
516 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
517 		u8 *p = (u8 *)ptr;
518 		u32 len; /* Fast Open option length */
519 
520 		if (foc->exp) {
521 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
522 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
523 				     TCPOPT_FASTOPEN_MAGIC);
524 			p += TCPOLEN_EXP_FASTOPEN_BASE;
525 		} else {
526 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
527 			*p++ = TCPOPT_FASTOPEN;
528 			*p++ = len;
529 		}
530 
531 		memcpy(p, foc->val, foc->len);
532 		if ((len & 3) == 2) {
533 			p[foc->len] = TCPOPT_NOP;
534 			p[foc->len + 1] = TCPOPT_NOP;
535 		}
536 		ptr += (len + 3) >> 2;
537 	}
538 }
539 
540 /* Compute TCP options for SYN packets. This is not the final
541  * network wire format yet.
542  */
543 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
544 				struct tcp_out_options *opts,
545 				struct tcp_md5sig_key **md5)
546 {
547 	struct tcp_sock *tp = tcp_sk(sk);
548 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
549 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
550 
551 #ifdef CONFIG_TCP_MD5SIG
552 	*md5 = tp->af_specific->md5_lookup(sk, sk);
553 	if (*md5) {
554 		opts->options |= OPTION_MD5;
555 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
556 	}
557 #else
558 	*md5 = NULL;
559 #endif
560 
561 	/* We always get an MSS option.  The option bytes which will be seen in
562 	 * normal data packets should timestamps be used, must be in the MSS
563 	 * advertised.  But we subtract them from tp->mss_cache so that
564 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
565 	 * fact here if necessary.  If we don't do this correctly, as a
566 	 * receiver we won't recognize data packets as being full sized when we
567 	 * should, and thus we won't abide by the delayed ACK rules correctly.
568 	 * SACKs don't matter, we never delay an ACK when we have any of those
569 	 * going out.  */
570 	opts->mss = tcp_advertise_mss(sk);
571 	remaining -= TCPOLEN_MSS_ALIGNED;
572 
573 	if (likely(sysctl_tcp_timestamps && !*md5)) {
574 		opts->options |= OPTION_TS;
575 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
576 		opts->tsecr = tp->rx_opt.ts_recent;
577 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
578 	}
579 	if (likely(sysctl_tcp_window_scaling)) {
580 		opts->ws = tp->rx_opt.rcv_wscale;
581 		opts->options |= OPTION_WSCALE;
582 		remaining -= TCPOLEN_WSCALE_ALIGNED;
583 	}
584 	if (likely(sysctl_tcp_sack)) {
585 		opts->options |= OPTION_SACK_ADVERTISE;
586 		if (unlikely(!(OPTION_TS & opts->options)))
587 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
588 	}
589 
590 	if (fastopen && fastopen->cookie.len >= 0) {
591 		u32 need = fastopen->cookie.len;
592 
593 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
594 					       TCPOLEN_FASTOPEN_BASE;
595 		need = (need + 3) & ~3U;  /* Align to 32 bits */
596 		if (remaining >= need) {
597 			opts->options |= OPTION_FAST_OPEN_COOKIE;
598 			opts->fastopen_cookie = &fastopen->cookie;
599 			remaining -= need;
600 			tp->syn_fastopen = 1;
601 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
602 		}
603 	}
604 
605 	return MAX_TCP_OPTION_SPACE - remaining;
606 }
607 
608 /* Set up TCP options for SYN-ACKs. */
609 static unsigned int tcp_synack_options(struct request_sock *req,
610 				       unsigned int mss, struct sk_buff *skb,
611 				       struct tcp_out_options *opts,
612 				       const struct tcp_md5sig_key *md5,
613 				       struct tcp_fastopen_cookie *foc)
614 {
615 	struct inet_request_sock *ireq = inet_rsk(req);
616 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
617 
618 #ifdef CONFIG_TCP_MD5SIG
619 	if (md5) {
620 		opts->options |= OPTION_MD5;
621 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
622 
623 		/* We can't fit any SACK blocks in a packet with MD5 + TS
624 		 * options. There was discussion about disabling SACK
625 		 * rather than TS in order to fit in better with old,
626 		 * buggy kernels, but that was deemed to be unnecessary.
627 		 */
628 		ireq->tstamp_ok &= !ireq->sack_ok;
629 	}
630 #endif
631 
632 	/* We always send an MSS option. */
633 	opts->mss = mss;
634 	remaining -= TCPOLEN_MSS_ALIGNED;
635 
636 	if (likely(ireq->wscale_ok)) {
637 		opts->ws = ireq->rcv_wscale;
638 		opts->options |= OPTION_WSCALE;
639 		remaining -= TCPOLEN_WSCALE_ALIGNED;
640 	}
641 	if (likely(ireq->tstamp_ok)) {
642 		opts->options |= OPTION_TS;
643 		opts->tsval = tcp_skb_timestamp(skb);
644 		opts->tsecr = req->ts_recent;
645 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
646 	}
647 	if (likely(ireq->sack_ok)) {
648 		opts->options |= OPTION_SACK_ADVERTISE;
649 		if (unlikely(!ireq->tstamp_ok))
650 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
651 	}
652 	if (foc != NULL && foc->len >= 0) {
653 		u32 need = foc->len;
654 
655 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
656 				   TCPOLEN_FASTOPEN_BASE;
657 		need = (need + 3) & ~3U;  /* Align to 32 bits */
658 		if (remaining >= need) {
659 			opts->options |= OPTION_FAST_OPEN_COOKIE;
660 			opts->fastopen_cookie = foc;
661 			remaining -= need;
662 		}
663 	}
664 
665 	return MAX_TCP_OPTION_SPACE - remaining;
666 }
667 
668 /* Compute TCP options for ESTABLISHED sockets. This is not the
669  * final wire format yet.
670  */
671 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
672 					struct tcp_out_options *opts,
673 					struct tcp_md5sig_key **md5)
674 {
675 	struct tcp_sock *tp = tcp_sk(sk);
676 	unsigned int size = 0;
677 	unsigned int eff_sacks;
678 
679 	opts->options = 0;
680 
681 #ifdef CONFIG_TCP_MD5SIG
682 	*md5 = tp->af_specific->md5_lookup(sk, sk);
683 	if (unlikely(*md5)) {
684 		opts->options |= OPTION_MD5;
685 		size += TCPOLEN_MD5SIG_ALIGNED;
686 	}
687 #else
688 	*md5 = NULL;
689 #endif
690 
691 	if (likely(tp->rx_opt.tstamp_ok)) {
692 		opts->options |= OPTION_TS;
693 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
694 		opts->tsecr = tp->rx_opt.ts_recent;
695 		size += TCPOLEN_TSTAMP_ALIGNED;
696 	}
697 
698 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
699 	if (unlikely(eff_sacks)) {
700 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
701 		opts->num_sack_blocks =
702 			min_t(unsigned int, eff_sacks,
703 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
704 			      TCPOLEN_SACK_PERBLOCK);
705 		size += TCPOLEN_SACK_BASE_ALIGNED +
706 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
707 	}
708 
709 	return size;
710 }
711 
712 
713 /* TCP SMALL QUEUES (TSQ)
714  *
715  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
716  * to reduce RTT and bufferbloat.
717  * We do this using a special skb destructor (tcp_wfree).
718  *
719  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
720  * needs to be reallocated in a driver.
721  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
722  *
723  * Since transmit from skb destructor is forbidden, we use a tasklet
724  * to process all sockets that eventually need to send more skbs.
725  * We use one tasklet per cpu, with its own queue of sockets.
726  */
727 struct tsq_tasklet {
728 	struct tasklet_struct	tasklet;
729 	struct list_head	head; /* queue of tcp sockets */
730 };
731 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
732 
733 static void tcp_tsq_handler(struct sock *sk)
734 {
735 	if ((1 << sk->sk_state) &
736 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
737 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
738 		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
739 			       0, GFP_ATOMIC);
740 }
741 /*
742  * One tasklet per cpu tries to send more skbs.
743  * We run in tasklet context but need to disable irqs when
744  * transferring tsq->head because tcp_wfree() might
745  * interrupt us (non NAPI drivers)
746  */
747 static void tcp_tasklet_func(unsigned long data)
748 {
749 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
750 	LIST_HEAD(list);
751 	unsigned long flags;
752 	struct list_head *q, *n;
753 	struct tcp_sock *tp;
754 	struct sock *sk;
755 
756 	local_irq_save(flags);
757 	list_splice_init(&tsq->head, &list);
758 	local_irq_restore(flags);
759 
760 	list_for_each_safe(q, n, &list) {
761 		tp = list_entry(q, struct tcp_sock, tsq_node);
762 		list_del(&tp->tsq_node);
763 
764 		sk = (struct sock *)tp;
765 		bh_lock_sock(sk);
766 
767 		if (!sock_owned_by_user(sk)) {
768 			tcp_tsq_handler(sk);
769 		} else {
770 			/* defer the work to tcp_release_cb() */
771 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
772 		}
773 		bh_unlock_sock(sk);
774 
775 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
776 		sk_free(sk);
777 	}
778 }
779 
780 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
781 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
782 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
783 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
784 /**
785  * tcp_release_cb - tcp release_sock() callback
786  * @sk: socket
787  *
788  * called from release_sock() to perform protocol dependent
789  * actions before socket release.
790  */
791 void tcp_release_cb(struct sock *sk)
792 {
793 	struct tcp_sock *tp = tcp_sk(sk);
794 	unsigned long flags, nflags;
795 
796 	/* perform an atomic operation only if at least one flag is set */
797 	do {
798 		flags = tp->tsq_flags;
799 		if (!(flags & TCP_DEFERRED_ALL))
800 			return;
801 		nflags = flags & ~TCP_DEFERRED_ALL;
802 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
803 
804 	if (flags & (1UL << TCP_TSQ_DEFERRED))
805 		tcp_tsq_handler(sk);
806 
807 	/* Here begins the tricky part :
808 	 * We are called from release_sock() with :
809 	 * 1) BH disabled
810 	 * 2) sk_lock.slock spinlock held
811 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
812 	 *
813 	 * But following code is meant to be called from BH handlers,
814 	 * so we should keep BH disabled, but early release socket ownership
815 	 */
816 	sock_release_ownership(sk);
817 
818 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
819 		tcp_write_timer_handler(sk);
820 		__sock_put(sk);
821 	}
822 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
823 		tcp_delack_timer_handler(sk);
824 		__sock_put(sk);
825 	}
826 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
827 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
828 		__sock_put(sk);
829 	}
830 }
831 EXPORT_SYMBOL(tcp_release_cb);
832 
833 void __init tcp_tasklet_init(void)
834 {
835 	int i;
836 
837 	for_each_possible_cpu(i) {
838 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
839 
840 		INIT_LIST_HEAD(&tsq->head);
841 		tasklet_init(&tsq->tasklet,
842 			     tcp_tasklet_func,
843 			     (unsigned long)tsq);
844 	}
845 }
846 
847 /*
848  * Write buffer destructor automatically called from kfree_skb.
849  * We can't xmit new skbs from this context, as we might already
850  * hold qdisc lock.
851  */
852 void tcp_wfree(struct sk_buff *skb)
853 {
854 	struct sock *sk = skb->sk;
855 	struct tcp_sock *tp = tcp_sk(sk);
856 	int wmem;
857 
858 	/* Keep one reference on sk_wmem_alloc.
859 	 * Will be released by sk_free() from here or tcp_tasklet_func()
860 	 */
861 	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
862 
863 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
864 	 * Wait until our queues (qdisc + devices) are drained.
865 	 * This gives :
866 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
867 	 * - chance for incoming ACK (processed by another cpu maybe)
868 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
869 	 */
870 	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
871 		goto out;
872 
873 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
874 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
875 		unsigned long flags;
876 		struct tsq_tasklet *tsq;
877 
878 		/* queue this socket to tasklet queue */
879 		local_irq_save(flags);
880 		tsq = this_cpu_ptr(&tsq_tasklet);
881 		list_add(&tp->tsq_node, &tsq->head);
882 		tasklet_schedule(&tsq->tasklet);
883 		local_irq_restore(flags);
884 		return;
885 	}
886 out:
887 	sk_free(sk);
888 }
889 
890 /* This routine actually transmits TCP packets queued in by
891  * tcp_do_sendmsg().  This is used by both the initial
892  * transmission and possible later retransmissions.
