xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 71844fac)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45 
46 #include <trace/events/tcp.h>
47 
48 /* Refresh clocks of a TCP socket,
49  * ensuring monotically increasing values.
50  */
51 void tcp_mstamp_refresh(struct tcp_sock *tp)
52 {
53 	u64 val = tcp_clock_ns();
54 
55 	if (val > tp->tcp_clock_cache)
56 		tp->tcp_clock_cache = val;
57 
58 	val = div_u64(val, NSEC_PER_USEC);
59 	if (val > tp->tcp_mstamp)
60 		tp->tcp_mstamp = val;
61 }
62 
63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
64 			   int push_one, gfp_t gfp);
65 
66 /* Account for new data that has been sent to the network. */
67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
68 {
69 	struct inet_connection_sock *icsk = inet_csk(sk);
70 	struct tcp_sock *tp = tcp_sk(sk);
71 	unsigned int prior_packets = tp->packets_out;
72 
73 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
74 
75 	__skb_unlink(skb, &sk->sk_write_queue);
76 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 		tcp_rearm_rto(sk);
81 
82 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 		      tcp_skb_pcount(skb));
84 }
85 
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87  * window scaling factor due to loss of precision.
88  * If window has been shrunk, what should we make? It is not clear at all.
89  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91  * invalid. OK, let's make this for now:
92  */
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 	const struct tcp_sock *tp = tcp_sk(sk);
96 
97 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 	    (tp->rx_opt.wscale_ok &&
99 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 		return tp->snd_nxt;
101 	else
102 		return tcp_wnd_end(tp);
103 }
104 
105 /* Calculate mss to advertise in SYN segment.
106  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107  *
108  * 1. It is independent of path mtu.
109  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111  *    attached devices, because some buggy hosts are confused by
112  *    large MSS.
113  * 4. We do not make 3, we advertise MSS, calculated from first
114  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
115  *    This may be overridden via information stored in routing table.
116  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117  *    probably even Jumbo".
118  */
119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 	struct tcp_sock *tp = tcp_sk(sk);
122 	const struct dst_entry *dst = __sk_dst_get(sk);
123 	int mss = tp->advmss;
124 
125 	if (dst) {
126 		unsigned int metric = dst_metric_advmss(dst);
127 
128 		if (metric < mss) {
129 			mss = metric;
130 			tp->advmss = mss;
131 		}
132 	}
133 
134 	return (__u16)mss;
135 }
136 
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138  * This is the first part of cwnd validation mechanism.
139  */
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 	struct tcp_sock *tp = tcp_sk(sk);
143 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 	u32 cwnd = tp->snd_cwnd;
145 
146 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147 
148 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 	restart_cwnd = min(restart_cwnd, cwnd);
150 
151 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 		cwnd >>= 1;
153 	tp->snd_cwnd = max(cwnd, restart_cwnd);
154 	tp->snd_cwnd_stamp = tcp_jiffies32;
155 	tp->snd_cwnd_used = 0;
156 }
157 
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 				struct sock *sk)
161 {
162 	struct inet_connection_sock *icsk = inet_csk(sk);
163 	const u32 now = tcp_jiffies32;
164 
165 	if (tcp_packets_in_flight(tp) == 0)
166 		tcp_ca_event(sk, CA_EVENT_TX_START);
167 
168 	tp->lsndtime = now;
169 
170 	/* If it is a reply for ato after last received
171 	 * packet, enter pingpong mode.
172 	 */
173 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 		icsk->icsk_ack.pingpong = 1;
175 }
176 
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
179 				      u32 rcv_nxt)
180 {
181 	struct tcp_sock *tp = tcp_sk(sk);
182 
183 	if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
184 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
185 			      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
186 		tp->compressed_ack = TCP_FASTRETRANS_THRESH;
187 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
188 			__sock_put(sk);
189 	}
190 
191 	if (unlikely(rcv_nxt != tp->rcv_nxt))
192 		return;  /* Special ACK sent by DCTCP to reflect ECN */
193 	tcp_dec_quickack_mode(sk, pkts);
194 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
195 }
196 
197 /* Determine a window scaling and initial window to offer.
198  * Based on the assumption that the given amount of space
199  * will be offered. Store the results in the tp structure.
200  * NOTE: for smooth operation initial space offering should
201  * be a multiple of mss if possible. We assume here that mss >= 1.
202  * This MUST be enforced by all callers.
203  */
204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
205 			       __u32 *rcv_wnd, __u32 *window_clamp,
206 			       int wscale_ok, __u8 *rcv_wscale,
207 			       __u32 init_rcv_wnd)
208 {
209 	unsigned int space = (__space < 0 ? 0 : __space);
210 
211 	/* If no clamp set the clamp to the max possible scaled window */
212 	if (*window_clamp == 0)
213 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
214 	space = min(*window_clamp, space);
215 
216 	/* Quantize space offering to a multiple of mss if possible. */
217 	if (space > mss)
218 		space = rounddown(space, mss);
219 
220 	/* NOTE: offering an initial window larger than 32767
221 	 * will break some buggy TCP stacks. If the admin tells us
222 	 * it is likely we could be speaking with such a buggy stack
223 	 * we will truncate our initial window offering to 32K-1
224 	 * unless the remote has sent us a window scaling option,
225 	 * which we interpret as a sign the remote TCP is not
226 	 * misinterpreting the window field as a signed quantity.
227 	 */
228 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
229 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
230 	else
231 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
232 
233 	if (init_rcv_wnd)
234 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
235 
236 	*rcv_wscale = 0;
237 	if (wscale_ok) {
238 		/* Set window scaling on max possible window */
239 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
240 		space = max_t(u32, space, sysctl_rmem_max);
241 		space = min_t(u32, space, *window_clamp);
242 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
243 				      0, TCP_MAX_WSCALE);
244 	}
245 	/* Set the clamp no higher than max representable value */
246 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
247 }
248 EXPORT_SYMBOL(tcp_select_initial_window);
249 
250 /* Chose a new window to advertise, update state in tcp_sock for the
251  * socket, and return result with RFC1323 scaling applied.  The return
252  * value can be stuffed directly into th->window for an outgoing
253  * frame.
254  */
255 static u16 tcp_select_window(struct sock *sk)
256 {
257 	struct tcp_sock *tp = tcp_sk(sk);
258 	u32 old_win = tp->rcv_wnd;
259 	u32 cur_win = tcp_receive_window(tp);
260 	u32 new_win = __tcp_select_window(sk);
261 
262 	/* Never shrink the offered window */
263 	if (new_win < cur_win) {
264 		/* Danger Will Robinson!
265 		 * Don't update rcv_wup/rcv_wnd here or else
266 		 * we will not be able to advertise a zero
267 		 * window in time.  --DaveM
268 		 *
269 		 * Relax Will Robinson.
270 		 */
271 		if (new_win == 0)
272 			NET_INC_STATS(sock_net(sk),
273 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
274 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
275 	}
276 	tp->rcv_wnd = new_win;
277 	tp->rcv_wup = tp->rcv_nxt;
278 
279 	/* Make sure we do not exceed the maximum possible
280 	 * scaled window.
281 	 */
282 	if (!tp->rx_opt.rcv_wscale &&
283 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
284 		new_win = min(new_win, MAX_TCP_WINDOW);
285 	else
286 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
287 
288 	/* RFC1323 scaling applied */
289 	new_win >>= tp->rx_opt.rcv_wscale;
290 
291 	/* If we advertise zero window, disable fast path. */
292 	if (new_win == 0) {
293 		tp->pred_flags = 0;
294 		if (old_win)
295 			NET_INC_STATS(sock_net(sk),
296 				      LINUX_MIB_TCPTOZEROWINDOWADV);
297 	} else if (old_win == 0) {
298 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
299 	}
300 
301 	return new_win;
302 }
303 
304 /* Packet ECN state for a SYN-ACK */
305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
306 {
307 	const struct tcp_sock *tp = tcp_sk(sk);
308 
309 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
310 	if (!(tp->ecn_flags & TCP_ECN_OK))
311 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
312 	else if (tcp_ca_needs_ecn(sk) ||
313 		 tcp_bpf_ca_needs_ecn(sk))
314 		INET_ECN_xmit(sk);
315 }
316 
317 /* Packet ECN state for a SYN.  */
318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
319 {
320 	struct tcp_sock *tp = tcp_sk(sk);
321 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
322 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
323 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
324 
325 	if (!use_ecn) {
326 		const struct dst_entry *dst = __sk_dst_get(sk);
327 
328 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
329 			use_ecn = true;
330 	}
331 
332 	tp->ecn_flags = 0;
333 
334 	if (use_ecn) {
335 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 		tp->ecn_flags = TCP_ECN_OK;
337 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
338 			INET_ECN_xmit(sk);
339 	}
340 }
341 
342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
343 {
344 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
345 		/* tp->ecn_flags are cleared at a later point in time when
346 		 * SYN ACK is ultimatively being received.
347 		 */
348 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
349 }
350 
351 static void
352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
353 {
354 	if (inet_rsk(req)->ecn_ok)
355 		th->ece = 1;
356 }
357 
358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
359  * be sent.
360  */
361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
362 			 struct tcphdr *th, int tcp_header_len)
363 {
364 	struct tcp_sock *tp = tcp_sk(sk);
365 
366 	if (tp->ecn_flags & TCP_ECN_OK) {
367 		/* Not-retransmitted data segment: set ECT and inject CWR. */
368 		if (skb->len != tcp_header_len &&
369 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
370 			INET_ECN_xmit(sk);
371 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
372 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
373 				th->cwr = 1;
374 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
375 			}
376 		} else if (!tcp_ca_needs_ecn(sk)) {
377 			/* ACK or retransmitted segment: clear ECT|CE */
378 			INET_ECN_dontxmit(sk);
379 		}
380 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
381 			th->ece = 1;
382 	}
383 }
384 
385 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
386  * auto increment end seqno.
387  */
388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
389 {
390 	skb->ip_summed = CHECKSUM_PARTIAL;
391 
392 	TCP_SKB_CB(skb)->tcp_flags = flags;
393 	TCP_SKB_CB(skb)->sacked = 0;
394 
395 	tcp_skb_pcount_set(skb, 1);
396 
397 	TCP_SKB_CB(skb)->seq = seq;
398 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
399 		seq++;
400 	TCP_SKB_CB(skb)->end_seq = seq;
401 }
402 
403 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
404 {
405 	return tp->snd_una != tp->snd_up;
406 }
407 
408 #define OPTION_SACK_ADVERTISE	(1 << 0)
409 #define OPTION_TS		(1 << 1)
410 #define OPTION_MD5		(1 << 2)
411 #define OPTION_WSCALE		(1 << 3)
412 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
413 #define OPTION_SMC		(1 << 9)
414 
415 static void smc_options_write(__be32 *ptr, u16 *options)
416 {
417 #if IS_ENABLED(CONFIG_SMC)
418 	if (static_branch_unlikely(&tcp_have_smc)) {
419 		if (unlikely(OPTION_SMC & *options)) {
420 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
421 				       (TCPOPT_NOP  << 16) |
422 				       (TCPOPT_EXP <<  8) |
423 				       (TCPOLEN_EXP_SMC_BASE));
424 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
425 		}
426 	}
427 #endif
428 }
429 
430 struct tcp_out_options {
431 	u16 options;		/* bit field of OPTION_* */
432 	u16 mss;		/* 0 to disable */
433 	u8 ws;			/* window scale, 0 to disable */
434 	u8 num_sack_blocks;	/* number of SACK blocks to include */
435 	u8 hash_size;		/* bytes in hash_location */
436 	__u8 *hash_location;	/* temporary pointer, overloaded */
437 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
438 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
439 };
440 
441 /* Write previously computed TCP options to the packet.
