xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 7587eb18)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 			   int push_one, gfp_t gfp);
67 
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 	struct inet_connection_sock *icsk = inet_csk(sk);
72 	struct tcp_sock *tp = tcp_sk(sk);
73 	unsigned int prior_packets = tp->packets_out;
74 
75 	tcp_advance_send_head(sk, skb);
76 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
80 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
81 		tcp_rearm_rto(sk);
82 	}
83 
84 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 		      tcp_skb_pcount(skb));
86 }
87 
88 /* SND.NXT, if window was not shrunk.
89  * If window has been shrunk, what should we make? It is not clear at all.
90  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92  * invalid. OK, let's make this for now:
93  */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 	const struct tcp_sock *tp = tcp_sk(sk);
97 
98 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 		return tp->snd_nxt;
100 	else
101 		return tcp_wnd_end(tp);
102 }
103 
104 /* Calculate mss to advertise in SYN segment.
105  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106  *
107  * 1. It is independent of path mtu.
108  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110  *    attached devices, because some buggy hosts are confused by
111  *    large MSS.
112  * 4. We do not make 3, we advertise MSS, calculated from first
113  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
114  *    This may be overridden via information stored in routing table.
115  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116  *    probably even Jumbo".
117  */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 	struct tcp_sock *tp = tcp_sk(sk);
121 	const struct dst_entry *dst = __sk_dst_get(sk);
122 	int mss = tp->advmss;
123 
124 	if (dst) {
125 		unsigned int metric = dst_metric_advmss(dst);
126 
127 		if (metric < mss) {
128 			mss = metric;
129 			tp->advmss = mss;
130 		}
131 	}
132 
133 	return (__u16)mss;
134 }
135 
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137  * This is the first part of cwnd validation mechanism.
138  */
139 void tcp_cwnd_restart(struct sock *sk, s32 delta)
140 {
141 	struct tcp_sock *tp = tcp_sk(sk);
142 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
143 	u32 cwnd = tp->snd_cwnd;
144 
145 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146 
147 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 	restart_cwnd = min(restart_cwnd, cwnd);
149 
150 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 		cwnd >>= 1;
152 	tp->snd_cwnd = max(cwnd, restart_cwnd);
153 	tp->snd_cwnd_stamp = tcp_time_stamp;
154 	tp->snd_cwnd_used = 0;
155 }
156 
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 				struct sock *sk)
160 {
161 	struct inet_connection_sock *icsk = inet_csk(sk);
162 	const u32 now = tcp_time_stamp;
163 
164 	if (tcp_packets_in_flight(tp) == 0)
165 		tcp_ca_event(sk, CA_EVENT_TX_START);
166 
167 	tp->lsndtime = now;
168 
169 	/* If it is a reply for ato after last received
170 	 * packet, enter pingpong mode.
171 	 */
172 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
173 		icsk->icsk_ack.pingpong = 1;
174 }
175 
176 /* Account for an ACK we sent. */
177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
178 {
179 	tcp_dec_quickack_mode(sk, pkts);
180 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
181 }
182 
183 
184 u32 tcp_default_init_rwnd(u32 mss)
185 {
186 	/* Initial receive window should be twice of TCP_INIT_CWND to
187 	 * enable proper sending of new unsent data during fast recovery
188 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
189 	 * limit when mss is larger than 1460.
190 	 */
191 	u32 init_rwnd = TCP_INIT_CWND * 2;
192 
193 	if (mss > 1460)
194 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
195 	return init_rwnd;
196 }
197 
198 /* Determine a window scaling and initial window to offer.
199  * Based on the assumption that the given amount of space
200  * will be offered. Store the results in the tp structure.
201  * NOTE: for smooth operation initial space offering should
202  * be a multiple of mss if possible. We assume here that mss >= 1.
203  * This MUST be enforced by all callers.
204  */
205 void tcp_select_initial_window(int __space, __u32 mss,
206 			       __u32 *rcv_wnd, __u32 *window_clamp,
207 			       int wscale_ok, __u8 *rcv_wscale,
208 			       __u32 init_rcv_wnd)
209 {
210 	unsigned int space = (__space < 0 ? 0 : __space);
211 
212 	/* If no clamp set the clamp to the max possible scaled window */
213 	if (*window_clamp == 0)
214 		(*window_clamp) = (65535 << 14);
215 	space = min(*window_clamp, space);
216 
217 	/* Quantize space offering to a multiple of mss if possible. */
218 	if (space > mss)
219 		space = (space / mss) * mss;
220 
221 	/* NOTE: offering an initial window larger than 32767
222 	 * will break some buggy TCP stacks. If the admin tells us
223 	 * it is likely we could be speaking with such a buggy stack
224 	 * we will truncate our initial window offering to 32K-1
225 	 * unless the remote has sent us a window scaling option,
226 	 * which we interpret as a sign the remote TCP is not
227 	 * misinterpreting the window field as a signed quantity.
228 	 */
229 	if (sysctl_tcp_workaround_signed_windows)
230 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 	else
232 		(*rcv_wnd) = space;
233 
234 	(*rcv_wscale) = 0;
235 	if (wscale_ok) {
236 		/* Set window scaling on max possible window
237 		 * See RFC1323 for an explanation of the limit to 14
238 		 */
239 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
240 		space = min_t(u32, space, *window_clamp);
241 		while (space > 65535 && (*rcv_wscale) < 14) {
242 			space >>= 1;
243 			(*rcv_wscale)++;
244 		}
245 	}
246 
247 	if (mss > (1 << *rcv_wscale)) {
248 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 			init_rcv_wnd = tcp_default_init_rwnd(mss);
250 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 	}
252 
253 	/* Set the clamp no higher than max representable value */
254 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
255 }
256 EXPORT_SYMBOL(tcp_select_initial_window);
257 
258 /* Chose a new window to advertise, update state in tcp_sock for the
259  * socket, and return result with RFC1323 scaling applied.  The return
260  * value can be stuffed directly into th->window for an outgoing
261  * frame.
262  */
263 static u16 tcp_select_window(struct sock *sk)
264 {
265 	struct tcp_sock *tp = tcp_sk(sk);
266 	u32 old_win = tp->rcv_wnd;
267 	u32 cur_win = tcp_receive_window(tp);
268 	u32 new_win = __tcp_select_window(sk);
269 
270 	/* Never shrink the offered window */
271 	if (new_win < cur_win) {
272 		/* Danger Will Robinson!
273 		 * Don't update rcv_wup/rcv_wnd here or else
274 		 * we will not be able to advertise a zero
275 		 * window in time.  --DaveM
276 		 *
277 		 * Relax Will Robinson.
278 		 */
279 		if (new_win == 0)
280 			NET_INC_STATS(sock_net(sk),
281 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
282 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
283 	}
284 	tp->rcv_wnd = new_win;
285 	tp->rcv_wup = tp->rcv_nxt;
286 
287 	/* Make sure we do not exceed the maximum possible
288 	 * scaled window.
289 	 */
290 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 		new_win = min(new_win, MAX_TCP_WINDOW);
292 	else
293 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
294 
295 	/* RFC1323 scaling applied */
296 	new_win >>= tp->rx_opt.rcv_wscale;
297 
298 	/* If we advertise zero window, disable fast path. */
299 	if (new_win == 0) {
300 		tp->pred_flags = 0;
301 		if (old_win)
302 			NET_INC_STATS(sock_net(sk),
303 				      LINUX_MIB_TCPTOZEROWINDOWADV);
304 	} else if (old_win == 0) {
305 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
306 	}
307 
308 	return new_win;
309 }
310 
311 /* Packet ECN state for a SYN-ACK */
312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
313 {
314 	const struct tcp_sock *tp = tcp_sk(sk);
315 
316 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
317 	if (!(tp->ecn_flags & TCP_ECN_OK))
318 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
319 	else if (tcp_ca_needs_ecn(sk))
320 		INET_ECN_xmit(sk);
321 }
322 
323 /* Packet ECN state for a SYN.  */
324 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
325 {
326 	struct tcp_sock *tp = tcp_sk(sk);
327 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
328 		       tcp_ca_needs_ecn(sk);
329 
330 	if (!use_ecn) {
331 		const struct dst_entry *dst = __sk_dst_get(sk);
332 
333 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
334 			use_ecn = true;
335 	}
336 
337 	tp->ecn_flags = 0;
338 
339 	if (use_ecn) {
340 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 		tp->ecn_flags = TCP_ECN_OK;
342 		if (tcp_ca_needs_ecn(sk))
343 			INET_ECN_xmit(sk);
344 	}
345 }
346 
347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
348 {
349 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
350 		/* tp->ecn_flags are cleared at a later point in time when
351 		 * SYN ACK is ultimatively being received.
352 		 */
353 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
354 }
355 
356 static void
357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
358 {
359 	if (inet_rsk(req)->ecn_ok)
360 		th->ece = 1;
361 }
362 
363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
364  * be sent.
365  */
366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
367 			 struct tcphdr *th, int tcp_header_len)
368 {
369 	struct tcp_sock *tp = tcp_sk(sk);
370 
371 	if (tp->ecn_flags & TCP_ECN_OK) {
372 		/* Not-retransmitted data segment: set ECT and inject CWR. */
373 		if (skb->len != tcp_header_len &&
374 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
375 			INET_ECN_xmit(sk);
376 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
377 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
378 				th->cwr = 1;
379 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
380 			}
381 		} else if (!tcp_ca_needs_ecn(sk)) {
382 			/* ACK or retransmitted segment: clear ECT|CE */
383 			INET_ECN_dontxmit(sk);
384 		}
385 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
386 			th->ece = 1;
387 	}
388 }
389 
390 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
391  * auto increment end seqno.
392  */
393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
394 {
395 	skb->ip_summed = CHECKSUM_PARTIAL;
396 	skb->csum = 0;
397 
398 	TCP_SKB_CB(skb)->tcp_flags = flags;
399 	TCP_SKB_CB(skb)->sacked = 0;
400 
401 	tcp_skb_pcount_set(skb, 1);
402 
403 	TCP_SKB_CB(skb)->seq = seq;
404 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
405 		seq++;
406 	TCP_SKB_CB(skb)->end_seq = seq;
407 }
408 
409 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
410 {
411 	return tp->snd_una != tp->snd_up;
412 }
413 
414 #define OPTION_SACK_ADVERTISE	(1 << 0)
415 #define OPTION_TS		(1 << 1)
416 #define OPTION_MD5		(1 << 2)
417 #define OPTION_WSCALE		(1 << 3)
418 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
419 
420 struct tcp_out_options {
421 	u16 options;		/* bit field of OPTION_* */
422 	u16 mss;		/* 0 to disable */
423 	u8 ws;			/* window scale, 0 to disable */
424 	u8 num_sack_blocks;	/* number of SACK blocks to include */
425 	u8 hash_size;		/* bytes in hash_location */
426 	__u8 *hash_location;	/* temporary pointer, overloaded */
427 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
428 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
429 };
430 
431 /* Write previously computed TCP options to the packet.
432  *
433  * Beware: Something in the Internet is very sensitive to the ordering of
434  * TCP options, we learned this through the hard way, so be careful here.
435  * Luckily we can at least blame others for their non-compliance but from
436  * inter-operability perspective it seems that we're somewhat stuck with
437  * the ordering which we have been using if we want to keep working with
438  * those broken things (not that it currently hurts anybody as there isn't
439  * particular reason why the ordering would need to be changed).
440  *
441  * At least SACK_PERM as the first option is known to lead to a disaster
442  * (but it may well be that other scenarios fail similarly).
443  */
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 			      struct tcp_out_options *opts)
446 {
447 	u16 options = opts->options;	/* mungable copy */
448 
449 	if (unlikely(OPTION_MD5 & options)) {
450 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
451 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
452 		/* overload cookie hash location */
453 		opts->hash_location = (__u8 *)ptr;
454 		ptr += 4;
455 	}
456 
457 	if (unlikely(opts->mss)) {
458 		*ptr++ = htonl((TCPOPT_MSS << 24) |
459 			       (TCPOLEN_MSS << 16) |
460 			       opts->mss);
461 	}
462 
463 	if (likely(OPTION_TS & options)) {
464 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
465 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
466 				       (TCPOLEN_SACK_PERM << 16) |
467 				       (TCPOPT_TIMESTAMP << 8) |
468 				       TCPOLEN_TIMESTAMP);
469 			options &= ~OPTION_SACK_ADVERTISE;
470 		} else {
471 			*ptr++ = htonl((TCPOPT_NOP << 24) |
472 				       (TCPOPT_NOP << 16) |
473 				       (TCPOPT_TIMESTAMP << 8) |
474 				       TCPOLEN_TIMESTAMP);
475 		}
476 		*ptr++ = htonl(opts->tsval);
477 		*ptr++ = htonl(opts->tsecr);
478 	}
479 
480 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
481 		*ptr++ = htonl((TCPOPT_NOP << 24) |
482 			       (TCPOPT_NOP << 16) |
483 			       (TCPOPT_SACK_PERM << 8) |
484 			       TCPOLEN_SACK_PERM);
485 	}
486 
487 	if (unlikely(OPTION_WSCALE & options)) {
488 		*ptr++ = htonl((TCPOPT_NOP << 24) |
489 			       (TCPOPT_WINDOW << 16) |
490 			       (TCPOLEN_WINDOW << 8) |
491 			       opts->ws);
492 	}
493 
494 	if (unlikely(opts->num_sack_blocks)) {
495 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
496 			tp->duplicate_sack : tp->selective_acks;
497 		int this_sack;
498 
499 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
500 			       (TCPOPT_NOP  << 16) |
501 			       (TCPOPT_SACK <<  8) |
502 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
503 						     TCPOLEN_SACK_PERBLOCK)));
504 
505 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
506 		     ++this_sack) {
507 			*ptr++ = htonl(sp[this_sack].start_seq);
508 			*ptr++ = htonl(sp[this_sack].end_seq);
509 		}
510 
511 		tp->rx_opt.dsack = 0;
512 	}
513 
514 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
515 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
516 		u8 *p = (u8 *)ptr;
517 		u32 len; /* Fast Open option length */
518 
519 		if (foc->exp) {
520 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
521 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
522 				     TCPOPT_FASTOPEN_MAGIC);
523 			p += TCPOLEN_EXP_FASTOPEN_BASE;
524 		} else {
525 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
526 			*p++ = TCPOPT_FASTOPEN;
527 			*p++ = len;
528 		}
529 
530 		memcpy(p, foc->val, foc->len);
531 		if ((len & 3) == 2) {
532 			p[foc->len] = TCPOPT_NOP;
533 			p[foc->len + 1] = TCPOPT_NOP;
534 		}
535 		ptr += (len + 3) >> 2;
536 	}
537 }
538 
539 /* Compute TCP options for SYN packets. This is not the final
540  * network wire format yet.