893  * All SKB's seen here are completely headerless.  It is our
894  * job to build the TCP header, and pass the packet down to
895  * IP so it can do the same plus pass the packet off to the
896  * device.
897  *
898  * We are working here with either a clone of the original
899  * SKB, or a fresh unique copy made by the retransmit engine.
900  */
901 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
902 			    gfp_t gfp_mask)
903 {
904 	const struct inet_connection_sock *icsk = inet_csk(sk);
905 	struct inet_sock *inet;
906 	struct tcp_sock *tp;
907 	struct tcp_skb_cb *tcb;
908 	struct tcp_out_options opts;
909 	unsigned int tcp_options_size, tcp_header_size;
910 	struct tcp_md5sig_key *md5;
911 	struct tcphdr *th;
912 	int err;
913 
914 	BUG_ON(!skb || !tcp_skb_pcount(skb));
915 	tp = tcp_sk(sk);
916 
917 	if (clone_it) {
918 		skb_mstamp_get(&skb->skb_mstamp);
919 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
920 			- tp->snd_una;
921 
922 		if (unlikely(skb_cloned(skb)))
923 			skb = pskb_copy(skb, gfp_mask);
924 		else
925 			skb = skb_clone(skb, gfp_mask);
926 		if (unlikely(!skb))
927 			return -ENOBUFS;
928 	}
929 
930 	inet = inet_sk(sk);
931 	tcb = TCP_SKB_CB(skb);
932 	memset(&opts, 0, sizeof(opts));
933 
934 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
935 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
936 	else
937 		tcp_options_size = tcp_established_options(sk, skb, &opts,
938 							   &md5);
939 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
940 
941 	/* if no packet is in qdisc/device queue, then allow XPS to select
942 	 * another queue. We can be called from tcp_tsq_handler()
943 	 * which holds one reference to sk_wmem_alloc.
944 	 *
945 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
946 	 * One way to get this would be to set skb->truesize = 2 on them.
947 	 */
948 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
949 
950 	skb_push(skb, tcp_header_size);
951 	skb_reset_transport_header(skb);
952 
953 	skb_orphan(skb);
954 	skb->sk = sk;
955 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
956 	skb_set_hash_from_sk(skb, sk);
957 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
958 
959 	/* Build TCP header and checksum it. */
960 	th = (struct tcphdr *)skb->data;
961 	th->source		= inet->inet_sport;
962 	th->dest		= inet->inet_dport;
963 	th->seq			= htonl(tcb->seq);
964 	th->ack_seq		= htonl(tp->rcv_nxt);
965 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
966 					tcb->tcp_flags);
967 
968 	th->check		= 0;
969 	th->urg_ptr		= 0;
970 
971 	/* The urg_mode check is necessary during a below snd_una win probe */
972 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
973 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
974 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
975 			th->urg = 1;
976 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
977 			th->urg_ptr = htons(0xFFFF);
978 			th->urg = 1;
979 		}
980 	}
981 
982 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
983 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
984 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
985 		th->window      = htons(tcp_select_window(sk));
986 		tcp_ecn_send(sk, skb, th, tcp_header_size);
987 	} else {
988 		/* RFC1323: The window in SYN & SYN/ACK segments
989 		 * is never scaled.
990 		 */
991 		th->window	= htons(min(tp->rcv_wnd, 65535U));
992 	}
993 #ifdef CONFIG_TCP_MD5SIG
994 	/* Calculate the MD5 hash, as we have all we need now */
995 	if (md5) {
996 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
997 		tp->af_specific->calc_md5_hash(opts.hash_location,
998 					       md5, sk, skb);
999 	}
1000 #endif
1001 
1002 	icsk->icsk_af_ops->send_check(sk, skb);
1003 
1004 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1005 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1006 
1007 	if (skb->len != tcp_header_size) {
1008 		tcp_event_data_sent(tp, sk);
1009 		tp->data_segs_out += tcp_skb_pcount(skb);
1010 	}
1011 
1012 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1013 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1014 			      tcp_skb_pcount(skb));
1015 
1016 	tp->segs_out += tcp_skb_pcount(skb);
1017 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1018 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1019 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1020 
1021 	/* Our usage of tstamp should remain private */
1022 	skb->tstamp.tv64 = 0;
1023 
1024 	/* Cleanup our debris for IP stacks */
1025 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1026 			       sizeof(struct inet6_skb_parm)));
1027 
1028 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1029 
1030 	if (likely(err <= 0))
1031 		return err;
1032 
1033 	tcp_enter_cwr(sk);
1034 
1035 	return net_xmit_eval(err);
1036 }
1037 
1038 /* This routine just queues the buffer for sending.
1039  *
1040  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1041  * otherwise socket can stall.
1042  */
1043 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1044 {
1045 	struct tcp_sock *tp = tcp_sk(sk);
1046 
1047 	/* Advance write_seq and place onto the write_queue. */
1048 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1049 	__skb_header_release(skb);
1050 	tcp_add_write_queue_tail(sk, skb);
1051 	sk->sk_wmem_queued += skb->truesize;
1052 	sk_mem_charge(sk, skb->truesize);
1053 }
1054 
1055 /* Initialize TSO segments for a packet. */
1056 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1057 {
1058 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1059 		/* Avoid the costly divide in the normal
1060 		 * non-TSO case.
1061 		 */
1062 		tcp_skb_pcount_set(skb, 1);
1063 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1064 	} else {
1065 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1066 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1067 	}
1068 }
1069 
1070 /* When a modification to fackets out becomes necessary, we need to check
1071  * skb is counted to fackets_out or not.
1072  */
1073 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1074 				   int decr)
1075 {
1076 	struct tcp_sock *tp = tcp_sk(sk);
1077 
1078 	if (!tp->sacked_out || tcp_is_reno(tp))
1079 		return;
1080 
1081 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1082 		tp->fackets_out -= decr;
1083 }
1084 
1085 /* Pcount in the middle of the write queue got changed, we need to do various
1086  * tweaks to fix counters
1087  */
1088 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1089 {
1090 	struct tcp_sock *tp = tcp_sk(sk);
1091 
1092 	tp->packets_out -= decr;
1093 
1094 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1095 		tp->sacked_out -= decr;
1096 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1097 		tp->retrans_out -= decr;
1098 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1099 		tp->lost_out -= decr;
1100 
1101 	/* Reno case is special. Sigh... */
1102 	if (tcp_is_reno(tp) && decr > 0)
1103 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1104 
1105 	tcp_adjust_fackets_out(sk, skb, decr);
1106 
1107 	if (tp->lost_skb_hint &&
1108 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1109 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1110 		tp->lost_cnt_hint -= decr;
1111 
1112 	tcp_verify_left_out(tp);
1113 }
1114 
1115 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1116 {
1117 	return TCP_SKB_CB(skb)->txstamp_ack ||
1118 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1119 }
1120 
1121 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1122 {
1123 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1124 
1125 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1126 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1127 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1128 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1129 
1130 		shinfo->tx_flags &= ~tsflags;
1131 		shinfo2->tx_flags |= tsflags;
1132 		swap(shinfo->tskey, shinfo2->tskey);
1133 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1134 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1135 	}
1136 }
1137 
1138 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1139 {
1140 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1141 	TCP_SKB_CB(skb)->eor = 0;
1142 }
1143 
1144 /* Function to create two new TCP segments.  Shrinks the given segment
1145  * to the specified size and appends a new segment with the rest of the
1146  * packet to the list.  This won't be called frequently, I hope.
1147  * Remember, these are still headerless SKBs at this point.
1148  */
1149 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1150 		 unsigned int mss_now, gfp_t gfp)
1151 {
1152 	struct tcp_sock *tp = tcp_sk(sk);
1153 	struct sk_buff *buff;
1154 	int nsize, old_factor;
1155 	int nlen;
1156 	u8 flags;
1157 
1158 	if (WARN_ON(len > skb->len))
1159 		return -EINVAL;
1160 
1161 	nsize = skb_headlen(skb) - len;
1162 	if (nsize < 0)
1163 		nsize = 0;
1164 
1165 	if (skb_unclone(skb, gfp))
1166 		return -ENOMEM;
1167 
1168 	/* Get a new skb... force flag on. */
1169 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1170 	if (!buff)
1171 		return -ENOMEM; /* We'll just try again later. */
1172 
1173 	sk->sk_wmem_queued += buff->truesize;
1174 	sk_mem_charge(sk, buff->truesize);
1175 	nlen = skb->len - len - nsize;
1176 	buff->truesize += nlen;
1177 	skb->truesize -= nlen;
1178 
1179 	/* Correct the sequence numbers. */
1180 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1181 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1182 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1183 
1184 	/* PSH and FIN should only be set in the second packet. */
1185 	flags = TCP_SKB_CB(skb)->tcp_flags;
1186 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1187 	TCP_SKB_CB(buff)->tcp_flags = flags;
1188 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1189 	tcp_skb_fragment_eor(skb, buff);
1190 
1191 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1192 		/* Copy and checksum data tail into the new buffer. */
1193 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1194 						       skb_put(buff, nsize),
1195 						       nsize, 0);
1196 
1197 		skb_trim(skb, len);
1198 
1199 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1200 	} else {
1201 		skb->ip_summed = CHECKSUM_PARTIAL;
1202 		skb_split(skb, buff, len);
1203 	}
1204 
1205 	buff->ip_summed = skb->ip_summed;
1206 
1207 	buff->tstamp = skb->tstamp;
1208 	tcp_fragment_tstamp(skb, buff);
1209 
1210 	old_factor = tcp_skb_pcount(skb);
1211 
1212 	/* Fix up tso_factor for both original and new SKB.  */
1213 	tcp_set_skb_tso_segs(skb, mss_now);
1214 	tcp_set_skb_tso_segs(buff, mss_now);
1215 
1216 	/* If this packet has been sent out already, we must
1217 	 * adjust the various packet counters.
1218 	 */
1219 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1220 		int diff = old_factor - tcp_skb_pcount(skb) -
1221 			tcp_skb_pcount(buff);
1222 
1223 		if (diff)
1224 			tcp_adjust_pcount(sk, skb, diff);
1225 	}
1226 
1227 	/* Link BUFF into the send queue. */
1228 	__skb_header_release(buff);
1229 	tcp_insert_write_queue_after(skb, buff, sk);
1230 
1231 	return 0;
1232 }
1233 
1234 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1235  * eventually). The difference is that pulled data not copied, but
1236  * immediately discarded.