442  *
443  * Beware: Something in the Internet is very sensitive to the ordering of
444  * TCP options, we learned this through the hard way, so be careful here.
445  * Luckily we can at least blame others for their non-compliance but from
446  * inter-operability perspective it seems that we're somewhat stuck with
447  * the ordering which we have been using if we want to keep working with
448  * those broken things (not that it currently hurts anybody as there isn't
449  * particular reason why the ordering would need to be changed).
450  *
451  * At least SACK_PERM as the first option is known to lead to a disaster
452  * (but it may well be that other scenarios fail similarly).
453  */
454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
455 			      struct tcp_out_options *opts)
456 {
457 	u16 options = opts->options;	/* mungable copy */
458 
459 	if (unlikely(OPTION_MD5 & options)) {
460 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
461 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
462 		/* overload cookie hash location */
463 		opts->hash_location = (__u8 *)ptr;
464 		ptr += 4;
465 	}
466 
467 	if (unlikely(opts->mss)) {
468 		*ptr++ = htonl((TCPOPT_MSS << 24) |
469 			       (TCPOLEN_MSS << 16) |
470 			       opts->mss);
471 	}
472 
473 	if (likely(OPTION_TS & options)) {
474 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
475 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
476 				       (TCPOLEN_SACK_PERM << 16) |
477 				       (TCPOPT_TIMESTAMP << 8) |
478 				       TCPOLEN_TIMESTAMP);
479 			options &= ~OPTION_SACK_ADVERTISE;
480 		} else {
481 			*ptr++ = htonl((TCPOPT_NOP << 24) |
482 				       (TCPOPT_NOP << 16) |
483 				       (TCPOPT_TIMESTAMP << 8) |
484 				       TCPOLEN_TIMESTAMP);
485 		}
486 		*ptr++ = htonl(opts->tsval);
487 		*ptr++ = htonl(opts->tsecr);
488 	}
489 
490 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
491 		*ptr++ = htonl((TCPOPT_NOP << 24) |
492 			       (TCPOPT_NOP << 16) |
493 			       (TCPOPT_SACK_PERM << 8) |
494 			       TCPOLEN_SACK_PERM);
495 	}
496 
497 	if (unlikely(OPTION_WSCALE & options)) {
498 		*ptr++ = htonl((TCPOPT_NOP << 24) |
499 			       (TCPOPT_WINDOW << 16) |
500 			       (TCPOLEN_WINDOW << 8) |
501 			       opts->ws);
502 	}
503 
504 	if (unlikely(opts->num_sack_blocks)) {
505 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
506 			tp->duplicate_sack : tp->selective_acks;
507 		int this_sack;
508 
509 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
510 			       (TCPOPT_NOP  << 16) |
511 			       (TCPOPT_SACK <<  8) |
512 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
513 						     TCPOLEN_SACK_PERBLOCK)));
514 
515 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
516 		     ++this_sack) {
517 			*ptr++ = htonl(sp[this_sack].start_seq);
518 			*ptr++ = htonl(sp[this_sack].end_seq);
519 		}
520 
521 		tp->rx_opt.dsack = 0;
522 	}
523 
524 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
525 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
526 		u8 *p = (u8 *)ptr;
527 		u32 len; /* Fast Open option length */
528 
529 		if (foc->exp) {
530 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
531 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
532 				     TCPOPT_FASTOPEN_MAGIC);
533 			p += TCPOLEN_EXP_FASTOPEN_BASE;
534 		} else {
535 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
536 			*p++ = TCPOPT_FASTOPEN;
537 			*p++ = len;
538 		}
539 
540 		memcpy(p, foc->val, foc->len);
541 		if ((len & 3) == 2) {
542 			p[foc->len] = TCPOPT_NOP;
543 			p[foc->len + 1] = TCPOPT_NOP;
544 		}
545 		ptr += (len + 3) >> 2;
546 	}
547 
548 	smc_options_write(ptr, &options);
549 }
550 
551 static void smc_set_option(const struct tcp_sock *tp,
552 			   struct tcp_out_options *opts,
553 			   unsigned int *remaining)
554 {
555 #if IS_ENABLED(CONFIG_SMC)
556 	if (static_branch_unlikely(&tcp_have_smc)) {
557 		if (tp->syn_smc) {
558 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
559 				opts->options |= OPTION_SMC;
560 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
561 			}
562 		}
563 	}
564 #endif
565 }
566 
567 static void smc_set_option_cond(const struct tcp_sock *tp,
568 				const struct inet_request_sock *ireq,
569 				struct tcp_out_options *opts,
570 				unsigned int *remaining)
571 {
572 #if IS_ENABLED(CONFIG_SMC)
573 	if (static_branch_unlikely(&tcp_have_smc)) {
574 		if (tp->syn_smc && ireq->smc_ok) {
575 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
576 				opts->options |= OPTION_SMC;
577 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
578 			}
579 		}
580 	}
581 #endif
582 }
583 
584 /* Compute TCP options for SYN packets. This is not the final
585  * network wire format yet.
586  */
587 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
588 				struct tcp_out_options *opts,
589 				struct tcp_md5sig_key **md5)
590 {
591 	struct tcp_sock *tp = tcp_sk(sk);
592 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
593 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
594 
595 	*md5 = NULL;
596 #ifdef CONFIG_TCP_MD5SIG
597 	if (static_key_false(&tcp_md5_needed) &&
598 	    rcu_access_pointer(tp->md5sig_info)) {
599 		*md5 = tp->af_specific->md5_lookup(sk, sk);
600 		if (*md5) {
601 			opts->options |= OPTION_MD5;
602 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
603 		}
604 	}
605 #endif
606 
607 	/* We always get an MSS option.  The option bytes which will be seen in
608 	 * normal data packets should timestamps be used, must be in the MSS
609 	 * advertised.  But we subtract them from tp->mss_cache so that
610 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
611 	 * fact here if necessary.  If we don't do this correctly, as a
612 	 * receiver we won't recognize data packets as being full sized when we
613 	 * should, and thus we won't abide by the delayed ACK rules correctly.
614 	 * SACKs don't matter, we never delay an ACK when we have any of those
615 	 * going out.  */
616 	opts->mss = tcp_advertise_mss(sk);
617 	remaining -= TCPOLEN_MSS_ALIGNED;
618 
619 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
620 		opts->options |= OPTION_TS;
621 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
622 		opts->tsecr = tp->rx_opt.ts_recent;
623 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
624 	}
625 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
626 		opts->ws = tp->rx_opt.rcv_wscale;
627 		opts->options |= OPTION_WSCALE;
628 		remaining -= TCPOLEN_WSCALE_ALIGNED;
629 	}
630 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
631 		opts->options |= OPTION_SACK_ADVERTISE;
632 		if (unlikely(!(OPTION_TS & opts->options)))
633 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
634 	}
635 
636 	if (fastopen && fastopen->cookie.len >= 0) {
637 		u32 need = fastopen->cookie.len;
638 
639 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
640 					       TCPOLEN_FASTOPEN_BASE;
641 		need = (need + 3) & ~3U;  /* Align to 32 bits */
642 		if (remaining >= need) {
643 			opts->options |= OPTION_FAST_OPEN_COOKIE;
644 			opts->fastopen_cookie = &fastopen->cookie;
645 			remaining -= need;
646 			tp->syn_fastopen = 1;
647 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
648 		}
649 	}
650 
651 	smc_set_option(tp, opts, &remaining);
652 
653 	return MAX_TCP_OPTION_SPACE - remaining;
654 }
655 
656 /* Set up TCP options for SYN-ACKs. */
657 static unsigned int tcp_synack_options(const struct sock *sk,
658 				       struct request_sock *req,
659 				       unsigned int mss, struct sk_buff *skb,
660 				       struct tcp_out_options *opts,
661 				       const struct tcp_md5sig_key *md5,
662 				       struct tcp_fastopen_cookie *foc)
663 {
664 	struct inet_request_sock *ireq = inet_rsk(req);
665 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
666 
667 #ifdef CONFIG_TCP_MD5SIG
668 	if (md5) {
669 		opts->options |= OPTION_MD5;
670 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
671 
672 		/* We can't fit any SACK blocks in a packet with MD5 + TS
673 		 * options. There was discussion about disabling SACK
674 		 * rather than TS in order to fit in better with old,
675 		 * buggy kernels, but that was deemed to be unnecessary.
676 		 */
677 		ireq->tstamp_ok &= !ireq->sack_ok;
678 	}
679 #endif
680 
681 	/* We always send an MSS option. */
682 	opts->mss = mss;
683 	remaining -= TCPOLEN_MSS_ALIGNED;
684 
685 	if (likely(ireq->wscale_ok)) {
686 		opts->ws = ireq->rcv_wscale;
687 		opts->options |= OPTION_WSCALE;
688 		remaining -= TCPOLEN_WSCALE_ALIGNED;
689 	}
690 	if (likely(ireq->tstamp_ok)) {
691 		opts->options |= OPTION_TS;
692 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
693 		opts->tsecr = req->ts_recent;
694 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
695 	}
696 	if (likely(ireq->sack_ok)) {
697 		opts->options |= OPTION_SACK_ADVERTISE;
698 		if (unlikely(!ireq->tstamp_ok))
699 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
700 	}
701 	if (foc != NULL && foc->len >= 0) {
702 		u32 need = foc->len;
703 
704 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
705 				   TCPOLEN_FASTOPEN_BASE;
706 		need = (need + 3) & ~3U;  /* Align to 32 bits */
707 		if (remaining >= need) {
708 			opts->options |= OPTION_FAST_OPEN_COOKIE;
709 			opts->fastopen_cookie = foc;
710 			remaining -= need;
711 		}
712 	}
713 
714 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
715 
716 	return MAX_TCP_OPTION_SPACE - remaining;
717 }
718 
719 /* Compute TCP options for ESTABLISHED sockets. This is not the
720  * final wire format yet.
