1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of two TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 int sysctl_tcp_mtu_probing __read_mostly = 0; 63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS; 64 65 /* By default, RFC2861 behavior. */ 66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 67 68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX; 69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat); 70 71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 72 int push_one, gfp_t gfp); 73 74 /* Account for new data that has been sent to the network. */ 75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 76 { 77 struct inet_connection_sock *icsk = inet_csk(sk); 78 struct tcp_sock *tp = tcp_sk(sk); 79 unsigned int prior_packets = tp->packets_out; 80 81 tcp_advance_send_head(sk, skb); 82 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 83 84 tp->packets_out += tcp_skb_pcount(skb); 85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 86 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 87 tcp_rearm_rto(sk); 88 } 89 } 90 91 /* SND.NXT, if window was not shrunk. 92 * If window has been shrunk, what should we make? It is not clear at all. 93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 95 * invalid. OK, let's make this for now: 96 */ 97 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 98 { 99 const struct tcp_sock *tp = tcp_sk(sk); 100 101 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. */ 141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 s32 delta = tcp_time_stamp - tp->lsndtime; 145 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 146 u32 cwnd = tp->snd_cwnd; 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tp->snd_cwnd = max(cwnd, restart_cwnd); 156 tp->snd_cwnd_stamp = tcp_time_stamp; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_time_stamp; 166 const struct dst_entry *dst = __sk_dst_get(sk); 167 168 if (sysctl_tcp_slow_start_after_idle && 169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 170 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 171 172 tp->lsndtime = now; 173 174 /* If it is a reply for ato after last received 175 * packet, enter pingpong mode. 176 */ 177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato && 178 (!dst || !dst_metric(dst, RTAX_QUICKACK))) 179 icsk->icsk_ack.pingpong = 1; 180 } 181 182 /* Account for an ACK we sent. */ 183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 184 { 185 tcp_dec_quickack_mode(sk, pkts); 186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 187 } 188 189 190 u32 tcp_default_init_rwnd(u32 mss) 191 { 192 /* Initial receive window should be twice of TCP_INIT_CWND to 193 * enable proper sending of new unsent data during fast recovery 194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 195 * limit when mss is larger than 1460. 196 */ 197 u32 init_rwnd = TCP_INIT_CWND * 2; 198 199 if (mss > 1460) 200 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 201 return init_rwnd; 202 } 203 204 /* Determine a window scaling and initial window to offer. 205 * Based on the assumption that the given amount of space 206 * will be offered. Store the results in the tp structure. 207 * NOTE: for smooth operation initial space offering should 208 * be a multiple of mss if possible. We assume here that mss >= 1. 209 * This MUST be enforced by all callers. 210 */ 211 void tcp_select_initial_window(int __space, __u32 mss, 212 __u32 *rcv_wnd, __u32 *window_clamp, 213 int wscale_ok, __u8 *rcv_wscale, 214 __u32 init_rcv_wnd) 215 { 216 unsigned int space = (__space < 0 ? 0 : __space); 217 218 /* If no clamp set the clamp to the max possible scaled window */ 219 if (*window_clamp == 0) 220 (*window_clamp) = (65535 << 14); 221 space = min(*window_clamp, space); 222 223 /* Quantize space offering to a multiple of mss if possible. */ 224 if (space > mss) 225 space = (space / mss) * mss; 226 227 /* NOTE: offering an initial window larger than 32767 228 * will break some buggy TCP stacks. If the admin tells us 229 * it is likely we could be speaking with such a buggy stack 230 * we will truncate our initial window offering to 32K-1 231 * unless the remote has sent us a window scaling option, 232 * which we interpret as a sign the remote TCP is not 233 * misinterpreting the window field as a signed quantity. 234 */ 235 if (sysctl_tcp_workaround_signed_windows) 236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 237 else 238 (*rcv_wnd) = space; 239 240 (*rcv_wscale) = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window 243 * See RFC1323 for an explanation of the limit to 14 244 */ 245 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 246 space = min_t(u32, space, *window_clamp); 247 while (space > 65535 && (*rcv_wscale) < 14) { 248 space >>= 1; 249 (*rcv_wscale)++; 250 } 251 } 252 253 if (mss > (1 << *rcv_wscale)) { 254 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 255 init_rcv_wnd = tcp_default_init_rwnd(mss); 256 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 257 } 258 259 /* Set the clamp no higher than max representable value */ 260 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 261 } 262 EXPORT_SYMBOL(tcp_select_initial_window); 263 264 /* Chose a new window to advertise, update state in tcp_sock for the 265 * socket, and return result with RFC1323 scaling applied. The return 266 * value can be stuffed directly into th->window for an outgoing 267 * frame. 268 */ 269 static u16 tcp_select_window(struct sock *sk) 270 { 271 struct tcp_sock *tp = tcp_sk(sk); 272 u32 cur_win = tcp_receive_window(tp); 273 u32 new_win = __tcp_select_window(sk); 274 275 /* Never shrink the offered window */ 276 if (new_win < cur_win) { 277 /* Danger Will Robinson! 278 * Don't update rcv_wup/rcv_wnd here or else 279 * we will not be able to advertise a zero 280 * window in time. --DaveM 281 * 282 * Relax Will Robinson. 283 */ 284 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 285 } 286 tp->rcv_wnd = new_win; 287 tp->rcv_wup = tp->rcv_nxt; 288 289 /* Make sure we do not exceed the maximum possible 290 * scaled window. 291 */ 292 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 293 new_win = min(new_win, MAX_TCP_WINDOW); 294 else 295 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 296 297 /* RFC1323 scaling applied */ 298 new_win >>= tp->rx_opt.rcv_wscale; 299 300 /* If we advertise zero window, disable fast path. */ 301 if (new_win == 0) 302 tp->pred_flags = 0; 303 304 return new_win; 305 } 306 307 /* Packet ECN state for a SYN-ACK */ 308 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb) 309 { 310 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 311 if (!(tp->ecn_flags & TCP_ECN_OK)) 312 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 313 } 314 315 /* Packet ECN state for a SYN. */ 316 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb) 317 { 318 struct tcp_sock *tp = tcp_sk(sk); 319 320 tp->ecn_flags = 0; 321 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) { 322 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 323 tp->ecn_flags = TCP_ECN_OK; 324 } 325 } 326 327 static __inline__ void 328 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th) 329 { 330 if (inet_rsk(req)->ecn_ok) 331 th->ece = 1; 332 } 333 334 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 335 * be sent. 336 */ 337 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb, 338 int tcp_header_len) 339 { 340 struct tcp_sock *tp = tcp_sk(sk); 341 342 if (tp->ecn_flags & TCP_ECN_OK) { 343 /* Not-retransmitted data segment: set ECT and inject CWR. */ 344 if (skb->len != tcp_header_len && 345 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 346 INET_ECN_xmit(sk); 347 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 348 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 349 tcp_hdr(skb)->cwr = 1; 350 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 351 } 352 } else { 353 /* ACK or retransmitted segment: clear ECT|CE */ 354 INET_ECN_dontxmit(sk); 355 } 356 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 357 tcp_hdr(skb)->ece = 1; 358 } 359 } 360 361 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 362 * auto increment end seqno. 363 */ 364 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 365 { 366 skb->ip_summed = CHECKSUM_PARTIAL; 367 skb->csum = 0; 368 369 TCP_SKB_CB(skb)->tcp_flags = flags; 370 TCP_SKB_CB(skb)->sacked = 0; 371 372 skb_shinfo(skb)->gso_segs = 1; 373 skb_shinfo(skb)->gso_size = 0; 374 skb_shinfo(skb)->gso_type = 0; 375 376 TCP_SKB_CB(skb)->seq = seq; 377 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 378 seq++; 379 TCP_SKB_CB(skb)->end_seq = seq; 380 } 381 382 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 383 { 384 return tp->snd_una != tp->snd_up; 385 } 386 387 #define OPTION_SACK_ADVERTISE (1 << 0) 388 #define OPTION_TS (1 << 1) 389 #define OPTION_MD5 (1 << 2) 390 #define OPTION_WSCALE (1 << 3) 391 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 392 393 struct tcp_out_options { 394 u16 options; /* bit field of OPTION_* */ 395 u16 mss; /* 0 to disable */ 396 u8 ws; /* window scale, 0 to disable */ 397 u8 num_sack_blocks; /* number of SACK blocks to include */ 398 u8 hash_size; /* bytes in hash_location */ 399 __u8 *hash_location; /* temporary pointer, overloaded */ 400 __u32 tsval, tsecr; /* need to include OPTION_TS */ 401 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 402 }; 403 404 /* Write previously computed TCP options to the packet. 405 * 406 * Beware: Something in the Internet is very sensitive to the ordering of 407 * TCP options, we learned this through the hard way, so be careful here. 408 * Luckily we can at least blame others for their non-compliance but from 409 * inter-operatibility perspective it seems that we're somewhat stuck with 410 * the ordering which we have been using if we want to keep working with 411 * those broken things (not that it currently hurts anybody as there isn't 412 * particular reason why the ordering would need to be changed). 413 * 414 * At least SACK_PERM as the first option is known to lead to a disaster 415 * (but it may well be that other scenarios fail similarly). 416 */ 417 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 418 struct tcp_out_options *opts) 419 { 420 u16 options = opts->options; /* mungable copy */ 421 422 if (unlikely(OPTION_MD5 & options)) { 423 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 424 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 425 /* overload cookie hash location */ 426 opts->hash_location = (__u8 *)ptr; 427 ptr += 4; 428 } 429 430 if (unlikely(opts->mss)) { 431 *ptr++ = htonl((TCPOPT_MSS << 24) | 432 (TCPOLEN_MSS << 16) | 433 opts->mss); 434 } 435 436 if (likely(OPTION_TS & options)) { 437 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 438 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 439 (TCPOLEN_SACK_PERM << 16) | 440 (TCPOPT_TIMESTAMP << 8) | 441 TCPOLEN_TIMESTAMP); 442 options &= ~OPTION_SACK_ADVERTISE; 443 } else { 444 *ptr++ = htonl((TCPOPT_NOP << 24) | 445 (TCPOPT_NOP << 16) | 446 (TCPOPT_TIMESTAMP << 8) | 447 TCPOLEN_TIMESTAMP); 448 } 449 *ptr++ = htonl(opts->tsval); 450 *ptr++ = htonl(opts->tsecr); 451 } 452 453 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 454 *ptr++ = htonl((TCPOPT_NOP << 24) | 455 (TCPOPT_NOP << 16) | 456 (TCPOPT_SACK_PERM << 8) | 457 TCPOLEN_SACK_PERM); 458 } 459 460 if (unlikely(OPTION_WSCALE & options)) { 461 *ptr++ = htonl((TCPOPT_NOP << 24) | 462 (TCPOPT_WINDOW << 16) | 463 (TCPOLEN_WINDOW << 8) | 464 opts->ws); 465 } 466 467 if (unlikely(opts->num_sack_blocks)) { 468 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 469 tp->duplicate_sack : tp->selective_acks; 470 int this_sack; 471 472 *ptr++ = htonl((TCPOPT_NOP << 24) | 473 (TCPOPT_NOP << 16) | 474 (TCPOPT_SACK << 8) | 475 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 476 TCPOLEN_SACK_PERBLOCK))); 477 478 for (this_sack = 0; this_sack < opts->num_sack_blocks; 479 ++this_sack) { 480 *ptr++ = htonl(sp[this_sack].start_seq); 481 *ptr++ = htonl(sp[this_sack].end_seq); 482 } 483 484 tp->rx_opt.dsack = 0; 485 } 486 487 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 488 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 489 490 *ptr++ = htonl((TCPOPT_EXP << 24) | 491 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) | 492 TCPOPT_FASTOPEN_MAGIC); 493 494 memcpy(ptr, foc->val, foc->len); 495 if ((foc->len & 3) == 2) { 496 u8 *align = ((u8 *)ptr) + foc->len; 497 align[0] = align[1] = TCPOPT_NOP; 498 } 499 ptr += (foc->len + 3) >> 2; 500 } 501 } 502 503 /* Compute TCP options for SYN packets. This is not the final 504 * network wire format yet. 505 */ 506 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 507 struct tcp_out_options *opts, 508 struct tcp_md5sig_key **md5) 509 { 510 struct tcp_sock *tp = tcp_sk(sk); 511 unsigned int remaining = MAX_TCP_OPTION_SPACE; 512 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 513 514 #ifdef CONFIG_TCP_MD5SIG 515 *md5 = tp->af_specific->md5_lookup(sk, sk); 516 if (*md5) { 517 opts->options |= OPTION_MD5; 518 remaining -= TCPOLEN_MD5SIG_ALIGNED; 519 } 520 #else 521 *md5 = NULL; 522 #endif 523 524 /* We always get an MSS option. The option bytes which will be seen in 525 * normal data packets should timestamps be used, must be in the MSS 526 * advertised. But we subtract them from tp->mss_cache so that 527 * calculations in tcp_sendmsg are simpler etc. So account for this 528 * fact here if necessary. If we don't do this correctly, as a 529 * receiver we won't recognize data packets as being full sized when we 530 * should, and thus we won't abide by the delayed ACK rules correctly. 