1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 66 int push_one, gfp_t gfp); 67 68 /* Account for new data that has been sent to the network. */ 69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 70 { 71 struct inet_connection_sock *icsk = inet_csk(sk); 72 struct tcp_sock *tp = tcp_sk(sk); 73 unsigned int prior_packets = tp->packets_out; 74 75 tcp_advance_send_head(sk, skb); 76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 80 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 81 tcp_rearm_rto(sk); 82 } 83 84 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 85 tcp_skb_pcount(skb)); 86 } 87 88 /* SND.NXT, if window was not shrunk. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 99 return tp->snd_nxt; 100 else 101 return tcp_wnd_end(tp); 102 } 103 104 /* Calculate mss to advertise in SYN segment. 105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 106 * 107 * 1. It is independent of path mtu. 108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 110 * attached devices, because some buggy hosts are confused by 111 * large MSS. 112 * 4. We do not make 3, we advertise MSS, calculated from first 113 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 114 * This may be overridden via information stored in routing table. 115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 116 * probably even Jumbo". 117 */ 118 static __u16 tcp_advertise_mss(struct sock *sk) 119 { 120 struct tcp_sock *tp = tcp_sk(sk); 121 const struct dst_entry *dst = __sk_dst_get(sk); 122 int mss = tp->advmss; 123 124 if (dst) { 125 unsigned int metric = dst_metric_advmss(dst); 126 127 if (metric < mss) { 128 mss = metric; 129 tp->advmss = mss; 130 } 131 } 132 133 return (__u16)mss; 134 } 135 136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 137 * This is the first part of cwnd validation mechanism. 138 */ 139 void tcp_cwnd_restart(struct sock *sk, s32 delta) 140 { 141 struct tcp_sock *tp = tcp_sk(sk); 142 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 143 u32 cwnd = tp->snd_cwnd; 144 145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 146 147 tp->snd_ssthresh = tcp_current_ssthresh(sk); 148 restart_cwnd = min(restart_cwnd, cwnd); 149 150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 151 cwnd >>= 1; 152 tp->snd_cwnd = max(cwnd, restart_cwnd); 153 tp->snd_cwnd_stamp = tcp_time_stamp; 154 tp->snd_cwnd_used = 0; 155 } 156 157 /* Congestion state accounting after a packet has been sent. */ 158 static void tcp_event_data_sent(struct tcp_sock *tp, 159 struct sock *sk) 160 { 161 struct inet_connection_sock *icsk = inet_csk(sk); 162 const u32 now = tcp_time_stamp; 163 164 if (tcp_packets_in_flight(tp) == 0) 165 tcp_ca_event(sk, CA_EVENT_TX_START); 166 167 tp->lsndtime = now; 168 169 /* If it is a reply for ato after last received 170 * packet, enter pingpong mode. 171 */ 172 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 173 icsk->icsk_ack.pingpong = 1; 174 } 175 176 /* Account for an ACK we sent. */ 177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 178 { 179 tcp_dec_quickack_mode(sk, pkts); 180 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 181 } 182 183 184 u32 tcp_default_init_rwnd(u32 mss) 185 { 186 /* Initial receive window should be twice of TCP_INIT_CWND to 187 * enable proper sending of new unsent data during fast recovery 188 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 189 * limit when mss is larger than 1460. 190 */ 191 u32 init_rwnd = TCP_INIT_CWND * 2; 192 193 if (mss > 1460) 194 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 195 return init_rwnd; 196 } 197 198 /* Determine a window scaling and initial window to offer. 199 * Based on the assumption that the given amount of space 200 * will be offered. Store the results in the tp structure. 201 * NOTE: for smooth operation initial space offering should 202 * be a multiple of mss if possible. We assume here that mss >= 1. 203 * This MUST be enforced by all callers. 204 */ 205 void tcp_select_initial_window(int __space, __u32 mss, 206 __u32 *rcv_wnd, __u32 *window_clamp, 207 int wscale_ok, __u8 *rcv_wscale, 208 __u32 init_rcv_wnd) 209 { 210 unsigned int space = (__space < 0 ? 0 : __space); 211 212 /* If no clamp set the clamp to the max possible scaled window */ 213 if (*window_clamp == 0) 214 (*window_clamp) = (65535 << 14); 215 space = min(*window_clamp, space); 216 217 /* Quantize space offering to a multiple of mss if possible. */ 218 if (space > mss) 219 space = (space / mss) * mss; 220 221 /* NOTE: offering an initial window larger than 32767 222 * will break some buggy TCP stacks. If the admin tells us 223 * it is likely we could be speaking with such a buggy stack 224 * we will truncate our initial window offering to 32K-1 225 * unless the remote has sent us a window scaling option, 226 * which we interpret as a sign the remote TCP is not 227 * misinterpreting the window field as a signed quantity. 228 */ 229 if (sysctl_tcp_workaround_signed_windows) 230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 231 else 232 (*rcv_wnd) = space; 233 234 (*rcv_wscale) = 0; 235 if (wscale_ok) { 236 /* Set window scaling on max possible window 237 * See RFC1323 for an explanation of the limit to 14 238 */ 239 space = max_t(u32, space, sysctl_tcp_rmem[2]); 240 space = max_t(u32, space, sysctl_rmem_max); 241 space = min_t(u32, space, *window_clamp); 242 while (space > 65535 && (*rcv_wscale) < 14) { 243 space >>= 1; 244 (*rcv_wscale)++; 245 } 246 } 247 248 if (mss > (1 << *rcv_wscale)) { 249 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 250 init_rcv_wnd = tcp_default_init_rwnd(mss); 251 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 252 } 253 254 /* Set the clamp no higher than max representable value */ 255 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 256 } 257 EXPORT_SYMBOL(tcp_select_initial_window); 258 259 /* Chose a new window to advertise, update state in tcp_sock for the 260 * socket, and return result with RFC1323 scaling applied. The return 261 * value can be stuffed directly into th->window for an outgoing 262 * frame. 263 */ 264 static u16 tcp_select_window(struct sock *sk) 265 { 266 struct tcp_sock *tp = tcp_sk(sk); 267 u32 old_win = tp->rcv_wnd; 268 u32 cur_win = tcp_receive_window(tp); 269 u32 new_win = __tcp_select_window(sk); 270 271 /* Never shrink the offered window */ 272 if (new_win < cur_win) { 273 /* Danger Will Robinson! 274 * Don't update rcv_wup/rcv_wnd here or else 275 * we will not be able to advertise a zero 276 * window in time. --DaveM 277 * 278 * Relax Will Robinson. 279 */ 280 if (new_win == 0) 281 NET_INC_STATS(sock_net(sk), 282 LINUX_MIB_TCPWANTZEROWINDOWADV); 283 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 284 } 285 tp->rcv_wnd = new_win; 286 tp->rcv_wup = tp->rcv_nxt; 287 288 /* Make sure we do not exceed the maximum possible 289 * scaled window. 290 */ 291 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 292 new_win = min(new_win, MAX_TCP_WINDOW); 293 else 294 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 295 296 /* RFC1323 scaling applied */ 297 new_win >>= tp->rx_opt.rcv_wscale; 298 299 /* If we advertise zero window, disable fast path. */ 300 if (new_win == 0) { 301 tp->pred_flags = 0; 302 if (old_win) 303 NET_INC_STATS(sock_net(sk), 304 LINUX_MIB_TCPTOZEROWINDOWADV); 305 } else if (old_win == 0) { 306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 307 } 308 309 return new_win; 310 } 311 312 /* Packet ECN state for a SYN-ACK */ 313 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 314 { 315 const struct tcp_sock *tp = tcp_sk(sk); 316 317 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 318 if (!(tp->ecn_flags & TCP_ECN_OK)) 319 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 320 else if (tcp_ca_needs_ecn(sk)) 321 INET_ECN_xmit(sk); 322 } 323 324 /* Packet ECN state for a SYN. */ 325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 326 { 327 struct tcp_sock *tp = tcp_sk(sk); 328 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 329 tcp_ca_needs_ecn(sk); 330 331 if (!use_ecn) { 332 const struct dst_entry *dst = __sk_dst_get(sk); 333 334 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 335 use_ecn = true; 336 } 337 338 tp->ecn_flags = 0; 339 340 if (use_ecn) { 341 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 342 tp->ecn_flags = TCP_ECN_OK; 343 if (tcp_ca_needs_ecn(sk)) 344 INET_ECN_xmit(sk); 345 } 346 } 347 348 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 349 { 350 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 351 /* tp->ecn_flags are cleared at a later point in time when 352 * SYN ACK is ultimatively being received. 353 */ 354 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 355 } 356 357 static void 358 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 359 { 360 if (inet_rsk(req)->ecn_ok) 361 th->ece = 1; 362 } 363 364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 365 * be sent. 366 */ 367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 368 struct tcphdr *th, int tcp_header_len) 369 { 370 struct tcp_sock *tp = tcp_sk(sk); 371 372 if (tp->ecn_flags & TCP_ECN_OK) { 373 /* Not-retransmitted data segment: set ECT and inject CWR. */ 374 if (skb->len != tcp_header_len && 375 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 376 INET_ECN_xmit(sk); 377 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 378 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 379 th->cwr = 1; 380 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 381 } 382 } else if (!tcp_ca_needs_ecn(sk)) { 383 /* ACK or retransmitted segment: clear ECT|CE */ 384 INET_ECN_dontxmit(sk); 385 } 386 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 387 th->ece = 1; 388 } 389 } 390 391 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 392 * auto increment end seqno. 393 */ 394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 395 { 396 skb->ip_summed = CHECKSUM_PARTIAL; 397 skb->csum = 0; 398 399 TCP_SKB_CB(skb)->tcp_flags = flags; 400 TCP_SKB_CB(skb)->sacked = 0; 401 402 tcp_skb_pcount_set(skb, 1); 403 404 TCP_SKB_CB(skb)->seq = seq; 405 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 406 seq++; 407 TCP_SKB_CB(skb)->end_seq = seq; 408 } 409 410 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 411 { 412 return tp->snd_una != tp->snd_up; 413 } 414 415 #define OPTION_SACK_ADVERTISE (1 << 0) 416 #define OPTION_TS (1 << 1) 417 #define OPTION_MD5 (1 << 2) 418 #define OPTION_WSCALE (1 << 3) 419 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 420 421 struct tcp_out_options { 422 u16 options; /* bit field of OPTION_* */ 423 u16 mss; /* 0 to disable */ 424 u8 ws; /* window scale, 0 to disable */ 425 u8 num_sack_blocks; /* number of SACK blocks to include */ 426 u8 hash_size; /* bytes in hash_location */ 427 __u8 *hash_location; /* temporary pointer, overloaded */ 428 __u32 tsval, tsecr; /* need to include OPTION_TS */ 429 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 430 }; 431 432 /* Write previously computed TCP options to the packet. 433 * 434 * Beware: Something in the Internet is very sensitive to the ordering of 435 * TCP options, we learned this through the hard way, so be careful here. 436 * Luckily we can at least blame others for their non-compliance but from 437 * inter-operability perspective it seems that we're somewhat stuck with 438 * the ordering which we have been using if we want to keep working with 439 * those broken things (not that it currently hurts anybody as there isn't 440 * particular reason why the ordering would need to be changed). 441 * 442 * At least SACK_PERM as the first option is known to lead to a disaster 443 * (but it may well be that other scenarios fail similarly). 444 */ 445 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 446 struct tcp_out_options *opts) 447 { 448 u16 options = opts->options; /* mungable copy */ 449 450 if (unlikely(OPTION_MD5 & options)) { 451 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 452 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 453 /* overload cookie hash location */ 454 opts->hash_location = (__u8 *)ptr; 455 ptr += 4; 456 } 457 458 if (unlikely(opts->mss)) { 459 *ptr++ = htonl((TCPOPT_MSS << 24) | 460 (TCPOLEN_MSS << 16) | 461 opts->mss); 462 } 463 464 if (likely(OPTION_TS & options)) { 465 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 466 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 467 (TCPOLEN_SACK_PERM << 16) | 468 (TCPOPT_TIMESTAMP << 8) | 469 TCPOLEN_TIMESTAMP); 470 options &= ~OPTION_SACK_ADVERTISE; 471 } else { 472 *ptr++ = htonl((TCPOPT_NOP << 24) | 473 (TCPOPT_NOP << 16) | 474 (TCPOPT_TIMESTAMP << 8) | 475 TCPOLEN_TIMESTAMP); 476 } 477 *ptr++ = htonl(opts->tsval); 478 *ptr++ = htonl(opts->tsecr); 479 } 480 481 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 482 *ptr++ = htonl((TCPOPT_NOP << 24) | 483 (TCPOPT_NOP << 16) | 484 (TCPOPT_SACK_PERM << 8) | 485 TCPOLEN_SACK_PERM); 486 } 487 488 if (unlikely(OPTION_WSCALE & options)) { 489 *ptr++ = htonl((TCPOPT_NOP << 24) | 490 (TCPOPT_WINDOW << 16) | 491 (TCPOLEN_WINDOW << 8) | 492 opts->ws); 493 } 494 495 if (unlikely(opts->num_sack_blocks)) { 496 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 497 tp->duplicate_sack : tp->selective_acks; 498 int this_sack; 499 500 *ptr++ = htonl((TCPOPT_NOP << 24) | 501 (TCPOPT_NOP << 16) | 502 (TCPOPT_SACK << 8) | 503 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 504 TCPOLEN_SACK_PERBLOCK))); 505 506 for (this_sack = 0; this_sack < opts->num_sack_blocks; 507 ++this_sack) { 508 *ptr++ = htonl(sp[this_sack].start_seq); 509 *ptr++ = htonl(sp[this_sack].end_seq); 510 } 511 512 tp->rx_opt.dsack = 0; 513 } 514 515 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 516 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 517 u8 *p = (u8 *)ptr; 518 u32 len; /* Fast Open option length */ 519 520 if (foc->exp) { 521 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 522 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 523 TCPOPT_FASTOPEN_MAGIC); 524 p += TCPOLEN_EXP_FASTOPEN_BASE; 525 } else { 526 len = TCPOLEN_FASTOPEN_BASE + foc->len; 527 *p++ = TCPOPT_FASTOPEN; 528 *p++ = len; 529 } 530 531 memcpy(p, foc->val, foc->len); 532 if ((len & 3) == 2) { 533 p[foc->len] = TCPOPT_NOP; 534 p[foc->len + 1] = TCPOPT_NOP; 535 } 536 ptr += (len + 3) >> 2; 537 } 538 } 539 540 /* Compute TCP options for SYN packets. This is not the final 541 * network wire format yet. 542 */ 543 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 544 struct tcp_out_options *opts, 545 struct tcp_md5sig_key **md5) 546 { 547 struct tcp_sock *tp = tcp_sk(sk); 548 unsigned int remaining = MAX_TCP_OPTION_SPACE; 549 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 550 551 #ifdef CONFIG_TCP_MD5SIG 552 *md5 = tp->af_specific->md5_lookup(sk, sk); 553 if (*md5) { 554 opts->options |= OPTION_MD5; 555 remaining -= TCPOLEN_MD5SIG_ALIGNED; 556 } 557 #else 558 *md5 = NULL; 559 #endif 560 561 /* We always get an MSS option. The option bytes which will be seen in 562 * normal data packets should timestamps be used, must be in the MSS 563 * advertised. But we subtract them from tp->mss_cache so that 564 * calculations in tcp_sendmsg are simpler etc. So account for this 565 * fact here if necessary. If we don't do this correctly, as a 566 * receiver we won't recognize data packets as being full sized when we 567 * should, and thus we won't abide by the delayed ACK rules correctly. 