721  */
722 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
723 					struct tcp_out_options *opts,
724 					struct tcp_md5sig_key **md5)
725 {
726 	struct tcp_sock *tp = tcp_sk(sk);
727 	unsigned int size = 0;
728 	unsigned int eff_sacks;
729 
730 	opts->options = 0;
731 
732 	*md5 = NULL;
733 #ifdef CONFIG_TCP_MD5SIG
734 	if (static_key_false(&tcp_md5_needed) &&
735 	    rcu_access_pointer(tp->md5sig_info)) {
736 		*md5 = tp->af_specific->md5_lookup(sk, sk);
737 		if (*md5) {
738 			opts->options |= OPTION_MD5;
739 			size += TCPOLEN_MD5SIG_ALIGNED;
740 		}
741 	}
742 #endif
743 
744 	if (likely(tp->rx_opt.tstamp_ok)) {
745 		opts->options |= OPTION_TS;
746 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
747 		opts->tsecr = tp->rx_opt.ts_recent;
748 		size += TCPOLEN_TSTAMP_ALIGNED;
749 	}
750 
751 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
752 	if (unlikely(eff_sacks)) {
753 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
754 		opts->num_sack_blocks =
755 			min_t(unsigned int, eff_sacks,
756 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
757 			      TCPOLEN_SACK_PERBLOCK);
758 		size += TCPOLEN_SACK_BASE_ALIGNED +
759 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
760 	}
761 
762 	return size;
763 }
764 
765 
766 /* TCP SMALL QUEUES (TSQ)
767  *
768  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
769  * to reduce RTT and bufferbloat.
770  * We do this using a special skb destructor (tcp_wfree).
771  *
772  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
773  * needs to be reallocated in a driver.
774  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
775  *
776  * Since transmit from skb destructor is forbidden, we use a tasklet
777  * to process all sockets that eventually need to send more skbs.
778  * We use one tasklet per cpu, with its own queue of sockets.
779  */
780 struct tsq_tasklet {
781 	struct tasklet_struct	tasklet;
782 	struct list_head	head; /* queue of tcp sockets */
783 };
784 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
785 
786 static void tcp_tsq_write(struct sock *sk)
787 {
788 	if ((1 << sk->sk_state) &
789 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
790 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
791 		struct tcp_sock *tp = tcp_sk(sk);
792 
793 		if (tp->lost_out > tp->retrans_out &&
794 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
795 			tcp_mstamp_refresh(tp);
796 			tcp_xmit_retransmit_queue(sk);
797 		}
798 
799 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
800 			       0, GFP_ATOMIC);
801 	}
802 }
803 
804 static void tcp_tsq_handler(struct sock *sk)
805 {
806 	bh_lock_sock(sk);
807 	if (!sock_owned_by_user(sk))
808 		tcp_tsq_write(sk);
809 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
810 		sock_hold(sk);
811 	bh_unlock_sock(sk);
812 }
813 /*
814  * One tasklet per cpu tries to send more skbs.
815  * We run in tasklet context but need to disable irqs when
816  * transferring tsq->head because tcp_wfree() might
817  * interrupt us (non NAPI drivers)
818  */
819 static void tcp_tasklet_func(unsigned long data)
820 {
821 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
822 	LIST_HEAD(list);
823 	unsigned long flags;
824 	struct list_head *q, *n;
825 	struct tcp_sock *tp;
826 	struct sock *sk;
827 
828 	local_irq_save(flags);
829 	list_splice_init(&tsq->head, &list);
830 	local_irq_restore(flags);
831 
832 	list_for_each_safe(q, n, &list) {
833 		tp = list_entry(q, struct tcp_sock, tsq_node);
834 		list_del(&tp->tsq_node);
835 
836 		sk = (struct sock *)tp;
837 		smp_mb__before_atomic();
838 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
839 
840 		tcp_tsq_handler(sk);
841 		sk_free(sk);
842 	}
843 }
844 
845 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
846 			  TCPF_WRITE_TIMER_DEFERRED |	\
847 			  TCPF_DELACK_TIMER_DEFERRED |	\
848 			  TCPF_MTU_REDUCED_DEFERRED)
849 /**
850  * tcp_release_cb - tcp release_sock() callback
851  * @sk: socket
852  *
853  * called from release_sock() to perform protocol dependent
854  * actions before socket release.
855  */
856 void tcp_release_cb(struct sock *sk)
857 {
858 	unsigned long flags, nflags;
859 
860 	/* perform an atomic operation only if at least one flag is set */
861 	do {
862 		flags = sk->sk_tsq_flags;
863 		if (!(flags & TCP_DEFERRED_ALL))
864 			return;
865 		nflags = flags & ~TCP_DEFERRED_ALL;
866 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
867 
868 	if (flags & TCPF_TSQ_DEFERRED) {
869 		tcp_tsq_write(sk);
870 		__sock_put(sk);
871 	}
872 	/* Here begins the tricky part :
873 	 * We are called from release_sock() with :
874 	 * 1) BH disabled
875 	 * 2) sk_lock.slock spinlock held
876 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
877 	 *
878 	 * But following code is meant to be called from BH handlers,
879 	 * so we should keep BH disabled, but early release socket ownership
880 	 */
881 	sock_release_ownership(sk);
882 
883 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
884 		tcp_write_timer_handler(sk);
885 		__sock_put(sk);
886 	}
887 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
888 		tcp_delack_timer_handler(sk);
889 		__sock_put(sk);
890 	}
891 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
892 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
893 		__sock_put(sk);
894 	}
895 }
896 EXPORT_SYMBOL(tcp_release_cb);
897 
898 void __init tcp_tasklet_init(void)
899 {
900 	int i;
901 
902 	for_each_possible_cpu(i) {
903 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
904 
905 		INIT_LIST_HEAD(&tsq->head);
906 		tasklet_init(&tsq->tasklet,
907 			     tcp_tasklet_func,
908 			     (unsigned long)tsq);
909 	}
910 }
911 
912 /*
913  * Write buffer destructor automatically called from kfree_skb.
914  * We can't xmit new skbs from this context, as we might already
915  * hold qdisc lock.
916  */
917 void tcp_wfree(struct sk_buff *skb)
918 {
919 	struct sock *sk = skb->sk;
920 	struct tcp_sock *tp = tcp_sk(sk);
921 	unsigned long flags, nval, oval;
922 
923 	/* Keep one reference on sk_wmem_alloc.
924 	 * Will be released by sk_free() from here or tcp_tasklet_func()
925 	 */
926 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
927 
928 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
929 	 * Wait until our queues (qdisc + devices) are drained.
930 	 * This gives :
931 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
932 	 * - chance for incoming ACK (processed by another cpu maybe)
933 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
934 	 */
935 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
936 		goto out;
937 
938 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
939 		struct tsq_tasklet *tsq;
940 		bool empty;
941 
942 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
943 			goto out;
944 
945 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
946 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
947 		if (nval != oval)
948 			continue;
949 
950 		/* queue this socket to tasklet queue */
951 		local_irq_save(flags);
952 		tsq = this_cpu_ptr(&tsq_tasklet);
953 		empty = list_empty(&tsq->head);
954 		list_add(&tp->tsq_node, &tsq->head);
955 		if (empty)
956 			tasklet_schedule(&tsq->tasklet);
957 		local_irq_restore(flags);
958 		return;
959 	}
960 out:
961 	sk_free(sk);
962 }
963 
964 /* Note: Called under soft irq.
965  * We can call TCP stack right away, unless socket is owned by user.
966  */
967 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
968 {
969 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
970 	struct sock *sk = (struct sock *)tp;
971 
972 	tcp_tsq_handler(sk);
973 	sock_put(sk);
974 
975 	return HRTIMER_NORESTART;
976 }
977 
978 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
979 				      u64 prior_wstamp)
980 {
981 	struct tcp_sock *tp = tcp_sk(sk);
982 
983 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
984 	if (sk->sk_pacing_status != SK_PACING_NONE) {
985 		unsigned long rate = sk->sk_pacing_rate;
986 
987 		/* Original sch_fq does not pace first 10 MSS
988 		 * Note that tp->data_segs_out overflows after 2^32 packets,
989 		 * this is a minor annoyance.
990 		 */
991 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
992 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
993 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
994 
995 			/* take into account OS jitter */
996 			len_ns -= min_t(u64, len_ns / 2, credit);
997 			tp->tcp_wstamp_ns += len_ns;
998 		}
999 	}
1000 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1001 }
1002 
1003 /* This routine actually transmits TCP packets queued in by
1004  * tcp_do_sendmsg().  This is used by both the initial
1005  * transmission and possible later retransmissions.
1006  * All SKB's seen here are completely headerless.  It is our
1007  * job to build the TCP header, and pass the packet down to
1008  * IP so it can do the same plus pass the packet off to the
1009  * device.
1010  *
1011  * We are working here with either a clone of the original
1012  * SKB, or a fresh unique copy made by the retransmit engine.
1013  */
1014 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1015 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1016 {
1017 	const struct inet_connection_sock *icsk = inet_csk(sk);
1018 	struct inet_sock *inet;
1019 	struct tcp_sock *tp;
1020 	struct tcp_skb_cb *tcb;
1021 	struct tcp_out_options opts;
1022 	unsigned int tcp_options_size, tcp_header_size;
1023 	struct sk_buff *oskb = NULL;
1024 	struct tcp_md5sig_key *md5;
1025 	struct tcphdr *th;
1026 	u64 prior_wstamp;
1027 	int err;
1028 
1029 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1030 	tp = tcp_sk(sk);
1031 
1032 	if (clone_it) {
1033 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1034 			- tp->snd_una;
1035 		oskb = skb;
1036 
1037 		tcp_skb_tsorted_save(oskb) {
1038 			if (unlikely(skb_cloned(oskb)))
1039 				skb = pskb_copy(oskb, gfp_mask);
1040 			else
1041 				skb = skb_clone(oskb, gfp_mask);
1042 		} tcp_skb_tsorted_restore(oskb);
1043 
1044 		if (unlikely(!skb))
1045 			return -ENOBUFS;
1046 	}
1047 
1048 	prior_wstamp = tp->tcp_wstamp_ns;
1049 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1050 
1051 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1052 
1053 	inet = inet_sk(sk);
1054 	tcb = TCP_SKB_CB(skb);
1055 	memset(&opts, 0, sizeof(opts));
1056 
1057 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1058 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1059 	else
1060 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1061 							   &md5);
1062 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1063 
1064 	/* if no packet is in qdisc/device queue, then allow XPS to select
1065 	 * another queue. We can be called from tcp_tsq_handler()
1066 	 * which holds one reference to sk.
1067 	 *
1068 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1069 	 * One way to get this would be to set skb->truesize = 2 on them.
1070 	 */
1071 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1072 
1073 	/* If we had to use memory reserve to allocate this skb,
1074 	 * this might cause drops if packet is looped back :
1075 	 * Other socket might not have SOCK_MEMALLOC.
1076 	 * Packets not looped back do not care about pfmemalloc.