531 * SACKs don't matter, we never delay an ACK when we have any of those 532 * going out. */ 533 opts->mss = tcp_advertise_mss(sk); 534 remaining -= TCPOLEN_MSS_ALIGNED; 535 536 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 537 opts->options |= OPTION_TS; 538 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset; 539 opts->tsecr = tp->rx_opt.ts_recent; 540 remaining -= TCPOLEN_TSTAMP_ALIGNED; 541 } 542 if (likely(sysctl_tcp_window_scaling)) { 543 opts->ws = tp->rx_opt.rcv_wscale; 544 opts->options |= OPTION_WSCALE; 545 remaining -= TCPOLEN_WSCALE_ALIGNED; 546 } 547 if (likely(sysctl_tcp_sack)) { 548 opts->options |= OPTION_SACK_ADVERTISE; 549 if (unlikely(!(OPTION_TS & opts->options))) 550 remaining -= TCPOLEN_SACKPERM_ALIGNED; 551 } 552 553 if (fastopen && fastopen->cookie.len >= 0) { 554 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len; 555 need = (need + 3) & ~3U; /* Align to 32 bits */ 556 if (remaining >= need) { 557 opts->options |= OPTION_FAST_OPEN_COOKIE; 558 opts->fastopen_cookie = &fastopen->cookie; 559 remaining -= need; 560 tp->syn_fastopen = 1; 561 } 562 } 563 564 return MAX_TCP_OPTION_SPACE - remaining; 565 } 566 567 /* Set up TCP options for SYN-ACKs. */ 568 static unsigned int tcp_synack_options(struct sock *sk, 569 struct request_sock *req, 570 unsigned int mss, struct sk_buff *skb, 571 struct tcp_out_options *opts, 572 struct tcp_md5sig_key **md5, 573 struct tcp_fastopen_cookie *foc) 574 { 575 struct inet_request_sock *ireq = inet_rsk(req); 576 unsigned int remaining = MAX_TCP_OPTION_SPACE; 577 578 #ifdef CONFIG_TCP_MD5SIG 579 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 580 if (*md5) { 581 opts->options |= OPTION_MD5; 582 remaining -= TCPOLEN_MD5SIG_ALIGNED; 583 584 /* We can't fit any SACK blocks in a packet with MD5 + TS 585 * options. There was discussion about disabling SACK 586 * rather than TS in order to fit in better with old, 587 * buggy kernels, but that was deemed to be unnecessary. 588 */ 589 ireq->tstamp_ok &= !ireq->sack_ok; 590 } 591 #else 592 *md5 = NULL; 593 #endif 594 595 /* We always send an MSS option. */ 596 opts->mss = mss; 597 remaining -= TCPOLEN_MSS_ALIGNED; 598 599 if (likely(ireq->wscale_ok)) { 600 opts->ws = ireq->rcv_wscale; 601 opts->options |= OPTION_WSCALE; 602 remaining -= TCPOLEN_WSCALE_ALIGNED; 603 } 604 if (likely(ireq->tstamp_ok)) { 605 opts->options |= OPTION_TS; 606 opts->tsval = TCP_SKB_CB(skb)->when; 607 opts->tsecr = req->ts_recent; 608 remaining -= TCPOLEN_TSTAMP_ALIGNED; 609 } 610 if (likely(ireq->sack_ok)) { 611 opts->options |= OPTION_SACK_ADVERTISE; 612 if (unlikely(!ireq->tstamp_ok)) 613 remaining -= TCPOLEN_SACKPERM_ALIGNED; 614 } 615 if (foc != NULL) { 616 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 617 need = (need + 3) & ~3U; /* Align to 32 bits */ 618 if (remaining >= need) { 619 opts->options |= OPTION_FAST_OPEN_COOKIE; 620 opts->fastopen_cookie = foc; 621 remaining -= need; 622 } 623 } 624 625 return MAX_TCP_OPTION_SPACE - remaining; 626 } 627 628 /* Compute TCP options for ESTABLISHED sockets. This is not the 629 * final wire format yet. 630 */ 631 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 632 struct tcp_out_options *opts, 633 struct tcp_md5sig_key **md5) 634 { 635 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL; 636 struct tcp_sock *tp = tcp_sk(sk); 637 unsigned int size = 0; 638 unsigned int eff_sacks; 639 640 opts->options = 0; 641 642 #ifdef CONFIG_TCP_MD5SIG 643 *md5 = tp->af_specific->md5_lookup(sk, sk); 644 if (unlikely(*md5)) { 645 opts->options |= OPTION_MD5; 646 size += TCPOLEN_MD5SIG_ALIGNED; 647 } 648 #else 649 *md5 = NULL; 650 #endif 651 652 if (likely(tp->rx_opt.tstamp_ok)) { 653 opts->options |= OPTION_TS; 654 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0; 655 opts->tsecr = tp->rx_opt.ts_recent; 656 size += TCPOLEN_TSTAMP_ALIGNED; 657 } 658 659 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 660 if (unlikely(eff_sacks)) { 661 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 662 opts->num_sack_blocks = 663 min_t(unsigned int, eff_sacks, 664 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 665 TCPOLEN_SACK_PERBLOCK); 666 size += TCPOLEN_SACK_BASE_ALIGNED + 667 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 668 } 669 670 return size; 671 } 672 673 674 /* TCP SMALL QUEUES (TSQ) 675 * 676 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 677 * to reduce RTT and bufferbloat. 678 * We do this using a special skb destructor (tcp_wfree). 679 * 680 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 681 * needs to be reallocated in a driver. 682 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc 683 * 684 * Since transmit from skb destructor is forbidden, we use a tasklet 685 * to process all sockets that eventually need to send more skbs. 686 * We use one tasklet per cpu, with its own queue of sockets. 687 */ 688 struct tsq_tasklet { 689 struct tasklet_struct tasklet; 690 struct list_head head; /* queue of tcp sockets */ 691 }; 692 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 693 694 static void tcp_tsq_handler(struct sock *sk) 695 { 696 if ((1 << sk->sk_state) & 697 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 698 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 699 tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC); 700 } 701 /* 702 * One tasklest per cpu tries to send more skbs. 703 * We run in tasklet context but need to disable irqs when 704 * transfering tsq->head because tcp_wfree() might 705 * interrupt us (non NAPI drivers) 706 */ 707 static void tcp_tasklet_func(unsigned long data) 708 { 709 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 710 LIST_HEAD(list); 711 unsigned long flags; 712 struct list_head *q, *n; 713 struct tcp_sock *tp; 714 struct sock *sk; 715 716 local_irq_save(flags); 717 list_splice_init(&tsq->head, &list); 718 local_irq_restore(flags); 719 720 list_for_each_safe(q, n, &list) { 721 tp = list_entry(q, struct tcp_sock, tsq_node); 722 list_del(&tp->tsq_node); 723 724 sk = (struct sock *)tp; 725 bh_lock_sock(sk); 726 727 if (!sock_owned_by_user(sk)) { 728 tcp_tsq_handler(sk); 729 } else { 730 /* defer the work to tcp_release_cb() */ 731 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 732 } 733 bh_unlock_sock(sk); 734 735 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 736 sk_free(sk); 737 } 738 } 739 740 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 741 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 742 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 743 (1UL << TCP_MTU_REDUCED_DEFERRED)) 744 /** 745 * tcp_release_cb - tcp release_sock() callback 746 * @sk: socket 747 * 748 * called from release_sock() to perform protocol dependent 749 * actions before socket release. 750 */ 751 void tcp_release_cb(struct sock *sk) 752 { 753 struct tcp_sock *tp = tcp_sk(sk); 754 unsigned long flags, nflags; 755 756 /* perform an atomic operation only if at least one flag is set */ 757 do { 758 flags = tp->tsq_flags; 759 if (!(flags & TCP_DEFERRED_ALL)) 760 return; 761 nflags = flags & ~TCP_DEFERRED_ALL; 762 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 763 764 if (flags & (1UL << TCP_TSQ_DEFERRED)) 765 tcp_tsq_handler(sk); 766 767 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 768 tcp_write_timer_handler(sk); 769 __sock_put(sk); 770 } 771 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 772 tcp_delack_timer_handler(sk); 773 __sock_put(sk); 774 } 775 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 776 sk->sk_prot->mtu_reduced(sk); 777 __sock_put(sk); 778 } 779 } 780 EXPORT_SYMBOL(tcp_release_cb); 781 782 void __init tcp_tasklet_init(void) 783 { 784 int i; 785 786 for_each_possible_cpu(i) { 787 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 788 789 INIT_LIST_HEAD(&tsq->head); 790 tasklet_init(&tsq->tasklet, 791 tcp_tasklet_func, 792 (unsigned long)tsq); 793 } 794 } 795 796 /* 797 * Write buffer destructor automatically called from kfree_skb. 798 * We cant xmit new skbs from this context, as we might already 799 * hold qdisc lock. 800 */ 801 void tcp_wfree(struct sk_buff *skb) 802 { 803 struct sock *sk = skb->sk; 804 struct tcp_sock *tp = tcp_sk(sk); 805 806 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 807 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 808 unsigned long flags; 809 struct tsq_tasklet *tsq; 810 811 /* Keep a ref on socket. 812 * This last ref will be released in tcp_tasklet_func() 813 */ 814 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc); 815 816 /* queue this socket to tasklet queue */ 817 local_irq_save(flags); 818 tsq = &__get_cpu_var(tsq_tasklet); 819 list_add(&tp->tsq_node, &tsq->head); 820 tasklet_schedule(&tsq->tasklet); 821 local_irq_restore(flags); 822 } else { 823 sock_wfree(skb); 824 } 825 } 826 827 /* This routine actually transmits TCP packets queued in by 828 * tcp_do_sendmsg(). This is used by both the initial 829 * transmission and possible later retransmissions. 830 * All SKB's seen here are completely headerless. It is our 831 * job to build the TCP header, and pass the packet down to 832 * IP so it can do the same plus pass the packet off to the 833 * device. 834 * 835 * We are working here with either a clone of the original 836 * SKB, or a fresh unique copy made by the retransmit engine. 837 */ 838 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 839 gfp_t gfp_mask) 840 { 841 const struct inet_connection_sock *icsk = inet_csk(sk); 842 struct inet_sock *inet; 843 struct tcp_sock *tp; 844 struct tcp_skb_cb *tcb; 845 struct tcp_out_options opts; 846 unsigned int tcp_options_size, tcp_header_size; 847 struct tcp_md5sig_key *md5; 848 struct tcphdr *th; 849 int err; 850 851 BUG_ON(!skb || !tcp_skb_pcount(skb)); 852 853 if (clone_it) { 854 const struct sk_buff *fclone = skb + 1; 855 856 /* If congestion control is doing timestamping, we must 857 * take such a timestamp before we potentially clone/copy. 858 */ 859 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP) 860 __net_timestamp(skb); 861 862 if (unlikely(skb->fclone == SKB_FCLONE_ORIG && 863 fclone->fclone == SKB_FCLONE_CLONE)) 864 NET_INC_STATS_BH(sock_net(sk), 865 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 866 867 if (unlikely(skb_cloned(skb))) 868 skb = pskb_copy(skb, gfp_mask); 869 else 870 skb = skb_clone(skb, gfp_mask); 871 if (unlikely(!skb)) 872 return -ENOBUFS; 873 } 874 875 inet = inet_sk(sk); 876 tp = tcp_sk(sk); 877 tcb = TCP_SKB_CB(skb); 878 memset(&opts, 0, sizeof(opts)); 879 880 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 881 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 882 else 883 tcp_options_size = tcp_established_options(sk, skb, &opts, 884 &md5); 885 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 886 887 if (tcp_packets_in_flight(tp) == 0) 888 tcp_ca_event(sk, CA_EVENT_TX_START); 889 890 /* if no packet is in qdisc/device queue, then allow XPS to select 891 * another queue. 