568 * SACKs don't matter, we never delay an ACK when we have any of those 569 * going out. */ 570 opts->mss = tcp_advertise_mss(sk); 571 remaining -= TCPOLEN_MSS_ALIGNED; 572 573 if (likely(sysctl_tcp_timestamps && !*md5)) { 574 opts->options |= OPTION_TS; 575 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 576 opts->tsecr = tp->rx_opt.ts_recent; 577 remaining -= TCPOLEN_TSTAMP_ALIGNED; 578 } 579 if (likely(sysctl_tcp_window_scaling)) { 580 opts->ws = tp->rx_opt.rcv_wscale; 581 opts->options |= OPTION_WSCALE; 582 remaining -= TCPOLEN_WSCALE_ALIGNED; 583 } 584 if (likely(sysctl_tcp_sack)) { 585 opts->options |= OPTION_SACK_ADVERTISE; 586 if (unlikely(!(OPTION_TS & opts->options))) 587 remaining -= TCPOLEN_SACKPERM_ALIGNED; 588 } 589 590 if (fastopen && fastopen->cookie.len >= 0) { 591 u32 need = fastopen->cookie.len; 592 593 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 594 TCPOLEN_FASTOPEN_BASE; 595 need = (need + 3) & ~3U; /* Align to 32 bits */ 596 if (remaining >= need) { 597 opts->options |= OPTION_FAST_OPEN_COOKIE; 598 opts->fastopen_cookie = &fastopen->cookie; 599 remaining -= need; 600 tp->syn_fastopen = 1; 601 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 602 } 603 } 604 605 return MAX_TCP_OPTION_SPACE - remaining; 606 } 607 608 /* Set up TCP options for SYN-ACKs. */ 609 static unsigned int tcp_synack_options(struct request_sock *req, 610 unsigned int mss, struct sk_buff *skb, 611 struct tcp_out_options *opts, 612 const struct tcp_md5sig_key *md5, 613 struct tcp_fastopen_cookie *foc) 614 { 615 struct inet_request_sock *ireq = inet_rsk(req); 616 unsigned int remaining = MAX_TCP_OPTION_SPACE; 617 618 #ifdef CONFIG_TCP_MD5SIG 619 if (md5) { 620 opts->options |= OPTION_MD5; 621 remaining -= TCPOLEN_MD5SIG_ALIGNED; 622 623 /* We can't fit any SACK blocks in a packet with MD5 + TS 624 * options. There was discussion about disabling SACK 625 * rather than TS in order to fit in better with old, 626 * buggy kernels, but that was deemed to be unnecessary. 627 */ 628 ireq->tstamp_ok &= !ireq->sack_ok; 629 } 630 #endif 631 632 /* We always send an MSS option. */ 633 opts->mss = mss; 634 remaining -= TCPOLEN_MSS_ALIGNED; 635 636 if (likely(ireq->wscale_ok)) { 637 opts->ws = ireq->rcv_wscale; 638 opts->options |= OPTION_WSCALE; 639 remaining -= TCPOLEN_WSCALE_ALIGNED; 640 } 641 if (likely(ireq->tstamp_ok)) { 642 opts->options |= OPTION_TS; 643 opts->tsval = tcp_skb_timestamp(skb); 644 opts->tsecr = req->ts_recent; 645 remaining -= TCPOLEN_TSTAMP_ALIGNED; 646 } 647 if (likely(ireq->sack_ok)) { 648 opts->options |= OPTION_SACK_ADVERTISE; 649 if (unlikely(!ireq->tstamp_ok)) 650 remaining -= TCPOLEN_SACKPERM_ALIGNED; 651 } 652 if (foc != NULL && foc->len >= 0) { 653 u32 need = foc->len; 654 655 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 656 TCPOLEN_FASTOPEN_BASE; 657 need = (need + 3) & ~3U; /* Align to 32 bits */ 658 if (remaining >= need) { 659 opts->options |= OPTION_FAST_OPEN_COOKIE; 660 opts->fastopen_cookie = foc; 661 remaining -= need; 662 } 663 } 664 665 return MAX_TCP_OPTION_SPACE - remaining; 666 } 667 668 /* Compute TCP options for ESTABLISHED sockets. This is not the 669 * final wire format yet. 670 */ 671 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 672 struct tcp_out_options *opts, 673 struct tcp_md5sig_key **md5) 674 { 675 struct tcp_sock *tp = tcp_sk(sk); 676 unsigned int size = 0; 677 unsigned int eff_sacks; 678 679 opts->options = 0; 680 681 #ifdef CONFIG_TCP_MD5SIG 682 *md5 = tp->af_specific->md5_lookup(sk, sk); 683 if (unlikely(*md5)) { 684 opts->options |= OPTION_MD5; 685 size += TCPOLEN_MD5SIG_ALIGNED; 686 } 687 #else 688 *md5 = NULL; 689 #endif 690 691 if (likely(tp->rx_opt.tstamp_ok)) { 692 opts->options |= OPTION_TS; 693 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 694 opts->tsecr = tp->rx_opt.ts_recent; 695 size += TCPOLEN_TSTAMP_ALIGNED; 696 } 697 698 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 699 if (unlikely(eff_sacks)) { 700 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 701 opts->num_sack_blocks = 702 min_t(unsigned int, eff_sacks, 703 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 704 TCPOLEN_SACK_PERBLOCK); 705 size += TCPOLEN_SACK_BASE_ALIGNED + 706 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 707 } 708 709 return size; 710 } 711 712 713 /* TCP SMALL QUEUES (TSQ) 714 * 715 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 716 * to reduce RTT and bufferbloat. 717 * We do this using a special skb destructor (tcp_wfree). 718 * 719 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 720 * needs to be reallocated in a driver. 721 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 722 * 723 * Since transmit from skb destructor is forbidden, we use a tasklet 724 * to process all sockets that eventually need to send more skbs. 725 * We use one tasklet per cpu, with its own queue of sockets. 726 */ 727 struct tsq_tasklet { 728 struct tasklet_struct tasklet; 729 struct list_head head; /* queue of tcp sockets */ 730 }; 731 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 732 733 static void tcp_tsq_handler(struct sock *sk) 734 { 735 if ((1 << sk->sk_state) & 736 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 737 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 738 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle, 739 0, GFP_ATOMIC); 740 } 741 /* 742 * One tasklet per cpu tries to send more skbs. 743 * We run in tasklet context but need to disable irqs when 744 * transferring tsq->head because tcp_wfree() might 745 * interrupt us (non NAPI drivers) 746 */ 747 static void tcp_tasklet_func(unsigned long data) 748 { 749 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 750 LIST_HEAD(list); 751 unsigned long flags; 752 struct list_head *q, *n; 753 struct tcp_sock *tp; 754 struct sock *sk; 755 756 local_irq_save(flags); 757 list_splice_init(&tsq->head, &list); 758 local_irq_restore(flags); 759 760 list_for_each_safe(q, n, &list) { 761 tp = list_entry(q, struct tcp_sock, tsq_node); 762 list_del(&tp->tsq_node); 763 764 sk = (struct sock *)tp; 765 bh_lock_sock(sk); 766 767 if (!sock_owned_by_user(sk)) { 768 tcp_tsq_handler(sk); 769 } else { 770 /* defer the work to tcp_release_cb() */ 771 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 772 } 773 bh_unlock_sock(sk); 774 775 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 776 sk_free(sk); 777 } 778 } 779 780 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 781 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 782 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 783 (1UL << TCP_MTU_REDUCED_DEFERRED)) 784 /** 785 * tcp_release_cb - tcp release_sock() callback 786 * @sk: socket 787 * 788 * called from release_sock() to perform protocol dependent 789 * actions before socket release. 790 */ 791 void tcp_release_cb(struct sock *sk) 792 { 793 struct tcp_sock *tp = tcp_sk(sk); 794 unsigned long flags, nflags; 795 796 /* perform an atomic operation only if at least one flag is set */ 797 do { 798 flags = tp->tsq_flags; 799 if (!(flags & TCP_DEFERRED_ALL)) 800 return; 801 nflags = flags & ~TCP_DEFERRED_ALL; 802 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 803 804 if (flags & (1UL << TCP_TSQ_DEFERRED)) 805 tcp_tsq_handler(sk); 806 807 /* Here begins the tricky part : 808 * We are called from release_sock() with : 809 * 1) BH disabled 810 * 2) sk_lock.slock spinlock held 811 * 3) socket owned by us (sk->sk_lock.owned == 1) 812 * 813 * But following code is meant to be called from BH handlers, 814 * so we should keep BH disabled, but early release socket ownership 815 */ 816 sock_release_ownership(sk); 817 818 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 819 tcp_write_timer_handler(sk); 820 __sock_put(sk); 821 } 822 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 823 tcp_delack_timer_handler(sk); 824 __sock_put(sk); 825 } 826 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 827 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 828 __sock_put(sk); 829 } 830 } 831 EXPORT_SYMBOL(tcp_release_cb); 832 833 void __init tcp_tasklet_init(void) 834 { 835 int i; 836 837 for_each_possible_cpu(i) { 838 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 839 840 INIT_LIST_HEAD(&tsq->head); 841 tasklet_init(&tsq->tasklet, 842 tcp_tasklet_func, 843 (unsigned long)tsq); 844 } 845 } 846 847 /* 848 * Write buffer destructor automatically called from kfree_skb. 849 * We can't xmit new skbs from this context, as we might already 850 * hold qdisc lock. 851 */ 852 void tcp_wfree(struct sk_buff *skb) 853 { 854 struct sock *sk = skb->sk; 855 struct tcp_sock *tp = tcp_sk(sk); 856 int wmem; 857 858 /* Keep one reference on sk_wmem_alloc. 859 * Will be released by sk_free() from here or tcp_tasklet_func() 860 */ 861 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 862 863 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 864 * Wait until our queues (qdisc + devices) are drained. 865 * This gives : 866 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 867 * - chance for incoming ACK (processed by another cpu maybe) 868 * to migrate this flow (skb->ooo_okay will be eventually set) 869 */ 870 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 871 goto out; 872 873 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 874 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 875 unsigned long flags; 876 struct tsq_tasklet *tsq; 877 878 /* queue this socket to tasklet queue */ 879 local_irq_save(flags); 880 tsq = this_cpu_ptr(&tsq_tasklet); 881 list_add(&tp->tsq_node, &tsq->head); 882 tasklet_schedule(&tsq->tasklet); 883 local_irq_restore(flags); 884 return; 885 } 886 out: 887 sk_free(sk); 888 } 889 890 /* This routine actually transmits TCP packets queued in by 891 * tcp_do_sendmsg(). This is used by both the initial 892 * transmission and possible later retransmissions. 893 * All SKB's seen here are completely headerless. It is our 894 * job to build the TCP header, and pass the packet down to 895 * IP so it can do the same plus pass the packet off to the 896 * device. 897 * 898 * We are working here with either a clone of the original 899 * SKB, or a fresh unique copy made by the retransmit engine. 900 */ 901 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 902 gfp_t gfp_mask) 903 { 904 const struct inet_connection_sock *icsk = inet_csk(sk); 905 struct inet_sock *inet; 906 struct tcp_sock *tp; 907 struct tcp_skb_cb *tcb; 908 struct tcp_out_options opts; 909 unsigned int tcp_options_size, tcp_header_size; 910 struct tcp_md5sig_key *md5; 911 struct tcphdr *th; 912 int err; 913 914 BUG_ON(!skb || !tcp_skb_pcount(skb)); 915 tp = tcp_sk(sk); 916 917 if (clone_it) { 918 skb_mstamp_get(&skb->skb_mstamp); 919 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 920 - tp->snd_una; 921 922 if (unlikely(skb_cloned(skb))) 923 skb = pskb_copy(skb, gfp_mask); 924 else 925 skb = skb_clone(skb, gfp_mask); 926 if (unlikely(!skb)) 927 return -ENOBUFS; 928 } 929 930 inet = inet_sk(sk); 931 tcb = TCP_SKB_CB(skb); 932 memset(&opts, 0, sizeof(opts)); 933 934 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 935 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 936 else 937 tcp_options_size = tcp_established_options(sk, skb, &opts, 938 &md5); 939 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 940 941 /* if no packet is in qdisc/device queue, then allow XPS to select 942 * another queue. We can be called from tcp_tsq_handler() 943 * which holds one reference to sk_wmem_alloc. 944 * 945 * TODO: Ideally, in-flight pure ACK packets should not matter here. 946 * One way to get this would be to set skb->truesize = 2 on them. 947 */ 948 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 949 950 skb_push(skb, tcp_header_size); 951 skb_reset_transport_header(skb); 952 953 skb_orphan(skb); 954 skb->sk = sk; 955 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 956 skb_set_hash_from_sk(skb, sk); 957 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 958 959 /* Build TCP header and checksum it. */ 960 th = (struct tcphdr *)skb->data; 961 th->source = inet->inet_sport; 962 th->dest = inet->inet_dport; 963 th->seq = htonl(tcb->seq); 964 th->ack_seq = htonl(tp->rcv_nxt); 965 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 966 tcb->tcp_flags); 967 968 th->check = 0; 969 th->urg_ptr = 0; 970 971 /* The urg_mode check is necessary during a below snd_una win probe */ 972 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 973 if (before(tp->snd_up, tcb->seq + 0x10000)) { 974 th->urg_ptr = htons(tp->snd_up - tcb->seq); 975 th->urg = 1; 976 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 977 th->urg_ptr = htons(0xFFFF); 978 th->urg = 1; 979 } 980 } 981 982 tcp_options_write((__be32 *)(th + 1), tp, &opts); 983 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 984 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 985 th->window = htons(tcp_select_window(sk)); 986 tcp_ecn_send(sk, skb, th, tcp_header_size); 987 } else { 988 /* RFC1323: The window in SYN & SYN/ACK segments 989 * is never scaled. 