1077 	 */
1078 	skb->pfmemalloc = 0;
1079 
1080 	skb_push(skb, tcp_header_size);
1081 	skb_reset_transport_header(skb);
1082 
1083 	skb_orphan(skb);
1084 	skb->sk = sk;
1085 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1086 	skb_set_hash_from_sk(skb, sk);
1087 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1088 
1089 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1090 
1091 	/* Build TCP header and checksum it. */
1092 	th = (struct tcphdr *)skb->data;
1093 	th->source		= inet->inet_sport;
1094 	th->dest		= inet->inet_dport;
1095 	th->seq			= htonl(tcb->seq);
1096 	th->ack_seq		= htonl(rcv_nxt);
1097 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1098 					tcb->tcp_flags);
1099 
1100 	th->check		= 0;
1101 	th->urg_ptr		= 0;
1102 
1103 	/* The urg_mode check is necessary during a below snd_una win probe */
1104 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1105 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1106 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1107 			th->urg = 1;
1108 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1109 			th->urg_ptr = htons(0xFFFF);
1110 			th->urg = 1;
1111 		}
1112 	}
1113 
1114 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1115 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1116 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1117 		th->window      = htons(tcp_select_window(sk));
1118 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1119 	} else {
1120 		/* RFC1323: The window in SYN & SYN/ACK segments
1121 		 * is never scaled.
1122 		 */
1123 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1124 	}
1125 #ifdef CONFIG_TCP_MD5SIG
1126 	/* Calculate the MD5 hash, as we have all we need now */
1127 	if (md5) {
1128 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1129 		tp->af_specific->calc_md5_hash(opts.hash_location,
1130 					       md5, sk, skb);
1131 	}
1132 #endif
1133 
1134 	icsk->icsk_af_ops->send_check(sk, skb);
1135 
1136 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1137 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1138 
1139 	if (skb->len != tcp_header_size) {
1140 		tcp_event_data_sent(tp, sk);
1141 		tp->data_segs_out += tcp_skb_pcount(skb);
1142 		tp->bytes_sent += skb->len - tcp_header_size;
1143 	}
1144 
1145 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1146 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1147 			      tcp_skb_pcount(skb));
1148 
1149 	tp->segs_out += tcp_skb_pcount(skb);
1150 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1151 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1152 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1153 
1154 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1155 
1156 	/* Cleanup our debris for IP stacks */
1157 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1158 			       sizeof(struct inet6_skb_parm)));
1159 
1160 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1161 
1162 	if (unlikely(err > 0)) {
1163 		tcp_enter_cwr(sk);
1164 		err = net_xmit_eval(err);
1165 	}
1166 	if (!err && oskb) {
1167 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1168 		tcp_rate_skb_sent(sk, oskb);
1169 	}
1170 	return err;
1171 }
1172 
1173 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1174 			    gfp_t gfp_mask)
1175 {
1176 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1177 				  tcp_sk(sk)->rcv_nxt);
1178 }
1179 
1180 /* This routine just queues the buffer for sending.
1181  *
1182  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1183  * otherwise socket can stall.
1184  */
1185 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1186 {
1187 	struct tcp_sock *tp = tcp_sk(sk);
1188 
1189 	/* Advance write_seq and place onto the write_queue. */
1190 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1191 	__skb_header_release(skb);
1192 	tcp_add_write_queue_tail(sk, skb);
1193 	sk->sk_wmem_queued += skb->truesize;
1194 	sk_mem_charge(sk, skb->truesize);
1195 }
1196 
1197 /* Initialize TSO segments for a packet. */
1198 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1199 {
1200 	if (skb->len <= mss_now) {
1201 		/* Avoid the costly divide in the normal
1202 		 * non-TSO case.
1203 		 */
1204 		tcp_skb_pcount_set(skb, 1);
1205 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1206 	} else {
1207 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1208 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1209 	}
1210 }
1211 
1212 /* Pcount in the middle of the write queue got changed, we need to do various
1213  * tweaks to fix counters
1214  */
1215 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1216 {
1217 	struct tcp_sock *tp = tcp_sk(sk);
1218 
1219 	tp->packets_out -= decr;
1220 
1221 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1222 		tp->sacked_out -= decr;
1223 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1224 		tp->retrans_out -= decr;
1225 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1226 		tp->lost_out -= decr;
1227 
1228 	/* Reno case is special. Sigh... */
1229 	if (tcp_is_reno(tp) && decr > 0)
1230 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1231 
1232 	if (tp->lost_skb_hint &&
1233 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1234 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1235 		tp->lost_cnt_hint -= decr;
1236 
1237 	tcp_verify_left_out(tp);
1238 }
1239 
1240 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1241 {
1242 	return TCP_SKB_CB(skb)->txstamp_ack ||
1243 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1244 }
1245 
1246 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1247 {
1248 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1249 
1250 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1251 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1252 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1253 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1254 
1255 		shinfo->tx_flags &= ~tsflags;
1256 		shinfo2->tx_flags |= tsflags;
1257 		swap(shinfo->tskey, shinfo2->tskey);
1258 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1259 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1260 	}
1261 }
1262 
1263 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1264 {
1265 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1266 	TCP_SKB_CB(skb)->eor = 0;
1267 }
1268 
1269 /* Insert buff after skb on the write or rtx queue of sk.  */
1270 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1271 					 struct sk_buff *buff,
1272 					 struct sock *sk,
1273 					 enum tcp_queue tcp_queue)
1274 {
1275 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1276 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1277 	else
1278 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1279 }
1280 
1281 /* Function to create two new TCP segments.  Shrinks the given segment
1282  * to the specified size and appends a new segment with the rest of the
1283  * packet to the list.  This won't be called frequently, I hope.
1284  * Remember, these are still headerless SKBs at this point.
1285  */
1286 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1287 		 struct sk_buff *skb, u32 len,
1288 		 unsigned int mss_now, gfp_t gfp)
1289 {
1290 	struct tcp_sock *tp = tcp_sk(sk);
1291 	struct sk_buff *buff;
1292 	int nsize, old_factor;
1293 	int nlen;
1294 	u8 flags;
1295 
1296 	if (WARN_ON(len > skb->len))
1297 		return -EINVAL;
1298 
1299 	nsize = skb_headlen(skb) - len;
1300 	if (nsize < 0)
1301 		nsize = 0;
1302 
1303 	if (skb_unclone(skb, gfp))
1304 		return -ENOMEM;
1305 
1306 	/* Get a new skb... force flag on. */
1307 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1308 	if (!buff)
1309 		return -ENOMEM; /* We'll just try again later. */
1310 
1311 	sk->sk_wmem_queued += buff->truesize;
1312 	sk_mem_charge(sk, buff->truesize);
1313 	nlen = skb->len - len - nsize;
1314 	buff->truesize += nlen;
1315 	skb->truesize -= nlen;
1316 
1317 	/* Correct the sequence numbers. */
1318 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1319 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1320 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1321 
1322 	/* PSH and FIN should only be set in the second packet. */
1323 	flags = TCP_SKB_CB(skb)->tcp_flags;
1324 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1325 	TCP_SKB_CB(buff)->tcp_flags = flags;
1326 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1327 	tcp_skb_fragment_eor(skb, buff);
1328 
1329 	skb_split(skb, buff, len);
1330 
1331 	buff->ip_summed = CHECKSUM_PARTIAL;
1332 
1333 	buff->tstamp = skb->tstamp;
1334 	tcp_fragment_tstamp(skb, buff);
1335 
1336 	old_factor = tcp_skb_pcount(skb);
1337 
1338 	/* Fix up tso_factor for both original and new SKB.  */
1339 	tcp_set_skb_tso_segs(skb, mss_now);
1340 	tcp_set_skb_tso_segs(buff, mss_now);
1341 
1342 	/* Update delivered info for the new segment */
1343 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1344 
1345 	/* If this packet has been sent out already, we must
1346 	 * adjust the various packet counters.
1347 	 */
1348 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1349 		int diff = old_factor - tcp_skb_pcount(skb) -
1350 			tcp_skb_pcount(buff);
1351 
1352 		if (diff)
1353 			tcp_adjust_pcount(sk, skb, diff);
1354 	}
1355 
1356 	/* Link BUFF into the send queue. */
1357 	__skb_header_release(buff);
1358 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1359 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1360 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1361 
1362 	return 0;
1363 }
1364 
1365 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1366  * data is not copied, but immediately discarded.
1367  */
1368 static int __pskb_trim_head(struct sk_buff *skb, int len)
1369 {
1370 	struct skb_shared_info *shinfo;
1371 	int i, k, eat;
1372 
1373 	eat = min_t(int, len, skb_headlen(skb));
1374 	if (eat) {
1375 		__skb_pull(skb, eat);
1376 		len -= eat;
1377 		if (!len)
1378 			return 0;
1379 	}
1380 	eat = len;
1381 	k = 0;
1382 	shinfo = skb_shinfo(skb);
1383 	for (i = 0; i < shinfo->nr_frags; i++) {
1384 		int size = skb_frag_size(&shinfo->frags[i]);
1385 
1386 		if (size <= eat) {
1387 			skb_frag_unref(skb, i);
1388 			eat -= size;
1389 		} else {
1390 			shinfo->frags[k] = shinfo->frags[i];
1391 			if (eat) {
1392 				shinfo->frags[k].page_offset += eat;
1393 				skb_frag_size_sub(&shinfo->frags[k], eat);
1394 				eat = 0;
1395 			}
1396 			k++;
1397 		}
1398 	}
1399 	shinfo->nr_frags = k;
1400 
1401 	skb->data_len -= len;
1402 	skb->len = skb->data_len;
1403 	return len;
1404 }
1405 
1406 /* Remove acked data from a packet in the transmit queue. */
1407 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1408 {
1409 	u32 delta_truesize;
1410 
1411 	if (skb_unclone(skb, GFP_ATOMIC))
1412 		return -ENOMEM;
1413 
1414 	delta_truesize = __pskb_trim_head(skb, len);
1415 
1416 	TCP_SKB_CB(skb)->seq += len;
1417 	skb->ip_summed = CHECKSUM_PARTIAL;
1418 
1419 	if (delta_truesize) {
1420 		skb->truesize	   -= delta_truesize;
1421 		sk->sk_wmem_queued -= delta_truesize;
1422 		sk_mem_uncharge(sk, delta_truesize);
1423 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1424 	}
1425 
1426 	/* Any change of skb->len requires recalculation of tso factor. */
1427 	if (tcp_skb_pcount(skb) > 1)
1428 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1429 
1430 	return 0;
1431 }
1432 
1433 /* Calculate MSS not accounting any TCP options.  */
1434 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1435 {
1436 	const struct tcp_sock *tp = tcp_sk(sk);
1437 	const struct inet_connection_sock *icsk = inet_csk(sk);
1438 	int mss_now;
1439 
1440 	/* Calculate base mss without TCP options:
1441 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1442 	 */
1443 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1444 
1445 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1446 	if (icsk->icsk_af_ops->net_frag_header_len) {
1447 		const struct dst_entry *dst = __sk_dst_get(sk);
1448 
1449 		if (dst && dst_allfrag(dst))
1450 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1451 	}
1452 
1453 	/* Clamp it (mss_clamp does not include tcp options) */
1454 	if (mss_now > tp->rx_opt.mss_clamp)
1455 		mss_now = tp->rx_opt.mss_clamp;
1456 
1457 	/* Now subtract optional transport overhead */
1458 	mss_now -= icsk->icsk_ext_hdr_len;
1459 
1460 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1461 	if (mss_now < 48)
1462 		mss_now = 48;
1463 	return mss_now;
1464 }
1465 
1466 /* Calculate MSS. Not accounting for SACKs here.  */
1467 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1468 {
1469 	/* Subtract TCP options size, not including SACKs */
1470 	return __tcp_mtu_to_mss(sk, pmtu) -
1471 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1472 }
1473 
1474 /* Inverse of above */
1475 int tcp_mss_to_mtu(struct sock *sk, int mss)
1476 {
1477 	const struct tcp_sock *tp = tcp_sk(sk);
1478 	const struct inet_connection_sock *icsk = inet_csk(sk);
1479 	int mtu;
1480 
1481 	mtu = mss +
1482 	      tp->tcp_header_len +
1483 	      icsk->icsk_ext_hdr_len +
1484 	      icsk->icsk_af_ops->net_header_len;
1485 
1486 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1487 	if (icsk->icsk_af_ops->net_frag_header_len) {
1488 		const struct dst_entry *dst = __sk_dst_get(sk);
1489 
1490 		if (dst && dst_allfrag(dst))
1491 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1492 	}
1493 	return mtu;
1494 }
1495 EXPORT_SYMBOL(tcp_mss_to_mtu);
1496 
1497 /* MTU probing init per socket */
1498 void tcp_mtup_init(struct sock *sk)
1499 {
1500 	struct tcp_sock *tp = tcp_sk(sk);
1501 	struct inet_connection_sock *icsk = inet_csk(sk);
1502 	struct net *net = sock_net(sk);
1503 
1504 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1505 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1506 			       icsk->icsk_af_ops->net_header_len;
1507 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1508 	icsk->icsk_mtup.probe_size = 0;
1509 	if (icsk->icsk_mtup.enabled)
1510 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1511 }
1512 EXPORT_SYMBOL(tcp_mtup_init);
1513 
1514 /* This function synchronize snd mss to current pmtu/exthdr set.