892 */ 893 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0; 894 895 skb_push(skb, tcp_header_size); 896 skb_reset_transport_header(skb); 897 898 skb_orphan(skb); 899 skb->sk = sk; 900 skb->destructor = tcp_wfree; 901 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 902 903 /* Build TCP header and checksum it. */ 904 th = tcp_hdr(skb); 905 th->source = inet->inet_sport; 906 th->dest = inet->inet_dport; 907 th->seq = htonl(tcb->seq); 908 th->ack_seq = htonl(tp->rcv_nxt); 909 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 910 tcb->tcp_flags); 911 912 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 913 /* RFC1323: The window in SYN & SYN/ACK segments 914 * is never scaled. 915 */ 916 th->window = htons(min(tp->rcv_wnd, 65535U)); 917 } else { 918 th->window = htons(tcp_select_window(sk)); 919 } 920 th->check = 0; 921 th->urg_ptr = 0; 922 923 /* The urg_mode check is necessary during a below snd_una win probe */ 924 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 925 if (before(tp->snd_up, tcb->seq + 0x10000)) { 926 th->urg_ptr = htons(tp->snd_up - tcb->seq); 927 th->urg = 1; 928 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 929 th->urg_ptr = htons(0xFFFF); 930 th->urg = 1; 931 } 932 } 933 934 tcp_options_write((__be32 *)(th + 1), tp, &opts); 935 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 936 TCP_ECN_send(sk, skb, tcp_header_size); 937 938 #ifdef CONFIG_TCP_MD5SIG 939 /* Calculate the MD5 hash, as we have all we need now */ 940 if (md5) { 941 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 942 tp->af_specific->calc_md5_hash(opts.hash_location, 943 md5, sk, NULL, skb); 944 } 945 #endif 946 947 icsk->icsk_af_ops->send_check(sk, skb); 948 949 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 950 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 951 952 if (skb->len != tcp_header_size) 953 tcp_event_data_sent(tp, sk); 954 955 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 956 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 957 tcp_skb_pcount(skb)); 958 959 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl); 960 if (likely(err <= 0)) 961 return err; 962 963 tcp_enter_cwr(sk, 1); 964 965 return net_xmit_eval(err); 966 } 967 968 /* This routine just queues the buffer for sending. 969 * 970 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 971 * otherwise socket can stall. 972 */ 973 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 974 { 975 struct tcp_sock *tp = tcp_sk(sk); 976 977 /* Advance write_seq and place onto the write_queue. */ 978 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 979 skb_header_release(skb); 980 tcp_add_write_queue_tail(sk, skb); 981 sk->sk_wmem_queued += skb->truesize; 982 sk_mem_charge(sk, skb->truesize); 983 } 984 985 /* Initialize TSO segments for a packet. */ 986 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 987 unsigned int mss_now) 988 { 989 /* Make sure we own this skb before messing gso_size/gso_segs */ 990 WARN_ON_ONCE(skb_cloned(skb)); 991 992 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 993 /* Avoid the costly divide in the normal 994 * non-TSO case. 995 */ 996 skb_shinfo(skb)->gso_segs = 1; 997 skb_shinfo(skb)->gso_size = 0; 998 skb_shinfo(skb)->gso_type = 0; 999 } else { 1000 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now); 1001 skb_shinfo(skb)->gso_size = mss_now; 1002 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1003 } 1004 } 1005 1006 /* When a modification to fackets out becomes necessary, we need to check 1007 * skb is counted to fackets_out or not. 1008 */ 1009 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1010 int decr) 1011 { 1012 struct tcp_sock *tp = tcp_sk(sk); 1013 1014 if (!tp->sacked_out || tcp_is_reno(tp)) 1015 return; 1016 1017 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1018 tp->fackets_out -= decr; 1019 } 1020 1021 /* Pcount in the middle of the write queue got changed, we need to do various 1022 * tweaks to fix counters 1023 */ 1024 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1025 { 1026 struct tcp_sock *tp = tcp_sk(sk); 1027 1028 tp->packets_out -= decr; 1029 1030 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1031 tp->sacked_out -= decr; 1032 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1033 tp->retrans_out -= decr; 1034 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1035 tp->lost_out -= decr; 1036 1037 /* Reno case is special. Sigh... */ 1038 if (tcp_is_reno(tp) && decr > 0) 1039 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1040 1041 tcp_adjust_fackets_out(sk, skb, decr); 1042 1043 if (tp->lost_skb_hint && 1044 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1045 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1046 tp->lost_cnt_hint -= decr; 1047 1048 tcp_verify_left_out(tp); 1049 } 1050 1051 /* Function to create two new TCP segments. Shrinks the given segment 1052 * to the specified size and appends a new segment with the rest of the 1053 * packet to the list. This won't be called frequently, I hope. 1054 * Remember, these are still headerless SKBs at this point. 1055 */ 1056 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1057 unsigned int mss_now) 1058 { 1059 struct tcp_sock *tp = tcp_sk(sk); 1060 struct sk_buff *buff; 1061 int nsize, old_factor; 1062 int nlen; 1063 u8 flags; 1064 1065 if (WARN_ON(len > skb->len)) 1066 return -EINVAL; 1067 1068 nsize = skb_headlen(skb) - len; 1069 if (nsize < 0) 1070 nsize = 0; 1071 1072 if (skb_unclone(skb, GFP_ATOMIC)) 1073 return -ENOMEM; 1074 1075 /* Get a new skb... force flag on. */ 1076 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 1077 if (buff == NULL) 1078 return -ENOMEM; /* We'll just try again later. */ 1079 1080 sk->sk_wmem_queued += buff->truesize; 1081 sk_mem_charge(sk, buff->truesize); 1082 nlen = skb->len - len - nsize; 1083 buff->truesize += nlen; 1084 skb->truesize -= nlen; 1085 1086 /* Correct the sequence numbers. */ 1087 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1088 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1089 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1090 1091 /* PSH and FIN should only be set in the second packet. */ 1092 flags = TCP_SKB_CB(skb)->tcp_flags; 1093 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1094 TCP_SKB_CB(buff)->tcp_flags = flags; 1095 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1096 1097 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1098 /* Copy and checksum data tail into the new buffer. */ 1099 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1100 skb_put(buff, nsize), 1101 nsize, 0); 1102 1103 skb_trim(skb, len); 1104 1105 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1106 } else { 1107 skb->ip_summed = CHECKSUM_PARTIAL; 1108 skb_split(skb, buff, len); 1109 } 1110 1111 buff->ip_summed = skb->ip_summed; 1112 1113 /* Looks stupid, but our code really uses when of 1114 * skbs, which it never sent before. --ANK 1115 */ 1116 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 1117 buff->tstamp = skb->tstamp; 1118 1119 old_factor = tcp_skb_pcount(skb); 1120 1121 /* Fix up tso_factor for both original and new SKB. */ 1122 tcp_set_skb_tso_segs(sk, skb, mss_now); 1123 tcp_set_skb_tso_segs(sk, buff, mss_now); 1124 1125 /* If this packet has been sent out already, we must 1126 * adjust the various packet counters. 1127 */ 1128 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1129 int diff = old_factor - tcp_skb_pcount(skb) - 1130 tcp_skb_pcount(buff); 1131 1132 if (diff) 1133 tcp_adjust_pcount(sk, skb, diff); 1134 } 1135 1136 /* Link BUFF into the send queue. */ 1137 skb_header_release(buff); 1138 tcp_insert_write_queue_after(skb, buff, sk); 1139 1140 return 0; 1141 } 1142 1143 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1144 * eventually). The difference is that pulled data not copied, but 1145 * immediately discarded. 1146 */ 1147 static void __pskb_trim_head(struct sk_buff *skb, int len) 1148 { 1149 int i, k, eat; 1150 1151 eat = min_t(int, len, skb_headlen(skb)); 1152 if (eat) { 1153 __skb_pull(skb, eat); 1154 len -= eat; 1155 if (!len) 1156 return; 1157 } 1158 eat = len; 1159 k = 0; 1160 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1161 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1162 1163 if (size <= eat) { 1164 skb_frag_unref(skb, i); 1165 eat -= size; 1166 } else { 1167 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1168 if (eat) { 1169 skb_shinfo(skb)->frags[k].page_offset += eat; 1170 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1171 eat = 0; 1172 } 1173 k++; 1174 } 1175 } 1176 skb_shinfo(skb)->nr_frags = k; 1177 1178 skb_reset_tail_pointer(skb); 1179 skb->data_len -= len; 1180 skb->len = skb->data_len; 1181 } 1182 1183 /* Remove acked data from a packet in the transmit queue. */ 1184 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1185 { 1186 if (skb_unclone(skb, GFP_ATOMIC)) 1187 return -ENOMEM; 1188 1189 __pskb_trim_head(skb, len); 1190 1191 TCP_SKB_CB(skb)->seq += len; 1192 skb->ip_summed = CHECKSUM_PARTIAL; 1193 1194 skb->truesize -= len; 1195 sk->sk_wmem_queued -= len; 1196 sk_mem_uncharge(sk, len); 1197 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1198 1199 /* Any change of skb->len requires recalculation of tso factor. */ 1200 if (tcp_skb_pcount(skb) > 1) 1201 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1202 1203 return 0; 1204 } 1205 1206 /* Calculate MSS not accounting any TCP options. */ 1207 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1208 { 1209 const struct tcp_sock *tp = tcp_sk(sk); 1210 const struct inet_connection_sock *icsk = inet_csk(sk); 1211 int mss_now; 1212 1213 /* Calculate base mss without TCP options: 1214 It is MMS_S - sizeof(tcphdr) of rfc1122 1215 */ 1216 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1217 1218 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1219 if (icsk->icsk_af_ops->net_frag_header_len) { 1220 const struct dst_entry *dst = __sk_dst_get(sk); 1221 1222 if (dst && dst_allfrag(dst)) 1223 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1224 } 1225 1226 /* Clamp it (mss_clamp does not include tcp options) */ 1227 if (mss_now > tp->rx_opt.mss_clamp) 1228 mss_now = tp->rx_opt.mss_clamp; 1229 1230 /* Now subtract optional transport overhead */ 1231 mss_now -= icsk->icsk_ext_hdr_len; 1232 1233 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1234 if (mss_now < 48) 1235 mss_now = 48; 1236 return mss_now; 1237 } 1238 1239 /* Calculate MSS. Not accounting for SACKs here. */ 1240 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1241 { 1242 /* Subtract TCP options size, not including SACKs */ 1243 return __tcp_mtu_to_mss(sk, pmtu) - 1244 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1245 } 1246 1247 /* Inverse of above */ 1248 int tcp_mss_to_mtu(struct sock *sk, int mss) 1249 { 1250 const struct tcp_sock *tp = tcp_sk(sk); 1251 const struct inet_connection_sock *icsk = inet_csk(sk); 1252 int mtu; 1253 1254 mtu = mss + 1255 tp->tcp_header_len + 1256 icsk->icsk_ext_hdr_len + 1257 icsk->icsk_af_ops->net_header_len; 1258 1259 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1260 if (icsk->icsk_af_ops->net_frag_header_len) { 1261 const struct dst_entry *dst = __sk_dst_get(sk); 1262 1263 if (dst && dst_allfrag(dst)) 1264 mtu += icsk->icsk_af_ops->net_frag_header_len; 1265 } 1266 return mtu; 1267 } 1268 1269 /* MTU probing init per socket */ 1270 void tcp_mtup_init(struct sock *sk) 1271 { 1272 struct tcp_sock *tp = tcp_sk(sk); 1273 struct inet_connection_sock *icsk = inet_csk(sk); 1274 1275 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 1276 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1277 icsk->icsk_af_ops->net_header_len; 1278 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 1279 icsk->icsk_mtup.probe_size = 0; 1280 } 1281 EXPORT_SYMBOL(tcp_mtup_init); 1282 1283 /* This function synchronize snd mss to current pmtu/exthdr set. 1284 1285 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1286 for TCP options, but includes only bare TCP header. 1287 1288 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1289 It is minimum of user_mss and mss received with SYN. 1290 It also does not include TCP options. 