1237  */
1238 static void __pskb_trim_head(struct sk_buff *skb, int len)
1239 {
1240 	struct skb_shared_info *shinfo;
1241 	int i, k, eat;
1242 
1243 	eat = min_t(int, len, skb_headlen(skb));
1244 	if (eat) {
1245 		__skb_pull(skb, eat);
1246 		len -= eat;
1247 		if (!len)
1248 			return;
1249 	}
1250 	eat = len;
1251 	k = 0;
1252 	shinfo = skb_shinfo(skb);
1253 	for (i = 0; i < shinfo->nr_frags; i++) {
1254 		int size = skb_frag_size(&shinfo->frags[i]);
1255 
1256 		if (size <= eat) {
1257 			skb_frag_unref(skb, i);
1258 			eat -= size;
1259 		} else {
1260 			shinfo->frags[k] = shinfo->frags[i];
1261 			if (eat) {
1262 				shinfo->frags[k].page_offset += eat;
1263 				skb_frag_size_sub(&shinfo->frags[k], eat);
1264 				eat = 0;
1265 			}
1266 			k++;
1267 		}
1268 	}
1269 	shinfo->nr_frags = k;
1270 
1271 	skb_reset_tail_pointer(skb);
1272 	skb->data_len -= len;
1273 	skb->len = skb->data_len;
1274 }
1275 
1276 /* Remove acked data from a packet in the transmit queue. */
1277 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1278 {
1279 	if (skb_unclone(skb, GFP_ATOMIC))
1280 		return -ENOMEM;
1281 
1282 	__pskb_trim_head(skb, len);
1283 
1284 	TCP_SKB_CB(skb)->seq += len;
1285 	skb->ip_summed = CHECKSUM_PARTIAL;
1286 
1287 	skb->truesize	     -= len;
1288 	sk->sk_wmem_queued   -= len;
1289 	sk_mem_uncharge(sk, len);
1290 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1291 
1292 	/* Any change of skb->len requires recalculation of tso factor. */
1293 	if (tcp_skb_pcount(skb) > 1)
1294 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1295 
1296 	return 0;
1297 }
1298 
1299 /* Calculate MSS not accounting any TCP options.  */
1300 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1301 {
1302 	const struct tcp_sock *tp = tcp_sk(sk);
1303 	const struct inet_connection_sock *icsk = inet_csk(sk);
1304 	int mss_now;
1305 
1306 	/* Calculate base mss without TCP options:
1307 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1308 	 */
1309 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1310 
1311 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1312 	if (icsk->icsk_af_ops->net_frag_header_len) {
1313 		const struct dst_entry *dst = __sk_dst_get(sk);
1314 
1315 		if (dst && dst_allfrag(dst))
1316 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1317 	}
1318 
1319 	/* Clamp it (mss_clamp does not include tcp options) */
1320 	if (mss_now > tp->rx_opt.mss_clamp)
1321 		mss_now = tp->rx_opt.mss_clamp;
1322 
1323 	/* Now subtract optional transport overhead */
1324 	mss_now -= icsk->icsk_ext_hdr_len;
1325 
1326 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1327 	if (mss_now < 48)
1328 		mss_now = 48;
1329 	return mss_now;
1330 }
1331 
1332 /* Calculate MSS. Not accounting for SACKs here.  */
1333 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1334 {
1335 	/* Subtract TCP options size, not including SACKs */
1336 	return __tcp_mtu_to_mss(sk, pmtu) -
1337 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1338 }
1339 
1340 /* Inverse of above */
1341 int tcp_mss_to_mtu(struct sock *sk, int mss)
1342 {
1343 	const struct tcp_sock *tp = tcp_sk(sk);
1344 	const struct inet_connection_sock *icsk = inet_csk(sk);
1345 	int mtu;
1346 
1347 	mtu = mss +
1348 	      tp->tcp_header_len +
1349 	      icsk->icsk_ext_hdr_len +
1350 	      icsk->icsk_af_ops->net_header_len;
1351 
1352 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1353 	if (icsk->icsk_af_ops->net_frag_header_len) {
1354 		const struct dst_entry *dst = __sk_dst_get(sk);
1355 
1356 		if (dst && dst_allfrag(dst))
1357 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1358 	}
1359 	return mtu;
1360 }
1361 
1362 /* MTU probing init per socket */
1363 void tcp_mtup_init(struct sock *sk)
1364 {
1365 	struct tcp_sock *tp = tcp_sk(sk);
1366 	struct inet_connection_sock *icsk = inet_csk(sk);
1367 	struct net *net = sock_net(sk);
1368 
1369 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1370 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1371 			       icsk->icsk_af_ops->net_header_len;
1372 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1373 	icsk->icsk_mtup.probe_size = 0;
1374 	if (icsk->icsk_mtup.enabled)
1375 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1376 }
1377 EXPORT_SYMBOL(tcp_mtup_init);
1378 
1379 /* This function synchronize snd mss to current pmtu/exthdr set.
1380 
1381    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1382    for TCP options, but includes only bare TCP header.
1383 
1384    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1385    It is minimum of user_mss and mss received with SYN.
1386    It also does not include TCP options.
1387 
1388    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1389 
1390    tp->mss_cache is current effective sending mss, including
1391    all tcp options except for SACKs. It is evaluated,
1392    taking into account current pmtu, but never exceeds
1393    tp->rx_opt.mss_clamp.
1394 
1395    NOTE1. rfc1122 clearly states that advertised MSS
1396    DOES NOT include either tcp or ip options.
1397 
1398    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1399    are READ ONLY outside this function.		--ANK (980731)
1400  */
1401 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1402 {
1403 	struct tcp_sock *tp = tcp_sk(sk);
1404 	struct inet_connection_sock *icsk = inet_csk(sk);
1405 	int mss_now;
1406 
1407 	if (icsk->icsk_mtup.search_high > pmtu)
1408 		icsk->icsk_mtup.search_high = pmtu;
1409 
1410 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1411 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1412 
1413 	/* And store cached results */
1414 	icsk->icsk_pmtu_cookie = pmtu;
1415 	if (icsk->icsk_mtup.enabled)
1416 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1417 	tp->mss_cache = mss_now;
1418 
1419 	return mss_now;
1420 }
1421 EXPORT_SYMBOL(tcp_sync_mss);
1422 
1423 /* Compute the current effective MSS, taking SACKs and IP options,
1424  * and even PMTU discovery events into account.
1425  */
1426 unsigned int tcp_current_mss(struct sock *sk)
1427 {
1428 	const struct tcp_sock *tp = tcp_sk(sk);
1429 	const struct dst_entry *dst = __sk_dst_get(sk);
1430 	u32 mss_now;
1431 	unsigned int header_len;
1432 	struct tcp_out_options opts;
1433 	struct tcp_md5sig_key *md5;
1434 
1435 	mss_now = tp->mss_cache;
1436 
1437 	if (dst) {
1438 		u32 mtu = dst_mtu(dst);
1439 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1440 			mss_now = tcp_sync_mss(sk, mtu);
1441 	}
1442 
1443 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1444 		     sizeof(struct tcphdr);
1445 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1446 	 * some common options. If this is an odd packet (because we have SACK
1447 	 * blocks etc) then our calculated header_len will be different, and
1448 	 * we have to adjust mss_now correspondingly */
1449 	if (header_len != tp->tcp_header_len) {
1450 		int delta = (int) header_len - tp->tcp_header_len;
1451 		mss_now -= delta;
1452 	}
1453 
1454 	return mss_now;
1455 }
1456 
1457 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1458  * As additional protections, we do not touch cwnd in retransmission phases,
1459  * and if application hit its sndbuf limit recently.
1460  */
1461 static void tcp_cwnd_application_limited(struct sock *sk)
1462 {
1463 	struct tcp_sock *tp = tcp_sk(sk);
1464 
1465 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1466 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1467 		/* Limited by application or receiver window. */
1468 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1469 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1470 		if (win_used < tp->snd_cwnd) {
1471 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1472 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1473 		}
1474 		tp->snd_cwnd_used = 0;
1475 	}
1476 	tp->snd_cwnd_stamp = tcp_time_stamp;
1477 }
1478 
1479 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1480 {
1481 	struct tcp_sock *tp = tcp_sk(sk);
1482 
1483 	/* Track the maximum number of outstanding packets in each
1484 	 * window, and remember whether we were cwnd-limited then.
1485 	 */
1486 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1487 	    tp->packets_out > tp->max_packets_out) {
1488 		tp->max_packets_out = tp->packets_out;
1489 		tp->max_packets_seq = tp->snd_nxt;
1490 		tp->is_cwnd_limited = is_cwnd_limited;
1491 	}
1492 
1493 	if (tcp_is_cwnd_limited(sk)) {
1494 		/* Network is feed fully. */
1495 		tp->snd_cwnd_used = 0;
1496 		tp->snd_cwnd_stamp = tcp_time_stamp;
1497 	} else {
1498 		/* Network starves. */
1499 		if (tp->packets_out > tp->snd_cwnd_used)
1500 			tp->snd_cwnd_used = tp->packets_out;
1501 
1502 		if (sysctl_tcp_slow_start_after_idle &&
1503 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1504 			tcp_cwnd_application_limited(sk);
1505 	}
1506 }
1507 
1508 /* Minshall's variant of the Nagle send check. */
1509 static bool tcp_minshall_check(const struct tcp_sock *tp)
1510 {
1511 	return after(tp->snd_sml, tp->snd_una) &&
1512 		!after(tp->snd_sml, tp->snd_nxt);
1513 }
1514 
1515 /* Update snd_sml if this skb is under mss
1516  * Note that a TSO packet might end with a sub-mss segment
1517  * The test is really :
1518  * if ((skb->len % mss) != 0)
1519  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1520  * But we can avoid doing the divide again given we already have
1521  *  skb_pcount = skb->len / mss_now
1522  */
1523 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1524 				const struct sk_buff *skb)
1525 {
1526 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1527 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1528 }
1529 
1530 /* Return false, if packet can be sent now without violation Nagle's rules:
1531  * 1. It is full sized. (provided by caller in %partial bool)
1532  * 2. Or it contains FIN. (already checked by caller)
1533  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1534  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1535  *    With Minshall's modification: all sent small packets are ACKed.
1536  */
1537 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1538 			    int nonagle)
1539 {
1540 	return partial &&
1541 		((nonagle & TCP_NAGLE_CORK) ||
1542 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1543 }
1544 
1545 /* Return how many segs we'd like on a TSO packet,
1546  * to send one TSO packet per ms
1547  */
1548 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1549 {
1550 	u32 bytes, segs;
1551 
1552 	bytes = min(sk->sk_pacing_rate >> 10,
1553 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1554 
1555 	/* Goal is to send at least one packet per ms,
1556 	 * not one big TSO packet every 100 ms.
1557 	 * This preserves ACK clocking and is consistent
1558 	 * with tcp_tso_should_defer() heuristic.
1559 	 */
1560 	segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1561 
1562 	return min_t(u32, segs, sk->sk_gso_max_segs);
1563 }
1564 
1565 /* Returns the portion of skb which can be sent right away */
1566 static unsigned int tcp_mss_split_point(const struct sock *sk,
1567 					const struct sk_buff *skb,
1568 					unsigned int mss_now,
1569 					unsigned int max_segs,
1570 					int nonagle)
1571 {
1572 	const struct tcp_sock *tp = tcp_sk(sk);
1573 	u32 partial, needed, window, max_len;
1574 
1575 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1576 	max_len = mss_now * max_segs;
1577 
1578 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1579 		return max_len;
1580 
1581 	needed = min(skb->len, window);
1582 
1583 	if (max_len <= needed)
1584 		return max_len;
1585 
1586 	partial = needed % mss_now;
1587 	/* If last segment is not a full MSS, check if Nagle rules allow us
1588 	 * to include this last segment in this skb.
1589 	 * Otherwise, we'll split the skb at last MSS boundary
1590 	 */
1591 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1592 		return needed - partial;
1593 
1594 	return needed;
1595 }
1596 
1597 /* Can at least one segment of SKB be sent right now, according to the
1598  * congestion window rules?  If so, return how many segments are allowed.
1599  */
1600 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1601 					 const struct sk_buff *skb)
1602 {
1603 	u32 in_flight, cwnd, halfcwnd;
1604 
1605 	/* Don't be strict about the congestion window for the final FIN.  */
1606 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1607 	    tcp_skb_pcount(skb) == 1)
1608 		return 1;
1609 
1610 	in_flight = tcp_packets_in_flight(tp);
1611 	cwnd = tp->snd_cwnd;
1612 	if (in_flight >= cwnd)
1613 		return 0;
1614 
1615 	/* For better scheduling, ensure we have at least
1616 	 * 2 GSO packets in flight.
1617 	 */
1618 	halfcwnd = max(cwnd >> 1, 1U);
1619 	return min(halfcwnd, cwnd - in_flight);
1620 }
1621 
1622 /* Initialize TSO state of a skb.
1623  * This must be invoked the first time we consider transmitting
1624  * SKB onto the wire.
1625  */
1626 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1627 {
1628 	int tso_segs = tcp_skb_pcount(skb);
1629 
1630 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1631 		tcp_set_skb_tso_segs(skb, mss_now);
1632 		tso_segs = tcp_skb_pcount(skb);
1633 	}
1634 	return tso_segs;
1635 }
1636 
1637 
1638 /* Return true if the Nagle test allows this packet to be
1639  * sent now.
1640  */
1641 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1642 				  unsigned int cur_mss, int nonagle)
1643 {
1644 	/* Nagle rule does not apply to frames, which sit in the middle of the
1645 	 * write_queue (they have no chances to get new data).
1646 	 *
1647 	 * This is implemented in the callers, where they modify the 'nonagle'
1648 	 * argument based upon the location of SKB in the send queue.
1649 	 */
1650 	if (nonagle & TCP_NAGLE_PUSH)
1651 		return true;
1652 
1653 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1654 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1655 		return true;
1656 
1657 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1658 		return true;
1659 
1660 	return false;
1661 }
1662 
1663 /* Does at least the first segment of SKB fit into the send window? */
1664 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1665 			     const struct sk_buff *skb,
1666 			     unsigned int cur_mss)
1667 {
1668 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1669 
1670 	if (skb->len > cur_mss)
1671 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1672 
1673 	return !after(end_seq, tcp_wnd_end(tp));
1674 }
1675 
1676 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1677  * should be put on the wire right now.  If so, it returns the number of
1678  * packets allowed by the congestion window.