990 */ 991 th->window = htons(min(tp->rcv_wnd, 65535U)); 992 } 993 #ifdef CONFIG_TCP_MD5SIG 994 /* Calculate the MD5 hash, as we have all we need now */ 995 if (md5) { 996 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 997 tp->af_specific->calc_md5_hash(opts.hash_location, 998 md5, sk, skb); 999 } 1000 #endif 1001 1002 icsk->icsk_af_ops->send_check(sk, skb); 1003 1004 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1005 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1006 1007 if (skb->len != tcp_header_size) { 1008 tcp_event_data_sent(tp, sk); 1009 tp->data_segs_out += tcp_skb_pcount(skb); 1010 } 1011 1012 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1013 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1014 tcp_skb_pcount(skb)); 1015 1016 tp->segs_out += tcp_skb_pcount(skb); 1017 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1018 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1019 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1020 1021 /* Our usage of tstamp should remain private */ 1022 skb->tstamp.tv64 = 0; 1023 1024 /* Cleanup our debris for IP stacks */ 1025 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1026 sizeof(struct inet6_skb_parm))); 1027 1028 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1029 1030 if (likely(err <= 0)) 1031 return err; 1032 1033 tcp_enter_cwr(sk); 1034 1035 return net_xmit_eval(err); 1036 } 1037 1038 /* This routine just queues the buffer for sending. 1039 * 1040 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1041 * otherwise socket can stall. 1042 */ 1043 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1044 { 1045 struct tcp_sock *tp = tcp_sk(sk); 1046 1047 /* Advance write_seq and place onto the write_queue. */ 1048 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1049 __skb_header_release(skb); 1050 tcp_add_write_queue_tail(sk, skb); 1051 sk->sk_wmem_queued += skb->truesize; 1052 sk_mem_charge(sk, skb->truesize); 1053 } 1054 1055 /* Initialize TSO segments for a packet. */ 1056 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1057 { 1058 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1059 /* Avoid the costly divide in the normal 1060 * non-TSO case. 1061 */ 1062 tcp_skb_pcount_set(skb, 1); 1063 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1064 } else { 1065 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1066 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1067 } 1068 } 1069 1070 /* When a modification to fackets out becomes necessary, we need to check 1071 * skb is counted to fackets_out or not. 1072 */ 1073 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1074 int decr) 1075 { 1076 struct tcp_sock *tp = tcp_sk(sk); 1077 1078 if (!tp->sacked_out || tcp_is_reno(tp)) 1079 return; 1080 1081 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1082 tp->fackets_out -= decr; 1083 } 1084 1085 /* Pcount in the middle of the write queue got changed, we need to do various 1086 * tweaks to fix counters 1087 */ 1088 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1089 { 1090 struct tcp_sock *tp = tcp_sk(sk); 1091 1092 tp->packets_out -= decr; 1093 1094 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1095 tp->sacked_out -= decr; 1096 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1097 tp->retrans_out -= decr; 1098 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1099 tp->lost_out -= decr; 1100 1101 /* Reno case is special. Sigh... */ 1102 if (tcp_is_reno(tp) && decr > 0) 1103 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1104 1105 tcp_adjust_fackets_out(sk, skb, decr); 1106 1107 if (tp->lost_skb_hint && 1108 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1109 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1110 tp->lost_cnt_hint -= decr; 1111 1112 tcp_verify_left_out(tp); 1113 } 1114 1115 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1116 { 1117 return TCP_SKB_CB(skb)->txstamp_ack || 1118 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1119 } 1120 1121 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1122 { 1123 struct skb_shared_info *shinfo = skb_shinfo(skb); 1124 1125 if (unlikely(tcp_has_tx_tstamp(skb)) && 1126 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1127 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1128 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1129 1130 shinfo->tx_flags &= ~tsflags; 1131 shinfo2->tx_flags |= tsflags; 1132 swap(shinfo->tskey, shinfo2->tskey); 1133 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1134 TCP_SKB_CB(skb)->txstamp_ack = 0; 1135 } 1136 } 1137 1138 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1139 { 1140 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1141 TCP_SKB_CB(skb)->eor = 0; 1142 } 1143 1144 /* Function to create two new TCP segments. Shrinks the given segment 1145 * to the specified size and appends a new segment with the rest of the 1146 * packet to the list. This won't be called frequently, I hope. 1147 * Remember, these are still headerless SKBs at this point. 1148 */ 1149 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1150 unsigned int mss_now, gfp_t gfp) 1151 { 1152 struct tcp_sock *tp = tcp_sk(sk); 1153 struct sk_buff *buff; 1154 int nsize, old_factor; 1155 int nlen; 1156 u8 flags; 1157 1158 if (WARN_ON(len > skb->len)) 1159 return -EINVAL; 1160 1161 nsize = skb_headlen(skb) - len; 1162 if (nsize < 0) 1163 nsize = 0; 1164 1165 if (skb_unclone(skb, gfp)) 1166 return -ENOMEM; 1167 1168 /* Get a new skb... force flag on. */ 1169 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1170 if (!buff) 1171 return -ENOMEM; /* We'll just try again later. */ 1172 1173 sk->sk_wmem_queued += buff->truesize; 1174 sk_mem_charge(sk, buff->truesize); 1175 nlen = skb->len - len - nsize; 1176 buff->truesize += nlen; 1177 skb->truesize -= nlen; 1178 1179 /* Correct the sequence numbers. */ 1180 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1181 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1182 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1183 1184 /* PSH and FIN should only be set in the second packet. */ 1185 flags = TCP_SKB_CB(skb)->tcp_flags; 1186 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1187 TCP_SKB_CB(buff)->tcp_flags = flags; 1188 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1189 tcp_skb_fragment_eor(skb, buff); 1190 1191 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1192 /* Copy and checksum data tail into the new buffer. */ 1193 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1194 skb_put(buff, nsize), 1195 nsize, 0); 1196 1197 skb_trim(skb, len); 1198 1199 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1200 } else { 1201 skb->ip_summed = CHECKSUM_PARTIAL; 1202 skb_split(skb, buff, len); 1203 } 1204 1205 buff->ip_summed = skb->ip_summed; 1206 1207 buff->tstamp = skb->tstamp; 1208 tcp_fragment_tstamp(skb, buff); 1209 1210 old_factor = tcp_skb_pcount(skb); 1211 1212 /* Fix up tso_factor for both original and new SKB. */ 1213 tcp_set_skb_tso_segs(skb, mss_now); 1214 tcp_set_skb_tso_segs(buff, mss_now); 1215 1216 /* If this packet has been sent out already, we must 1217 * adjust the various packet counters. 1218 */ 1219 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1220 int diff = old_factor - tcp_skb_pcount(skb) - 1221 tcp_skb_pcount(buff); 1222 1223 if (diff) 1224 tcp_adjust_pcount(sk, skb, diff); 1225 } 1226 1227 /* Link BUFF into the send queue. */ 1228 __skb_header_release(buff); 1229 tcp_insert_write_queue_after(skb, buff, sk); 1230 1231 return 0; 1232 } 1233 1234 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1235 * eventually). The difference is that pulled data not copied, but 1236 * immediately discarded. 1237 */ 1238 static void __pskb_trim_head(struct sk_buff *skb, int len) 1239 { 1240 struct skb_shared_info *shinfo; 1241 int i, k, eat; 1242 1243 eat = min_t(int, len, skb_headlen(skb)); 1244 if (eat) { 1245 __skb_pull(skb, eat); 1246 len -= eat; 1247 if (!len) 1248 return; 1249 } 1250 eat = len; 1251 k = 0; 1252 shinfo = skb_shinfo(skb); 1253 for (i = 0; i < shinfo->nr_frags; i++) { 1254 int size = skb_frag_size(&shinfo->frags[i]); 1255 1256 if (size <= eat) { 1257 skb_frag_unref(skb, i); 1258 eat -= size; 1259 } else { 1260 shinfo->frags[k] = shinfo->frags[i]; 1261 if (eat) { 1262 shinfo->frags[k].page_offset += eat; 1263 skb_frag_size_sub(&shinfo->frags[k], eat); 1264 eat = 0; 1265 } 1266 k++; 1267 } 1268 } 1269 shinfo->nr_frags = k; 1270 1271 skb_reset_tail_pointer(skb); 1272 skb->data_len -= len; 1273 skb->len = skb->data_len; 1274 } 1275 1276 /* Remove acked data from a packet in the transmit queue. */ 1277 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1278 { 1279 if (skb_unclone(skb, GFP_ATOMIC)) 1280 return -ENOMEM; 1281 1282 __pskb_trim_head(skb, len); 1283 1284 TCP_SKB_CB(skb)->seq += len; 1285 skb->ip_summed = CHECKSUM_PARTIAL; 1286 1287 skb->truesize -= len; 1288 sk->sk_wmem_queued -= len; 1289 sk_mem_uncharge(sk, len); 1290 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1291 1292 /* Any change of skb->len requires recalculation of tso factor. */ 1293 if (tcp_skb_pcount(skb) > 1) 1294 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1295 1296 return 0; 1297 } 1298 1299 /* Calculate MSS not accounting any TCP options. */ 1300 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1301 { 1302 const struct tcp_sock *tp = tcp_sk(sk); 1303 const struct inet_connection_sock *icsk = inet_csk(sk); 1304 int mss_now; 1305 1306 /* Calculate base mss without TCP options: 1307 It is MMS_S - sizeof(tcphdr) of rfc1122 1308 */ 1309 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1310 1311 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1312 if (icsk->icsk_af_ops->net_frag_header_len) { 1313 const struct dst_entry *dst = __sk_dst_get(sk); 1314 1315 if (dst && dst_allfrag(dst)) 1316 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1317 } 1318 1319 /* Clamp it (mss_clamp does not include tcp options) */ 1320 if (mss_now > tp->rx_opt.mss_clamp) 1321 mss_now = tp->rx_opt.mss_clamp; 1322 1323 /* Now subtract optional transport overhead */ 1324 mss_now -= icsk->icsk_ext_hdr_len; 1325 1326 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1327 if (mss_now < 48) 1328 mss_now = 48; 1329 return mss_now; 1330 } 1331 1332 /* Calculate MSS. Not accounting for SACKs here. */ 1333 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1334 { 1335 /* Subtract TCP options size, not including SACKs */ 1336 return __tcp_mtu_to_mss(sk, pmtu) - 1337 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1338 } 1339 1340 /* Inverse of above */ 1341 int tcp_mss_to_mtu(struct sock *sk, int mss) 1342 { 1343 const struct tcp_sock *tp = tcp_sk(sk); 1344 const struct inet_connection_sock *icsk = inet_csk(sk); 1345 int mtu; 1346 1347 mtu = mss + 1348 tp->tcp_header_len + 1349 icsk->icsk_ext_hdr_len + 1350 icsk->icsk_af_ops->net_header_len; 1351 1352 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1353 if (icsk->icsk_af_ops->net_frag_header_len) { 1354 const struct dst_entry *dst = __sk_dst_get(sk); 1355 1356 if (dst && dst_allfrag(dst)) 1357 mtu += icsk->icsk_af_ops->net_frag_header_len; 1358 } 1359 return mtu; 1360 } 1361 1362 /* MTU probing init per socket */ 1363 void tcp_mtup_init(struct sock *sk) 1364 { 1365 struct tcp_sock *tp = tcp_sk(sk); 1366 struct inet_connection_sock *icsk = inet_csk(sk); 1367 struct net *net = sock_net(sk); 1368 1369 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1370 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1371 icsk->icsk_af_ops->net_header_len; 1372 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1373 icsk->icsk_mtup.probe_size = 0; 1374 if (icsk->icsk_mtup.enabled) 1375 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1376 } 1377 EXPORT_SYMBOL(tcp_mtup_init); 1378 1379 /* This function synchronize snd mss to current pmtu/exthdr set. 1380 1381 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1382 for TCP options, but includes only bare TCP header. 1383 1384 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1385 It is minimum of user_mss and mss received with SYN. 1386 It also does not include TCP options. 1387 1388 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1389 1390 tp->mss_cache is current effective sending mss, including 1391 all tcp options except for SACKs. It is evaluated, 1392 taking into account current pmtu, but never exceeds 1393 tp->rx_opt.mss_clamp. 1394 1395 NOTE1. rfc1122 clearly states that advertised MSS 1396 DOES NOT include either tcp or ip options. 1397 1398 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1399 are READ ONLY outside this function. --ANK (980731) 1400 */ 1401 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1402 { 1403 struct tcp_sock *tp = tcp_sk(sk); 1404 struct inet_connection_sock *icsk = inet_csk(sk); 1405 int mss_now; 1406 1407 if (icsk->icsk_mtup.search_high > pmtu) 1408 icsk->icsk_mtup.search_high = pmtu; 1409 1410 mss_now = tcp_mtu_to_mss(sk, pmtu); 1411 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1412 1413 /* And store cached results */ 1414 icsk->icsk_pmtu_cookie = pmtu; 1415 if (icsk->icsk_mtup.enabled) 1416 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1417 tp->mss_cache = mss_now; 1418 1419 return mss_now; 1420 } 1421 EXPORT_SYMBOL(tcp_sync_mss); 1422 1423 /* Compute the current effective MSS, taking SACKs and IP options, 1424 * and even PMTU discovery events into account. 