xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 7b7dfdd2)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64 
65 /* By default, RFC2861 behavior.  */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67 
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70 
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 			   int push_one, gfp_t gfp);
73 
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 	struct inet_connection_sock *icsk = inet_csk(sk);
78 	struct tcp_sock *tp = tcp_sk(sk);
79 	unsigned int prior_packets = tp->packets_out;
80 
81 	tcp_advance_send_head(sk, skb);
82 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83 
84 	tp->packets_out += tcp_skb_pcount(skb);
85 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 		tcp_rearm_rto(sk);
88 	}
89 
90 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
91 		      tcp_skb_pcount(skb));
92 }
93 
94 /* SND.NXT, if window was not shrunk.
95  * If window has been shrunk, what should we make? It is not clear at all.
96  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
97  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
98  * invalid. OK, let's make this for now:
99  */
100 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
101 {
102 	const struct tcp_sock *tp = tcp_sk(sk);
103 
104 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
105 		return tp->snd_nxt;
106 	else
107 		return tcp_wnd_end(tp);
108 }
109 
110 /* Calculate mss to advertise in SYN segment.
111  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
112  *
113  * 1. It is independent of path mtu.
114  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116  *    attached devices, because some buggy hosts are confused by
117  *    large MSS.
118  * 4. We do not make 3, we advertise MSS, calculated from first
119  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
120  *    This may be overridden via information stored in routing table.
121  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122  *    probably even Jumbo".
123  */
124 static __u16 tcp_advertise_mss(struct sock *sk)
125 {
126 	struct tcp_sock *tp = tcp_sk(sk);
127 	const struct dst_entry *dst = __sk_dst_get(sk);
128 	int mss = tp->advmss;
129 
130 	if (dst) {
131 		unsigned int metric = dst_metric_advmss(dst);
132 
133 		if (metric < mss) {
134 			mss = metric;
135 			tp->advmss = mss;
136 		}
137 	}
138 
139 	return (__u16)mss;
140 }
141 
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143  * This is the first part of cwnd validation mechanism. */
144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
145 {
146 	struct tcp_sock *tp = tcp_sk(sk);
147 	s32 delta = tcp_time_stamp - tp->lsndtime;
148 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
149 	u32 cwnd = tp->snd_cwnd;
150 
151 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
152 
153 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 	restart_cwnd = min(restart_cwnd, cwnd);
155 
156 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 		cwnd >>= 1;
158 	tp->snd_cwnd = max(cwnd, restart_cwnd);
159 	tp->snd_cwnd_stamp = tcp_time_stamp;
160 	tp->snd_cwnd_used = 0;
161 }
162 
163 /* Congestion state accounting after a packet has been sent. */
164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 				struct sock *sk)
166 {
167 	struct inet_connection_sock *icsk = inet_csk(sk);
168 	const u32 now = tcp_time_stamp;
169 	const struct dst_entry *dst = __sk_dst_get(sk);
170 
171 	if (sysctl_tcp_slow_start_after_idle &&
172 	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
173 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
174 
175 	tp->lsndtime = now;
176 
177 	/* If it is a reply for ato after last received
178 	 * packet, enter pingpong mode.
179 	 */
180 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
181 	    (!dst || !dst_metric(dst, RTAX_QUICKACK)))
182 			icsk->icsk_ack.pingpong = 1;
183 }
184 
185 /* Account for an ACK we sent. */
186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
187 {
188 	tcp_dec_quickack_mode(sk, pkts);
189 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
190 }
191 
192 
193 u32 tcp_default_init_rwnd(u32 mss)
194 {
195 	/* Initial receive window should be twice of TCP_INIT_CWND to
196 	 * enable proper sending of new unsent data during fast recovery
197 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
198 	 * limit when mss is larger than 1460.
199 	 */
200 	u32 init_rwnd = TCP_INIT_CWND * 2;
201 
202 	if (mss > 1460)
203 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
204 	return init_rwnd;
205 }
206 
207 /* Determine a window scaling and initial window to offer.
208  * Based on the assumption that the given amount of space
209  * will be offered. Store the results in the tp structure.
210  * NOTE: for smooth operation initial space offering should
211  * be a multiple of mss if possible. We assume here that mss >= 1.
212  * This MUST be enforced by all callers.
213  */
214 void tcp_select_initial_window(int __space, __u32 mss,
215 			       __u32 *rcv_wnd, __u32 *window_clamp,
216 			       int wscale_ok, __u8 *rcv_wscale,
217 			       __u32 init_rcv_wnd)
218 {
219 	unsigned int space = (__space < 0 ? 0 : __space);
220 
221 	/* If no clamp set the clamp to the max possible scaled window */
222 	if (*window_clamp == 0)
223 		(*window_clamp) = (65535 << 14);
224 	space = min(*window_clamp, space);
225 
226 	/* Quantize space offering to a multiple of mss if possible. */
227 	if (space > mss)
228 		space = (space / mss) * mss;
229 
230 	/* NOTE: offering an initial window larger than 32767
231 	 * will break some buggy TCP stacks. If the admin tells us
232 	 * it is likely we could be speaking with such a buggy stack
233 	 * we will truncate our initial window offering to 32K-1
234 	 * unless the remote has sent us a window scaling option,
235 	 * which we interpret as a sign the remote TCP is not
236 	 * misinterpreting the window field as a signed quantity.
237 	 */
238 	if (sysctl_tcp_workaround_signed_windows)
239 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
240 	else
241 		(*rcv_wnd) = space;
242 
243 	(*rcv_wscale) = 0;
244 	if (wscale_ok) {
245 		/* Set window scaling on max possible window
246 		 * See RFC1323 for an explanation of the limit to 14
247 		 */
248 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
249 		space = min_t(u32, space, *window_clamp);
250 		while (space > 65535 && (*rcv_wscale) < 14) {
251 			space >>= 1;
252 			(*rcv_wscale)++;
253 		}
254 	}
255 
256 	if (mss > (1 << *rcv_wscale)) {
257 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
258 			init_rcv_wnd = tcp_default_init_rwnd(mss);
259 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
260 	}
261 
262 	/* Set the clamp no higher than max representable value */
263 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
264 }
265 EXPORT_SYMBOL(tcp_select_initial_window);
266 
267 /* Chose a new window to advertise, update state in tcp_sock for the
268  * socket, and return result with RFC1323 scaling applied.  The return
269  * value can be stuffed directly into th->window for an outgoing
270  * frame.
271  */
272 static u16 tcp_select_window(struct sock *sk)
273 {
274 	struct tcp_sock *tp = tcp_sk(sk);
275 	u32 old_win = tp->rcv_wnd;
276 	u32 cur_win = tcp_receive_window(tp);
277 	u32 new_win = __tcp_select_window(sk);
278 
279 	/* Never shrink the offered window */
280 	if (new_win < cur_win) {
281 		/* Danger Will Robinson!
282 		 * Don't update rcv_wup/rcv_wnd here or else
283 		 * we will not be able to advertise a zero
284 		 * window in time.  --DaveM
285 		 *
286 		 * Relax Will Robinson.
287 		 */
288 		if (new_win == 0)
289 			NET_INC_STATS(sock_net(sk),
290 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
291 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 	}
293 	tp->rcv_wnd = new_win;
294 	tp->rcv_wup = tp->rcv_nxt;
295 
296 	/* Make sure we do not exceed the maximum possible
297 	 * scaled window.
298 	 */
299 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
300 		new_win = min(new_win, MAX_TCP_WINDOW);
301 	else
302 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
303 
304 	/* RFC1323 scaling applied */
305 	new_win >>= tp->rx_opt.rcv_wscale;
306 
307 	/* If we advertise zero window, disable fast path. */
308 	if (new_win == 0) {
309 		tp->pred_flags = 0;
310 		if (old_win)
311 			NET_INC_STATS(sock_net(sk),
312 				      LINUX_MIB_TCPTOZEROWINDOWADV);
313 	} else if (old_win == 0) {
314 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
315 	}
316 
317 	return new_win;
318 }
319 
320 /* Packet ECN state for a SYN-ACK */
321 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
322 {
323 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
324 	if (!(tp->ecn_flags & TCP_ECN_OK))
325 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
326 }
327 
328 /* Packet ECN state for a SYN.  */
329 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
330 {
331 	struct tcp_sock *tp = tcp_sk(sk);
332 
333 	tp->ecn_flags = 0;
334 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
335 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 		tp->ecn_flags = TCP_ECN_OK;
337 	}
338 }
339 
340 static __inline__ void
341 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
342 {
343 	if (inet_rsk(req)->ecn_ok)
344 		th->ece = 1;
345 }
346 
347 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
348  * be sent.
349  */
350 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
351 				int tcp_header_len)
352 {
353 	struct tcp_sock *tp = tcp_sk(sk);
354 
355 	if (tp->ecn_flags & TCP_ECN_OK) {
356 		/* Not-retransmitted data segment: set ECT and inject CWR. */
357 		if (skb->len != tcp_header_len &&
358 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
359 			INET_ECN_xmit(sk);
360 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
361 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
362 				tcp_hdr(skb)->cwr = 1;
363 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
364 			}
365 		} else {
366 			/* ACK or retransmitted segment: clear ECT|CE */
367 			INET_ECN_dontxmit(sk);
368 		}
369 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
370 			tcp_hdr(skb)->ece = 1;
371 	}
372 }
373 
374 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
375  * auto increment end seqno.
376  */
377 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
378 {
379 	struct skb_shared_info *shinfo = skb_shinfo(skb);
380 
381 	skb->ip_summed = CHECKSUM_PARTIAL;
382 	skb->csum = 0;
383 
384 	TCP_SKB_CB(skb)->tcp_flags = flags;
385 	TCP_SKB_CB(skb)->sacked = 0;
386 
387 	shinfo->gso_segs = 1;
388 	shinfo->gso_size = 0;
389 	shinfo->gso_type = 0;
390 
391 	TCP_SKB_CB(skb)->seq = seq;
392 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
393 		seq++;
394 	TCP_SKB_CB(skb)->end_seq = seq;
395 }
396 
397 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
398 {
399 	return tp->snd_una != tp->snd_up;
400 }
401 
402 #define OPTION_SACK_ADVERTISE	(1 << 0)
403 #define OPTION_TS		(1 << 1)
404 #define OPTION_MD5		(1 << 2)
405 #define OPTION_WSCALE		(1 << 3)
406 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
407 
408 struct tcp_out_options {
409 	u16 options;		/* bit field of OPTION_* */
410 	u16 mss;		/* 0 to disable */
411 	u8 ws;			/* window scale, 0 to disable */
412 	u8 num_sack_blocks;	/* number of SACK blocks to include */
413 	u8 hash_size;		/* bytes in hash_location */
414 	__u8 *hash_location;	/* temporary pointer, overloaded */
415 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
416 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
417 };
418 
419 /* Write previously computed TCP options to the packet.
420  *
421  * Beware: Something in the Internet is very sensitive to the ordering of
422  * TCP options, we learned this through the hard way, so be careful here.
423  * Luckily we can at least blame others for their non-compliance but from
424  * inter-operability perspective it seems that we're somewhat stuck with
425  * the ordering which we have been using if we want to keep working with
426  * those broken things (not that it currently hurts anybody as there isn't
427  * particular reason why the ordering would need to be changed).
428  *
429  * At least SACK_PERM as the first option is known to lead to a disaster
430  * (but it may well be that other scenarios fail similarly).
431  */
432 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
433 			      struct tcp_out_options *opts)
434 {
435 	u16 options = opts->options;	/* mungable copy */
436 
437 	if (unlikely(OPTION_MD5 & options)) {
438 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
439 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
440 		/* overload cookie hash location */
441 		opts->hash_location = (__u8 *)ptr;
442 		ptr += 4;
443 	}
444 
445 	if (unlikely(opts->mss)) {
446 		*ptr++ = htonl((TCPOPT_MSS << 24) |
447 			       (TCPOLEN_MSS << 16) |
448 			       opts->mss);
449 	}
450 
451 	if (likely(OPTION_TS & options)) {
452 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
453 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
454 				       (TCPOLEN_SACK_PERM << 16) |
455 				       (TCPOPT_TIMESTAMP << 8) |
456 				       TCPOLEN_TIMESTAMP);
457 			options &= ~OPTION_SACK_ADVERTISE;
458 		} else {
459 			*ptr++ = htonl((TCPOPT_NOP << 24) |
460 				       (TCPOPT_NOP << 16) |
461 				       (TCPOPT_TIMESTAMP << 8) |
462 				       TCPOLEN_TIMESTAMP);
463 		}
464 		*ptr++ = htonl(opts->tsval);
465 		*ptr++ = htonl(opts->tsecr);
466 	}
467 
468 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
469 		*ptr++ = htonl((TCPOPT_NOP << 24) |
470 			       (TCPOPT_NOP << 16) |
471 			       (TCPOPT_SACK_PERM << 8) |
472 			       TCPOLEN_SACK_PERM);
473 	}
474 
475 	if (unlikely(OPTION_WSCALE & options)) {
476 		*ptr++ = htonl((TCPOPT_NOP << 24) |
477 			       (TCPOPT_WINDOW << 16) |
478 			       (TCPOLEN_WINDOW << 8) |
479 			       opts->ws);
480 	}
481 
482 	if (unlikely(opts->num_sack_blocks)) {
483 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
484 			tp->duplicate_sack : tp->selective_acks;
485 		int this_sack;
486 
487 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
488 			       (TCPOPT_NOP  << 16) |
489 			       (TCPOPT_SACK <<  8) |
490 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
491 						     TCPOLEN_SACK_PERBLOCK)));
492 
493 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
494 		     ++this_sack) {
495 			*ptr++ = htonl(sp[this_sack].start_seq);
496 			*ptr++ = htonl(sp[this_sack].end_seq);
497 		}
498 
499 		tp->rx_opt.dsack = 0;
500 	}
501 
502 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
503 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
504 
505 		*ptr++ = htonl((TCPOPT_EXP << 24) |
506 			       ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
507 			       TCPOPT_FASTOPEN_MAGIC);
508 
509 		memcpy(ptr, foc->val, foc->len);
510 		if ((foc->len & 3) == 2) {
511 			u8 *align = ((u8 *)ptr) + foc->len;
512 			align[0] = align[1] = TCPOPT_NOP;
513 		}
514 		ptr += (foc->len + 3) >> 2;
515 	}
516 }
517 
518 /* Compute TCP options for SYN packets. This is not the final
519  * network wire format yet.