1515 
1516    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1517    for TCP options, but includes only bare TCP header.
1518 
1519    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1520    It is minimum of user_mss and mss received with SYN.
1521    It also does not include TCP options.
1522 
1523    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1524 
1525    tp->mss_cache is current effective sending mss, including
1526    all tcp options except for SACKs. It is evaluated,
1527    taking into account current pmtu, but never exceeds
1528    tp->rx_opt.mss_clamp.
1529 
1530    NOTE1. rfc1122 clearly states that advertised MSS
1531    DOES NOT include either tcp or ip options.
1532 
1533    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1534    are READ ONLY outside this function.		--ANK (980731)
1535  */
1536 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1537 {
1538 	struct tcp_sock *tp = tcp_sk(sk);
1539 	struct inet_connection_sock *icsk = inet_csk(sk);
1540 	int mss_now;
1541 
1542 	if (icsk->icsk_mtup.search_high > pmtu)
1543 		icsk->icsk_mtup.search_high = pmtu;
1544 
1545 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1546 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1547 
1548 	/* And store cached results */
1549 	icsk->icsk_pmtu_cookie = pmtu;
1550 	if (icsk->icsk_mtup.enabled)
1551 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1552 	tp->mss_cache = mss_now;
1553 
1554 	return mss_now;
1555 }
1556 EXPORT_SYMBOL(tcp_sync_mss);
1557 
1558 /* Compute the current effective MSS, taking SACKs and IP options,
1559  * and even PMTU discovery events into account.
1560  */
1561 unsigned int tcp_current_mss(struct sock *sk)
1562 {
1563 	const struct tcp_sock *tp = tcp_sk(sk);
1564 	const struct dst_entry *dst = __sk_dst_get(sk);
1565 	u32 mss_now;
1566 	unsigned int header_len;
1567 	struct tcp_out_options opts;
1568 	struct tcp_md5sig_key *md5;
1569 
1570 	mss_now = tp->mss_cache;
1571 
1572 	if (dst) {
1573 		u32 mtu = dst_mtu(dst);
1574 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1575 			mss_now = tcp_sync_mss(sk, mtu);
1576 	}
1577 
1578 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1579 		     sizeof(struct tcphdr);
1580 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1581 	 * some common options. If this is an odd packet (because we have SACK
1582 	 * blocks etc) then our calculated header_len will be different, and
1583 	 * we have to adjust mss_now correspondingly */
1584 	if (header_len != tp->tcp_header_len) {
1585 		int delta = (int) header_len - tp->tcp_header_len;
1586 		mss_now -= delta;
1587 	}
1588 
1589 	return mss_now;
1590 }
1591 
1592 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1593  * As additional protections, we do not touch cwnd in retransmission phases,
1594  * and if application hit its sndbuf limit recently.
1595  */
1596 static void tcp_cwnd_application_limited(struct sock *sk)
1597 {
1598 	struct tcp_sock *tp = tcp_sk(sk);
1599 
1600 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1601 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1602 		/* Limited by application or receiver window. */
1603 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1604 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1605 		if (win_used < tp->snd_cwnd) {
1606 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1607 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1608 		}
1609 		tp->snd_cwnd_used = 0;
1610 	}
1611 	tp->snd_cwnd_stamp = tcp_jiffies32;
1612 }
1613 
1614 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1615 {
1616 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1617 	struct tcp_sock *tp = tcp_sk(sk);
1618 
1619 	/* Track the maximum number of outstanding packets in each
1620 	 * window, and remember whether we were cwnd-limited then.
1621 	 */
1622 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1623 	    tp->packets_out > tp->max_packets_out) {
1624 		tp->max_packets_out = tp->packets_out;
1625 		tp->max_packets_seq = tp->snd_nxt;
1626 		tp->is_cwnd_limited = is_cwnd_limited;
1627 	}
1628 
1629 	if (tcp_is_cwnd_limited(sk)) {
1630 		/* Network is feed fully. */
1631 		tp->snd_cwnd_used = 0;
1632 		tp->snd_cwnd_stamp = tcp_jiffies32;
1633 	} else {
1634 		/* Network starves. */
1635 		if (tp->packets_out > tp->snd_cwnd_used)
1636 			tp->snd_cwnd_used = tp->packets_out;
1637 
1638 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1639 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1640 		    !ca_ops->cong_control)
1641 			tcp_cwnd_application_limited(sk);
1642 
1643 		/* The following conditions together indicate the starvation
1644 		 * is caused by insufficient sender buffer:
1645 		 * 1) just sent some data (see tcp_write_xmit)
1646 		 * 2) not cwnd limited (this else condition)
1647 		 * 3) no more data to send (tcp_write_queue_empty())
1648 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1649 		 */
1650 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1651 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1652 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1653 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1654 	}
1655 }
1656 
1657 /* Minshall's variant of the Nagle send check. */
1658 static bool tcp_minshall_check(const struct tcp_sock *tp)
1659 {
1660 	return after(tp->snd_sml, tp->snd_una) &&
1661 		!after(tp->snd_sml, tp->snd_nxt);
1662 }
1663 
1664 /* Update snd_sml if this skb is under mss
1665  * Note that a TSO packet might end with a sub-mss segment
1666  * The test is really :
1667  * if ((skb->len % mss) != 0)
1668  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1669  * But we can avoid doing the divide again given we already have
1670  *  skb_pcount = skb->len / mss_now
1671  */
1672 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1673 				const struct sk_buff *skb)
1674 {
1675 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1676 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1677 }
1678 
1679 /* Return false, if packet can be sent now without violation Nagle's rules:
1680  * 1. It is full sized. (provided by caller in %partial bool)
1681  * 2. Or it contains FIN. (already checked by caller)
1682  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1683  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1684  *    With Minshall's modification: all sent small packets are ACKed.
1685  */
1686 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1687 			    int nonagle)
1688 {
1689 	return partial &&
1690 		((nonagle & TCP_NAGLE_CORK) ||
1691 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1692 }
1693 
1694 /* Return how many segs we'd like on a TSO packet,
1695  * to send one TSO packet per ms
1696  */
1697 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1698 			    int min_tso_segs)
1699 {
1700 	u32 bytes, segs;
1701 
1702 	bytes = min_t(unsigned long,
1703 		      sk->sk_pacing_rate >> sk->sk_pacing_shift,
1704 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1705 
1706 	/* Goal is to send at least one packet per ms,
1707 	 * not one big TSO packet every 100 ms.
1708 	 * This preserves ACK clocking and is consistent
1709 	 * with tcp_tso_should_defer() heuristic.
1710 	 */
1711 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1712 
1713 	return segs;
1714 }
1715 
1716 /* Return the number of segments we want in the skb we are transmitting.
1717  * See if congestion control module wants to decide; otherwise, autosize.
1718  */
1719 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1720 {
1721 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1722 	u32 min_tso, tso_segs;
1723 
1724 	min_tso = ca_ops->min_tso_segs ?
1725 			ca_ops->min_tso_segs(sk) :
1726 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1727 
1728 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1729 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1730 }
1731 
1732 /* Returns the portion of skb which can be sent right away */
1733 static unsigned int tcp_mss_split_point(const struct sock *sk,
1734 					const struct sk_buff *skb,
1735 					unsigned int mss_now,
1736 					unsigned int max_segs,
1737 					int nonagle)
1738 {
1739 	const struct tcp_sock *tp = tcp_sk(sk);
1740 	u32 partial, needed, window, max_len;
1741 
1742 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1743 	max_len = mss_now * max_segs;
1744 
1745 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1746 		return max_len;
1747 
1748 	needed = min(skb->len, window);
1749 
1750 	if (max_len <= needed)
1751 		return max_len;
1752 
1753 	partial = needed % mss_now;
1754 	/* If last segment is not a full MSS, check if Nagle rules allow us
1755 	 * to include this last segment in this skb.
1756 	 * Otherwise, we'll split the skb at last MSS boundary
1757 	 */
1758 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1759 		return needed - partial;
1760 
1761 	return needed;
1762 }
1763 
1764 /* Can at least one segment of SKB be sent right now, according to the
1765  * congestion window rules?  If so, return how many segments are allowed.
1766  */
1767 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1768 					 const struct sk_buff *skb)
1769 {
1770 	u32 in_flight, cwnd, halfcwnd;
1771 
1772 	/* Don't be strict about the congestion window for the final FIN.  */
1773 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1774 	    tcp_skb_pcount(skb) == 1)
1775 		return 1;
1776 
1777 	in_flight = tcp_packets_in_flight(tp);
1778 	cwnd = tp->snd_cwnd;
1779 	if (in_flight >= cwnd)
1780 		return 0;
1781 
1782 	/* For better scheduling, ensure we have at least
1783 	 * 2 GSO packets in flight.
1784 	 */
1785 	halfcwnd = max(cwnd >> 1, 1U);
1786 	return min(halfcwnd, cwnd - in_flight);
1787 }
1788 
1789 /* Initialize TSO state of a skb.
1790  * This must be invoked the first time we consider transmitting
1791  * SKB onto the wire.
1792  */
1793 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1794 {
1795 	int tso_segs = tcp_skb_pcount(skb);
1796 
1797 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1798 		tcp_set_skb_tso_segs(skb, mss_now);
1799 		tso_segs = tcp_skb_pcount(skb);
1800 	}
1801 	return tso_segs;
1802 }
1803 
1804 
1805 /* Return true if the Nagle test allows this packet to be
1806  * sent now.