1425 */ 1426 unsigned int tcp_current_mss(struct sock *sk) 1427 { 1428 const struct tcp_sock *tp = tcp_sk(sk); 1429 const struct dst_entry *dst = __sk_dst_get(sk); 1430 u32 mss_now; 1431 unsigned int header_len; 1432 struct tcp_out_options opts; 1433 struct tcp_md5sig_key *md5; 1434 1435 mss_now = tp->mss_cache; 1436 1437 if (dst) { 1438 u32 mtu = dst_mtu(dst); 1439 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1440 mss_now = tcp_sync_mss(sk, mtu); 1441 } 1442 1443 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1444 sizeof(struct tcphdr); 1445 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1446 * some common options. If this is an odd packet (because we have SACK 1447 * blocks etc) then our calculated header_len will be different, and 1448 * we have to adjust mss_now correspondingly */ 1449 if (header_len != tp->tcp_header_len) { 1450 int delta = (int) header_len - tp->tcp_header_len; 1451 mss_now -= delta; 1452 } 1453 1454 return mss_now; 1455 } 1456 1457 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1458 * As additional protections, we do not touch cwnd in retransmission phases, 1459 * and if application hit its sndbuf limit recently. 1460 */ 1461 static void tcp_cwnd_application_limited(struct sock *sk) 1462 { 1463 struct tcp_sock *tp = tcp_sk(sk); 1464 1465 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1466 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1467 /* Limited by application or receiver window. */ 1468 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1469 u32 win_used = max(tp->snd_cwnd_used, init_win); 1470 if (win_used < tp->snd_cwnd) { 1471 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1472 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1473 } 1474 tp->snd_cwnd_used = 0; 1475 } 1476 tp->snd_cwnd_stamp = tcp_time_stamp; 1477 } 1478 1479 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1480 { 1481 struct tcp_sock *tp = tcp_sk(sk); 1482 1483 /* Track the maximum number of outstanding packets in each 1484 * window, and remember whether we were cwnd-limited then. 1485 */ 1486 if (!before(tp->snd_una, tp->max_packets_seq) || 1487 tp->packets_out > tp->max_packets_out) { 1488 tp->max_packets_out = tp->packets_out; 1489 tp->max_packets_seq = tp->snd_nxt; 1490 tp->is_cwnd_limited = is_cwnd_limited; 1491 } 1492 1493 if (tcp_is_cwnd_limited(sk)) { 1494 /* Network is feed fully. */ 1495 tp->snd_cwnd_used = 0; 1496 tp->snd_cwnd_stamp = tcp_time_stamp; 1497 } else { 1498 /* Network starves. */ 1499 if (tp->packets_out > tp->snd_cwnd_used) 1500 tp->snd_cwnd_used = tp->packets_out; 1501 1502 if (sysctl_tcp_slow_start_after_idle && 1503 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1504 tcp_cwnd_application_limited(sk); 1505 } 1506 } 1507 1508 /* Minshall's variant of the Nagle send check. */ 1509 static bool tcp_minshall_check(const struct tcp_sock *tp) 1510 { 1511 return after(tp->snd_sml, tp->snd_una) && 1512 !after(tp->snd_sml, tp->snd_nxt); 1513 } 1514 1515 /* Update snd_sml if this skb is under mss 1516 * Note that a TSO packet might end with a sub-mss segment 1517 * The test is really : 1518 * if ((skb->len % mss) != 0) 1519 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1520 * But we can avoid doing the divide again given we already have 1521 * skb_pcount = skb->len / mss_now 1522 */ 1523 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1524 const struct sk_buff *skb) 1525 { 1526 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1527 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1528 } 1529 1530 /* Return false, if packet can be sent now without violation Nagle's rules: 1531 * 1. It is full sized. (provided by caller in %partial bool) 1532 * 2. Or it contains FIN. (already checked by caller) 1533 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1534 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1535 * With Minshall's modification: all sent small packets are ACKed. 1536 */ 1537 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1538 int nonagle) 1539 { 1540 return partial && 1541 ((nonagle & TCP_NAGLE_CORK) || 1542 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1543 } 1544 1545 /* Return how many segs we'd like on a TSO packet, 1546 * to send one TSO packet per ms 1547 */ 1548 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now) 1549 { 1550 u32 bytes, segs; 1551 1552 bytes = min(sk->sk_pacing_rate >> 10, 1553 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1554 1555 /* Goal is to send at least one packet per ms, 1556 * not one big TSO packet every 100 ms. 1557 * This preserves ACK clocking and is consistent 1558 * with tcp_tso_should_defer() heuristic. 1559 */ 1560 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs); 1561 1562 return min_t(u32, segs, sk->sk_gso_max_segs); 1563 } 1564 1565 /* Returns the portion of skb which can be sent right away */ 1566 static unsigned int tcp_mss_split_point(const struct sock *sk, 1567 const struct sk_buff *skb, 1568 unsigned int mss_now, 1569 unsigned int max_segs, 1570 int nonagle) 1571 { 1572 const struct tcp_sock *tp = tcp_sk(sk); 1573 u32 partial, needed, window, max_len; 1574 1575 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1576 max_len = mss_now * max_segs; 1577 1578 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1579 return max_len; 1580 1581 needed = min(skb->len, window); 1582 1583 if (max_len <= needed) 1584 return max_len; 1585 1586 partial = needed % mss_now; 1587 /* If last segment is not a full MSS, check if Nagle rules allow us 1588 * to include this last segment in this skb. 1589 * Otherwise, we'll split the skb at last MSS boundary 1590 */ 1591 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1592 return needed - partial; 1593 1594 return needed; 1595 } 1596 1597 /* Can at least one segment of SKB be sent right now, according to the 1598 * congestion window rules? If so, return how many segments are allowed. 1599 */ 1600 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1601 const struct sk_buff *skb) 1602 { 1603 u32 in_flight, cwnd, halfcwnd; 1604 1605 /* Don't be strict about the congestion window for the final FIN. */ 1606 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1607 tcp_skb_pcount(skb) == 1) 1608 return 1; 1609 1610 in_flight = tcp_packets_in_flight(tp); 1611 cwnd = tp->snd_cwnd; 1612 if (in_flight >= cwnd) 1613 return 0; 1614 1615 /* For better scheduling, ensure we have at least 1616 * 2 GSO packets in flight. 1617 */ 1618 halfcwnd = max(cwnd >> 1, 1U); 1619 return min(halfcwnd, cwnd - in_flight); 1620 } 1621 1622 /* Initialize TSO state of a skb. 1623 * This must be invoked the first time we consider transmitting 1624 * SKB onto the wire. 1625 */ 1626 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1627 { 1628 int tso_segs = tcp_skb_pcount(skb); 1629 1630 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1631 tcp_set_skb_tso_segs(skb, mss_now); 1632 tso_segs = tcp_skb_pcount(skb); 1633 } 1634 return tso_segs; 1635 } 1636 1637 1638 /* Return true if the Nagle test allows this packet to be 1639 * sent now. 1640 */ 1641 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1642 unsigned int cur_mss, int nonagle) 1643 { 1644 /* Nagle rule does not apply to frames, which sit in the middle of the 1645 * write_queue (they have no chances to get new data). 1646 * 1647 * This is implemented in the callers, where they modify the 'nonagle' 1648 * argument based upon the location of SKB in the send queue. 1649 */ 1650 if (nonagle & TCP_NAGLE_PUSH) 1651 return true; 1652 1653 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1654 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1655 return true; 1656 1657 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1658 return true; 1659 1660 return false; 1661 } 1662 1663 /* Does at least the first segment of SKB fit into the send window? */ 1664 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1665 const struct sk_buff *skb, 1666 unsigned int cur_mss) 1667 { 1668 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1669 1670 if (skb->len > cur_mss) 1671 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1672 1673 return !after(end_seq, tcp_wnd_end(tp)); 1674 } 1675 1676 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1677 * should be put on the wire right now. If so, it returns the number of 1678 * packets allowed by the congestion window. 1679 */ 1680 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1681 unsigned int cur_mss, int nonagle) 1682 { 1683 const struct tcp_sock *tp = tcp_sk(sk); 1684 unsigned int cwnd_quota; 1685 1686 tcp_init_tso_segs(skb, cur_mss); 1687 1688 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1689 return 0; 1690 1691 cwnd_quota = tcp_cwnd_test(tp, skb); 1692 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1693 cwnd_quota = 0; 1694 1695 return cwnd_quota; 1696 } 1697 1698 /* Test if sending is allowed right now. */ 1699 bool tcp_may_send_now(struct sock *sk) 1700 { 1701 const struct tcp_sock *tp = tcp_sk(sk); 1702 struct sk_buff *skb = tcp_send_head(sk); 1703 1704 return skb && 1705 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1706 (tcp_skb_is_last(sk, skb) ? 1707 tp->nonagle : TCP_NAGLE_PUSH)); 1708 } 1709 1710 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1711 * which is put after SKB on the list. It is very much like 1712 * tcp_fragment() except that it may make several kinds of assumptions 1713 * in order to speed up the splitting operation. In particular, we 1714 * know that all the data is in scatter-gather pages, and that the 1715 * packet has never been sent out before (and thus is not cloned). 1716 */ 1717 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1718 unsigned int mss_now, gfp_t gfp) 1719 { 1720 struct sk_buff *buff; 1721 int nlen = skb->len - len; 1722 u8 flags; 1723 1724 /* All of a TSO frame must be composed of paged data. */ 1725 if (skb->len != skb->data_len) 1726 return tcp_fragment(sk, skb, len, mss_now, gfp); 1727 1728 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1729 if (unlikely(!buff)) 1730 return -ENOMEM; 1731 1732 sk->sk_wmem_queued += buff->truesize; 1733 sk_mem_charge(sk, buff->truesize); 1734 buff->truesize += nlen; 1735 skb->truesize -= nlen; 1736 1737 /* Correct the sequence numbers. */ 1738 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1739 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1740 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1741 1742 /* PSH and FIN should only be set in the second packet. */ 1743 flags = TCP_SKB_CB(skb)->tcp_flags; 1744 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1745 TCP_SKB_CB(buff)->tcp_flags = flags; 1746 1747 /* This packet was never sent out yet, so no SACK bits. */ 1748 TCP_SKB_CB(buff)->sacked = 0; 1749 1750 tcp_skb_fragment_eor(skb, buff); 1751 1752 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1753 skb_split(skb, buff, len); 1754 tcp_fragment_tstamp(skb, buff); 1755 1756 /* Fix up tso_factor for both original and new SKB. */ 1757 tcp_set_skb_tso_segs(skb, mss_now); 1758 tcp_set_skb_tso_segs(buff, mss_now); 1759 1760 /* Link BUFF into the send queue. */ 1761 __skb_header_release(buff); 1762 tcp_insert_write_queue_after(skb, buff, sk); 1763 1764 return 0; 1765 } 1766 1767 /* Try to defer sending, if possible, in order to minimize the amount 1768 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1769 * 1770 * This algorithm is from John Heffner. 1771 */ 1772 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1773 bool *is_cwnd_limited, u32 max_segs) 1774 { 1775 const struct inet_connection_sock *icsk = inet_csk(sk); 1776 u32 age, send_win, cong_win, limit, in_flight; 1777 struct tcp_sock *tp = tcp_sk(sk); 1778 struct skb_mstamp now; 1779 struct sk_buff *head; 1780 int win_divisor; 1781 1782 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1783 goto send_now; 1784 1785 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1786 goto send_now; 1787 1788 /* Avoid bursty behavior by allowing defer 1789 * only if the last write was recent. 1790 */ 1791 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0) 1792 goto send_now; 1793 1794 in_flight = tcp_packets_in_flight(tp); 1795 1796 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1797 1798 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1799 1800 /* From in_flight test above, we know that cwnd > in_flight. */ 1801 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1802 1803 limit = min(send_win, cong_win); 1804 1805 /* If a full-sized TSO skb can be sent, do it. */ 1806 if (limit >= max_segs * tp->mss_cache) 1807 goto send_now; 1808 1809 /* Middle in queue won't get any more data, full sendable already? */ 1810 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1811 goto send_now; 1812 1813 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1814 if (win_divisor) { 1815 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1816 1817 /* If at least some fraction of a window is available, 1818 * just use it. 1819 */ 1820 chunk /= win_divisor; 1821 if (limit >= chunk) 1822 goto send_now; 1823 } else { 1824 /* Different approach, try not to defer past a single 1825 * ACK. Receiver should ACK every other full sized 1826 * frame, so if we have space for more than 3 frames 1827 * then send now. 1828 */ 1829 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1830 goto send_now; 1831 } 1832 1833 head = tcp_write_queue_head(sk); 1834 skb_mstamp_get(&now); 1835 age = skb_mstamp_us_delta(&now, &head->skb_mstamp); 1836 /* If next ACK is likely to come too late (half srtt), do not defer */ 1837 if (age < (tp->srtt_us >> 4)) 1838 goto send_now; 1839 1840 /* Ok, it looks like it is advisable to defer. */ 1841 1842 if (cong_win < send_win && cong_win <= skb->len) 1843 *is_cwnd_limited = true; 1844 1845 return true; 1846 1847 send_now: 1848 return false; 1849 } 1850 1851 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1852 { 1853 struct inet_connection_sock *icsk = inet_csk(sk); 1854 struct tcp_sock *tp = tcp_sk(sk); 1855 struct net *net = sock_net(sk); 1856 u32 interval; 1857 s32 delta; 1858 1859 interval = net->ipv4.sysctl_tcp_probe_interval; 1860 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp; 1861 if (unlikely(delta >= interval * HZ)) { 1862 int mss = tcp_current_mss(sk); 1863 1864 /* Update current search range */ 1865 icsk->icsk_mtup.probe_size = 0; 1866 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1867 sizeof(struct tcphdr) + 1868 icsk->icsk_af_ops->net_header_len; 1869 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1870 1871 /* Update probe time stamp */ 1872 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1873 } 1874 } 1875 1876 /* Create a new MTU probe if we are ready. 