520  */
521 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
522 				struct tcp_out_options *opts,
523 				struct tcp_md5sig_key **md5)
524 {
525 	struct tcp_sock *tp = tcp_sk(sk);
526 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
527 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
528 
529 #ifdef CONFIG_TCP_MD5SIG
530 	*md5 = tp->af_specific->md5_lookup(sk, sk);
531 	if (*md5) {
532 		opts->options |= OPTION_MD5;
533 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
534 	}
535 #else
536 	*md5 = NULL;
537 #endif
538 
539 	/* We always get an MSS option.  The option bytes which will be seen in
540 	 * normal data packets should timestamps be used, must be in the MSS
541 	 * advertised.  But we subtract them from tp->mss_cache so that
542 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
543 	 * fact here if necessary.  If we don't do this correctly, as a
544 	 * receiver we won't recognize data packets as being full sized when we
545 	 * should, and thus we won't abide by the delayed ACK rules correctly.
546 	 * SACKs don't matter, we never delay an ACK when we have any of those
547 	 * going out.  */
548 	opts->mss = tcp_advertise_mss(sk);
549 	remaining -= TCPOLEN_MSS_ALIGNED;
550 
551 	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
552 		opts->options |= OPTION_TS;
553 		opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
554 		opts->tsecr = tp->rx_opt.ts_recent;
555 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
556 	}
557 	if (likely(sysctl_tcp_window_scaling)) {
558 		opts->ws = tp->rx_opt.rcv_wscale;
559 		opts->options |= OPTION_WSCALE;
560 		remaining -= TCPOLEN_WSCALE_ALIGNED;
561 	}
562 	if (likely(sysctl_tcp_sack)) {
563 		opts->options |= OPTION_SACK_ADVERTISE;
564 		if (unlikely(!(OPTION_TS & opts->options)))
565 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
566 	}
567 
568 	if (fastopen && fastopen->cookie.len >= 0) {
569 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
570 		need = (need + 3) & ~3U;  /* Align to 32 bits */
571 		if (remaining >= need) {
572 			opts->options |= OPTION_FAST_OPEN_COOKIE;
573 			opts->fastopen_cookie = &fastopen->cookie;
574 			remaining -= need;
575 			tp->syn_fastopen = 1;
576 		}
577 	}
578 
579 	return MAX_TCP_OPTION_SPACE - remaining;
580 }
581 
582 /* Set up TCP options for SYN-ACKs. */
583 static unsigned int tcp_synack_options(struct sock *sk,
584 				   struct request_sock *req,
585 				   unsigned int mss, struct sk_buff *skb,
586 				   struct tcp_out_options *opts,
587 				   struct tcp_md5sig_key **md5,
588 				   struct tcp_fastopen_cookie *foc)
589 {
590 	struct inet_request_sock *ireq = inet_rsk(req);
591 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
592 
593 #ifdef CONFIG_TCP_MD5SIG
594 	*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
595 	if (*md5) {
596 		opts->options |= OPTION_MD5;
597 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
598 
599 		/* We can't fit any SACK blocks in a packet with MD5 + TS
600 		 * options. There was discussion about disabling SACK
601 		 * rather than TS in order to fit in better with old,
602 		 * buggy kernels, but that was deemed to be unnecessary.
603 		 */
604 		ireq->tstamp_ok &= !ireq->sack_ok;
605 	}
606 #else
607 	*md5 = NULL;
608 #endif
609 
610 	/* We always send an MSS option. */
611 	opts->mss = mss;
612 	remaining -= TCPOLEN_MSS_ALIGNED;
613 
614 	if (likely(ireq->wscale_ok)) {
615 		opts->ws = ireq->rcv_wscale;
616 		opts->options |= OPTION_WSCALE;
617 		remaining -= TCPOLEN_WSCALE_ALIGNED;
618 	}
619 	if (likely(ireq->tstamp_ok)) {
620 		opts->options |= OPTION_TS;
621 		opts->tsval = TCP_SKB_CB(skb)->when;
622 		opts->tsecr = req->ts_recent;
623 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
624 	}
625 	if (likely(ireq->sack_ok)) {
626 		opts->options |= OPTION_SACK_ADVERTISE;
627 		if (unlikely(!ireq->tstamp_ok))
628 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
629 	}
630 	if (foc != NULL && foc->len >= 0) {
631 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
632 		need = (need + 3) & ~3U;  /* Align to 32 bits */
633 		if (remaining >= need) {
634 			opts->options |= OPTION_FAST_OPEN_COOKIE;
635 			opts->fastopen_cookie = foc;
636 			remaining -= need;
637 		}
638 	}
639 
640 	return MAX_TCP_OPTION_SPACE - remaining;
641 }
642 
643 /* Compute TCP options for ESTABLISHED sockets. This is not the
644  * final wire format yet.
645  */
646 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
647 					struct tcp_out_options *opts,
648 					struct tcp_md5sig_key **md5)
649 {
650 	struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
651 	struct tcp_sock *tp = tcp_sk(sk);
652 	unsigned int size = 0;
653 	unsigned int eff_sacks;
654 
655 	opts->options = 0;
656 
657 #ifdef CONFIG_TCP_MD5SIG
658 	*md5 = tp->af_specific->md5_lookup(sk, sk);
659 	if (unlikely(*md5)) {
660 		opts->options |= OPTION_MD5;
661 		size += TCPOLEN_MD5SIG_ALIGNED;
662 	}
663 #else
664 	*md5 = NULL;
665 #endif
666 
667 	if (likely(tp->rx_opt.tstamp_ok)) {
668 		opts->options |= OPTION_TS;
669 		opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
670 		opts->tsecr = tp->rx_opt.ts_recent;
671 		size += TCPOLEN_TSTAMP_ALIGNED;
672 	}
673 
674 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
675 	if (unlikely(eff_sacks)) {
676 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
677 		opts->num_sack_blocks =
678 			min_t(unsigned int, eff_sacks,
679 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
680 			      TCPOLEN_SACK_PERBLOCK);
681 		size += TCPOLEN_SACK_BASE_ALIGNED +
682 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
683 	}
684 
685 	return size;
686 }
687 
688 
689 /* TCP SMALL QUEUES (TSQ)
690  *
691  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
692  * to reduce RTT and bufferbloat.
693  * We do this using a special skb destructor (tcp_wfree).
694  *
695  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
696  * needs to be reallocated in a driver.
697  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
698  *
699  * Since transmit from skb destructor is forbidden, we use a tasklet
700  * to process all sockets that eventually need to send more skbs.
701  * We use one tasklet per cpu, with its own queue of sockets.
702  */
703 struct tsq_tasklet {
704 	struct tasklet_struct	tasklet;
705 	struct list_head	head; /* queue of tcp sockets */
706 };
707 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
708 
709 static void tcp_tsq_handler(struct sock *sk)
710 {
711 	if ((1 << sk->sk_state) &
712 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
713 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
714 		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
715 			       0, GFP_ATOMIC);
716 }
717 /*
718  * One tasklet per cpu tries to send more skbs.
719  * We run in tasklet context but need to disable irqs when
720  * transferring tsq->head because tcp_wfree() might
721  * interrupt us (non NAPI drivers)
722  */
723 static void tcp_tasklet_func(unsigned long data)
724 {
725 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
726 	LIST_HEAD(list);
727 	unsigned long flags;
728 	struct list_head *q, *n;
729 	struct tcp_sock *tp;
730 	struct sock *sk;
731 
732 	local_irq_save(flags);
733 	list_splice_init(&tsq->head, &list);
734 	local_irq_restore(flags);
735 
736 	list_for_each_safe(q, n, &list) {
737 		tp = list_entry(q, struct tcp_sock, tsq_node);
738 		list_del(&tp->tsq_node);
739 
740 		sk = (struct sock *)tp;
741 		bh_lock_sock(sk);
742 
743 		if (!sock_owned_by_user(sk)) {
744 			tcp_tsq_handler(sk);
745 		} else {
746 			/* defer the work to tcp_release_cb() */
747 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
748 		}
749 		bh_unlock_sock(sk);
750 
751 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
752 		sk_free(sk);
753 	}
754 }
755 
756 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
757 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
758 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
759 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
760 /**
761  * tcp_release_cb - tcp release_sock() callback
762  * @sk: socket
763  *
764  * called from release_sock() to perform protocol dependent
765  * actions before socket release.
766  */
767 void tcp_release_cb(struct sock *sk)
768 {
769 	struct tcp_sock *tp = tcp_sk(sk);
770 	unsigned long flags, nflags;
771 
772 	/* perform an atomic operation only if at least one flag is set */
773 	do {
774 		flags = tp->tsq_flags;
775 		if (!(flags & TCP_DEFERRED_ALL))
776 			return;
777 		nflags = flags & ~TCP_DEFERRED_ALL;
778 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
779 
780 	if (flags & (1UL << TCP_TSQ_DEFERRED))
781 		tcp_tsq_handler(sk);
782 
783 	/* Here begins the tricky part :
784 	 * We are called from release_sock() with :
785 	 * 1) BH disabled
786 	 * 2) sk_lock.slock spinlock held
787 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
788 	 *
789 	 * But following code is meant to be called from BH handlers,
790 	 * so we should keep BH disabled, but early release socket ownership
791 	 */
792 	sock_release_ownership(sk);
793 
794 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
795 		tcp_write_timer_handler(sk);
796 		__sock_put(sk);
797 	}
798 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
799 		tcp_delack_timer_handler(sk);
800 		__sock_put(sk);
801 	}
802 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
803 		sk->sk_prot->mtu_reduced(sk);
804 		__sock_put(sk);
805 	}
806 }
807 EXPORT_SYMBOL(tcp_release_cb);
808 
809 void __init tcp_tasklet_init(void)
810 {
811 	int i;
812 
813 	for_each_possible_cpu(i) {
814 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
815 
816 		INIT_LIST_HEAD(&tsq->head);
817 		tasklet_init(&tsq->tasklet,
818 			     tcp_tasklet_func,
819 			     (unsigned long)tsq);
820 	}
821 }
822 
823 /*
824  * Write buffer destructor automatically called from kfree_skb.
825  * We can't xmit new skbs from this context, as we might already
826  * hold qdisc lock.
827  */
828 void tcp_wfree(struct sk_buff *skb)
829 {
830 	struct sock *sk = skb->sk;
831 	struct tcp_sock *tp = tcp_sk(sk);
832 
833 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
834 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
835 		unsigned long flags;
836 		struct tsq_tasklet *tsq;
837 
838 		/* Keep a ref on socket.
839 		 * This last ref will be released in tcp_tasklet_func()
840 		 */
841 		atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
842 
843 		/* queue this socket to tasklet queue */
844 		local_irq_save(flags);
845 		tsq = &__get_cpu_var(tsq_tasklet);
846 		list_add(&tp->tsq_node, &tsq->head);
847 		tasklet_schedule(&tsq->tasklet);
848 		local_irq_restore(flags);
849 	} else {
850 		sock_wfree(skb);
851 	}
852 }
853 
854 /* This routine actually transmits TCP packets queued in by
855  * tcp_do_sendmsg().  This is used by both the initial
856  * transmission and possible later retransmissions.
857  * All SKB's seen here are completely headerless.  It is our
858  * job to build the TCP header, and pass the packet down to
859  * IP so it can do the same plus pass the packet off to the
860  * device.
861  *
862  * We are working here with either a clone of the original
863  * SKB, or a fresh unique copy made by the retransmit engine.