1807  */
1808 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1809 				  unsigned int cur_mss, int nonagle)
1810 {
1811 	/* Nagle rule does not apply to frames, which sit in the middle of the
1812 	 * write_queue (they have no chances to get new data).
1813 	 *
1814 	 * This is implemented in the callers, where they modify the 'nonagle'
1815 	 * argument based upon the location of SKB in the send queue.
1816 	 */
1817 	if (nonagle & TCP_NAGLE_PUSH)
1818 		return true;
1819 
1820 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1821 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1822 		return true;
1823 
1824 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1825 		return true;
1826 
1827 	return false;
1828 }
1829 
1830 /* Does at least the first segment of SKB fit into the send window? */
1831 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1832 			     const struct sk_buff *skb,
1833 			     unsigned int cur_mss)
1834 {
1835 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1836 
1837 	if (skb->len > cur_mss)
1838 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1839 
1840 	return !after(end_seq, tcp_wnd_end(tp));
1841 }
1842 
1843 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1844  * which is put after SKB on the list.  It is very much like
1845  * tcp_fragment() except that it may make several kinds of assumptions
1846  * in order to speed up the splitting operation.  In particular, we
1847  * know that all the data is in scatter-gather pages, and that the
1848  * packet has never been sent out before (and thus is not cloned).
1849  */
1850 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1851 			struct sk_buff *skb, unsigned int len,
1852 			unsigned int mss_now, gfp_t gfp)
1853 {
1854 	struct sk_buff *buff;
1855 	int nlen = skb->len - len;
1856 	u8 flags;
1857 
1858 	/* All of a TSO frame must be composed of paged data.  */
1859 	if (skb->len != skb->data_len)
1860 		return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1861 
1862 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1863 	if (unlikely(!buff))
1864 		return -ENOMEM;
1865 
1866 	sk->sk_wmem_queued += buff->truesize;
1867 	sk_mem_charge(sk, buff->truesize);
1868 	buff->truesize += nlen;
1869 	skb->truesize -= nlen;
1870 
1871 	/* Correct the sequence numbers. */
1872 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1873 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1874 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1875 
1876 	/* PSH and FIN should only be set in the second packet. */
1877 	flags = TCP_SKB_CB(skb)->tcp_flags;
1878 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1879 	TCP_SKB_CB(buff)->tcp_flags = flags;
1880 
1881 	/* This packet was never sent out yet, so no SACK bits. */
1882 	TCP_SKB_CB(buff)->sacked = 0;
1883 
1884 	tcp_skb_fragment_eor(skb, buff);
1885 
1886 	buff->ip_summed = CHECKSUM_PARTIAL;
1887 	skb_split(skb, buff, len);
1888 	tcp_fragment_tstamp(skb, buff);
1889 
1890 	/* Fix up tso_factor for both original and new SKB.  */
1891 	tcp_set_skb_tso_segs(skb, mss_now);
1892 	tcp_set_skb_tso_segs(buff, mss_now);
1893 
1894 	/* Link BUFF into the send queue. */
1895 	__skb_header_release(buff);
1896 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1897 
1898 	return 0;
1899 }
1900 
1901 /* Try to defer sending, if possible, in order to minimize the amount
1902  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1903  *
1904  * This algorithm is from John Heffner.
1905  */
1906 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1907 				 bool *is_cwnd_limited, u32 max_segs)
1908 {
1909 	const struct inet_connection_sock *icsk = inet_csk(sk);
1910 	u32 send_win, cong_win, limit, in_flight;
1911 	struct tcp_sock *tp = tcp_sk(sk);
1912 	struct sk_buff *head;
1913 	int win_divisor;
1914 	s64 delta;
1915 
1916 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1917 		goto send_now;
1918 
1919 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1920 		goto send_now;
1921 
1922 	/* Avoid bursty behavior by allowing defer
1923 	 * only if the last write was recent (1 ms).
1924 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
1925 	 * packets waiting in a qdisc or device for EDT delivery.
1926 	 */
1927 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
1928 	if (delta > 0)
1929 		goto send_now;
1930 
1931 	in_flight = tcp_packets_in_flight(tp);
1932 
1933 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1934 	BUG_ON(tp->snd_cwnd <= in_flight);
1935 
1936 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1937 
1938 	/* From in_flight test above, we know that cwnd > in_flight.  */
1939 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1940 
1941 	limit = min(send_win, cong_win);
1942 
1943 	/* If a full-sized TSO skb can be sent, do it. */
1944 	if (limit >= max_segs * tp->mss_cache)
1945 		goto send_now;
1946 
1947 	/* Middle in queue won't get any more data, full sendable already? */
1948 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1949 		goto send_now;
1950 
1951 	/* If this packet won't get more data, do not wait. */
1952 	if (TCP_SKB_CB(skb)->eor)
1953 		goto send_now;
1954 
1955 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1956 	if (win_divisor) {
1957 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1958 
1959 		/* If at least some fraction of a window is available,
1960 		 * just use it.
1961 		 */
1962 		chunk /= win_divisor;
1963 		if (limit >= chunk)
1964 			goto send_now;
1965 	} else {
1966 		/* Different approach, try not to defer past a single
1967 		 * ACK.  Receiver should ACK every other full sized
1968 		 * frame, so if we have space for more than 3 frames
1969 		 * then send now.
1970 		 */
1971 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1972 			goto send_now;
1973 	}
1974 
1975 	/* TODO : use tsorted_sent_queue ? */
1976 	head = tcp_rtx_queue_head(sk);
1977 	if (!head)
1978 		goto send_now;
1979 	delta = tp->tcp_clock_cache - head->tstamp;
1980 	/* If next ACK is likely to come too late (half srtt), do not defer */
1981 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
1982 		goto send_now;
1983 
1984 	/* Ok, it looks like it is advisable to defer. */
1985 
1986 	if (cong_win < send_win && cong_win <= skb->len)
1987 		*is_cwnd_limited = true;
1988 
1989 	return true;
1990 
1991 send_now:
1992 	return false;
1993 }
1994 
1995 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1996 {
1997 	struct inet_connection_sock *icsk = inet_csk(sk);
1998 	struct tcp_sock *tp = tcp_sk(sk);
1999 	struct net *net = sock_net(sk);
2000 	u32 interval;
2001 	s32 delta;
2002 
2003 	interval = net->ipv4.sysctl_tcp_probe_interval;
2004 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2005 	if (unlikely(delta >= interval * HZ)) {
2006 		int mss = tcp_current_mss(sk);
2007 
2008 		/* Update current search range */
2009 		icsk->icsk_mtup.probe_size = 0;
2010 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2011 			sizeof(struct tcphdr) +
2012 			icsk->icsk_af_ops->net_header_len;
2013 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2014 
2015 		/* Update probe time stamp */
2016 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2017 	}
2018 }
2019 
2020 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2021 {
2022 	struct sk_buff *skb, *next;
2023 
2024 	skb = tcp_send_head(sk);
2025 	tcp_for_write_queue_from_safe(skb, next, sk) {
2026 		if (len <= skb->len)
2027 			break;
2028 
2029 		if (unlikely(TCP_SKB_CB(skb)->eor))
2030 			return false;
2031 
2032 		len -= skb->len;
2033 	}
2034 
2035 	return true;
2036 }
2037 
2038 /* Create a new MTU probe if we are ready.
2039  * MTU probe is regularly attempting to increase the path MTU by
2040  * deliberately sending larger packets.  This discovers routing
2041  * changes resulting in larger path MTUs.
2042  *
2043  * Returns 0 if we should wait to probe (no cwnd available),
2044  *         1 if a probe was sent,
2045  *         -1 otherwise
2046  */
2047 static int tcp_mtu_probe(struct sock *sk)
2048 {
2049 	struct inet_connection_sock *icsk = inet_csk(sk);
2050 	struct tcp_sock *tp = tcp_sk(sk);
2051 	struct sk_buff *skb, *nskb, *next;
2052 	struct net *net = sock_net(sk);
2053 	int probe_size;
2054 	int size_needed;
2055 	int copy, len;
2056 	int mss_now;
2057 	int interval;
2058 
2059 	/* Not currently probing/verifying,
2060 	 * not in recovery,
2061 	 * have enough cwnd, and
2062 	 * not SACKing (the variable headers throw things off)
2063 	 */
2064 	if (likely(!icsk->icsk_mtup.enabled ||
2065 		   icsk->icsk_mtup.probe_size ||
2066 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2067 		   tp->snd_cwnd < 11 ||
2068 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2069 		return -1;
2070 
2071 	/* Use binary search for probe_size between tcp_mss_base,
2072 	 * and current mss_clamp. if (search_high - search_low)
2073 	 * smaller than a threshold, backoff from probing.
2074 	 */
2075 	mss_now = tcp_current_mss(sk);
2076 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2077 				    icsk->icsk_mtup.search_low) >> 1);
2078 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2079 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2080 	/* When misfortune happens, we are reprobing actively,
2081 	 * and then reprobe timer has expired. We stick with current
2082 	 * probing process by not resetting search range to its orignal.
2083 	 */
2084 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2085 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2086 		/* Check whether enough time has elaplased for
2087 		 * another round of probing.
2088 		 */
2089 		tcp_mtu_check_reprobe(sk);
2090 		return -1;
2091 	}
2092 
2093 	/* Have enough data in the send queue to probe? */
2094 	if (tp->write_seq - tp->snd_nxt < size_needed)
2095 		return -1;
2096 
2097 	if (tp->snd_wnd < size_needed)
2098 		return -1;
2099 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2100 		return 0;
2101 
2102 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2103 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2104 		if (!tcp_packets_in_flight(tp))
2105 			return -1;
2106 		else
2107 			return 0;
2108 	}
2109 
2110 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2111 		return -1;
2112 
2113 	/* We're allowed to probe.  Build it now. */
2114 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2115 	if (!nskb)
2116 		return -1;
2117 	sk->sk_wmem_queued += nskb->truesize;
2118 	sk_mem_charge(sk, nskb->truesize);
2119 
2120 	skb = tcp_send_head(sk);
2121 
2122 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2123 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2124 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2125 	TCP_SKB_CB(nskb)->sacked = 0;
2126 	nskb->csum = 0;
2127 	nskb->ip_summed = CHECKSUM_PARTIAL;
2128 
2129 	tcp_insert_write_queue_before(nskb, skb, sk);
2130 	tcp_highest_sack_replace(sk, skb, nskb);
2131 
2132 	len = 0;
2133 	tcp_for_write_queue_from_safe(skb, next, sk) {
2134 		copy = min_t(int, skb->len, probe_size - len);
2135 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2136 
2137 		if (skb->len <= copy) {
2138 			/* We've eaten all the data from this skb.
2139 			 * Throw it away. */
2140 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2141 			/* If this is the last SKB we copy and eor is set
2142 			 * we need to propagate it to the new skb.