1877 * MTU probe is regularly attempting to increase the path MTU by 1878 * deliberately sending larger packets. This discovers routing 1879 * changes resulting in larger path MTUs. 1880 * 1881 * Returns 0 if we should wait to probe (no cwnd available), 1882 * 1 if a probe was sent, 1883 * -1 otherwise 1884 */ 1885 static int tcp_mtu_probe(struct sock *sk) 1886 { 1887 struct tcp_sock *tp = tcp_sk(sk); 1888 struct inet_connection_sock *icsk = inet_csk(sk); 1889 struct sk_buff *skb, *nskb, *next; 1890 struct net *net = sock_net(sk); 1891 int len; 1892 int probe_size; 1893 int size_needed; 1894 int copy; 1895 int mss_now; 1896 int interval; 1897 1898 /* Not currently probing/verifying, 1899 * not in recovery, 1900 * have enough cwnd, and 1901 * not SACKing (the variable headers throw things off) */ 1902 if (!icsk->icsk_mtup.enabled || 1903 icsk->icsk_mtup.probe_size || 1904 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1905 tp->snd_cwnd < 11 || 1906 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1907 return -1; 1908 1909 /* Use binary search for probe_size between tcp_mss_base, 1910 * and current mss_clamp. if (search_high - search_low) 1911 * smaller than a threshold, backoff from probing. 1912 */ 1913 mss_now = tcp_current_mss(sk); 1914 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 1915 icsk->icsk_mtup.search_low) >> 1); 1916 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1917 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 1918 /* When misfortune happens, we are reprobing actively, 1919 * and then reprobe timer has expired. We stick with current 1920 * probing process by not resetting search range to its orignal. 1921 */ 1922 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 1923 interval < net->ipv4.sysctl_tcp_probe_threshold) { 1924 /* Check whether enough time has elaplased for 1925 * another round of probing. 1926 */ 1927 tcp_mtu_check_reprobe(sk); 1928 return -1; 1929 } 1930 1931 /* Have enough data in the send queue to probe? */ 1932 if (tp->write_seq - tp->snd_nxt < size_needed) 1933 return -1; 1934 1935 if (tp->snd_wnd < size_needed) 1936 return -1; 1937 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1938 return 0; 1939 1940 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1941 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1942 if (!tcp_packets_in_flight(tp)) 1943 return -1; 1944 else 1945 return 0; 1946 } 1947 1948 /* We're allowed to probe. Build it now. */ 1949 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 1950 if (!nskb) 1951 return -1; 1952 sk->sk_wmem_queued += nskb->truesize; 1953 sk_mem_charge(sk, nskb->truesize); 1954 1955 skb = tcp_send_head(sk); 1956 1957 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1958 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1959 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1960 TCP_SKB_CB(nskb)->sacked = 0; 1961 nskb->csum = 0; 1962 nskb->ip_summed = skb->ip_summed; 1963 1964 tcp_insert_write_queue_before(nskb, skb, sk); 1965 1966 len = 0; 1967 tcp_for_write_queue_from_safe(skb, next, sk) { 1968 copy = min_t(int, skb->len, probe_size - len); 1969 if (nskb->ip_summed) 1970 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1971 else 1972 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1973 skb_put(nskb, copy), 1974 copy, nskb->csum); 1975 1976 if (skb->len <= copy) { 1977 /* We've eaten all the data from this skb. 1978 * Throw it away. */ 1979 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1980 tcp_unlink_write_queue(skb, sk); 1981 sk_wmem_free_skb(sk, skb); 1982 } else { 1983 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1984 ~(TCPHDR_FIN|TCPHDR_PSH); 1985 if (!skb_shinfo(skb)->nr_frags) { 1986 skb_pull(skb, copy); 1987 if (skb->ip_summed != CHECKSUM_PARTIAL) 1988 skb->csum = csum_partial(skb->data, 1989 skb->len, 0); 1990 } else { 1991 __pskb_trim_head(skb, copy); 1992 tcp_set_skb_tso_segs(skb, mss_now); 1993 } 1994 TCP_SKB_CB(skb)->seq += copy; 1995 } 1996 1997 len += copy; 1998 1999 if (len >= probe_size) 2000 break; 2001 } 2002 tcp_init_tso_segs(nskb, nskb->len); 2003 2004 /* We're ready to send. If this fails, the probe will 2005 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2006 */ 2007 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2008 /* Decrement cwnd here because we are sending 2009 * effectively two packets. */ 2010 tp->snd_cwnd--; 2011 tcp_event_new_data_sent(sk, nskb); 2012 2013 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2014 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2015 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2016 2017 return 1; 2018 } 2019 2020 return -1; 2021 } 2022 2023 /* This routine writes packets to the network. It advances the 2024 * send_head. This happens as incoming acks open up the remote 2025 * window for us. 2026 * 2027 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2028 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2029 * account rare use of URG, this is not a big flaw. 2030 * 2031 * Send at most one packet when push_one > 0. Temporarily ignore 2032 * cwnd limit to force at most one packet out when push_one == 2. 2033 2034 * Returns true, if no segments are in flight and we have queued segments, 2035 * but cannot send anything now because of SWS or another problem. 2036 */ 2037 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2038 int push_one, gfp_t gfp) 2039 { 2040 struct tcp_sock *tp = tcp_sk(sk); 2041 struct sk_buff *skb; 2042 unsigned int tso_segs, sent_pkts; 2043 int cwnd_quota; 2044 int result; 2045 bool is_cwnd_limited = false; 2046 u32 max_segs; 2047 2048 sent_pkts = 0; 2049 2050 if (!push_one) { 2051 /* Do MTU probing. */ 2052 result = tcp_mtu_probe(sk); 2053 if (!result) { 2054 return false; 2055 } else if (result > 0) { 2056 sent_pkts = 1; 2057 } 2058 } 2059 2060 max_segs = tcp_tso_autosize(sk, mss_now); 2061 while ((skb = tcp_send_head(sk))) { 2062 unsigned int limit; 2063 2064 tso_segs = tcp_init_tso_segs(skb, mss_now); 2065 BUG_ON(!tso_segs); 2066 2067 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2068 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2069 skb_mstamp_get(&skb->skb_mstamp); 2070 goto repair; /* Skip network transmission */ 2071 } 2072 2073 cwnd_quota = tcp_cwnd_test(tp, skb); 2074 if (!cwnd_quota) { 2075 if (push_one == 2) 2076 /* Force out a loss probe pkt. */ 2077 cwnd_quota = 1; 2078 else 2079 break; 2080 } 2081 2082 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 2083 break; 2084 2085 if (tso_segs == 1) { 2086 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2087 (tcp_skb_is_last(sk, skb) ? 2088 nonagle : TCP_NAGLE_PUSH)))) 2089 break; 2090 } else { 2091 if (!push_one && 2092 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2093 max_segs)) 2094 break; 2095 } 2096 2097 limit = mss_now; 2098 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2099 limit = tcp_mss_split_point(sk, skb, mss_now, 2100 min_t(unsigned int, 2101 cwnd_quota, 2102 max_segs), 2103 nonagle); 2104 2105 if (skb->len > limit && 2106 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2107 break; 2108 2109 /* TCP Small Queues : 2110 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2111 * This allows for : 2112 * - better RTT estimation and ACK scheduling 2113 * - faster recovery 2114 * - high rates 2115 * Alas, some drivers / subsystems require a fair amount 2116 * of queued bytes to ensure line rate. 2117 * One example is wifi aggregation (802.11 AMPDU) 2118 */ 2119 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2120 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2121 2122 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2123 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 2124 /* It is possible TX completion already happened 2125 * before we set TSQ_THROTTLED, so we must 2126 * test again the condition. 2127 */ 2128 smp_mb__after_atomic(); 2129 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2130 break; 2131 } 2132 2133 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2134 break; 2135 2136 repair: 2137 /* Advance the send_head. This one is sent out. 2138 * This call will increment packets_out. 2139 */ 2140 tcp_event_new_data_sent(sk, skb); 2141 2142 tcp_minshall_update(tp, mss_now, skb); 2143 sent_pkts += tcp_skb_pcount(skb); 2144 2145 if (push_one) 2146 break; 2147 } 2148 2149 if (likely(sent_pkts)) { 2150 if (tcp_in_cwnd_reduction(sk)) 2151 tp->prr_out += sent_pkts; 2152 2153 /* Send one loss probe per tail loss episode. */ 2154 if (push_one != 2) 2155 tcp_schedule_loss_probe(sk); 2156 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2157 tcp_cwnd_validate(sk, is_cwnd_limited); 2158 return false; 2159 } 2160 return !tp->packets_out && tcp_send_head(sk); 2161 } 2162 2163 bool tcp_schedule_loss_probe(struct sock *sk) 2164 { 2165 struct inet_connection_sock *icsk = inet_csk(sk); 2166 struct tcp_sock *tp = tcp_sk(sk); 2167 u32 timeout, tlp_time_stamp, rto_time_stamp; 2168 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2169 2170 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 2171 return false; 2172 /* No consecutive loss probes. */ 2173 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2174 tcp_rearm_rto(sk); 2175 return false; 2176 } 2177 /* Don't do any loss probe on a Fast Open connection before 3WHS 2178 * finishes. 2179 */ 2180 if (tp->fastopen_rsk) 2181 return false; 2182 2183 /* TLP is only scheduled when next timer event is RTO. */ 2184 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2185 return false; 2186 2187 /* Schedule a loss probe in 2*RTT for SACK capable connections 2188 * in Open state, that are either limited by cwnd or application. 2189 */ 2190 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out || 2191 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2192 return false; 2193 2194 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2195 tcp_send_head(sk)) 2196 return false; 2197 2198 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2199 * for delayed ack when there's one outstanding packet. If no RTT 2200 * sample is available then probe after TCP_TIMEOUT_INIT. 2201 */ 2202 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT; 2203 if (tp->packets_out == 1) 2204 timeout = max_t(u32, timeout, 2205 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2206 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2207 2208 /* If RTO is shorter, just schedule TLP in its place. */ 2209 tlp_time_stamp = tcp_time_stamp + timeout; 2210 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2211 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2212 s32 delta = rto_time_stamp - tcp_time_stamp; 2213 if (delta > 0) 2214 timeout = delta; 2215 } 2216 2217 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2218 TCP_RTO_MAX); 2219 return true; 2220 } 2221 2222 /* Thanks to skb fast clones, we can detect if a prior transmit of 2223 * a packet is still in a qdisc or driver queue. 2224 * In this case, there is very little point doing a retransmit ! 2225 */ 2226 static bool skb_still_in_host_queue(const struct sock *sk, 2227 const struct sk_buff *skb) 2228 { 2229 if (unlikely(skb_fclone_busy(sk, skb))) { 2230 NET_INC_STATS(sock_net(sk), 2231 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2232 return true; 2233 } 2234 return false; 2235 } 2236 2237 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2238 * retransmit the last segment. 2239 */ 2240 void tcp_send_loss_probe(struct sock *sk) 2241 { 2242 struct tcp_sock *tp = tcp_sk(sk); 2243 struct sk_buff *skb; 2244 int pcount; 2245 int mss = tcp_current_mss(sk); 2246 2247 skb = tcp_send_head(sk); 2248 if (skb) { 2249 if (tcp_snd_wnd_test(tp, skb, mss)) { 2250 pcount = tp->packets_out; 2251 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2252 if (tp->packets_out > pcount) 2253 goto probe_sent; 2254 goto rearm_timer; 2255 } 2256 skb = tcp_write_queue_prev(sk, skb); 2257 } else { 2258 skb = tcp_write_queue_tail(sk); 2259 } 2260 2261 /* At most one outstanding TLP retransmission. */ 2262 if (tp->tlp_high_seq) 2263 goto rearm_timer; 2264 2265 /* Retransmit last segment. */ 2266 if (WARN_ON(!skb)) 2267 goto rearm_timer; 2268 2269 if (skb_still_in_host_queue(sk, skb)) 2270 goto rearm_timer; 2271 2272 pcount = tcp_skb_pcount(skb); 2273 if (WARN_ON(!pcount)) 2274 goto rearm_timer; 2275 2276 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2277 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2278 GFP_ATOMIC))) 2279 goto rearm_timer; 2280 skb = tcp_write_queue_next(sk, skb); 2281 } 2282 2283 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2284 goto rearm_timer; 2285 2286 if (__tcp_retransmit_skb(sk, skb, 1)) 2287 goto rearm_timer; 2288 2289 /* Record snd_nxt for loss detection. */ 2290 tp->tlp_high_seq = tp->snd_nxt; 2291 2292 probe_sent: 2293 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2294 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2295 inet_csk(sk)->icsk_pending = 0; 2296 rearm_timer: 2297 tcp_rearm_rto(sk); 2298 } 2299 2300 /* Push out any pending frames which were held back due to 2301 * TCP_CORK or attempt at coalescing tiny packets. 2302 * The socket must be locked by the caller. 