1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 #include <linux/static_key.h> 45 46 #include <trace/events/tcp.h> 47 48 /* Refresh clocks of a TCP socket, 49 * ensuring monotically increasing values. 50 */ 51 void tcp_mstamp_refresh(struct tcp_sock *tp) 52 { 53 u64 val = tcp_clock_ns(); 54 55 tp->tcp_clock_cache = val; 56 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 57 } 58 59 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 60 int push_one, gfp_t gfp); 61 62 /* Account for new data that has been sent to the network. */ 63 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 64 { 65 struct inet_connection_sock *icsk = inet_csk(sk); 66 struct tcp_sock *tp = tcp_sk(sk); 67 unsigned int prior_packets = tp->packets_out; 68 69 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 70 71 __skb_unlink(skb, &sk->sk_write_queue); 72 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 73 74 tp->packets_out += tcp_skb_pcount(skb); 75 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 76 tcp_rearm_rto(sk); 77 78 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 79 tcp_skb_pcount(skb)); 80 } 81 82 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 83 * window scaling factor due to loss of precision. 84 * If window has been shrunk, what should we make? It is not clear at all. 85 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 86 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 87 * invalid. OK, let's make this for now: 88 */ 89 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 90 { 91 const struct tcp_sock *tp = tcp_sk(sk); 92 93 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 94 (tp->rx_opt.wscale_ok && 95 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 96 return tp->snd_nxt; 97 else 98 return tcp_wnd_end(tp); 99 } 100 101 /* Calculate mss to advertise in SYN segment. 102 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 103 * 104 * 1. It is independent of path mtu. 105 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 106 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 107 * attached devices, because some buggy hosts are confused by 108 * large MSS. 109 * 4. We do not make 3, we advertise MSS, calculated from first 110 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 111 * This may be overridden via information stored in routing table. 112 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 113 * probably even Jumbo". 114 */ 115 static __u16 tcp_advertise_mss(struct sock *sk) 116 { 117 struct tcp_sock *tp = tcp_sk(sk); 118 const struct dst_entry *dst = __sk_dst_get(sk); 119 int mss = tp->advmss; 120 121 if (dst) { 122 unsigned int metric = dst_metric_advmss(dst); 123 124 if (metric < mss) { 125 mss = metric; 126 tp->advmss = mss; 127 } 128 } 129 130 return (__u16)mss; 131 } 132 133 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 134 * This is the first part of cwnd validation mechanism. 135 */ 136 void tcp_cwnd_restart(struct sock *sk, s32 delta) 137 { 138 struct tcp_sock *tp = tcp_sk(sk); 139 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 140 u32 cwnd = tp->snd_cwnd; 141 142 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 143 144 tp->snd_ssthresh = tcp_current_ssthresh(sk); 145 restart_cwnd = min(restart_cwnd, cwnd); 146 147 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 148 cwnd >>= 1; 149 tp->snd_cwnd = max(cwnd, restart_cwnd); 150 tp->snd_cwnd_stamp = tcp_jiffies32; 151 tp->snd_cwnd_used = 0; 152 } 153 154 /* Congestion state accounting after a packet has been sent. */ 155 static void tcp_event_data_sent(struct tcp_sock *tp, 156 struct sock *sk) 157 { 158 struct inet_connection_sock *icsk = inet_csk(sk); 159 const u32 now = tcp_jiffies32; 160 161 if (tcp_packets_in_flight(tp) == 0) 162 tcp_ca_event(sk, CA_EVENT_TX_START); 163 164 /* If this is the first data packet sent in response to the 165 * previous received data, 166 * and it is a reply for ato after last received packet, 167 * increase pingpong count. 168 */ 169 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) && 170 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 171 inet_csk_inc_pingpong_cnt(sk); 172 173 tp->lsndtime = now; 174 } 175 176 /* Account for an ACK we sent. */ 177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 178 u32 rcv_nxt) 179 { 180 struct tcp_sock *tp = tcp_sk(sk); 181 182 if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) { 183 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 184 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 185 tp->compressed_ack = TCP_FASTRETRANS_THRESH; 186 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 187 __sock_put(sk); 188 } 189 190 if (unlikely(rcv_nxt != tp->rcv_nxt)) 191 return; /* Special ACK sent by DCTCP to reflect ECN */ 192 tcp_dec_quickack_mode(sk, pkts); 193 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 194 } 195 196 /* Determine a window scaling and initial window to offer. 197 * Based on the assumption that the given amount of space 198 * will be offered. Store the results in the tp structure. 199 * NOTE: for smooth operation initial space offering should 200 * be a multiple of mss if possible. We assume here that mss >= 1. 201 * This MUST be enforced by all callers. 202 */ 203 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 204 __u32 *rcv_wnd, __u32 *window_clamp, 205 int wscale_ok, __u8 *rcv_wscale, 206 __u32 init_rcv_wnd) 207 { 208 unsigned int space = (__space < 0 ? 0 : __space); 209 210 /* If no clamp set the clamp to the max possible scaled window */ 211 if (*window_clamp == 0) 212 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 213 space = min(*window_clamp, space); 214 215 /* Quantize space offering to a multiple of mss if possible. */ 216 if (space > mss) 217 space = rounddown(space, mss); 218 219 /* NOTE: offering an initial window larger than 32767 220 * will break some buggy TCP stacks. If the admin tells us 221 * it is likely we could be speaking with such a buggy stack 222 * we will truncate our initial window offering to 32K-1 223 * unless the remote has sent us a window scaling option, 224 * which we interpret as a sign the remote TCP is not 225 * misinterpreting the window field as a signed quantity. 226 */ 227 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 228 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 229 else 230 (*rcv_wnd) = min_t(u32, space, U16_MAX); 231 232 if (init_rcv_wnd) 233 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 234 235 *rcv_wscale = 0; 236 if (wscale_ok) { 237 /* Set window scaling on max possible window */ 238 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 239 space = max_t(u32, space, sysctl_rmem_max); 240 space = min_t(u32, space, *window_clamp); 241 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 242 0, TCP_MAX_WSCALE); 243 } 244 /* Set the clamp no higher than max representable value */ 245 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 246 } 247 EXPORT_SYMBOL(tcp_select_initial_window); 248 249 /* Chose a new window to advertise, update state in tcp_sock for the 250 * socket, and return result with RFC1323 scaling applied. The return 251 * value can be stuffed directly into th->window for an outgoing 252 * frame. 253 */ 254 static u16 tcp_select_window(struct sock *sk) 255 { 256 struct tcp_sock *tp = tcp_sk(sk); 257 u32 old_win = tp->rcv_wnd; 258 u32 cur_win = tcp_receive_window(tp); 259 u32 new_win = __tcp_select_window(sk); 260 261 /* Never shrink the offered window */ 262 if (new_win < cur_win) { 263 /* Danger Will Robinson! 264 * Don't update rcv_wup/rcv_wnd here or else 265 * we will not be able to advertise a zero 266 * window in time. --DaveM 267 * 268 * Relax Will Robinson. 269 */ 270 if (new_win == 0) 271 NET_INC_STATS(sock_net(sk), 272 LINUX_MIB_TCPWANTZEROWINDOWADV); 273 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 274 } 275 tp->rcv_wnd = new_win; 276 tp->rcv_wup = tp->rcv_nxt; 277 278 /* Make sure we do not exceed the maximum possible 279 * scaled window. 280 */ 281 if (!tp->rx_opt.rcv_wscale && 282 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 283 new_win = min(new_win, MAX_TCP_WINDOW); 284 else 285 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 286 287 /* RFC1323 scaling applied */ 288 new_win >>= tp->rx_opt.rcv_wscale; 289 290 /* If we advertise zero window, disable fast path. */ 291 if (new_win == 0) { 292 tp->pred_flags = 0; 293 if (old_win) 294 NET_INC_STATS(sock_net(sk), 295 LINUX_MIB_TCPTOZEROWINDOWADV); 296 } else if (old_win == 0) { 297 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 298 } 299 300 return new_win; 301 } 302 303 /* Packet ECN state for a SYN-ACK */ 304 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 305 { 306 const struct tcp_sock *tp = tcp_sk(sk); 307 308 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 309 if (!(tp->ecn_flags & TCP_ECN_OK)) 310 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 311 else if (tcp_ca_needs_ecn(sk) || 312 tcp_bpf_ca_needs_ecn(sk)) 313 INET_ECN_xmit(sk); 314 } 315 316 /* Packet ECN state for a SYN. */ 317 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 318 { 319 struct tcp_sock *tp = tcp_sk(sk); 320 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 321 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 322 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 323 324 if (!use_ecn) { 325 const struct dst_entry *dst = __sk_dst_get(sk); 326 327 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 328 use_ecn = true; 329 } 330 331 tp->ecn_flags = 0; 332 333 if (use_ecn) { 334 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 335 tp->ecn_flags = TCP_ECN_OK; 336 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 337 INET_ECN_xmit(sk); 338 } 339 } 340 341 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 342 { 343 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 344 /* tp->ecn_flags are cleared at a later point in time when 345 * SYN ACK is ultimatively being received. 346 */ 347 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 348 } 349 350 static void 351 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 352 { 353 if (inet_rsk(req)->ecn_ok) 354 th->ece = 1; 355 } 356 357 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 358 * be sent. 359 */ 360 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 361 struct tcphdr *th, int tcp_header_len) 362 { 363 struct tcp_sock *tp = tcp_sk(sk); 364 365 if (tp->ecn_flags & TCP_ECN_OK) { 366 /* Not-retransmitted data segment: set ECT and inject CWR. */ 367 if (skb->len != tcp_header_len && 368 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 369 INET_ECN_xmit(sk); 370 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 371 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 372 th->cwr = 1; 373 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 374 } 375 } else if (!tcp_ca_needs_ecn(sk)) { 376 /* ACK or retransmitted segment: clear ECT|CE */ 377 INET_ECN_dontxmit(sk); 378 } 379 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 380 th->ece = 1; 381 } 382 } 383 384 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 385 * auto increment end seqno. 386 */ 387 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 388 { 389 skb->ip_summed = CHECKSUM_PARTIAL; 390 391 TCP_SKB_CB(skb)->tcp_flags = flags; 392 TCP_SKB_CB(skb)->sacked = 0; 393 394 tcp_skb_pcount_set(skb, 1); 395 396 TCP_SKB_CB(skb)->seq = seq; 397 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 398 seq++; 399 TCP_SKB_CB(skb)->end_seq = seq; 400 } 401 402 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 403 { 404 return tp->snd_una != tp->snd_up; 405 } 406 407 #define OPTION_SACK_ADVERTISE (1 << 0) 408 #define OPTION_TS (1 << 1) 409 #define OPTION_MD5 (1 << 2) 410 #define OPTION_WSCALE (1 << 3) 411 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 412 #define OPTION_SMC (1 << 9) 413 414 static void smc_options_write(__be32 *ptr, u16 *options) 415 { 416 #if IS_ENABLED(CONFIG_SMC) 417 if (static_branch_unlikely(&tcp_have_smc)) { 418 if (unlikely(OPTION_SMC & *options)) { 419 *ptr++ = htonl((TCPOPT_NOP << 24) | 420 (TCPOPT_NOP << 16) | 421 (TCPOPT_EXP << 8) | 422 (TCPOLEN_EXP_SMC_BASE)); 423 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 424 } 425 } 426 #endif 427 } 428 429 struct tcp_out_options { 430 u16 options; /* bit field of OPTION_* */ 431 u16 mss; /* 0 to disable */ 432 u8 ws; /* window scale, 0 to disable */ 433 u8 num_sack_blocks; /* number of SACK blocks to include */ 434 u8 hash_size; /* bytes in hash_location */ 435 __u8 *hash_location; /* temporary pointer, overloaded */ 436 __u32 tsval, tsecr; /* need to include OPTION_TS */ 437 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 438 }; 439 440 /* Write previously computed TCP options to the packet. 441 * 442 * Beware: Something in the Internet is very sensitive to the ordering of 443 * TCP options, we learned this through the hard way, so be careful here. 444 * Luckily we can at least blame others for their non-compliance but from 445 * inter-operability perspective it seems that we're somewhat stuck with 446 * the ordering which we have been using if we want to keep working with 447 * those broken things (not that it currently hurts anybody as there isn't 448 * particular reason why the ordering would need to be changed). 449 * 450 * At least SACK_PERM as the first option is known to lead to a disaster 451 * (but it may well be that other scenarios fail similarly). 