1291 1292 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1293 1294 tp->mss_cache is current effective sending mss, including 1295 all tcp options except for SACKs. It is evaluated, 1296 taking into account current pmtu, but never exceeds 1297 tp->rx_opt.mss_clamp. 1298 1299 NOTE1. rfc1122 clearly states that advertised MSS 1300 DOES NOT include either tcp or ip options. 1301 1302 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1303 are READ ONLY outside this function. --ANK (980731) 1304 */ 1305 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1306 { 1307 struct tcp_sock *tp = tcp_sk(sk); 1308 struct inet_connection_sock *icsk = inet_csk(sk); 1309 int mss_now; 1310 1311 if (icsk->icsk_mtup.search_high > pmtu) 1312 icsk->icsk_mtup.search_high = pmtu; 1313 1314 mss_now = tcp_mtu_to_mss(sk, pmtu); 1315 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1316 1317 /* And store cached results */ 1318 icsk->icsk_pmtu_cookie = pmtu; 1319 if (icsk->icsk_mtup.enabled) 1320 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1321 tp->mss_cache = mss_now; 1322 1323 return mss_now; 1324 } 1325 EXPORT_SYMBOL(tcp_sync_mss); 1326 1327 /* Compute the current effective MSS, taking SACKs and IP options, 1328 * and even PMTU discovery events into account. 1329 */ 1330 unsigned int tcp_current_mss(struct sock *sk) 1331 { 1332 const struct tcp_sock *tp = tcp_sk(sk); 1333 const struct dst_entry *dst = __sk_dst_get(sk); 1334 u32 mss_now; 1335 unsigned int header_len; 1336 struct tcp_out_options opts; 1337 struct tcp_md5sig_key *md5; 1338 1339 mss_now = tp->mss_cache; 1340 1341 if (dst) { 1342 u32 mtu = dst_mtu(dst); 1343 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1344 mss_now = tcp_sync_mss(sk, mtu); 1345 } 1346 1347 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1348 sizeof(struct tcphdr); 1349 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1350 * some common options. If this is an odd packet (because we have SACK 1351 * blocks etc) then our calculated header_len will be different, and 1352 * we have to adjust mss_now correspondingly */ 1353 if (header_len != tp->tcp_header_len) { 1354 int delta = (int) header_len - tp->tcp_header_len; 1355 mss_now -= delta; 1356 } 1357 1358 return mss_now; 1359 } 1360 1361 /* Congestion window validation. (RFC2861) */ 1362 static void tcp_cwnd_validate(struct sock *sk) 1363 { 1364 struct tcp_sock *tp = tcp_sk(sk); 1365 1366 if (tp->packets_out >= tp->snd_cwnd) { 1367 /* Network is feed fully. */ 1368 tp->snd_cwnd_used = 0; 1369 tp->snd_cwnd_stamp = tcp_time_stamp; 1370 } else { 1371 /* Network starves. */ 1372 if (tp->packets_out > tp->snd_cwnd_used) 1373 tp->snd_cwnd_used = tp->packets_out; 1374 1375 if (sysctl_tcp_slow_start_after_idle && 1376 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1377 tcp_cwnd_application_limited(sk); 1378 } 1379 } 1380 1381 /* Returns the portion of skb which can be sent right away without 1382 * introducing MSS oddities to segment boundaries. In rare cases where 1383 * mss_now != mss_cache, we will request caller to create a small skb 1384 * per input skb which could be mostly avoided here (if desired). 1385 * 1386 * We explicitly want to create a request for splitting write queue tail 1387 * to a small skb for Nagle purposes while avoiding unnecessary modulos, 1388 * thus all the complexity (cwnd_len is always MSS multiple which we 1389 * return whenever allowed by the other factors). Basically we need the 1390 * modulo only when the receiver window alone is the limiting factor or 1391 * when we would be allowed to send the split-due-to-Nagle skb fully. 1392 */ 1393 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb, 1394 unsigned int mss_now, unsigned int max_segs) 1395 { 1396 const struct tcp_sock *tp = tcp_sk(sk); 1397 u32 needed, window, max_len; 1398 1399 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1400 max_len = mss_now * max_segs; 1401 1402 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1403 return max_len; 1404 1405 needed = min(skb->len, window); 1406 1407 if (max_len <= needed) 1408 return max_len; 1409 1410 return needed - needed % mss_now; 1411 } 1412 1413 /* Can at least one segment of SKB be sent right now, according to the 1414 * congestion window rules? If so, return how many segments are allowed. 1415 */ 1416 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1417 const struct sk_buff *skb) 1418 { 1419 u32 in_flight, cwnd; 1420 1421 /* Don't be strict about the congestion window for the final FIN. */ 1422 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1423 tcp_skb_pcount(skb) == 1) 1424 return 1; 1425 1426 in_flight = tcp_packets_in_flight(tp); 1427 cwnd = tp->snd_cwnd; 1428 if (in_flight < cwnd) 1429 return (cwnd - in_flight); 1430 1431 return 0; 1432 } 1433 1434 /* Initialize TSO state of a skb. 1435 * This must be invoked the first time we consider transmitting 1436 * SKB onto the wire. 1437 */ 1438 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1439 unsigned int mss_now) 1440 { 1441 int tso_segs = tcp_skb_pcount(skb); 1442 1443 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1444 tcp_set_skb_tso_segs(sk, skb, mss_now); 1445 tso_segs = tcp_skb_pcount(skb); 1446 } 1447 return tso_segs; 1448 } 1449 1450 /* Minshall's variant of the Nagle send check. */ 1451 static inline bool tcp_minshall_check(const struct tcp_sock *tp) 1452 { 1453 return after(tp->snd_sml, tp->snd_una) && 1454 !after(tp->snd_sml, tp->snd_nxt); 1455 } 1456 1457 /* Return false, if packet can be sent now without violation Nagle's rules: 1458 * 1. It is full sized. 1459 * 2. Or it contains FIN. (already checked by caller) 1460 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1461 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1462 * With Minshall's modification: all sent small packets are ACKed. 1463 */ 1464 static inline bool tcp_nagle_check(const struct tcp_sock *tp, 1465 const struct sk_buff *skb, 1466 unsigned int mss_now, int nonagle) 1467 { 1468 return skb->len < mss_now && 1469 ((nonagle & TCP_NAGLE_CORK) || 1470 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1471 } 1472 1473 /* Return true if the Nagle test allows this packet to be 1474 * sent now. 1475 */ 1476 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1477 unsigned int cur_mss, int nonagle) 1478 { 1479 /* Nagle rule does not apply to frames, which sit in the middle of the 1480 * write_queue (they have no chances to get new data). 1481 * 1482 * This is implemented in the callers, where they modify the 'nonagle' 1483 * argument based upon the location of SKB in the send queue. 1484 */ 1485 if (nonagle & TCP_NAGLE_PUSH) 1486 return true; 1487 1488 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1489 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1490 return true; 1491 1492 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 1493 return true; 1494 1495 return false; 1496 } 1497 1498 /* Does at least the first segment of SKB fit into the send window? */ 1499 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1500 const struct sk_buff *skb, 1501 unsigned int cur_mss) 1502 { 1503 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1504 1505 if (skb->len > cur_mss) 1506 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1507 1508 return !after(end_seq, tcp_wnd_end(tp)); 1509 } 1510 1511 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1512 * should be put on the wire right now. If so, it returns the number of 1513 * packets allowed by the congestion window. 1514 */ 1515 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1516 unsigned int cur_mss, int nonagle) 1517 { 1518 const struct tcp_sock *tp = tcp_sk(sk); 1519 unsigned int cwnd_quota; 1520 1521 tcp_init_tso_segs(sk, skb, cur_mss); 1522 1523 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1524 return 0; 1525 1526 cwnd_quota = tcp_cwnd_test(tp, skb); 1527 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1528 cwnd_quota = 0; 1529 1530 return cwnd_quota; 1531 } 1532 1533 /* Test if sending is allowed right now. */ 1534 bool tcp_may_send_now(struct sock *sk) 1535 { 1536 const struct tcp_sock *tp = tcp_sk(sk); 1537 struct sk_buff *skb = tcp_send_head(sk); 1538 1539 return skb && 1540 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1541 (tcp_skb_is_last(sk, skb) ? 1542 tp->nonagle : TCP_NAGLE_PUSH)); 1543 } 1544 1545 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1546 * which is put after SKB on the list. It is very much like 1547 * tcp_fragment() except that it may make several kinds of assumptions 1548 * in order to speed up the splitting operation. In particular, we 1549 * know that all the data is in scatter-gather pages, and that the 1550 * packet has never been sent out before (and thus is not cloned). 1551 */ 1552 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1553 unsigned int mss_now, gfp_t gfp) 1554 { 1555 struct sk_buff *buff; 1556 int nlen = skb->len - len; 1557 u8 flags; 1558 1559 /* All of a TSO frame must be composed of paged data. */ 1560 if (skb->len != skb->data_len) 1561 return tcp_fragment(sk, skb, len, mss_now); 1562 1563 buff = sk_stream_alloc_skb(sk, 0, gfp); 1564 if (unlikely(buff == NULL)) 1565 return -ENOMEM; 1566 1567 sk->sk_wmem_queued += buff->truesize; 1568 sk_mem_charge(sk, buff->truesize); 1569 buff->truesize += nlen; 1570 skb->truesize -= nlen; 1571 1572 /* Correct the sequence numbers. */ 1573 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1574 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1575 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1576 1577 /* PSH and FIN should only be set in the second packet. */ 1578 flags = TCP_SKB_CB(skb)->tcp_flags; 1579 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1580 TCP_SKB_CB(buff)->tcp_flags = flags; 1581 1582 /* This packet was never sent out yet, so no SACK bits. */ 1583 TCP_SKB_CB(buff)->sacked = 0; 1584 1585 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1586 skb_split(skb, buff, len); 1587 1588 /* Fix up tso_factor for both original and new SKB. */ 1589 tcp_set_skb_tso_segs(sk, skb, mss_now); 1590 tcp_set_skb_tso_segs(sk, buff, mss_now); 1591 1592 /* Link BUFF into the send queue. */ 1593 skb_header_release(buff); 1594 tcp_insert_write_queue_after(skb, buff, sk); 1595 1596 return 0; 1597 } 1598 1599 /* Try to defer sending, if possible, in order to minimize the amount 1600 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1601 * 1602 * This algorithm is from John Heffner. 1603 */ 1604 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb) 1605 { 1606 struct tcp_sock *tp = tcp_sk(sk); 1607 const struct inet_connection_sock *icsk = inet_csk(sk); 1608 u32 send_win, cong_win, limit, in_flight; 1609 int win_divisor; 1610 1611 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1612 goto send_now; 1613 1614 if (icsk->icsk_ca_state != TCP_CA_Open) 1615 goto send_now; 1616 1617 /* Defer for less than two clock ticks. */ 1618 if (tp->tso_deferred && 1619 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1620 goto send_now; 1621 1622 in_flight = tcp_packets_in_flight(tp); 1623 1624 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1625 1626 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1627 1628 /* From in_flight test above, we know that cwnd > in_flight. */ 1629 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1630 1631 limit = min(send_win, cong_win); 1632 1633 /* If a full-sized TSO skb can be sent, do it. */ 1634 if (limit >= min_t(unsigned int, sk->sk_gso_max_size, 1635 tp->xmit_size_goal_segs * tp->mss_cache)) 1636 goto send_now; 1637 1638 /* Middle in queue won't get any more data, full sendable already? */ 1639 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1640 goto send_now; 1641 1642 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1643 if (win_divisor) { 1644 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1645 1646 /* If at least some fraction of a window is available, 1647 * just use it. 1648 */ 1649 chunk /= win_divisor; 1650 if (limit >= chunk) 1651 goto send_now; 1652 } else { 1653 /* Different approach, try not to defer past a single 1654 * ACK. Receiver should ACK every other full sized 1655 * frame, so if we have space for more than 3 frames 1656 * then send now. 1657 */ 1658 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1659 goto send_now; 1660 } 1661 1662 /* Ok, it looks like it is advisable to defer. 