2303 */ 2304 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2305 int nonagle) 2306 { 2307 /* If we are closed, the bytes will have to remain here. 2308 * In time closedown will finish, we empty the write queue and 2309 * all will be happy. 2310 */ 2311 if (unlikely(sk->sk_state == TCP_CLOSE)) 2312 return; 2313 2314 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2315 sk_gfp_mask(sk, GFP_ATOMIC))) 2316 tcp_check_probe_timer(sk); 2317 } 2318 2319 /* Send _single_ skb sitting at the send head. This function requires 2320 * true push pending frames to setup probe timer etc. 2321 */ 2322 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2323 { 2324 struct sk_buff *skb = tcp_send_head(sk); 2325 2326 BUG_ON(!skb || skb->len < mss_now); 2327 2328 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2329 } 2330 2331 /* This function returns the amount that we can raise the 2332 * usable window based on the following constraints 2333 * 2334 * 1. The window can never be shrunk once it is offered (RFC 793) 2335 * 2. We limit memory per socket 2336 * 2337 * RFC 1122: 2338 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2339 * RECV.NEXT + RCV.WIN fixed until: 2340 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2341 * 2342 * i.e. don't raise the right edge of the window until you can raise 2343 * it at least MSS bytes. 2344 * 2345 * Unfortunately, the recommended algorithm breaks header prediction, 2346 * since header prediction assumes th->window stays fixed. 2347 * 2348 * Strictly speaking, keeping th->window fixed violates the receiver 2349 * side SWS prevention criteria. The problem is that under this rule 2350 * a stream of single byte packets will cause the right side of the 2351 * window to always advance by a single byte. 2352 * 2353 * Of course, if the sender implements sender side SWS prevention 2354 * then this will not be a problem. 2355 * 2356 * BSD seems to make the following compromise: 2357 * 2358 * If the free space is less than the 1/4 of the maximum 2359 * space available and the free space is less than 1/2 mss, 2360 * then set the window to 0. 2361 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2362 * Otherwise, just prevent the window from shrinking 2363 * and from being larger than the largest representable value. 2364 * 2365 * This prevents incremental opening of the window in the regime 2366 * where TCP is limited by the speed of the reader side taking 2367 * data out of the TCP receive queue. It does nothing about 2368 * those cases where the window is constrained on the sender side 2369 * because the pipeline is full. 2370 * 2371 * BSD also seems to "accidentally" limit itself to windows that are a 2372 * multiple of MSS, at least until the free space gets quite small. 2373 * This would appear to be a side effect of the mbuf implementation. 2374 * Combining these two algorithms results in the observed behavior 2375 * of having a fixed window size at almost all times. 2376 * 2377 * Below we obtain similar behavior by forcing the offered window to 2378 * a multiple of the mss when it is feasible to do so. 2379 * 2380 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2381 * Regular options like TIMESTAMP are taken into account. 2382 */ 2383 u32 __tcp_select_window(struct sock *sk) 2384 { 2385 struct inet_connection_sock *icsk = inet_csk(sk); 2386 struct tcp_sock *tp = tcp_sk(sk); 2387 /* MSS for the peer's data. Previous versions used mss_clamp 2388 * here. I don't know if the value based on our guesses 2389 * of peer's MSS is better for the performance. It's more correct 2390 * but may be worse for the performance because of rcv_mss 2391 * fluctuations. --SAW 1998/11/1 2392 */ 2393 int mss = icsk->icsk_ack.rcv_mss; 2394 int free_space = tcp_space(sk); 2395 int allowed_space = tcp_full_space(sk); 2396 int full_space = min_t(int, tp->window_clamp, allowed_space); 2397 int window; 2398 2399 if (mss > full_space) 2400 mss = full_space; 2401 2402 if (free_space < (full_space >> 1)) { 2403 icsk->icsk_ack.quick = 0; 2404 2405 if (tcp_under_memory_pressure(sk)) 2406 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2407 4U * tp->advmss); 2408 2409 /* free_space might become our new window, make sure we don't 2410 * increase it due to wscale. 2411 */ 2412 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2413 2414 /* if free space is less than mss estimate, or is below 1/16th 2415 * of the maximum allowed, try to move to zero-window, else 2416 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2417 * new incoming data is dropped due to memory limits. 2418 * With large window, mss test triggers way too late in order 2419 * to announce zero window in time before rmem limit kicks in. 2420 */ 2421 if (free_space < (allowed_space >> 4) || free_space < mss) 2422 return 0; 2423 } 2424 2425 if (free_space > tp->rcv_ssthresh) 2426 free_space = tp->rcv_ssthresh; 2427 2428 /* Don't do rounding if we are using window scaling, since the 2429 * scaled window will not line up with the MSS boundary anyway. 2430 */ 2431 window = tp->rcv_wnd; 2432 if (tp->rx_opt.rcv_wscale) { 2433 window = free_space; 2434 2435 /* Advertise enough space so that it won't get scaled away. 2436 * Import case: prevent zero window announcement if 2437 * 1<<rcv_wscale > mss. 2438 */ 2439 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2440 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2441 << tp->rx_opt.rcv_wscale); 2442 } else { 2443 /* Get the largest window that is a nice multiple of mss. 2444 * Window clamp already applied above. 2445 * If our current window offering is within 1 mss of the 2446 * free space we just keep it. This prevents the divide 2447 * and multiply from happening most of the time. 2448 * We also don't do any window rounding when the free space 2449 * is too small. 2450 */ 2451 if (window <= free_space - mss || window > free_space) 2452 window = (free_space / mss) * mss; 2453 else if (mss == full_space && 2454 free_space > window + (full_space >> 1)) 2455 window = free_space; 2456 } 2457 2458 return window; 2459 } 2460 2461 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2462 const struct sk_buff *next_skb) 2463 { 2464 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2465 const struct skb_shared_info *next_shinfo = 2466 skb_shinfo(next_skb); 2467 struct skb_shared_info *shinfo = skb_shinfo(skb); 2468 2469 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2470 shinfo->tskey = next_shinfo->tskey; 2471 TCP_SKB_CB(skb)->txstamp_ack |= 2472 TCP_SKB_CB(next_skb)->txstamp_ack; 2473 } 2474 } 2475 2476 /* Collapses two adjacent SKB's during retransmission. */ 2477 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2478 { 2479 struct tcp_sock *tp = tcp_sk(sk); 2480 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2481 int skb_size, next_skb_size; 2482 2483 skb_size = skb->len; 2484 next_skb_size = next_skb->len; 2485 2486 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2487 2488 tcp_highest_sack_combine(sk, next_skb, skb); 2489 2490 tcp_unlink_write_queue(next_skb, sk); 2491 2492 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2493 next_skb_size); 2494 2495 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2496 skb->ip_summed = CHECKSUM_PARTIAL; 2497 2498 if (skb->ip_summed != CHECKSUM_PARTIAL) 2499 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2500 2501 /* Update sequence range on original skb. */ 2502 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2503 2504 /* Merge over control information. This moves PSH/FIN etc. over */ 2505 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2506 2507 /* All done, get rid of second SKB and account for it so 2508 * packet counting does not break. 2509 */ 2510 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2511 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2512 2513 /* changed transmit queue under us so clear hints */ 2514 tcp_clear_retrans_hints_partial(tp); 2515 if (next_skb == tp->retransmit_skb_hint) 2516 tp->retransmit_skb_hint = skb; 2517 2518 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2519 2520 tcp_skb_collapse_tstamp(skb, next_skb); 2521 2522 sk_wmem_free_skb(sk, next_skb); 2523 } 2524 2525 /* Check if coalescing SKBs is legal. */ 2526 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2527 { 2528 if (tcp_skb_pcount(skb) > 1) 2529 return false; 2530 /* TODO: SACK collapsing could be used to remove this condition */ 2531 if (skb_shinfo(skb)->nr_frags != 0) 2532 return false; 2533 if (skb_cloned(skb)) 2534 return false; 2535 if (skb == tcp_send_head(sk)) 2536 return false; 2537 /* Some heurestics for collapsing over SACK'd could be invented */ 2538 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2539 return false; 2540 2541 return true; 2542 } 2543 2544 /* Collapse packets in the retransmit queue to make to create 2545 * less packets on the wire. This is only done on retransmission. 2546 */ 2547 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2548 int space) 2549 { 2550 struct tcp_sock *tp = tcp_sk(sk); 2551 struct sk_buff *skb = to, *tmp; 2552 bool first = true; 2553 2554 if (!sysctl_tcp_retrans_collapse) 2555 return; 2556 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2557 return; 2558 2559 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2560 if (!tcp_can_collapse(sk, skb)) 2561 break; 2562 2563 if (!tcp_skb_can_collapse_to(to)) 2564 break; 2565 2566 space -= skb->len; 2567 2568 if (first) { 2569 first = false; 2570 continue; 2571 } 2572 2573 if (space < 0) 2574 break; 2575 /* Punt if not enough space exists in the first SKB for 2576 * the data in the second 2577 */ 2578 if (skb->len > skb_availroom(to)) 2579 break; 2580 2581 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2582 break; 2583 2584 tcp_collapse_retrans(sk, to); 2585 } 2586 } 2587 2588 /* This retransmits one SKB. Policy decisions and retransmit queue 2589 * state updates are done by the caller. Returns non-zero if an 2590 * error occurred which prevented the send. 2591 */ 2592 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2593 { 2594 struct inet_connection_sock *icsk = inet_csk(sk); 2595 struct tcp_sock *tp = tcp_sk(sk); 2596 unsigned int cur_mss; 2597 int diff, len, err; 2598 2599 2600 /* Inconclusive MTU probe */ 2601 if (icsk->icsk_mtup.probe_size) 2602 icsk->icsk_mtup.probe_size = 0; 2603 2604 /* Do not sent more than we queued. 1/4 is reserved for possible 2605 * copying overhead: fragmentation, tunneling, mangling etc. 2606 */ 2607 if (atomic_read(&sk->sk_wmem_alloc) > 2608 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2609 return -EAGAIN; 2610 2611 if (skb_still_in_host_queue(sk, skb)) 2612 return -EBUSY; 2613 2614 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2615 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2616 BUG(); 2617 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2618 return -ENOMEM; 2619 } 2620 2621 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2622 return -EHOSTUNREACH; /* Routing failure or similar. */ 2623 2624 cur_mss = tcp_current_mss(sk); 2625 2626 /* If receiver has shrunk his window, and skb is out of 2627 * new window, do not retransmit it. The exception is the 2628 * case, when window is shrunk to zero. In this case 2629 * our retransmit serves as a zero window probe. 2630 */ 2631 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2632 TCP_SKB_CB(skb)->seq != tp->snd_una) 2633 return -EAGAIN; 2634 2635 len = cur_mss * segs; 2636 if (skb->len > len) { 2637 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC)) 2638 return -ENOMEM; /* We'll try again later. */ 2639 } else { 2640 if (skb_unclone(skb, GFP_ATOMIC)) 2641 return -ENOMEM; 2642 2643 diff = tcp_skb_pcount(skb); 2644 tcp_set_skb_tso_segs(skb, cur_mss); 2645 diff -= tcp_skb_pcount(skb); 2646 if (diff) 2647 tcp_adjust_pcount(sk, skb, diff); 2648 if (skb->len < cur_mss) 2649 tcp_retrans_try_collapse(sk, skb, cur_mss); 2650 } 2651 2652 /* RFC3168, section 6.1.1.1. ECN fallback */ 2653 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2654 tcp_ecn_clear_syn(sk, skb); 2655 2656 /* make sure skb->data is aligned on arches that require it 2657 * and check if ack-trimming & collapsing extended the headroom 2658 * beyond what csum_start can cover. 2659 */ 2660 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2661 skb_headroom(skb) >= 0xFFFF)) { 2662 struct sk_buff *nskb; 2663 2664 skb_mstamp_get(&skb->skb_mstamp); 2665 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2666 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2667 -ENOBUFS; 2668 } else { 2669 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2670 } 2671 2672 if (likely(!err)) { 2673 segs = tcp_skb_pcount(skb); 2674 2675 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2676 /* Update global TCP statistics. */ 2677 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2678 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2679 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2680 tp->total_retrans += segs; 2681 } 2682 return err; 2683 } 2684 2685 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2686 { 2687 struct tcp_sock *tp = tcp_sk(sk); 2688 int err = __tcp_retransmit_skb(sk, skb, segs); 2689 2690 if (err == 0) { 2691 #if FASTRETRANS_DEBUG > 0 2692 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2693 net_dbg_ratelimited("retrans_out leaked\n"); 2694 } 2695 #endif 2696 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2697 tp->retrans_out += tcp_skb_pcount(skb); 2698 2699 /* Save stamp of the first retransmit. */ 2700 if (!tp->retrans_stamp) 2701 tp->retrans_stamp = tcp_skb_timestamp(skb); 2702 2703 } else if (err != -EBUSY) { 2704 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2705 } 2706 2707 if (tp->undo_retrans < 0) 2708 tp->undo_retrans = 0; 2709 tp->undo_retrans += tcp_skb_pcount(skb); 2710 return err; 2711 } 2712 2713 /* Check if we forward retransmits are possible in the current 2714 * window/congestion state. 