452 */ 453 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 454 struct tcp_out_options *opts) 455 { 456 u16 options = opts->options; /* mungable copy */ 457 458 if (unlikely(OPTION_MD5 & options)) { 459 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 460 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 461 /* overload cookie hash location */ 462 opts->hash_location = (__u8 *)ptr; 463 ptr += 4; 464 } 465 466 if (unlikely(opts->mss)) { 467 *ptr++ = htonl((TCPOPT_MSS << 24) | 468 (TCPOLEN_MSS << 16) | 469 opts->mss); 470 } 471 472 if (likely(OPTION_TS & options)) { 473 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 474 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 475 (TCPOLEN_SACK_PERM << 16) | 476 (TCPOPT_TIMESTAMP << 8) | 477 TCPOLEN_TIMESTAMP); 478 options &= ~OPTION_SACK_ADVERTISE; 479 } else { 480 *ptr++ = htonl((TCPOPT_NOP << 24) | 481 (TCPOPT_NOP << 16) | 482 (TCPOPT_TIMESTAMP << 8) | 483 TCPOLEN_TIMESTAMP); 484 } 485 *ptr++ = htonl(opts->tsval); 486 *ptr++ = htonl(opts->tsecr); 487 } 488 489 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 490 *ptr++ = htonl((TCPOPT_NOP << 24) | 491 (TCPOPT_NOP << 16) | 492 (TCPOPT_SACK_PERM << 8) | 493 TCPOLEN_SACK_PERM); 494 } 495 496 if (unlikely(OPTION_WSCALE & options)) { 497 *ptr++ = htonl((TCPOPT_NOP << 24) | 498 (TCPOPT_WINDOW << 16) | 499 (TCPOLEN_WINDOW << 8) | 500 opts->ws); 501 } 502 503 if (unlikely(opts->num_sack_blocks)) { 504 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 505 tp->duplicate_sack : tp->selective_acks; 506 int this_sack; 507 508 *ptr++ = htonl((TCPOPT_NOP << 24) | 509 (TCPOPT_NOP << 16) | 510 (TCPOPT_SACK << 8) | 511 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 512 TCPOLEN_SACK_PERBLOCK))); 513 514 for (this_sack = 0; this_sack < opts->num_sack_blocks; 515 ++this_sack) { 516 *ptr++ = htonl(sp[this_sack].start_seq); 517 *ptr++ = htonl(sp[this_sack].end_seq); 518 } 519 520 tp->rx_opt.dsack = 0; 521 } 522 523 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 524 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 525 u8 *p = (u8 *)ptr; 526 u32 len; /* Fast Open option length */ 527 528 if (foc->exp) { 529 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 530 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 531 TCPOPT_FASTOPEN_MAGIC); 532 p += TCPOLEN_EXP_FASTOPEN_BASE; 533 } else { 534 len = TCPOLEN_FASTOPEN_BASE + foc->len; 535 *p++ = TCPOPT_FASTOPEN; 536 *p++ = len; 537 } 538 539 memcpy(p, foc->val, foc->len); 540 if ((len & 3) == 2) { 541 p[foc->len] = TCPOPT_NOP; 542 p[foc->len + 1] = TCPOPT_NOP; 543 } 544 ptr += (len + 3) >> 2; 545 } 546 547 smc_options_write(ptr, &options); 548 } 549 550 static void smc_set_option(const struct tcp_sock *tp, 551 struct tcp_out_options *opts, 552 unsigned int *remaining) 553 { 554 #if IS_ENABLED(CONFIG_SMC) 555 if (static_branch_unlikely(&tcp_have_smc)) { 556 if (tp->syn_smc) { 557 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 558 opts->options |= OPTION_SMC; 559 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 560 } 561 } 562 } 563 #endif 564 } 565 566 static void smc_set_option_cond(const struct tcp_sock *tp, 567 const struct inet_request_sock *ireq, 568 struct tcp_out_options *opts, 569 unsigned int *remaining) 570 { 571 #if IS_ENABLED(CONFIG_SMC) 572 if (static_branch_unlikely(&tcp_have_smc)) { 573 if (tp->syn_smc && ireq->smc_ok) { 574 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 575 opts->options |= OPTION_SMC; 576 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 577 } 578 } 579 } 580 #endif 581 } 582 583 /* Compute TCP options for SYN packets. This is not the final 584 * network wire format yet. 585 */ 586 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 587 struct tcp_out_options *opts, 588 struct tcp_md5sig_key **md5) 589 { 590 struct tcp_sock *tp = tcp_sk(sk); 591 unsigned int remaining = MAX_TCP_OPTION_SPACE; 592 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 593 594 *md5 = NULL; 595 #ifdef CONFIG_TCP_MD5SIG 596 if (static_branch_unlikely(&tcp_md5_needed) && 597 rcu_access_pointer(tp->md5sig_info)) { 598 *md5 = tp->af_specific->md5_lookup(sk, sk); 599 if (*md5) { 600 opts->options |= OPTION_MD5; 601 remaining -= TCPOLEN_MD5SIG_ALIGNED; 602 } 603 } 604 #endif 605 606 /* We always get an MSS option. The option bytes which will be seen in 607 * normal data packets should timestamps be used, must be in the MSS 608 * advertised. But we subtract them from tp->mss_cache so that 609 * calculations in tcp_sendmsg are simpler etc. So account for this 610 * fact here if necessary. If we don't do this correctly, as a 611 * receiver we won't recognize data packets as being full sized when we 612 * should, and thus we won't abide by the delayed ACK rules correctly. 613 * SACKs don't matter, we never delay an ACK when we have any of those 614 * going out. */ 615 opts->mss = tcp_advertise_mss(sk); 616 remaining -= TCPOLEN_MSS_ALIGNED; 617 618 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 619 opts->options |= OPTION_TS; 620 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 621 opts->tsecr = tp->rx_opt.ts_recent; 622 remaining -= TCPOLEN_TSTAMP_ALIGNED; 623 } 624 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 625 opts->ws = tp->rx_opt.rcv_wscale; 626 opts->options |= OPTION_WSCALE; 627 remaining -= TCPOLEN_WSCALE_ALIGNED; 628 } 629 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 630 opts->options |= OPTION_SACK_ADVERTISE; 631 if (unlikely(!(OPTION_TS & opts->options))) 632 remaining -= TCPOLEN_SACKPERM_ALIGNED; 633 } 634 635 if (fastopen && fastopen->cookie.len >= 0) { 636 u32 need = fastopen->cookie.len; 637 638 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 639 TCPOLEN_FASTOPEN_BASE; 640 need = (need + 3) & ~3U; /* Align to 32 bits */ 641 if (remaining >= need) { 642 opts->options |= OPTION_FAST_OPEN_COOKIE; 643 opts->fastopen_cookie = &fastopen->cookie; 644 remaining -= need; 645 tp->syn_fastopen = 1; 646 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 647 } 648 } 649 650 smc_set_option(tp, opts, &remaining); 651 652 return MAX_TCP_OPTION_SPACE - remaining; 653 } 654 655 /* Set up TCP options for SYN-ACKs. */ 656 static unsigned int tcp_synack_options(const struct sock *sk, 657 struct request_sock *req, 658 unsigned int mss, struct sk_buff *skb, 659 struct tcp_out_options *opts, 660 const struct tcp_md5sig_key *md5, 661 struct tcp_fastopen_cookie *foc) 662 { 663 struct inet_request_sock *ireq = inet_rsk(req); 664 unsigned int remaining = MAX_TCP_OPTION_SPACE; 665 666 #ifdef CONFIG_TCP_MD5SIG 667 if (md5) { 668 opts->options |= OPTION_MD5; 669 remaining -= TCPOLEN_MD5SIG_ALIGNED; 670 671 /* We can't fit any SACK blocks in a packet with MD5 + TS 672 * options. There was discussion about disabling SACK 673 * rather than TS in order to fit in better with old, 674 * buggy kernels, but that was deemed to be unnecessary. 675 */ 676 ireq->tstamp_ok &= !ireq->sack_ok; 677 } 678 #endif 679 680 /* We always send an MSS option. */ 681 opts->mss = mss; 682 remaining -= TCPOLEN_MSS_ALIGNED; 683 684 if (likely(ireq->wscale_ok)) { 685 opts->ws = ireq->rcv_wscale; 686 opts->options |= OPTION_WSCALE; 687 remaining -= TCPOLEN_WSCALE_ALIGNED; 688 } 689 if (likely(ireq->tstamp_ok)) { 690 opts->options |= OPTION_TS; 691 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 692 opts->tsecr = req->ts_recent; 693 remaining -= TCPOLEN_TSTAMP_ALIGNED; 694 } 695 if (likely(ireq->sack_ok)) { 696 opts->options |= OPTION_SACK_ADVERTISE; 697 if (unlikely(!ireq->tstamp_ok)) 698 remaining -= TCPOLEN_SACKPERM_ALIGNED; 699 } 700 if (foc != NULL && foc->len >= 0) { 701 u32 need = foc->len; 702 703 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 704 TCPOLEN_FASTOPEN_BASE; 705 need = (need + 3) & ~3U; /* Align to 32 bits */ 706 if (remaining >= need) { 707 opts->options |= OPTION_FAST_OPEN_COOKIE; 708 opts->fastopen_cookie = foc; 709 remaining -= need; 710 } 711 } 712 713 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 714 715 return MAX_TCP_OPTION_SPACE - remaining; 716 } 717 718 /* Compute TCP options for ESTABLISHED sockets. This is not the 719 * final wire format yet. 720 */ 721 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 722 struct tcp_out_options *opts, 723 struct tcp_md5sig_key **md5) 724 { 725 struct tcp_sock *tp = tcp_sk(sk); 726 unsigned int size = 0; 727 unsigned int eff_sacks; 728 729 opts->options = 0; 730 731 *md5 = NULL; 732 #ifdef CONFIG_TCP_MD5SIG 733 if (static_branch_unlikely(&tcp_md5_needed) && 734 rcu_access_pointer(tp->md5sig_info)) { 735 *md5 = tp->af_specific->md5_lookup(sk, sk); 736 if (*md5) { 737 opts->options |= OPTION_MD5; 738 size += TCPOLEN_MD5SIG_ALIGNED; 739 } 740 } 741 #endif 742 743 if (likely(tp->rx_opt.tstamp_ok)) { 744 opts->options |= OPTION_TS; 745 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 746 opts->tsecr = tp->rx_opt.ts_recent; 747 size += TCPOLEN_TSTAMP_ALIGNED; 748 } 749 750 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 751 if (unlikely(eff_sacks)) { 752 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 753 opts->num_sack_blocks = 754 min_t(unsigned int, eff_sacks, 755 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 756 TCPOLEN_SACK_PERBLOCK); 757 size += TCPOLEN_SACK_BASE_ALIGNED + 758 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 759 } 760 761 return size; 762 } 763 764 765 /* TCP SMALL QUEUES (TSQ) 766 * 767 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 768 * to reduce RTT and bufferbloat. 769 * We do this using a special skb destructor (tcp_wfree). 770 * 771 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 772 * needs to be reallocated in a driver. 773 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 774 * 775 * Since transmit from skb destructor is forbidden, we use a tasklet 776 * to process all sockets that eventually need to send more skbs. 777 * We use one tasklet per cpu, with its own queue of sockets. 778 */ 779 struct tsq_tasklet { 780 struct tasklet_struct tasklet; 781 struct list_head head; /* queue of tcp sockets */ 782 }; 783 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 784 785 static void tcp_tsq_write(struct sock *sk) 786 { 787 if ((1 << sk->sk_state) & 788 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 789 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 790 struct tcp_sock *tp = tcp_sk(sk); 791 792 if (tp->lost_out > tp->retrans_out && 793 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 794 tcp_mstamp_refresh(tp); 795 tcp_xmit_retransmit_queue(sk); 796 } 797 798 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 799 0, GFP_ATOMIC); 800 } 801 } 802 803 static void tcp_tsq_handler(struct sock *sk) 804 { 805 bh_lock_sock(sk); 806 if (!sock_owned_by_user(sk)) 807 tcp_tsq_write(sk); 808 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 809 sock_hold(sk); 810 bh_unlock_sock(sk); 811 } 812 /* 813 * One tasklet per cpu tries to send more skbs. 814 * We run in tasklet context but need to disable irqs when 815 * transferring tsq->head because tcp_wfree() might 816 * interrupt us (non NAPI drivers) 817 */ 818 static void tcp_tasklet_func(unsigned long data) 819 { 820 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 821 LIST_HEAD(list); 822 unsigned long flags; 823 struct list_head *q, *n; 824 struct tcp_sock *tp; 825 struct sock *sk; 826 827 local_irq_save(flags); 828 list_splice_init(&tsq->head, &list); 829 local_irq_restore(flags); 830 831 list_for_each_safe(q, n, &list) { 832 tp = list_entry(q, struct tcp_sock, tsq_node); 833 list_del(&tp->tsq_node); 834 835 sk = (struct sock *)tp; 836 smp_mb__before_atomic(); 837 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 838 839 tcp_tsq_handler(sk); 840 sk_free(sk); 841 } 842 } 843 844 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 845 TCPF_WRITE_TIMER_DEFERRED | \ 846 TCPF_DELACK_TIMER_DEFERRED | \ 847 TCPF_MTU_REDUCED_DEFERRED) 848 /** 849 * tcp_release_cb - tcp release_sock() callback 850 * @sk: socket 851 * 852 * called from release_sock() to perform protocol dependent 853 * actions before socket release. 854 */ 855 void tcp_release_cb(struct sock *sk) 856 { 857 unsigned long flags, nflags; 858 859 /* perform an atomic operation only if at least one flag is set */ 860 do { 861 flags = sk->sk_tsq_flags; 862 if (!(flags & TCP_DEFERRED_ALL)) 863 return; 864 nflags = flags & ~TCP_DEFERRED_ALL; 865 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 866 867 if (flags & TCPF_TSQ_DEFERRED) { 868 tcp_tsq_write(sk); 869 __sock_put(sk); 870 } 871 /* Here begins the tricky part : 872 * We are called from release_sock() with : 873 * 1) BH disabled 874 * 2) sk_lock.slock spinlock held 875 * 3) socket owned by us (sk->sk_lock.owned == 1) 876 * 877 * But following code is meant to be called from BH handlers, 878 * so we should keep BH disabled, but early release socket ownership 879 */ 880 sock_release_ownership(sk); 881 882 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 883 tcp_write_timer_handler(sk); 884 __sock_put(sk); 885 } 886 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 887 tcp_delack_timer_handler(sk); 888 __sock_put(sk); 889 } 890 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 891 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 892 __sock_put(sk); 893 } 894 } 895 EXPORT_SYMBOL(tcp_release_cb); 896 897 void __init tcp_tasklet_init(void) 898 { 899 int i; 900 901 for_each_possible_cpu(i) { 902 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 903 904 INIT_LIST_HEAD(&tsq->head); 905 tasklet_init(&tsq->tasklet, 906 tcp_tasklet_func, 907 (unsigned long)tsq); 908 } 909 } 910 911 /* 912 * Write buffer destructor automatically called from kfree_skb. 913 * We can't xmit new skbs from this context, as we might already 914 * hold qdisc lock. 915 */ 916 void tcp_wfree(struct sk_buff *skb) 917 { 918 struct sock *sk = skb->sk; 919 struct tcp_sock *tp = tcp_sk(sk); 920 unsigned long flags, nval, oval; 921 922 /* Keep one reference on sk_wmem_alloc. 923 * Will be released by sk_free() from here or tcp_tasklet_func() 924 */ 925 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 926 927 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 928 * Wait until our queues (qdisc + devices) are drained. 929 * This gives : 930 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 931 * - chance for incoming ACK (processed by another cpu maybe) 932 * to migrate this flow (skb->ooo_okay will be eventually set) 933 */ 934 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 935 goto out; 936 937 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 938 struct tsq_tasklet *tsq; 939 bool empty; 940 941 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 942 goto out; 943 944 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 945 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 946 if (nval != oval) 947 continue; 948 949 /* queue this socket to tasklet queue */ 950 local_irq_save(flags); 951 tsq = this_cpu_ptr(&tsq_tasklet); 952 empty = list_empty(&tsq->head); 953 list_add(&tp->tsq_node, &tsq->head); 954 if (empty) 955 tasklet_schedule(&tsq->tasklet); 956 local_irq_restore(flags); 957 return; 958 } 959 out: 960 sk_free(sk); 961 } 962 963 /* Note: Called under soft irq. 964 * We can call TCP stack right away, unless socket is owned by user. 965 */ 966 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 967 { 968 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 969 struct sock *sk = (struct sock *)tp; 970 971 tcp_tsq_handler(sk); 972 sock_put(sk); 973 974 return HRTIMER_NORESTART; 975 } 976 977 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 978 u64 prior_wstamp) 979 { 980 struct tcp_sock *tp = tcp_sk(sk); 981 982 if (sk->sk_pacing_status != SK_PACING_NONE) { 983 unsigned long rate = sk->sk_pacing_rate; 984 985 /* Original sch_fq does not pace first 10 MSS 986 * Note that tp->data_segs_out overflows after 2^32 packets, 987 * this is a minor annoyance. 988 */ 989 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 990 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 991 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 992 993 /* take into account OS jitter */ 994 len_ns -= min_t(u64, len_ns / 2, credit); 995 tp->tcp_wstamp_ns += len_ns; 996 } 997 } 998 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 999 } 1000 1001 /* This routine actually transmits TCP packets queued in by 1002 * tcp_do_sendmsg(). This is used by both the initial 1003 * transmission and possible later retransmissions. 1004 * All SKB's seen here are completely headerless. It is our 1005 * job to build the TCP header, and pass the packet down to 1006 * IP so it can do the same plus pass the packet off to the 1007 * device. 