864  */
865 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
866 			    gfp_t gfp_mask)
867 {
868 	const struct inet_connection_sock *icsk = inet_csk(sk);
869 	struct inet_sock *inet;
870 	struct tcp_sock *tp;
871 	struct tcp_skb_cb *tcb;
872 	struct tcp_out_options opts;
873 	unsigned int tcp_options_size, tcp_header_size;
874 	struct tcp_md5sig_key *md5;
875 	struct tcphdr *th;
876 	int err;
877 
878 	BUG_ON(!skb || !tcp_skb_pcount(skb));
879 
880 	if (clone_it) {
881 		skb_mstamp_get(&skb->skb_mstamp);
882 
883 		if (unlikely(skb_cloned(skb)))
884 			skb = pskb_copy(skb, gfp_mask);
885 		else
886 			skb = skb_clone(skb, gfp_mask);
887 		if (unlikely(!skb))
888 			return -ENOBUFS;
889 		/* Our usage of tstamp should remain private */
890 		skb->tstamp.tv64 = 0;
891 	}
892 
893 	inet = inet_sk(sk);
894 	tp = tcp_sk(sk);
895 	tcb = TCP_SKB_CB(skb);
896 	memset(&opts, 0, sizeof(opts));
897 
898 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
899 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
900 	else
901 		tcp_options_size = tcp_established_options(sk, skb, &opts,
902 							   &md5);
903 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
904 
905 	if (tcp_packets_in_flight(tp) == 0)
906 		tcp_ca_event(sk, CA_EVENT_TX_START);
907 
908 	/* if no packet is in qdisc/device queue, then allow XPS to select
909 	 * another queue.
910 	 */
911 	skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
912 
913 	skb_push(skb, tcp_header_size);
914 	skb_reset_transport_header(skb);
915 
916 	skb_orphan(skb);
917 	skb->sk = sk;
918 	skb->destructor = tcp_wfree;
919 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
920 
921 	/* Build TCP header and checksum it. */
922 	th = tcp_hdr(skb);
923 	th->source		= inet->inet_sport;
924 	th->dest		= inet->inet_dport;
925 	th->seq			= htonl(tcb->seq);
926 	th->ack_seq		= htonl(tp->rcv_nxt);
927 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
928 					tcb->tcp_flags);
929 
930 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
931 		/* RFC1323: The window in SYN & SYN/ACK segments
932 		 * is never scaled.
933 		 */
934 		th->window	= htons(min(tp->rcv_wnd, 65535U));
935 	} else {
936 		th->window	= htons(tcp_select_window(sk));
937 	}
938 	th->check		= 0;
939 	th->urg_ptr		= 0;
940 
941 	/* The urg_mode check is necessary during a below snd_una win probe */
942 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
943 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
944 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
945 			th->urg = 1;
946 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
947 			th->urg_ptr = htons(0xFFFF);
948 			th->urg = 1;
949 		}
950 	}
951 
952 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
953 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
954 		TCP_ECN_send(sk, skb, tcp_header_size);
955 
956 #ifdef CONFIG_TCP_MD5SIG
957 	/* Calculate the MD5 hash, as we have all we need now */
958 	if (md5) {
959 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
960 		tp->af_specific->calc_md5_hash(opts.hash_location,
961 					       md5, sk, NULL, skb);
962 	}
963 #endif
964 
965 	icsk->icsk_af_ops->send_check(sk, skb);
966 
967 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
968 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
969 
970 	if (skb->len != tcp_header_size)
971 		tcp_event_data_sent(tp, sk);
972 
973 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
974 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
975 			      tcp_skb_pcount(skb));
976 
977 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
978 	if (likely(err <= 0))
979 		return err;
980 
981 	tcp_enter_cwr(sk, 1);
982 
983 	return net_xmit_eval(err);
984 }
985 
986 /* This routine just queues the buffer for sending.
987  *
988  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
989  * otherwise socket can stall.
990  */
991 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
992 {
993 	struct tcp_sock *tp = tcp_sk(sk);
994 
995 	/* Advance write_seq and place onto the write_queue. */
996 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
997 	skb_header_release(skb);
998 	tcp_add_write_queue_tail(sk, skb);
999 	sk->sk_wmem_queued += skb->truesize;
1000 	sk_mem_charge(sk, skb->truesize);
1001 }
1002 
1003 /* Initialize TSO segments for a packet. */
1004 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1005 				 unsigned int mss_now)
1006 {
1007 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1008 
1009 	/* Make sure we own this skb before messing gso_size/gso_segs */
1010 	WARN_ON_ONCE(skb_cloned(skb));
1011 
1012 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1013 		/* Avoid the costly divide in the normal
1014 		 * non-TSO case.
1015 		 */
1016 		shinfo->gso_segs = 1;
1017 		shinfo->gso_size = 0;
1018 		shinfo->gso_type = 0;
1019 	} else {
1020 		shinfo->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1021 		shinfo->gso_size = mss_now;
1022 		shinfo->gso_type = sk->sk_gso_type;
1023 	}
1024 }
1025 
1026 /* When a modification to fackets out becomes necessary, we need to check
1027  * skb is counted to fackets_out or not.
1028  */
1029 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1030 				   int decr)
1031 {
1032 	struct tcp_sock *tp = tcp_sk(sk);
1033 
1034 	if (!tp->sacked_out || tcp_is_reno(tp))
1035 		return;
1036 
1037 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1038 		tp->fackets_out -= decr;
1039 }
1040 
1041 /* Pcount in the middle of the write queue got changed, we need to do various
1042  * tweaks to fix counters
1043  */
1044 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1045 {
1046 	struct tcp_sock *tp = tcp_sk(sk);
1047 
1048 	tp->packets_out -= decr;
1049 
1050 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1051 		tp->sacked_out -= decr;
1052 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1053 		tp->retrans_out -= decr;
1054 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1055 		tp->lost_out -= decr;
1056 
1057 	/* Reno case is special. Sigh... */
1058 	if (tcp_is_reno(tp) && decr > 0)
1059 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1060 
1061 	tcp_adjust_fackets_out(sk, skb, decr);
1062 
1063 	if (tp->lost_skb_hint &&
1064 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1065 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1066 		tp->lost_cnt_hint -= decr;
1067 
1068 	tcp_verify_left_out(tp);
1069 }
1070 
1071 /* Function to create two new TCP segments.  Shrinks the given segment
1072  * to the specified size and appends a new segment with the rest of the
1073  * packet to the list.  This won't be called frequently, I hope.
1074  * Remember, these are still headerless SKBs at this point.
1075  */
1076 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1077 		 unsigned int mss_now, gfp_t gfp)
1078 {
1079 	struct tcp_sock *tp = tcp_sk(sk);
1080 	struct sk_buff *buff;
1081 	int nsize, old_factor;
1082 	int nlen;
1083 	u8 flags;
1084 
1085 	if (WARN_ON(len > skb->len))
1086 		return -EINVAL;
1087 
1088 	nsize = skb_headlen(skb) - len;
1089 	if (nsize < 0)
1090 		nsize = 0;
1091 
1092 	if (skb_unclone(skb, gfp))
1093 		return -ENOMEM;
1094 
1095 	/* Get a new skb... force flag on. */
1096 	buff = sk_stream_alloc_skb(sk, nsize, gfp);
1097 	if (buff == NULL)
1098 		return -ENOMEM; /* We'll just try again later. */
1099 
1100 	sk->sk_wmem_queued += buff->truesize;
1101 	sk_mem_charge(sk, buff->truesize);
1102 	nlen = skb->len - len - nsize;
1103 	buff->truesize += nlen;
1104 	skb->truesize -= nlen;
1105 
1106 	/* Correct the sequence numbers. */
1107 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1108 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1109 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1110 
1111 	/* PSH and FIN should only be set in the second packet. */
1112 	flags = TCP_SKB_CB(skb)->tcp_flags;
1113 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1114 	TCP_SKB_CB(buff)->tcp_flags = flags;
1115 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1116 
1117 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1118 		/* Copy and checksum data tail into the new buffer. */
1119 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1120 						       skb_put(buff, nsize),
1121 						       nsize, 0);
1122 
1123 		skb_trim(skb, len);
1124 
1125 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1126 	} else {
1127 		skb->ip_summed = CHECKSUM_PARTIAL;
1128 		skb_split(skb, buff, len);
1129 	}
1130 
1131 	buff->ip_summed = skb->ip_summed;
1132 
1133 	/* Looks stupid, but our code really uses when of
1134 	 * skbs, which it never sent before. --ANK
1135 	 */
1136 	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1137 	buff->tstamp = skb->tstamp;
1138 
1139 	old_factor = tcp_skb_pcount(skb);
1140 
1141 	/* Fix up tso_factor for both original and new SKB.  */
1142 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1143 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1144 
1145 	/* If this packet has been sent out already, we must
1146 	 * adjust the various packet counters.
1147 	 */
1148 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1149 		int diff = old_factor - tcp_skb_pcount(skb) -
1150 			tcp_skb_pcount(buff);
1151 
1152 		if (diff)
1153 			tcp_adjust_pcount(sk, skb, diff);
1154 	}
1155 
1156 	/* Link BUFF into the send queue. */
1157 	skb_header_release(buff);
1158 	tcp_insert_write_queue_after(skb, buff, sk);
1159 
1160 	return 0;
1161 }
1162 
1163 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1164  * eventually). The difference is that pulled data not copied, but
1165  * immediately discarded.
1166  */
1167 static void __pskb_trim_head(struct sk_buff *skb, int len)
1168 {
1169 	struct skb_shared_info *shinfo;
1170 	int i, k, eat;
1171 
1172 	eat = min_t(int, len, skb_headlen(skb));
1173 	if (eat) {
1174 		__skb_pull(skb, eat);
1175 		len -= eat;
1176 		if (!len)
1177 			return;
1178 	}
1179 	eat = len;
1180 	k = 0;
1181 	shinfo = skb_shinfo(skb);
1182 	for (i = 0; i < shinfo->nr_frags; i++) {
1183 		int size = skb_frag_size(&shinfo->frags[i]);
1184 
1185 		if (size <= eat) {
1186 			skb_frag_unref(skb, i);
1187 			eat -= size;
1188 		} else {
1189 			shinfo->frags[k] = shinfo->frags[i];
1190 			if (eat) {
1191 				shinfo->frags[k].page_offset += eat;
1192 				skb_frag_size_sub(&shinfo->frags[k], eat);
1193 				eat = 0;
1194 			}
1195 			k++;
1196 		}
1197 	}
1198 	shinfo->nr_frags = k;
1199 
1200 	skb_reset_tail_pointer(skb);
1201 	skb->data_len -= len;
1202 	skb->len = skb->data_len;
1203 }
1204 
1205 /* Remove acked data from a packet in the transmit queue. */
1206 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1207 {
1208 	if (skb_unclone(skb, GFP_ATOMIC))
1209 		return -ENOMEM;
1210 
1211 	__pskb_trim_head(skb, len);
1212 
1213 	TCP_SKB_CB(skb)->seq += len;
1214 	skb->ip_summed = CHECKSUM_PARTIAL;
1215 
1216 	skb->truesize	     -= len;
1217 	sk->sk_wmem_queued   -= len;
1218 	sk_mem_uncharge(sk, len);
1219 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1220 
1221 	/* Any change of skb->len requires recalculation of tso factor. */
1222 	if (tcp_skb_pcount(skb) > 1)
1223 		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1224 
1225 	return 0;
1226 }
1227 
1228 /* Calculate MSS not accounting any TCP options.  */
1229 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1230 {
1231 	const struct tcp_sock *tp = tcp_sk(sk);
1232 	const struct inet_connection_sock *icsk = inet_csk(sk);
1233 	int mss_now;
1234 
1235 	/* Calculate base mss without TCP options:
1236 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1237 	 */
1238 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1239 
1240 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1241 	if (icsk->icsk_af_ops->net_frag_header_len) {
1242 		const struct dst_entry *dst = __sk_dst_get(sk);
1243 
1244 		if (dst && dst_allfrag(dst))
1245 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1246 	}
1247 
1248 	/* Clamp it (mss_clamp does not include tcp options) */
1249 	if (mss_now > tp->rx_opt.mss_clamp)
1250 		mss_now = tp->rx_opt.mss_clamp;
1251 
1252 	/* Now subtract optional transport overhead */
1253 	mss_now -= icsk->icsk_ext_hdr_len;
1254 
1255 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1256 	if (mss_now < 48)
1257 		mss_now = 48;
1258 	return mss_now;
1259 }
1260 
1261 /* Calculate MSS. Not accounting for SACKs here.  */
1262 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1263 {
1264 	/* Subtract TCP options size, not including SACKs */
1265 	return __tcp_mtu_to_mss(sk, pmtu) -
1266 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1267 }
1268 
1269 /* Inverse of above */
1270 int tcp_mss_to_mtu(struct sock *sk, int mss)
1271 {
1272 	const struct tcp_sock *tp = tcp_sk(sk);
1273 	const struct inet_connection_sock *icsk = inet_csk(sk);
1274 	int mtu;
1275 
1276 	mtu = mss +
1277 	      tp->tcp_header_len +
1278 	      icsk->icsk_ext_hdr_len +
1279 	      icsk->icsk_af_ops->net_header_len;
1280 
1281 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1282 	if (icsk->icsk_af_ops->net_frag_header_len) {
1283 		const struct dst_entry *dst = __sk_dst_get(sk);
1284 
1285 		if (dst && dst_allfrag(dst))
1286 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1287 	}
1288 	return mtu;
1289 }
1290 
1291 /* MTU probing init per socket */
1292 void tcp_mtup_init(struct sock *sk)
1293 {
1294 	struct tcp_sock *tp = tcp_sk(sk);
1295 	struct inet_connection_sock *icsk = inet_csk(sk);
1296 
1297 	icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1298 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1299 			       icsk->icsk_af_ops->net_header_len;
1300 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1301 	icsk->icsk_mtup.probe_size = 0;
1302 }
1303 EXPORT_SYMBOL(tcp_mtup_init);
1304 
1305 /* This function synchronize snd mss to current pmtu/exthdr set.