2715 */ 2716 static bool tcp_can_forward_retransmit(struct sock *sk) 2717 { 2718 const struct inet_connection_sock *icsk = inet_csk(sk); 2719 const struct tcp_sock *tp = tcp_sk(sk); 2720 2721 /* Forward retransmissions are possible only during Recovery. */ 2722 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2723 return false; 2724 2725 /* No forward retransmissions in Reno are possible. */ 2726 if (tcp_is_reno(tp)) 2727 return false; 2728 2729 /* Yeah, we have to make difficult choice between forward transmission 2730 * and retransmission... Both ways have their merits... 2731 * 2732 * For now we do not retransmit anything, while we have some new 2733 * segments to send. In the other cases, follow rule 3 for 2734 * NextSeg() specified in RFC3517. 2735 */ 2736 2737 if (tcp_may_send_now(sk)) 2738 return false; 2739 2740 return true; 2741 } 2742 2743 /* This gets called after a retransmit timeout, and the initially 2744 * retransmitted data is acknowledged. It tries to continue 2745 * resending the rest of the retransmit queue, until either 2746 * we've sent it all or the congestion window limit is reached. 2747 * If doing SACK, the first ACK which comes back for a timeout 2748 * based retransmit packet might feed us FACK information again. 2749 * If so, we use it to avoid unnecessarily retransmissions. 2750 */ 2751 void tcp_xmit_retransmit_queue(struct sock *sk) 2752 { 2753 const struct inet_connection_sock *icsk = inet_csk(sk); 2754 struct tcp_sock *tp = tcp_sk(sk); 2755 struct sk_buff *skb; 2756 struct sk_buff *hole = NULL; 2757 u32 max_segs, last_lost; 2758 int mib_idx; 2759 int fwd_rexmitting = 0; 2760 2761 if (!tp->packets_out) 2762 return; 2763 2764 if (!tp->lost_out) 2765 tp->retransmit_high = tp->snd_una; 2766 2767 if (tp->retransmit_skb_hint) { 2768 skb = tp->retransmit_skb_hint; 2769 last_lost = TCP_SKB_CB(skb)->end_seq; 2770 if (after(last_lost, tp->retransmit_high)) 2771 last_lost = tp->retransmit_high; 2772 } else { 2773 skb = tcp_write_queue_head(sk); 2774 last_lost = tp->snd_una; 2775 } 2776 2777 max_segs = tcp_tso_autosize(sk, tcp_current_mss(sk)); 2778 tcp_for_write_queue_from(skb, sk) { 2779 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2780 int segs; 2781 2782 if (skb == tcp_send_head(sk)) 2783 break; 2784 /* we could do better than to assign each time */ 2785 if (!hole) 2786 tp->retransmit_skb_hint = skb; 2787 2788 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2789 if (segs <= 0) 2790 return; 2791 /* In case tcp_shift_skb_data() have aggregated large skbs, 2792 * we need to make sure not sending too bigs TSO packets 2793 */ 2794 segs = min_t(int, segs, max_segs); 2795 2796 if (fwd_rexmitting) { 2797 begin_fwd: 2798 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2799 break; 2800 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2801 2802 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2803 tp->retransmit_high = last_lost; 2804 if (!tcp_can_forward_retransmit(sk)) 2805 break; 2806 /* Backtrack if necessary to non-L'ed skb */ 2807 if (hole) { 2808 skb = hole; 2809 hole = NULL; 2810 } 2811 fwd_rexmitting = 1; 2812 goto begin_fwd; 2813 2814 } else if (!(sacked & TCPCB_LOST)) { 2815 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2816 hole = skb; 2817 continue; 2818 2819 } else { 2820 last_lost = TCP_SKB_CB(skb)->end_seq; 2821 if (icsk->icsk_ca_state != TCP_CA_Loss) 2822 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2823 else 2824 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2825 } 2826 2827 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2828 continue; 2829 2830 if (tcp_retransmit_skb(sk, skb, segs)) 2831 return; 2832 2833 NET_INC_STATS(sock_net(sk), mib_idx); 2834 2835 if (tcp_in_cwnd_reduction(sk)) 2836 tp->prr_out += tcp_skb_pcount(skb); 2837 2838 if (skb == tcp_write_queue_head(sk)) 2839 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2840 inet_csk(sk)->icsk_rto, 2841 TCP_RTO_MAX); 2842 } 2843 } 2844 2845 /* We allow to exceed memory limits for FIN packets to expedite 2846 * connection tear down and (memory) recovery. 2847 * Otherwise tcp_send_fin() could be tempted to either delay FIN 2848 * or even be forced to close flow without any FIN. 2849 * In general, we want to allow one skb per socket to avoid hangs 2850 * with edge trigger epoll() 2851 */ 2852 void sk_forced_mem_schedule(struct sock *sk, int size) 2853 { 2854 int amt; 2855 2856 if (size <= sk->sk_forward_alloc) 2857 return; 2858 amt = sk_mem_pages(size); 2859 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2860 sk_memory_allocated_add(sk, amt); 2861 2862 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2863 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 2864 } 2865 2866 /* Send a FIN. The caller locks the socket for us. 2867 * We should try to send a FIN packet really hard, but eventually give up. 2868 */ 2869 void tcp_send_fin(struct sock *sk) 2870 { 2871 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 2872 struct tcp_sock *tp = tcp_sk(sk); 2873 2874 /* Optimization, tack on the FIN if we have one skb in write queue and 2875 * this skb was not yet sent, or we are under memory pressure. 2876 * Note: in the latter case, FIN packet will be sent after a timeout, 2877 * as TCP stack thinks it has already been transmitted. 2878 */ 2879 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) { 2880 coalesce: 2881 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 2882 TCP_SKB_CB(tskb)->end_seq++; 2883 tp->write_seq++; 2884 if (!tcp_send_head(sk)) { 2885 /* This means tskb was already sent. 2886 * Pretend we included the FIN on previous transmit. 2887 * We need to set tp->snd_nxt to the value it would have 2888 * if FIN had been sent. This is because retransmit path 2889 * does not change tp->snd_nxt. 2890 */ 2891 tp->snd_nxt++; 2892 return; 2893 } 2894 } else { 2895 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 2896 if (unlikely(!skb)) { 2897 if (tskb) 2898 goto coalesce; 2899 return; 2900 } 2901 skb_reserve(skb, MAX_TCP_HEADER); 2902 sk_forced_mem_schedule(sk, skb->truesize); 2903 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2904 tcp_init_nondata_skb(skb, tp->write_seq, 2905 TCPHDR_ACK | TCPHDR_FIN); 2906 tcp_queue_skb(sk, skb); 2907 } 2908 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 2909 } 2910 2911 /* We get here when a process closes a file descriptor (either due to 2912 * an explicit close() or as a byproduct of exit()'ing) and there 2913 * was unread data in the receive queue. This behavior is recommended 2914 * by RFC 2525, section 2.17. -DaveM 2915 */ 2916 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2917 { 2918 struct sk_buff *skb; 2919 2920 /* NOTE: No TCP options attached and we never retransmit this. */ 2921 skb = alloc_skb(MAX_TCP_HEADER, priority); 2922 if (!skb) { 2923 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2924 return; 2925 } 2926 2927 /* Reserve space for headers and prepare control bits. */ 2928 skb_reserve(skb, MAX_TCP_HEADER); 2929 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2930 TCPHDR_ACK | TCPHDR_RST); 2931 skb_mstamp_get(&skb->skb_mstamp); 2932 /* Send it off. */ 2933 if (tcp_transmit_skb(sk, skb, 0, priority)) 2934 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2935 2936 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2937 } 2938 2939 /* Send a crossed SYN-ACK during socket establishment. 2940 * WARNING: This routine must only be called when we have already sent 2941 * a SYN packet that crossed the incoming SYN that caused this routine 2942 * to get called. If this assumption fails then the initial rcv_wnd 2943 * and rcv_wscale values will not be correct. 2944 */ 2945 int tcp_send_synack(struct sock *sk) 2946 { 2947 struct sk_buff *skb; 2948 2949 skb = tcp_write_queue_head(sk); 2950 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2951 pr_debug("%s: wrong queue state\n", __func__); 2952 return -EFAULT; 2953 } 2954 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2955 if (skb_cloned(skb)) { 2956 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2957 if (!nskb) 2958 return -ENOMEM; 2959 tcp_unlink_write_queue(skb, sk); 2960 __skb_header_release(nskb); 2961 __tcp_add_write_queue_head(sk, nskb); 2962 sk_wmem_free_skb(sk, skb); 2963 sk->sk_wmem_queued += nskb->truesize; 2964 sk_mem_charge(sk, nskb->truesize); 2965 skb = nskb; 2966 } 2967 2968 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2969 tcp_ecn_send_synack(sk, skb); 2970 } 2971 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2972 } 2973 2974 /** 2975 * tcp_make_synack - Prepare a SYN-ACK. 2976 * sk: listener socket 2977 * dst: dst entry attached to the SYNACK 2978 * req: request_sock pointer 2979 * 2980 * Allocate one skb and build a SYNACK packet. 2981 * @dst is consumed : Caller should not use it again. 2982 */ 2983 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 2984 struct request_sock *req, 2985 struct tcp_fastopen_cookie *foc, 2986 enum tcp_synack_type synack_type) 2987 { 2988 struct inet_request_sock *ireq = inet_rsk(req); 2989 const struct tcp_sock *tp = tcp_sk(sk); 2990 struct tcp_md5sig_key *md5 = NULL; 2991 struct tcp_out_options opts; 2992 struct sk_buff *skb; 2993 int tcp_header_size; 2994 struct tcphdr *th; 2995 u16 user_mss; 2996 int mss; 2997 2998 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2999 if (unlikely(!skb)) { 3000 dst_release(dst); 3001 return NULL; 3002 } 3003 /* Reserve space for headers. */ 3004 skb_reserve(skb, MAX_TCP_HEADER); 3005 3006 switch (synack_type) { 3007 case TCP_SYNACK_NORMAL: 3008 skb_set_owner_w(skb, req_to_sk(req)); 3009 break; 3010 case TCP_SYNACK_COOKIE: 3011 /* Under synflood, we do not attach skb to a socket, 3012 * to avoid false sharing. 3013 */ 3014 break; 3015 case TCP_SYNACK_FASTOPEN: 3016 /* sk is a const pointer, because we want to express multiple 3017 * cpu might call us concurrently. 3018 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3019 */ 3020 skb_set_owner_w(skb, (struct sock *)sk); 3021 break; 3022 } 3023 skb_dst_set(skb, dst); 3024 3025 mss = dst_metric_advmss(dst); 3026 user_mss = READ_ONCE(tp->rx_opt.user_mss); 3027 if (user_mss && user_mss < mss) 3028 mss = user_mss; 3029 3030 memset(&opts, 0, sizeof(opts)); 3031 #ifdef CONFIG_SYN_COOKIES 3032 if (unlikely(req->cookie_ts)) 3033 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 3034 else 3035 #endif 3036 skb_mstamp_get(&skb->skb_mstamp); 3037 3038 #ifdef CONFIG_TCP_MD5SIG 3039 rcu_read_lock(); 3040 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3041 #endif 3042 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3043 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) + 3044 sizeof(*th); 3045 3046 skb_push(skb, tcp_header_size); 3047 skb_reset_transport_header(skb); 3048 3049 th = (struct tcphdr *)skb->data; 3050 memset(th, 0, sizeof(struct tcphdr)); 3051 th->syn = 1; 3052 th->ack = 1; 3053 tcp_ecn_make_synack(req, th); 3054 th->source = htons(ireq->ir_num); 3055 th->dest = ireq->ir_rmt_port; 3056 /* Setting of flags are superfluous here for callers (and ECE is 3057 * not even correctly set) 3058 */ 3059 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3060 TCPHDR_SYN | TCPHDR_ACK); 3061 3062 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3063 /* XXX data is queued and acked as is. No buffer/window check */ 3064 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3065 3066 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3067 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3068 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3069 th->doff = (tcp_header_size >> 2); 3070 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3071 3072 #ifdef CONFIG_TCP_MD5SIG 3073 /* Okay, we have all we need - do the md5 hash if needed */ 3074 if (md5) 3075 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3076 md5, req_to_sk(req), skb); 3077 rcu_read_unlock(); 3078 #endif 3079 3080 /* Do not fool tcpdump (if any), clean our debris */ 3081 skb->tstamp.tv64 = 0; 3082 return skb; 3083 } 3084 EXPORT_SYMBOL(tcp_make_synack); 3085 3086 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3087 { 3088 struct inet_connection_sock *icsk = inet_csk(sk); 3089 const struct tcp_congestion_ops *ca; 3090 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3091 3092 if (ca_key == TCP_CA_UNSPEC) 3093 return; 3094 3095 rcu_read_lock(); 3096 ca = tcp_ca_find_key(ca_key); 3097 if (likely(ca && try_module_get(ca->owner))) { 3098 module_put(icsk->icsk_ca_ops->owner); 3099 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3100 icsk->icsk_ca_ops = ca; 3101 } 3102 rcu_read_unlock(); 3103 } 3104 3105 /* Do all connect socket setups that can be done AF independent. */ 3106 static void tcp_connect_init(struct sock *sk) 3107 { 3108 const struct dst_entry *dst = __sk_dst_get(sk); 3109 struct tcp_sock *tp = tcp_sk(sk); 3110 __u8 rcv_wscale; 3111 3112 /* We'll fix this up when we get a response from the other end. 3113 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3114 */ 3115 tp->tcp_header_len = sizeof(struct tcphdr) + 3116 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 3117 3118 #ifdef CONFIG_TCP_MD5SIG 3119 if (tp->af_specific->md5_lookup(sk, sk)) 3120 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3121 #endif 3122 3123 /* If user gave his TCP_MAXSEG, record it to clamp */ 3124 if (tp->rx_opt.user_mss) 3125 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3126 tp->max_window = 0; 3127 tcp_mtup_init(sk); 3128 tcp_sync_mss(sk, dst_mtu(dst)); 3129 3130 tcp_ca_dst_init(sk, dst); 3131 3132 if (!tp->window_clamp) 3133 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3134 tp->advmss = dst_metric_advmss(dst); 3135 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 3136 tp->advmss = tp->rx_opt.user_mss; 3137 3138 tcp_initialize_rcv_mss(sk); 3139 3140 /* limit the window selection if the user enforce a smaller rx buffer */ 3141 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3142 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3143 tp->window_clamp = tcp_full_space(sk); 3144 3145 tcp_select_initial_window(tcp_full_space(sk), 3146 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3147 &tp->rcv_wnd, 3148 &tp->window_clamp, 3149 sysctl_tcp_window_scaling, 3150 &rcv_wscale, 3151 dst_metric(dst, RTAX_INITRWND)); 3152 3153 tp->rx_opt.rcv_wscale = rcv_wscale; 3154 tp->rcv_ssthresh = tp->rcv_wnd; 3155 3156 sk->sk_err = 0; 3157 sock_reset_flag(sk, SOCK_DONE); 3158 tp->snd_wnd = 0; 3159 tcp_init_wl(tp, 0); 3160 tp->snd_una = tp->write_seq; 3161 tp->snd_sml = tp->write_seq; 3162 tp->snd_up = tp->write_seq; 3163 tp->snd_nxt = tp->write_seq; 3164 3165 if (likely(!tp->repair)) 3166 tp->rcv_nxt = 0; 3167 else 3168 tp->rcv_tstamp = tcp_time_stamp; 3169 tp->rcv_wup = tp->rcv_nxt; 3170 tp->copied_seq = tp->rcv_nxt; 3171 3172 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3173 inet_csk(sk)->icsk_retransmits = 0; 3174 tcp_clear_retrans(tp); 3175 } 3176 3177 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3178 { 3179 struct tcp_sock *tp = tcp_sk(sk); 3180 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3181 3182 tcb->end_seq += skb->len; 3183 __skb_header_release(skb); 3184 __tcp_add_write_queue_tail(sk, skb); 3185 sk->sk_wmem_queued += skb->truesize; 3186 sk_mem_charge(sk, skb->truesize); 3187 tp->write_seq = tcb->end_seq; 3188 tp->packets_out += tcp_skb_pcount(skb); 3189 } 3190 3191 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3192 * queue a data-only packet after the regular SYN, such that regular SYNs 3193 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3194 * only the SYN sequence, the data are retransmitted in the first ACK. 3195 * If cookie is not cached or other error occurs, falls back to send a 3196 * regular SYN with Fast Open cookie request option. 