1663 * Do not rearm the timer if already set to not break TCP ACK clocking. 1664 */ 1665 if (!tp->tso_deferred) 1666 tp->tso_deferred = 1 | (jiffies << 1); 1667 1668 return true; 1669 1670 send_now: 1671 tp->tso_deferred = 0; 1672 return false; 1673 } 1674 1675 /* Create a new MTU probe if we are ready. 1676 * MTU probe is regularly attempting to increase the path MTU by 1677 * deliberately sending larger packets. This discovers routing 1678 * changes resulting in larger path MTUs. 1679 * 1680 * Returns 0 if we should wait to probe (no cwnd available), 1681 * 1 if a probe was sent, 1682 * -1 otherwise 1683 */ 1684 static int tcp_mtu_probe(struct sock *sk) 1685 { 1686 struct tcp_sock *tp = tcp_sk(sk); 1687 struct inet_connection_sock *icsk = inet_csk(sk); 1688 struct sk_buff *skb, *nskb, *next; 1689 int len; 1690 int probe_size; 1691 int size_needed; 1692 int copy; 1693 int mss_now; 1694 1695 /* Not currently probing/verifying, 1696 * not in recovery, 1697 * have enough cwnd, and 1698 * not SACKing (the variable headers throw things off) */ 1699 if (!icsk->icsk_mtup.enabled || 1700 icsk->icsk_mtup.probe_size || 1701 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1702 tp->snd_cwnd < 11 || 1703 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1704 return -1; 1705 1706 /* Very simple search strategy: just double the MSS. */ 1707 mss_now = tcp_current_mss(sk); 1708 probe_size = 2 * tp->mss_cache; 1709 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1710 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1711 /* TODO: set timer for probe_converge_event */ 1712 return -1; 1713 } 1714 1715 /* Have enough data in the send queue to probe? */ 1716 if (tp->write_seq - tp->snd_nxt < size_needed) 1717 return -1; 1718 1719 if (tp->snd_wnd < size_needed) 1720 return -1; 1721 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1722 return 0; 1723 1724 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1725 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1726 if (!tcp_packets_in_flight(tp)) 1727 return -1; 1728 else 1729 return 0; 1730 } 1731 1732 /* We're allowed to probe. Build it now. */ 1733 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1734 return -1; 1735 sk->sk_wmem_queued += nskb->truesize; 1736 sk_mem_charge(sk, nskb->truesize); 1737 1738 skb = tcp_send_head(sk); 1739 1740 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1741 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1742 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1743 TCP_SKB_CB(nskb)->sacked = 0; 1744 nskb->csum = 0; 1745 nskb->ip_summed = skb->ip_summed; 1746 1747 tcp_insert_write_queue_before(nskb, skb, sk); 1748 1749 len = 0; 1750 tcp_for_write_queue_from_safe(skb, next, sk) { 1751 copy = min_t(int, skb->len, probe_size - len); 1752 if (nskb->ip_summed) 1753 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1754 else 1755 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1756 skb_put(nskb, copy), 1757 copy, nskb->csum); 1758 1759 if (skb->len <= copy) { 1760 /* We've eaten all the data from this skb. 1761 * Throw it away. */ 1762 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1763 tcp_unlink_write_queue(skb, sk); 1764 sk_wmem_free_skb(sk, skb); 1765 } else { 1766 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1767 ~(TCPHDR_FIN|TCPHDR_PSH); 1768 if (!skb_shinfo(skb)->nr_frags) { 1769 skb_pull(skb, copy); 1770 if (skb->ip_summed != CHECKSUM_PARTIAL) 1771 skb->csum = csum_partial(skb->data, 1772 skb->len, 0); 1773 } else { 1774 __pskb_trim_head(skb, copy); 1775 tcp_set_skb_tso_segs(sk, skb, mss_now); 1776 } 1777 TCP_SKB_CB(skb)->seq += copy; 1778 } 1779 1780 len += copy; 1781 1782 if (len >= probe_size) 1783 break; 1784 } 1785 tcp_init_tso_segs(sk, nskb, nskb->len); 1786 1787 /* We're ready to send. If this fails, the probe will 1788 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1789 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1790 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1791 /* Decrement cwnd here because we are sending 1792 * effectively two packets. */ 1793 tp->snd_cwnd--; 1794 tcp_event_new_data_sent(sk, nskb); 1795 1796 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1797 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1798 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1799 1800 return 1; 1801 } 1802 1803 return -1; 1804 } 1805 1806 /* This routine writes packets to the network. It advances the 1807 * send_head. This happens as incoming acks open up the remote 1808 * window for us. 1809 * 1810 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1811 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1812 * account rare use of URG, this is not a big flaw. 1813 * 1814 * Send at most one packet when push_one > 0. Temporarily ignore 1815 * cwnd limit to force at most one packet out when push_one == 2. 1816 1817 * Returns true, if no segments are in flight and we have queued segments, 1818 * but cannot send anything now because of SWS or another problem. 1819 */ 1820 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1821 int push_one, gfp_t gfp) 1822 { 1823 struct tcp_sock *tp = tcp_sk(sk); 1824 struct sk_buff *skb; 1825 unsigned int tso_segs, sent_pkts; 1826 int cwnd_quota; 1827 int result; 1828 1829 sent_pkts = 0; 1830 1831 if (!push_one) { 1832 /* Do MTU probing. */ 1833 result = tcp_mtu_probe(sk); 1834 if (!result) { 1835 return false; 1836 } else if (result > 0) { 1837 sent_pkts = 1; 1838 } 1839 } 1840 1841 while ((skb = tcp_send_head(sk))) { 1842 unsigned int limit; 1843 1844 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1845 BUG_ON(!tso_segs); 1846 1847 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) 1848 goto repair; /* Skip network transmission */ 1849 1850 cwnd_quota = tcp_cwnd_test(tp, skb); 1851 if (!cwnd_quota) { 1852 if (push_one == 2) 1853 /* Force out a loss probe pkt. */ 1854 cwnd_quota = 1; 1855 else 1856 break; 1857 } 1858 1859 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1860 break; 1861 1862 if (tso_segs == 1) { 1863 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1864 (tcp_skb_is_last(sk, skb) ? 1865 nonagle : TCP_NAGLE_PUSH)))) 1866 break; 1867 } else { 1868 if (!push_one && tcp_tso_should_defer(sk, skb)) 1869 break; 1870 } 1871 1872 /* TCP Small Queues : 1873 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 1874 * This allows for : 1875 * - better RTT estimation and ACK scheduling 1876 * - faster recovery 1877 * - high rates 1878 * Alas, some drivers / subsystems require a fair amount 1879 * of queued bytes to ensure line rate. 1880 * One example is wifi aggregation (802.11 AMPDU) 1881 */ 1882 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes, 1883 sk->sk_pacing_rate >> 10); 1884 1885 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 1886 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 1887 break; 1888 } 1889 1890 limit = mss_now; 1891 if (tso_segs > 1 && !tcp_urg_mode(tp)) 1892 limit = tcp_mss_split_point(sk, skb, mss_now, 1893 min_t(unsigned int, 1894 cwnd_quota, 1895 sk->sk_gso_max_segs)); 1896 1897 if (skb->len > limit && 1898 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 1899 break; 1900 1901 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1902 1903 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 1904 break; 1905 1906 repair: 1907 /* Advance the send_head. This one is sent out. 1908 * This call will increment packets_out. 1909 */ 1910 tcp_event_new_data_sent(sk, skb); 1911 1912 tcp_minshall_update(tp, mss_now, skb); 1913 sent_pkts += tcp_skb_pcount(skb); 1914 1915 if (push_one) 1916 break; 1917 } 1918 1919 if (likely(sent_pkts)) { 1920 if (tcp_in_cwnd_reduction(sk)) 1921 tp->prr_out += sent_pkts; 1922 1923 /* Send one loss probe per tail loss episode. */ 1924 if (push_one != 2) 1925 tcp_schedule_loss_probe(sk); 1926 tcp_cwnd_validate(sk); 1927 return false; 1928 } 1929 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk)); 1930 } 1931 1932 bool tcp_schedule_loss_probe(struct sock *sk) 1933 { 1934 struct inet_connection_sock *icsk = inet_csk(sk); 1935 struct tcp_sock *tp = tcp_sk(sk); 1936 u32 timeout, tlp_time_stamp, rto_time_stamp; 1937 u32 rtt = tp->srtt >> 3; 1938 1939 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 1940 return false; 1941 /* No consecutive loss probes. */ 1942 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 1943 tcp_rearm_rto(sk); 1944 return false; 1945 } 1946 /* Don't do any loss probe on a Fast Open connection before 3WHS 1947 * finishes. 1948 */ 1949 if (sk->sk_state == TCP_SYN_RECV) 1950 return false; 1951 1952 /* TLP is only scheduled when next timer event is RTO. */ 1953 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 1954 return false; 1955 1956 /* Schedule a loss probe in 2*RTT for SACK capable connections 1957 * in Open state, that are either limited by cwnd or application. 1958 */ 1959 if (sysctl_tcp_early_retrans < 3 || !rtt || !tp->packets_out || 1960 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 1961 return false; 1962 1963 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 1964 tcp_send_head(sk)) 1965 return false; 1966 1967 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 1968 * for delayed ack when there's one outstanding packet. 1969 */ 1970 timeout = rtt << 1; 1971 if (tp->packets_out == 1) 1972 timeout = max_t(u32, timeout, 1973 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 1974 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 1975 1976 /* If RTO is shorter, just schedule TLP in its place. */ 1977 tlp_time_stamp = tcp_time_stamp + timeout; 1978 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 1979 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 1980 s32 delta = rto_time_stamp - tcp_time_stamp; 1981 if (delta > 0) 1982 timeout = delta; 1983 } 1984 1985 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 1986 TCP_RTO_MAX); 1987 return true; 1988 } 1989 1990 /* When probe timeout (PTO) fires, send a new segment if one exists, else 1991 * retransmit the last segment. 1992 */ 1993 void tcp_send_loss_probe(struct sock *sk) 1994 { 1995 struct tcp_sock *tp = tcp_sk(sk); 1996 struct sk_buff *skb; 1997 int pcount; 1998 int mss = tcp_current_mss(sk); 1999 int err = -1; 2000 2001 if (tcp_send_head(sk) != NULL) { 2002 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2003 goto rearm_timer; 2004 } 2005 2006 /* At most one outstanding TLP retransmission. */ 2007 if (tp->tlp_high_seq) 2008 goto rearm_timer; 2009 2010 /* Retransmit last segment. */ 2011 skb = tcp_write_queue_tail(sk); 2012 if (WARN_ON(!skb)) 2013 goto rearm_timer; 2014 2015 pcount = tcp_skb_pcount(skb); 2016 if (WARN_ON(!pcount)) 2017 goto rearm_timer; 2018 2019 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2020 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss))) 2021 goto rearm_timer; 2022 skb = tcp_write_queue_tail(sk); 2023 } 2024 2025 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2026 goto rearm_timer; 2027 2028 /* Probe with zero data doesn't trigger fast recovery. */ 2029 if (skb->len > 0) 2030 err = __tcp_retransmit_skb(sk, skb); 2031 2032 /* Record snd_nxt for loss detection. */ 2033 if (likely(!err)) 2034 tp->tlp_high_seq = tp->snd_nxt; 2035 2036 rearm_timer: 2037 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2038 inet_csk(sk)->icsk_rto, 2039 TCP_RTO_MAX); 2040 2041 if (likely(!err)) 2042 NET_INC_STATS_BH(sock_net(sk), 2043 LINUX_MIB_TCPLOSSPROBES); 2044 return; 2045 } 2046 2047 /* Push out any pending frames which were held back due to 2048 * TCP_CORK or attempt at coalescing tiny packets. 2049 * The socket must be locked by the caller. 2050 */ 2051 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2052 int nonagle) 2053 { 2054 /* If we are closed, the bytes will have to remain here. 2055 * In time closedown will finish, we empty the write queue and 2056 * all will be happy. 