1679  */
1680 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1681 				 unsigned int cur_mss, int nonagle)
1682 {
1683 	const struct tcp_sock *tp = tcp_sk(sk);
1684 	unsigned int cwnd_quota;
1685 
1686 	tcp_init_tso_segs(skb, cur_mss);
1687 
1688 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1689 		return 0;
1690 
1691 	cwnd_quota = tcp_cwnd_test(tp, skb);
1692 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1693 		cwnd_quota = 0;
1694 
1695 	return cwnd_quota;
1696 }
1697 
1698 /* Test if sending is allowed right now. */
1699 bool tcp_may_send_now(struct sock *sk)
1700 {
1701 	const struct tcp_sock *tp = tcp_sk(sk);
1702 	struct sk_buff *skb = tcp_send_head(sk);
1703 
1704 	return skb &&
1705 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1706 			     (tcp_skb_is_last(sk, skb) ?
1707 			      tp->nonagle : TCP_NAGLE_PUSH));
1708 }
1709 
1710 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1711  * which is put after SKB on the list.  It is very much like
1712  * tcp_fragment() except that it may make several kinds of assumptions
1713  * in order to speed up the splitting operation.  In particular, we
1714  * know that all the data is in scatter-gather pages, and that the
1715  * packet has never been sent out before (and thus is not cloned).
1716  */
1717 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1718 			unsigned int mss_now, gfp_t gfp)
1719 {
1720 	struct sk_buff *buff;
1721 	int nlen = skb->len - len;
1722 	u8 flags;
1723 
1724 	/* All of a TSO frame must be composed of paged data.  */
1725 	if (skb->len != skb->data_len)
1726 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1727 
1728 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1729 	if (unlikely(!buff))
1730 		return -ENOMEM;
1731 
1732 	sk->sk_wmem_queued += buff->truesize;
1733 	sk_mem_charge(sk, buff->truesize);
1734 	buff->truesize += nlen;
1735 	skb->truesize -= nlen;
1736 
1737 	/* Correct the sequence numbers. */
1738 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1739 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1740 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1741 
1742 	/* PSH and FIN should only be set in the second packet. */
1743 	flags = TCP_SKB_CB(skb)->tcp_flags;
1744 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1745 	TCP_SKB_CB(buff)->tcp_flags = flags;
1746 
1747 	/* This packet was never sent out yet, so no SACK bits. */
1748 	TCP_SKB_CB(buff)->sacked = 0;
1749 
1750 	tcp_skb_fragment_eor(skb, buff);
1751 
1752 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1753 	skb_split(skb, buff, len);
1754 	tcp_fragment_tstamp(skb, buff);
1755 
1756 	/* Fix up tso_factor for both original and new SKB.  */
1757 	tcp_set_skb_tso_segs(skb, mss_now);
1758 	tcp_set_skb_tso_segs(buff, mss_now);
1759 
1760 	/* Link BUFF into the send queue. */
1761 	__skb_header_release(buff);
1762 	tcp_insert_write_queue_after(skb, buff, sk);
1763 
1764 	return 0;
1765 }
1766 
1767 /* Try to defer sending, if possible, in order to minimize the amount
1768  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1769  *
1770  * This algorithm is from John Heffner.
1771  */
1772 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1773 				 bool *is_cwnd_limited, u32 max_segs)
1774 {
1775 	const struct inet_connection_sock *icsk = inet_csk(sk);
1776 	u32 age, send_win, cong_win, limit, in_flight;
1777 	struct tcp_sock *tp = tcp_sk(sk);
1778 	struct skb_mstamp now;
1779 	struct sk_buff *head;
1780 	int win_divisor;
1781 
1782 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1783 		goto send_now;
1784 
1785 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1786 		goto send_now;
1787 
1788 	/* Avoid bursty behavior by allowing defer
1789 	 * only if the last write was recent.
1790 	 */
1791 	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1792 		goto send_now;
1793 
1794 	in_flight = tcp_packets_in_flight(tp);
1795 
1796 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1797 
1798 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1799 
1800 	/* From in_flight test above, we know that cwnd > in_flight.  */
1801 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1802 
1803 	limit = min(send_win, cong_win);
1804 
1805 	/* If a full-sized TSO skb can be sent, do it. */
1806 	if (limit >= max_segs * tp->mss_cache)
1807 		goto send_now;
1808 
1809 	/* Middle in queue won't get any more data, full sendable already? */
1810 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1811 		goto send_now;
1812 
1813 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1814 	if (win_divisor) {
1815 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1816 
1817 		/* If at least some fraction of a window is available,
1818 		 * just use it.
1819 		 */
1820 		chunk /= win_divisor;
1821 		if (limit >= chunk)
1822 			goto send_now;
1823 	} else {
1824 		/* Different approach, try not to defer past a single
1825 		 * ACK.  Receiver should ACK every other full sized
1826 		 * frame, so if we have space for more than 3 frames
1827 		 * then send now.
1828 		 */
1829 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1830 			goto send_now;
1831 	}
1832 
1833 	head = tcp_write_queue_head(sk);
1834 	skb_mstamp_get(&now);
1835 	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1836 	/* If next ACK is likely to come too late (half srtt), do not defer */
1837 	if (age < (tp->srtt_us >> 4))
1838 		goto send_now;
1839 
1840 	/* Ok, it looks like it is advisable to defer. */
1841 
1842 	if (cong_win < send_win && cong_win <= skb->len)
1843 		*is_cwnd_limited = true;
1844 
1845 	return true;
1846 
1847 send_now:
1848 	return false;
1849 }
1850 
1851 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1852 {
1853 	struct inet_connection_sock *icsk = inet_csk(sk);
1854 	struct tcp_sock *tp = tcp_sk(sk);
1855 	struct net *net = sock_net(sk);
1856 	u32 interval;
1857 	s32 delta;
1858 
1859 	interval = net->ipv4.sysctl_tcp_probe_interval;
1860 	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1861 	if (unlikely(delta >= interval * HZ)) {
1862 		int mss = tcp_current_mss(sk);
1863 
1864 		/* Update current search range */
1865 		icsk->icsk_mtup.probe_size = 0;
1866 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1867 			sizeof(struct tcphdr) +
1868 			icsk->icsk_af_ops->net_header_len;
1869 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1870 
1871 		/* Update probe time stamp */
1872 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1873 	}
1874 }
1875 
1876 /* Create a new MTU probe if we are ready.
1877  * MTU probe is regularly attempting to increase the path MTU by
1878  * deliberately sending larger packets.  This discovers routing
1879  * changes resulting in larger path MTUs.
1880  *
1881  * Returns 0 if we should wait to probe (no cwnd available),
1882  *         1 if a probe was sent,
1883  *         -1 otherwise
1884  */
1885 static int tcp_mtu_probe(struct sock *sk)
1886 {
1887 	struct tcp_sock *tp = tcp_sk(sk);
1888 	struct inet_connection_sock *icsk = inet_csk(sk);
1889 	struct sk_buff *skb, *nskb, *next;
1890 	struct net *net = sock_net(sk);
1891 	int len;
1892 	int probe_size;
1893 	int size_needed;
1894 	int copy;
1895 	int mss_now;
1896 	int interval;
1897 
1898 	/* Not currently probing/verifying,
1899 	 * not in recovery,
1900 	 * have enough cwnd, and
1901 	 * not SACKing (the variable headers throw things off) */
1902 	if (!icsk->icsk_mtup.enabled ||
1903 	    icsk->icsk_mtup.probe_size ||
1904 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1905 	    tp->snd_cwnd < 11 ||
1906 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1907 		return -1;
1908 
1909 	/* Use binary search for probe_size between tcp_mss_base,
1910 	 * and current mss_clamp. if (search_high - search_low)
1911 	 * smaller than a threshold, backoff from probing.
1912 	 */
1913 	mss_now = tcp_current_mss(sk);
1914 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1915 				    icsk->icsk_mtup.search_low) >> 1);
1916 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1917 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1918 	/* When misfortune happens, we are reprobing actively,
1919 	 * and then reprobe timer has expired. We stick with current
1920 	 * probing process by not resetting search range to its orignal.
1921 	 */
1922 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1923 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1924 		/* Check whether enough time has elaplased for
1925 		 * another round of probing.
1926 		 */
1927 		tcp_mtu_check_reprobe(sk);
1928 		return -1;
1929 	}
1930 
1931 	/* Have enough data in the send queue to probe? */
1932 	if (tp->write_seq - tp->snd_nxt < size_needed)
1933 		return -1;
1934 
1935 	if (tp->snd_wnd < size_needed)
1936 		return -1;
1937 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1938 		return 0;
1939 
1940 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1941 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1942 		if (!tcp_packets_in_flight(tp))
1943 			return -1;
1944 		else
1945 			return 0;
1946 	}
1947 
1948 	/* We're allowed to probe.  Build it now. */
1949 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1950 	if (!nskb)
1951 		return -1;
1952 	sk->sk_wmem_queued += nskb->truesize;
1953 	sk_mem_charge(sk, nskb->truesize);
1954 
1955 	skb = tcp_send_head(sk);
1956 
1957 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1958 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1959 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1960 	TCP_SKB_CB(nskb)->sacked = 0;
1961 	nskb->csum = 0;
1962 	nskb->ip_summed = skb->ip_summed;
1963 
1964 	tcp_insert_write_queue_before(nskb, skb, sk);
1965 
1966 	len = 0;
1967 	tcp_for_write_queue_from_safe(skb, next, sk) {
1968 		copy = min_t(int, skb->len, probe_size - len);
1969 		if (nskb->ip_summed)
1970 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1971 		else
1972 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1973 							    skb_put(nskb, copy),
1974 							    copy, nskb->csum);
1975 
1976 		if (skb->len <= copy) {
1977 			/* We've eaten all the data from this skb.
1978 			 * Throw it away. */
1979 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1980 			tcp_unlink_write_queue(skb, sk);
1981 			sk_wmem_free_skb(sk, skb);
1982 		} else {
1983 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1984 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1985 			if (!skb_shinfo(skb)->nr_frags) {
1986 				skb_pull(skb, copy);
1987 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1988 					skb->csum = csum_partial(skb->data,
1989 								 skb->len, 0);
1990 			} else {
1991 				__pskb_trim_head(skb, copy);
1992 				tcp_set_skb_tso_segs(skb, mss_now);
1993 			}
1994 			TCP_SKB_CB(skb)->seq += copy;
1995 		}
1996 
1997 		len += copy;
1998 
1999 		if (len >= probe_size)
2000 			break;
2001 	}
2002 	tcp_init_tso_segs(nskb, nskb->len);
2003 
2004 	/* We're ready to send.  If this fails, the probe will
2005 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2006 	 */
2007 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2008 		/* Decrement cwnd here because we are sending
2009 		 * effectively two packets. */
2010 		tp->snd_cwnd--;
2011 		tcp_event_new_data_sent(sk, nskb);
2012 
2013 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2014 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2015 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2016 
2017 		return 1;
2018 	}
2019 
2020 	return -1;
2021 }
2022 
2023 /* This routine writes packets to the network.  It advances the
2024  * send_head.  This happens as incoming acks open up the remote
2025  * window for us.
2026  *
2027  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2028  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2029  * account rare use of URG, this is not a big flaw.
2030  *
2031  * Send at most one packet when push_one > 0. Temporarily ignore
2032  * cwnd limit to force at most one packet out when push_one == 2.
2033 
2034  * Returns true, if no segments are in flight and we have queued segments,
2035  * but cannot send anything now because of SWS or another problem.