541  */
542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
543 				struct tcp_out_options *opts,
544 				struct tcp_md5sig_key **md5)
545 {
546 	struct tcp_sock *tp = tcp_sk(sk);
547 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
548 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
549 
550 #ifdef CONFIG_TCP_MD5SIG
551 	*md5 = tp->af_specific->md5_lookup(sk, sk);
552 	if (*md5) {
553 		opts->options |= OPTION_MD5;
554 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
555 	}
556 #else
557 	*md5 = NULL;
558 #endif
559 
560 	/* We always get an MSS option.  The option bytes which will be seen in
561 	 * normal data packets should timestamps be used, must be in the MSS
562 	 * advertised.  But we subtract them from tp->mss_cache so that
563 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
564 	 * fact here if necessary.  If we don't do this correctly, as a
565 	 * receiver we won't recognize data packets as being full sized when we
566 	 * should, and thus we won't abide by the delayed ACK rules correctly.
567 	 * SACKs don't matter, we never delay an ACK when we have any of those
568 	 * going out.  */
569 	opts->mss = tcp_advertise_mss(sk);
570 	remaining -= TCPOLEN_MSS_ALIGNED;
571 
572 	if (likely(sysctl_tcp_timestamps && !*md5)) {
573 		opts->options |= OPTION_TS;
574 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
575 		opts->tsecr = tp->rx_opt.ts_recent;
576 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
577 	}
578 	if (likely(sysctl_tcp_window_scaling)) {
579 		opts->ws = tp->rx_opt.rcv_wscale;
580 		opts->options |= OPTION_WSCALE;
581 		remaining -= TCPOLEN_WSCALE_ALIGNED;
582 	}
583 	if (likely(sysctl_tcp_sack)) {
584 		opts->options |= OPTION_SACK_ADVERTISE;
585 		if (unlikely(!(OPTION_TS & opts->options)))
586 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
587 	}
588 
589 	if (fastopen && fastopen->cookie.len >= 0) {
590 		u32 need = fastopen->cookie.len;
591 
592 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
593 					       TCPOLEN_FASTOPEN_BASE;
594 		need = (need + 3) & ~3U;  /* Align to 32 bits */
595 		if (remaining >= need) {
596 			opts->options |= OPTION_FAST_OPEN_COOKIE;
597 			opts->fastopen_cookie = &fastopen->cookie;
598 			remaining -= need;
599 			tp->syn_fastopen = 1;
600 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
601 		}
602 	}
603 
604 	return MAX_TCP_OPTION_SPACE - remaining;
605 }
606 
607 /* Set up TCP options for SYN-ACKs. */
608 static unsigned int tcp_synack_options(struct request_sock *req,
609 				       unsigned int mss, struct sk_buff *skb,
610 				       struct tcp_out_options *opts,
611 				       const struct tcp_md5sig_key *md5,
612 				       struct tcp_fastopen_cookie *foc)
613 {
614 	struct inet_request_sock *ireq = inet_rsk(req);
615 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
616 
617 #ifdef CONFIG_TCP_MD5SIG
618 	if (md5) {
619 		opts->options |= OPTION_MD5;
620 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
621 
622 		/* We can't fit any SACK blocks in a packet with MD5 + TS
623 		 * options. There was discussion about disabling SACK
624 		 * rather than TS in order to fit in better with old,
625 		 * buggy kernels, but that was deemed to be unnecessary.
626 		 */
627 		ireq->tstamp_ok &= !ireq->sack_ok;
628 	}
629 #endif
630 
631 	/* We always send an MSS option. */
632 	opts->mss = mss;
633 	remaining -= TCPOLEN_MSS_ALIGNED;
634 
635 	if (likely(ireq->wscale_ok)) {
636 		opts->ws = ireq->rcv_wscale;
637 		opts->options |= OPTION_WSCALE;
638 		remaining -= TCPOLEN_WSCALE_ALIGNED;
639 	}
640 	if (likely(ireq->tstamp_ok)) {
641 		opts->options |= OPTION_TS;
642 		opts->tsval = tcp_skb_timestamp(skb);
643 		opts->tsecr = req->ts_recent;
644 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
645 	}
646 	if (likely(ireq->sack_ok)) {
647 		opts->options |= OPTION_SACK_ADVERTISE;
648 		if (unlikely(!ireq->tstamp_ok))
649 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
650 	}
651 	if (foc != NULL && foc->len >= 0) {
652 		u32 need = foc->len;
653 
654 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
655 				   TCPOLEN_FASTOPEN_BASE;
656 		need = (need + 3) & ~3U;  /* Align to 32 bits */
657 		if (remaining >= need) {
658 			opts->options |= OPTION_FAST_OPEN_COOKIE;
659 			opts->fastopen_cookie = foc;
660 			remaining -= need;
661 		}
662 	}
663 
664 	return MAX_TCP_OPTION_SPACE - remaining;
665 }
666 
667 /* Compute TCP options for ESTABLISHED sockets. This is not the
668  * final wire format yet.
669  */
670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
671 					struct tcp_out_options *opts,
672 					struct tcp_md5sig_key **md5)
673 {
674 	struct tcp_sock *tp = tcp_sk(sk);
675 	unsigned int size = 0;
676 	unsigned int eff_sacks;
677 
678 	opts->options = 0;
679 
680 #ifdef CONFIG_TCP_MD5SIG
681 	*md5 = tp->af_specific->md5_lookup(sk, sk);
682 	if (unlikely(*md5)) {
683 		opts->options |= OPTION_MD5;
684 		size += TCPOLEN_MD5SIG_ALIGNED;
685 	}
686 #else
687 	*md5 = NULL;
688 #endif
689 
690 	if (likely(tp->rx_opt.tstamp_ok)) {
691 		opts->options |= OPTION_TS;
692 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
693 		opts->tsecr = tp->rx_opt.ts_recent;
694 		size += TCPOLEN_TSTAMP_ALIGNED;
695 	}
696 
697 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
698 	if (unlikely(eff_sacks)) {
699 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
700 		opts->num_sack_blocks =
701 			min_t(unsigned int, eff_sacks,
702 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
703 			      TCPOLEN_SACK_PERBLOCK);
704 		size += TCPOLEN_SACK_BASE_ALIGNED +
705 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
706 	}
707 
708 	return size;
709 }
710 
711 
712 /* TCP SMALL QUEUES (TSQ)
713  *
714  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
715  * to reduce RTT and bufferbloat.
716  * We do this using a special skb destructor (tcp_wfree).
717  *
718  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
719  * needs to be reallocated in a driver.
720  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
721  *
722  * Since transmit from skb destructor is forbidden, we use a tasklet
723  * to process all sockets that eventually need to send more skbs.
724  * We use one tasklet per cpu, with its own queue of sockets.
725  */
726 struct tsq_tasklet {
727 	struct tasklet_struct	tasklet;
728 	struct list_head	head; /* queue of tcp sockets */
729 };
730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
731 
732 static void tcp_tsq_handler(struct sock *sk)
733 {
734 	if ((1 << sk->sk_state) &
735 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
736 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
737 		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
738 			       0, GFP_ATOMIC);
739 }
740 /*
741  * One tasklet per cpu tries to send more skbs.
742  * We run in tasklet context but need to disable irqs when
743  * transferring tsq->head because tcp_wfree() might
744  * interrupt us (non NAPI drivers)
745  */
746 static void tcp_tasklet_func(unsigned long data)
747 {
748 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
749 	LIST_HEAD(list);
750 	unsigned long flags;
751 	struct list_head *q, *n;
752 	struct tcp_sock *tp;
753 	struct sock *sk;
754 
755 	local_irq_save(flags);
756 	list_splice_init(&tsq->head, &list);
757 	local_irq_restore(flags);
758 
759 	list_for_each_safe(q, n, &list) {
760 		tp = list_entry(q, struct tcp_sock, tsq_node);
761 		list_del(&tp->tsq_node);
762 
763 		sk = (struct sock *)tp;
764 		bh_lock_sock(sk);
765 
766 		if (!sock_owned_by_user(sk)) {
767 			tcp_tsq_handler(sk);
768 		} else {
769 			/* defer the work to tcp_release_cb() */
770 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
771 		}
772 		bh_unlock_sock(sk);
773 
774 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
775 		sk_free(sk);
776 	}
777 }
778 
779 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
780 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
781 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
782 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
783 /**
784  * tcp_release_cb - tcp release_sock() callback
785  * @sk: socket
786  *
787  * called from release_sock() to perform protocol dependent
788  * actions before socket release.
789  */
790 void tcp_release_cb(struct sock *sk)
791 {
792 	struct tcp_sock *tp = tcp_sk(sk);
793 	unsigned long flags, nflags;
794 
795 	/* perform an atomic operation only if at least one flag is set */
796 	do {
797 		flags = tp->tsq_flags;
798 		if (!(flags & TCP_DEFERRED_ALL))
799 			return;
800 		nflags = flags & ~TCP_DEFERRED_ALL;
801 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
802 
803 	if (flags & (1UL << TCP_TSQ_DEFERRED))
804 		tcp_tsq_handler(sk);
805 
806 	/* Here begins the tricky part :
807 	 * We are called from release_sock() with :
808 	 * 1) BH disabled
809 	 * 2) sk_lock.slock spinlock held
810 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
811 	 *
812 	 * But following code is meant to be called from BH handlers,
813 	 * so we should keep BH disabled, but early release socket ownership
814 	 */
815 	sock_release_ownership(sk);
816 
817 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
818 		tcp_write_timer_handler(sk);
819 		__sock_put(sk);
820 	}
821 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
822 		tcp_delack_timer_handler(sk);
823 		__sock_put(sk);
824 	}
825 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
826 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
827 		__sock_put(sk);
828 	}
829 }
830 EXPORT_SYMBOL(tcp_release_cb);
831 
832 void __init tcp_tasklet_init(void)
833 {
834 	int i;
835 
836 	for_each_possible_cpu(i) {
837 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
838 
839 		INIT_LIST_HEAD(&tsq->head);
840 		tasklet_init(&tsq->tasklet,
841 			     tcp_tasklet_func,
842 			     (unsigned long)tsq);
843 	}
844 }
845 
846 /*
847  * Write buffer destructor automatically called from kfree_skb.
848  * We can't xmit new skbs from this context, as we might already
849  * hold qdisc lock.
850  */
851 void tcp_wfree(struct sk_buff *skb)
852 {
853 	struct sock *sk = skb->sk;
854 	struct tcp_sock *tp = tcp_sk(sk);
855 	int wmem;
856 
857 	/* Keep one reference on sk_wmem_alloc.
858 	 * Will be released by sk_free() from here or tcp_tasklet_func()
859 	 */
860 	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
861 
862 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
863 	 * Wait until our queues (qdisc + devices) are drained.
864 	 * This gives :
865 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
866 	 * - chance for incoming ACK (processed by another cpu maybe)
867 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
868 	 */
869 	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
870 		goto out;
871 
872 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
873 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
874 		unsigned long flags;
875 		struct tsq_tasklet *tsq;
876 
877 		/* queue this socket to tasklet queue */
878 		local_irq_save(flags);
879 		tsq = this_cpu_ptr(&tsq_tasklet);
880 		list_add(&tp->tsq_node, &tsq->head);
881 		tasklet_schedule(&tsq->tasklet);
882 		local_irq_restore(flags);
883 		return;
884 	}
885 out:
886 	sk_free(sk);
887 }
888 
889 /* This routine actually transmits TCP packets queued in by
890  * tcp_do_sendmsg().  This is used by both the initial
891  * transmission and possible later retransmissions.
892  * All SKB's seen here are completely headerless.  It is our
893  * job to build the TCP header, and pass the packet down to
894  * IP so it can do the same plus pass the packet off to the
895  * device.
896  *
897  * We are working here with either a clone of the original
898  * SKB, or a fresh unique copy made by the retransmit engine.
899  */
900 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
901 			    gfp_t gfp_mask)
902 {
903 	const struct inet_connection_sock *icsk = inet_csk(sk);
904 	struct inet_sock *inet;
905 	struct tcp_sock *tp;
906 	struct tcp_skb_cb *tcb;
907 	struct tcp_out_options opts;
908 	unsigned int tcp_options_size, tcp_header_size;
909 	struct tcp_md5sig_key *md5;
910 	struct tcphdr *th;
911 	int err;
912 
913 	BUG_ON(!skb || !tcp_skb_pcount(skb));
914 
915 	if (clone_it) {
916 		skb_mstamp_get(&skb->skb_mstamp);
917 
918 		if (unlikely(skb_cloned(skb)))
919 			skb = pskb_copy(skb, gfp_mask);
920 		else
921 			skb = skb_clone(skb, gfp_mask);
922 		if (unlikely(!skb))
923 			return -ENOBUFS;
924 	}
925 
926 	inet = inet_sk(sk);
927 	tp = tcp_sk(sk);
928 	tcb = TCP_SKB_CB(skb);
929 	memset(&opts, 0, sizeof(opts));
930 
931 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
932 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
933 	else
934 		tcp_options_size = tcp_established_options(sk, skb, &opts,
935 							   &md5);
936 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
937 
938 	/* if no packet is in qdisc/device queue, then allow XPS to select
939 	 * another queue. We can be called from tcp_tsq_handler()
940 	 * which holds one reference to sk_wmem_alloc.