1306 
1307    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1308    for TCP options, but includes only bare TCP header.
1309 
1310    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1311    It is minimum of user_mss and mss received with SYN.
1312    It also does not include TCP options.
1313 
1314    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1315 
1316    tp->mss_cache is current effective sending mss, including
1317    all tcp options except for SACKs. It is evaluated,
1318    taking into account current pmtu, but never exceeds
1319    tp->rx_opt.mss_clamp.
1320 
1321    NOTE1. rfc1122 clearly states that advertised MSS
1322    DOES NOT include either tcp or ip options.
1323 
1324    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1325    are READ ONLY outside this function.		--ANK (980731)
1326  */
1327 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1328 {
1329 	struct tcp_sock *tp = tcp_sk(sk);
1330 	struct inet_connection_sock *icsk = inet_csk(sk);
1331 	int mss_now;
1332 
1333 	if (icsk->icsk_mtup.search_high > pmtu)
1334 		icsk->icsk_mtup.search_high = pmtu;
1335 
1336 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1337 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1338 
1339 	/* And store cached results */
1340 	icsk->icsk_pmtu_cookie = pmtu;
1341 	if (icsk->icsk_mtup.enabled)
1342 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1343 	tp->mss_cache = mss_now;
1344 
1345 	return mss_now;
1346 }
1347 EXPORT_SYMBOL(tcp_sync_mss);
1348 
1349 /* Compute the current effective MSS, taking SACKs and IP options,
1350  * and even PMTU discovery events into account.
1351  */
1352 unsigned int tcp_current_mss(struct sock *sk)
1353 {
1354 	const struct tcp_sock *tp = tcp_sk(sk);
1355 	const struct dst_entry *dst = __sk_dst_get(sk);
1356 	u32 mss_now;
1357 	unsigned int header_len;
1358 	struct tcp_out_options opts;
1359 	struct tcp_md5sig_key *md5;
1360 
1361 	mss_now = tp->mss_cache;
1362 
1363 	if (dst) {
1364 		u32 mtu = dst_mtu(dst);
1365 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1366 			mss_now = tcp_sync_mss(sk, mtu);
1367 	}
1368 
1369 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1370 		     sizeof(struct tcphdr);
1371 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1372 	 * some common options. If this is an odd packet (because we have SACK
1373 	 * blocks etc) then our calculated header_len will be different, and
1374 	 * we have to adjust mss_now correspondingly */
1375 	if (header_len != tp->tcp_header_len) {
1376 		int delta = (int) header_len - tp->tcp_header_len;
1377 		mss_now -= delta;
1378 	}
1379 
1380 	return mss_now;
1381 }
1382 
1383 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1384  * As additional protections, we do not touch cwnd in retransmission phases,
1385  * and if application hit its sndbuf limit recently.
1386  */
1387 static void tcp_cwnd_application_limited(struct sock *sk)
1388 {
1389 	struct tcp_sock *tp = tcp_sk(sk);
1390 
1391 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1392 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1393 		/* Limited by application or receiver window. */
1394 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1395 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1396 		if (win_used < tp->snd_cwnd) {
1397 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1398 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1399 		}
1400 		tp->snd_cwnd_used = 0;
1401 	}
1402 	tp->snd_cwnd_stamp = tcp_time_stamp;
1403 }
1404 
1405 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1406 {
1407 	struct tcp_sock *tp = tcp_sk(sk);
1408 
1409 	/* Track the maximum number of outstanding packets in each
1410 	 * window, and remember whether we were cwnd-limited then.
1411 	 */
1412 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1413 	    tp->packets_out > tp->max_packets_out) {
1414 		tp->max_packets_out = tp->packets_out;
1415 		tp->max_packets_seq = tp->snd_nxt;
1416 		tp->is_cwnd_limited = is_cwnd_limited;
1417 	}
1418 
1419 	if (tcp_is_cwnd_limited(sk)) {
1420 		/* Network is feed fully. */
1421 		tp->snd_cwnd_used = 0;
1422 		tp->snd_cwnd_stamp = tcp_time_stamp;
1423 	} else {
1424 		/* Network starves. */
1425 		if (tp->packets_out > tp->snd_cwnd_used)
1426 			tp->snd_cwnd_used = tp->packets_out;
1427 
1428 		if (sysctl_tcp_slow_start_after_idle &&
1429 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1430 			tcp_cwnd_application_limited(sk);
1431 	}
1432 }
1433 
1434 /* Minshall's variant of the Nagle send check. */
1435 static bool tcp_minshall_check(const struct tcp_sock *tp)
1436 {
1437 	return after(tp->snd_sml, tp->snd_una) &&
1438 		!after(tp->snd_sml, tp->snd_nxt);
1439 }
1440 
1441 /* Update snd_sml if this skb is under mss
1442  * Note that a TSO packet might end with a sub-mss segment
1443  * The test is really :
1444  * if ((skb->len % mss) != 0)
1445  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1446  * But we can avoid doing the divide again given we already have
1447  *  skb_pcount = skb->len / mss_now
1448  */
1449 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1450 				const struct sk_buff *skb)
1451 {
1452 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1453 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1454 }
1455 
1456 /* Return false, if packet can be sent now without violation Nagle's rules:
1457  * 1. It is full sized. (provided by caller in %partial bool)
1458  * 2. Or it contains FIN. (already checked by caller)
1459  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1460  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1461  *    With Minshall's modification: all sent small packets are ACKed.
1462  */
1463 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1464 			    int nonagle)
1465 {
1466 	return partial &&
1467 		((nonagle & TCP_NAGLE_CORK) ||
1468 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1469 }
1470 /* Returns the portion of skb which can be sent right away */
1471 static unsigned int tcp_mss_split_point(const struct sock *sk,
1472 					const struct sk_buff *skb,
1473 					unsigned int mss_now,
1474 					unsigned int max_segs,
1475 					int nonagle)
1476 {
1477 	const struct tcp_sock *tp = tcp_sk(sk);
1478 	u32 partial, needed, window, max_len;
1479 
1480 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1481 	max_len = mss_now * max_segs;
1482 
1483 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1484 		return max_len;
1485 
1486 	needed = min(skb->len, window);
1487 
1488 	if (max_len <= needed)
1489 		return max_len;
1490 
1491 	partial = needed % mss_now;
1492 	/* If last segment is not a full MSS, check if Nagle rules allow us
1493 	 * to include this last segment in this skb.
1494 	 * Otherwise, we'll split the skb at last MSS boundary
1495 	 */
1496 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1497 		return needed - partial;
1498 
1499 	return needed;
1500 }
1501 
1502 /* Can at least one segment of SKB be sent right now, according to the
1503  * congestion window rules?  If so, return how many segments are allowed.
1504  */
1505 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1506 					 const struct sk_buff *skb)
1507 {
1508 	u32 in_flight, cwnd;
1509 
1510 	/* Don't be strict about the congestion window for the final FIN.  */
1511 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1512 	    tcp_skb_pcount(skb) == 1)
1513 		return 1;
1514 
1515 	in_flight = tcp_packets_in_flight(tp);
1516 	cwnd = tp->snd_cwnd;
1517 	if (in_flight < cwnd)
1518 		return (cwnd - in_flight);
1519 
1520 	return 0;
1521 }
1522 
1523 /* Initialize TSO state of a skb.
1524  * This must be invoked the first time we consider transmitting
1525  * SKB onto the wire.
1526  */
1527 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1528 			     unsigned int mss_now)
1529 {
1530 	int tso_segs = tcp_skb_pcount(skb);
1531 
1532 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1533 		tcp_set_skb_tso_segs(sk, skb, mss_now);
1534 		tso_segs = tcp_skb_pcount(skb);
1535 	}
1536 	return tso_segs;
1537 }
1538 
1539 
1540 /* Return true if the Nagle test allows this packet to be
1541  * sent now.
1542  */
1543 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1544 				  unsigned int cur_mss, int nonagle)
1545 {
1546 	/* Nagle rule does not apply to frames, which sit in the middle of the
1547 	 * write_queue (they have no chances to get new data).
1548 	 *
1549 	 * This is implemented in the callers, where they modify the 'nonagle'
1550 	 * argument based upon the location of SKB in the send queue.
1551 	 */
1552 	if (nonagle & TCP_NAGLE_PUSH)
1553 		return true;
1554 
1555 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1556 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1557 		return true;
1558 
1559 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1560 		return true;
1561 
1562 	return false;
1563 }
1564 
1565 /* Does at least the first segment of SKB fit into the send window? */
1566 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1567 			     const struct sk_buff *skb,
1568 			     unsigned int cur_mss)
1569 {
1570 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1571 
1572 	if (skb->len > cur_mss)
1573 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1574 
1575 	return !after(end_seq, tcp_wnd_end(tp));
1576 }
1577 
1578 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1579  * should be put on the wire right now.  If so, it returns the number of
1580  * packets allowed by the congestion window.
1581  */
1582 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1583 				 unsigned int cur_mss, int nonagle)
1584 {
1585 	const struct tcp_sock *tp = tcp_sk(sk);
1586 	unsigned int cwnd_quota;
1587 
1588 	tcp_init_tso_segs(sk, skb, cur_mss);
1589 
1590 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1591 		return 0;
1592 
1593 	cwnd_quota = tcp_cwnd_test(tp, skb);
1594 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1595 		cwnd_quota = 0;
1596 
1597 	return cwnd_quota;
1598 }
1599 
1600 /* Test if sending is allowed right now. */
1601 bool tcp_may_send_now(struct sock *sk)
1602 {
1603 	const struct tcp_sock *tp = tcp_sk(sk);
1604 	struct sk_buff *skb = tcp_send_head(sk);
1605 
1606 	return skb &&
1607 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1608 			     (tcp_skb_is_last(sk, skb) ?
1609 			      tp->nonagle : TCP_NAGLE_PUSH));
1610 }
1611 
1612 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1613  * which is put after SKB on the list.  It is very much like
1614  * tcp_fragment() except that it may make several kinds of assumptions
1615  * in order to speed up the splitting operation.  In particular, we
1616  * know that all the data is in scatter-gather pages, and that the
1617  * packet has never been sent out before (and thus is not cloned).
1618  */
1619 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1620 			unsigned int mss_now, gfp_t gfp)
1621 {
1622 	struct sk_buff *buff;
1623 	int nlen = skb->len - len;
1624 	u8 flags;
1625 
1626 	/* All of a TSO frame must be composed of paged data.  */
1627 	if (skb->len != skb->data_len)
1628 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1629 
1630 	buff = sk_stream_alloc_skb(sk, 0, gfp);
1631 	if (unlikely(buff == NULL))
1632 		return -ENOMEM;
1633 
1634 	sk->sk_wmem_queued += buff->truesize;
1635 	sk_mem_charge(sk, buff->truesize);
1636 	buff->truesize += nlen;
1637 	skb->truesize -= nlen;
1638 
1639 	/* Correct the sequence numbers. */
1640 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1641 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1642 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1643 
1644 	/* PSH and FIN should only be set in the second packet. */
1645 	flags = TCP_SKB_CB(skb)->tcp_flags;
1646 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1647 	TCP_SKB_CB(buff)->tcp_flags = flags;
1648 
1649 	/* This packet was never sent out yet, so no SACK bits. */
1650 	TCP_SKB_CB(buff)->sacked = 0;
1651 
1652 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1653 	skb_split(skb, buff, len);
1654 
1655 	/* Fix up tso_factor for both original and new SKB.  */
1656 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1657 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1658 
1659 	/* Link BUFF into the send queue. */
1660 	skb_header_release(buff);
1661 	tcp_insert_write_queue_after(skb, buff, sk);
1662 
1663 	return 0;
1664 }
1665 
1666 /* Try to defer sending, if possible, in order to minimize the amount
1667  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1668  *
1669  * This algorithm is from John Heffner.