2036  */
2037 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2038 			   int push_one, gfp_t gfp)
2039 {
2040 	struct tcp_sock *tp = tcp_sk(sk);
2041 	struct sk_buff *skb;
2042 	unsigned int tso_segs, sent_pkts;
2043 	int cwnd_quota;
2044 	int result;
2045 	bool is_cwnd_limited = false;
2046 	u32 max_segs;
2047 
2048 	sent_pkts = 0;
2049 
2050 	if (!push_one) {
2051 		/* Do MTU probing. */
2052 		result = tcp_mtu_probe(sk);
2053 		if (!result) {
2054 			return false;
2055 		} else if (result > 0) {
2056 			sent_pkts = 1;
2057 		}
2058 	}
2059 
2060 	max_segs = tcp_tso_autosize(sk, mss_now);
2061 	while ((skb = tcp_send_head(sk))) {
2062 		unsigned int limit;
2063 
2064 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2065 		BUG_ON(!tso_segs);
2066 
2067 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2068 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2069 			skb_mstamp_get(&skb->skb_mstamp);
2070 			goto repair; /* Skip network transmission */
2071 		}
2072 
2073 		cwnd_quota = tcp_cwnd_test(tp, skb);
2074 		if (!cwnd_quota) {
2075 			if (push_one == 2)
2076 				/* Force out a loss probe pkt. */
2077 				cwnd_quota = 1;
2078 			else
2079 				break;
2080 		}
2081 
2082 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2083 			break;
2084 
2085 		if (tso_segs == 1) {
2086 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2087 						     (tcp_skb_is_last(sk, skb) ?
2088 						      nonagle : TCP_NAGLE_PUSH))))
2089 				break;
2090 		} else {
2091 			if (!push_one &&
2092 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2093 						 max_segs))
2094 				break;
2095 		}
2096 
2097 		limit = mss_now;
2098 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2099 			limit = tcp_mss_split_point(sk, skb, mss_now,
2100 						    min_t(unsigned int,
2101 							  cwnd_quota,
2102 							  max_segs),
2103 						    nonagle);
2104 
2105 		if (skb->len > limit &&
2106 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2107 			break;
2108 
2109 		/* TCP Small Queues :
2110 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2111 		 * This allows for :
2112 		 *  - better RTT estimation and ACK scheduling
2113 		 *  - faster recovery
2114 		 *  - high rates
2115 		 * Alas, some drivers / subsystems require a fair amount
2116 		 * of queued bytes to ensure line rate.
2117 		 * One example is wifi aggregation (802.11 AMPDU)
2118 		 */
2119 		limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2120 		limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2121 
2122 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2123 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2124 			/* It is possible TX completion already happened
2125 			 * before we set TSQ_THROTTLED, so we must
2126 			 * test again the condition.
2127 			 */
2128 			smp_mb__after_atomic();
2129 			if (atomic_read(&sk->sk_wmem_alloc) > limit)
2130 				break;
2131 		}
2132 
2133 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2134 			break;
2135 
2136 repair:
2137 		/* Advance the send_head.  This one is sent out.
2138 		 * This call will increment packets_out.
2139 		 */
2140 		tcp_event_new_data_sent(sk, skb);
2141 
2142 		tcp_minshall_update(tp, mss_now, skb);
2143 		sent_pkts += tcp_skb_pcount(skb);
2144 
2145 		if (push_one)
2146 			break;
2147 	}
2148 
2149 	if (likely(sent_pkts)) {
2150 		if (tcp_in_cwnd_reduction(sk))
2151 			tp->prr_out += sent_pkts;
2152 
2153 		/* Send one loss probe per tail loss episode. */
2154 		if (push_one != 2)
2155 			tcp_schedule_loss_probe(sk);
2156 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2157 		tcp_cwnd_validate(sk, is_cwnd_limited);
2158 		return false;
2159 	}
2160 	return !tp->packets_out && tcp_send_head(sk);
2161 }
2162 
2163 bool tcp_schedule_loss_probe(struct sock *sk)
2164 {
2165 	struct inet_connection_sock *icsk = inet_csk(sk);
2166 	struct tcp_sock *tp = tcp_sk(sk);
2167 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2168 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2169 
2170 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2171 		return false;
2172 	/* No consecutive loss probes. */
2173 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2174 		tcp_rearm_rto(sk);
2175 		return false;
2176 	}
2177 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2178 	 * finishes.
2179 	 */
2180 	if (tp->fastopen_rsk)
2181 		return false;
2182 
2183 	/* TLP is only scheduled when next timer event is RTO. */
2184 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2185 		return false;
2186 
2187 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2188 	 * in Open state, that are either limited by cwnd or application.
2189 	 */
2190 	if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2191 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2192 		return false;
2193 
2194 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2195 	     tcp_send_head(sk))
2196 		return false;
2197 
2198 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2199 	 * for delayed ack when there's one outstanding packet. If no RTT
2200 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2201 	 */
2202 	timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2203 	if (tp->packets_out == 1)
2204 		timeout = max_t(u32, timeout,
2205 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2206 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2207 
2208 	/* If RTO is shorter, just schedule TLP in its place. */
2209 	tlp_time_stamp = tcp_time_stamp + timeout;
2210 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2211 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2212 		s32 delta = rto_time_stamp - tcp_time_stamp;
2213 		if (delta > 0)
2214 			timeout = delta;
2215 	}
2216 
2217 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2218 				  TCP_RTO_MAX);
2219 	return true;
2220 }
2221 
2222 /* Thanks to skb fast clones, we can detect if a prior transmit of
2223  * a packet is still in a qdisc or driver queue.
2224  * In this case, there is very little point doing a retransmit !
2225  */
2226 static bool skb_still_in_host_queue(const struct sock *sk,
2227 				    const struct sk_buff *skb)
2228 {
2229 	if (unlikely(skb_fclone_busy(sk, skb))) {
2230 		NET_INC_STATS(sock_net(sk),
2231 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2232 		return true;
2233 	}
2234 	return false;
2235 }
2236 
2237 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2238  * retransmit the last segment.
2239  */
2240 void tcp_send_loss_probe(struct sock *sk)
2241 {
2242 	struct tcp_sock *tp = tcp_sk(sk);
2243 	struct sk_buff *skb;
2244 	int pcount;
2245 	int mss = tcp_current_mss(sk);
2246 
2247 	skb = tcp_send_head(sk);
2248 	if (skb) {
2249 		if (tcp_snd_wnd_test(tp, skb, mss)) {
2250 			pcount = tp->packets_out;
2251 			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2252 			if (tp->packets_out > pcount)
2253 				goto probe_sent;
2254 			goto rearm_timer;
2255 		}
2256 		skb = tcp_write_queue_prev(sk, skb);
2257 	} else {
2258 		skb = tcp_write_queue_tail(sk);
2259 	}
2260 
2261 	/* At most one outstanding TLP retransmission. */
2262 	if (tp->tlp_high_seq)
2263 		goto rearm_timer;
2264 
2265 	/* Retransmit last segment. */
2266 	if (WARN_ON(!skb))
2267 		goto rearm_timer;
2268 
2269 	if (skb_still_in_host_queue(sk, skb))
2270 		goto rearm_timer;
2271 
2272 	pcount = tcp_skb_pcount(skb);
2273 	if (WARN_ON(!pcount))
2274 		goto rearm_timer;
2275 
2276 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2277 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2278 					  GFP_ATOMIC)))
2279 			goto rearm_timer;
2280 		skb = tcp_write_queue_next(sk, skb);
2281 	}
2282 
2283 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2284 		goto rearm_timer;
2285 
2286 	if (__tcp_retransmit_skb(sk, skb, 1))
2287 		goto rearm_timer;
2288 
2289 	/* Record snd_nxt for loss detection. */
2290 	tp->tlp_high_seq = tp->snd_nxt;
2291 
2292 probe_sent:
2293 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2294 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2295 	inet_csk(sk)->icsk_pending = 0;
2296 rearm_timer:
2297 	tcp_rearm_rto(sk);
2298 }
2299 
2300 /* Push out any pending frames which were held back due to
2301  * TCP_CORK or attempt at coalescing tiny packets.
2302  * The socket must be locked by the caller.
2303  */
2304 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2305 			       int nonagle)
2306 {
2307 	/* If we are closed, the bytes will have to remain here.
2308 	 * In time closedown will finish, we empty the write queue and
2309 	 * all will be happy.
2310 	 */
2311 	if (unlikely(sk->sk_state == TCP_CLOSE))
2312 		return;
2313 
2314 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2315 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2316 		tcp_check_probe_timer(sk);
2317 }
2318 
2319 /* Send _single_ skb sitting at the send head. This function requires
2320  * true push pending frames to setup probe timer etc.
2321  */
2322 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2323 {
2324 	struct sk_buff *skb = tcp_send_head(sk);
2325 
2326 	BUG_ON(!skb || skb->len < mss_now);
2327 
2328 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2329 }
2330 
2331 /* This function returns the amount that we can raise the
2332  * usable window based on the following constraints
2333  *
2334  * 1. The window can never be shrunk once it is offered (RFC 793)
2335  * 2. We limit memory per socket
2336  *
2337  * RFC 1122:
2338  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2339  *  RECV.NEXT + RCV.WIN fixed until:
2340  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2341  *
2342  * i.e. don't raise the right edge of the window until you can raise
2343  * it at least MSS bytes.
2344  *
2345  * Unfortunately, the recommended algorithm breaks header prediction,
2346  * since header prediction assumes th->window stays fixed.
2347  *
2348  * Strictly speaking, keeping th->window fixed violates the receiver
2349  * side SWS prevention criteria. The problem is that under this rule
2350  * a stream of single byte packets will cause the right side of the
2351  * window to always advance by a single byte.
2352  *
2353  * Of course, if the sender implements sender side SWS prevention
2354  * then this will not be a problem.
2355  *
2356  * BSD seems to make the following compromise:
2357  *
2358  *	If the free space is less than the 1/4 of the maximum
2359  *	space available and the free space is less than 1/2 mss,
2360  *	then set the window to 0.
2361  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2362  *	Otherwise, just prevent the window from shrinking
2363  *	and from being larger than the largest representable value.
2364  *
2365  * This prevents incremental opening of the window in the regime
2366  * where TCP is limited by the speed of the reader side taking
2367  * data out of the TCP receive queue. It does nothing about
2368  * those cases where the window is constrained on the sender side
2369  * because the pipeline is full.
2370  *
2371  * BSD also seems to "accidentally" limit itself to windows that are a
2372  * multiple of MSS, at least until the free space gets quite small.
2373  * This would appear to be a side effect of the mbuf implementation.
2374  * Combining these two algorithms results in the observed behavior
2375  * of having a fixed window size at almost all times.
2376  *
2377  * Below we obtain similar behavior by forcing the offered window to
2378  * a multiple of the mss when it is feasible to do so.
2379  *
2380  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2381  * Regular options like TIMESTAMP are taken into account.
2382  */
2383 u32 __tcp_select_window(struct sock *sk)
2384 {
2385 	struct inet_connection_sock *icsk = inet_csk(sk);
2386 	struct tcp_sock *tp = tcp_sk(sk);
2387 	/* MSS for the peer's data.  Previous versions used mss_clamp
2388 	 * here.  I don't know if the value based on our guesses
2389 	 * of peer's MSS is better for the performance.  It's more correct
2390 	 * but may be worse for the performance because of rcv_mss
2391 	 * fluctuations.  --SAW  1998/11/1
2392 	 */
2393 	int mss = icsk->icsk_ack.rcv_mss;
2394 	int free_space = tcp_space(sk);
2395 	int allowed_space = tcp_full_space(sk);
2396 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2397 	int window;
2398 
2399 	if (mss > full_space)
2400 		mss = full_space;
2401 
2402 	if (free_space < (full_space >> 1)) {
2403 		icsk->icsk_ack.quick = 0;
2404 
2405 		if (tcp_under_memory_pressure(sk))
2406 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2407 					       4U * tp->advmss);
2408 
2409 		/* free_space might become our new window, make sure we don't
2410 		 * increase it due to wscale.
2411 		 */
2412 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2413 
2414 		/* if free space is less than mss estimate, or is below 1/16th
2415 		 * of the maximum allowed, try to move to zero-window, else
2416 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2417 		 * new incoming data is dropped due to memory limits.
2418 		 * With large window, mss test triggers way too late in order
2419 		 * to announce zero window in time before rmem limit kicks in.
2420 		 */
2421 		if (free_space < (allowed_space >> 4) || free_space < mss)
2422 			return 0;
2423 	}
2424 
2425 	if (free_space > tp->rcv_ssthresh)
2426 		free_space = tp->rcv_ssthresh;
2427 
2428 	/* Don't do rounding if we are using window scaling, since the
2429 	 * scaled window will not line up with the MSS boundary anyway.
2430 	 */
2431 	window = tp->rcv_wnd;
2432 	if (tp->rx_opt.rcv_wscale) {
2433 		window = free_space;
2434 
2435 		/* Advertise enough space so that it won't get scaled away.
2436 		 * Import case: prevent zero window announcement if
2437 		 * 1<<rcv_wscale > mss.