2057 */ 2058 if (unlikely(sk->sk_state == TCP_CLOSE)) 2059 return; 2060 2061 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2062 sk_gfp_atomic(sk, GFP_ATOMIC))) 2063 tcp_check_probe_timer(sk); 2064 } 2065 2066 /* Send _single_ skb sitting at the send head. This function requires 2067 * true push pending frames to setup probe timer etc. 2068 */ 2069 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2070 { 2071 struct sk_buff *skb = tcp_send_head(sk); 2072 2073 BUG_ON(!skb || skb->len < mss_now); 2074 2075 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2076 } 2077 2078 /* This function returns the amount that we can raise the 2079 * usable window based on the following constraints 2080 * 2081 * 1. The window can never be shrunk once it is offered (RFC 793) 2082 * 2. We limit memory per socket 2083 * 2084 * RFC 1122: 2085 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2086 * RECV.NEXT + RCV.WIN fixed until: 2087 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2088 * 2089 * i.e. don't raise the right edge of the window until you can raise 2090 * it at least MSS bytes. 2091 * 2092 * Unfortunately, the recommended algorithm breaks header prediction, 2093 * since header prediction assumes th->window stays fixed. 2094 * 2095 * Strictly speaking, keeping th->window fixed violates the receiver 2096 * side SWS prevention criteria. The problem is that under this rule 2097 * a stream of single byte packets will cause the right side of the 2098 * window to always advance by a single byte. 2099 * 2100 * Of course, if the sender implements sender side SWS prevention 2101 * then this will not be a problem. 2102 * 2103 * BSD seems to make the following compromise: 2104 * 2105 * If the free space is less than the 1/4 of the maximum 2106 * space available and the free space is less than 1/2 mss, 2107 * then set the window to 0. 2108 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2109 * Otherwise, just prevent the window from shrinking 2110 * and from being larger than the largest representable value. 2111 * 2112 * This prevents incremental opening of the window in the regime 2113 * where TCP is limited by the speed of the reader side taking 2114 * data out of the TCP receive queue. It does nothing about 2115 * those cases where the window is constrained on the sender side 2116 * because the pipeline is full. 2117 * 2118 * BSD also seems to "accidentally" limit itself to windows that are a 2119 * multiple of MSS, at least until the free space gets quite small. 2120 * This would appear to be a side effect of the mbuf implementation. 2121 * Combining these two algorithms results in the observed behavior 2122 * of having a fixed window size at almost all times. 2123 * 2124 * Below we obtain similar behavior by forcing the offered window to 2125 * a multiple of the mss when it is feasible to do so. 2126 * 2127 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2128 * Regular options like TIMESTAMP are taken into account. 2129 */ 2130 u32 __tcp_select_window(struct sock *sk) 2131 { 2132 struct inet_connection_sock *icsk = inet_csk(sk); 2133 struct tcp_sock *tp = tcp_sk(sk); 2134 /* MSS for the peer's data. Previous versions used mss_clamp 2135 * here. I don't know if the value based on our guesses 2136 * of peer's MSS is better for the performance. It's more correct 2137 * but may be worse for the performance because of rcv_mss 2138 * fluctuations. --SAW 1998/11/1 2139 */ 2140 int mss = icsk->icsk_ack.rcv_mss; 2141 int free_space = tcp_space(sk); 2142 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 2143 int window; 2144 2145 if (mss > full_space) 2146 mss = full_space; 2147 2148 if (free_space < (full_space >> 1)) { 2149 icsk->icsk_ack.quick = 0; 2150 2151 if (sk_under_memory_pressure(sk)) 2152 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2153 4U * tp->advmss); 2154 2155 if (free_space < mss) 2156 return 0; 2157 } 2158 2159 if (free_space > tp->rcv_ssthresh) 2160 free_space = tp->rcv_ssthresh; 2161 2162 /* Don't do rounding if we are using window scaling, since the 2163 * scaled window will not line up with the MSS boundary anyway. 2164 */ 2165 window = tp->rcv_wnd; 2166 if (tp->rx_opt.rcv_wscale) { 2167 window = free_space; 2168 2169 /* Advertise enough space so that it won't get scaled away. 2170 * Import case: prevent zero window announcement if 2171 * 1<<rcv_wscale > mss. 2172 */ 2173 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2174 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2175 << tp->rx_opt.rcv_wscale); 2176 } else { 2177 /* Get the largest window that is a nice multiple of mss. 2178 * Window clamp already applied above. 2179 * If our current window offering is within 1 mss of the 2180 * free space we just keep it. This prevents the divide 2181 * and multiply from happening most of the time. 2182 * We also don't do any window rounding when the free space 2183 * is too small. 2184 */ 2185 if (window <= free_space - mss || window > free_space) 2186 window = (free_space / mss) * mss; 2187 else if (mss == full_space && 2188 free_space > window + (full_space >> 1)) 2189 window = free_space; 2190 } 2191 2192 return window; 2193 } 2194 2195 /* Collapses two adjacent SKB's during retransmission. */ 2196 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2197 { 2198 struct tcp_sock *tp = tcp_sk(sk); 2199 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2200 int skb_size, next_skb_size; 2201 2202 skb_size = skb->len; 2203 next_skb_size = next_skb->len; 2204 2205 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2206 2207 tcp_highest_sack_combine(sk, next_skb, skb); 2208 2209 tcp_unlink_write_queue(next_skb, sk); 2210 2211 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2212 next_skb_size); 2213 2214 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2215 skb->ip_summed = CHECKSUM_PARTIAL; 2216 2217 if (skb->ip_summed != CHECKSUM_PARTIAL) 2218 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2219 2220 /* Update sequence range on original skb. */ 2221 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2222 2223 /* Merge over control information. This moves PSH/FIN etc. over */ 2224 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2225 2226 /* All done, get rid of second SKB and account for it so 2227 * packet counting does not break. 2228 */ 2229 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2230 2231 /* changed transmit queue under us so clear hints */ 2232 tcp_clear_retrans_hints_partial(tp); 2233 if (next_skb == tp->retransmit_skb_hint) 2234 tp->retransmit_skb_hint = skb; 2235 2236 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2237 2238 sk_wmem_free_skb(sk, next_skb); 2239 } 2240 2241 /* Check if coalescing SKBs is legal. */ 2242 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2243 { 2244 if (tcp_skb_pcount(skb) > 1) 2245 return false; 2246 /* TODO: SACK collapsing could be used to remove this condition */ 2247 if (skb_shinfo(skb)->nr_frags != 0) 2248 return false; 2249 if (skb_cloned(skb)) 2250 return false; 2251 if (skb == tcp_send_head(sk)) 2252 return false; 2253 /* Some heurestics for collapsing over SACK'd could be invented */ 2254 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2255 return false; 2256 2257 return true; 2258 } 2259 2260 /* Collapse packets in the retransmit queue to make to create 2261 * less packets on the wire. This is only done on retransmission. 2262 */ 2263 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2264 int space) 2265 { 2266 struct tcp_sock *tp = tcp_sk(sk); 2267 struct sk_buff *skb = to, *tmp; 2268 bool first = true; 2269 2270 if (!sysctl_tcp_retrans_collapse) 2271 return; 2272 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2273 return; 2274 2275 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2276 if (!tcp_can_collapse(sk, skb)) 2277 break; 2278 2279 space -= skb->len; 2280 2281 if (first) { 2282 first = false; 2283 continue; 2284 } 2285 2286 if (space < 0) 2287 break; 2288 /* Punt if not enough space exists in the first SKB for 2289 * the data in the second 2290 */ 2291 if (skb->len > skb_availroom(to)) 2292 break; 2293 2294 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2295 break; 2296 2297 tcp_collapse_retrans(sk, to); 2298 } 2299 } 2300 2301 /* This retransmits one SKB. Policy decisions and retransmit queue 2302 * state updates are done by the caller. Returns non-zero if an 2303 * error occurred which prevented the send. 2304 */ 2305 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2306 { 2307 struct tcp_sock *tp = tcp_sk(sk); 2308 struct inet_connection_sock *icsk = inet_csk(sk); 2309 unsigned int cur_mss; 2310 2311 /* Inconslusive MTU probe */ 2312 if (icsk->icsk_mtup.probe_size) { 2313 icsk->icsk_mtup.probe_size = 0; 2314 } 2315 2316 /* Do not sent more than we queued. 1/4 is reserved for possible 2317 * copying overhead: fragmentation, tunneling, mangling etc. 2318 */ 2319 if (atomic_read(&sk->sk_wmem_alloc) > 2320 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2321 return -EAGAIN; 2322 2323 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2324 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2325 BUG(); 2326 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2327 return -ENOMEM; 2328 } 2329 2330 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2331 return -EHOSTUNREACH; /* Routing failure or similar. */ 2332 2333 cur_mss = tcp_current_mss(sk); 2334 2335 /* If receiver has shrunk his window, and skb is out of 2336 * new window, do not retransmit it. The exception is the 2337 * case, when window is shrunk to zero. In this case 2338 * our retransmit serves as a zero window probe. 2339 */ 2340 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2341 TCP_SKB_CB(skb)->seq != tp->snd_una) 2342 return -EAGAIN; 2343 2344 if (skb->len > cur_mss) { 2345 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 2346 return -ENOMEM; /* We'll try again later. */ 2347 } else { 2348 int oldpcount = tcp_skb_pcount(skb); 2349 2350 if (unlikely(oldpcount > 1)) { 2351 if (skb_unclone(skb, GFP_ATOMIC)) 2352 return -ENOMEM; 2353 tcp_init_tso_segs(sk, skb, cur_mss); 2354 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2355 } 2356 } 2357 2358 tcp_retrans_try_collapse(sk, skb, cur_mss); 2359 2360 /* Make a copy, if the first transmission SKB clone we made 2361 * is still in somebody's hands, else make a clone. 2362 */ 2363 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2364 2365 /* make sure skb->data is aligned on arches that require it 2366 * and check if ack-trimming & collapsing extended the headroom 2367 * beyond what csum_start can cover. 2368 */ 2369 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2370 skb_headroom(skb) >= 0xFFFF)) { 2371 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2372 GFP_ATOMIC); 2373 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2374 -ENOBUFS; 2375 } else { 2376 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2377 } 2378 } 2379 2380 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2381 { 2382 struct tcp_sock *tp = tcp_sk(sk); 2383 int err = __tcp_retransmit_skb(sk, skb); 2384 2385 if (err == 0) { 2386 /* Update global TCP statistics. */ 2387 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2388 2389 tp->total_retrans++; 2390 2391 #if FASTRETRANS_DEBUG > 0 2392 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2393 net_dbg_ratelimited("retrans_out leaked\n"); 2394 } 2395 #endif 2396 if (!tp->retrans_out) 2397 tp->lost_retrans_low = tp->snd_nxt; 2398 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2399 tp->retrans_out += tcp_skb_pcount(skb); 2400 2401 /* Save stamp of the first retransmit. */ 2402 if (!tp->retrans_stamp) 2403 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 2404 2405 tp->undo_retrans += tcp_skb_pcount(skb); 2406 2407 /* snd_nxt is stored to detect loss of retransmitted segment, 2408 * see tcp_input.c tcp_sacktag_write_queue(). 2409 */ 2410 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2411 } else { 2412 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2413 } 2414 return err; 2415 } 2416 2417 /* Check if we forward retransmits are possible in the current 2418 * window/congestion state. 2419 */ 2420 static bool tcp_can_forward_retransmit(struct sock *sk) 2421 { 2422 const struct inet_connection_sock *icsk = inet_csk(sk); 2423 const struct tcp_sock *tp = tcp_sk(sk); 2424 2425 /* Forward retransmissions are possible only during Recovery. */ 2426 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2427 return false; 2428 2429 /* No forward retransmissions in Reno are possible. */ 2430 if (tcp_is_reno(tp)) 2431 return false; 2432 2433 /* Yeah, we have to make difficult choice between forward transmission 2434 * and retransmission... Both ways have their merits... 