1008 * 1009 * We are working here with either a clone of the original 1010 * SKB, or a fresh unique copy made by the retransmit engine. 1011 */ 1012 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1013 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1014 { 1015 const struct inet_connection_sock *icsk = inet_csk(sk); 1016 struct inet_sock *inet; 1017 struct tcp_sock *tp; 1018 struct tcp_skb_cb *tcb; 1019 struct tcp_out_options opts; 1020 unsigned int tcp_options_size, tcp_header_size; 1021 struct sk_buff *oskb = NULL; 1022 struct tcp_md5sig_key *md5; 1023 struct tcphdr *th; 1024 u64 prior_wstamp; 1025 int err; 1026 1027 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1028 tp = tcp_sk(sk); 1029 prior_wstamp = tp->tcp_wstamp_ns; 1030 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1031 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1032 if (clone_it) { 1033 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1034 - tp->snd_una; 1035 oskb = skb; 1036 1037 tcp_skb_tsorted_save(oskb) { 1038 if (unlikely(skb_cloned(oskb))) 1039 skb = pskb_copy(oskb, gfp_mask); 1040 else 1041 skb = skb_clone(oskb, gfp_mask); 1042 } tcp_skb_tsorted_restore(oskb); 1043 1044 if (unlikely(!skb)) 1045 return -ENOBUFS; 1046 } 1047 1048 inet = inet_sk(sk); 1049 tcb = TCP_SKB_CB(skb); 1050 memset(&opts, 0, sizeof(opts)); 1051 1052 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1053 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1054 else 1055 tcp_options_size = tcp_established_options(sk, skb, &opts, 1056 &md5); 1057 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1058 1059 /* if no packet is in qdisc/device queue, then allow XPS to select 1060 * another queue. We can be called from tcp_tsq_handler() 1061 * which holds one reference to sk. 1062 * 1063 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1064 * One way to get this would be to set skb->truesize = 2 on them. 1065 */ 1066 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1067 1068 /* If we had to use memory reserve to allocate this skb, 1069 * this might cause drops if packet is looped back : 1070 * Other socket might not have SOCK_MEMALLOC. 1071 * Packets not looped back do not care about pfmemalloc. 1072 */ 1073 skb->pfmemalloc = 0; 1074 1075 skb_push(skb, tcp_header_size); 1076 skb_reset_transport_header(skb); 1077 1078 skb_orphan(skb); 1079 skb->sk = sk; 1080 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1081 skb_set_hash_from_sk(skb, sk); 1082 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1083 1084 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1085 1086 /* Build TCP header and checksum it. */ 1087 th = (struct tcphdr *)skb->data; 1088 th->source = inet->inet_sport; 1089 th->dest = inet->inet_dport; 1090 th->seq = htonl(tcb->seq); 1091 th->ack_seq = htonl(rcv_nxt); 1092 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1093 tcb->tcp_flags); 1094 1095 th->check = 0; 1096 th->urg_ptr = 0; 1097 1098 /* The urg_mode check is necessary during a below snd_una win probe */ 1099 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1100 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1101 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1102 th->urg = 1; 1103 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1104 th->urg_ptr = htons(0xFFFF); 1105 th->urg = 1; 1106 } 1107 } 1108 1109 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1110 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1111 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1112 th->window = htons(tcp_select_window(sk)); 1113 tcp_ecn_send(sk, skb, th, tcp_header_size); 1114 } else { 1115 /* RFC1323: The window in SYN & SYN/ACK segments 1116 * is never scaled. 1117 */ 1118 th->window = htons(min(tp->rcv_wnd, 65535U)); 1119 } 1120 #ifdef CONFIG_TCP_MD5SIG 1121 /* Calculate the MD5 hash, as we have all we need now */ 1122 if (md5) { 1123 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1124 tp->af_specific->calc_md5_hash(opts.hash_location, 1125 md5, sk, skb); 1126 } 1127 #endif 1128 1129 icsk->icsk_af_ops->send_check(sk, skb); 1130 1131 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1132 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1133 1134 if (skb->len != tcp_header_size) { 1135 tcp_event_data_sent(tp, sk); 1136 tp->data_segs_out += tcp_skb_pcount(skb); 1137 tp->bytes_sent += skb->len - tcp_header_size; 1138 } 1139 1140 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1141 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1142 tcp_skb_pcount(skb)); 1143 1144 tp->segs_out += tcp_skb_pcount(skb); 1145 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1146 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1147 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1148 1149 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1150 1151 /* Cleanup our debris for IP stacks */ 1152 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1153 sizeof(struct inet6_skb_parm))); 1154 1155 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1156 1157 if (unlikely(err > 0)) { 1158 tcp_enter_cwr(sk); 1159 err = net_xmit_eval(err); 1160 } 1161 if (!err && oskb) { 1162 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1163 tcp_rate_skb_sent(sk, oskb); 1164 } 1165 return err; 1166 } 1167 1168 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1169 gfp_t gfp_mask) 1170 { 1171 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1172 tcp_sk(sk)->rcv_nxt); 1173 } 1174 1175 /* This routine just queues the buffer for sending. 1176 * 1177 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1178 * otherwise socket can stall. 1179 */ 1180 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1181 { 1182 struct tcp_sock *tp = tcp_sk(sk); 1183 1184 /* Advance write_seq and place onto the write_queue. */ 1185 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1186 __skb_header_release(skb); 1187 tcp_add_write_queue_tail(sk, skb); 1188 sk->sk_wmem_queued += skb->truesize; 1189 sk_mem_charge(sk, skb->truesize); 1190 } 1191 1192 /* Initialize TSO segments for a packet. */ 1193 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1194 { 1195 if (skb->len <= mss_now) { 1196 /* Avoid the costly divide in the normal 1197 * non-TSO case. 1198 */ 1199 tcp_skb_pcount_set(skb, 1); 1200 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1201 } else { 1202 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1203 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1204 } 1205 } 1206 1207 /* Pcount in the middle of the write queue got changed, we need to do various 1208 * tweaks to fix counters 1209 */ 1210 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1211 { 1212 struct tcp_sock *tp = tcp_sk(sk); 1213 1214 tp->packets_out -= decr; 1215 1216 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1217 tp->sacked_out -= decr; 1218 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1219 tp->retrans_out -= decr; 1220 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1221 tp->lost_out -= decr; 1222 1223 /* Reno case is special. Sigh... */ 1224 if (tcp_is_reno(tp) && decr > 0) 1225 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1226 1227 if (tp->lost_skb_hint && 1228 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1229 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1230 tp->lost_cnt_hint -= decr; 1231 1232 tcp_verify_left_out(tp); 1233 } 1234 1235 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1236 { 1237 return TCP_SKB_CB(skb)->txstamp_ack || 1238 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1239 } 1240 1241 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1242 { 1243 struct skb_shared_info *shinfo = skb_shinfo(skb); 1244 1245 if (unlikely(tcp_has_tx_tstamp(skb)) && 1246 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1247 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1248 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1249 1250 shinfo->tx_flags &= ~tsflags; 1251 shinfo2->tx_flags |= tsflags; 1252 swap(shinfo->tskey, shinfo2->tskey); 1253 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1254 TCP_SKB_CB(skb)->txstamp_ack = 0; 1255 } 1256 } 1257 1258 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1259 { 1260 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1261 TCP_SKB_CB(skb)->eor = 0; 1262 } 1263 1264 /* Insert buff after skb on the write or rtx queue of sk. */ 1265 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1266 struct sk_buff *buff, 1267 struct sock *sk, 1268 enum tcp_queue tcp_queue) 1269 { 1270 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1271 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1272 else 1273 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1274 } 1275 1276 /* Function to create two new TCP segments. Shrinks the given segment 1277 * to the specified size and appends a new segment with the rest of the 1278 * packet to the list. This won't be called frequently, I hope. 1279 * Remember, these are still headerless SKBs at this point. 1280 */ 1281 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1282 struct sk_buff *skb, u32 len, 1283 unsigned int mss_now, gfp_t gfp) 1284 { 1285 struct tcp_sock *tp = tcp_sk(sk); 1286 struct sk_buff *buff; 1287 int nsize, old_factor; 1288 int nlen; 1289 u8 flags; 1290 1291 if (WARN_ON(len > skb->len)) 1292 return -EINVAL; 1293 1294 nsize = skb_headlen(skb) - len; 1295 if (nsize < 0) 1296 nsize = 0; 1297 1298 if (skb_unclone(skb, gfp)) 1299 return -ENOMEM; 1300 1301 /* Get a new skb... force flag on. */ 1302 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1303 if (!buff) 1304 return -ENOMEM; /* We'll just try again later. */ 1305 1306 sk->sk_wmem_queued += buff->truesize; 1307 sk_mem_charge(sk, buff->truesize); 1308 nlen = skb->len - len - nsize; 1309 buff->truesize += nlen; 1310 skb->truesize -= nlen; 1311 1312 /* Correct the sequence numbers. */ 1313 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1314 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1315 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1316 1317 /* PSH and FIN should only be set in the second packet. */ 1318 flags = TCP_SKB_CB(skb)->tcp_flags; 1319 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1320 TCP_SKB_CB(buff)->tcp_flags = flags; 1321 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1322 tcp_skb_fragment_eor(skb, buff); 1323 1324 skb_split(skb, buff, len); 1325 1326 buff->ip_summed = CHECKSUM_PARTIAL; 1327 1328 buff->tstamp = skb->tstamp; 1329 tcp_fragment_tstamp(skb, buff); 1330 1331 old_factor = tcp_skb_pcount(skb); 1332 1333 /* Fix up tso_factor for both original and new SKB. */ 1334 tcp_set_skb_tso_segs(skb, mss_now); 1335 tcp_set_skb_tso_segs(buff, mss_now); 1336 1337 /* Update delivered info for the new segment */ 1338 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1339 1340 /* If this packet has been sent out already, we must 1341 * adjust the various packet counters. 1342 */ 1343 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1344 int diff = old_factor - tcp_skb_pcount(skb) - 1345 tcp_skb_pcount(buff); 1346 1347 if (diff) 1348 tcp_adjust_pcount(sk, skb, diff); 1349 } 1350 1351 /* Link BUFF into the send queue. */ 1352 __skb_header_release(buff); 1353 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1354 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1355 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1356 1357 return 0; 1358 } 1359 1360 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1361 * data is not copied, but immediately discarded. 1362 */ 1363 static int __pskb_trim_head(struct sk_buff *skb, int len) 1364 { 1365 struct skb_shared_info *shinfo; 1366 int i, k, eat; 1367 1368 eat = min_t(int, len, skb_headlen(skb)); 1369 if (eat) { 1370 __skb_pull(skb, eat); 1371 len -= eat; 1372 if (!len) 1373 return 0; 1374 } 1375 eat = len; 1376 k = 0; 1377 shinfo = skb_shinfo(skb); 1378 for (i = 0; i < shinfo->nr_frags; i++) { 1379 int size = skb_frag_size(&shinfo->frags[i]); 1380 1381 if (size <= eat) { 1382 skb_frag_unref(skb, i); 1383 eat -= size; 1384 } else { 1385 shinfo->frags[k] = shinfo->frags[i]; 1386 if (eat) { 1387 shinfo->frags[k].page_offset += eat; 1388 skb_frag_size_sub(&shinfo->frags[k], eat); 1389 eat = 0; 1390 } 1391 k++; 1392 } 1393 } 1394 shinfo->nr_frags = k; 1395 1396 skb->data_len -= len; 1397 skb->len = skb->data_len; 1398 return len; 1399 } 1400 1401 /* Remove acked data from a packet in the transmit queue. */ 1402 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1403 { 1404 u32 delta_truesize; 1405 1406 if (skb_unclone(skb, GFP_ATOMIC)) 1407 return -ENOMEM; 1408 1409 delta_truesize = __pskb_trim_head(skb, len); 1410 1411 TCP_SKB_CB(skb)->seq += len; 1412 skb->ip_summed = CHECKSUM_PARTIAL; 1413 1414 if (delta_truesize) { 1415 skb->truesize -= delta_truesize; 1416 sk->sk_wmem_queued -= delta_truesize; 1417 sk_mem_uncharge(sk, delta_truesize); 1418 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1419 } 1420 1421 /* Any change of skb->len requires recalculation of tso factor. */ 1422 if (tcp_skb_pcount(skb) > 1) 1423 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1424 1425 return 0; 1426 } 1427 1428 /* Calculate MSS not accounting any TCP options. */ 1429 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1430 { 1431 const struct tcp_sock *tp = tcp_sk(sk); 1432 const struct inet_connection_sock *icsk = inet_csk(sk); 1433 int mss_now; 1434 1435 /* Calculate base mss without TCP options: 1436 It is MMS_S - sizeof(tcphdr) of rfc1122 1437 */ 1438 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1439 1440 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1441 if (icsk->icsk_af_ops->net_frag_header_len) { 1442 const struct dst_entry *dst = __sk_dst_get(sk); 1443 1444 if (dst && dst_allfrag(dst)) 1445 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1446 } 1447 1448 /* Clamp it (mss_clamp does not include tcp options) */ 1449 if (mss_now > tp->rx_opt.mss_clamp) 1450 mss_now = tp->rx_opt.mss_clamp; 1451 1452 /* Now subtract optional transport overhead */ 1453 mss_now -= icsk->icsk_ext_hdr_len; 1454 1455 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1456 if (mss_now < 48) 1457 mss_now = 48; 1458 return mss_now; 1459 } 1460 1461 /* Calculate MSS. Not accounting for SACKs here. */ 1462 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1463 { 1464 /* Subtract TCP options size, not including SACKs */ 1465 return __tcp_mtu_to_mss(sk, pmtu) - 1466 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1467 } 1468 1469 /* Inverse of above */ 1470 int tcp_mss_to_mtu(struct sock *sk, int mss) 1471 { 1472 const struct tcp_sock *tp = tcp_sk(sk); 1473 const struct inet_connection_sock *icsk = inet_csk(sk); 1474 int mtu; 1475 1476 mtu = mss + 1477 tp->tcp_header_len + 1478 icsk->icsk_ext_hdr_len + 1479 icsk->icsk_af_ops->net_header_len; 1480 1481 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1482 if (icsk->icsk_af_ops->net_frag_header_len) { 1483 const struct dst_entry *dst = __sk_dst_get(sk); 1484 1485 if (dst && dst_allfrag(dst)) 1486 mtu += icsk->icsk_af_ops->net_frag_header_len; 1487 } 1488 return mtu; 1489 } 1490 EXPORT_SYMBOL(tcp_mss_to_mtu); 1491 1492 /* MTU probing init per socket */ 1493 void tcp_mtup_init(struct sock *sk) 1494 { 1495 struct tcp_sock *tp = tcp_sk(sk); 1496 struct inet_connection_sock *icsk = inet_csk(sk); 1497 struct net *net = sock_net(sk); 1498 1499 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1500 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1501 icsk->icsk_af_ops->net_header_len; 1502 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1503 icsk->icsk_mtup.probe_size = 0; 1504 if (icsk->icsk_mtup.enabled) 1505 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1506 } 1507 EXPORT_SYMBOL(tcp_mtup_init); 1508 1509 /* This function synchronize snd mss to current pmtu/exthdr set. 1510 1511 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1512 for TCP options, but includes only bare TCP header. 