941 	 *
942 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
943 	 * One way to get this would be to set skb->truesize = 2 on them.
944 	 */
945 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
946 
947 	skb_push(skb, tcp_header_size);
948 	skb_reset_transport_header(skb);
949 
950 	skb_orphan(skb);
951 	skb->sk = sk;
952 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
953 	skb_set_hash_from_sk(skb, sk);
954 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
955 
956 	/* Build TCP header and checksum it. */
957 	th = (struct tcphdr *)skb->data;
958 	th->source		= inet->inet_sport;
959 	th->dest		= inet->inet_dport;
960 	th->seq			= htonl(tcb->seq);
961 	th->ack_seq		= htonl(tp->rcv_nxt);
962 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
963 					tcb->tcp_flags);
964 
965 	th->check		= 0;
966 	th->urg_ptr		= 0;
967 
968 	/* The urg_mode check is necessary during a below snd_una win probe */
969 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
970 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
971 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
972 			th->urg = 1;
973 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
974 			th->urg_ptr = htons(0xFFFF);
975 			th->urg = 1;
976 		}
977 	}
978 
979 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
980 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
981 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
982 		th->window      = htons(tcp_select_window(sk));
983 		tcp_ecn_send(sk, skb, th, tcp_header_size);
984 	} else {
985 		/* RFC1323: The window in SYN & SYN/ACK segments
986 		 * is never scaled.
987 		 */
988 		th->window	= htons(min(tp->rcv_wnd, 65535U));
989 	}
990 #ifdef CONFIG_TCP_MD5SIG
991 	/* Calculate the MD5 hash, as we have all we need now */
992 	if (md5) {
993 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
994 		tp->af_specific->calc_md5_hash(opts.hash_location,
995 					       md5, sk, skb);
996 	}
997 #endif
998 
999 	icsk->icsk_af_ops->send_check(sk, skb);
1000 
1001 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1002 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1003 
1004 	if (skb->len != tcp_header_size) {
1005 		tcp_event_data_sent(tp, sk);
1006 		tp->data_segs_out += tcp_skb_pcount(skb);
1007 	}
1008 
1009 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1010 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1011 			      tcp_skb_pcount(skb));
1012 
1013 	tp->segs_out += tcp_skb_pcount(skb);
1014 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1015 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1016 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1017 
1018 	/* Our usage of tstamp should remain private */
1019 	skb->tstamp.tv64 = 0;
1020 
1021 	/* Cleanup our debris for IP stacks */
1022 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1023 			       sizeof(struct inet6_skb_parm)));
1024 
1025 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1026 
1027 	if (likely(err <= 0))
1028 		return err;
1029 
1030 	tcp_enter_cwr(sk);
1031 
1032 	return net_xmit_eval(err);
1033 }
1034 
1035 /* This routine just queues the buffer for sending.
1036  *
1037  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1038  * otherwise socket can stall.
1039  */
1040 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1041 {
1042 	struct tcp_sock *tp = tcp_sk(sk);
1043 
1044 	/* Advance write_seq and place onto the write_queue. */
1045 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1046 	__skb_header_release(skb);
1047 	tcp_add_write_queue_tail(sk, skb);
1048 	sk->sk_wmem_queued += skb->truesize;
1049 	sk_mem_charge(sk, skb->truesize);
1050 }
1051 
1052 /* Initialize TSO segments for a packet. */
1053 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1054 {
1055 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1056 		/* Avoid the costly divide in the normal
1057 		 * non-TSO case.
1058 		 */
1059 		tcp_skb_pcount_set(skb, 1);
1060 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1061 	} else {
1062 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1063 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1064 	}
1065 }
1066 
1067 /* When a modification to fackets out becomes necessary, we need to check
1068  * skb is counted to fackets_out or not.
1069  */
1070 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1071 				   int decr)
1072 {
1073 	struct tcp_sock *tp = tcp_sk(sk);
1074 
1075 	if (!tp->sacked_out || tcp_is_reno(tp))
1076 		return;
1077 
1078 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1079 		tp->fackets_out -= decr;
1080 }
1081 
1082 /* Pcount in the middle of the write queue got changed, we need to do various
1083  * tweaks to fix counters
1084  */
1085 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1086 {
1087 	struct tcp_sock *tp = tcp_sk(sk);
1088 
1089 	tp->packets_out -= decr;
1090 
1091 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1092 		tp->sacked_out -= decr;
1093 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1094 		tp->retrans_out -= decr;
1095 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1096 		tp->lost_out -= decr;
1097 
1098 	/* Reno case is special. Sigh... */
1099 	if (tcp_is_reno(tp) && decr > 0)
1100 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1101 
1102 	tcp_adjust_fackets_out(sk, skb, decr);
1103 
1104 	if (tp->lost_skb_hint &&
1105 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1106 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1107 		tp->lost_cnt_hint -= decr;
1108 
1109 	tcp_verify_left_out(tp);
1110 }
1111 
1112 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1113 {
1114 	return TCP_SKB_CB(skb)->txstamp_ack ||
1115 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1116 }
1117 
1118 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1119 {
1120 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1121 
1122 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1123 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1124 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1125 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1126 
1127 		shinfo->tx_flags &= ~tsflags;
1128 		shinfo2->tx_flags |= tsflags;
1129 		swap(shinfo->tskey, shinfo2->tskey);
1130 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1131 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1132 	}
1133 }
1134 
1135 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1136 {
1137 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1138 	TCP_SKB_CB(skb)->eor = 0;
1139 }
1140 
1141 /* Function to create two new TCP segments.  Shrinks the given segment
1142  * to the specified size and appends a new segment with the rest of the
1143  * packet to the list.  This won't be called frequently, I hope.
1144  * Remember, these are still headerless SKBs at this point.
1145  */
1146 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1147 		 unsigned int mss_now, gfp_t gfp)
1148 {
1149 	struct tcp_sock *tp = tcp_sk(sk);
1150 	struct sk_buff *buff;
1151 	int nsize, old_factor;
1152 	int nlen;
1153 	u8 flags;
1154 
1155 	if (WARN_ON(len > skb->len))
1156 		return -EINVAL;
1157 
1158 	nsize = skb_headlen(skb) - len;
1159 	if (nsize < 0)
1160 		nsize = 0;
1161 
1162 	if (skb_unclone(skb, gfp))
1163 		return -ENOMEM;
1164 
1165 	/* Get a new skb... force flag on. */
1166 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1167 	if (!buff)
1168 		return -ENOMEM; /* We'll just try again later. */
1169 
1170 	sk->sk_wmem_queued += buff->truesize;
1171 	sk_mem_charge(sk, buff->truesize);
1172 	nlen = skb->len - len - nsize;
1173 	buff->truesize += nlen;
1174 	skb->truesize -= nlen;
1175 
1176 	/* Correct the sequence numbers. */
1177 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1178 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1179 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1180 
1181 	/* PSH and FIN should only be set in the second packet. */
1182 	flags = TCP_SKB_CB(skb)->tcp_flags;
1183 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1184 	TCP_SKB_CB(buff)->tcp_flags = flags;
1185 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1186 	tcp_skb_fragment_eor(skb, buff);
1187 
1188 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1189 		/* Copy and checksum data tail into the new buffer. */
1190 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1191 						       skb_put(buff, nsize),
1192 						       nsize, 0);
1193 
1194 		skb_trim(skb, len);
1195 
1196 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1197 	} else {
1198 		skb->ip_summed = CHECKSUM_PARTIAL;
1199 		skb_split(skb, buff, len);
1200 	}
1201 
1202 	buff->ip_summed = skb->ip_summed;
1203 
1204 	buff->tstamp = skb->tstamp;
1205 	tcp_fragment_tstamp(skb, buff);
1206 
1207 	old_factor = tcp_skb_pcount(skb);
1208 
1209 	/* Fix up tso_factor for both original and new SKB.  */
1210 	tcp_set_skb_tso_segs(skb, mss_now);
1211 	tcp_set_skb_tso_segs(buff, mss_now);
1212 
1213 	/* If this packet has been sent out already, we must
1214 	 * adjust the various packet counters.
1215 	 */
1216 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1217 		int diff = old_factor - tcp_skb_pcount(skb) -
1218 			tcp_skb_pcount(buff);
1219 
1220 		if (diff)
1221 			tcp_adjust_pcount(sk, skb, diff);
1222 	}
1223 
1224 	/* Link BUFF into the send queue. */
1225 	__skb_header_release(buff);
1226 	tcp_insert_write_queue_after(skb, buff, sk);
1227 
1228 	return 0;
1229 }
1230 
1231 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1232  * eventually). The difference is that pulled data not copied, but
1233  * immediately discarded.
1234  */
1235 static void __pskb_trim_head(struct sk_buff *skb, int len)
1236 {
1237 	struct skb_shared_info *shinfo;
1238 	int i, k, eat;
1239 
1240 	eat = min_t(int, len, skb_headlen(skb));
1241 	if (eat) {
1242 		__skb_pull(skb, eat);
1243 		len -= eat;
1244 		if (!len)
1245 			return;
1246 	}
1247 	eat = len;
1248 	k = 0;
1249 	shinfo = skb_shinfo(skb);
1250 	for (i = 0; i < shinfo->nr_frags; i++) {
1251 		int size = skb_frag_size(&shinfo->frags[i]);
1252 
1253 		if (size <= eat) {
1254 			skb_frag_unref(skb, i);
1255 			eat -= size;
1256 		} else {
1257 			shinfo->frags[k] = shinfo->frags[i];
1258 			if (eat) {
1259 				shinfo->frags[k].page_offset += eat;
1260 				skb_frag_size_sub(&shinfo->frags[k], eat);
1261 				eat = 0;
1262 			}
1263 			k++;
1264 		}
1265 	}
1266 	shinfo->nr_frags = k;
1267 
1268 	skb_reset_tail_pointer(skb);
1269 	skb->data_len -= len;
1270 	skb->len = skb->data_len;
1271 }
1272 
1273 /* Remove acked data from a packet in the transmit queue. */
1274 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1275 {
1276 	if (skb_unclone(skb, GFP_ATOMIC))
1277 		return -ENOMEM;
1278 
1279 	__pskb_trim_head(skb, len);
1280 
1281 	TCP_SKB_CB(skb)->seq += len;
1282 	skb->ip_summed = CHECKSUM_PARTIAL;
1283 
1284 	skb->truesize	     -= len;
1285 	sk->sk_wmem_queued   -= len;
1286 	sk_mem_uncharge(sk, len);
1287 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1288 
1289 	/* Any change of skb->len requires recalculation of tso factor. */
1290 	if (tcp_skb_pcount(skb) > 1)
1291 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1292 
1293 	return 0;
1294 }
1295 
1296 /* Calculate MSS not accounting any TCP options.  */
1297 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1298 {
1299 	const struct tcp_sock *tp = tcp_sk(sk);
1300 	const struct inet_connection_sock *icsk = inet_csk(sk);
1301 	int mss_now;
1302 
1303 	/* Calculate base mss without TCP options:
1304 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1305 	 */
1306 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1307 
1308 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1309 	if (icsk->icsk_af_ops->net_frag_header_len) {
1310 		const struct dst_entry *dst = __sk_dst_get(sk);
1311 
1312 		if (dst && dst_allfrag(dst))
1313 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1314 	}
1315 
1316 	/* Clamp it (mss_clamp does not include tcp options) */
1317 	if (mss_now > tp->rx_opt.mss_clamp)
1318 		mss_now = tp->rx_opt.mss_clamp;
1319 
1320 	/* Now subtract optional transport overhead */
1321 	mss_now -= icsk->icsk_ext_hdr_len;
1322 
1323 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1324 	if (mss_now < 48)
1325 		mss_now = 48;
1326 	return mss_now;
1327 }
1328 
1329 /* Calculate MSS. Not accounting for SACKs here.  */
1330 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1331 {
1332 	/* Subtract TCP options size, not including SACKs */
1333 	return __tcp_mtu_to_mss(sk, pmtu) -
1334 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1335 }
1336 
1337 /* Inverse of above */
1338 int tcp_mss_to_mtu(struct sock *sk, int mss)
1339 {
1340 	const struct tcp_sock *tp = tcp_sk(sk);
1341 	const struct inet_connection_sock *icsk = inet_csk(sk);
1342 	int mtu;
1343 
1344 	mtu = mss +
1345 	      tp->tcp_header_len +
1346 	      icsk->icsk_ext_hdr_len +
1347 	      icsk->icsk_af_ops->net_header_len;
1348 
1349 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1350 	if (icsk->icsk_af_ops->net_frag_header_len) {
1351 		const struct dst_entry *dst = __sk_dst_get(sk);
1352 
1353 		if (dst && dst_allfrag(dst))
1354 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1355 	}
1356 	return mtu;
1357 }
1358 
1359 /* MTU probing init per socket */
1360 void tcp_mtup_init(struct sock *sk)
1361 {
1362 	struct tcp_sock *tp = tcp_sk(sk);
1363 	struct inet_connection_sock *icsk = inet_csk(sk);
1364 	struct net *net = sock_net(sk);
1365 
1366 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1367 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1368 			       icsk->icsk_af_ops->net_header_len;
1369 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1370 	icsk->icsk_mtup.probe_size = 0;
1371 	if (icsk->icsk_mtup.enabled)
1372 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1373 }
1374 EXPORT_SYMBOL(tcp_mtup_init);
1375 
1376 /* This function synchronize snd mss to current pmtu/exthdr set.
1377 
1378    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1379    for TCP options, but includes only bare TCP header.
1380 
1381    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1382    It is minimum of user_mss and mss received with SYN.
1383    It also does not include TCP options.
1384 
1385    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1386 
1387    tp->mss_cache is current effective sending mss, including
1388    all tcp options except for SACKs. It is evaluated,
1389    taking into account current pmtu, but never exceeds
1390    tp->rx_opt.mss_clamp.