2438 		 */
2439 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2440 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2441 				  << tp->rx_opt.rcv_wscale);
2442 	} else {
2443 		/* Get the largest window that is a nice multiple of mss.
2444 		 * Window clamp already applied above.
2445 		 * If our current window offering is within 1 mss of the
2446 		 * free space we just keep it. This prevents the divide
2447 		 * and multiply from happening most of the time.
2448 		 * We also don't do any window rounding when the free space
2449 		 * is too small.
2450 		 */
2451 		if (window <= free_space - mss || window > free_space)
2452 			window = (free_space / mss) * mss;
2453 		else if (mss == full_space &&
2454 			 free_space > window + (full_space >> 1))
2455 			window = free_space;
2456 	}
2457 
2458 	return window;
2459 }
2460 
2461 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2462 			     const struct sk_buff *next_skb)
2463 {
2464 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2465 		const struct skb_shared_info *next_shinfo =
2466 			skb_shinfo(next_skb);
2467 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2468 
2469 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2470 		shinfo->tskey = next_shinfo->tskey;
2471 		TCP_SKB_CB(skb)->txstamp_ack |=
2472 			TCP_SKB_CB(next_skb)->txstamp_ack;
2473 	}
2474 }
2475 
2476 /* Collapses two adjacent SKB's during retransmission. */
2477 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2478 {
2479 	struct tcp_sock *tp = tcp_sk(sk);
2480 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2481 	int skb_size, next_skb_size;
2482 
2483 	skb_size = skb->len;
2484 	next_skb_size = next_skb->len;
2485 
2486 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2487 
2488 	tcp_highest_sack_combine(sk, next_skb, skb);
2489 
2490 	tcp_unlink_write_queue(next_skb, sk);
2491 
2492 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2493 				  next_skb_size);
2494 
2495 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2496 		skb->ip_summed = CHECKSUM_PARTIAL;
2497 
2498 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2499 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2500 
2501 	/* Update sequence range on original skb. */
2502 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2503 
2504 	/* Merge over control information. This moves PSH/FIN etc. over */
2505 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2506 
2507 	/* All done, get rid of second SKB and account for it so
2508 	 * packet counting does not break.
2509 	 */
2510 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2511 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2512 
2513 	/* changed transmit queue under us so clear hints */
2514 	tcp_clear_retrans_hints_partial(tp);
2515 	if (next_skb == tp->retransmit_skb_hint)
2516 		tp->retransmit_skb_hint = skb;
2517 
2518 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2519 
2520 	tcp_skb_collapse_tstamp(skb, next_skb);
2521 
2522 	sk_wmem_free_skb(sk, next_skb);
2523 }
2524 
2525 /* Check if coalescing SKBs is legal. */
2526 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2527 {
2528 	if (tcp_skb_pcount(skb) > 1)
2529 		return false;
2530 	/* TODO: SACK collapsing could be used to remove this condition */
2531 	if (skb_shinfo(skb)->nr_frags != 0)
2532 		return false;
2533 	if (skb_cloned(skb))
2534 		return false;
2535 	if (skb == tcp_send_head(sk))
2536 		return false;
2537 	/* Some heurestics for collapsing over SACK'd could be invented */
2538 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2539 		return false;
2540 
2541 	return true;
2542 }
2543 
2544 /* Collapse packets in the retransmit queue to make to create
2545  * less packets on the wire. This is only done on retransmission.
2546  */
2547 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2548 				     int space)
2549 {
2550 	struct tcp_sock *tp = tcp_sk(sk);
2551 	struct sk_buff *skb = to, *tmp;
2552 	bool first = true;
2553 
2554 	if (!sysctl_tcp_retrans_collapse)
2555 		return;
2556 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2557 		return;
2558 
2559 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2560 		if (!tcp_can_collapse(sk, skb))
2561 			break;
2562 
2563 		if (!tcp_skb_can_collapse_to(to))
2564 			break;
2565 
2566 		space -= skb->len;
2567 
2568 		if (first) {
2569 			first = false;
2570 			continue;
2571 		}
2572 
2573 		if (space < 0)
2574 			break;
2575 		/* Punt if not enough space exists in the first SKB for
2576 		 * the data in the second
2577 		 */
2578 		if (skb->len > skb_availroom(to))
2579 			break;
2580 
2581 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2582 			break;
2583 
2584 		tcp_collapse_retrans(sk, to);
2585 	}
2586 }
2587 
2588 /* This retransmits one SKB.  Policy decisions and retransmit queue
2589  * state updates are done by the caller.  Returns non-zero if an
2590  * error occurred which prevented the send.
2591  */
2592 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2593 {
2594 	struct inet_connection_sock *icsk = inet_csk(sk);
2595 	struct tcp_sock *tp = tcp_sk(sk);
2596 	unsigned int cur_mss;
2597 	int diff, len, err;
2598 
2599 
2600 	/* Inconclusive MTU probe */
2601 	if (icsk->icsk_mtup.probe_size)
2602 		icsk->icsk_mtup.probe_size = 0;
2603 
2604 	/* Do not sent more than we queued. 1/4 is reserved for possible
2605 	 * copying overhead: fragmentation, tunneling, mangling etc.
2606 	 */
2607 	if (atomic_read(&sk->sk_wmem_alloc) >
2608 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2609 		return -EAGAIN;
2610 
2611 	if (skb_still_in_host_queue(sk, skb))
2612 		return -EBUSY;
2613 
2614 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2615 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2616 			BUG();
2617 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2618 			return -ENOMEM;
2619 	}
2620 
2621 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2622 		return -EHOSTUNREACH; /* Routing failure or similar. */
2623 
2624 	cur_mss = tcp_current_mss(sk);
2625 
2626 	/* If receiver has shrunk his window, and skb is out of
2627 	 * new window, do not retransmit it. The exception is the
2628 	 * case, when window is shrunk to zero. In this case
2629 	 * our retransmit serves as a zero window probe.
2630 	 */
2631 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2632 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2633 		return -EAGAIN;
2634 
2635 	len = cur_mss * segs;
2636 	if (skb->len > len) {
2637 		if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2638 			return -ENOMEM; /* We'll try again later. */
2639 	} else {
2640 		if (skb_unclone(skb, GFP_ATOMIC))
2641 			return -ENOMEM;
2642 
2643 		diff = tcp_skb_pcount(skb);
2644 		tcp_set_skb_tso_segs(skb, cur_mss);
2645 		diff -= tcp_skb_pcount(skb);
2646 		if (diff)
2647 			tcp_adjust_pcount(sk, skb, diff);
2648 		if (skb->len < cur_mss)
2649 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2650 	}
2651 
2652 	/* RFC3168, section 6.1.1.1. ECN fallback */
2653 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2654 		tcp_ecn_clear_syn(sk, skb);
2655 
2656 	/* make sure skb->data is aligned on arches that require it
2657 	 * and check if ack-trimming & collapsing extended the headroom
2658 	 * beyond what csum_start can cover.
2659 	 */
2660 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2661 		     skb_headroom(skb) >= 0xFFFF)) {
2662 		struct sk_buff *nskb;
2663 
2664 		skb_mstamp_get(&skb->skb_mstamp);
2665 		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2666 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2667 			     -ENOBUFS;
2668 	} else {
2669 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2670 	}
2671 
2672 	if (likely(!err)) {
2673 		segs = tcp_skb_pcount(skb);
2674 
2675 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2676 		/* Update global TCP statistics. */
2677 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2678 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2679 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2680 		tp->total_retrans += segs;
2681 	}
2682 	return err;
2683 }
2684 
2685 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2686 {
2687 	struct tcp_sock *tp = tcp_sk(sk);
2688 	int err = __tcp_retransmit_skb(sk, skb, segs);
2689 
2690 	if (err == 0) {
2691 #if FASTRETRANS_DEBUG > 0
2692 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2693 			net_dbg_ratelimited("retrans_out leaked\n");
2694 		}
2695 #endif
2696 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2697 		tp->retrans_out += tcp_skb_pcount(skb);
2698 
2699 		/* Save stamp of the first retransmit. */
2700 		if (!tp->retrans_stamp)
2701 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2702 
2703 	} else if (err != -EBUSY) {
2704 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2705 	}
2706 
2707 	if (tp->undo_retrans < 0)
2708 		tp->undo_retrans = 0;
2709 	tp->undo_retrans += tcp_skb_pcount(skb);
2710 	return err;
2711 }
2712 
2713 /* Check if we forward retransmits are possible in the current
2714  * window/congestion state.
2715  */
2716 static bool tcp_can_forward_retransmit(struct sock *sk)
2717 {
2718 	const struct inet_connection_sock *icsk = inet_csk(sk);
2719 	const struct tcp_sock *tp = tcp_sk(sk);
2720 
2721 	/* Forward retransmissions are possible only during Recovery. */
2722 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2723 		return false;
2724 
2725 	/* No forward retransmissions in Reno are possible. */
2726 	if (tcp_is_reno(tp))
2727 		return false;
2728 
2729 	/* Yeah, we have to make difficult choice between forward transmission
2730 	 * and retransmission... Both ways have their merits...
2731 	 *
2732 	 * For now we do not retransmit anything, while we have some new
2733 	 * segments to send. In the other cases, follow rule 3 for
2734 	 * NextSeg() specified in RFC3517.
2735 	 */
2736 
2737 	if (tcp_may_send_now(sk))
2738 		return false;
2739 
2740 	return true;
2741 }
2742 
2743 /* This gets called after a retransmit timeout, and the initially
2744  * retransmitted data is acknowledged.  It tries to continue
2745  * resending the rest of the retransmit queue, until either
2746  * we've sent it all or the congestion window limit is reached.
2747  * If doing SACK, the first ACK which comes back for a timeout
2748  * based retransmit packet might feed us FACK information again.
2749  * If so, we use it to avoid unnecessarily retransmissions.
2750  */
2751 void tcp_xmit_retransmit_queue(struct sock *sk)
2752 {
2753 	const struct inet_connection_sock *icsk = inet_csk(sk);
2754 	struct tcp_sock *tp = tcp_sk(sk);
2755 	struct sk_buff *skb;
2756 	struct sk_buff *hole = NULL;
2757 	u32 max_segs, last_lost;
2758 	int mib_idx;
2759 	int fwd_rexmitting = 0;
2760 
2761 	if (!tp->packets_out)
2762 		return;
2763 
2764 	if (!tp->lost_out)
2765 		tp->retransmit_high = tp->snd_una;
2766 
2767 	if (tp->retransmit_skb_hint) {
2768 		skb = tp->retransmit_skb_hint;
2769 		last_lost = TCP_SKB_CB(skb)->end_seq;
2770 		if (after(last_lost, tp->retransmit_high))
2771 			last_lost = tp->retransmit_high;
2772 	} else {
2773 		skb = tcp_write_queue_head(sk);
2774 		last_lost = tp->snd_una;
2775 	}
2776 
2777 	max_segs = tcp_tso_autosize(sk, tcp_current_mss(sk));
2778 	tcp_for_write_queue_from(skb, sk) {
2779 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2780 		int segs;
2781 
2782 		if (skb == tcp_send_head(sk))
2783 			break;
2784 		/* we could do better than to assign each time */
2785 		if (!hole)
2786 			tp->retransmit_skb_hint = skb;
2787 
2788 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2789 		if (segs <= 0)
2790 			return;
2791 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2792 		 * we need to make sure not sending too bigs TSO packets
2793 		 */
2794 		segs = min_t(int, segs, max_segs);
2795 
2796 		if (fwd_rexmitting) {
2797 begin_fwd:
2798 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2799 				break;
2800 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2801 
2802 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2803 			tp->retransmit_high = last_lost;
2804 			if (!tcp_can_forward_retransmit(sk))
2805 				break;
2806 			/* Backtrack if necessary to non-L'ed skb */
2807 			if (hole) {
2808 				skb = hole;
2809 				hole = NULL;
2810 			}
2811 			fwd_rexmitting = 1;
2812 			goto begin_fwd;
2813 
2814 		} else if (!(sacked & TCPCB_LOST)) {
2815 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2816 				hole = skb;
2817 			continue;
2818 
2819 		} else {
2820 			last_lost = TCP_SKB_CB(skb)->end_seq;
2821 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2822 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2823 			else
2824 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2825 		}
2826 
2827 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2828 			continue;
2829 
2830 		if (tcp_retransmit_skb(sk, skb, segs))
2831 			return;
2832 
2833 		NET_INC_STATS(sock_net(sk), mib_idx);
2834 
2835 		if (tcp_in_cwnd_reduction(sk))
2836 			tp->prr_out += tcp_skb_pcount(skb);
2837 
2838 		if (skb == tcp_write_queue_head(sk))
2839 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2840 						  inet_csk(sk)->icsk_rto,
2841 						  TCP_RTO_MAX);
2842 	}
2843 }
2844 
2845 /* We allow to exceed memory limits for FIN packets to expedite
2846  * connection tear down and (memory) recovery.