2143 			 */
2144 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2145 			tcp_unlink_write_queue(skb, sk);
2146 			sk_wmem_free_skb(sk, skb);
2147 		} else {
2148 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2149 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2150 			if (!skb_shinfo(skb)->nr_frags) {
2151 				skb_pull(skb, copy);
2152 			} else {
2153 				__pskb_trim_head(skb, copy);
2154 				tcp_set_skb_tso_segs(skb, mss_now);
2155 			}
2156 			TCP_SKB_CB(skb)->seq += copy;
2157 		}
2158 
2159 		len += copy;
2160 
2161 		if (len >= probe_size)
2162 			break;
2163 	}
2164 	tcp_init_tso_segs(nskb, nskb->len);
2165 
2166 	/* We're ready to send.  If this fails, the probe will
2167 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2168 	 */
2169 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2170 		/* Decrement cwnd here because we are sending
2171 		 * effectively two packets. */
2172 		tp->snd_cwnd--;
2173 		tcp_event_new_data_sent(sk, nskb);
2174 
2175 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2176 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2177 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2178 
2179 		return 1;
2180 	}
2181 
2182 	return -1;
2183 }
2184 
2185 static bool tcp_pacing_check(struct sock *sk)
2186 {
2187 	struct tcp_sock *tp = tcp_sk(sk);
2188 
2189 	if (!tcp_needs_internal_pacing(sk))
2190 		return false;
2191 
2192 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2193 		return false;
2194 
2195 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2196 		hrtimer_start(&tp->pacing_timer,
2197 			      ns_to_ktime(tp->tcp_wstamp_ns),
2198 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2199 		sock_hold(sk);
2200 	}
2201 	return true;
2202 }
2203 
2204 /* TCP Small Queues :
2205  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2206  * (These limits are doubled for retransmits)
2207  * This allows for :
2208  *  - better RTT estimation and ACK scheduling
2209  *  - faster recovery
2210  *  - high rates
2211  * Alas, some drivers / subsystems require a fair amount
2212  * of queued bytes to ensure line rate.
2213  * One example is wifi aggregation (802.11 AMPDU)
2214  */
2215 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2216 				  unsigned int factor)
2217 {
2218 	unsigned long limit;
2219 
2220 	limit = max_t(unsigned long,
2221 		      2 * skb->truesize,
2222 		      sk->sk_pacing_rate >> sk->sk_pacing_shift);
2223 	if (sk->sk_pacing_status == SK_PACING_NONE)
2224 		limit = min_t(unsigned long, limit,
2225 			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2226 	limit <<= factor;
2227 
2228 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2229 		/* Always send skb if rtx queue is empty.
2230 		 * No need to wait for TX completion to call us back,
2231 		 * after softirq/tasklet schedule.
2232 		 * This helps when TX completions are delayed too much.
2233 		 */
2234 		if (tcp_rtx_queue_empty(sk))
2235 			return false;
2236 
2237 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2238 		/* It is possible TX completion already happened
2239 		 * before we set TSQ_THROTTLED, so we must
2240 		 * test again the condition.
2241 		 */
2242 		smp_mb__after_atomic();
2243 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2244 			return true;
2245 	}
2246 	return false;
2247 }
2248 
2249 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2250 {
2251 	const u32 now = tcp_jiffies32;
2252 	enum tcp_chrono old = tp->chrono_type;
2253 
2254 	if (old > TCP_CHRONO_UNSPEC)
2255 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2256 	tp->chrono_start = now;
2257 	tp->chrono_type = new;
2258 }
2259 
2260 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2261 {
2262 	struct tcp_sock *tp = tcp_sk(sk);
2263 
2264 	/* If there are multiple conditions worthy of tracking in a
2265 	 * chronograph then the highest priority enum takes precedence
2266 	 * over the other conditions. So that if something "more interesting"
2267 	 * starts happening, stop the previous chrono and start a new one.
2268 	 */
2269 	if (type > tp->chrono_type)
2270 		tcp_chrono_set(tp, type);
2271 }
2272 
2273 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2274 {
2275 	struct tcp_sock *tp = tcp_sk(sk);
2276 
2277 
2278 	/* There are multiple conditions worthy of tracking in a
2279 	 * chronograph, so that the highest priority enum takes
2280 	 * precedence over the other conditions (see tcp_chrono_start).
2281 	 * If a condition stops, we only stop chrono tracking if
2282 	 * it's the "most interesting" or current chrono we are
2283 	 * tracking and starts busy chrono if we have pending data.
2284 	 */
2285 	if (tcp_rtx_and_write_queues_empty(sk))
2286 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2287 	else if (type == tp->chrono_type)
2288 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2289 }
2290 
2291 /* This routine writes packets to the network.  It advances the
2292  * send_head.  This happens as incoming acks open up the remote
2293  * window for us.
2294  *
2295  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2296  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2297  * account rare use of URG, this is not a big flaw.
2298  *
2299  * Send at most one packet when push_one > 0. Temporarily ignore
2300  * cwnd limit to force at most one packet out when push_one == 2.
2301 
2302  * Returns true, if no segments are in flight and we have queued segments,
2303  * but cannot send anything now because of SWS or another problem.
2304  */
2305 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2306 			   int push_one, gfp_t gfp)
2307 {
2308 	struct tcp_sock *tp = tcp_sk(sk);
2309 	struct sk_buff *skb;
2310 	unsigned int tso_segs, sent_pkts;
2311 	int cwnd_quota;
2312 	int result;
2313 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2314 	u32 max_segs;
2315 
2316 	sent_pkts = 0;
2317 
2318 	tcp_mstamp_refresh(tp);
2319 	if (!push_one) {
2320 		/* Do MTU probing. */
2321 		result = tcp_mtu_probe(sk);
2322 		if (!result) {
2323 			return false;
2324 		} else if (result > 0) {
2325 			sent_pkts = 1;
2326 		}
2327 	}
2328 
2329 	max_segs = tcp_tso_segs(sk, mss_now);
2330 	while ((skb = tcp_send_head(sk))) {
2331 		unsigned int limit;
2332 
2333 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2334 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2335 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2336 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2337 			goto repair; /* Skip network transmission */
2338 		}
2339 
2340 		if (tcp_pacing_check(sk))
2341 			break;
2342 
2343 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2344 		BUG_ON(!tso_segs);
2345 
2346 		cwnd_quota = tcp_cwnd_test(tp, skb);
2347 		if (!cwnd_quota) {
2348 			if (push_one == 2)
2349 				/* Force out a loss probe pkt. */
2350 				cwnd_quota = 1;
2351 			else
2352 				break;
2353 		}
2354 
2355 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2356 			is_rwnd_limited = true;
2357 			break;
2358 		}
2359 
2360 		if (tso_segs == 1) {
2361 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2362 						     (tcp_skb_is_last(sk, skb) ?
2363 						      nonagle : TCP_NAGLE_PUSH))))
2364 				break;
2365 		} else {
2366 			if (!push_one &&
2367 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2368 						 max_segs))
2369 				break;
2370 		}
2371 
2372 		limit = mss_now;
2373 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2374 			limit = tcp_mss_split_point(sk, skb, mss_now,
2375 						    min_t(unsigned int,
2376 							  cwnd_quota,
2377 							  max_segs),
2378 						    nonagle);
2379 
2380 		if (skb->len > limit &&
2381 		    unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2382 					  skb, limit, mss_now, gfp)))
2383 			break;
2384 
2385 		if (tcp_small_queue_check(sk, skb, 0))
2386 			break;
2387 
2388 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2389 			break;
2390 
2391 repair:
2392 		/* Advance the send_head.  This one is sent out.
2393 		 * This call will increment packets_out.
2394 		 */
2395 		tcp_event_new_data_sent(sk, skb);
2396 
2397 		tcp_minshall_update(tp, mss_now, skb);
2398 		sent_pkts += tcp_skb_pcount(skb);
2399 
2400 		if (push_one)
2401 			break;
2402 	}
2403 
2404 	if (is_rwnd_limited)
2405 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2406 	else
2407 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2408 
2409 	if (likely(sent_pkts)) {
2410 		if (tcp_in_cwnd_reduction(sk))
2411 			tp->prr_out += sent_pkts;
2412 
2413 		/* Send one loss probe per tail loss episode. */
2414 		if (push_one != 2)
2415 			tcp_schedule_loss_probe(sk, false);
2416 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2417 		tcp_cwnd_validate(sk, is_cwnd_limited);
2418 		return false;
2419 	}
2420 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2421 }
2422 
2423 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2424 {
2425 	struct inet_connection_sock *icsk = inet_csk(sk);
2426 	struct tcp_sock *tp = tcp_sk(sk);
2427 	u32 timeout, rto_delta_us;
2428 	int early_retrans;
2429 
2430 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2431 	 * finishes.
2432 	 */
2433 	if (tp->fastopen_rsk)
2434 		return false;
2435 
2436 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2437 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2438 	 * not in loss recovery, that are either limited by cwnd or application.
2439 	 */
2440 	if ((early_retrans != 3 && early_retrans != 4) ||
2441 	    !tp->packets_out || !tcp_is_sack(tp) ||
2442 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2443 	     icsk->icsk_ca_state != TCP_CA_CWR))
2444 		return false;
2445 
2446 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2447 	 * for delayed ack when there's one outstanding packet. If no RTT
2448 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2449 	 */
2450 	if (tp->srtt_us) {
2451 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2452 		if (tp->packets_out == 1)
2453 			timeout += TCP_RTO_MIN;
2454 		else
2455 			timeout += TCP_TIMEOUT_MIN;
2456 	} else {
2457 		timeout = TCP_TIMEOUT_INIT;
2458 	}
2459 
2460 	/* If the RTO formula yields an earlier time, then use that time. */
2461 	rto_delta_us = advancing_rto ?
2462 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2463 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2464 	if (rto_delta_us > 0)
2465 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2466 
2467 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2468 			     TCP_RTO_MAX, NULL);
2469 	return true;
2470 }
2471 
2472 /* Thanks to skb fast clones, we can detect if a prior transmit of
2473  * a packet is still in a qdisc or driver queue.
2474  * In this case, there is very little point doing a retransmit !
2475  */
2476 static bool skb_still_in_host_queue(const struct sock *sk,
2477 				    const struct sk_buff *skb)
2478 {
2479 	if (unlikely(skb_fclone_busy(sk, skb))) {
2480 		NET_INC_STATS(sock_net(sk),
2481 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2482 		return true;
2483 	}
2484 	return false;
2485 }
2486 
2487 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2488  * retransmit the last segment.