1391 
1392    NOTE1. rfc1122 clearly states that advertised MSS
1393    DOES NOT include either tcp or ip options.
1394 
1395    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1396    are READ ONLY outside this function.		--ANK (980731)
1397  */
1398 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1399 {
1400 	struct tcp_sock *tp = tcp_sk(sk);
1401 	struct inet_connection_sock *icsk = inet_csk(sk);
1402 	int mss_now;
1403 
1404 	if (icsk->icsk_mtup.search_high > pmtu)
1405 		icsk->icsk_mtup.search_high = pmtu;
1406 
1407 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1408 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1409 
1410 	/* And store cached results */
1411 	icsk->icsk_pmtu_cookie = pmtu;
1412 	if (icsk->icsk_mtup.enabled)
1413 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1414 	tp->mss_cache = mss_now;
1415 
1416 	return mss_now;
1417 }
1418 EXPORT_SYMBOL(tcp_sync_mss);
1419 
1420 /* Compute the current effective MSS, taking SACKs and IP options,
1421  * and even PMTU discovery events into account.
1422  */
1423 unsigned int tcp_current_mss(struct sock *sk)
1424 {
1425 	const struct tcp_sock *tp = tcp_sk(sk);
1426 	const struct dst_entry *dst = __sk_dst_get(sk);
1427 	u32 mss_now;
1428 	unsigned int header_len;
1429 	struct tcp_out_options opts;
1430 	struct tcp_md5sig_key *md5;
1431 
1432 	mss_now = tp->mss_cache;
1433 
1434 	if (dst) {
1435 		u32 mtu = dst_mtu(dst);
1436 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1437 			mss_now = tcp_sync_mss(sk, mtu);
1438 	}
1439 
1440 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1441 		     sizeof(struct tcphdr);
1442 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1443 	 * some common options. If this is an odd packet (because we have SACK
1444 	 * blocks etc) then our calculated header_len will be different, and
1445 	 * we have to adjust mss_now correspondingly */
1446 	if (header_len != tp->tcp_header_len) {
1447 		int delta = (int) header_len - tp->tcp_header_len;
1448 		mss_now -= delta;
1449 	}
1450 
1451 	return mss_now;
1452 }
1453 
1454 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1455  * As additional protections, we do not touch cwnd in retransmission phases,
1456  * and if application hit its sndbuf limit recently.
1457  */
1458 static void tcp_cwnd_application_limited(struct sock *sk)
1459 {
1460 	struct tcp_sock *tp = tcp_sk(sk);
1461 
1462 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1463 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1464 		/* Limited by application or receiver window. */
1465 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1466 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1467 		if (win_used < tp->snd_cwnd) {
1468 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1469 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1470 		}
1471 		tp->snd_cwnd_used = 0;
1472 	}
1473 	tp->snd_cwnd_stamp = tcp_time_stamp;
1474 }
1475 
1476 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1477 {
1478 	struct tcp_sock *tp = tcp_sk(sk);
1479 
1480 	/* Track the maximum number of outstanding packets in each
1481 	 * window, and remember whether we were cwnd-limited then.
1482 	 */
1483 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1484 	    tp->packets_out > tp->max_packets_out) {
1485 		tp->max_packets_out = tp->packets_out;
1486 		tp->max_packets_seq = tp->snd_nxt;
1487 		tp->is_cwnd_limited = is_cwnd_limited;
1488 	}
1489 
1490 	if (tcp_is_cwnd_limited(sk)) {
1491 		/* Network is feed fully. */
1492 		tp->snd_cwnd_used = 0;
1493 		tp->snd_cwnd_stamp = tcp_time_stamp;
1494 	} else {
1495 		/* Network starves. */
1496 		if (tp->packets_out > tp->snd_cwnd_used)
1497 			tp->snd_cwnd_used = tp->packets_out;
1498 
1499 		if (sysctl_tcp_slow_start_after_idle &&
1500 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1501 			tcp_cwnd_application_limited(sk);
1502 	}
1503 }
1504 
1505 /* Minshall's variant of the Nagle send check. */
1506 static bool tcp_minshall_check(const struct tcp_sock *tp)
1507 {
1508 	return after(tp->snd_sml, tp->snd_una) &&
1509 		!after(tp->snd_sml, tp->snd_nxt);
1510 }
1511 
1512 /* Update snd_sml if this skb is under mss
1513  * Note that a TSO packet might end with a sub-mss segment
1514  * The test is really :
1515  * if ((skb->len % mss) != 0)
1516  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1517  * But we can avoid doing the divide again given we already have
1518  *  skb_pcount = skb->len / mss_now
1519  */
1520 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1521 				const struct sk_buff *skb)
1522 {
1523 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1524 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1525 }
1526 
1527 /* Return false, if packet can be sent now without violation Nagle's rules:
1528  * 1. It is full sized. (provided by caller in %partial bool)
1529  * 2. Or it contains FIN. (already checked by caller)
1530  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1531  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1532  *    With Minshall's modification: all sent small packets are ACKed.
1533  */
1534 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1535 			    int nonagle)
1536 {
1537 	return partial &&
1538 		((nonagle & TCP_NAGLE_CORK) ||
1539 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1540 }
1541 
1542 /* Return how many segs we'd like on a TSO packet,
1543  * to send one TSO packet per ms
1544  */
1545 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1546 {
1547 	u32 bytes, segs;
1548 
1549 	bytes = min(sk->sk_pacing_rate >> 10,
1550 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1551 
1552 	/* Goal is to send at least one packet per ms,
1553 	 * not one big TSO packet every 100 ms.
1554 	 * This preserves ACK clocking and is consistent
1555 	 * with tcp_tso_should_defer() heuristic.
1556 	 */
1557 	segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1558 
1559 	return min_t(u32, segs, sk->sk_gso_max_segs);
1560 }
1561 
1562 /* Returns the portion of skb which can be sent right away */
1563 static unsigned int tcp_mss_split_point(const struct sock *sk,
1564 					const struct sk_buff *skb,
1565 					unsigned int mss_now,
1566 					unsigned int max_segs,
1567 					int nonagle)
1568 {
1569 	const struct tcp_sock *tp = tcp_sk(sk);
1570 	u32 partial, needed, window, max_len;
1571 
1572 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1573 	max_len = mss_now * max_segs;
1574 
1575 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1576 		return max_len;
1577 
1578 	needed = min(skb->len, window);
1579 
1580 	if (max_len <= needed)
1581 		return max_len;
1582 
1583 	partial = needed % mss_now;
1584 	/* If last segment is not a full MSS, check if Nagle rules allow us
1585 	 * to include this last segment in this skb.
1586 	 * Otherwise, we'll split the skb at last MSS boundary
1587 	 */
1588 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1589 		return needed - partial;
1590 
1591 	return needed;
1592 }
1593 
1594 /* Can at least one segment of SKB be sent right now, according to the
1595  * congestion window rules?  If so, return how many segments are allowed.
1596  */
1597 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1598 					 const struct sk_buff *skb)
1599 {
1600 	u32 in_flight, cwnd, halfcwnd;
1601 
1602 	/* Don't be strict about the congestion window for the final FIN.  */
1603 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1604 	    tcp_skb_pcount(skb) == 1)
1605 		return 1;
1606 
1607 	in_flight = tcp_packets_in_flight(tp);
1608 	cwnd = tp->snd_cwnd;
1609 	if (in_flight >= cwnd)
1610 		return 0;
1611 
1612 	/* For better scheduling, ensure we have at least
1613 	 * 2 GSO packets in flight.
1614 	 */
1615 	halfcwnd = max(cwnd >> 1, 1U);
1616 	return min(halfcwnd, cwnd - in_flight);
1617 }
1618 
1619 /* Initialize TSO state of a skb.
1620  * This must be invoked the first time we consider transmitting
1621  * SKB onto the wire.
1622  */
1623 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1624 {
1625 	int tso_segs = tcp_skb_pcount(skb);
1626 
1627 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1628 		tcp_set_skb_tso_segs(skb, mss_now);
1629 		tso_segs = tcp_skb_pcount(skb);
1630 	}
1631 	return tso_segs;
1632 }
1633 
1634 
1635 /* Return true if the Nagle test allows this packet to be
1636  * sent now.
1637  */
1638 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1639 				  unsigned int cur_mss, int nonagle)
1640 {
1641 	/* Nagle rule does not apply to frames, which sit in the middle of the
1642 	 * write_queue (they have no chances to get new data).
1643 	 *
1644 	 * This is implemented in the callers, where they modify the 'nonagle'
1645 	 * argument based upon the location of SKB in the send queue.
1646 	 */
1647 	if (nonagle & TCP_NAGLE_PUSH)
1648 		return true;
1649 
1650 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1651 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1652 		return true;
1653 
1654 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1655 		return true;
1656 
1657 	return false;
1658 }
1659 
1660 /* Does at least the first segment of SKB fit into the send window? */
1661 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1662 			     const struct sk_buff *skb,
1663 			     unsigned int cur_mss)
1664 {
1665 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1666 
1667 	if (skb->len > cur_mss)
1668 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1669 
1670 	return !after(end_seq, tcp_wnd_end(tp));
1671 }
1672 
1673 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1674  * should be put on the wire right now.  If so, it returns the number of
1675  * packets allowed by the congestion window.
1676  */
1677 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1678 				 unsigned int cur_mss, int nonagle)
1679 {
1680 	const struct tcp_sock *tp = tcp_sk(sk);
1681 	unsigned int cwnd_quota;
1682 
1683 	tcp_init_tso_segs(skb, cur_mss);
1684 
1685 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1686 		return 0;
1687 
1688 	cwnd_quota = tcp_cwnd_test(tp, skb);
1689 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1690 		cwnd_quota = 0;
1691 
1692 	return cwnd_quota;
1693 }
1694 
1695 /* Test if sending is allowed right now. */
1696 bool tcp_may_send_now(struct sock *sk)
1697 {
1698 	const struct tcp_sock *tp = tcp_sk(sk);
1699 	struct sk_buff *skb = tcp_send_head(sk);
1700 
1701 	return skb &&
1702 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1703 			     (tcp_skb_is_last(sk, skb) ?
1704 			      tp->nonagle : TCP_NAGLE_PUSH));
1705 }
1706 
1707 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1708  * which is put after SKB on the list.  It is very much like
1709  * tcp_fragment() except that it may make several kinds of assumptions
1710  * in order to speed up the splitting operation.  In particular, we
1711  * know that all the data is in scatter-gather pages, and that the
1712  * packet has never been sent out before (and thus is not cloned).
1713  */
1714 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1715 			unsigned int mss_now, gfp_t gfp)
1716 {
1717 	struct sk_buff *buff;
1718 	int nlen = skb->len - len;
1719 	u8 flags;
1720 
1721 	/* All of a TSO frame must be composed of paged data.  */
1722 	if (skb->len != skb->data_len)
1723 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1724 
1725 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1726 	if (unlikely(!buff))
1727 		return -ENOMEM;
1728 
1729 	sk->sk_wmem_queued += buff->truesize;
1730 	sk_mem_charge(sk, buff->truesize);
1731 	buff->truesize += nlen;
1732 	skb->truesize -= nlen;
1733 
1734 	/* Correct the sequence numbers. */
1735 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1736 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1737 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1738 
1739 	/* PSH and FIN should only be set in the second packet. */
1740 	flags = TCP_SKB_CB(skb)->tcp_flags;
1741 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1742 	TCP_SKB_CB(buff)->tcp_flags = flags;
1743 
1744 	/* This packet was never sent out yet, so no SACK bits. */
1745 	TCP_SKB_CB(buff)->sacked = 0;
1746 
1747 	tcp_skb_fragment_eor(skb, buff);
1748 
1749 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1750 	skb_split(skb, buff, len);
1751 	tcp_fragment_tstamp(skb, buff);
1752 
1753 	/* Fix up tso_factor for both original and new SKB.  */
1754 	tcp_set_skb_tso_segs(skb, mss_now);
1755 	tcp_set_skb_tso_segs(buff, mss_now);
1756 
1757 	/* Link BUFF into the send queue. */
1758 	__skb_header_release(buff);
1759 	tcp_insert_write_queue_after(skb, buff, sk);
1760 
1761 	return 0;
1762 }
1763 
1764 /* Try to defer sending, if possible, in order to minimize the amount
1765  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1766  *
1767  * This algorithm is from John Heffner.
1768  */
1769 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1770 				 bool *is_cwnd_limited, u32 max_segs)
1771 {
1772 	const struct inet_connection_sock *icsk = inet_csk(sk);
1773 	u32 age, send_win, cong_win, limit, in_flight;
1774 	struct tcp_sock *tp = tcp_sk(sk);
1775 	struct skb_mstamp now;
1776 	struct sk_buff *head;
1777 	int win_divisor;
1778 
1779 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1780 		goto send_now;
1781 
1782 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1783 		goto send_now;
1784 
1785 	/* Avoid bursty behavior by allowing defer
1786 	 * only if the last write was recent.
1787 	 */
1788 	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1789 		goto send_now;
1790 
1791 	in_flight = tcp_packets_in_flight(tp);
1792 
1793 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1794 
1795 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1796 
1797 	/* From in_flight test above, we know that cwnd > in_flight.  */
1798 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1799 
1800 	limit = min(send_win, cong_win);
1801 
1802 	/* If a full-sized TSO skb can be sent, do it. */
1803 	if (limit >= max_segs * tp->mss_cache)
1804 		goto send_now;
1805 
1806 	/* Middle in queue won't get any more data, full sendable already? */
1807 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1808 		goto send_now;
1809 
1810 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1811 	if (win_divisor) {
1812 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1813 
1814 		/* If at least some fraction of a window is available,
1815 		 * just use it.
1816 		 */
1817 		chunk /= win_divisor;
1818 		if (limit >= chunk)
1819 			goto send_now;
1820 	} else {
1821 		/* Different approach, try not to defer past a single
1822 		 * ACK.  Receiver should ACK every other full sized
1823 		 * frame, so if we have space for more than 3 frames
1824 		 * then send now.