1670  */
1671 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1672 				 bool *is_cwnd_limited)
1673 {
1674 	struct tcp_sock *tp = tcp_sk(sk);
1675 	const struct inet_connection_sock *icsk = inet_csk(sk);
1676 	u32 send_win, cong_win, limit, in_flight;
1677 	int win_divisor;
1678 
1679 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1680 		goto send_now;
1681 
1682 	if (icsk->icsk_ca_state != TCP_CA_Open)
1683 		goto send_now;
1684 
1685 	/* Defer for less than two clock ticks. */
1686 	if (tp->tso_deferred &&
1687 	    (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1688 		goto send_now;
1689 
1690 	in_flight = tcp_packets_in_flight(tp);
1691 
1692 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1693 
1694 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1695 
1696 	/* From in_flight test above, we know that cwnd > in_flight.  */
1697 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1698 
1699 	limit = min(send_win, cong_win);
1700 
1701 	/* If a full-sized TSO skb can be sent, do it. */
1702 	if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1703 			   tp->xmit_size_goal_segs * tp->mss_cache))
1704 		goto send_now;
1705 
1706 	/* Middle in queue won't get any more data, full sendable already? */
1707 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1708 		goto send_now;
1709 
1710 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1711 	if (win_divisor) {
1712 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1713 
1714 		/* If at least some fraction of a window is available,
1715 		 * just use it.
1716 		 */
1717 		chunk /= win_divisor;
1718 		if (limit >= chunk)
1719 			goto send_now;
1720 	} else {
1721 		/* Different approach, try not to defer past a single
1722 		 * ACK.  Receiver should ACK every other full sized
1723 		 * frame, so if we have space for more than 3 frames
1724 		 * then send now.
1725 		 */
1726 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1727 			goto send_now;
1728 	}
1729 
1730 	/* Ok, it looks like it is advisable to defer.
1731 	 * Do not rearm the timer if already set to not break TCP ACK clocking.
1732 	 */
1733 	if (!tp->tso_deferred)
1734 		tp->tso_deferred = 1 | (jiffies << 1);
1735 
1736 	if (cong_win < send_win && cong_win < skb->len)
1737 		*is_cwnd_limited = true;
1738 
1739 	return true;
1740 
1741 send_now:
1742 	tp->tso_deferred = 0;
1743 	return false;
1744 }
1745 
1746 /* Create a new MTU probe if we are ready.
1747  * MTU probe is regularly attempting to increase the path MTU by
1748  * deliberately sending larger packets.  This discovers routing
1749  * changes resulting in larger path MTUs.
1750  *
1751  * Returns 0 if we should wait to probe (no cwnd available),
1752  *         1 if a probe was sent,
1753  *         -1 otherwise
1754  */
1755 static int tcp_mtu_probe(struct sock *sk)
1756 {
1757 	struct tcp_sock *tp = tcp_sk(sk);
1758 	struct inet_connection_sock *icsk = inet_csk(sk);
1759 	struct sk_buff *skb, *nskb, *next;
1760 	int len;
1761 	int probe_size;
1762 	int size_needed;
1763 	int copy;
1764 	int mss_now;
1765 
1766 	/* Not currently probing/verifying,
1767 	 * not in recovery,
1768 	 * have enough cwnd, and
1769 	 * not SACKing (the variable headers throw things off) */
1770 	if (!icsk->icsk_mtup.enabled ||
1771 	    icsk->icsk_mtup.probe_size ||
1772 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1773 	    tp->snd_cwnd < 11 ||
1774 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1775 		return -1;
1776 
1777 	/* Very simple search strategy: just double the MSS. */
1778 	mss_now = tcp_current_mss(sk);
1779 	probe_size = 2 * tp->mss_cache;
1780 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1781 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1782 		/* TODO: set timer for probe_converge_event */
1783 		return -1;
1784 	}
1785 
1786 	/* Have enough data in the send queue to probe? */
1787 	if (tp->write_seq - tp->snd_nxt < size_needed)
1788 		return -1;
1789 
1790 	if (tp->snd_wnd < size_needed)
1791 		return -1;
1792 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1793 		return 0;
1794 
1795 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1796 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1797 		if (!tcp_packets_in_flight(tp))
1798 			return -1;
1799 		else
1800 			return 0;
1801 	}
1802 
1803 	/* We're allowed to probe.  Build it now. */
1804 	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1805 		return -1;
1806 	sk->sk_wmem_queued += nskb->truesize;
1807 	sk_mem_charge(sk, nskb->truesize);
1808 
1809 	skb = tcp_send_head(sk);
1810 
1811 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1812 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1813 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1814 	TCP_SKB_CB(nskb)->sacked = 0;
1815 	nskb->csum = 0;
1816 	nskb->ip_summed = skb->ip_summed;
1817 
1818 	tcp_insert_write_queue_before(nskb, skb, sk);
1819 
1820 	len = 0;
1821 	tcp_for_write_queue_from_safe(skb, next, sk) {
1822 		copy = min_t(int, skb->len, probe_size - len);
1823 		if (nskb->ip_summed)
1824 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1825 		else
1826 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1827 							    skb_put(nskb, copy),
1828 							    copy, nskb->csum);
1829 
1830 		if (skb->len <= copy) {
1831 			/* We've eaten all the data from this skb.
1832 			 * Throw it away. */
1833 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1834 			tcp_unlink_write_queue(skb, sk);
1835 			sk_wmem_free_skb(sk, skb);
1836 		} else {
1837 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1838 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1839 			if (!skb_shinfo(skb)->nr_frags) {
1840 				skb_pull(skb, copy);
1841 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1842 					skb->csum = csum_partial(skb->data,
1843 								 skb->len, 0);
1844 			} else {
1845 				__pskb_trim_head(skb, copy);
1846 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1847 			}
1848 			TCP_SKB_CB(skb)->seq += copy;
1849 		}
1850 
1851 		len += copy;
1852 
1853 		if (len >= probe_size)
1854 			break;
1855 	}
1856 	tcp_init_tso_segs(sk, nskb, nskb->len);
1857 
1858 	/* We're ready to send.  If this fails, the probe will
1859 	 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1860 	TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1861 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1862 		/* Decrement cwnd here because we are sending
1863 		 * effectively two packets. */
1864 		tp->snd_cwnd--;
1865 		tcp_event_new_data_sent(sk, nskb);
1866 
1867 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1868 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1869 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1870 
1871 		return 1;
1872 	}
1873 
1874 	return -1;
1875 }
1876 
1877 /* This routine writes packets to the network.  It advances the
1878  * send_head.  This happens as incoming acks open up the remote
1879  * window for us.
1880  *
1881  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1882  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1883  * account rare use of URG, this is not a big flaw.
1884  *
1885  * Send at most one packet when push_one > 0. Temporarily ignore
1886  * cwnd limit to force at most one packet out when push_one == 2.
1887 
1888  * Returns true, if no segments are in flight and we have queued segments,
1889  * but cannot send anything now because of SWS or another problem.
1890  */
1891 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1892 			   int push_one, gfp_t gfp)
1893 {
1894 	struct tcp_sock *tp = tcp_sk(sk);
1895 	struct sk_buff *skb;
1896 	unsigned int tso_segs, sent_pkts;
1897 	int cwnd_quota;
1898 	int result;
1899 	bool is_cwnd_limited = false;
1900 
1901 	sent_pkts = 0;
1902 
1903 	if (!push_one) {
1904 		/* Do MTU probing. */
1905 		result = tcp_mtu_probe(sk);
1906 		if (!result) {
1907 			return false;
1908 		} else if (result > 0) {
1909 			sent_pkts = 1;
1910 		}
1911 	}
1912 
1913 	while ((skb = tcp_send_head(sk))) {
1914 		unsigned int limit;
1915 
1916 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1917 		BUG_ON(!tso_segs);
1918 
1919 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1920 			goto repair; /* Skip network transmission */
1921 
1922 		cwnd_quota = tcp_cwnd_test(tp, skb);
1923 		if (!cwnd_quota) {
1924 			is_cwnd_limited = true;
1925 			if (push_one == 2)
1926 				/* Force out a loss probe pkt. */
1927 				cwnd_quota = 1;
1928 			else
1929 				break;
1930 		}
1931 
1932 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1933 			break;
1934 
1935 		if (tso_segs == 1) {
1936 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1937 						     (tcp_skb_is_last(sk, skb) ?
1938 						      nonagle : TCP_NAGLE_PUSH))))
1939 				break;
1940 		} else {
1941 			if (!push_one &&
1942 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited))
1943 				break;
1944 		}
1945 
1946 		/* TCP Small Queues :
1947 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1948 		 * This allows for :
1949 		 *  - better RTT estimation and ACK scheduling
1950 		 *  - faster recovery
1951 		 *  - high rates
1952 		 * Alas, some drivers / subsystems require a fair amount
1953 		 * of queued bytes to ensure line rate.
1954 		 * One example is wifi aggregation (802.11 AMPDU)
1955 		 */
1956 		limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
1957 			      sk->sk_pacing_rate >> 10);
1958 
1959 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1960 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1961 			/* It is possible TX completion already happened
1962 			 * before we set TSQ_THROTTLED, so we must
1963 			 * test again the condition.
1964 			 */
1965 			smp_mb__after_atomic();
1966 			if (atomic_read(&sk->sk_wmem_alloc) > limit)
1967 				break;
1968 		}
1969 
1970 		limit = mss_now;
1971 		if (tso_segs > 1 && !tcp_urg_mode(tp))
1972 			limit = tcp_mss_split_point(sk, skb, mss_now,
1973 						    min_t(unsigned int,
1974 							  cwnd_quota,
1975 							  sk->sk_gso_max_segs),
1976 						    nonagle);
1977 
1978 		if (skb->len > limit &&
1979 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1980 			break;
1981 
1982 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1983 
1984 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1985 			break;
1986 
1987 repair:
1988 		/* Advance the send_head.  This one is sent out.
1989 		 * This call will increment packets_out.
1990 		 */
1991 		tcp_event_new_data_sent(sk, skb);
1992 
1993 		tcp_minshall_update(tp, mss_now, skb);
1994 		sent_pkts += tcp_skb_pcount(skb);
1995 
1996 		if (push_one)
1997 			break;
1998 	}
1999 
2000 	if (likely(sent_pkts)) {
2001 		if (tcp_in_cwnd_reduction(sk))
2002 			tp->prr_out += sent_pkts;
2003 
2004 		/* Send one loss probe per tail loss episode. */
2005 		if (push_one != 2)
2006 			tcp_schedule_loss_probe(sk);
2007 		tcp_cwnd_validate(sk, is_cwnd_limited);
2008 		return false;
2009 	}
2010 	return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2011 }
2012 
2013 bool tcp_schedule_loss_probe(struct sock *sk)
2014 {
2015 	struct inet_connection_sock *icsk = inet_csk(sk);
2016 	struct tcp_sock *tp = tcp_sk(sk);
2017 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2018 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2019 
2020 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2021 		return false;
2022 	/* No consecutive loss probes. */
2023 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2024 		tcp_rearm_rto(sk);
2025 		return false;
2026 	}
2027 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2028 	 * finishes.
2029 	 */
2030 	if (sk->sk_state == TCP_SYN_RECV)
2031 		return false;
2032 
2033 	/* TLP is only scheduled when next timer event is RTO. */
2034 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2035 		return false;
2036 
2037 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2038 	 * in Open state, that are either limited by cwnd or application.
2039 	 */
2040 	if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2041 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2042 		return false;
2043 
2044 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2045 	     tcp_send_head(sk))
2046 		return false;
2047 
2048 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2049 	 * for delayed ack when there's one outstanding packet.
2050 	 */
2051 	timeout = rtt << 1;
2052 	if (tp->packets_out == 1)
2053 		timeout = max_t(u32, timeout,
2054 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2055 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2056 
2057 	/* If RTO is shorter, just schedule TLP in its place. */
2058 	tlp_time_stamp = tcp_time_stamp + timeout;
2059 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2060 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2061 		s32 delta = rto_time_stamp - tcp_time_stamp;
2062 		if (delta > 0)
2063 			timeout = delta;
2064 	}
2065 
2066 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2067 				  TCP_RTO_MAX);
2068 	return true;
2069 }
2070 
2071 /* Thanks to skb fast clones, we can detect if a prior transmit of
2072  * a packet is still in a qdisc or driver queue.
2073  * In this case, there is very little point doing a retransmit !
2074  * Note: This is called from BH context only.
2075  */
2076 static bool skb_still_in_host_queue(const struct sock *sk,
2077 				    const struct sk_buff *skb)
2078 {
2079 	const struct sk_buff *fclone = skb + 1;
2080 
2081 	if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
2082 		     fclone->fclone == SKB_FCLONE_CLONE)) {
2083 		NET_INC_STATS_BH(sock_net(sk),
2084 				 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2085 		return true;
2086 	}
2087 	return false;
2088 }
2089 
2090 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2091  * retransmit the last segment.