1513 1514 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1515 It is minimum of user_mss and mss received with SYN. 1516 It also does not include TCP options. 1517 1518 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1519 1520 tp->mss_cache is current effective sending mss, including 1521 all tcp options except for SACKs. It is evaluated, 1522 taking into account current pmtu, but never exceeds 1523 tp->rx_opt.mss_clamp. 1524 1525 NOTE1. rfc1122 clearly states that advertised MSS 1526 DOES NOT include either tcp or ip options. 1527 1528 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1529 are READ ONLY outside this function. --ANK (980731) 1530 */ 1531 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1532 { 1533 struct tcp_sock *tp = tcp_sk(sk); 1534 struct inet_connection_sock *icsk = inet_csk(sk); 1535 int mss_now; 1536 1537 if (icsk->icsk_mtup.search_high > pmtu) 1538 icsk->icsk_mtup.search_high = pmtu; 1539 1540 mss_now = tcp_mtu_to_mss(sk, pmtu); 1541 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1542 1543 /* And store cached results */ 1544 icsk->icsk_pmtu_cookie = pmtu; 1545 if (icsk->icsk_mtup.enabled) 1546 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1547 tp->mss_cache = mss_now; 1548 1549 return mss_now; 1550 } 1551 EXPORT_SYMBOL(tcp_sync_mss); 1552 1553 /* Compute the current effective MSS, taking SACKs and IP options, 1554 * and even PMTU discovery events into account. 1555 */ 1556 unsigned int tcp_current_mss(struct sock *sk) 1557 { 1558 const struct tcp_sock *tp = tcp_sk(sk); 1559 const struct dst_entry *dst = __sk_dst_get(sk); 1560 u32 mss_now; 1561 unsigned int header_len; 1562 struct tcp_out_options opts; 1563 struct tcp_md5sig_key *md5; 1564 1565 mss_now = tp->mss_cache; 1566 1567 if (dst) { 1568 u32 mtu = dst_mtu(dst); 1569 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1570 mss_now = tcp_sync_mss(sk, mtu); 1571 } 1572 1573 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1574 sizeof(struct tcphdr); 1575 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1576 * some common options. If this is an odd packet (because we have SACK 1577 * blocks etc) then our calculated header_len will be different, and 1578 * we have to adjust mss_now correspondingly */ 1579 if (header_len != tp->tcp_header_len) { 1580 int delta = (int) header_len - tp->tcp_header_len; 1581 mss_now -= delta; 1582 } 1583 1584 return mss_now; 1585 } 1586 1587 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1588 * As additional protections, we do not touch cwnd in retransmission phases, 1589 * and if application hit its sndbuf limit recently. 1590 */ 1591 static void tcp_cwnd_application_limited(struct sock *sk) 1592 { 1593 struct tcp_sock *tp = tcp_sk(sk); 1594 1595 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1596 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1597 /* Limited by application or receiver window. */ 1598 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1599 u32 win_used = max(tp->snd_cwnd_used, init_win); 1600 if (win_used < tp->snd_cwnd) { 1601 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1602 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1603 } 1604 tp->snd_cwnd_used = 0; 1605 } 1606 tp->snd_cwnd_stamp = tcp_jiffies32; 1607 } 1608 1609 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1610 { 1611 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1612 struct tcp_sock *tp = tcp_sk(sk); 1613 1614 /* Track the maximum number of outstanding packets in each 1615 * window, and remember whether we were cwnd-limited then. 1616 */ 1617 if (!before(tp->snd_una, tp->max_packets_seq) || 1618 tp->packets_out > tp->max_packets_out) { 1619 tp->max_packets_out = tp->packets_out; 1620 tp->max_packets_seq = tp->snd_nxt; 1621 tp->is_cwnd_limited = is_cwnd_limited; 1622 } 1623 1624 if (tcp_is_cwnd_limited(sk)) { 1625 /* Network is feed fully. */ 1626 tp->snd_cwnd_used = 0; 1627 tp->snd_cwnd_stamp = tcp_jiffies32; 1628 } else { 1629 /* Network starves. */ 1630 if (tp->packets_out > tp->snd_cwnd_used) 1631 tp->snd_cwnd_used = tp->packets_out; 1632 1633 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1634 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1635 !ca_ops->cong_control) 1636 tcp_cwnd_application_limited(sk); 1637 1638 /* The following conditions together indicate the starvation 1639 * is caused by insufficient sender buffer: 1640 * 1) just sent some data (see tcp_write_xmit) 1641 * 2) not cwnd limited (this else condition) 1642 * 3) no more data to send (tcp_write_queue_empty()) 1643 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1644 */ 1645 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1646 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1647 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1648 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1649 } 1650 } 1651 1652 /* Minshall's variant of the Nagle send check. */ 1653 static bool tcp_minshall_check(const struct tcp_sock *tp) 1654 { 1655 return after(tp->snd_sml, tp->snd_una) && 1656 !after(tp->snd_sml, tp->snd_nxt); 1657 } 1658 1659 /* Update snd_sml if this skb is under mss 1660 * Note that a TSO packet might end with a sub-mss segment 1661 * The test is really : 1662 * if ((skb->len % mss) != 0) 1663 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1664 * But we can avoid doing the divide again given we already have 1665 * skb_pcount = skb->len / mss_now 1666 */ 1667 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1668 const struct sk_buff *skb) 1669 { 1670 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1671 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1672 } 1673 1674 /* Return false, if packet can be sent now without violation Nagle's rules: 1675 * 1. It is full sized. (provided by caller in %partial bool) 1676 * 2. Or it contains FIN. (already checked by caller) 1677 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1678 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1679 * With Minshall's modification: all sent small packets are ACKed. 1680 */ 1681 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1682 int nonagle) 1683 { 1684 return partial && 1685 ((nonagle & TCP_NAGLE_CORK) || 1686 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1687 } 1688 1689 /* Return how many segs we'd like on a TSO packet, 1690 * to send one TSO packet per ms 1691 */ 1692 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1693 int min_tso_segs) 1694 { 1695 u32 bytes, segs; 1696 1697 bytes = min_t(unsigned long, 1698 sk->sk_pacing_rate >> sk->sk_pacing_shift, 1699 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1700 1701 /* Goal is to send at least one packet per ms, 1702 * not one big TSO packet every 100 ms. 1703 * This preserves ACK clocking and is consistent 1704 * with tcp_tso_should_defer() heuristic. 1705 */ 1706 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1707 1708 return segs; 1709 } 1710 1711 /* Return the number of segments we want in the skb we are transmitting. 1712 * See if congestion control module wants to decide; otherwise, autosize. 1713 */ 1714 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1715 { 1716 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1717 u32 min_tso, tso_segs; 1718 1719 min_tso = ca_ops->min_tso_segs ? 1720 ca_ops->min_tso_segs(sk) : 1721 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1722 1723 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1724 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1725 } 1726 1727 /* Returns the portion of skb which can be sent right away */ 1728 static unsigned int tcp_mss_split_point(const struct sock *sk, 1729 const struct sk_buff *skb, 1730 unsigned int mss_now, 1731 unsigned int max_segs, 1732 int nonagle) 1733 { 1734 const struct tcp_sock *tp = tcp_sk(sk); 1735 u32 partial, needed, window, max_len; 1736 1737 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1738 max_len = mss_now * max_segs; 1739 1740 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1741 return max_len; 1742 1743 needed = min(skb->len, window); 1744 1745 if (max_len <= needed) 1746 return max_len; 1747 1748 partial = needed % mss_now; 1749 /* If last segment is not a full MSS, check if Nagle rules allow us 1750 * to include this last segment in this skb. 1751 * Otherwise, we'll split the skb at last MSS boundary 1752 */ 1753 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1754 return needed - partial; 1755 1756 return needed; 1757 } 1758 1759 /* Can at least one segment of SKB be sent right now, according to the 1760 * congestion window rules? If so, return how many segments are allowed. 1761 */ 1762 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1763 const struct sk_buff *skb) 1764 { 1765 u32 in_flight, cwnd, halfcwnd; 1766 1767 /* Don't be strict about the congestion window for the final FIN. */ 1768 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1769 tcp_skb_pcount(skb) == 1) 1770 return 1; 1771 1772 in_flight = tcp_packets_in_flight(tp); 1773 cwnd = tp->snd_cwnd; 1774 if (in_flight >= cwnd) 1775 return 0; 1776 1777 /* For better scheduling, ensure we have at least 1778 * 2 GSO packets in flight. 1779 */ 1780 halfcwnd = max(cwnd >> 1, 1U); 1781 return min(halfcwnd, cwnd - in_flight); 1782 } 1783 1784 /* Initialize TSO state of a skb. 1785 * This must be invoked the first time we consider transmitting 1786 * SKB onto the wire. 1787 */ 1788 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1789 { 1790 int tso_segs = tcp_skb_pcount(skb); 1791 1792 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1793 tcp_set_skb_tso_segs(skb, mss_now); 1794 tso_segs = tcp_skb_pcount(skb); 1795 } 1796 return tso_segs; 1797 } 1798 1799 1800 /* Return true if the Nagle test allows this packet to be 1801 * sent now. 1802 */ 1803 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1804 unsigned int cur_mss, int nonagle) 1805 { 1806 /* Nagle rule does not apply to frames, which sit in the middle of the 1807 * write_queue (they have no chances to get new data). 1808 * 1809 * This is implemented in the callers, where they modify the 'nonagle' 1810 * argument based upon the location of SKB in the send queue. 1811 */ 1812 if (nonagle & TCP_NAGLE_PUSH) 1813 return true; 1814 1815 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1816 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1817 return true; 1818 1819 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1820 return true; 1821 1822 return false; 1823 } 1824 1825 /* Does at least the first segment of SKB fit into the send window? */ 1826 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1827 const struct sk_buff *skb, 1828 unsigned int cur_mss) 1829 { 1830 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1831 1832 if (skb->len > cur_mss) 1833 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1834 1835 return !after(end_seq, tcp_wnd_end(tp)); 1836 } 1837 1838 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1839 * which is put after SKB on the list. It is very much like 1840 * tcp_fragment() except that it may make several kinds of assumptions 1841 * in order to speed up the splitting operation. In particular, we 1842 * know that all the data is in scatter-gather pages, and that the 1843 * packet has never been sent out before (and thus is not cloned). 1844 */ 1845 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1846 unsigned int mss_now, gfp_t gfp) 1847 { 1848 int nlen = skb->len - len; 1849 struct sk_buff *buff; 1850 u8 flags; 1851 1852 /* All of a TSO frame must be composed of paged data. */ 1853 if (skb->len != skb->data_len) 1854 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 1855 skb, len, mss_now, gfp); 1856 1857 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1858 if (unlikely(!buff)) 1859 return -ENOMEM; 1860 1861 sk->sk_wmem_queued += buff->truesize; 1862 sk_mem_charge(sk, buff->truesize); 1863 buff->truesize += nlen; 1864 skb->truesize -= nlen; 1865 1866 /* Correct the sequence numbers. */ 1867 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1868 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1869 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1870 1871 /* PSH and FIN should only be set in the second packet. */ 1872 flags = TCP_SKB_CB(skb)->tcp_flags; 1873 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1874 TCP_SKB_CB(buff)->tcp_flags = flags; 1875 1876 /* This packet was never sent out yet, so no SACK bits. */ 1877 TCP_SKB_CB(buff)->sacked = 0; 1878 1879 tcp_skb_fragment_eor(skb, buff); 1880 1881 buff->ip_summed = CHECKSUM_PARTIAL; 1882 skb_split(skb, buff, len); 1883 tcp_fragment_tstamp(skb, buff); 1884 1885 /* Fix up tso_factor for both original and new SKB. */ 1886 tcp_set_skb_tso_segs(skb, mss_now); 1887 tcp_set_skb_tso_segs(buff, mss_now); 1888 1889 /* Link BUFF into the send queue. */ 1890 __skb_header_release(buff); 1891 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 1892 1893 return 0; 1894 } 1895 1896 /* Try to defer sending, if possible, in order to minimize the amount 1897 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1898 * 1899 * This algorithm is from John Heffner. 1900 */ 1901 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1902 bool *is_cwnd_limited, 1903 bool *is_rwnd_limited, 1904 u32 max_segs) 1905 { 1906 const struct inet_connection_sock *icsk = inet_csk(sk); 1907 u32 send_win, cong_win, limit, in_flight; 1908 struct tcp_sock *tp = tcp_sk(sk); 1909 struct sk_buff *head; 1910 int win_divisor; 1911 s64 delta; 1912 1913 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1914 goto send_now; 1915 1916 /* Avoid bursty behavior by allowing defer 1917 * only if the last write was recent (1 ms). 1918 * Note that tp->tcp_wstamp_ns can be in the future if we have 1919 * packets waiting in a qdisc or device for EDT delivery. 