1825 		 */
1826 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1827 			goto send_now;
1828 	}
1829 
1830 	head = tcp_write_queue_head(sk);
1831 	skb_mstamp_get(&now);
1832 	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1833 	/* If next ACK is likely to come too late (half srtt), do not defer */
1834 	if (age < (tp->srtt_us >> 4))
1835 		goto send_now;
1836 
1837 	/* Ok, it looks like it is advisable to defer. */
1838 
1839 	if (cong_win < send_win && cong_win <= skb->len)
1840 		*is_cwnd_limited = true;
1841 
1842 	return true;
1843 
1844 send_now:
1845 	return false;
1846 }
1847 
1848 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1849 {
1850 	struct inet_connection_sock *icsk = inet_csk(sk);
1851 	struct tcp_sock *tp = tcp_sk(sk);
1852 	struct net *net = sock_net(sk);
1853 	u32 interval;
1854 	s32 delta;
1855 
1856 	interval = net->ipv4.sysctl_tcp_probe_interval;
1857 	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1858 	if (unlikely(delta >= interval * HZ)) {
1859 		int mss = tcp_current_mss(sk);
1860 
1861 		/* Update current search range */
1862 		icsk->icsk_mtup.probe_size = 0;
1863 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1864 			sizeof(struct tcphdr) +
1865 			icsk->icsk_af_ops->net_header_len;
1866 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1867 
1868 		/* Update probe time stamp */
1869 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1870 	}
1871 }
1872 
1873 /* Create a new MTU probe if we are ready.
1874  * MTU probe is regularly attempting to increase the path MTU by
1875  * deliberately sending larger packets.  This discovers routing
1876  * changes resulting in larger path MTUs.
1877  *
1878  * Returns 0 if we should wait to probe (no cwnd available),
1879  *         1 if a probe was sent,
1880  *         -1 otherwise
1881  */
1882 static int tcp_mtu_probe(struct sock *sk)
1883 {
1884 	struct tcp_sock *tp = tcp_sk(sk);
1885 	struct inet_connection_sock *icsk = inet_csk(sk);
1886 	struct sk_buff *skb, *nskb, *next;
1887 	struct net *net = sock_net(sk);
1888 	int len;
1889 	int probe_size;
1890 	int size_needed;
1891 	int copy;
1892 	int mss_now;
1893 	int interval;
1894 
1895 	/* Not currently probing/verifying,
1896 	 * not in recovery,
1897 	 * have enough cwnd, and
1898 	 * not SACKing (the variable headers throw things off) */
1899 	if (!icsk->icsk_mtup.enabled ||
1900 	    icsk->icsk_mtup.probe_size ||
1901 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1902 	    tp->snd_cwnd < 11 ||
1903 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1904 		return -1;
1905 
1906 	/* Use binary search for probe_size between tcp_mss_base,
1907 	 * and current mss_clamp. if (search_high - search_low)
1908 	 * smaller than a threshold, backoff from probing.
1909 	 */
1910 	mss_now = tcp_current_mss(sk);
1911 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1912 				    icsk->icsk_mtup.search_low) >> 1);
1913 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1914 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1915 	/* When misfortune happens, we are reprobing actively,
1916 	 * and then reprobe timer has expired. We stick with current
1917 	 * probing process by not resetting search range to its orignal.
1918 	 */
1919 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1920 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1921 		/* Check whether enough time has elaplased for
1922 		 * another round of probing.
1923 		 */
1924 		tcp_mtu_check_reprobe(sk);
1925 		return -1;
1926 	}
1927 
1928 	/* Have enough data in the send queue to probe? */
1929 	if (tp->write_seq - tp->snd_nxt < size_needed)
1930 		return -1;
1931 
1932 	if (tp->snd_wnd < size_needed)
1933 		return -1;
1934 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1935 		return 0;
1936 
1937 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1938 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1939 		if (!tcp_packets_in_flight(tp))
1940 			return -1;
1941 		else
1942 			return 0;
1943 	}
1944 
1945 	/* We're allowed to probe.  Build it now. */
1946 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1947 	if (!nskb)
1948 		return -1;
1949 	sk->sk_wmem_queued += nskb->truesize;
1950 	sk_mem_charge(sk, nskb->truesize);
1951 
1952 	skb = tcp_send_head(sk);
1953 
1954 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1955 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1956 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1957 	TCP_SKB_CB(nskb)->sacked = 0;
1958 	nskb->csum = 0;
1959 	nskb->ip_summed = skb->ip_summed;
1960 
1961 	tcp_insert_write_queue_before(nskb, skb, sk);
1962 
1963 	len = 0;
1964 	tcp_for_write_queue_from_safe(skb, next, sk) {
1965 		copy = min_t(int, skb->len, probe_size - len);
1966 		if (nskb->ip_summed)
1967 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1968 		else
1969 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1970 							    skb_put(nskb, copy),
1971 							    copy, nskb->csum);
1972 
1973 		if (skb->len <= copy) {
1974 			/* We've eaten all the data from this skb.
1975 			 * Throw it away. */
1976 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1977 			tcp_unlink_write_queue(skb, sk);
1978 			sk_wmem_free_skb(sk, skb);
1979 		} else {
1980 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1981 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1982 			if (!skb_shinfo(skb)->nr_frags) {
1983 				skb_pull(skb, copy);
1984 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1985 					skb->csum = csum_partial(skb->data,
1986 								 skb->len, 0);
1987 			} else {
1988 				__pskb_trim_head(skb, copy);
1989 				tcp_set_skb_tso_segs(skb, mss_now);
1990 			}
1991 			TCP_SKB_CB(skb)->seq += copy;
1992 		}
1993 
1994 		len += copy;
1995 
1996 		if (len >= probe_size)
1997 			break;
1998 	}
1999 	tcp_init_tso_segs(nskb, nskb->len);
2000 
2001 	/* We're ready to send.  If this fails, the probe will
2002 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2003 	 */
2004 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2005 		/* Decrement cwnd here because we are sending
2006 		 * effectively two packets. */
2007 		tp->snd_cwnd--;
2008 		tcp_event_new_data_sent(sk, nskb);
2009 
2010 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2011 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2012 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2013 
2014 		return 1;
2015 	}
2016 
2017 	return -1;
2018 }
2019 
2020 /* This routine writes packets to the network.  It advances the
2021  * send_head.  This happens as incoming acks open up the remote
2022  * window for us.
2023  *
2024  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2025  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2026  * account rare use of URG, this is not a big flaw.
2027  *
2028  * Send at most one packet when push_one > 0. Temporarily ignore
2029  * cwnd limit to force at most one packet out when push_one == 2.
2030 
2031  * Returns true, if no segments are in flight and we have queued segments,
2032  * but cannot send anything now because of SWS or another problem.
2033  */
2034 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2035 			   int push_one, gfp_t gfp)
2036 {
2037 	struct tcp_sock *tp = tcp_sk(sk);
2038 	struct sk_buff *skb;
2039 	unsigned int tso_segs, sent_pkts;
2040 	int cwnd_quota;
2041 	int result;
2042 	bool is_cwnd_limited = false;
2043 	u32 max_segs;
2044 
2045 	sent_pkts = 0;
2046 
2047 	if (!push_one) {
2048 		/* Do MTU probing. */
2049 		result = tcp_mtu_probe(sk);
2050 		if (!result) {
2051 			return false;
2052 		} else if (result > 0) {
2053 			sent_pkts = 1;
2054 		}
2055 	}
2056 
2057 	max_segs = tcp_tso_autosize(sk, mss_now);
2058 	while ((skb = tcp_send_head(sk))) {
2059 		unsigned int limit;
2060 
2061 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2062 		BUG_ON(!tso_segs);
2063 
2064 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2065 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2066 			skb_mstamp_get(&skb->skb_mstamp);
2067 			goto repair; /* Skip network transmission */
2068 		}
2069 
2070 		cwnd_quota = tcp_cwnd_test(tp, skb);
2071 		if (!cwnd_quota) {
2072 			if (push_one == 2)
2073 				/* Force out a loss probe pkt. */
2074 				cwnd_quota = 1;
2075 			else
2076 				break;
2077 		}
2078 
2079 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2080 			break;
2081 
2082 		if (tso_segs == 1) {
2083 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2084 						     (tcp_skb_is_last(sk, skb) ?
2085 						      nonagle : TCP_NAGLE_PUSH))))
2086 				break;
2087 		} else {
2088 			if (!push_one &&
2089 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2090 						 max_segs))
2091 				break;
2092 		}
2093 
2094 		limit = mss_now;
2095 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2096 			limit = tcp_mss_split_point(sk, skb, mss_now,
2097 						    min_t(unsigned int,
2098 							  cwnd_quota,
2099 							  max_segs),
2100 						    nonagle);
2101 
2102 		if (skb->len > limit &&
2103 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2104 			break;
2105 
2106 		/* TCP Small Queues :
2107 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2108 		 * This allows for :
2109 		 *  - better RTT estimation and ACK scheduling
2110 		 *  - faster recovery
2111 		 *  - high rates
2112 		 * Alas, some drivers / subsystems require a fair amount
2113 		 * of queued bytes to ensure line rate.
2114 		 * One example is wifi aggregation (802.11 AMPDU)
2115 		 */
2116 		limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2117 		limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2118 
2119 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2120 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2121 			/* It is possible TX completion already happened
2122 			 * before we set TSQ_THROTTLED, so we must
2123 			 * test again the condition.
2124 			 */
2125 			smp_mb__after_atomic();
2126 			if (atomic_read(&sk->sk_wmem_alloc) > limit)
2127 				break;
2128 		}
2129 
2130 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2131 			break;
2132 
2133 repair:
2134 		/* Advance the send_head.  This one is sent out.
2135 		 * This call will increment packets_out.
2136 		 */
2137 		tcp_event_new_data_sent(sk, skb);
2138 
2139 		tcp_minshall_update(tp, mss_now, skb);
2140 		sent_pkts += tcp_skb_pcount(skb);
2141 
2142 		if (push_one)
2143 			break;
2144 	}
2145 
2146 	if (likely(sent_pkts)) {
2147 		if (tcp_in_cwnd_reduction(sk))
2148 			tp->prr_out += sent_pkts;
2149 
2150 		/* Send one loss probe per tail loss episode. */
2151 		if (push_one != 2)
2152 			tcp_schedule_loss_probe(sk);
2153 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2154 		tcp_cwnd_validate(sk, is_cwnd_limited);
2155 		return false;
2156 	}
2157 	return !tp->packets_out && tcp_send_head(sk);
2158 }
2159 
2160 bool tcp_schedule_loss_probe(struct sock *sk)
2161 {
2162 	struct inet_connection_sock *icsk = inet_csk(sk);
2163 	struct tcp_sock *tp = tcp_sk(sk);
2164 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2165 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2166 
2167 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2168 		return false;
2169 	/* No consecutive loss probes. */
2170 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2171 		tcp_rearm_rto(sk);
2172 		return false;
2173 	}
2174 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2175 	 * finishes.
2176 	 */
2177 	if (tp->fastopen_rsk)
2178 		return false;
2179 
2180 	/* TLP is only scheduled when next timer event is RTO. */
2181 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2182 		return false;
2183 
2184 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2185 	 * in Open state, that are either limited by cwnd or application.
2186 	 */
2187 	if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2188 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2189 		return false;
2190 
2191 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2192 	     tcp_send_head(sk))
2193 		return false;
2194 
2195 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2196 	 * for delayed ack when there's one outstanding packet. If no RTT
2197 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2198 	 */
2199 	timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2200 	if (tp->packets_out == 1)
2201 		timeout = max_t(u32, timeout,
2202 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2203 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2204 
2205 	/* If RTO is shorter, just schedule TLP in its place. */
2206 	tlp_time_stamp = tcp_time_stamp + timeout;
2207 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2208 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2209 		s32 delta = rto_time_stamp - tcp_time_stamp;
2210 		if (delta > 0)
2211 			timeout = delta;
2212 	}
2213 
2214 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2215 				  TCP_RTO_MAX);
2216 	return true;
2217 }
2218 
2219 /* Thanks to skb fast clones, we can detect if a prior transmit of
2220  * a packet is still in a qdisc or driver queue.
2221  * In this case, there is very little point doing a retransmit !
2222  */
2223 static bool skb_still_in_host_queue(const struct sock *sk,
2224 				    const struct sk_buff *skb)
2225 {
2226 	if (unlikely(skb_fclone_busy(sk, skb))) {
2227 		NET_INC_STATS(sock_net(sk),
2228 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2229 		return true;
2230 	}
2231 	return false;
2232 }
2233 
2234 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2235  * retransmit the last segment.
2236  */
2237 void tcp_send_loss_probe(struct sock *sk)
2238 {
2239 	struct tcp_sock *tp = tcp_sk(sk);
2240 	struct sk_buff *skb;
2241 	int pcount;
2242 	int mss = tcp_current_mss(sk);
2243 
2244 	skb = tcp_send_head(sk);
2245 	if (skb) {
2246 		if (tcp_snd_wnd_test(tp, skb, mss)) {
2247 			pcount = tp->packets_out;
2248 			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2249 			if (tp->packets_out > pcount)
2250 				goto probe_sent;
2251 			goto rearm_timer;
2252 		}
2253 		skb = tcp_write_queue_prev(sk, skb);
2254 	} else {
2255 		skb = tcp_write_queue_tail(sk);
2256 	}
2257 
2258 	/* At most one outstanding TLP retransmission. */
2259 	if (tp->tlp_high_seq)
2260 		goto rearm_timer;
2261 
2262 	/* Retransmit last segment. */
2263 	if (WARN_ON(!skb))
2264 		goto rearm_timer;
2265 
2266 	if (skb_still_in_host_queue(sk, skb))
2267 		goto rearm_timer;
2268 
2269 	pcount = tcp_skb_pcount(skb);
2270 	if (WARN_ON(!pcount))
2271 		goto rearm_timer;
2272 
2273 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2274 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2275 					  GFP_ATOMIC)))
2276 			goto rearm_timer;
2277 		skb = tcp_write_queue_next(sk, skb);
2278 	}
2279 
2280 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2281 		goto rearm_timer;
2282 
2283 	if (__tcp_retransmit_skb(sk, skb, 1))
2284 		goto rearm_timer;
2285 
2286 	/* Record snd_nxt for loss detection. */
2287 	tp->tlp_high_seq = tp->snd_nxt;
2288 
2289 probe_sent:
2290 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2291 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2292 	inet_csk(sk)->icsk_pending = 0;
2293 rearm_timer:
2294 	tcp_rearm_rto(sk);
2295 }
2296 
2297 /* Push out any pending frames which were held back due to
2298  * TCP_CORK or attempt at coalescing tiny packets.