2092  */
2093 void tcp_send_loss_probe(struct sock *sk)
2094 {
2095 	struct tcp_sock *tp = tcp_sk(sk);
2096 	struct sk_buff *skb;
2097 	int pcount;
2098 	int mss = tcp_current_mss(sk);
2099 	int err = -1;
2100 
2101 	if (tcp_send_head(sk) != NULL) {
2102 		err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2103 		goto rearm_timer;
2104 	}
2105 
2106 	/* At most one outstanding TLP retransmission. */
2107 	if (tp->tlp_high_seq)
2108 		goto rearm_timer;
2109 
2110 	/* Retransmit last segment. */
2111 	skb = tcp_write_queue_tail(sk);
2112 	if (WARN_ON(!skb))
2113 		goto rearm_timer;
2114 
2115 	if (skb_still_in_host_queue(sk, skb))
2116 		goto rearm_timer;
2117 
2118 	pcount = tcp_skb_pcount(skb);
2119 	if (WARN_ON(!pcount))
2120 		goto rearm_timer;
2121 
2122 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2123 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2124 					  GFP_ATOMIC)))
2125 			goto rearm_timer;
2126 		skb = tcp_write_queue_tail(sk);
2127 	}
2128 
2129 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2130 		goto rearm_timer;
2131 
2132 	err = __tcp_retransmit_skb(sk, skb);
2133 
2134 	/* Record snd_nxt for loss detection. */
2135 	if (likely(!err))
2136 		tp->tlp_high_seq = tp->snd_nxt;
2137 
2138 rearm_timer:
2139 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2140 				  inet_csk(sk)->icsk_rto,
2141 				  TCP_RTO_MAX);
2142 
2143 	if (likely(!err))
2144 		NET_INC_STATS_BH(sock_net(sk),
2145 				 LINUX_MIB_TCPLOSSPROBES);
2146 }
2147 
2148 /* Push out any pending frames which were held back due to
2149  * TCP_CORK or attempt at coalescing tiny packets.
2150  * The socket must be locked by the caller.
2151  */
2152 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2153 			       int nonagle)
2154 {
2155 	/* If we are closed, the bytes will have to remain here.
2156 	 * In time closedown will finish, we empty the write queue and
2157 	 * all will be happy.
2158 	 */
2159 	if (unlikely(sk->sk_state == TCP_CLOSE))
2160 		return;
2161 
2162 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2163 			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2164 		tcp_check_probe_timer(sk);
2165 }
2166 
2167 /* Send _single_ skb sitting at the send head. This function requires
2168  * true push pending frames to setup probe timer etc.
2169  */
2170 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2171 {
2172 	struct sk_buff *skb = tcp_send_head(sk);
2173 
2174 	BUG_ON(!skb || skb->len < mss_now);
2175 
2176 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2177 }
2178 
2179 /* This function returns the amount that we can raise the
2180  * usable window based on the following constraints
2181  *
2182  * 1. The window can never be shrunk once it is offered (RFC 793)
2183  * 2. We limit memory per socket
2184  *
2185  * RFC 1122:
2186  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2187  *  RECV.NEXT + RCV.WIN fixed until:
2188  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2189  *
2190  * i.e. don't raise the right edge of the window until you can raise
2191  * it at least MSS bytes.
2192  *
2193  * Unfortunately, the recommended algorithm breaks header prediction,
2194  * since header prediction assumes th->window stays fixed.
2195  *
2196  * Strictly speaking, keeping th->window fixed violates the receiver
2197  * side SWS prevention criteria. The problem is that under this rule
2198  * a stream of single byte packets will cause the right side of the
2199  * window to always advance by a single byte.
2200  *
2201  * Of course, if the sender implements sender side SWS prevention
2202  * then this will not be a problem.
2203  *
2204  * BSD seems to make the following compromise:
2205  *
2206  *	If the free space is less than the 1/4 of the maximum
2207  *	space available and the free space is less than 1/2 mss,
2208  *	then set the window to 0.
2209  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2210  *	Otherwise, just prevent the window from shrinking
2211  *	and from being larger than the largest representable value.
2212  *
2213  * This prevents incremental opening of the window in the regime
2214  * where TCP is limited by the speed of the reader side taking
2215  * data out of the TCP receive queue. It does nothing about
2216  * those cases where the window is constrained on the sender side
2217  * because the pipeline is full.
2218  *
2219  * BSD also seems to "accidentally" limit itself to windows that are a
2220  * multiple of MSS, at least until the free space gets quite small.
2221  * This would appear to be a side effect of the mbuf implementation.
2222  * Combining these two algorithms results in the observed behavior
2223  * of having a fixed window size at almost all times.
2224  *
2225  * Below we obtain similar behavior by forcing the offered window to
2226  * a multiple of the mss when it is feasible to do so.
2227  *
2228  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2229  * Regular options like TIMESTAMP are taken into account.
2230  */
2231 u32 __tcp_select_window(struct sock *sk)
2232 {
2233 	struct inet_connection_sock *icsk = inet_csk(sk);
2234 	struct tcp_sock *tp = tcp_sk(sk);
2235 	/* MSS for the peer's data.  Previous versions used mss_clamp
2236 	 * here.  I don't know if the value based on our guesses
2237 	 * of peer's MSS is better for the performance.  It's more correct
2238 	 * but may be worse for the performance because of rcv_mss
2239 	 * fluctuations.  --SAW  1998/11/1
2240 	 */
2241 	int mss = icsk->icsk_ack.rcv_mss;
2242 	int free_space = tcp_space(sk);
2243 	int allowed_space = tcp_full_space(sk);
2244 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2245 	int window;
2246 
2247 	if (mss > full_space)
2248 		mss = full_space;
2249 
2250 	if (free_space < (full_space >> 1)) {
2251 		icsk->icsk_ack.quick = 0;
2252 
2253 		if (sk_under_memory_pressure(sk))
2254 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2255 					       4U * tp->advmss);
2256 
2257 		/* free_space might become our new window, make sure we don't
2258 		 * increase it due to wscale.
2259 		 */
2260 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2261 
2262 		/* if free space is less than mss estimate, or is below 1/16th
2263 		 * of the maximum allowed, try to move to zero-window, else
2264 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2265 		 * new incoming data is dropped due to memory limits.
2266 		 * With large window, mss test triggers way too late in order
2267 		 * to announce zero window in time before rmem limit kicks in.
2268 		 */
2269 		if (free_space < (allowed_space >> 4) || free_space < mss)
2270 			return 0;
2271 	}
2272 
2273 	if (free_space > tp->rcv_ssthresh)
2274 		free_space = tp->rcv_ssthresh;
2275 
2276 	/* Don't do rounding if we are using window scaling, since the
2277 	 * scaled window will not line up with the MSS boundary anyway.
2278 	 */
2279 	window = tp->rcv_wnd;
2280 	if (tp->rx_opt.rcv_wscale) {
2281 		window = free_space;
2282 
2283 		/* Advertise enough space so that it won't get scaled away.
2284 		 * Import case: prevent zero window announcement if
2285 		 * 1<<rcv_wscale > mss.
2286 		 */
2287 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2288 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2289 				  << tp->rx_opt.rcv_wscale);
2290 	} else {
2291 		/* Get the largest window that is a nice multiple of mss.
2292 		 * Window clamp already applied above.
2293 		 * If our current window offering is within 1 mss of the
2294 		 * free space we just keep it. This prevents the divide
2295 		 * and multiply from happening most of the time.
2296 		 * We also don't do any window rounding when the free space
2297 		 * is too small.
2298 		 */
2299 		if (window <= free_space - mss || window > free_space)
2300 			window = (free_space / mss) * mss;
2301 		else if (mss == full_space &&
2302 			 free_space > window + (full_space >> 1))
2303 			window = free_space;
2304 	}
2305 
2306 	return window;
2307 }
2308 
2309 /* Collapses two adjacent SKB's during retransmission. */
2310 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2311 {
2312 	struct tcp_sock *tp = tcp_sk(sk);
2313 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2314 	int skb_size, next_skb_size;
2315 
2316 	skb_size = skb->len;
2317 	next_skb_size = next_skb->len;
2318 
2319 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2320 
2321 	tcp_highest_sack_combine(sk, next_skb, skb);
2322 
2323 	tcp_unlink_write_queue(next_skb, sk);
2324 
2325 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2326 				  next_skb_size);
2327 
2328 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2329 		skb->ip_summed = CHECKSUM_PARTIAL;
2330 
2331 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2332 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2333 
2334 	/* Update sequence range on original skb. */
2335 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2336 
2337 	/* Merge over control information. This moves PSH/FIN etc. over */
2338 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2339 
2340 	/* All done, get rid of second SKB and account for it so
2341 	 * packet counting does not break.
2342 	 */
2343 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2344 
2345 	/* changed transmit queue under us so clear hints */
2346 	tcp_clear_retrans_hints_partial(tp);
2347 	if (next_skb == tp->retransmit_skb_hint)
2348 		tp->retransmit_skb_hint = skb;
2349 
2350 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2351 
2352 	sk_wmem_free_skb(sk, next_skb);
2353 }
2354 
2355 /* Check if coalescing SKBs is legal. */
2356 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2357 {
2358 	if (tcp_skb_pcount(skb) > 1)
2359 		return false;
2360 	/* TODO: SACK collapsing could be used to remove this condition */
2361 	if (skb_shinfo(skb)->nr_frags != 0)
2362 		return false;
2363 	if (skb_cloned(skb))
2364 		return false;
2365 	if (skb == tcp_send_head(sk))
2366 		return false;
2367 	/* Some heurestics for collapsing over SACK'd could be invented */
2368 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2369 		return false;
2370 
2371 	return true;
2372 }
2373 
2374 /* Collapse packets in the retransmit queue to make to create
2375  * less packets on the wire. This is only done on retransmission.
2376  */
2377 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2378 				     int space)
2379 {
2380 	struct tcp_sock *tp = tcp_sk(sk);
2381 	struct sk_buff *skb = to, *tmp;
2382 	bool first = true;
2383 
2384 	if (!sysctl_tcp_retrans_collapse)
2385 		return;
2386 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2387 		return;
2388 
2389 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2390 		if (!tcp_can_collapse(sk, skb))
2391 			break;
2392 
2393 		space -= skb->len;
2394 
2395 		if (first) {
2396 			first = false;
2397 			continue;
2398 		}
2399 
2400 		if (space < 0)
2401 			break;
2402 		/* Punt if not enough space exists in the first SKB for
2403 		 * the data in the second
2404 		 */
2405 		if (skb->len > skb_availroom(to))
2406 			break;
2407 
2408 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2409 			break;
2410 
2411 		tcp_collapse_retrans(sk, to);
2412 	}
2413 }
2414 
2415 /* This retransmits one SKB.  Policy decisions and retransmit queue
2416  * state updates are done by the caller.  Returns non-zero if an
2417  * error occurred which prevented the send.
2418  */
2419 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2420 {
2421 	struct tcp_sock *tp = tcp_sk(sk);
2422 	struct inet_connection_sock *icsk = inet_csk(sk);
2423 	unsigned int cur_mss;
2424 	int err;
2425 
2426 	/* Inconslusive MTU probe */
2427 	if (icsk->icsk_mtup.probe_size) {
2428 		icsk->icsk_mtup.probe_size = 0;
2429 	}
2430 
2431 	/* Do not sent more than we queued. 1/4 is reserved for possible
2432 	 * copying overhead: fragmentation, tunneling, mangling etc.
2433 	 */
2434 	if (atomic_read(&sk->sk_wmem_alloc) >
2435 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2436 		return -EAGAIN;
2437 
2438 	if (skb_still_in_host_queue(sk, skb))
2439 		return -EBUSY;
2440 
2441 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2442 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2443 			BUG();
2444 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2445 			return -ENOMEM;
2446 	}
2447 
2448 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2449 		return -EHOSTUNREACH; /* Routing failure or similar. */
2450 
2451 	cur_mss = tcp_current_mss(sk);
2452 
2453 	/* If receiver has shrunk his window, and skb is out of
2454 	 * new window, do not retransmit it. The exception is the
2455 	 * case, when window is shrunk to zero. In this case
2456 	 * our retransmit serves as a zero window probe.
2457 	 */
2458 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2459 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2460 		return -EAGAIN;
2461 
2462 	if (skb->len > cur_mss) {
2463 		if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2464 			return -ENOMEM; /* We'll try again later. */
2465 	} else {
2466 		int oldpcount = tcp_skb_pcount(skb);
2467 
2468 		if (unlikely(oldpcount > 1)) {
2469 			if (skb_unclone(skb, GFP_ATOMIC))
2470 				return -ENOMEM;
2471 			tcp_init_tso_segs(sk, skb, cur_mss);
2472 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2473 		}
2474 	}
2475 
2476 	tcp_retrans_try_collapse(sk, skb, cur_mss);
2477 
2478 	/* Make a copy, if the first transmission SKB clone we made
2479 	 * is still in somebody's hands, else make a clone.
2480 	 */
2481 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2482 
2483 	/* make sure skb->data is aligned on arches that require it
2484 	 * and check if ack-trimming & collapsing extended the headroom
2485 	 * beyond what csum_start can cover.
2486 	 */
2487 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2488 		     skb_headroom(skb) >= 0xFFFF)) {
2489 		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2490 						   GFP_ATOMIC);
2491 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2492 			     -ENOBUFS;
2493 	} else {
2494 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2495 	}
2496 
2497 	if (likely(!err)) {
2498 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2499 		/* Update global TCP statistics. */
2500 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2501 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2502 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2503 		tp->total_retrans++;
2504 	}
2505 	return err;
2506 }
2507 
2508 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2509 {
2510 	struct tcp_sock *tp = tcp_sk(sk);
2511 	int err = __tcp_retransmit_skb(sk, skb);
2512 
2513 	if (err == 0) {
2514 #if FASTRETRANS_DEBUG > 0
2515 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2516 			net_dbg_ratelimited("retrans_out leaked\n");
2517 		}
2518 #endif
2519 		if (!tp->retrans_out)
2520 			tp->lost_retrans_low = tp->snd_nxt;
2521 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2522 		tp->retrans_out += tcp_skb_pcount(skb);
2523 
2524 		/* Save stamp of the first retransmit. */
2525 		if (!tp->retrans_stamp)
2526 			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2527 
2528 		tp->undo_retrans += tcp_skb_pcount(skb);
2529 
2530 		/* snd_nxt is stored to detect loss of retransmitted segment,
2531 		 * see tcp_input.c tcp_sacktag_write_queue().