3197 */ 3198 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3199 { 3200 struct tcp_sock *tp = tcp_sk(sk); 3201 struct tcp_fastopen_request *fo = tp->fastopen_req; 3202 int syn_loss = 0, space, err = 0; 3203 unsigned long last_syn_loss = 0; 3204 struct sk_buff *syn_data; 3205 3206 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3207 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 3208 &syn_loss, &last_syn_loss); 3209 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 3210 if (syn_loss > 1 && 3211 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 3212 fo->cookie.len = -1; 3213 goto fallback; 3214 } 3215 3216 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 3217 fo->cookie.len = -1; 3218 else if (fo->cookie.len <= 0) 3219 goto fallback; 3220 3221 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3222 * user-MSS. Reserve maximum option space for middleboxes that add 3223 * private TCP options. The cost is reduced data space in SYN :( 3224 */ 3225 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 3226 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3227 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3228 MAX_TCP_OPTION_SPACE; 3229 3230 space = min_t(size_t, space, fo->size); 3231 3232 /* limit to order-0 allocations */ 3233 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3234 3235 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3236 if (!syn_data) 3237 goto fallback; 3238 syn_data->ip_summed = CHECKSUM_PARTIAL; 3239 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3240 if (space) { 3241 int copied = copy_from_iter(skb_put(syn_data, space), space, 3242 &fo->data->msg_iter); 3243 if (unlikely(!copied)) { 3244 kfree_skb(syn_data); 3245 goto fallback; 3246 } 3247 if (copied != space) { 3248 skb_trim(syn_data, copied); 3249 space = copied; 3250 } 3251 } 3252 /* No more data pending in inet_wait_for_connect() */ 3253 if (space == fo->size) 3254 fo->data = NULL; 3255 fo->copied = space; 3256 3257 tcp_connect_queue_skb(sk, syn_data); 3258 3259 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3260 3261 syn->skb_mstamp = syn_data->skb_mstamp; 3262 3263 /* Now full SYN+DATA was cloned and sent (or not), 3264 * remove the SYN from the original skb (syn_data) 3265 * we keep in write queue in case of a retransmit, as we 3266 * also have the SYN packet (with no data) in the same queue. 3267 */ 3268 TCP_SKB_CB(syn_data)->seq++; 3269 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3270 if (!err) { 3271 tp->syn_data = (fo->copied > 0); 3272 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3273 goto done; 3274 } 3275 3276 fallback: 3277 /* Send a regular SYN with Fast Open cookie request option */ 3278 if (fo->cookie.len > 0) 3279 fo->cookie.len = 0; 3280 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3281 if (err) 3282 tp->syn_fastopen = 0; 3283 done: 3284 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3285 return err; 3286 } 3287 3288 /* Build a SYN and send it off. */ 3289 int tcp_connect(struct sock *sk) 3290 { 3291 struct tcp_sock *tp = tcp_sk(sk); 3292 struct sk_buff *buff; 3293 int err; 3294 3295 tcp_connect_init(sk); 3296 3297 if (unlikely(tp->repair)) { 3298 tcp_finish_connect(sk, NULL); 3299 return 0; 3300 } 3301 3302 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3303 if (unlikely(!buff)) 3304 return -ENOBUFS; 3305 3306 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3307 tp->retrans_stamp = tcp_time_stamp; 3308 tcp_connect_queue_skb(sk, buff); 3309 tcp_ecn_send_syn(sk, buff); 3310 3311 /* Send off SYN; include data in Fast Open. */ 3312 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3313 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3314 if (err == -ECONNREFUSED) 3315 return err; 3316 3317 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3318 * in order to make this packet get counted in tcpOutSegs. 3319 */ 3320 tp->snd_nxt = tp->write_seq; 3321 tp->pushed_seq = tp->write_seq; 3322 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3323 3324 /* Timer for repeating the SYN until an answer. */ 3325 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3326 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3327 return 0; 3328 } 3329 EXPORT_SYMBOL(tcp_connect); 3330 3331 /* Send out a delayed ack, the caller does the policy checking 3332 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3333 * for details. 3334 */ 3335 void tcp_send_delayed_ack(struct sock *sk) 3336 { 3337 struct inet_connection_sock *icsk = inet_csk(sk); 3338 int ato = icsk->icsk_ack.ato; 3339 unsigned long timeout; 3340 3341 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3342 3343 if (ato > TCP_DELACK_MIN) { 3344 const struct tcp_sock *tp = tcp_sk(sk); 3345 int max_ato = HZ / 2; 3346 3347 if (icsk->icsk_ack.pingpong || 3348 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3349 max_ato = TCP_DELACK_MAX; 3350 3351 /* Slow path, intersegment interval is "high". */ 3352 3353 /* If some rtt estimate is known, use it to bound delayed ack. 3354 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3355 * directly. 3356 */ 3357 if (tp->srtt_us) { 3358 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3359 TCP_DELACK_MIN); 3360 3361 if (rtt < max_ato) 3362 max_ato = rtt; 3363 } 3364 3365 ato = min(ato, max_ato); 3366 } 3367 3368 /* Stay within the limit we were given */ 3369 timeout = jiffies + ato; 3370 3371 /* Use new timeout only if there wasn't a older one earlier. */ 3372 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3373 /* If delack timer was blocked or is about to expire, 3374 * send ACK now. 3375 */ 3376 if (icsk->icsk_ack.blocked || 3377 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3378 tcp_send_ack(sk); 3379 return; 3380 } 3381 3382 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3383 timeout = icsk->icsk_ack.timeout; 3384 } 3385 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3386 icsk->icsk_ack.timeout = timeout; 3387 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3388 } 3389 3390 /* This routine sends an ack and also updates the window. */ 3391 void tcp_send_ack(struct sock *sk) 3392 { 3393 struct sk_buff *buff; 3394 3395 /* If we have been reset, we may not send again. */ 3396 if (sk->sk_state == TCP_CLOSE) 3397 return; 3398 3399 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3400 3401 /* We are not putting this on the write queue, so 3402 * tcp_transmit_skb() will set the ownership to this 3403 * sock. 3404 */ 3405 buff = alloc_skb(MAX_TCP_HEADER, 3406 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3407 if (unlikely(!buff)) { 3408 inet_csk_schedule_ack(sk); 3409 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3410 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3411 TCP_DELACK_MAX, TCP_RTO_MAX); 3412 return; 3413 } 3414 3415 /* Reserve space for headers and prepare control bits. */ 3416 skb_reserve(buff, MAX_TCP_HEADER); 3417 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3418 3419 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3420 * too much. 3421 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3422 * We also avoid tcp_wfree() overhead (cache line miss accessing 3423 * tp->tsq_flags) by using regular sock_wfree() 3424 */ 3425 skb_set_tcp_pure_ack(buff); 3426 3427 /* Send it off, this clears delayed acks for us. */ 3428 skb_mstamp_get(&buff->skb_mstamp); 3429 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3430 } 3431 EXPORT_SYMBOL_GPL(tcp_send_ack); 3432 3433 /* This routine sends a packet with an out of date sequence 3434 * number. It assumes the other end will try to ack it. 3435 * 3436 * Question: what should we make while urgent mode? 3437 * 4.4BSD forces sending single byte of data. We cannot send 3438 * out of window data, because we have SND.NXT==SND.MAX... 3439 * 3440 * Current solution: to send TWO zero-length segments in urgent mode: 3441 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3442 * out-of-date with SND.UNA-1 to probe window. 3443 */ 3444 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3445 { 3446 struct tcp_sock *tp = tcp_sk(sk); 3447 struct sk_buff *skb; 3448 3449 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3450 skb = alloc_skb(MAX_TCP_HEADER, 3451 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3452 if (!skb) 3453 return -1; 3454 3455 /* Reserve space for headers and set control bits. */ 3456 skb_reserve(skb, MAX_TCP_HEADER); 3457 /* Use a previous sequence. This should cause the other 3458 * end to send an ack. Don't queue or clone SKB, just 3459 * send it. 3460 */ 3461 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3462 skb_mstamp_get(&skb->skb_mstamp); 3463 NET_INC_STATS(sock_net(sk), mib); 3464 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3465 } 3466 3467 void tcp_send_window_probe(struct sock *sk) 3468 { 3469 if (sk->sk_state == TCP_ESTABLISHED) { 3470 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3471 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3472 } 3473 } 3474 3475 /* Initiate keepalive or window probe from timer. */ 3476 int tcp_write_wakeup(struct sock *sk, int mib) 3477 { 3478 struct tcp_sock *tp = tcp_sk(sk); 3479 struct sk_buff *skb; 3480 3481 if (sk->sk_state == TCP_CLOSE) 3482 return -1; 3483 3484 skb = tcp_send_head(sk); 3485 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3486 int err; 3487 unsigned int mss = tcp_current_mss(sk); 3488 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3489 3490 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3491 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3492 3493 /* We are probing the opening of a window 3494 * but the window size is != 0 3495 * must have been a result SWS avoidance ( sender ) 3496 */ 3497 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3498 skb->len > mss) { 3499 seg_size = min(seg_size, mss); 3500 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3501 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3502 return -1; 3503 } else if (!tcp_skb_pcount(skb)) 3504 tcp_set_skb_tso_segs(skb, mss); 3505 3506 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3507 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3508 if (!err) 3509 tcp_event_new_data_sent(sk, skb); 3510 return err; 3511 } else { 3512 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3513 tcp_xmit_probe_skb(sk, 1, mib); 3514 return tcp_xmit_probe_skb(sk, 0, mib); 3515 } 3516 } 3517 3518 /* A window probe timeout has occurred. If window is not closed send 3519 * a partial packet else a zero probe. 3520 */ 3521 void tcp_send_probe0(struct sock *sk) 3522 { 3523 struct inet_connection_sock *icsk = inet_csk(sk); 3524 struct tcp_sock *tp = tcp_sk(sk); 3525 struct net *net = sock_net(sk); 3526 unsigned long probe_max; 3527 int err; 3528 3529 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3530 3531 if (tp->packets_out || !tcp_send_head(sk)) { 3532 /* Cancel probe timer, if it is not required. */ 3533 icsk->icsk_probes_out = 0; 3534 icsk->icsk_backoff = 0; 3535 return; 3536 } 3537 3538 if (err <= 0) { 3539 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3540 icsk->icsk_backoff++; 3541 icsk->icsk_probes_out++; 3542 probe_max = TCP_RTO_MAX; 3543 } else { 3544 /* If packet was not sent due to local congestion, 3545 * do not backoff and do not remember icsk_probes_out. 3546 * Let local senders to fight for local resources. 3547 * 3548 * Use accumulated backoff yet. 3549 */ 3550 if (!icsk->icsk_probes_out) 3551 icsk->icsk_probes_out = 1; 3552 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3553 } 3554 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3555 tcp_probe0_when(sk, probe_max), 3556 TCP_RTO_MAX); 3557 } 3558 3559 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3560 { 3561 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3562 struct flowi fl; 3563 int res; 3564 3565 tcp_rsk(req)->txhash = net_tx_rndhash(); 3566 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3567 if (!res) { 3568 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3569 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3570 } 3571 return res; 3572 } 3573 EXPORT_SYMBOL(tcp_rtx_synack); 3574