2847  * Otherwise tcp_send_fin() could be tempted to either delay FIN
2848  * or even be forced to close flow without any FIN.
2849  * In general, we want to allow one skb per socket to avoid hangs
2850  * with edge trigger epoll()
2851  */
2852 void sk_forced_mem_schedule(struct sock *sk, int size)
2853 {
2854 	int amt;
2855 
2856 	if (size <= sk->sk_forward_alloc)
2857 		return;
2858 	amt = sk_mem_pages(size);
2859 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2860 	sk_memory_allocated_add(sk, amt);
2861 
2862 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2863 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2864 }
2865 
2866 /* Send a FIN. The caller locks the socket for us.
2867  * We should try to send a FIN packet really hard, but eventually give up.
2868  */
2869 void tcp_send_fin(struct sock *sk)
2870 {
2871 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2872 	struct tcp_sock *tp = tcp_sk(sk);
2873 
2874 	/* Optimization, tack on the FIN if we have one skb in write queue and
2875 	 * this skb was not yet sent, or we are under memory pressure.
2876 	 * Note: in the latter case, FIN packet will be sent after a timeout,
2877 	 * as TCP stack thinks it has already been transmitted.
2878 	 */
2879 	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2880 coalesce:
2881 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2882 		TCP_SKB_CB(tskb)->end_seq++;
2883 		tp->write_seq++;
2884 		if (!tcp_send_head(sk)) {
2885 			/* This means tskb was already sent.
2886 			 * Pretend we included the FIN on previous transmit.
2887 			 * We need to set tp->snd_nxt to the value it would have
2888 			 * if FIN had been sent. This is because retransmit path
2889 			 * does not change tp->snd_nxt.
2890 			 */
2891 			tp->snd_nxt++;
2892 			return;
2893 		}
2894 	} else {
2895 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2896 		if (unlikely(!skb)) {
2897 			if (tskb)
2898 				goto coalesce;
2899 			return;
2900 		}
2901 		skb_reserve(skb, MAX_TCP_HEADER);
2902 		sk_forced_mem_schedule(sk, skb->truesize);
2903 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2904 		tcp_init_nondata_skb(skb, tp->write_seq,
2905 				     TCPHDR_ACK | TCPHDR_FIN);
2906 		tcp_queue_skb(sk, skb);
2907 	}
2908 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2909 }
2910 
2911 /* We get here when a process closes a file descriptor (either due to
2912  * an explicit close() or as a byproduct of exit()'ing) and there
2913  * was unread data in the receive queue.  This behavior is recommended
2914  * by RFC 2525, section 2.17.  -DaveM
2915  */
2916 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2917 {
2918 	struct sk_buff *skb;
2919 
2920 	/* NOTE: No TCP options attached and we never retransmit this. */
2921 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2922 	if (!skb) {
2923 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2924 		return;
2925 	}
2926 
2927 	/* Reserve space for headers and prepare control bits. */
2928 	skb_reserve(skb, MAX_TCP_HEADER);
2929 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2930 			     TCPHDR_ACK | TCPHDR_RST);
2931 	skb_mstamp_get(&skb->skb_mstamp);
2932 	/* Send it off. */
2933 	if (tcp_transmit_skb(sk, skb, 0, priority))
2934 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2935 
2936 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2937 }
2938 
2939 /* Send a crossed SYN-ACK during socket establishment.
2940  * WARNING: This routine must only be called when we have already sent
2941  * a SYN packet that crossed the incoming SYN that caused this routine
2942  * to get called. If this assumption fails then the initial rcv_wnd
2943  * and rcv_wscale values will not be correct.
2944  */
2945 int tcp_send_synack(struct sock *sk)
2946 {
2947 	struct sk_buff *skb;
2948 
2949 	skb = tcp_write_queue_head(sk);
2950 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2951 		pr_debug("%s: wrong queue state\n", __func__);
2952 		return -EFAULT;
2953 	}
2954 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2955 		if (skb_cloned(skb)) {
2956 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2957 			if (!nskb)
2958 				return -ENOMEM;
2959 			tcp_unlink_write_queue(skb, sk);
2960 			__skb_header_release(nskb);
2961 			__tcp_add_write_queue_head(sk, nskb);
2962 			sk_wmem_free_skb(sk, skb);
2963 			sk->sk_wmem_queued += nskb->truesize;
2964 			sk_mem_charge(sk, nskb->truesize);
2965 			skb = nskb;
2966 		}
2967 
2968 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2969 		tcp_ecn_send_synack(sk, skb);
2970 	}
2971 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2972 }
2973 
2974 /**
2975  * tcp_make_synack - Prepare a SYN-ACK.
2976  * sk: listener socket
2977  * dst: dst entry attached to the SYNACK
2978  * req: request_sock pointer
2979  *
2980  * Allocate one skb and build a SYNACK packet.
2981  * @dst is consumed : Caller should not use it again.
2982  */
2983 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2984 				struct request_sock *req,
2985 				struct tcp_fastopen_cookie *foc,
2986 				enum tcp_synack_type synack_type)
2987 {
2988 	struct inet_request_sock *ireq = inet_rsk(req);
2989 	const struct tcp_sock *tp = tcp_sk(sk);
2990 	struct tcp_md5sig_key *md5 = NULL;
2991 	struct tcp_out_options opts;
2992 	struct sk_buff *skb;
2993 	int tcp_header_size;
2994 	struct tcphdr *th;
2995 	u16 user_mss;
2996 	int mss;
2997 
2998 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2999 	if (unlikely(!skb)) {
3000 		dst_release(dst);
3001 		return NULL;
3002 	}
3003 	/* Reserve space for headers. */
3004 	skb_reserve(skb, MAX_TCP_HEADER);
3005 
3006 	switch (synack_type) {
3007 	case TCP_SYNACK_NORMAL:
3008 		skb_set_owner_w(skb, req_to_sk(req));
3009 		break;
3010 	case TCP_SYNACK_COOKIE:
3011 		/* Under synflood, we do not attach skb to a socket,
3012 		 * to avoid false sharing.
3013 		 */
3014 		break;
3015 	case TCP_SYNACK_FASTOPEN:
3016 		/* sk is a const pointer, because we want to express multiple
3017 		 * cpu might call us concurrently.
3018 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3019 		 */
3020 		skb_set_owner_w(skb, (struct sock *)sk);
3021 		break;
3022 	}
3023 	skb_dst_set(skb, dst);
3024 
3025 	mss = dst_metric_advmss(dst);
3026 	user_mss = READ_ONCE(tp->rx_opt.user_mss);
3027 	if (user_mss && user_mss < mss)
3028 		mss = user_mss;
3029 
3030 	memset(&opts, 0, sizeof(opts));
3031 #ifdef CONFIG_SYN_COOKIES
3032 	if (unlikely(req->cookie_ts))
3033 		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3034 	else
3035 #endif
3036 	skb_mstamp_get(&skb->skb_mstamp);
3037 
3038 #ifdef CONFIG_TCP_MD5SIG
3039 	rcu_read_lock();
3040 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3041 #endif
3042 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3043 	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3044 			  sizeof(*th);
3045 
3046 	skb_push(skb, tcp_header_size);
3047 	skb_reset_transport_header(skb);
3048 
3049 	th = (struct tcphdr *)skb->data;
3050 	memset(th, 0, sizeof(struct tcphdr));
3051 	th->syn = 1;
3052 	th->ack = 1;
3053 	tcp_ecn_make_synack(req, th);
3054 	th->source = htons(ireq->ir_num);
3055 	th->dest = ireq->ir_rmt_port;
3056 	/* Setting of flags are superfluous here for callers (and ECE is
3057 	 * not even correctly set)
3058 	 */
3059 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3060 			     TCPHDR_SYN | TCPHDR_ACK);
3061 
3062 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3063 	/* XXX data is queued and acked as is. No buffer/window check */
3064 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3065 
3066 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3067 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3068 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3069 	th->doff = (tcp_header_size >> 2);
3070 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3071 
3072 #ifdef CONFIG_TCP_MD5SIG
3073 	/* Okay, we have all we need - do the md5 hash if needed */
3074 	if (md5)
3075 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3076 					       md5, req_to_sk(req), skb);
3077 	rcu_read_unlock();
3078 #endif
3079 
3080 	/* Do not fool tcpdump (if any), clean our debris */
3081 	skb->tstamp.tv64 = 0;
3082 	return skb;
3083 }
3084 EXPORT_SYMBOL(tcp_make_synack);
3085 
3086 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3087 {
3088 	struct inet_connection_sock *icsk = inet_csk(sk);
3089 	const struct tcp_congestion_ops *ca;
3090 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3091 
3092 	if (ca_key == TCP_CA_UNSPEC)
3093 		return;
3094 
3095 	rcu_read_lock();
3096 	ca = tcp_ca_find_key(ca_key);
3097 	if (likely(ca && try_module_get(ca->owner))) {
3098 		module_put(icsk->icsk_ca_ops->owner);
3099 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3100 		icsk->icsk_ca_ops = ca;
3101 	}
3102 	rcu_read_unlock();
3103 }
3104 
3105 /* Do all connect socket setups that can be done AF independent. */
3106 static void tcp_connect_init(struct sock *sk)
3107 {
3108 	const struct dst_entry *dst = __sk_dst_get(sk);
3109 	struct tcp_sock *tp = tcp_sk(sk);
3110 	__u8 rcv_wscale;
3111 
3112 	/* We'll fix this up when we get a response from the other end.
3113 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3114 	 */
3115 	tp->tcp_header_len = sizeof(struct tcphdr) +
3116 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3117 
3118 #ifdef CONFIG_TCP_MD5SIG
3119 	if (tp->af_specific->md5_lookup(sk, sk))
3120 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3121 #endif
3122 
3123 	/* If user gave his TCP_MAXSEG, record it to clamp */
3124 	if (tp->rx_opt.user_mss)
3125 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3126 	tp->max_window = 0;
3127 	tcp_mtup_init(sk);
3128 	tcp_sync_mss(sk, dst_mtu(dst));
3129 
3130 	tcp_ca_dst_init(sk, dst);
3131 
3132 	if (!tp->window_clamp)
3133 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3134 	tp->advmss = dst_metric_advmss(dst);
3135 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3136 		tp->advmss = tp->rx_opt.user_mss;
3137 
3138 	tcp_initialize_rcv_mss(sk);
3139 
3140 	/* limit the window selection if the user enforce a smaller rx buffer */
3141 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3142 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3143 		tp->window_clamp = tcp_full_space(sk);
3144 
3145 	tcp_select_initial_window(tcp_full_space(sk),
3146 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3147 				  &tp->rcv_wnd,
3148 				  &tp->window_clamp,
3149 				  sysctl_tcp_window_scaling,
3150 				  &rcv_wscale,
3151 				  dst_metric(dst, RTAX_INITRWND));
3152 
3153 	tp->rx_opt.rcv_wscale = rcv_wscale;
3154 	tp->rcv_ssthresh = tp->rcv_wnd;
3155 
3156 	sk->sk_err = 0;
3157 	sock_reset_flag(sk, SOCK_DONE);
3158 	tp->snd_wnd = 0;
3159 	tcp_init_wl(tp, 0);
3160 	tp->snd_una = tp->write_seq;
3161 	tp->snd_sml = tp->write_seq;
3162 	tp->snd_up = tp->write_seq;
3163 	tp->snd_nxt = tp->write_seq;
3164 
3165 	if (likely(!tp->repair))
3166 		tp->rcv_nxt = 0;
3167 	else
3168 		tp->rcv_tstamp = tcp_time_stamp;
3169 	tp->rcv_wup = tp->rcv_nxt;
3170 	tp->copied_seq = tp->rcv_nxt;
3171 
3172 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3173 	inet_csk(sk)->icsk_retransmits = 0;
3174 	tcp_clear_retrans(tp);
3175 }
3176 
3177 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3178 {
3179 	struct tcp_sock *tp = tcp_sk(sk);
3180 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3181 
3182 	tcb->end_seq += skb->len;
3183 	__skb_header_release(skb);
3184 	__tcp_add_write_queue_tail(sk, skb);
3185 	sk->sk_wmem_queued += skb->truesize;
3186 	sk_mem_charge(sk, skb->truesize);
3187 	tp->write_seq = tcb->end_seq;
3188 	tp->packets_out += tcp_skb_pcount(skb);
3189 }
3190 
3191 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3192  * queue a data-only packet after the regular SYN, such that regular SYNs
3193  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3194  * only the SYN sequence, the data are retransmitted in the first ACK.