2299  * The socket must be locked by the caller.
2300  */
2301 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2302 			       int nonagle)
2303 {
2304 	/* If we are closed, the bytes will have to remain here.
2305 	 * In time closedown will finish, we empty the write queue and
2306 	 * all will be happy.
2307 	 */
2308 	if (unlikely(sk->sk_state == TCP_CLOSE))
2309 		return;
2310 
2311 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2312 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2313 		tcp_check_probe_timer(sk);
2314 }
2315 
2316 /* Send _single_ skb sitting at the send head. This function requires
2317  * true push pending frames to setup probe timer etc.
2318  */
2319 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2320 {
2321 	struct sk_buff *skb = tcp_send_head(sk);
2322 
2323 	BUG_ON(!skb || skb->len < mss_now);
2324 
2325 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2326 }
2327 
2328 /* This function returns the amount that we can raise the
2329  * usable window based on the following constraints
2330  *
2331  * 1. The window can never be shrunk once it is offered (RFC 793)
2332  * 2. We limit memory per socket
2333  *
2334  * RFC 1122:
2335  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2336  *  RECV.NEXT + RCV.WIN fixed until:
2337  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2338  *
2339  * i.e. don't raise the right edge of the window until you can raise
2340  * it at least MSS bytes.
2341  *
2342  * Unfortunately, the recommended algorithm breaks header prediction,
2343  * since header prediction assumes th->window stays fixed.
2344  *
2345  * Strictly speaking, keeping th->window fixed violates the receiver
2346  * side SWS prevention criteria. The problem is that under this rule
2347  * a stream of single byte packets will cause the right side of the
2348  * window to always advance by a single byte.
2349  *
2350  * Of course, if the sender implements sender side SWS prevention
2351  * then this will not be a problem.
2352  *
2353  * BSD seems to make the following compromise:
2354  *
2355  *	If the free space is less than the 1/4 of the maximum
2356  *	space available and the free space is less than 1/2 mss,
2357  *	then set the window to 0.
2358  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2359  *	Otherwise, just prevent the window from shrinking
2360  *	and from being larger than the largest representable value.
2361  *
2362  * This prevents incremental opening of the window in the regime
2363  * where TCP is limited by the speed of the reader side taking
2364  * data out of the TCP receive queue. It does nothing about
2365  * those cases where the window is constrained on the sender side
2366  * because the pipeline is full.
2367  *
2368  * BSD also seems to "accidentally" limit itself to windows that are a
2369  * multiple of MSS, at least until the free space gets quite small.
2370  * This would appear to be a side effect of the mbuf implementation.
2371  * Combining these two algorithms results in the observed behavior
2372  * of having a fixed window size at almost all times.
2373  *
2374  * Below we obtain similar behavior by forcing the offered window to
2375  * a multiple of the mss when it is feasible to do so.
2376  *
2377  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2378  * Regular options like TIMESTAMP are taken into account.
2379  */
2380 u32 __tcp_select_window(struct sock *sk)
2381 {
2382 	struct inet_connection_sock *icsk = inet_csk(sk);
2383 	struct tcp_sock *tp = tcp_sk(sk);
2384 	/* MSS for the peer's data.  Previous versions used mss_clamp
2385 	 * here.  I don't know if the value based on our guesses
2386 	 * of peer's MSS is better for the performance.  It's more correct
2387 	 * but may be worse for the performance because of rcv_mss
2388 	 * fluctuations.  --SAW  1998/11/1
2389 	 */
2390 	int mss = icsk->icsk_ack.rcv_mss;
2391 	int free_space = tcp_space(sk);
2392 	int allowed_space = tcp_full_space(sk);
2393 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2394 	int window;
2395 
2396 	if (mss > full_space)
2397 		mss = full_space;
2398 
2399 	if (free_space < (full_space >> 1)) {
2400 		icsk->icsk_ack.quick = 0;
2401 
2402 		if (tcp_under_memory_pressure(sk))
2403 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2404 					       4U * tp->advmss);
2405 
2406 		/* free_space might become our new window, make sure we don't
2407 		 * increase it due to wscale.
2408 		 */
2409 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2410 
2411 		/* if free space is less than mss estimate, or is below 1/16th
2412 		 * of the maximum allowed, try to move to zero-window, else
2413 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2414 		 * new incoming data is dropped due to memory limits.
2415 		 * With large window, mss test triggers way too late in order
2416 		 * to announce zero window in time before rmem limit kicks in.
2417 		 */
2418 		if (free_space < (allowed_space >> 4) || free_space < mss)
2419 			return 0;
2420 	}
2421 
2422 	if (free_space > tp->rcv_ssthresh)
2423 		free_space = tp->rcv_ssthresh;
2424 
2425 	/* Don't do rounding if we are using window scaling, since the
2426 	 * scaled window will not line up with the MSS boundary anyway.
2427 	 */
2428 	window = tp->rcv_wnd;
2429 	if (tp->rx_opt.rcv_wscale) {
2430 		window = free_space;
2431 
2432 		/* Advertise enough space so that it won't get scaled away.
2433 		 * Import case: prevent zero window announcement if
2434 		 * 1<<rcv_wscale > mss.
2435 		 */
2436 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2437 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2438 				  << tp->rx_opt.rcv_wscale);
2439 	} else {
2440 		/* Get the largest window that is a nice multiple of mss.
2441 		 * Window clamp already applied above.
2442 		 * If our current window offering is within 1 mss of the
2443 		 * free space we just keep it. This prevents the divide
2444 		 * and multiply from happening most of the time.
2445 		 * We also don't do any window rounding when the free space
2446 		 * is too small.
2447 		 */
2448 		if (window <= free_space - mss || window > free_space)
2449 			window = (free_space / mss) * mss;
2450 		else if (mss == full_space &&
2451 			 free_space > window + (full_space >> 1))
2452 			window = free_space;
2453 	}
2454 
2455 	return window;
2456 }
2457 
2458 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2459 			     const struct sk_buff *next_skb)
2460 {
2461 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2462 		const struct skb_shared_info *next_shinfo =
2463 			skb_shinfo(next_skb);
2464 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2465 
2466 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2467 		shinfo->tskey = next_shinfo->tskey;
2468 		TCP_SKB_CB(skb)->txstamp_ack |=
2469 			TCP_SKB_CB(next_skb)->txstamp_ack;
2470 	}
2471 }
2472 
2473 /* Collapses two adjacent SKB's during retransmission. */
2474 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2475 {
2476 	struct tcp_sock *tp = tcp_sk(sk);
2477 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2478 	int skb_size, next_skb_size;
2479 
2480 	skb_size = skb->len;
2481 	next_skb_size = next_skb->len;
2482 
2483 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2484 
2485 	tcp_highest_sack_combine(sk, next_skb, skb);
2486 
2487 	tcp_unlink_write_queue(next_skb, sk);
2488 
2489 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2490 				  next_skb_size);
2491 
2492 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2493 		skb->ip_summed = CHECKSUM_PARTIAL;
2494 
2495 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2496 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2497 
2498 	/* Update sequence range on original skb. */
2499 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2500 
2501 	/* Merge over control information. This moves PSH/FIN etc. over */
2502 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2503 
2504 	/* All done, get rid of second SKB and account for it so
2505 	 * packet counting does not break.
2506 	 */
2507 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2508 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2509 
2510 	/* changed transmit queue under us so clear hints */
2511 	tcp_clear_retrans_hints_partial(tp);
2512 	if (next_skb == tp->retransmit_skb_hint)
2513 		tp->retransmit_skb_hint = skb;
2514 
2515 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2516 
2517 	tcp_skb_collapse_tstamp(skb, next_skb);
2518 
2519 	sk_wmem_free_skb(sk, next_skb);
2520 }
2521 
2522 /* Check if coalescing SKBs is legal. */
2523 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2524 {
2525 	if (tcp_skb_pcount(skb) > 1)
2526 		return false;
2527 	/* TODO: SACK collapsing could be used to remove this condition */
2528 	if (skb_shinfo(skb)->nr_frags != 0)
2529 		return false;
2530 	if (skb_cloned(skb))
2531 		return false;
2532 	if (skb == tcp_send_head(sk))
2533 		return false;
2534 	/* Some heurestics for collapsing over SACK'd could be invented */
2535 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2536 		return false;
2537 
2538 	return true;
2539 }
2540 
2541 /* Collapse packets in the retransmit queue to make to create
2542  * less packets on the wire. This is only done on retransmission.
2543  */
2544 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2545 				     int space)
2546 {
2547 	struct tcp_sock *tp = tcp_sk(sk);
2548 	struct sk_buff *skb = to, *tmp;
2549 	bool first = true;
2550 
2551 	if (!sysctl_tcp_retrans_collapse)
2552 		return;
2553 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2554 		return;
2555 
2556 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2557 		if (!tcp_can_collapse(sk, skb))
2558 			break;
2559 
2560 		if (!tcp_skb_can_collapse_to(to))
2561 			break;
2562 
2563 		space -= skb->len;
2564 
2565 		if (first) {
2566 			first = false;
2567 			continue;
2568 		}
2569 
2570 		if (space < 0)
2571 			break;
2572 		/* Punt if not enough space exists in the first SKB for
2573 		 * the data in the second
2574 		 */
2575 		if (skb->len > skb_availroom(to))
2576 			break;
2577 
2578 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2579 			break;
2580 
2581 		tcp_collapse_retrans(sk, to);
2582 	}
2583 }
2584 
2585 /* This retransmits one SKB.  Policy decisions and retransmit queue
2586  * state updates are done by the caller.  Returns non-zero if an
2587  * error occurred which prevented the send.
2588  */
2589 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2590 {
2591 	struct inet_connection_sock *icsk = inet_csk(sk);
2592 	struct tcp_sock *tp = tcp_sk(sk);
2593 	unsigned int cur_mss;
2594 	int diff, len, err;
2595 
2596 
2597 	/* Inconclusive MTU probe */
2598 	if (icsk->icsk_mtup.probe_size)
2599 		icsk->icsk_mtup.probe_size = 0;
2600 
2601 	/* Do not sent more than we queued. 1/4 is reserved for possible
2602 	 * copying overhead: fragmentation, tunneling, mangling etc.
2603 	 */
2604 	if (atomic_read(&sk->sk_wmem_alloc) >
2605 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2606 		return -EAGAIN;
2607 
2608 	if (skb_still_in_host_queue(sk, skb))
2609 		return -EBUSY;
2610 
2611 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2612 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2613 			BUG();
2614 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2615 			return -ENOMEM;
2616 	}
2617 
2618 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2619 		return -EHOSTUNREACH; /* Routing failure or similar. */
2620 
2621 	cur_mss = tcp_current_mss(sk);
2622 
2623 	/* If receiver has shrunk his window, and skb is out of
2624 	 * new window, do not retransmit it. The exception is the
2625 	 * case, when window is shrunk to zero. In this case
2626 	 * our retransmit serves as a zero window probe.
2627 	 */
2628 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2629 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2630 		return -EAGAIN;
2631 
2632 	len = cur_mss * segs;
2633 	if (skb->len > len) {
2634 		if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2635 			return -ENOMEM; /* We'll try again later. */
2636 	} else {
2637 		if (skb_unclone(skb, GFP_ATOMIC))
2638 			return -ENOMEM;
2639 
2640 		diff = tcp_skb_pcount(skb);
2641 		tcp_set_skb_tso_segs(skb, cur_mss);
2642 		diff -= tcp_skb_pcount(skb);
2643 		if (diff)
2644 			tcp_adjust_pcount(sk, skb, diff);
2645 		if (skb->len < cur_mss)
2646 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2647 	}
2648 
2649 	/* RFC3168, section 6.1.1.1. ECN fallback */
2650 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2651 		tcp_ecn_clear_syn(sk, skb);
2652 
2653 	/* make sure skb->data is aligned on arches that require it
2654 	 * and check if ack-trimming & collapsing extended the headroom
2655 	 * beyond what csum_start can cover.
2656 	 */
2657 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2658 		     skb_headroom(skb) >= 0xFFFF)) {
2659 		struct sk_buff *nskb;
2660 
2661 		skb_mstamp_get(&skb->skb_mstamp);
2662 		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2663 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2664 			     -ENOBUFS;
2665 	} else {
2666 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2667 	}
2668 
2669 	if (likely(!err)) {
2670 		segs = tcp_skb_pcount(skb);
2671 
2672 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2673 		/* Update global TCP statistics. */
2674 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2675 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2676 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2677 		tp->total_retrans += segs;
2678 	}
2679 	return err;
2680 }
2681 
2682 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2683 {
2684 	struct tcp_sock *tp = tcp_sk(sk);
2685 	int err = __tcp_retransmit_skb(sk, skb, segs);
2686 
2687 	if (err == 0) {
2688 #if FASTRETRANS_DEBUG > 0
2689 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2690 			net_dbg_ratelimited("retrans_out leaked\n");
2691 		}
2692 #endif
2693 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2694 		tp->retrans_out += tcp_skb_pcount(skb);
2695 
2696 		/* Save stamp of the first retransmit. */
2697 		if (!tp->retrans_stamp)
2698 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2699 
2700 	} else if (err != -EBUSY) {
2701 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2702 	}
2703 
2704 	if (tp->undo_retrans < 0)
2705 		tp->undo_retrans = 0;
2706 	tp->undo_retrans += tcp_skb_pcount(skb);
2707 	return err;
2708 }
2709 
2710 /* Check if we forward retransmits are possible in the current
2711  * window/congestion state.