1920 */ 1921 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 1922 if (delta > 0) 1923 goto send_now; 1924 1925 in_flight = tcp_packets_in_flight(tp); 1926 1927 BUG_ON(tcp_skb_pcount(skb) <= 1); 1928 BUG_ON(tp->snd_cwnd <= in_flight); 1929 1930 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1931 1932 /* From in_flight test above, we know that cwnd > in_flight. */ 1933 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1934 1935 limit = min(send_win, cong_win); 1936 1937 /* If a full-sized TSO skb can be sent, do it. */ 1938 if (limit >= max_segs * tp->mss_cache) 1939 goto send_now; 1940 1941 /* Middle in queue won't get any more data, full sendable already? */ 1942 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1943 goto send_now; 1944 1945 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1946 if (win_divisor) { 1947 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1948 1949 /* If at least some fraction of a window is available, 1950 * just use it. 1951 */ 1952 chunk /= win_divisor; 1953 if (limit >= chunk) 1954 goto send_now; 1955 } else { 1956 /* Different approach, try not to defer past a single 1957 * ACK. Receiver should ACK every other full sized 1958 * frame, so if we have space for more than 3 frames 1959 * then send now. 1960 */ 1961 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1962 goto send_now; 1963 } 1964 1965 /* TODO : use tsorted_sent_queue ? */ 1966 head = tcp_rtx_queue_head(sk); 1967 if (!head) 1968 goto send_now; 1969 delta = tp->tcp_clock_cache - head->tstamp; 1970 /* If next ACK is likely to come too late (half srtt), do not defer */ 1971 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 1972 goto send_now; 1973 1974 /* Ok, it looks like it is advisable to defer. 1975 * Three cases are tracked : 1976 * 1) We are cwnd-limited 1977 * 2) We are rwnd-limited 1978 * 3) We are application limited. 1979 */ 1980 if (cong_win < send_win) { 1981 if (cong_win <= skb->len) { 1982 *is_cwnd_limited = true; 1983 return true; 1984 } 1985 } else { 1986 if (send_win <= skb->len) { 1987 *is_rwnd_limited = true; 1988 return true; 1989 } 1990 } 1991 1992 /* If this packet won't get more data, do not wait. */ 1993 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 1994 TCP_SKB_CB(skb)->eor) 1995 goto send_now; 1996 1997 return true; 1998 1999 send_now: 2000 return false; 2001 } 2002 2003 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2004 { 2005 struct inet_connection_sock *icsk = inet_csk(sk); 2006 struct tcp_sock *tp = tcp_sk(sk); 2007 struct net *net = sock_net(sk); 2008 u32 interval; 2009 s32 delta; 2010 2011 interval = net->ipv4.sysctl_tcp_probe_interval; 2012 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2013 if (unlikely(delta >= interval * HZ)) { 2014 int mss = tcp_current_mss(sk); 2015 2016 /* Update current search range */ 2017 icsk->icsk_mtup.probe_size = 0; 2018 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2019 sizeof(struct tcphdr) + 2020 icsk->icsk_af_ops->net_header_len; 2021 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2022 2023 /* Update probe time stamp */ 2024 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2025 } 2026 } 2027 2028 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2029 { 2030 struct sk_buff *skb, *next; 2031 2032 skb = tcp_send_head(sk); 2033 tcp_for_write_queue_from_safe(skb, next, sk) { 2034 if (len <= skb->len) 2035 break; 2036 2037 if (unlikely(TCP_SKB_CB(skb)->eor)) 2038 return false; 2039 2040 len -= skb->len; 2041 } 2042 2043 return true; 2044 } 2045 2046 /* Create a new MTU probe if we are ready. 2047 * MTU probe is regularly attempting to increase the path MTU by 2048 * deliberately sending larger packets. This discovers routing 2049 * changes resulting in larger path MTUs. 2050 * 2051 * Returns 0 if we should wait to probe (no cwnd available), 2052 * 1 if a probe was sent, 2053 * -1 otherwise 2054 */ 2055 static int tcp_mtu_probe(struct sock *sk) 2056 { 2057 struct inet_connection_sock *icsk = inet_csk(sk); 2058 struct tcp_sock *tp = tcp_sk(sk); 2059 struct sk_buff *skb, *nskb, *next; 2060 struct net *net = sock_net(sk); 2061 int probe_size; 2062 int size_needed; 2063 int copy, len; 2064 int mss_now; 2065 int interval; 2066 2067 /* Not currently probing/verifying, 2068 * not in recovery, 2069 * have enough cwnd, and 2070 * not SACKing (the variable headers throw things off) 2071 */ 2072 if (likely(!icsk->icsk_mtup.enabled || 2073 icsk->icsk_mtup.probe_size || 2074 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2075 tp->snd_cwnd < 11 || 2076 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2077 return -1; 2078 2079 /* Use binary search for probe_size between tcp_mss_base, 2080 * and current mss_clamp. if (search_high - search_low) 2081 * smaller than a threshold, backoff from probing. 2082 */ 2083 mss_now = tcp_current_mss(sk); 2084 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2085 icsk->icsk_mtup.search_low) >> 1); 2086 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2087 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2088 /* When misfortune happens, we are reprobing actively, 2089 * and then reprobe timer has expired. We stick with current 2090 * probing process by not resetting search range to its orignal. 2091 */ 2092 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2093 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2094 /* Check whether enough time has elaplased for 2095 * another round of probing. 2096 */ 2097 tcp_mtu_check_reprobe(sk); 2098 return -1; 2099 } 2100 2101 /* Have enough data in the send queue to probe? */ 2102 if (tp->write_seq - tp->snd_nxt < size_needed) 2103 return -1; 2104 2105 if (tp->snd_wnd < size_needed) 2106 return -1; 2107 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2108 return 0; 2109 2110 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2111 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2112 if (!tcp_packets_in_flight(tp)) 2113 return -1; 2114 else 2115 return 0; 2116 } 2117 2118 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2119 return -1; 2120 2121 /* We're allowed to probe. Build it now. */ 2122 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2123 if (!nskb) 2124 return -1; 2125 sk->sk_wmem_queued += nskb->truesize; 2126 sk_mem_charge(sk, nskb->truesize); 2127 2128 skb = tcp_send_head(sk); 2129 2130 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2131 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2132 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2133 TCP_SKB_CB(nskb)->sacked = 0; 2134 nskb->csum = 0; 2135 nskb->ip_summed = CHECKSUM_PARTIAL; 2136 2137 tcp_insert_write_queue_before(nskb, skb, sk); 2138 tcp_highest_sack_replace(sk, skb, nskb); 2139 2140 len = 0; 2141 tcp_for_write_queue_from_safe(skb, next, sk) { 2142 copy = min_t(int, skb->len, probe_size - len); 2143 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2144 2145 if (skb->len <= copy) { 2146 /* We've eaten all the data from this skb. 2147 * Throw it away. */ 2148 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2149 /* If this is the last SKB we copy and eor is set 2150 * we need to propagate it to the new skb. 2151 */ 2152 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2153 tcp_unlink_write_queue(skb, sk); 2154 sk_wmem_free_skb(sk, skb); 2155 } else { 2156 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2157 ~(TCPHDR_FIN|TCPHDR_PSH); 2158 if (!skb_shinfo(skb)->nr_frags) { 2159 skb_pull(skb, copy); 2160 } else { 2161 __pskb_trim_head(skb, copy); 2162 tcp_set_skb_tso_segs(skb, mss_now); 2163 } 2164 TCP_SKB_CB(skb)->seq += copy; 2165 } 2166 2167 len += copy; 2168 2169 if (len >= probe_size) 2170 break; 2171 } 2172 tcp_init_tso_segs(nskb, nskb->len); 2173 2174 /* We're ready to send. If this fails, the probe will 2175 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2176 */ 2177 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2178 /* Decrement cwnd here because we are sending 2179 * effectively two packets. */ 2180 tp->snd_cwnd--; 2181 tcp_event_new_data_sent(sk, nskb); 2182 2183 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2184 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2185 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2186 2187 return 1; 2188 } 2189 2190 return -1; 2191 } 2192 2193 static bool tcp_pacing_check(struct sock *sk) 2194 { 2195 struct tcp_sock *tp = tcp_sk(sk); 2196 2197 if (!tcp_needs_internal_pacing(sk)) 2198 return false; 2199 2200 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2201 return false; 2202 2203 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2204 hrtimer_start(&tp->pacing_timer, 2205 ns_to_ktime(tp->tcp_wstamp_ns), 2206 HRTIMER_MODE_ABS_PINNED_SOFT); 2207 sock_hold(sk); 2208 } 2209 return true; 2210 } 2211 2212 /* TCP Small Queues : 2213 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2214 * (These limits are doubled for retransmits) 2215 * This allows for : 2216 * - better RTT estimation and ACK scheduling 2217 * - faster recovery 2218 * - high rates 2219 * Alas, some drivers / subsystems require a fair amount 2220 * of queued bytes to ensure line rate. 2221 * One example is wifi aggregation (802.11 AMPDU) 2222 */ 2223 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2224 unsigned int factor) 2225 { 2226 unsigned long limit; 2227 2228 limit = max_t(unsigned long, 2229 2 * skb->truesize, 2230 sk->sk_pacing_rate >> sk->sk_pacing_shift); 2231 if (sk->sk_pacing_status == SK_PACING_NONE) 2232 limit = min_t(unsigned long, limit, 2233 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2234 limit <<= factor; 2235 2236 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2237 /* Always send skb if rtx queue is empty. 2238 * No need to wait for TX completion to call us back, 2239 * after softirq/tasklet schedule. 2240 * This helps when TX completions are delayed too much. 2241 */ 2242 if (tcp_rtx_queue_empty(sk)) 2243 return false; 2244 2245 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2246 /* It is possible TX completion already happened 2247 * before we set TSQ_THROTTLED, so we must 2248 * test again the condition. 2249 */ 2250 smp_mb__after_atomic(); 2251 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2252 return true; 2253 } 2254 return false; 2255 } 2256 2257 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2258 { 2259 const u32 now = tcp_jiffies32; 2260 enum tcp_chrono old = tp->chrono_type; 2261 2262 if (old > TCP_CHRONO_UNSPEC) 2263 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2264 tp->chrono_start = now; 2265 tp->chrono_type = new; 2266 } 2267 2268 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2269 { 2270 struct tcp_sock *tp = tcp_sk(sk); 2271 2272 /* If there are multiple conditions worthy of tracking in a 2273 * chronograph then the highest priority enum takes precedence 2274 * over the other conditions. So that if something "more interesting" 2275 * starts happening, stop the previous chrono and start a new one. 2276 */ 2277 if (type > tp->chrono_type) 2278 tcp_chrono_set(tp, type); 2279 } 2280 2281 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2282 { 2283 struct tcp_sock *tp = tcp_sk(sk); 2284 2285 2286 /* There are multiple conditions worthy of tracking in a 2287 * chronograph, so that the highest priority enum takes 2288 * precedence over the other conditions (see tcp_chrono_start). 2289 * If a condition stops, we only stop chrono tracking if 2290 * it's the "most interesting" or current chrono we are 2291 * tracking and starts busy chrono if we have pending data. 2292 */ 2293 if (tcp_rtx_and_write_queues_empty(sk)) 2294 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2295 else if (type == tp->chrono_type) 2296 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2297 } 2298 2299 /* This routine writes packets to the network. It advances the 2300 * send_head. This happens as incoming acks open up the remote 2301 * window for us. 2302 * 2303 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2304 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2305 * account rare use of URG, this is not a big flaw. 2306 * 2307 * Send at most one packet when push_one > 0. Temporarily ignore 2308 * cwnd limit to force at most one packet out when push_one == 2. 2309 2310 * Returns true, if no segments are in flight and we have queued segments, 2311 * but cannot send anything now because of SWS or another problem. 2312 */ 2313 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2314 int push_one, gfp_t gfp) 2315 { 2316 struct tcp_sock *tp = tcp_sk(sk); 2317 struct sk_buff *skb; 2318 unsigned int tso_segs, sent_pkts; 2319 int cwnd_quota; 2320 int result; 2321 bool is_cwnd_limited = false, is_rwnd_limited = false; 2322 u32 max_segs; 2323 2324 sent_pkts = 0; 2325 2326 tcp_mstamp_refresh(tp); 2327 if (!push_one) { 2328 /* Do MTU probing. */ 2329 result = tcp_mtu_probe(sk); 2330 if (!result) { 2331 return false; 2332 } else if (result > 0) { 2333 sent_pkts = 1; 2334 } 2335 } 2336 2337 max_segs = tcp_tso_segs(sk, mss_now); 2338 while ((skb = tcp_send_head(sk))) { 2339 unsigned int limit; 2340 2341 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2342 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2343 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2344 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2345 tcp_init_tso_segs(skb, mss_now); 2346 goto repair; /* Skip network transmission */ 2347 } 2348 2349 if (tcp_pacing_check(sk)) 2350 break; 2351 2352 tso_segs = tcp_init_tso_segs(skb, mss_now); 2353 BUG_ON(!tso_segs); 2354 2355 cwnd_quota = tcp_cwnd_test(tp, skb); 2356 if (!cwnd_quota) { 2357 if (push_one == 2) 2358 /* Force out a loss probe pkt. */ 2359 cwnd_quota = 1; 2360 else 2361 break; 2362 } 2363 2364 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2365 is_rwnd_limited = true; 2366 break; 2367 } 2368 2369 if (tso_segs == 1) { 2370 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2371 (tcp_skb_is_last(sk, skb) ? 2372 nonagle : TCP_NAGLE_PUSH)))) 2373 break; 2374 } else { 2375 if (!push_one && 2376 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2377 &is_rwnd_limited, max_segs)) 2378 break; 2379 } 2380 2381 limit = mss_now; 2382 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2383 limit = tcp_mss_split_point(sk, skb, mss_now, 2384 min_t(unsigned int, 2385 cwnd_quota, 2386 max_segs), 2387 nonagle); 2388 2389 if (skb->len > limit && 2390 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2391 break; 2392 2393 if (tcp_small_queue_check(sk, skb, 0)) 2394 break; 2395 2396 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2397 break; 2398 2399 repair: 2400 /* Advance the send_head. This one is sent out. 2401 * This call will increment packets_out. 2402 */ 2403 tcp_event_new_data_sent(sk, skb); 2404 2405 tcp_minshall_update(tp, mss_now, skb); 2406 sent_pkts += tcp_skb_pcount(skb); 2407 2408 if (push_one) 2409 break; 2410 } 2411 2412 if (is_rwnd_limited) 2413 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2414 else 2415 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2416 2417 if (likely(sent_pkts)) { 2418 if (tcp_in_cwnd_reduction(sk)) 2419 tp->prr_out += sent_pkts; 2420 2421 /* Send one loss probe per tail loss episode. */ 2422 if (push_one != 2) 2423 tcp_schedule_loss_probe(sk, false); 2424 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2425 tcp_cwnd_validate(sk, is_cwnd_limited); 2426 return false; 2427 } 2428 return !tp->packets_out && !tcp_write_queue_empty(sk); 2429 } 2430 2431 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2432 { 2433 struct inet_connection_sock *icsk = inet_csk(sk); 2434 struct tcp_sock *tp = tcp_sk(sk); 2435 u32 timeout, rto_delta_us; 2436 int early_retrans; 2437 2438 /* Don't do any loss probe on a Fast Open connection before 3WHS 2439 * finishes. 