3195  * If cookie is not cached or other error occurs, falls back to send a
3196  * regular SYN with Fast Open cookie request option.
3197  */
3198 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3199 {
3200 	struct tcp_sock *tp = tcp_sk(sk);
3201 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3202 	int syn_loss = 0, space, err = 0;
3203 	unsigned long last_syn_loss = 0;
3204 	struct sk_buff *syn_data;
3205 
3206 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3207 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3208 			       &syn_loss, &last_syn_loss);
3209 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
3210 	if (syn_loss > 1 &&
3211 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3212 		fo->cookie.len = -1;
3213 		goto fallback;
3214 	}
3215 
3216 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3217 		fo->cookie.len = -1;
3218 	else if (fo->cookie.len <= 0)
3219 		goto fallback;
3220 
3221 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3222 	 * user-MSS. Reserve maximum option space for middleboxes that add
3223 	 * private TCP options. The cost is reduced data space in SYN :(
3224 	 */
3225 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3226 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3227 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3228 		MAX_TCP_OPTION_SPACE;
3229 
3230 	space = min_t(size_t, space, fo->size);
3231 
3232 	/* limit to order-0 allocations */
3233 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3234 
3235 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3236 	if (!syn_data)
3237 		goto fallback;
3238 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3239 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3240 	if (space) {
3241 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3242 					    &fo->data->msg_iter);
3243 		if (unlikely(!copied)) {
3244 			kfree_skb(syn_data);
3245 			goto fallback;
3246 		}
3247 		if (copied != space) {
3248 			skb_trim(syn_data, copied);
3249 			space = copied;
3250 		}
3251 	}
3252 	/* No more data pending in inet_wait_for_connect() */
3253 	if (space == fo->size)
3254 		fo->data = NULL;
3255 	fo->copied = space;
3256 
3257 	tcp_connect_queue_skb(sk, syn_data);
3258 
3259 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3260 
3261 	syn->skb_mstamp = syn_data->skb_mstamp;
3262 
3263 	/* Now full SYN+DATA was cloned and sent (or not),
3264 	 * remove the SYN from the original skb (syn_data)
3265 	 * we keep in write queue in case of a retransmit, as we
3266 	 * also have the SYN packet (with no data) in the same queue.
3267 	 */
3268 	TCP_SKB_CB(syn_data)->seq++;
3269 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3270 	if (!err) {
3271 		tp->syn_data = (fo->copied > 0);
3272 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3273 		goto done;
3274 	}
3275 
3276 fallback:
3277 	/* Send a regular SYN with Fast Open cookie request option */
3278 	if (fo->cookie.len > 0)
3279 		fo->cookie.len = 0;
3280 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3281 	if (err)
3282 		tp->syn_fastopen = 0;
3283 done:
3284 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3285 	return err;
3286 }
3287 
3288 /* Build a SYN and send it off. */
3289 int tcp_connect(struct sock *sk)
3290 {
3291 	struct tcp_sock *tp = tcp_sk(sk);
3292 	struct sk_buff *buff;
3293 	int err;
3294 
3295 	tcp_connect_init(sk);
3296 
3297 	if (unlikely(tp->repair)) {
3298 		tcp_finish_connect(sk, NULL);
3299 		return 0;
3300 	}
3301 
3302 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3303 	if (unlikely(!buff))
3304 		return -ENOBUFS;
3305 
3306 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3307 	tp->retrans_stamp = tcp_time_stamp;
3308 	tcp_connect_queue_skb(sk, buff);
3309 	tcp_ecn_send_syn(sk, buff);
3310 
3311 	/* Send off SYN; include data in Fast Open. */
3312 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3313 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3314 	if (err == -ECONNREFUSED)
3315 		return err;
3316 
3317 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3318 	 * in order to make this packet get counted in tcpOutSegs.
3319 	 */
3320 	tp->snd_nxt = tp->write_seq;
3321 	tp->pushed_seq = tp->write_seq;
3322 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3323 
3324 	/* Timer for repeating the SYN until an answer. */
3325 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3326 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3327 	return 0;
3328 }
3329 EXPORT_SYMBOL(tcp_connect);
3330 
3331 /* Send out a delayed ack, the caller does the policy checking
3332  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3333  * for details.
3334  */
3335 void tcp_send_delayed_ack(struct sock *sk)
3336 {
3337 	struct inet_connection_sock *icsk = inet_csk(sk);
3338 	int ato = icsk->icsk_ack.ato;
3339 	unsigned long timeout;
3340 
3341 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3342 
3343 	if (ato > TCP_DELACK_MIN) {
3344 		const struct tcp_sock *tp = tcp_sk(sk);
3345 		int max_ato = HZ / 2;
3346 
3347 		if (icsk->icsk_ack.pingpong ||
3348 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3349 			max_ato = TCP_DELACK_MAX;
3350 
3351 		/* Slow path, intersegment interval is "high". */
3352 
3353 		/* If some rtt estimate is known, use it to bound delayed ack.
3354 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3355 		 * directly.
3356 		 */
3357 		if (tp->srtt_us) {
3358 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3359 					TCP_DELACK_MIN);
3360 
3361 			if (rtt < max_ato)
3362 				max_ato = rtt;
3363 		}
3364 
3365 		ato = min(ato, max_ato);
3366 	}
3367 
3368 	/* Stay within the limit we were given */
3369 	timeout = jiffies + ato;
3370 
3371 	/* Use new timeout only if there wasn't a older one earlier. */
3372 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3373 		/* If delack timer was blocked or is about to expire,
3374 		 * send ACK now.
3375 		 */
3376 		if (icsk->icsk_ack.blocked ||
3377 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3378 			tcp_send_ack(sk);
3379 			return;
3380 		}
3381 
3382 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3383 			timeout = icsk->icsk_ack.timeout;
3384 	}
3385 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3386 	icsk->icsk_ack.timeout = timeout;
3387 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3388 }
3389 
3390 /* This routine sends an ack and also updates the window. */
3391 void tcp_send_ack(struct sock *sk)
3392 {
3393 	struct sk_buff *buff;
3394 
3395 	/* If we have been reset, we may not send again. */
3396 	if (sk->sk_state == TCP_CLOSE)
3397 		return;
3398 
3399 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3400 
3401 	/* We are not putting this on the write queue, so
3402 	 * tcp_transmit_skb() will set the ownership to this
3403 	 * sock.
3404 	 */
3405 	buff = alloc_skb(MAX_TCP_HEADER,
3406 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3407 	if (unlikely(!buff)) {
3408 		inet_csk_schedule_ack(sk);
3409 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3410 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3411 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3412 		return;
3413 	}
3414 
3415 	/* Reserve space for headers and prepare control bits. */
3416 	skb_reserve(buff, MAX_TCP_HEADER);
3417 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3418 
3419 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3420 	 * too much.
3421 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3422 	 * We also avoid tcp_wfree() overhead (cache line miss accessing
3423 	 * tp->tsq_flags) by using regular sock_wfree()
3424 	 */
3425 	skb_set_tcp_pure_ack(buff);
3426 
3427 	/* Send it off, this clears delayed acks for us. */
3428 	skb_mstamp_get(&buff->skb_mstamp);
3429 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3430 }
3431 EXPORT_SYMBOL_GPL(tcp_send_ack);
3432 
3433 /* This routine sends a packet with an out of date sequence
3434  * number. It assumes the other end will try to ack it.
3435  *
3436  * Question: what should we make while urgent mode?
3437  * 4.4BSD forces sending single byte of data. We cannot send
3438  * out of window data, because we have SND.NXT==SND.MAX...
3439  *
3440  * Current solution: to send TWO zero-length segments in urgent mode:
3441  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3442  * out-of-date with SND.UNA-1 to probe window.
3443  */
3444 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3445 {
3446 	struct tcp_sock *tp = tcp_sk(sk);
3447 	struct sk_buff *skb;
3448 
3449 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3450 	skb = alloc_skb(MAX_TCP_HEADER,
3451 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3452 	if (!skb)
3453 		return -1;
3454 
3455 	/* Reserve space for headers and set control bits. */
3456 	skb_reserve(skb, MAX_TCP_HEADER);
3457 	/* Use a previous sequence.  This should cause the other
3458 	 * end to send an ack.  Don't queue or clone SKB, just
3459 	 * send it.
3460 	 */
3461 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3462 	skb_mstamp_get(&skb->skb_mstamp);
3463 	NET_INC_STATS(sock_net(sk), mib);
3464 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3465 }
3466 
3467 void tcp_send_window_probe(struct sock *sk)
3468 {
3469 	if (sk->sk_state == TCP_ESTABLISHED) {
3470 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3471 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3472 	}
3473 }
3474 
3475 /* Initiate keepalive or window probe from timer. */
3476 int tcp_write_wakeup(struct sock *sk, int mib)
3477 {
3478 	struct tcp_sock *tp = tcp_sk(sk);
3479 	struct sk_buff *skb;
3480 
3481 	if (sk->sk_state == TCP_CLOSE)
3482 		return -1;
3483 
3484 	skb = tcp_send_head(sk);
3485 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3486 		int err;
3487 		unsigned int mss = tcp_current_mss(sk);
3488 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3489 
3490 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3491 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3492 
3493 		/* We are probing the opening of a window
3494 		 * but the window size is != 0
3495 		 * must have been a result SWS avoidance ( sender )
3496 		 */
3497 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3498 		    skb->len > mss) {
3499 			seg_size = min(seg_size, mss);
3500 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3501 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3502 				return -1;
3503 		} else if (!tcp_skb_pcount(skb))
3504 			tcp_set_skb_tso_segs(skb, mss);
3505 
3506 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3507 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3508 		if (!err)
3509 			tcp_event_new_data_sent(sk, skb);
3510 		return err;
3511 	} else {
3512 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3513 			tcp_xmit_probe_skb(sk, 1, mib);
3514 		return tcp_xmit_probe_skb(sk, 0, mib);
3515 	}
3516 }
3517 
3518 /* A window probe timeout has occurred.  If window is not closed send
3519  * a partial packet else a zero probe.
3520  */
3521 void tcp_send_probe0(struct sock *sk)
3522 {
3523 	struct inet_connection_sock *icsk = inet_csk(sk);
3524 	struct tcp_sock *tp = tcp_sk(sk);
3525 	struct net *net = sock_net(sk);
3526 	unsigned long probe_max;
3527 	int err;
3528 
3529 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3530 
3531 	if (tp->packets_out || !tcp_send_head(sk)) {
3532 		/* Cancel probe timer, if it is not required. */
3533 		icsk->icsk_probes_out = 0;
3534 		icsk->icsk_backoff = 0;
3535 		return;
3536 	}
3537 
3538 	if (err <= 0) {
3539 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3540 			icsk->icsk_backoff++;
3541 		icsk->icsk_probes_out++;
3542 		probe_max = TCP_RTO_MAX;
3543 	} else {
3544 		/* If packet was not sent due to local congestion,
3545 		 * do not backoff and do not remember icsk_probes_out.
3546 		 * Let local senders to fight for local resources.
3547 		 *
3548 		 * Use accumulated backoff yet.
3549 		 */
3550 		if (!icsk->icsk_probes_out)
3551 			icsk->icsk_probes_out = 1;
3552 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3553 	}
3554 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3555 				  tcp_probe0_when(sk, probe_max),
3556 				  TCP_RTO_MAX);
3557 }
3558 
3559 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3560 {
3561 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3562 	struct flowi fl;
3563 	int res;
3564 
3565 	tcp_rsk(req)->txhash = net_tx_rndhash();
3566 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3567 	if (!res) {
3568 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3569 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3570 	}
3571 	return res;
3572 }
3573 EXPORT_SYMBOL(tcp_rtx_synack);
3574