2532 		 */
2533 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2534 	} else if (err != -EBUSY) {
2535 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2536 	}
2537 	return err;
2538 }
2539 
2540 /* Check if we forward retransmits are possible in the current
2541  * window/congestion state.
2542  */
2543 static bool tcp_can_forward_retransmit(struct sock *sk)
2544 {
2545 	const struct inet_connection_sock *icsk = inet_csk(sk);
2546 	const struct tcp_sock *tp = tcp_sk(sk);
2547 
2548 	/* Forward retransmissions are possible only during Recovery. */
2549 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2550 		return false;
2551 
2552 	/* No forward retransmissions in Reno are possible. */
2553 	if (tcp_is_reno(tp))
2554 		return false;
2555 
2556 	/* Yeah, we have to make difficult choice between forward transmission
2557 	 * and retransmission... Both ways have their merits...
2558 	 *
2559 	 * For now we do not retransmit anything, while we have some new
2560 	 * segments to send. In the other cases, follow rule 3 for
2561 	 * NextSeg() specified in RFC3517.
2562 	 */
2563 
2564 	if (tcp_may_send_now(sk))
2565 		return false;
2566 
2567 	return true;
2568 }
2569 
2570 /* This gets called after a retransmit timeout, and the initially
2571  * retransmitted data is acknowledged.  It tries to continue
2572  * resending the rest of the retransmit queue, until either
2573  * we've sent it all or the congestion window limit is reached.
2574  * If doing SACK, the first ACK which comes back for a timeout
2575  * based retransmit packet might feed us FACK information again.
2576  * If so, we use it to avoid unnecessarily retransmissions.
2577  */
2578 void tcp_xmit_retransmit_queue(struct sock *sk)
2579 {
2580 	const struct inet_connection_sock *icsk = inet_csk(sk);
2581 	struct tcp_sock *tp = tcp_sk(sk);
2582 	struct sk_buff *skb;
2583 	struct sk_buff *hole = NULL;
2584 	u32 last_lost;
2585 	int mib_idx;
2586 	int fwd_rexmitting = 0;
2587 
2588 	if (!tp->packets_out)
2589 		return;
2590 
2591 	if (!tp->lost_out)
2592 		tp->retransmit_high = tp->snd_una;
2593 
2594 	if (tp->retransmit_skb_hint) {
2595 		skb = tp->retransmit_skb_hint;
2596 		last_lost = TCP_SKB_CB(skb)->end_seq;
2597 		if (after(last_lost, tp->retransmit_high))
2598 			last_lost = tp->retransmit_high;
2599 	} else {
2600 		skb = tcp_write_queue_head(sk);
2601 		last_lost = tp->snd_una;
2602 	}
2603 
2604 	tcp_for_write_queue_from(skb, sk) {
2605 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2606 
2607 		if (skb == tcp_send_head(sk))
2608 			break;
2609 		/* we could do better than to assign each time */
2610 		if (hole == NULL)
2611 			tp->retransmit_skb_hint = skb;
2612 
2613 		/* Assume this retransmit will generate
2614 		 * only one packet for congestion window
2615 		 * calculation purposes.  This works because
2616 		 * tcp_retransmit_skb() will chop up the
2617 		 * packet to be MSS sized and all the
2618 		 * packet counting works out.
2619 		 */
2620 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2621 			return;
2622 
2623 		if (fwd_rexmitting) {
2624 begin_fwd:
2625 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2626 				break;
2627 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2628 
2629 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2630 			tp->retransmit_high = last_lost;
2631 			if (!tcp_can_forward_retransmit(sk))
2632 				break;
2633 			/* Backtrack if necessary to non-L'ed skb */
2634 			if (hole != NULL) {
2635 				skb = hole;
2636 				hole = NULL;
2637 			}
2638 			fwd_rexmitting = 1;
2639 			goto begin_fwd;
2640 
2641 		} else if (!(sacked & TCPCB_LOST)) {
2642 			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2643 				hole = skb;
2644 			continue;
2645 
2646 		} else {
2647 			last_lost = TCP_SKB_CB(skb)->end_seq;
2648 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2649 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2650 			else
2651 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2652 		}
2653 
2654 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2655 			continue;
2656 
2657 		if (tcp_retransmit_skb(sk, skb))
2658 			return;
2659 
2660 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2661 
2662 		if (tcp_in_cwnd_reduction(sk))
2663 			tp->prr_out += tcp_skb_pcount(skb);
2664 
2665 		if (skb == tcp_write_queue_head(sk))
2666 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2667 						  inet_csk(sk)->icsk_rto,
2668 						  TCP_RTO_MAX);
2669 	}
2670 }
2671 
2672 /* Send a fin.  The caller locks the socket for us.  This cannot be
2673  * allowed to fail queueing a FIN frame under any circumstances.
2674  */
2675 void tcp_send_fin(struct sock *sk)
2676 {
2677 	struct tcp_sock *tp = tcp_sk(sk);
2678 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2679 	int mss_now;
2680 
2681 	/* Optimization, tack on the FIN if we have a queue of
2682 	 * unsent frames.  But be careful about outgoing SACKS
2683 	 * and IP options.
2684 	 */
2685 	mss_now = tcp_current_mss(sk);
2686 
2687 	if (tcp_send_head(sk) != NULL) {
2688 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2689 		TCP_SKB_CB(skb)->end_seq++;
2690 		tp->write_seq++;
2691 	} else {
2692 		/* Socket is locked, keep trying until memory is available. */
2693 		for (;;) {
2694 			skb = alloc_skb_fclone(MAX_TCP_HEADER,
2695 					       sk->sk_allocation);
2696 			if (skb)
2697 				break;
2698 			yield();
2699 		}
2700 
2701 		/* Reserve space for headers and prepare control bits. */
2702 		skb_reserve(skb, MAX_TCP_HEADER);
2703 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2704 		tcp_init_nondata_skb(skb, tp->write_seq,
2705 				     TCPHDR_ACK | TCPHDR_FIN);
2706 		tcp_queue_skb(sk, skb);
2707 	}
2708 	__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2709 }
2710 
2711 /* We get here when a process closes a file descriptor (either due to
2712  * an explicit close() or as a byproduct of exit()'ing) and there
2713  * was unread data in the receive queue.  This behavior is recommended
2714  * by RFC 2525, section 2.17.  -DaveM
2715  */
2716 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2717 {
2718 	struct sk_buff *skb;
2719 
2720 	/* NOTE: No TCP options attached and we never retransmit this. */
2721 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2722 	if (!skb) {
2723 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2724 		return;
2725 	}
2726 
2727 	/* Reserve space for headers and prepare control bits. */
2728 	skb_reserve(skb, MAX_TCP_HEADER);
2729 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2730 			     TCPHDR_ACK | TCPHDR_RST);
2731 	/* Send it off. */
2732 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2733 	if (tcp_transmit_skb(sk, skb, 0, priority))
2734 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2735 
2736 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2737 }
2738 
2739 /* Send a crossed SYN-ACK during socket establishment.
2740  * WARNING: This routine must only be called when we have already sent
2741  * a SYN packet that crossed the incoming SYN that caused this routine
2742  * to get called. If this assumption fails then the initial rcv_wnd
2743  * and rcv_wscale values will not be correct.
2744  */
2745 int tcp_send_synack(struct sock *sk)
2746 {
2747 	struct sk_buff *skb;
2748 
2749 	skb = tcp_write_queue_head(sk);
2750 	if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2751 		pr_debug("%s: wrong queue state\n", __func__);
2752 		return -EFAULT;
2753 	}
2754 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2755 		if (skb_cloned(skb)) {
2756 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2757 			if (nskb == NULL)
2758 				return -ENOMEM;
2759 			tcp_unlink_write_queue(skb, sk);
2760 			skb_header_release(nskb);
2761 			__tcp_add_write_queue_head(sk, nskb);
2762 			sk_wmem_free_skb(sk, skb);
2763 			sk->sk_wmem_queued += nskb->truesize;
2764 			sk_mem_charge(sk, nskb->truesize);
2765 			skb = nskb;
2766 		}
2767 
2768 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2769 		TCP_ECN_send_synack(tcp_sk(sk), skb);
2770 	}
2771 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2772 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2773 }
2774 
2775 /**
2776  * tcp_make_synack - Prepare a SYN-ACK.
2777  * sk: listener socket
2778  * dst: dst entry attached to the SYNACK
2779  * req: request_sock pointer
2780  *
2781  * Allocate one skb and build a SYNACK packet.
2782  * @dst is consumed : Caller should not use it again.
2783  */
2784 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2785 				struct request_sock *req,
2786 				struct tcp_fastopen_cookie *foc)
2787 {
2788 	struct tcp_out_options opts;
2789 	struct inet_request_sock *ireq = inet_rsk(req);
2790 	struct tcp_sock *tp = tcp_sk(sk);
2791 	struct tcphdr *th;
2792 	struct sk_buff *skb;
2793 	struct tcp_md5sig_key *md5;
2794 	int tcp_header_size;
2795 	int mss;
2796 
2797 	skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2798 	if (unlikely(!skb)) {
2799 		dst_release(dst);
2800 		return NULL;
2801 	}
2802 	/* Reserve space for headers. */
2803 	skb_reserve(skb, MAX_TCP_HEADER);
2804 
2805 	skb_dst_set(skb, dst);
2806 	security_skb_owned_by(skb, sk);
2807 
2808 	mss = dst_metric_advmss(dst);
2809 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2810 		mss = tp->rx_opt.user_mss;
2811 
2812 	memset(&opts, 0, sizeof(opts));
2813 #ifdef CONFIG_SYN_COOKIES
2814 	if (unlikely(req->cookie_ts))
2815 		TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2816 	else
2817 #endif
2818 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2819 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2820 					     foc) + sizeof(*th);
2821 
2822 	skb_push(skb, tcp_header_size);
2823 	skb_reset_transport_header(skb);
2824 
2825 	th = tcp_hdr(skb);
2826 	memset(th, 0, sizeof(struct tcphdr));
2827 	th->syn = 1;
2828 	th->ack = 1;
2829 	TCP_ECN_make_synack(req, th);
2830 	th->source = htons(ireq->ir_num);
2831 	th->dest = ireq->ir_rmt_port;
2832 	/* Setting of flags are superfluous here for callers (and ECE is
2833 	 * not even correctly set)
2834 	 */
2835 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2836 			     TCPHDR_SYN | TCPHDR_ACK);
2837 
2838 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2839 	/* XXX data is queued and acked as is. No buffer/window check */
2840 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2841 
2842 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2843 	th->window = htons(min(req->rcv_wnd, 65535U));
2844 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
2845 	th->doff = (tcp_header_size >> 2);
2846 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2847 
2848 #ifdef CONFIG_TCP_MD5SIG
2849 	/* Okay, we have all we need - do the md5 hash if needed */
2850 	if (md5) {
2851 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2852 					       md5, NULL, req, skb);
2853 	}
2854 #endif
2855 
2856 	return skb;
2857 }
2858 EXPORT_SYMBOL(tcp_make_synack);
2859 
2860 /* Do all connect socket setups that can be done AF independent. */
2861 static void tcp_connect_init(struct sock *sk)
2862 {
2863 	const struct dst_entry *dst = __sk_dst_get(sk);
2864 	struct tcp_sock *tp = tcp_sk(sk);
2865 	__u8 rcv_wscale;
2866 
2867 	/* We'll fix this up when we get a response from the other end.