2435 * 2436 * For now we do not retransmit anything, while we have some new 2437 * segments to send. In the other cases, follow rule 3 for 2438 * NextSeg() specified in RFC3517. 2439 */ 2440 2441 if (tcp_may_send_now(sk)) 2442 return false; 2443 2444 return true; 2445 } 2446 2447 /* This gets called after a retransmit timeout, and the initially 2448 * retransmitted data is acknowledged. It tries to continue 2449 * resending the rest of the retransmit queue, until either 2450 * we've sent it all or the congestion window limit is reached. 2451 * If doing SACK, the first ACK which comes back for a timeout 2452 * based retransmit packet might feed us FACK information again. 2453 * If so, we use it to avoid unnecessarily retransmissions. 2454 */ 2455 void tcp_xmit_retransmit_queue(struct sock *sk) 2456 { 2457 const struct inet_connection_sock *icsk = inet_csk(sk); 2458 struct tcp_sock *tp = tcp_sk(sk); 2459 struct sk_buff *skb; 2460 struct sk_buff *hole = NULL; 2461 u32 last_lost; 2462 int mib_idx; 2463 int fwd_rexmitting = 0; 2464 2465 if (!tp->packets_out) 2466 return; 2467 2468 if (!tp->lost_out) 2469 tp->retransmit_high = tp->snd_una; 2470 2471 if (tp->retransmit_skb_hint) { 2472 skb = tp->retransmit_skb_hint; 2473 last_lost = TCP_SKB_CB(skb)->end_seq; 2474 if (after(last_lost, tp->retransmit_high)) 2475 last_lost = tp->retransmit_high; 2476 } else { 2477 skb = tcp_write_queue_head(sk); 2478 last_lost = tp->snd_una; 2479 } 2480 2481 tcp_for_write_queue_from(skb, sk) { 2482 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2483 2484 if (skb == tcp_send_head(sk)) 2485 break; 2486 /* we could do better than to assign each time */ 2487 if (hole == NULL) 2488 tp->retransmit_skb_hint = skb; 2489 2490 /* Assume this retransmit will generate 2491 * only one packet for congestion window 2492 * calculation purposes. This works because 2493 * tcp_retransmit_skb() will chop up the 2494 * packet to be MSS sized and all the 2495 * packet counting works out. 2496 */ 2497 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2498 return; 2499 2500 if (fwd_rexmitting) { 2501 begin_fwd: 2502 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2503 break; 2504 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2505 2506 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2507 tp->retransmit_high = last_lost; 2508 if (!tcp_can_forward_retransmit(sk)) 2509 break; 2510 /* Backtrack if necessary to non-L'ed skb */ 2511 if (hole != NULL) { 2512 skb = hole; 2513 hole = NULL; 2514 } 2515 fwd_rexmitting = 1; 2516 goto begin_fwd; 2517 2518 } else if (!(sacked & TCPCB_LOST)) { 2519 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2520 hole = skb; 2521 continue; 2522 2523 } else { 2524 last_lost = TCP_SKB_CB(skb)->end_seq; 2525 if (icsk->icsk_ca_state != TCP_CA_Loss) 2526 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2527 else 2528 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2529 } 2530 2531 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2532 continue; 2533 2534 if (tcp_retransmit_skb(sk, skb)) 2535 return; 2536 2537 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2538 2539 if (tcp_in_cwnd_reduction(sk)) 2540 tp->prr_out += tcp_skb_pcount(skb); 2541 2542 if (skb == tcp_write_queue_head(sk)) 2543 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2544 inet_csk(sk)->icsk_rto, 2545 TCP_RTO_MAX); 2546 } 2547 } 2548 2549 /* Send a fin. The caller locks the socket for us. This cannot be 2550 * allowed to fail queueing a FIN frame under any circumstances. 2551 */ 2552 void tcp_send_fin(struct sock *sk) 2553 { 2554 struct tcp_sock *tp = tcp_sk(sk); 2555 struct sk_buff *skb = tcp_write_queue_tail(sk); 2556 int mss_now; 2557 2558 /* Optimization, tack on the FIN if we have a queue of 2559 * unsent frames. But be careful about outgoing SACKS 2560 * and IP options. 2561 */ 2562 mss_now = tcp_current_mss(sk); 2563 2564 if (tcp_send_head(sk) != NULL) { 2565 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN; 2566 TCP_SKB_CB(skb)->end_seq++; 2567 tp->write_seq++; 2568 } else { 2569 /* Socket is locked, keep trying until memory is available. */ 2570 for (;;) { 2571 skb = alloc_skb_fclone(MAX_TCP_HEADER, 2572 sk->sk_allocation); 2573 if (skb) 2574 break; 2575 yield(); 2576 } 2577 2578 /* Reserve space for headers and prepare control bits. */ 2579 skb_reserve(skb, MAX_TCP_HEADER); 2580 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2581 tcp_init_nondata_skb(skb, tp->write_seq, 2582 TCPHDR_ACK | TCPHDR_FIN); 2583 tcp_queue_skb(sk, skb); 2584 } 2585 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2586 } 2587 2588 /* We get here when a process closes a file descriptor (either due to 2589 * an explicit close() or as a byproduct of exit()'ing) and there 2590 * was unread data in the receive queue. This behavior is recommended 2591 * by RFC 2525, section 2.17. -DaveM 2592 */ 2593 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2594 { 2595 struct sk_buff *skb; 2596 2597 /* NOTE: No TCP options attached and we never retransmit this. */ 2598 skb = alloc_skb(MAX_TCP_HEADER, priority); 2599 if (!skb) { 2600 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2601 return; 2602 } 2603 2604 /* Reserve space for headers and prepare control bits. */ 2605 skb_reserve(skb, MAX_TCP_HEADER); 2606 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2607 TCPHDR_ACK | TCPHDR_RST); 2608 /* Send it off. */ 2609 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2610 if (tcp_transmit_skb(sk, skb, 0, priority)) 2611 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2612 2613 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2614 } 2615 2616 /* Send a crossed SYN-ACK during socket establishment. 2617 * WARNING: This routine must only be called when we have already sent 2618 * a SYN packet that crossed the incoming SYN that caused this routine 2619 * to get called. If this assumption fails then the initial rcv_wnd 2620 * and rcv_wscale values will not be correct. 2621 */ 2622 int tcp_send_synack(struct sock *sk) 2623 { 2624 struct sk_buff *skb; 2625 2626 skb = tcp_write_queue_head(sk); 2627 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2628 pr_debug("%s: wrong queue state\n", __func__); 2629 return -EFAULT; 2630 } 2631 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2632 if (skb_cloned(skb)) { 2633 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2634 if (nskb == NULL) 2635 return -ENOMEM; 2636 tcp_unlink_write_queue(skb, sk); 2637 skb_header_release(nskb); 2638 __tcp_add_write_queue_head(sk, nskb); 2639 sk_wmem_free_skb(sk, skb); 2640 sk->sk_wmem_queued += nskb->truesize; 2641 sk_mem_charge(sk, nskb->truesize); 2642 skb = nskb; 2643 } 2644 2645 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2646 TCP_ECN_send_synack(tcp_sk(sk), skb); 2647 } 2648 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2649 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2650 } 2651 2652 /** 2653 * tcp_make_synack - Prepare a SYN-ACK. 2654 * sk: listener socket 2655 * dst: dst entry attached to the SYNACK 2656 * req: request_sock pointer 2657 * 2658 * Allocate one skb and build a SYNACK packet. 2659 * @dst is consumed : Caller should not use it again. 2660 */ 2661 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2662 struct request_sock *req, 2663 struct tcp_fastopen_cookie *foc) 2664 { 2665 struct tcp_out_options opts; 2666 struct inet_request_sock *ireq = inet_rsk(req); 2667 struct tcp_sock *tp = tcp_sk(sk); 2668 struct tcphdr *th; 2669 struct sk_buff *skb; 2670 struct tcp_md5sig_key *md5; 2671 int tcp_header_size; 2672 int mss; 2673 2674 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); 2675 if (unlikely(!skb)) { 2676 dst_release(dst); 2677 return NULL; 2678 } 2679 /* Reserve space for headers. */ 2680 skb_reserve(skb, MAX_TCP_HEADER); 2681 2682 skb_dst_set(skb, dst); 2683 security_skb_owned_by(skb, sk); 2684 2685 mss = dst_metric_advmss(dst); 2686 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2687 mss = tp->rx_opt.user_mss; 2688 2689 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 2690 __u8 rcv_wscale; 2691 /* Set this up on the first call only */ 2692 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 2693 2694 /* limit the window selection if the user enforce a smaller rx buffer */ 2695 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2696 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0)) 2697 req->window_clamp = tcp_full_space(sk); 2698 2699 /* tcp_full_space because it is guaranteed to be the first packet */ 2700 tcp_select_initial_window(tcp_full_space(sk), 2701 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 2702 &req->rcv_wnd, 2703 &req->window_clamp, 2704 ireq->wscale_ok, 2705 &rcv_wscale, 2706 dst_metric(dst, RTAX_INITRWND)); 2707 ireq->rcv_wscale = rcv_wscale; 2708 } 2709 2710 memset(&opts, 0, sizeof(opts)); 2711 #ifdef CONFIG_SYN_COOKIES 2712 if (unlikely(req->cookie_ts)) 2713 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req); 2714 else 2715 #endif 2716 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2717 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5, 2718 foc) + sizeof(*th); 2719 2720 skb_push(skb, tcp_header_size); 2721 skb_reset_transport_header(skb); 2722 2723 th = tcp_hdr(skb); 2724 memset(th, 0, sizeof(struct tcphdr)); 2725 th->syn = 1; 2726 th->ack = 1; 2727 TCP_ECN_make_synack(req, th); 2728 th->source = htons(ireq->ir_num); 2729 th->dest = ireq->ir_rmt_port; 2730 /* Setting of flags are superfluous here for callers (and ECE is 2731 * not even correctly set) 2732 */ 2733 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2734 TCPHDR_SYN | TCPHDR_ACK); 2735 2736 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2737 /* XXX data is queued and acked as is. No buffer/window check */ 2738 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 2739 2740 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2741 th->window = htons(min(req->rcv_wnd, 65535U)); 2742 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2743 th->doff = (tcp_header_size >> 2); 2744 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb)); 2745 2746 #ifdef CONFIG_TCP_MD5SIG 2747 /* Okay, we have all we need - do the md5 hash if needed */ 2748 if (md5) { 2749 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2750 md5, NULL, req, skb); 2751 } 2752 #endif 2753 2754 return skb; 2755 } 2756 EXPORT_SYMBOL(tcp_make_synack); 2757 2758 /* Do all connect socket setups that can be done AF independent. */ 2759 void tcp_connect_init(struct sock *sk) 2760 { 2761 const struct dst_entry *dst = __sk_dst_get(sk); 2762 struct tcp_sock *tp = tcp_sk(sk); 2763 __u8 rcv_wscale; 2764 2765 /* We'll fix this up when we get a response from the other end. 2766 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2767 */ 2768 tp->tcp_header_len = sizeof(struct tcphdr) + 2769 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2770 2771 #ifdef CONFIG_TCP_MD5SIG 2772 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2773 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2774 #endif 2775 2776 /* If user gave his TCP_MAXSEG, record it to clamp */ 2777 if (tp->rx_opt.user_mss) 2778 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2779 tp->max_window = 0; 2780 tcp_mtup_init(sk); 2781 tcp_sync_mss(sk, dst_mtu(dst)); 2782 2783 if (!tp->window_clamp) 2784 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2785 tp->advmss = dst_metric_advmss(dst); 2786 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2787 tp->advmss = tp->rx_opt.user_mss; 2788 2789 tcp_initialize_rcv_mss(sk); 2790 2791 /* limit the window selection if the user enforce a smaller rx buffer */ 2792 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2793 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 2794 tp->window_clamp = tcp_full_space(sk); 2795 2796 tcp_select_initial_window(tcp_full_space(sk), 2797 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2798 &tp->rcv_wnd, 2799 &tp->window_clamp, 2800 sysctl_tcp_window_scaling, 2801 &rcv_wscale, 2802 dst_metric(dst, RTAX_INITRWND)); 2803 2804 tp->rx_opt.rcv_wscale = rcv_wscale; 2805 tp->rcv_ssthresh = tp->rcv_wnd; 2806 2807 sk->sk_err = 0; 2808 sock_reset_flag(sk, SOCK_DONE); 2809 tp->snd_wnd = 0; 2810 tcp_init_wl(tp, 0); 2811 tp->snd_una = tp->write_seq; 2812 tp->snd_sml = tp->write_seq; 2813 tp->snd_up = tp->write_seq; 2814 tp->snd_nxt = tp->write_seq; 2815 2816 if (likely(!tp->repair)) 2817 tp->rcv_nxt = 0; 2818 else 2819 tp->rcv_tstamp = tcp_time_stamp; 2820 tp->rcv_wup = tp->rcv_nxt; 2821 tp->copied_seq = tp->rcv_nxt; 2822 2823 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2824 inet_csk(sk)->icsk_retransmits = 0; 2825 tcp_clear_retrans(tp); 2826 } 2827 2828 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 2829 { 2830 struct tcp_sock *tp = tcp_sk(sk); 2831 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 2832 2833 tcb->end_seq += skb->len; 2834 skb_header_release(skb); 2835 __tcp_add_write_queue_tail(sk, skb); 2836 sk->sk_wmem_queued += skb->truesize; 2837 sk_mem_charge(sk, skb->truesize); 2838 tp->write_seq = tcb->end_seq; 2839 tp->packets_out += tcp_skb_pcount(skb); 2840 } 2841 2842 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 2843 * queue a data-only packet after the regular SYN, such that regular SYNs 2844 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 2845 * only the SYN sequence, the data are retransmitted in the first ACK. 2846 * If cookie is not cached or other error occurs, falls back to send a 2847 * regular SYN with Fast Open cookie request option. 