2440 */ 2441 if (tp->fastopen_rsk) 2442 return false; 2443 2444 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2445 /* Schedule a loss probe in 2*RTT for SACK capable connections 2446 * not in loss recovery, that are either limited by cwnd or application. 2447 */ 2448 if ((early_retrans != 3 && early_retrans != 4) || 2449 !tp->packets_out || !tcp_is_sack(tp) || 2450 (icsk->icsk_ca_state != TCP_CA_Open && 2451 icsk->icsk_ca_state != TCP_CA_CWR)) 2452 return false; 2453 2454 /* Probe timeout is 2*rtt. Add minimum RTO to account 2455 * for delayed ack when there's one outstanding packet. If no RTT 2456 * sample is available then probe after TCP_TIMEOUT_INIT. 2457 */ 2458 if (tp->srtt_us) { 2459 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2460 if (tp->packets_out == 1) 2461 timeout += TCP_RTO_MIN; 2462 else 2463 timeout += TCP_TIMEOUT_MIN; 2464 } else { 2465 timeout = TCP_TIMEOUT_INIT; 2466 } 2467 2468 /* If the RTO formula yields an earlier time, then use that time. */ 2469 rto_delta_us = advancing_rto ? 2470 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2471 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2472 if (rto_delta_us > 0) 2473 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2474 2475 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2476 TCP_RTO_MAX, NULL); 2477 return true; 2478 } 2479 2480 /* Thanks to skb fast clones, we can detect if a prior transmit of 2481 * a packet is still in a qdisc or driver queue. 2482 * In this case, there is very little point doing a retransmit ! 2483 */ 2484 static bool skb_still_in_host_queue(const struct sock *sk, 2485 const struct sk_buff *skb) 2486 { 2487 if (unlikely(skb_fclone_busy(sk, skb))) { 2488 NET_INC_STATS(sock_net(sk), 2489 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2490 return true; 2491 } 2492 return false; 2493 } 2494 2495 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2496 * retransmit the last segment. 2497 */ 2498 void tcp_send_loss_probe(struct sock *sk) 2499 { 2500 struct tcp_sock *tp = tcp_sk(sk); 2501 struct sk_buff *skb; 2502 int pcount; 2503 int mss = tcp_current_mss(sk); 2504 2505 skb = tcp_send_head(sk); 2506 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2507 pcount = tp->packets_out; 2508 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2509 if (tp->packets_out > pcount) 2510 goto probe_sent; 2511 goto rearm_timer; 2512 } 2513 skb = skb_rb_last(&sk->tcp_rtx_queue); 2514 if (unlikely(!skb)) { 2515 WARN_ONCE(tp->packets_out, 2516 "invalid inflight: %u state %u cwnd %u mss %d\n", 2517 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); 2518 inet_csk(sk)->icsk_pending = 0; 2519 return; 2520 } 2521 2522 /* At most one outstanding TLP retransmission. */ 2523 if (tp->tlp_high_seq) 2524 goto rearm_timer; 2525 2526 if (skb_still_in_host_queue(sk, skb)) 2527 goto rearm_timer; 2528 2529 pcount = tcp_skb_pcount(skb); 2530 if (WARN_ON(!pcount)) 2531 goto rearm_timer; 2532 2533 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2534 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2535 (pcount - 1) * mss, mss, 2536 GFP_ATOMIC))) 2537 goto rearm_timer; 2538 skb = skb_rb_next(skb); 2539 } 2540 2541 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2542 goto rearm_timer; 2543 2544 if (__tcp_retransmit_skb(sk, skb, 1)) 2545 goto rearm_timer; 2546 2547 /* Record snd_nxt for loss detection. */ 2548 tp->tlp_high_seq = tp->snd_nxt; 2549 2550 probe_sent: 2551 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2552 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2553 inet_csk(sk)->icsk_pending = 0; 2554 rearm_timer: 2555 tcp_rearm_rto(sk); 2556 } 2557 2558 /* Push out any pending frames which were held back due to 2559 * TCP_CORK or attempt at coalescing tiny packets. 2560 * The socket must be locked by the caller. 2561 */ 2562 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2563 int nonagle) 2564 { 2565 /* If we are closed, the bytes will have to remain here. 2566 * In time closedown will finish, we empty the write queue and 2567 * all will be happy. 2568 */ 2569 if (unlikely(sk->sk_state == TCP_CLOSE)) 2570 return; 2571 2572 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2573 sk_gfp_mask(sk, GFP_ATOMIC))) 2574 tcp_check_probe_timer(sk); 2575 } 2576 2577 /* Send _single_ skb sitting at the send head. This function requires 2578 * true push pending frames to setup probe timer etc. 2579 */ 2580 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2581 { 2582 struct sk_buff *skb = tcp_send_head(sk); 2583 2584 BUG_ON(!skb || skb->len < mss_now); 2585 2586 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2587 } 2588 2589 /* This function returns the amount that we can raise the 2590 * usable window based on the following constraints 2591 * 2592 * 1. The window can never be shrunk once it is offered (RFC 793) 2593 * 2. We limit memory per socket 2594 * 2595 * RFC 1122: 2596 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2597 * RECV.NEXT + RCV.WIN fixed until: 2598 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2599 * 2600 * i.e. don't raise the right edge of the window until you can raise 2601 * it at least MSS bytes. 2602 * 2603 * Unfortunately, the recommended algorithm breaks header prediction, 2604 * since header prediction assumes th->window stays fixed. 2605 * 2606 * Strictly speaking, keeping th->window fixed violates the receiver 2607 * side SWS prevention criteria. The problem is that under this rule 2608 * a stream of single byte packets will cause the right side of the 2609 * window to always advance by a single byte. 2610 * 2611 * Of course, if the sender implements sender side SWS prevention 2612 * then this will not be a problem. 2613 * 2614 * BSD seems to make the following compromise: 2615 * 2616 * If the free space is less than the 1/4 of the maximum 2617 * space available and the free space is less than 1/2 mss, 2618 * then set the window to 0. 2619 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2620 * Otherwise, just prevent the window from shrinking 2621 * and from being larger than the largest representable value. 2622 * 2623 * This prevents incremental opening of the window in the regime 2624 * where TCP is limited by the speed of the reader side taking 2625 * data out of the TCP receive queue. It does nothing about 2626 * those cases where the window is constrained on the sender side 2627 * because the pipeline is full. 2628 * 2629 * BSD also seems to "accidentally" limit itself to windows that are a 2630 * multiple of MSS, at least until the free space gets quite small. 2631 * This would appear to be a side effect of the mbuf implementation. 2632 * Combining these two algorithms results in the observed behavior 2633 * of having a fixed window size at almost all times. 2634 * 2635 * Below we obtain similar behavior by forcing the offered window to 2636 * a multiple of the mss when it is feasible to do so. 2637 * 2638 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2639 * Regular options like TIMESTAMP are taken into account. 2640 */ 2641 u32 __tcp_select_window(struct sock *sk) 2642 { 2643 struct inet_connection_sock *icsk = inet_csk(sk); 2644 struct tcp_sock *tp = tcp_sk(sk); 2645 /* MSS for the peer's data. Previous versions used mss_clamp 2646 * here. I don't know if the value based on our guesses 2647 * of peer's MSS is better for the performance. It's more correct 2648 * but may be worse for the performance because of rcv_mss 2649 * fluctuations. --SAW 1998/11/1 2650 */ 2651 int mss = icsk->icsk_ack.rcv_mss; 2652 int free_space = tcp_space(sk); 2653 int allowed_space = tcp_full_space(sk); 2654 int full_space = min_t(int, tp->window_clamp, allowed_space); 2655 int window; 2656 2657 if (unlikely(mss > full_space)) { 2658 mss = full_space; 2659 if (mss <= 0) 2660 return 0; 2661 } 2662 if (free_space < (full_space >> 1)) { 2663 icsk->icsk_ack.quick = 0; 2664 2665 if (tcp_under_memory_pressure(sk)) 2666 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2667 4U * tp->advmss); 2668 2669 /* free_space might become our new window, make sure we don't 2670 * increase it due to wscale. 2671 */ 2672 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2673 2674 /* if free space is less than mss estimate, or is below 1/16th 2675 * of the maximum allowed, try to move to zero-window, else 2676 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2677 * new incoming data is dropped due to memory limits. 2678 * With large window, mss test triggers way too late in order 2679 * to announce zero window in time before rmem limit kicks in. 2680 */ 2681 if (free_space < (allowed_space >> 4) || free_space < mss) 2682 return 0; 2683 } 2684 2685 if (free_space > tp->rcv_ssthresh) 2686 free_space = tp->rcv_ssthresh; 2687 2688 /* Don't do rounding if we are using window scaling, since the 2689 * scaled window will not line up with the MSS boundary anyway. 2690 */ 2691 if (tp->rx_opt.rcv_wscale) { 2692 window = free_space; 2693 2694 /* Advertise enough space so that it won't get scaled away. 2695 * Import case: prevent zero window announcement if 2696 * 1<<rcv_wscale > mss. 2697 */ 2698 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2699 } else { 2700 window = tp->rcv_wnd; 2701 /* Get the largest window that is a nice multiple of mss. 2702 * Window clamp already applied above. 2703 * If our current window offering is within 1 mss of the 2704 * free space we just keep it. This prevents the divide 2705 * and multiply from happening most of the time. 2706 * We also don't do any window rounding when the free space 2707 * is too small. 2708 */ 2709 if (window <= free_space - mss || window > free_space) 2710 window = rounddown(free_space, mss); 2711 else if (mss == full_space && 2712 free_space > window + (full_space >> 1)) 2713 window = free_space; 2714 } 2715 2716 return window; 2717 } 2718 2719 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2720 const struct sk_buff *next_skb) 2721 { 2722 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2723 const struct skb_shared_info *next_shinfo = 2724 skb_shinfo(next_skb); 2725 struct skb_shared_info *shinfo = skb_shinfo(skb); 2726 2727 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2728 shinfo->tskey = next_shinfo->tskey; 2729 TCP_SKB_CB(skb)->txstamp_ack |= 2730 TCP_SKB_CB(next_skb)->txstamp_ack; 2731 } 2732 } 2733 2734 /* Collapses two adjacent SKB's during retransmission. */ 2735 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2736 { 2737 struct tcp_sock *tp = tcp_sk(sk); 2738 struct sk_buff *next_skb = skb_rb_next(skb); 2739 int next_skb_size; 2740 2741 next_skb_size = next_skb->len; 2742 2743 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2744 2745 if (next_skb_size) { 2746 if (next_skb_size <= skb_availroom(skb)) 2747 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2748 next_skb_size); 2749 else if (!skb_shift(skb, next_skb, next_skb_size)) 2750 return false; 2751 } 2752 tcp_highest_sack_replace(sk, next_skb, skb); 2753 2754 /* Update sequence range on original skb. */ 2755 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2756 2757 /* Merge over control information. This moves PSH/FIN etc. over */ 2758 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2759 2760 /* All done, get rid of second SKB and account for it so 2761 * packet counting does not break. 2762 */ 2763 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2764 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2765 2766 /* changed transmit queue under us so clear hints */ 2767 tcp_clear_retrans_hints_partial(tp); 2768 if (next_skb == tp->retransmit_skb_hint) 2769 tp->retransmit_skb_hint = skb; 2770 2771 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2772 2773 tcp_skb_collapse_tstamp(skb, next_skb); 2774 2775 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2776 return true; 2777 } 2778 2779 /* Check if coalescing SKBs is legal. */ 2780 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2781 { 2782 if (tcp_skb_pcount(skb) > 1) 2783 return false; 2784 if (skb_cloned(skb)) 2785 return false; 2786 /* Some heuristics for collapsing over SACK'd could be invented */ 2787 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2788 return false; 2789 2790 return true; 2791 } 2792 2793 /* Collapse packets in the retransmit queue to make to create 2794 * less packets on the wire. This is only done on retransmission. 2795 */ 2796 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2797 int space) 2798 { 2799 struct tcp_sock *tp = tcp_sk(sk); 2800 struct sk_buff *skb = to, *tmp; 2801 bool first = true; 2802 2803 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2804 return; 2805 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2806 return; 2807 2808 skb_rbtree_walk_from_safe(skb, tmp) { 2809 if (!tcp_can_collapse(sk, skb)) 2810 break; 2811 2812 if (!tcp_skb_can_collapse_to(to)) 2813 break; 2814 2815 space -= skb->len; 2816 2817 if (first) { 2818 first = false; 2819 continue; 2820 } 2821 2822 if (space < 0) 2823 break; 2824 2825 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2826 break; 2827 2828 if (!tcp_collapse_retrans(sk, to)) 2829 break; 2830 } 2831 } 2832 2833 /* This retransmits one SKB. Policy decisions and retransmit queue 2834 * state updates are done by the caller. Returns non-zero if an 2835 * error occurred which prevented the send. 2836 */ 2837 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2838 { 2839 struct inet_connection_sock *icsk = inet_csk(sk); 2840 struct tcp_sock *tp = tcp_sk(sk); 2841 unsigned int cur_mss; 2842 int diff, len, err; 2843 2844 2845 /* Inconclusive MTU probe */ 2846 if (icsk->icsk_mtup.probe_size) 2847 icsk->icsk_mtup.probe_size = 0; 2848 2849 /* Do not sent more than we queued. 1/4 is reserved for possible 2850 * copying overhead: fragmentation, tunneling, mangling etc. 2851 */ 2852 if (refcount_read(&sk->sk_wmem_alloc) > 2853 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2854 sk->sk_sndbuf)) 2855 return -EAGAIN; 2856 2857 if (skb_still_in_host_queue(sk, skb)) 2858 return -EBUSY; 2859 2860 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2861 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2862 WARN_ON_ONCE(1); 2863 return -EINVAL; 2864 } 2865 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2866 return -ENOMEM; 2867 } 2868 2869 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2870 return -EHOSTUNREACH; /* Routing failure or similar. */ 2871 2872 cur_mss = tcp_current_mss(sk); 2873 2874 /* If receiver has shrunk his window, and skb is out of 2875 * new window, do not retransmit it. The exception is the 2876 * case, when window is shrunk to zero. In this case 2877 * our retransmit serves as a zero window probe. 