2868 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2869 	 */
2870 	tp->tcp_header_len = sizeof(struct tcphdr) +
2871 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2872 
2873 #ifdef CONFIG_TCP_MD5SIG
2874 	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2875 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2876 #endif
2877 
2878 	/* If user gave his TCP_MAXSEG, record it to clamp */
2879 	if (tp->rx_opt.user_mss)
2880 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2881 	tp->max_window = 0;
2882 	tcp_mtup_init(sk);
2883 	tcp_sync_mss(sk, dst_mtu(dst));
2884 
2885 	if (!tp->window_clamp)
2886 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2887 	tp->advmss = dst_metric_advmss(dst);
2888 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2889 		tp->advmss = tp->rx_opt.user_mss;
2890 
2891 	tcp_initialize_rcv_mss(sk);
2892 
2893 	/* limit the window selection if the user enforce a smaller rx buffer */
2894 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2895 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2896 		tp->window_clamp = tcp_full_space(sk);
2897 
2898 	tcp_select_initial_window(tcp_full_space(sk),
2899 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2900 				  &tp->rcv_wnd,
2901 				  &tp->window_clamp,
2902 				  sysctl_tcp_window_scaling,
2903 				  &rcv_wscale,
2904 				  dst_metric(dst, RTAX_INITRWND));
2905 
2906 	tp->rx_opt.rcv_wscale = rcv_wscale;
2907 	tp->rcv_ssthresh = tp->rcv_wnd;
2908 
2909 	sk->sk_err = 0;
2910 	sock_reset_flag(sk, SOCK_DONE);
2911 	tp->snd_wnd = 0;
2912 	tcp_init_wl(tp, 0);
2913 	tp->snd_una = tp->write_seq;
2914 	tp->snd_sml = tp->write_seq;
2915 	tp->snd_up = tp->write_seq;
2916 	tp->snd_nxt = tp->write_seq;
2917 
2918 	if (likely(!tp->repair))
2919 		tp->rcv_nxt = 0;
2920 	else
2921 		tp->rcv_tstamp = tcp_time_stamp;
2922 	tp->rcv_wup = tp->rcv_nxt;
2923 	tp->copied_seq = tp->rcv_nxt;
2924 
2925 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2926 	inet_csk(sk)->icsk_retransmits = 0;
2927 	tcp_clear_retrans(tp);
2928 }
2929 
2930 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2931 {
2932 	struct tcp_sock *tp = tcp_sk(sk);
2933 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2934 
2935 	tcb->end_seq += skb->len;
2936 	skb_header_release(skb);
2937 	__tcp_add_write_queue_tail(sk, skb);
2938 	sk->sk_wmem_queued += skb->truesize;
2939 	sk_mem_charge(sk, skb->truesize);
2940 	tp->write_seq = tcb->end_seq;
2941 	tp->packets_out += tcp_skb_pcount(skb);
2942 }
2943 
2944 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2945  * queue a data-only packet after the regular SYN, such that regular SYNs
2946  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2947  * only the SYN sequence, the data are retransmitted in the first ACK.
2948  * If cookie is not cached or other error occurs, falls back to send a
2949  * regular SYN with Fast Open cookie request option.
2950  */
2951 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2952 {
2953 	struct tcp_sock *tp = tcp_sk(sk);
2954 	struct tcp_fastopen_request *fo = tp->fastopen_req;
2955 	int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2956 	struct sk_buff *syn_data = NULL, *data;
2957 	unsigned long last_syn_loss = 0;
2958 
2959 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
2960 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2961 			       &syn_loss, &last_syn_loss);
2962 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
2963 	if (syn_loss > 1 &&
2964 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2965 		fo->cookie.len = -1;
2966 		goto fallback;
2967 	}
2968 
2969 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2970 		fo->cookie.len = -1;
2971 	else if (fo->cookie.len <= 0)
2972 		goto fallback;
2973 
2974 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2975 	 * user-MSS. Reserve maximum option space for middleboxes that add
2976 	 * private TCP options. The cost is reduced data space in SYN :(
2977 	 */
2978 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2979 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2980 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2981 		MAX_TCP_OPTION_SPACE;
2982 
2983 	space = min_t(size_t, space, fo->size);
2984 
2985 	/* limit to order-0 allocations */
2986 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
2987 
2988 	syn_data = skb_copy_expand(syn, MAX_TCP_HEADER, space,
2989 				   sk->sk_allocation);
2990 	if (syn_data == NULL)
2991 		goto fallback;
2992 
2993 	for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2994 		struct iovec *iov = &fo->data->msg_iov[i];
2995 		unsigned char __user *from = iov->iov_base;
2996 		int len = iov->iov_len;
2997 
2998 		if (syn_data->len + len > space)
2999 			len = space - syn_data->len;
3000 		else if (i + 1 == iovlen)
3001 			/* No more data pending in inet_wait_for_connect() */
3002 			fo->data = NULL;
3003 
3004 		if (skb_add_data(syn_data, from, len))
3005 			goto fallback;
3006 	}
3007 
3008 	/* Queue a data-only packet after the regular SYN for retransmission */
3009 	data = pskb_copy(syn_data, sk->sk_allocation);
3010 	if (data == NULL)
3011 		goto fallback;
3012 	TCP_SKB_CB(data)->seq++;
3013 	TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
3014 	TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
3015 	tcp_connect_queue_skb(sk, data);
3016 	fo->copied = data->len;
3017 
3018 	/* syn_data is about to be sent, we need to take current time stamps
3019 	 * for the packets that are in write queue : SYN packet and DATA
3020 	 */
3021 	skb_mstamp_get(&syn->skb_mstamp);
3022 	data->skb_mstamp = syn->skb_mstamp;
3023 
3024 	if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
3025 		tp->syn_data = (fo->copied > 0);
3026 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3027 		goto done;
3028 	}
3029 	syn_data = NULL;
3030 
3031 fallback:
3032 	/* Send a regular SYN with Fast Open cookie request option */
3033 	if (fo->cookie.len > 0)
3034 		fo->cookie.len = 0;
3035 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3036 	if (err)
3037 		tp->syn_fastopen = 0;
3038 	kfree_skb(syn_data);
3039 done:
3040 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3041 	return err;
3042 }
3043 
3044 /* Build a SYN and send it off. */
3045 int tcp_connect(struct sock *sk)
3046 {
3047 	struct tcp_sock *tp = tcp_sk(sk);
3048 	struct sk_buff *buff;
3049 	int err;
3050 
3051 	tcp_connect_init(sk);
3052 
3053 	if (unlikely(tp->repair)) {
3054 		tcp_finish_connect(sk, NULL);
3055 		return 0;
3056 	}
3057 
3058 	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
3059 	if (unlikely(buff == NULL))
3060 		return -ENOBUFS;
3061 
3062 	/* Reserve space for headers. */
3063 	skb_reserve(buff, MAX_TCP_HEADER);
3064 
3065 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3066 	tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
3067 	tcp_connect_queue_skb(sk, buff);
3068 	TCP_ECN_send_syn(sk, buff);
3069 
3070 	/* Send off SYN; include data in Fast Open. */
3071 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3072 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3073 	if (err == -ECONNREFUSED)
3074 		return err;
3075 
3076 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3077 	 * in order to make this packet get counted in tcpOutSegs.
3078 	 */
3079 	tp->snd_nxt = tp->write_seq;
3080 	tp->pushed_seq = tp->write_seq;
3081 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3082 
3083 	/* Timer for repeating the SYN until an answer. */
3084 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3085 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3086 	return 0;
3087 }
3088 EXPORT_SYMBOL(tcp_connect);
3089 
3090 /* Send out a delayed ack, the caller does the policy checking
3091  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3092  * for details.
3093  */
3094 void tcp_send_delayed_ack(struct sock *sk)
3095 {
3096 	struct inet_connection_sock *icsk = inet_csk(sk);
3097 	int ato = icsk->icsk_ack.ato;
3098 	unsigned long timeout;
3099 
3100 	if (ato > TCP_DELACK_MIN) {
3101 		const struct tcp_sock *tp = tcp_sk(sk);
3102 		int max_ato = HZ / 2;
3103 
3104 		if (icsk->icsk_ack.pingpong ||
3105 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3106 			max_ato = TCP_DELACK_MAX;
3107 
3108 		/* Slow path, intersegment interval is "high". */
3109 
3110 		/* If some rtt estimate is known, use it to bound delayed ack.
3111 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3112 		 * directly.
3113 		 */
3114 		if (tp->srtt_us) {
3115 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3116 					TCP_DELACK_MIN);
3117 
3118 			if (rtt < max_ato)
3119 				max_ato = rtt;
3120 		}
3121 
3122 		ato = min(ato, max_ato);
3123 	}
3124 
3125 	/* Stay within the limit we were given */
3126 	timeout = jiffies + ato;
3127 
3128 	/* Use new timeout only if there wasn't a older one earlier. */
3129 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3130 		/* If delack timer was blocked or is about to expire,
3131 		 * send ACK now.
3132 		 */
3133 		if (icsk->icsk_ack.blocked ||
3134 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3135 			tcp_send_ack(sk);
3136 			return;
3137 		}
3138 
3139 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3140 			timeout = icsk->icsk_ack.timeout;
3141 	}
3142 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3143 	icsk->icsk_ack.timeout = timeout;
3144 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3145 }
3146 
3147 /* This routine sends an ack and also updates the window. */
3148 void tcp_send_ack(struct sock *sk)
3149 {
3150 	struct sk_buff *buff;
3151 
3152 	/* If we have been reset, we may not send again. */
3153 	if (sk->sk_state == TCP_CLOSE)
3154 		return;
3155 
3156 	/* We are not putting this on the write queue, so
3157 	 * tcp_transmit_skb() will set the ownership to this
3158 	 * sock.
3159 	 */
3160 	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3161 	if (buff == NULL) {
3162 		inet_csk_schedule_ack(sk);
3163 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3164 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3165 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3166 		return;
3167 	}
3168 
3169 	/* Reserve space for headers and prepare control bits. */
3170 	skb_reserve(buff, MAX_TCP_HEADER);
3171 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3172 
3173 	/* Send it off, this clears delayed acks for us. */
3174 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
3175 	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3176 }
3177 
3178 /* This routine sends a packet with an out of date sequence
3179  * number. It assumes the other end will try to ack it.
3180  *
3181  * Question: what should we make while urgent mode?
3182  * 4.4BSD forces sending single byte of data. We cannot send
3183  * out of window data, because we have SND.NXT==SND.MAX...
3184  *
3185  * Current solution: to send TWO zero-length segments in urgent mode:
3186  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3187  * out-of-date with SND.UNA-1 to probe window.
3188  */
3189 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3190 {
3191 	struct tcp_sock *tp = tcp_sk(sk);
3192 	struct sk_buff *skb;
3193 
3194 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3195 	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3196 	if (skb == NULL)
3197 		return -1;
3198 
3199 	/* Reserve space for headers and set control bits. */
3200 	skb_reserve(skb, MAX_TCP_HEADER);
3201 	/* Use a previous sequence.  This should cause the other
3202 	 * end to send an ack.  Don't queue or clone SKB, just
3203 	 * send it.
3204 	 */
3205 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3206 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
3207 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3208 }
3209 
3210 void tcp_send_window_probe(struct sock *sk)
3211 {
3212 	if (sk->sk_state == TCP_ESTABLISHED) {
3213 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3214 		tcp_xmit_probe_skb(sk, 0);
3215 	}
3216 }
3217 
3218 /* Initiate keepalive or window probe from timer. */
3219 int tcp_write_wakeup(struct sock *sk)
3220 {
3221 	struct tcp_sock *tp = tcp_sk(sk);
3222 	struct sk_buff *skb;
3223 
3224 	if (sk->sk_state == TCP_CLOSE)
3225 		return -1;
3226 
3227 	if ((skb = tcp_send_head(sk)) != NULL &&
3228 	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3229 		int err;
3230 		unsigned int mss = tcp_current_mss(sk);
3231 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3232 
3233 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3234 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3235 
3236 		/* We are probing the opening of a window
3237 		 * but the window size is != 0
3238 		 * must have been a result SWS avoidance ( sender )
3239 		 */
3240 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3241 		    skb->len > mss) {
3242 			seg_size = min(seg_size, mss);
3243 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3244 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3245 				return -1;
3246 		} else if (!tcp_skb_pcount(skb))
3247 			tcp_set_skb_tso_segs(sk, skb, mss);
3248 
3249 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3250 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
3251 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3252 		if (!err)
3253 			tcp_event_new_data_sent(sk, skb);
3254 		return err;
3255 	} else {
3256 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3257 			tcp_xmit_probe_skb(sk, 1);
3258 		return tcp_xmit_probe_skb(sk, 0);
3259 	}
3260 }
3261 
3262 /* A window probe timeout has occurred.  If window is not closed send
3263  * a partial packet else a zero probe.
3264  */
3265 void tcp_send_probe0(struct sock *sk)
3266 {
3267 	struct inet_connection_sock *icsk = inet_csk(sk);
3268 	struct tcp_sock *tp = tcp_sk(sk);
3269 	int err;
3270 
3271 	err = tcp_write_wakeup(sk);
3272 
3273 	if (tp->packets_out || !tcp_send_head(sk)) {
3274 		/* Cancel probe timer, if it is not required. */
3275 		icsk->icsk_probes_out = 0;
3276 		icsk->icsk_backoff = 0;
3277 		return;
3278 	}
3279 
3280 	if (err <= 0) {
3281 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3282 			icsk->icsk_backoff++;
3283 		icsk->icsk_probes_out++;
3284 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3285 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3286 					  TCP_RTO_MAX);
3287 	} else {
3288 		/* If packet was not sent due to local congestion,
3289 		 * do not backoff and do not remember icsk_probes_out.
3290 		 * Let local senders to fight for local resources.
3291 		 *
3292 		 * Use accumulated backoff yet.
3293 		 */
3294 		if (!icsk->icsk_probes_out)
3295 			icsk->icsk_probes_out = 1;
3296 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3297 					  min(icsk->icsk_rto << icsk->icsk_backoff,
3298 					      TCP_RESOURCE_PROBE_INTERVAL),
3299 					  TCP_RTO_MAX);
3300 	}
3301 }
3302