2712  */
2713 static bool tcp_can_forward_retransmit(struct sock *sk)
2714 {
2715 	const struct inet_connection_sock *icsk = inet_csk(sk);
2716 	const struct tcp_sock *tp = tcp_sk(sk);
2717 
2718 	/* Forward retransmissions are possible only during Recovery. */
2719 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2720 		return false;
2721 
2722 	/* No forward retransmissions in Reno are possible. */
2723 	if (tcp_is_reno(tp))
2724 		return false;
2725 
2726 	/* Yeah, we have to make difficult choice between forward transmission
2727 	 * and retransmission... Both ways have their merits...
2728 	 *
2729 	 * For now we do not retransmit anything, while we have some new
2730 	 * segments to send. In the other cases, follow rule 3 for
2731 	 * NextSeg() specified in RFC3517.
2732 	 */
2733 
2734 	if (tcp_may_send_now(sk))
2735 		return false;
2736 
2737 	return true;
2738 }
2739 
2740 /* This gets called after a retransmit timeout, and the initially
2741  * retransmitted data is acknowledged.  It tries to continue
2742  * resending the rest of the retransmit queue, until either
2743  * we've sent it all or the congestion window limit is reached.
2744  * If doing SACK, the first ACK which comes back for a timeout
2745  * based retransmit packet might feed us FACK information again.
2746  * If so, we use it to avoid unnecessarily retransmissions.
2747  */
2748 void tcp_xmit_retransmit_queue(struct sock *sk)
2749 {
2750 	const struct inet_connection_sock *icsk = inet_csk(sk);
2751 	struct tcp_sock *tp = tcp_sk(sk);
2752 	struct sk_buff *skb;
2753 	struct sk_buff *hole = NULL;
2754 	u32 last_lost;
2755 	int mib_idx;
2756 	int fwd_rexmitting = 0;
2757 
2758 	if (!tp->packets_out)
2759 		return;
2760 
2761 	if (!tp->lost_out)
2762 		tp->retransmit_high = tp->snd_una;
2763 
2764 	if (tp->retransmit_skb_hint) {
2765 		skb = tp->retransmit_skb_hint;
2766 		last_lost = TCP_SKB_CB(skb)->end_seq;
2767 		if (after(last_lost, tp->retransmit_high))
2768 			last_lost = tp->retransmit_high;
2769 	} else {
2770 		skb = tcp_write_queue_head(sk);
2771 		last_lost = tp->snd_una;
2772 	}
2773 
2774 	tcp_for_write_queue_from(skb, sk) {
2775 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2776 		int segs;
2777 
2778 		if (skb == tcp_send_head(sk))
2779 			break;
2780 		/* we could do better than to assign each time */
2781 		if (!hole)
2782 			tp->retransmit_skb_hint = skb;
2783 
2784 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2785 		if (segs <= 0)
2786 			return;
2787 
2788 		if (fwd_rexmitting) {
2789 begin_fwd:
2790 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2791 				break;
2792 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2793 
2794 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2795 			tp->retransmit_high = last_lost;
2796 			if (!tcp_can_forward_retransmit(sk))
2797 				break;
2798 			/* Backtrack if necessary to non-L'ed skb */
2799 			if (hole) {
2800 				skb = hole;
2801 				hole = NULL;
2802 			}
2803 			fwd_rexmitting = 1;
2804 			goto begin_fwd;
2805 
2806 		} else if (!(sacked & TCPCB_LOST)) {
2807 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2808 				hole = skb;
2809 			continue;
2810 
2811 		} else {
2812 			last_lost = TCP_SKB_CB(skb)->end_seq;
2813 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2814 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2815 			else
2816 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2817 		}
2818 
2819 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2820 			continue;
2821 
2822 		if (tcp_retransmit_skb(sk, skb, segs))
2823 			return;
2824 
2825 		NET_INC_STATS(sock_net(sk), mib_idx);
2826 
2827 		if (tcp_in_cwnd_reduction(sk))
2828 			tp->prr_out += tcp_skb_pcount(skb);
2829 
2830 		if (skb == tcp_write_queue_head(sk))
2831 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2832 						  inet_csk(sk)->icsk_rto,
2833 						  TCP_RTO_MAX);
2834 	}
2835 }
2836 
2837 /* We allow to exceed memory limits for FIN packets to expedite
2838  * connection tear down and (memory) recovery.
2839  * Otherwise tcp_send_fin() could be tempted to either delay FIN
2840  * or even be forced to close flow without any FIN.
2841  * In general, we want to allow one skb per socket to avoid hangs
2842  * with edge trigger epoll()
2843  */
2844 void sk_forced_mem_schedule(struct sock *sk, int size)
2845 {
2846 	int amt;
2847 
2848 	if (size <= sk->sk_forward_alloc)
2849 		return;
2850 	amt = sk_mem_pages(size);
2851 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2852 	sk_memory_allocated_add(sk, amt);
2853 
2854 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2855 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2856 }
2857 
2858 /* Send a FIN. The caller locks the socket for us.
2859  * We should try to send a FIN packet really hard, but eventually give up.
2860  */
2861 void tcp_send_fin(struct sock *sk)
2862 {
2863 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2864 	struct tcp_sock *tp = tcp_sk(sk);
2865 
2866 	/* Optimization, tack on the FIN if we have one skb in write queue and
2867 	 * this skb was not yet sent, or we are under memory pressure.
2868 	 * Note: in the latter case, FIN packet will be sent after a timeout,
2869 	 * as TCP stack thinks it has already been transmitted.
2870 	 */
2871 	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2872 coalesce:
2873 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2874 		TCP_SKB_CB(tskb)->end_seq++;
2875 		tp->write_seq++;
2876 		if (!tcp_send_head(sk)) {
2877 			/* This means tskb was already sent.
2878 			 * Pretend we included the FIN on previous transmit.
2879 			 * We need to set tp->snd_nxt to the value it would have
2880 			 * if FIN had been sent. This is because retransmit path
2881 			 * does not change tp->snd_nxt.
2882 			 */
2883 			tp->snd_nxt++;
2884 			return;
2885 		}
2886 	} else {
2887 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2888 		if (unlikely(!skb)) {
2889 			if (tskb)
2890 				goto coalesce;
2891 			return;
2892 		}
2893 		skb_reserve(skb, MAX_TCP_HEADER);
2894 		sk_forced_mem_schedule(sk, skb->truesize);
2895 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2896 		tcp_init_nondata_skb(skb, tp->write_seq,
2897 				     TCPHDR_ACK | TCPHDR_FIN);
2898 		tcp_queue_skb(sk, skb);
2899 	}
2900 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2901 }
2902 
2903 /* We get here when a process closes a file descriptor (either due to
2904  * an explicit close() or as a byproduct of exit()'ing) and there
2905  * was unread data in the receive queue.  This behavior is recommended
2906  * by RFC 2525, section 2.17.  -DaveM
2907  */
2908 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2909 {
2910 	struct sk_buff *skb;
2911 
2912 	/* NOTE: No TCP options attached and we never retransmit this. */
2913 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2914 	if (!skb) {
2915 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2916 		return;
2917 	}
2918 
2919 	/* Reserve space for headers and prepare control bits. */
2920 	skb_reserve(skb, MAX_TCP_HEADER);
2921 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2922 			     TCPHDR_ACK | TCPHDR_RST);
2923 	skb_mstamp_get(&skb->skb_mstamp);
2924 	/* Send it off. */
2925 	if (tcp_transmit_skb(sk, skb, 0, priority))
2926 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2927 
2928 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2929 }
2930 
2931 /* Send a crossed SYN-ACK during socket establishment.
2932  * WARNING: This routine must only be called when we have already sent
2933  * a SYN packet that crossed the incoming SYN that caused this routine
2934  * to get called. If this assumption fails then the initial rcv_wnd
2935  * and rcv_wscale values will not be correct.
2936  */
2937 int tcp_send_synack(struct sock *sk)
2938 {
2939 	struct sk_buff *skb;
2940 
2941 	skb = tcp_write_queue_head(sk);
2942 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2943 		pr_debug("%s: wrong queue state\n", __func__);
2944 		return -EFAULT;
2945 	}
2946 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2947 		if (skb_cloned(skb)) {
2948 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2949 			if (!nskb)
2950 				return -ENOMEM;
2951 			tcp_unlink_write_queue(skb, sk);
2952 			__skb_header_release(nskb);
2953 			__tcp_add_write_queue_head(sk, nskb);
2954 			sk_wmem_free_skb(sk, skb);
2955 			sk->sk_wmem_queued += nskb->truesize;
2956 			sk_mem_charge(sk, nskb->truesize);
2957 			skb = nskb;
2958 		}
2959 
2960 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2961 		tcp_ecn_send_synack(sk, skb);
2962 	}
2963 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2964 }
2965 
2966 /**
2967  * tcp_make_synack - Prepare a SYN-ACK.
2968  * sk: listener socket
2969  * dst: dst entry attached to the SYNACK
2970  * req: request_sock pointer
2971  *
2972  * Allocate one skb and build a SYNACK packet.
2973  * @dst is consumed : Caller should not use it again.
2974  */
2975 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2976 				struct request_sock *req,
2977 				struct tcp_fastopen_cookie *foc,
2978 				enum tcp_synack_type synack_type)
2979 {
2980 	struct inet_request_sock *ireq = inet_rsk(req);
2981 	const struct tcp_sock *tp = tcp_sk(sk);
2982 	struct tcp_md5sig_key *md5 = NULL;
2983 	struct tcp_out_options opts;
2984 	struct sk_buff *skb;
2985 	int tcp_header_size;
2986 	struct tcphdr *th;
2987 	u16 user_mss;
2988 	int mss;
2989 
2990 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2991 	if (unlikely(!skb)) {
2992 		dst_release(dst);
2993 		return NULL;
2994 	}
2995 	/* Reserve space for headers. */
2996 	skb_reserve(skb, MAX_TCP_HEADER);
2997 
2998 	switch (synack_type) {
2999 	case TCP_SYNACK_NORMAL:
3000 		skb_set_owner_w(skb, req_to_sk(req));
3001 		break;
3002 	case TCP_SYNACK_COOKIE:
3003 		/* Under synflood, we do not attach skb to a socket,
3004 		 * to avoid false sharing.
3005 		 */
3006 		break;
3007 	case TCP_SYNACK_FASTOPEN:
3008 		/* sk is a const pointer, because we want to express multiple
3009 		 * cpu might call us concurrently.
3010 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3011 		 */
3012 		skb_set_owner_w(skb, (struct sock *)sk);
3013 		break;
3014 	}
3015 	skb_dst_set(skb, dst);
3016 
3017 	mss = dst_metric_advmss(dst);
3018 	user_mss = READ_ONCE(tp->rx_opt.user_mss);
3019 	if (user_mss && user_mss < mss)
3020 		mss = user_mss;
3021 
3022 	memset(&opts, 0, sizeof(opts));
3023 #ifdef CONFIG_SYN_COOKIES
3024 	if (unlikely(req->cookie_ts))
3025 		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3026 	else
3027 #endif
3028 	skb_mstamp_get(&skb->skb_mstamp);
3029 
3030 #ifdef CONFIG_TCP_MD5SIG
3031 	rcu_read_lock();
3032 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3033 #endif
3034 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3035 	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3036 			  sizeof(*th);
3037 
3038 	skb_push(skb, tcp_header_size);
3039 	skb_reset_transport_header(skb);
3040 
3041 	th = (struct tcphdr *)skb->data;
3042 	memset(th, 0, sizeof(struct tcphdr));
3043 	th->syn = 1;
3044 	th->ack = 1;
3045 	tcp_ecn_make_synack(req, th);
3046 	th->source = htons(ireq->ir_num);
3047 	th->dest = ireq->ir_rmt_port;
3048 	/* Setting of flags are superfluous here for callers (and ECE is
3049 	 * not even correctly set)
3050 	 */
3051 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3052 			     TCPHDR_SYN | TCPHDR_ACK);
3053 
3054 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3055 	/* XXX data is queued and acked as is. No buffer/window check */
3056 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3057 
3058 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3059 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3060 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3061 	th->doff = (tcp_header_size >> 2);
3062 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3063 
3064 #ifdef CONFIG_TCP_MD5SIG
3065 	/* Okay, we have all we need - do the md5 hash if needed */
3066 	if (md5)
3067 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3068 					       md5, req_to_sk(req), skb);
3069 	rcu_read_unlock();
3070 #endif
3071 
3072 	/* Do not fool tcpdump (if any), clean our debris */
3073 	skb->tstamp.tv64 = 0;
3074 	return skb;
3075 }
3076 EXPORT_SYMBOL(tcp_make_synack);
3077 
3078 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3079 {
3080 	struct inet_connection_sock *icsk = inet_csk(sk);
3081 	const struct tcp_congestion_ops *ca;
3082 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3083 
3084 	if (ca_key == TCP_CA_UNSPEC)
3085 		return;
3086 
3087 	rcu_read_lock();
3088 	ca = tcp_ca_find_key(ca_key);
3089 	if (likely(ca && try_module_get(ca->owner))) {
3090 		module_put(icsk->icsk_ca_ops->owner);
3091 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3092 		icsk->icsk_ca_ops = ca;
3093 	}
3094 	rcu_read_unlock();
3095 }
3096 
3097 /* Do all connect socket setups that can be done AF independent. */
3098 static void tcp_connect_init(struct sock *sk)
3099 {
3100 	const struct dst_entry *dst = __sk_dst_get(sk);
3101 	struct tcp_sock *tp = tcp_sk(sk);
3102 	__u8 rcv_wscale;
3103 
3104 	/* We'll fix this up when we get a response from the other end.