2848 */ 2849 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 2850 { 2851 struct tcp_sock *tp = tcp_sk(sk); 2852 struct tcp_fastopen_request *fo = tp->fastopen_req; 2853 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen; 2854 struct sk_buff *syn_data = NULL, *data; 2855 unsigned long last_syn_loss = 0; 2856 2857 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 2858 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 2859 &syn_loss, &last_syn_loss); 2860 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 2861 if (syn_loss > 1 && 2862 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 2863 fo->cookie.len = -1; 2864 goto fallback; 2865 } 2866 2867 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 2868 fo->cookie.len = -1; 2869 else if (fo->cookie.len <= 0) 2870 goto fallback; 2871 2872 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 2873 * user-MSS. Reserve maximum option space for middleboxes that add 2874 * private TCP options. The cost is reduced data space in SYN :( 2875 */ 2876 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 2877 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2878 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 2879 MAX_TCP_OPTION_SPACE; 2880 2881 syn_data = skb_copy_expand(syn, skb_headroom(syn), space, 2882 sk->sk_allocation); 2883 if (syn_data == NULL) 2884 goto fallback; 2885 2886 for (i = 0; i < iovlen && syn_data->len < space; ++i) { 2887 struct iovec *iov = &fo->data->msg_iov[i]; 2888 unsigned char __user *from = iov->iov_base; 2889 int len = iov->iov_len; 2890 2891 if (syn_data->len + len > space) 2892 len = space - syn_data->len; 2893 else if (i + 1 == iovlen) 2894 /* No more data pending in inet_wait_for_connect() */ 2895 fo->data = NULL; 2896 2897 if (skb_add_data(syn_data, from, len)) 2898 goto fallback; 2899 } 2900 2901 /* Queue a data-only packet after the regular SYN for retransmission */ 2902 data = pskb_copy(syn_data, sk->sk_allocation); 2903 if (data == NULL) 2904 goto fallback; 2905 TCP_SKB_CB(data)->seq++; 2906 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN; 2907 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH); 2908 tcp_connect_queue_skb(sk, data); 2909 fo->copied = data->len; 2910 2911 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) { 2912 tp->syn_data = (fo->copied > 0); 2913 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 2914 goto done; 2915 } 2916 syn_data = NULL; 2917 2918 fallback: 2919 /* Send a regular SYN with Fast Open cookie request option */ 2920 if (fo->cookie.len > 0) 2921 fo->cookie.len = 0; 2922 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 2923 if (err) 2924 tp->syn_fastopen = 0; 2925 kfree_skb(syn_data); 2926 done: 2927 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 2928 return err; 2929 } 2930 2931 /* Build a SYN and send it off. */ 2932 int tcp_connect(struct sock *sk) 2933 { 2934 struct tcp_sock *tp = tcp_sk(sk); 2935 struct sk_buff *buff; 2936 int err; 2937 2938 tcp_connect_init(sk); 2939 2940 if (unlikely(tp->repair)) { 2941 tcp_finish_connect(sk, NULL); 2942 return 0; 2943 } 2944 2945 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 2946 if (unlikely(buff == NULL)) 2947 return -ENOBUFS; 2948 2949 /* Reserve space for headers. */ 2950 skb_reserve(buff, MAX_TCP_HEADER); 2951 2952 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 2953 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp; 2954 tcp_connect_queue_skb(sk, buff); 2955 TCP_ECN_send_syn(sk, buff); 2956 2957 /* Send off SYN; include data in Fast Open. */ 2958 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 2959 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 2960 if (err == -ECONNREFUSED) 2961 return err; 2962 2963 /* We change tp->snd_nxt after the tcp_transmit_skb() call 2964 * in order to make this packet get counted in tcpOutSegs. 2965 */ 2966 tp->snd_nxt = tp->write_seq; 2967 tp->pushed_seq = tp->write_seq; 2968 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 2969 2970 /* Timer for repeating the SYN until an answer. */ 2971 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2972 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2973 return 0; 2974 } 2975 EXPORT_SYMBOL(tcp_connect); 2976 2977 /* Send out a delayed ack, the caller does the policy checking 2978 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 2979 * for details. 2980 */ 2981 void tcp_send_delayed_ack(struct sock *sk) 2982 { 2983 struct inet_connection_sock *icsk = inet_csk(sk); 2984 int ato = icsk->icsk_ack.ato; 2985 unsigned long timeout; 2986 2987 if (ato > TCP_DELACK_MIN) { 2988 const struct tcp_sock *tp = tcp_sk(sk); 2989 int max_ato = HZ / 2; 2990 2991 if (icsk->icsk_ack.pingpong || 2992 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 2993 max_ato = TCP_DELACK_MAX; 2994 2995 /* Slow path, intersegment interval is "high". */ 2996 2997 /* If some rtt estimate is known, use it to bound delayed ack. 2998 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 2999 * directly. 3000 */ 3001 if (tp->srtt) { 3002 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN); 3003 3004 if (rtt < max_ato) 3005 max_ato = rtt; 3006 } 3007 3008 ato = min(ato, max_ato); 3009 } 3010 3011 /* Stay within the limit we were given */ 3012 timeout = jiffies + ato; 3013 3014 /* Use new timeout only if there wasn't a older one earlier. */ 3015 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3016 /* If delack timer was blocked or is about to expire, 3017 * send ACK now. 3018 */ 3019 if (icsk->icsk_ack.blocked || 3020 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3021 tcp_send_ack(sk); 3022 return; 3023 } 3024 3025 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3026 timeout = icsk->icsk_ack.timeout; 3027 } 3028 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3029 icsk->icsk_ack.timeout = timeout; 3030 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3031 } 3032 3033 /* This routine sends an ack and also updates the window. */ 3034 void tcp_send_ack(struct sock *sk) 3035 { 3036 struct sk_buff *buff; 3037 3038 /* If we have been reset, we may not send again. */ 3039 if (sk->sk_state == TCP_CLOSE) 3040 return; 3041 3042 /* We are not putting this on the write queue, so 3043 * tcp_transmit_skb() will set the ownership to this 3044 * sock. 3045 */ 3046 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3047 if (buff == NULL) { 3048 inet_csk_schedule_ack(sk); 3049 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3050 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3051 TCP_DELACK_MAX, TCP_RTO_MAX); 3052 return; 3053 } 3054 3055 /* Reserve space for headers and prepare control bits. */ 3056 skb_reserve(buff, MAX_TCP_HEADER); 3057 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3058 3059 /* Send it off, this clears delayed acks for us. */ 3060 TCP_SKB_CB(buff)->when = tcp_time_stamp; 3061 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC)); 3062 } 3063 3064 /* This routine sends a packet with an out of date sequence 3065 * number. It assumes the other end will try to ack it. 3066 * 3067 * Question: what should we make while urgent mode? 3068 * 4.4BSD forces sending single byte of data. We cannot send 3069 * out of window data, because we have SND.NXT==SND.MAX... 3070 * 3071 * Current solution: to send TWO zero-length segments in urgent mode: 3072 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3073 * out-of-date with SND.UNA-1 to probe window. 3074 */ 3075 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 3076 { 3077 struct tcp_sock *tp = tcp_sk(sk); 3078 struct sk_buff *skb; 3079 3080 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3081 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3082 if (skb == NULL) 3083 return -1; 3084 3085 /* Reserve space for headers and set control bits. */ 3086 skb_reserve(skb, MAX_TCP_HEADER); 3087 /* Use a previous sequence. This should cause the other 3088 * end to send an ack. Don't queue or clone SKB, just 3089 * send it. 3090 */ 3091 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3092 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3093 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3094 } 3095 3096 void tcp_send_window_probe(struct sock *sk) 3097 { 3098 if (sk->sk_state == TCP_ESTABLISHED) { 3099 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3100 tcp_xmit_probe_skb(sk, 0); 3101 } 3102 } 3103 3104 /* Initiate keepalive or window probe from timer. */ 3105 int tcp_write_wakeup(struct sock *sk) 3106 { 3107 struct tcp_sock *tp = tcp_sk(sk); 3108 struct sk_buff *skb; 3109 3110 if (sk->sk_state == TCP_CLOSE) 3111 return -1; 3112 3113 if ((skb = tcp_send_head(sk)) != NULL && 3114 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3115 int err; 3116 unsigned int mss = tcp_current_mss(sk); 3117 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3118 3119 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3120 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3121 3122 /* We are probing the opening of a window 3123 * but the window size is != 0 3124 * must have been a result SWS avoidance ( sender ) 3125 */ 3126 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3127 skb->len > mss) { 3128 seg_size = min(seg_size, mss); 3129 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3130 if (tcp_fragment(sk, skb, seg_size, mss)) 3131 return -1; 3132 } else if (!tcp_skb_pcount(skb)) 3133 tcp_set_skb_tso_segs(sk, skb, mss); 3134 3135 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3136 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3137 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3138 if (!err) 3139 tcp_event_new_data_sent(sk, skb); 3140 return err; 3141 } else { 3142 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3143 tcp_xmit_probe_skb(sk, 1); 3144 return tcp_xmit_probe_skb(sk, 0); 3145 } 3146 } 3147 3148 /* A window probe timeout has occurred. If window is not closed send 3149 * a partial packet else a zero probe. 3150 */ 3151 void tcp_send_probe0(struct sock *sk) 3152 { 3153 struct inet_connection_sock *icsk = inet_csk(sk); 3154 struct tcp_sock *tp = tcp_sk(sk); 3155 int err; 3156 3157 err = tcp_write_wakeup(sk); 3158 3159 if (tp->packets_out || !tcp_send_head(sk)) { 3160 /* Cancel probe timer, if it is not required. */ 3161 icsk->icsk_probes_out = 0; 3162 icsk->icsk_backoff = 0; 3163 return; 3164 } 3165 3166 if (err <= 0) { 3167 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3168 icsk->icsk_backoff++; 3169 icsk->icsk_probes_out++; 3170 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3171 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3172 TCP_RTO_MAX); 3173 } else { 3174 /* If packet was not sent due to local congestion, 3175 * do not backoff and do not remember icsk_probes_out. 3176 * Let local senders to fight for local resources. 3177 * 3178 * Use accumulated backoff yet. 3179 */ 3180 if (!icsk->icsk_probes_out) 3181 icsk->icsk_probes_out = 1; 3182 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3183 min(icsk->icsk_rto << icsk->icsk_backoff, 3184 TCP_RESOURCE_PROBE_INTERVAL), 3185 TCP_RTO_MAX); 3186 } 3187 } 3188