2878 */ 2879 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2880 TCP_SKB_CB(skb)->seq != tp->snd_una) 2881 return -EAGAIN; 2882 2883 len = cur_mss * segs; 2884 if (skb->len > len) { 2885 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2886 cur_mss, GFP_ATOMIC)) 2887 return -ENOMEM; /* We'll try again later. */ 2888 } else { 2889 if (skb_unclone(skb, GFP_ATOMIC)) 2890 return -ENOMEM; 2891 2892 diff = tcp_skb_pcount(skb); 2893 tcp_set_skb_tso_segs(skb, cur_mss); 2894 diff -= tcp_skb_pcount(skb); 2895 if (diff) 2896 tcp_adjust_pcount(sk, skb, diff); 2897 if (skb->len < cur_mss) 2898 tcp_retrans_try_collapse(sk, skb, cur_mss); 2899 } 2900 2901 /* RFC3168, section 6.1.1.1. ECN fallback */ 2902 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2903 tcp_ecn_clear_syn(sk, skb); 2904 2905 /* Update global and local TCP statistics. */ 2906 segs = tcp_skb_pcount(skb); 2907 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2908 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2909 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2910 tp->total_retrans += segs; 2911 tp->bytes_retrans += skb->len; 2912 2913 /* make sure skb->data is aligned on arches that require it 2914 * and check if ack-trimming & collapsing extended the headroom 2915 * beyond what csum_start can cover. 2916 */ 2917 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2918 skb_headroom(skb) >= 0xFFFF)) { 2919 struct sk_buff *nskb; 2920 2921 tcp_skb_tsorted_save(skb) { 2922 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2923 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2924 -ENOBUFS; 2925 } tcp_skb_tsorted_restore(skb); 2926 2927 if (!err) { 2928 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 2929 tcp_rate_skb_sent(sk, skb); 2930 } 2931 } else { 2932 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2933 } 2934 2935 /* To avoid taking spuriously low RTT samples based on a timestamp 2936 * for a transmit that never happened, always mark EVER_RETRANS 2937 */ 2938 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2939 2940 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2941 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2942 TCP_SKB_CB(skb)->seq, segs, err); 2943 2944 if (likely(!err)) { 2945 trace_tcp_retransmit_skb(sk, skb); 2946 } else if (err != -EBUSY) { 2947 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 2948 } 2949 return err; 2950 } 2951 2952 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2953 { 2954 struct tcp_sock *tp = tcp_sk(sk); 2955 int err = __tcp_retransmit_skb(sk, skb, segs); 2956 2957 if (err == 0) { 2958 #if FASTRETRANS_DEBUG > 0 2959 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2960 net_dbg_ratelimited("retrans_out leaked\n"); 2961 } 2962 #endif 2963 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2964 tp->retrans_out += tcp_skb_pcount(skb); 2965 } 2966 2967 /* Save stamp of the first (attempted) retransmit. */ 2968 if (!tp->retrans_stamp) 2969 tp->retrans_stamp = tcp_skb_timestamp(skb); 2970 2971 if (tp->undo_retrans < 0) 2972 tp->undo_retrans = 0; 2973 tp->undo_retrans += tcp_skb_pcount(skb); 2974 return err; 2975 } 2976 2977 /* This gets called after a retransmit timeout, and the initially 2978 * retransmitted data is acknowledged. It tries to continue 2979 * resending the rest of the retransmit queue, until either 2980 * we've sent it all or the congestion window limit is reached. 2981 */ 2982 void tcp_xmit_retransmit_queue(struct sock *sk) 2983 { 2984 const struct inet_connection_sock *icsk = inet_csk(sk); 2985 struct sk_buff *skb, *rtx_head, *hole = NULL; 2986 struct tcp_sock *tp = tcp_sk(sk); 2987 u32 max_segs; 2988 int mib_idx; 2989 2990 if (!tp->packets_out) 2991 return; 2992 2993 rtx_head = tcp_rtx_queue_head(sk); 2994 skb = tp->retransmit_skb_hint ?: rtx_head; 2995 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2996 skb_rbtree_walk_from(skb) { 2997 __u8 sacked; 2998 int segs; 2999 3000 if (tcp_pacing_check(sk)) 3001 break; 3002 3003 /* we could do better than to assign each time */ 3004 if (!hole) 3005 tp->retransmit_skb_hint = skb; 3006 3007 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 3008 if (segs <= 0) 3009 return; 3010 sacked = TCP_SKB_CB(skb)->sacked; 3011 /* In case tcp_shift_skb_data() have aggregated large skbs, 3012 * we need to make sure not sending too bigs TSO packets 3013 */ 3014 segs = min_t(int, segs, max_segs); 3015 3016 if (tp->retrans_out >= tp->lost_out) { 3017 break; 3018 } else if (!(sacked & TCPCB_LOST)) { 3019 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3020 hole = skb; 3021 continue; 3022 3023 } else { 3024 if (icsk->icsk_ca_state != TCP_CA_Loss) 3025 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3026 else 3027 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3028 } 3029 3030 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3031 continue; 3032 3033 if (tcp_small_queue_check(sk, skb, 1)) 3034 return; 3035 3036 if (tcp_retransmit_skb(sk, skb, segs)) 3037 return; 3038 3039 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3040 3041 if (tcp_in_cwnd_reduction(sk)) 3042 tp->prr_out += tcp_skb_pcount(skb); 3043 3044 if (skb == rtx_head && 3045 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3046 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3047 inet_csk(sk)->icsk_rto, 3048 TCP_RTO_MAX, 3049 skb); 3050 } 3051 } 3052 3053 /* We allow to exceed memory limits for FIN packets to expedite 3054 * connection tear down and (memory) recovery. 3055 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3056 * or even be forced to close flow without any FIN. 3057 * In general, we want to allow one skb per socket to avoid hangs 3058 * with edge trigger epoll() 3059 */ 3060 void sk_forced_mem_schedule(struct sock *sk, int size) 3061 { 3062 int amt; 3063 3064 if (size <= sk->sk_forward_alloc) 3065 return; 3066 amt = sk_mem_pages(size); 3067 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3068 sk_memory_allocated_add(sk, amt); 3069 3070 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3071 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3072 } 3073 3074 /* Send a FIN. The caller locks the socket for us. 3075 * We should try to send a FIN packet really hard, but eventually give up. 3076 */ 3077 void tcp_send_fin(struct sock *sk) 3078 { 3079 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3080 struct tcp_sock *tp = tcp_sk(sk); 3081 3082 /* Optimization, tack on the FIN if we have one skb in write queue and 3083 * this skb was not yet sent, or we are under memory pressure. 3084 * Note: in the latter case, FIN packet will be sent after a timeout, 3085 * as TCP stack thinks it has already been transmitted. 3086 */ 3087 if (!tskb && tcp_under_memory_pressure(sk)) 3088 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3089 3090 if (tskb) { 3091 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3092 TCP_SKB_CB(tskb)->end_seq++; 3093 tp->write_seq++; 3094 if (tcp_write_queue_empty(sk)) { 3095 /* This means tskb was already sent. 3096 * Pretend we included the FIN on previous transmit. 3097 * We need to set tp->snd_nxt to the value it would have 3098 * if FIN had been sent. This is because retransmit path 3099 * does not change tp->snd_nxt. 3100 */ 3101 tp->snd_nxt++; 3102 return; 3103 } 3104 } else { 3105 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3106 if (unlikely(!skb)) 3107 return; 3108 3109 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3110 skb_reserve(skb, MAX_TCP_HEADER); 3111 sk_forced_mem_schedule(sk, skb->truesize); 3112 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3113 tcp_init_nondata_skb(skb, tp->write_seq, 3114 TCPHDR_ACK | TCPHDR_FIN); 3115 tcp_queue_skb(sk, skb); 3116 } 3117 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3118 } 3119 3120 /* We get here when a process closes a file descriptor (either due to 3121 * an explicit close() or as a byproduct of exit()'ing) and there 3122 * was unread data in the receive queue. This behavior is recommended 3123 * by RFC 2525, section 2.17. -DaveM 3124 */ 3125 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3126 { 3127 struct sk_buff *skb; 3128 3129 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3130 3131 /* NOTE: No TCP options attached and we never retransmit this. */ 3132 skb = alloc_skb(MAX_TCP_HEADER, priority); 3133 if (!skb) { 3134 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3135 return; 3136 } 3137 3138 /* Reserve space for headers and prepare control bits. */ 3139 skb_reserve(skb, MAX_TCP_HEADER); 3140 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3141 TCPHDR_ACK | TCPHDR_RST); 3142 tcp_mstamp_refresh(tcp_sk(sk)); 3143 /* Send it off. */ 3144 if (tcp_transmit_skb(sk, skb, 0, priority)) 3145 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3146 3147 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3148 * skb here is different to the troublesome skb, so use NULL 3149 */ 3150 trace_tcp_send_reset(sk, NULL); 3151 } 3152 3153 /* Send a crossed SYN-ACK during socket establishment. 3154 * WARNING: This routine must only be called when we have already sent 3155 * a SYN packet that crossed the incoming SYN that caused this routine 3156 * to get called. If this assumption fails then the initial rcv_wnd 3157 * and rcv_wscale values will not be correct. 3158 */ 3159 int tcp_send_synack(struct sock *sk) 3160 { 3161 struct sk_buff *skb; 3162 3163 skb = tcp_rtx_queue_head(sk); 3164 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3165 pr_err("%s: wrong queue state\n", __func__); 3166 return -EFAULT; 3167 } 3168 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3169 if (skb_cloned(skb)) { 3170 struct sk_buff *nskb; 3171 3172 tcp_skb_tsorted_save(skb) { 3173 nskb = skb_copy(skb, GFP_ATOMIC); 3174 } tcp_skb_tsorted_restore(skb); 3175 if (!nskb) 3176 return -ENOMEM; 3177 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3178 tcp_rtx_queue_unlink_and_free(skb, sk); 3179 __skb_header_release(nskb); 3180 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3181 sk->sk_wmem_queued += nskb->truesize; 3182 sk_mem_charge(sk, nskb->truesize); 3183 skb = nskb; 3184 } 3185 3186 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3187 tcp_ecn_send_synack(sk, skb); 3188 } 3189 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3190 } 3191 3192 /** 3193 * tcp_make_synack - Prepare a SYN-ACK. 3194 * sk: listener socket 3195 * dst: dst entry attached to the SYNACK 3196 * req: request_sock pointer 3197 * 3198 * Allocate one skb and build a SYNACK packet. 3199 * @dst is consumed : Caller should not use it again. 3200 */ 3201 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3202 struct request_sock *req, 3203 struct tcp_fastopen_cookie *foc, 3204 enum tcp_synack_type synack_type) 3205 { 3206 struct inet_request_sock *ireq = inet_rsk(req); 3207 const struct tcp_sock *tp = tcp_sk(sk); 3208 struct tcp_md5sig_key *md5 = NULL; 3209 struct tcp_out_options opts; 3210 struct sk_buff *skb; 3211 int tcp_header_size; 3212 struct tcphdr *th; 3213 int mss; 3214 3215 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3216 if (unlikely(!skb)) { 3217 dst_release(dst); 3218 return NULL; 3219 } 3220 /* Reserve space for headers. */ 3221 skb_reserve(skb, MAX_TCP_HEADER); 3222 3223 switch (synack_type) { 3224 case TCP_SYNACK_NORMAL: 3225 skb_set_owner_w(skb, req_to_sk(req)); 3226 break; 3227 case TCP_SYNACK_COOKIE: 3228 /* Under synflood, we do not attach skb to a socket, 3229 * to avoid false sharing. 3230 */ 3231 break; 3232 case TCP_SYNACK_FASTOPEN: 3233 /* sk is a const pointer, because we want to express multiple 3234 * cpu might call us concurrently. 3235 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3236 */ 3237 skb_set_owner_w(skb, (struct sock *)sk); 3238 break; 3239 } 3240 skb_dst_set(skb, dst); 3241 3242 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3243 3244 memset(&opts, 0, sizeof(opts)); 3245 #ifdef CONFIG_SYN_COOKIES 3246 if (unlikely(req->cookie_ts)) 3247 skb->skb_mstamp_ns = cookie_init_timestamp(req); 3248 else 3249 #endif 3250 { 3251 skb->skb_mstamp_ns = tcp_clock_ns(); 3252 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3253 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3254 } 3255 3256 #ifdef CONFIG_TCP_MD5SIG 3257 rcu_read_lock(); 3258 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3259 #endif 3260 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3261 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3262 foc) + sizeof(*th); 3263 3264 skb_push(skb, tcp_header_size); 3265 skb_reset_transport_header(skb); 3266 3267 th = (struct tcphdr *)skb->data; 3268 memset(th, 0, sizeof(struct tcphdr)); 3269 th->syn = 1; 3270 th->ack = 1; 3271 tcp_ecn_make_synack(req, th); 3272 th->source = htons(ireq->ir_num); 3273 th->dest = ireq->ir_rmt_port; 3274 skb->mark = ireq->ir_mark; 3275 skb->ip_summed = CHECKSUM_PARTIAL; 3276 th->seq = htonl(tcp_rsk(req)->snt_isn); 3277 /* XXX data is queued and acked as is. No buffer/window check */ 3278 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3279 3280 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3281 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3282 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3283 th->doff = (tcp_header_size >> 2); 3284 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3285 3286 #ifdef CONFIG_TCP_MD5SIG 3287 /* Okay, we have all we need - do the md5 hash if needed */ 3288 if (md5) 3289 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3290 md5, req_to_sk(req), skb); 3291 rcu_read_unlock(); 3292 #endif 3293 3294 /* Do not fool tcpdump (if any), clean our debris */ 3295 skb->tstamp = 0; 3296 return skb; 3297 } 3298 EXPORT_SYMBOL(tcp_make_synack); 3299 3300 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3301 { 3302 struct inet_connection_sock *icsk = inet_csk(sk); 3303 const struct tcp_congestion_ops *ca; 3304 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3305 3306 if (ca_key == TCP_CA_UNSPEC) 3307 return; 3308 3309 rcu_read_lock(); 3310 ca = tcp_ca_find_key(ca_key); 3311 if (likely(ca && try_module_get(ca->owner))) { 3312 module_put(icsk->icsk_ca_ops->owner); 3313 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3314 icsk->icsk_ca_ops = ca; 3315 } 3316 rcu_read_unlock(); 3317 } 3318 3319 /* Do all connect socket setups that can be done AF independent. */ 3320 static void tcp_connect_init(struct sock *sk) 3321 { 3322 const struct dst_entry *dst = __sk_dst_get(sk); 3323 struct tcp_sock *tp = tcp_sk(sk); 3324 __u8 rcv_wscale; 3325 u32 rcv_wnd; 3326 3327 /* We'll fix this up when we get a response from the other end. 3328 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3329 */ 3330 tp->tcp_header_len = sizeof(struct tcphdr); 3331 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3332 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3333 3334 #ifdef CONFIG_TCP_MD5SIG 3335 if (tp->af_specific->md5_lookup(sk, sk)) 3336 