3105 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3106 	 */
3107 	tp->tcp_header_len = sizeof(struct tcphdr) +
3108 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3109 
3110 #ifdef CONFIG_TCP_MD5SIG
3111 	if (tp->af_specific->md5_lookup(sk, sk))
3112 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3113 #endif
3114 
3115 	/* If user gave his TCP_MAXSEG, record it to clamp */
3116 	if (tp->rx_opt.user_mss)
3117 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3118 	tp->max_window = 0;
3119 	tcp_mtup_init(sk);
3120 	tcp_sync_mss(sk, dst_mtu(dst));
3121 
3122 	tcp_ca_dst_init(sk, dst);
3123 
3124 	if (!tp->window_clamp)
3125 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3126 	tp->advmss = dst_metric_advmss(dst);
3127 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3128 		tp->advmss = tp->rx_opt.user_mss;
3129 
3130 	tcp_initialize_rcv_mss(sk);
3131 
3132 	/* limit the window selection if the user enforce a smaller rx buffer */
3133 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3134 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3135 		tp->window_clamp = tcp_full_space(sk);
3136 
3137 	tcp_select_initial_window(tcp_full_space(sk),
3138 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3139 				  &tp->rcv_wnd,
3140 				  &tp->window_clamp,
3141 				  sysctl_tcp_window_scaling,
3142 				  &rcv_wscale,
3143 				  dst_metric(dst, RTAX_INITRWND));
3144 
3145 	tp->rx_opt.rcv_wscale = rcv_wscale;
3146 	tp->rcv_ssthresh = tp->rcv_wnd;
3147 
3148 	sk->sk_err = 0;
3149 	sock_reset_flag(sk, SOCK_DONE);
3150 	tp->snd_wnd = 0;
3151 	tcp_init_wl(tp, 0);
3152 	tp->snd_una = tp->write_seq;
3153 	tp->snd_sml = tp->write_seq;
3154 	tp->snd_up = tp->write_seq;
3155 	tp->snd_nxt = tp->write_seq;
3156 
3157 	if (likely(!tp->repair))
3158 		tp->rcv_nxt = 0;
3159 	else
3160 		tp->rcv_tstamp = tcp_time_stamp;
3161 	tp->rcv_wup = tp->rcv_nxt;
3162 	tp->copied_seq = tp->rcv_nxt;
3163 
3164 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3165 	inet_csk(sk)->icsk_retransmits = 0;
3166 	tcp_clear_retrans(tp);
3167 }
3168 
3169 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3170 {
3171 	struct tcp_sock *tp = tcp_sk(sk);
3172 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3173 
3174 	tcb->end_seq += skb->len;
3175 	__skb_header_release(skb);
3176 	__tcp_add_write_queue_tail(sk, skb);
3177 	sk->sk_wmem_queued += skb->truesize;
3178 	sk_mem_charge(sk, skb->truesize);
3179 	tp->write_seq = tcb->end_seq;
3180 	tp->packets_out += tcp_skb_pcount(skb);
3181 }
3182 
3183 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3184  * queue a data-only packet after the regular SYN, such that regular SYNs
3185  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3186  * only the SYN sequence, the data are retransmitted in the first ACK.
3187  * If cookie is not cached or other error occurs, falls back to send a
3188  * regular SYN with Fast Open cookie request option.
3189  */
3190 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3191 {
3192 	struct tcp_sock *tp = tcp_sk(sk);
3193 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3194 	int syn_loss = 0, space, err = 0;
3195 	unsigned long last_syn_loss = 0;
3196 	struct sk_buff *syn_data;
3197 
3198 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3199 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3200 			       &syn_loss, &last_syn_loss);
3201 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
3202 	if (syn_loss > 1 &&
3203 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3204 		fo->cookie.len = -1;
3205 		goto fallback;
3206 	}
3207 
3208 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3209 		fo->cookie.len = -1;
3210 	else if (fo->cookie.len <= 0)
3211 		goto fallback;
3212 
3213 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3214 	 * user-MSS. Reserve maximum option space for middleboxes that add
3215 	 * private TCP options. The cost is reduced data space in SYN :(
3216 	 */
3217 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3218 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3219 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3220 		MAX_TCP_OPTION_SPACE;
3221 
3222 	space = min_t(size_t, space, fo->size);
3223 
3224 	/* limit to order-0 allocations */
3225 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3226 
3227 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3228 	if (!syn_data)
3229 		goto fallback;
3230 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3231 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3232 	if (space) {
3233 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3234 					    &fo->data->msg_iter);
3235 		if (unlikely(!copied)) {
3236 			kfree_skb(syn_data);
3237 			goto fallback;
3238 		}
3239 		if (copied != space) {
3240 			skb_trim(syn_data, copied);
3241 			space = copied;
3242 		}
3243 	}
3244 	/* No more data pending in inet_wait_for_connect() */
3245 	if (space == fo->size)
3246 		fo->data = NULL;
3247 	fo->copied = space;
3248 
3249 	tcp_connect_queue_skb(sk, syn_data);
3250 
3251 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3252 
3253 	syn->skb_mstamp = syn_data->skb_mstamp;
3254 
3255 	/* Now full SYN+DATA was cloned and sent (or not),
3256 	 * remove the SYN from the original skb (syn_data)
3257 	 * we keep in write queue in case of a retransmit, as we
3258 	 * also have the SYN packet (with no data) in the same queue.
3259 	 */
3260 	TCP_SKB_CB(syn_data)->seq++;
3261 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3262 	if (!err) {
3263 		tp->syn_data = (fo->copied > 0);
3264 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3265 		goto done;
3266 	}
3267 
3268 fallback:
3269 	/* Send a regular SYN with Fast Open cookie request option */
3270 	if (fo->cookie.len > 0)
3271 		fo->cookie.len = 0;
3272 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3273 	if (err)
3274 		tp->syn_fastopen = 0;
3275 done:
3276 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3277 	return err;
3278 }
3279 
3280 /* Build a SYN and send it off. */
3281 int tcp_connect(struct sock *sk)
3282 {
3283 	struct tcp_sock *tp = tcp_sk(sk);
3284 	struct sk_buff *buff;
3285 	int err;
3286 
3287 	tcp_connect_init(sk);
3288 
3289 	if (unlikely(tp->repair)) {
3290 		tcp_finish_connect(sk, NULL);
3291 		return 0;
3292 	}
3293 
3294 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3295 	if (unlikely(!buff))
3296 		return -ENOBUFS;
3297 
3298 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3299 	tp->retrans_stamp = tcp_time_stamp;
3300 	tcp_connect_queue_skb(sk, buff);
3301 	tcp_ecn_send_syn(sk, buff);
3302 
3303 	/* Send off SYN; include data in Fast Open. */
3304 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3305 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3306 	if (err == -ECONNREFUSED)
3307 		return err;
3308 
3309 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3310 	 * in order to make this packet get counted in tcpOutSegs.
3311 	 */
3312 	tp->snd_nxt = tp->write_seq;
3313 	tp->pushed_seq = tp->write_seq;
3314 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3315 
3316 	/* Timer for repeating the SYN until an answer. */
3317 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3318 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3319 	return 0;
3320 }
3321 EXPORT_SYMBOL(tcp_connect);
3322 
3323 /* Send out a delayed ack, the caller does the policy checking
3324  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3325  * for details.
3326  */
3327 void tcp_send_delayed_ack(struct sock *sk)
3328 {
3329 	struct inet_connection_sock *icsk = inet_csk(sk);
3330 	int ato = icsk->icsk_ack.ato;
3331 	unsigned long timeout;
3332 
3333 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3334 
3335 	if (ato > TCP_DELACK_MIN) {
3336 		const struct tcp_sock *tp = tcp_sk(sk);
3337 		int max_ato = HZ / 2;
3338 
3339 		if (icsk->icsk_ack.pingpong ||
3340 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3341 			max_ato = TCP_DELACK_MAX;
3342 
3343 		/* Slow path, intersegment interval is "high". */
3344 
3345 		/* If some rtt estimate is known, use it to bound delayed ack.
3346 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3347 		 * directly.
3348 		 */
3349 		if (tp->srtt_us) {
3350 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3351 					TCP_DELACK_MIN);
3352 
3353 			if (rtt < max_ato)
3354 				max_ato = rtt;
3355 		}
3356 
3357 		ato = min(ato, max_ato);
3358 	}
3359 
3360 	/* Stay within the limit we were given */
3361 	timeout = jiffies + ato;
3362 
3363 	/* Use new timeout only if there wasn't a older one earlier. */
3364 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3365 		/* If delack timer was blocked or is about to expire,
3366 		 * send ACK now.
3367 		 */
3368 		if (icsk->icsk_ack.blocked ||
3369 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3370 			tcp_send_ack(sk);
3371 			return;
3372 		}
3373 
3374 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3375 			timeout = icsk->icsk_ack.timeout;
3376 	}
3377 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3378 	icsk->icsk_ack.timeout = timeout;
3379 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3380 }
3381 
3382 /* This routine sends an ack and also updates the window. */
3383 void tcp_send_ack(struct sock *sk)
3384 {
3385 	struct sk_buff *buff;
3386 
3387 	/* If we have been reset, we may not send again. */
3388 	if (sk->sk_state == TCP_CLOSE)
3389 		return;
3390 
3391 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3392 
3393 	/* We are not putting this on the write queue, so
3394 	 * tcp_transmit_skb() will set the ownership to this
3395 	 * sock.
3396 	 */
3397 	buff = alloc_skb(MAX_TCP_HEADER,
3398 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3399 	if (unlikely(!buff)) {
3400 		inet_csk_schedule_ack(sk);
3401 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3402 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3403 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3404 		return;
3405 	}
3406 
3407 	/* Reserve space for headers and prepare control bits. */
3408 	skb_reserve(buff, MAX_TCP_HEADER);
3409 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3410 
3411 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3412 	 * too much.
3413 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3414 	 * We also avoid tcp_wfree() overhead (cache line miss accessing
3415 	 * tp->tsq_flags) by using regular sock_wfree()
3416 	 */
3417 	skb_set_tcp_pure_ack(buff);
3418 
3419 	/* Send it off, this clears delayed acks for us. */
3420 	skb_mstamp_get(&buff->skb_mstamp);
3421 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3422 }
3423 EXPORT_SYMBOL_GPL(tcp_send_ack);
3424 
3425 /* This routine sends a packet with an out of date sequence
3426  * number. It assumes the other end will try to ack it.
3427  *
3428  * Question: what should we make while urgent mode?
3429  * 4.4BSD forces sending single byte of data. We cannot send
3430  * out of window data, because we have SND.NXT==SND.MAX...
3431  *
3432  * Current solution: to send TWO zero-length segments in urgent mode:
3433  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3434  * out-of-date with SND.UNA-1 to probe window.
3435  */
3436 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3437 {
3438 	struct tcp_sock *tp = tcp_sk(sk);
3439 	struct sk_buff *skb;
3440 
3441 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3442 	skb = alloc_skb(MAX_TCP_HEADER,
3443 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3444 	if (!skb)
3445 		return -1;
3446 
3447 	/* Reserve space for headers and set control bits. */
3448 	skb_reserve(skb, MAX_TCP_HEADER);
3449 	/* Use a previous sequence.  This should cause the other
3450 	 * end to send an ack.  Don't queue or clone SKB, just
3451 	 * send it.
3452 	 */
3453 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3454 	skb_mstamp_get(&skb->skb_mstamp);
3455 	NET_INC_STATS(sock_net(sk), mib);
3456 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3457 }
3458 
3459 void tcp_send_window_probe(struct sock *sk)
3460 {
3461 	if (sk->sk_state == TCP_ESTABLISHED) {
3462 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3463 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3464 	}
3465 }
3466 
3467 /* Initiate keepalive or window probe from timer. */
3468 int tcp_write_wakeup(struct sock *sk, int mib)
3469 {
3470 	struct tcp_sock *tp = tcp_sk(sk);
3471 	struct sk_buff *skb;
3472 
3473 	if (sk->sk_state == TCP_CLOSE)
3474 		return -1;
3475 
3476 	skb = tcp_send_head(sk);
3477 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3478 		int err;
3479 		unsigned int mss = tcp_current_mss(sk);
3480 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3481 
3482 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3483 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3484 
3485 		/* We are probing the opening of a window
3486 		 * but the window size is != 0
3487 		 * must have been a result SWS avoidance ( sender )
3488 		 */
3489 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3490 		    skb->len > mss) {
3491 			seg_size = min(seg_size, mss);
3492 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3493 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3494 				return -1;
3495 		} else if (!tcp_skb_pcount(skb))
3496 			tcp_set_skb_tso_segs(skb, mss);
3497 
3498 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3499 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3500 		if (!err)
3501 			tcp_event_new_data_sent(sk, skb);
3502 		return err;
3503 	} else {
3504 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3505 			tcp_xmit_probe_skb(sk, 1, mib);
3506 		return tcp_xmit_probe_skb(sk, 0, mib);
3507 	}
3508 }
3509 
3510 /* A window probe timeout has occurred.  If window is not closed send
3511  * a partial packet else a zero probe.
3512  */
3513 void tcp_send_probe0(struct sock *sk)
3514 {
3515 	struct inet_connection_sock *icsk = inet_csk(sk);
3516 	struct tcp_sock *tp = tcp_sk(sk);
3517 	struct net *net = sock_net(sk);
3518 	unsigned long probe_max;
3519 	int err;
3520 
3521 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3522 
3523 	if (tp->packets_out || !tcp_send_head(sk)) {
3524 		/* Cancel probe timer, if it is not required. */
3525 		icsk->icsk_probes_out = 0;
3526 		icsk->icsk_backoff = 0;
3527 		return;
3528 	}
3529 
3530 	if (err <= 0) {
3531 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3532 			icsk->icsk_backoff++;
3533 		icsk->icsk_probes_out++;
3534 		probe_max = TCP_RTO_MAX;
3535 	} else {
3536 		/* If packet was not sent due to local congestion,
3537 		 * do not backoff and do not remember icsk_probes_out.
3538 		 * Let local senders to fight for local resources.
3539 		 *
3540 		 * Use accumulated backoff yet.
3541 		 */
3542 		if (!icsk->icsk_probes_out)
3543 			icsk->icsk_probes_out = 1;
3544 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3545 	}
3546 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3547 				  tcp_probe0_when(sk, probe_max),
3548 				  TCP_RTO_MAX);
3549 }
3550 
3551 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3552 {
3553 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3554 	struct flowi fl;
3555 	int res;
3556 
3557 	tcp_rsk(req)->txhash = net_tx_rndhash();
3558 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3559 	if (!res) {
3560 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3561 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3562 	}
3563 	return res;
3564 }
3565 EXPORT_SYMBOL(tcp_rtx_synack);
3566