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3337 #endif 3338 3339 /* If user gave his TCP_MAXSEG, record it to clamp */ 3340 if (tp->rx_opt.user_mss) 3341 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3342 tp->max_window = 0; 3343 tcp_mtup_init(sk); 3344 tcp_sync_mss(sk, dst_mtu(dst)); 3345 3346 tcp_ca_dst_init(sk, dst); 3347 3348 if (!tp->window_clamp) 3349 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3350 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3351 3352 tcp_initialize_rcv_mss(sk); 3353 3354 /* limit the window selection if the user enforce a smaller rx buffer */ 3355 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3356 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3357 tp->window_clamp = tcp_full_space(sk); 3358 3359 rcv_wnd = tcp_rwnd_init_bpf(sk); 3360 if (rcv_wnd == 0) 3361 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3362 3363 tcp_select_initial_window(sk, tcp_full_space(sk), 3364 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3365 &tp->rcv_wnd, 3366 &tp->window_clamp, 3367 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3368 &rcv_wscale, 3369 rcv_wnd); 3370 3371 tp->rx_opt.rcv_wscale = rcv_wscale; 3372 tp->rcv_ssthresh = tp->rcv_wnd; 3373 3374 sk->sk_err = 0; 3375 sock_reset_flag(sk, SOCK_DONE); 3376 tp->snd_wnd = 0; 3377 tcp_init_wl(tp, 0); 3378 tcp_write_queue_purge(sk); 3379 tp->snd_una = tp->write_seq; 3380 tp->snd_sml = tp->write_seq; 3381 tp->snd_up = tp->write_seq; 3382 tp->snd_nxt = tp->write_seq; 3383 3384 if (likely(!tp->repair)) 3385 tp->rcv_nxt = 0; 3386 else 3387 tp->rcv_tstamp = tcp_jiffies32; 3388 tp->rcv_wup = tp->rcv_nxt; 3389 tp->copied_seq = tp->rcv_nxt; 3390 3391 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3392 inet_csk(sk)->icsk_retransmits = 0; 3393 tcp_clear_retrans(tp); 3394 } 3395 3396 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3397 { 3398 struct tcp_sock *tp = tcp_sk(sk); 3399 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3400 3401 tcb->end_seq += skb->len; 3402 __skb_header_release(skb); 3403 sk->sk_wmem_queued += skb->truesize; 3404 sk_mem_charge(sk, skb->truesize); 3405 tp->write_seq = tcb->end_seq; 3406 tp->packets_out += tcp_skb_pcount(skb); 3407 } 3408 3409 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3410 * queue a data-only packet after the regular SYN, such that regular SYNs 3411 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3412 * only the SYN sequence, the data are retransmitted in the first ACK. 3413 * If cookie is not cached or other error occurs, falls back to send a 3414 * regular SYN with Fast Open cookie request option. 3415 */ 3416 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3417 { 3418 struct tcp_sock *tp = tcp_sk(sk); 3419 struct tcp_fastopen_request *fo = tp->fastopen_req; 3420 int space, err = 0; 3421 struct sk_buff *syn_data; 3422 3423 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3424 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3425 goto fallback; 3426 3427 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3428 * user-MSS. Reserve maximum option space for middleboxes that add 3429 * private TCP options. The cost is reduced data space in SYN :( 3430 */ 3431 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3432 3433 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3434 MAX_TCP_OPTION_SPACE; 3435 3436 space = min_t(size_t, space, fo->size); 3437 3438 /* limit to order-0 allocations */ 3439 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3440 3441 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3442 if (!syn_data) 3443 goto fallback; 3444 syn_data->ip_summed = CHECKSUM_PARTIAL; 3445 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3446 if (space) { 3447 int copied = copy_from_iter(skb_put(syn_data, space), space, 3448 &fo->data->msg_iter); 3449 if (unlikely(!copied)) { 3450 tcp_skb_tsorted_anchor_cleanup(syn_data); 3451 kfree_skb(syn_data); 3452 goto fallback; 3453 } 3454 if (copied != space) { 3455 skb_trim(syn_data, copied); 3456 space = copied; 3457 } 3458 skb_zcopy_set(syn_data, fo->uarg, NULL); 3459 } 3460 /* No more data pending in inet_wait_for_connect() */ 3461 if (space == fo->size) 3462 fo->data = NULL; 3463 fo->copied = space; 3464 3465 tcp_connect_queue_skb(sk, syn_data); 3466 if (syn_data->len) 3467 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3468 3469 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3470 3471 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3472 3473 /* Now full SYN+DATA was cloned and sent (or not), 3474 * remove the SYN from the original skb (syn_data) 3475 * we keep in write queue in case of a retransmit, as we 3476 * also have the SYN packet (with no data) in the same queue. 3477 */ 3478 TCP_SKB_CB(syn_data)->seq++; 3479 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3480 if (!err) { 3481 tp->syn_data = (fo->copied > 0); 3482 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3483 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3484 goto done; 3485 } 3486 3487 /* data was not sent, put it in write_queue */ 3488 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3489 tp->packets_out -= tcp_skb_pcount(syn_data); 3490 3491 fallback: 3492 /* Send a regular SYN with Fast Open cookie request option */ 3493 if (fo->cookie.len > 0) 3494 fo->cookie.len = 0; 3495 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3496 if (err) 3497 tp->syn_fastopen = 0; 3498 done: 3499 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3500 return err; 3501 } 3502 3503 /* Build a SYN and send it off. */ 3504 int tcp_connect(struct sock *sk) 3505 { 3506 struct tcp_sock *tp = tcp_sk(sk); 3507 struct sk_buff *buff; 3508 int err; 3509 3510 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3511 3512 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3513 return -EHOSTUNREACH; /* Routing failure or similar. */ 3514 3515 tcp_connect_init(sk); 3516 3517 if (unlikely(tp->repair)) { 3518 tcp_finish_connect(sk, NULL); 3519 return 0; 3520 } 3521 3522 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3523 if (unlikely(!buff)) 3524 return -ENOBUFS; 3525 3526 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3527 tcp_mstamp_refresh(tp); 3528 tp->retrans_stamp = tcp_time_stamp(tp); 3529 tcp_connect_queue_skb(sk, buff); 3530 tcp_ecn_send_syn(sk, buff); 3531 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3532 3533 /* Send off SYN; include data in Fast Open. */ 3534 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3535 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3536 if (err == -ECONNREFUSED) 3537 return err; 3538 3539 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3540 * in order to make this packet get counted in tcpOutSegs. 3541 */ 3542 tp->snd_nxt = tp->write_seq; 3543 tp->pushed_seq = tp->write_seq; 3544 buff = tcp_send_head(sk); 3545 if (unlikely(buff)) { 3546 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3547 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3548 } 3549 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3550 3551 /* Timer for repeating the SYN until an answer. */ 3552 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3553 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3554 return 0; 3555 } 3556 EXPORT_SYMBOL(tcp_connect); 3557 3558 /* Send out a delayed ack, the caller does the policy checking 3559 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3560 * for details. 3561 */ 3562 void tcp_send_delayed_ack(struct sock *sk) 3563 { 3564 struct inet_connection_sock *icsk = inet_csk(sk); 3565 int ato = icsk->icsk_ack.ato; 3566 unsigned long timeout; 3567 3568 if (ato > TCP_DELACK_MIN) { 3569 const struct tcp_sock *tp = tcp_sk(sk); 3570 int max_ato = HZ / 2; 3571 3572 if (inet_csk_in_pingpong_mode(sk) || 3573 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3574 max_ato = TCP_DELACK_MAX; 3575 3576 /* Slow path, intersegment interval is "high". */ 3577 3578 /* If some rtt estimate is known, use it to bound delayed ack. 3579 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3580 * directly. 3581 */ 3582 if (tp->srtt_us) { 3583 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3584 TCP_DELACK_MIN); 3585 3586 if (rtt < max_ato) 3587 max_ato = rtt; 3588 } 3589 3590 ato = min(ato, max_ato); 3591 } 3592 3593 /* Stay within the limit we were given */ 3594 timeout = jiffies + ato; 3595 3596 /* Use new timeout only if there wasn't a older one earlier. */ 3597 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3598 /* If delack timer was blocked or is about to expire, 3599 * send ACK now. 3600 */ 3601 if (icsk->icsk_ack.blocked || 3602 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3603 tcp_send_ack(sk); 3604 return; 3605 } 3606 3607 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3608 timeout = icsk->icsk_ack.timeout; 3609 } 3610 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3611 icsk->icsk_ack.timeout = timeout; 3612 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3613 } 3614 3615 /* This routine sends an ack and also updates the window. */ 3616 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3617 { 3618 struct sk_buff *buff; 3619 3620 /* If we have been reset, we may not send again. */ 3621 if (sk->sk_state == TCP_CLOSE) 3622 return; 3623 3624 /* We are not putting this on the write queue, so 3625 * tcp_transmit_skb() will set the ownership to this 3626 * sock. 3627 */ 3628 buff = alloc_skb(MAX_TCP_HEADER, 3629 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3630 if (unlikely(!buff)) { 3631 inet_csk_schedule_ack(sk); 3632 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3633 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3634 TCP_DELACK_MAX, TCP_RTO_MAX); 3635 return; 3636 } 3637 3638 /* Reserve space for headers and prepare control bits. */ 3639 skb_reserve(buff, MAX_TCP_HEADER); 3640 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3641 3642 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3643 * too much. 3644 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3645 */ 3646 skb_set_tcp_pure_ack(buff); 3647 3648 /* Send it off, this clears delayed acks for us. */ 3649 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3650 } 3651 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3652 3653 void tcp_send_ack(struct sock *sk) 3654 { 3655 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3656 } 3657 3658 /* This routine sends a packet with an out of date sequence 3659 * number. It assumes the other end will try to ack it. 3660 * 3661 * Question: what should we make while urgent mode? 3662 * 4.4BSD forces sending single byte of data. We cannot send 3663 * out of window data, because we have SND.NXT==SND.MAX... 3664 * 3665 * Current solution: to send TWO zero-length segments in urgent mode: 3666 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3667 * out-of-date with SND.UNA-1 to probe window. 3668 */ 3669 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3670 { 3671 struct tcp_sock *tp = tcp_sk(sk); 3672 struct sk_buff *skb; 3673 3674 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3675 skb = alloc_skb(MAX_TCP_HEADER, 3676 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3677 if (!skb) 3678 return -1; 3679 3680 /* Reserve space for headers and set control bits. */ 3681 skb_reserve(skb, MAX_TCP_HEADER); 3682 /* Use a previous sequence. This should cause the other 3683 * end to send an ack. Don't queue or clone SKB, just 3684 * send it. 3685 */ 3686 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3687 NET_INC_STATS(sock_net(sk), mib); 3688 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3689 } 3690 3691 /* Called from setsockopt( ... TCP_REPAIR ) */ 3692 void tcp_send_window_probe(struct sock *sk) 3693 { 3694 if (sk->sk_state == TCP_ESTABLISHED) { 3695 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3696 tcp_mstamp_refresh(tcp_sk(sk)); 3697 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3698 } 3699 } 3700 3701 /* Initiate keepalive or window probe from timer. */ 3702 int tcp_write_wakeup(struct sock *sk, int mib) 3703 { 3704 struct tcp_sock *tp = tcp_sk(sk); 3705 struct sk_buff *skb; 3706 3707 if (sk->sk_state == TCP_CLOSE) 3708 return -1; 3709 3710 skb = tcp_send_head(sk); 3711 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3712 int err; 3713 unsigned int mss = tcp_current_mss(sk); 3714 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3715 3716 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3717 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3718 3719 /* We are probing the opening of a window 3720 * but the window size is != 0 3721 * must have been a result SWS avoidance ( sender ) 3722 */ 3723 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3724 skb->len > mss) { 3725 seg_size = min(seg_size, mss); 3726 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3727 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3728 skb, seg_size, mss, GFP_ATOMIC)) 3729 return -1; 3730 } else if (!tcp_skb_pcount(skb)) 3731 tcp_set_skb_tso_segs(skb, mss); 3732 3733 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3734 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3735 if (!err) 3736 tcp_event_new_data_sent(sk, skb); 3737 return err; 3738 } else { 3739 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3740 tcp_xmit_probe_skb(sk, 1, mib); 3741 return tcp_xmit_probe_skb(sk, 0, mib); 3742 } 3743 } 3744 3745 /* A window probe timeout has occurred. If window is not closed send 3746 * a partial packet else a zero probe. 3747 */ 3748 void tcp_send_probe0(struct sock *sk) 3749 { 3750 struct inet_connection_sock *icsk = inet_csk(sk); 3751 struct tcp_sock *tp = tcp_sk(sk); 3752 struct net *net = sock_net(sk); 3753 unsigned long timeout; 3754 int err; 3755 3756 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3757 3758 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3759 /* Cancel probe timer, if it is not required. */ 3760 icsk->icsk_probes_out = 0; 3761 icsk->icsk_backoff = 0; 3762 return; 3763 } 3764 3765 icsk->icsk_probes_out++; 3766 if (err <= 0) { 3767 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3768 icsk->icsk_backoff++; 3769 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 3770 } else { 3771 /* If packet was not sent due to local congestion, 3772 * Let senders fight for local resources conservatively. 3773 */ 3774 timeout = TCP_RESOURCE_PROBE_INTERVAL; 3775 } 3776 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL); 3777 } 3778 3779 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3780 { 3781 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3782 struct flowi fl; 3783 int res; 3784 3785 tcp_rsk(req)->txhash = net_tx_rndhash(); 3786 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3787 if (!res) { 3788 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3789 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3790 if (unlikely(tcp_passive_fastopen(sk))) 3791 tcp_sk(sk)->total_retrans++; 3792 trace_tcp_retransmit_synack(sk, req); 3793 } 3794 return res; 3795 } 3796 EXPORT_SYMBOL(tcp_rtx_synack); 3797