2489  */
2490 void tcp_send_loss_probe(struct sock *sk)
2491 {
2492 	struct tcp_sock *tp = tcp_sk(sk);
2493 	struct sk_buff *skb;
2494 	int pcount;
2495 	int mss = tcp_current_mss(sk);
2496 
2497 	skb = tcp_send_head(sk);
2498 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2499 		pcount = tp->packets_out;
2500 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2501 		if (tp->packets_out > pcount)
2502 			goto probe_sent;
2503 		goto rearm_timer;
2504 	}
2505 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2506 
2507 	/* At most one outstanding TLP retransmission. */
2508 	if (tp->tlp_high_seq)
2509 		goto rearm_timer;
2510 
2511 	/* Retransmit last segment. */
2512 	if (WARN_ON(!skb))
2513 		goto rearm_timer;
2514 
2515 	if (skb_still_in_host_queue(sk, skb))
2516 		goto rearm_timer;
2517 
2518 	pcount = tcp_skb_pcount(skb);
2519 	if (WARN_ON(!pcount))
2520 		goto rearm_timer;
2521 
2522 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2523 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2524 					  (pcount - 1) * mss, mss,
2525 					  GFP_ATOMIC)))
2526 			goto rearm_timer;
2527 		skb = skb_rb_next(skb);
2528 	}
2529 
2530 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2531 		goto rearm_timer;
2532 
2533 	if (__tcp_retransmit_skb(sk, skb, 1))
2534 		goto rearm_timer;
2535 
2536 	/* Record snd_nxt for loss detection. */
2537 	tp->tlp_high_seq = tp->snd_nxt;
2538 
2539 probe_sent:
2540 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2541 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2542 	inet_csk(sk)->icsk_pending = 0;
2543 rearm_timer:
2544 	tcp_rearm_rto(sk);
2545 }
2546 
2547 /* Push out any pending frames which were held back due to
2548  * TCP_CORK or attempt at coalescing tiny packets.
2549  * The socket must be locked by the caller.
2550  */
2551 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2552 			       int nonagle)
2553 {
2554 	/* If we are closed, the bytes will have to remain here.
2555 	 * In time closedown will finish, we empty the write queue and
2556 	 * all will be happy.
2557 	 */
2558 	if (unlikely(sk->sk_state == TCP_CLOSE))
2559 		return;
2560 
2561 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2562 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2563 		tcp_check_probe_timer(sk);
2564 }
2565 
2566 /* Send _single_ skb sitting at the send head. This function requires
2567  * true push pending frames to setup probe timer etc.
2568  */
2569 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2570 {
2571 	struct sk_buff *skb = tcp_send_head(sk);
2572 
2573 	BUG_ON(!skb || skb->len < mss_now);
2574 
2575 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2576 }
2577 
2578 /* This function returns the amount that we can raise the
2579  * usable window based on the following constraints
2580  *
2581  * 1. The window can never be shrunk once it is offered (RFC 793)
2582  * 2. We limit memory per socket
2583  *
2584  * RFC 1122:
2585  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2586  *  RECV.NEXT + RCV.WIN fixed until:
2587  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2588  *
2589  * i.e. don't raise the right edge of the window until you can raise
2590  * it at least MSS bytes.
2591  *
2592  * Unfortunately, the recommended algorithm breaks header prediction,
2593  * since header prediction assumes th->window stays fixed.
2594  *
2595  * Strictly speaking, keeping th->window fixed violates the receiver
2596  * side SWS prevention criteria. The problem is that under this rule
2597  * a stream of single byte packets will cause the right side of the
2598  * window to always advance by a single byte.
2599  *
2600  * Of course, if the sender implements sender side SWS prevention
2601  * then this will not be a problem.
2602  *
2603  * BSD seems to make the following compromise:
2604  *
2605  *	If the free space is less than the 1/4 of the maximum
2606  *	space available and the free space is less than 1/2 mss,
2607  *	then set the window to 0.
2608  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2609  *	Otherwise, just prevent the window from shrinking
2610  *	and from being larger than the largest representable value.
2611  *
2612  * This prevents incremental opening of the window in the regime
2613  * where TCP is limited by the speed of the reader side taking
2614  * data out of the TCP receive queue. It does nothing about
2615  * those cases where the window is constrained on the sender side
2616  * because the pipeline is full.
2617  *
2618  * BSD also seems to "accidentally" limit itself to windows that are a
2619  * multiple of MSS, at least until the free space gets quite small.
2620  * This would appear to be a side effect of the mbuf implementation.
2621  * Combining these two algorithms results in the observed behavior
2622  * of having a fixed window size at almost all times.
2623  *
2624  * Below we obtain similar behavior by forcing the offered window to
2625  * a multiple of the mss when it is feasible to do so.
2626  *
2627  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2628  * Regular options like TIMESTAMP are taken into account.
2629  */
2630 u32 __tcp_select_window(struct sock *sk)
2631 {
2632 	struct inet_connection_sock *icsk = inet_csk(sk);
2633 	struct tcp_sock *tp = tcp_sk(sk);
2634 	/* MSS for the peer's data.  Previous versions used mss_clamp
2635 	 * here.  I don't know if the value based on our guesses
2636 	 * of peer's MSS is better for the performance.  It's more correct
2637 	 * but may be worse for the performance because of rcv_mss
2638 	 * fluctuations.  --SAW  1998/11/1
2639 	 */
2640 	int mss = icsk->icsk_ack.rcv_mss;
2641 	int free_space = tcp_space(sk);
2642 	int allowed_space = tcp_full_space(sk);
2643 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2644 	int window;
2645 
2646 	if (unlikely(mss > full_space)) {
2647 		mss = full_space;
2648 		if (mss <= 0)
2649 			return 0;
2650 	}
2651 	if (free_space < (full_space >> 1)) {
2652 		icsk->icsk_ack.quick = 0;
2653 
2654 		if (tcp_under_memory_pressure(sk))
2655 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2656 					       4U * tp->advmss);
2657 
2658 		/* free_space might become our new window, make sure we don't
2659 		 * increase it due to wscale.
2660 		 */
2661 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2662 
2663 		/* if free space is less than mss estimate, or is below 1/16th
2664 		 * of the maximum allowed, try to move to zero-window, else
2665 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2666 		 * new incoming data is dropped due to memory limits.
2667 		 * With large window, mss test triggers way too late in order
2668 		 * to announce zero window in time before rmem limit kicks in.
2669 		 */
2670 		if (free_space < (allowed_space >> 4) || free_space < mss)
2671 			return 0;
2672 	}
2673 
2674 	if (free_space > tp->rcv_ssthresh)
2675 		free_space = tp->rcv_ssthresh;
2676 
2677 	/* Don't do rounding if we are using window scaling, since the
2678 	 * scaled window will not line up with the MSS boundary anyway.
2679 	 */
2680 	if (tp->rx_opt.rcv_wscale) {
2681 		window = free_space;
2682 
2683 		/* Advertise enough space so that it won't get scaled away.
2684 		 * Import case: prevent zero window announcement if
2685 		 * 1<<rcv_wscale > mss.
2686 		 */
2687 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2688 	} else {
2689 		window = tp->rcv_wnd;
2690 		/* Get the largest window that is a nice multiple of mss.
2691 		 * Window clamp already applied above.
2692 		 * If our current window offering is within 1 mss of the
2693 		 * free space we just keep it. This prevents the divide
2694 		 * and multiply from happening most of the time.
2695 		 * We also don't do any window rounding when the free space
2696 		 * is too small.
2697 		 */
2698 		if (window <= free_space - mss || window > free_space)
2699 			window = rounddown(free_space, mss);
2700 		else if (mss == full_space &&
2701 			 free_space > window + (full_space >> 1))
2702 			window = free_space;
2703 	}
2704 
2705 	return window;
2706 }
2707 
2708 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2709 			     const struct sk_buff *next_skb)
2710 {
2711 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2712 		const struct skb_shared_info *next_shinfo =
2713 			skb_shinfo(next_skb);
2714 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2715 
2716 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2717 		shinfo->tskey = next_shinfo->tskey;
2718 		TCP_SKB_CB(skb)->txstamp_ack |=
2719 			TCP_SKB_CB(next_skb)->txstamp_ack;
2720 	}
2721 }
2722 
2723 /* Collapses two adjacent SKB's during retransmission. */
2724 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2725 {
2726 	struct tcp_sock *tp = tcp_sk(sk);
2727 	struct sk_buff *next_skb = skb_rb_next(skb);
2728 	int next_skb_size;
2729 
2730 	next_skb_size = next_skb->len;
2731 
2732 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2733 
2734 	if (next_skb_size) {
2735 		if (next_skb_size <= skb_availroom(skb))
2736 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2737 				      next_skb_size);
2738 		else if (!skb_shift(skb, next_skb, next_skb_size))
2739 			return false;
2740 	}
2741 	tcp_highest_sack_replace(sk, next_skb, skb);
2742 
2743 	/* Update sequence range on original skb. */
2744 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2745 
2746 	/* Merge over control information. This moves PSH/FIN etc. over */
2747 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2748 
2749 	/* All done, get rid of second SKB and account for it so
2750 	 * packet counting does not break.
2751 	 */
2752 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2753 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2754 
2755 	/* changed transmit queue under us so clear hints */
2756 	tcp_clear_retrans_hints_partial(tp);
2757 	if (next_skb == tp->retransmit_skb_hint)
2758 		tp->retransmit_skb_hint = skb;
2759 
2760 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2761 
2762 	tcp_skb_collapse_tstamp(skb, next_skb);
2763 
2764 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2765 	return true;
2766 }
2767 
2768 /* Check if coalescing SKBs is legal. */
2769 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2770 {
2771 	if (tcp_skb_pcount(skb) > 1)
2772 		return false;
2773 	if (skb_cloned(skb))
2774 		return false;
2775 	/* Some heuristics for collapsing over SACK'd could be invented */
2776 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2777 		return false;
2778 
2779 	return true;
2780 }
2781 
2782 /* Collapse packets in the retransmit queue to make to create
2783  * less packets on the wire. This is only done on retransmission.
2784  */
2785 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2786 				     int space)
2787 {
2788 	struct tcp_sock *tp = tcp_sk(sk);
2789 	struct sk_buff *skb = to, *tmp;
2790 	bool first = true;
2791 
2792 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2793 		return;
2794 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2795 		return;
2796 
2797 	skb_rbtree_walk_from_safe(skb, tmp) {
2798 		if (!tcp_can_collapse(sk, skb))
2799 			break;
2800 
2801 		if (!tcp_skb_can_collapse_to(to))
2802 			break;
2803 
2804 		space -= skb->len;
2805 
2806 		if (first) {
2807 			first = false;
2808 			continue;
2809 		}
2810 
2811 		if (space < 0)
2812 			break;
2813 
2814 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2815 			break;
2816 
2817 		if (!tcp_collapse_retrans(sk, to))
2818 			break;
2819 	}
2820 }
2821 
2822 /* This retransmits one SKB.  Policy decisions and retransmit queue
2823  * state updates are done by the caller.  Returns non-zero if an
2824  * error occurred which prevented the send.
2825  */
2826 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2827 {
2828 	struct inet_connection_sock *icsk = inet_csk(sk);
2829 	struct tcp_sock *tp = tcp_sk(sk);
2830 	unsigned int cur_mss;
2831 	int diff, len, err;
2832 
2833 
2834 	/* Inconclusive MTU probe */
2835 	if (icsk->icsk_mtup.probe_size)
2836 		icsk->icsk_mtup.probe_size = 0;
2837 
2838 	/* Do not sent more than we queued. 1/4 is reserved for possible
2839 	 * copying overhead: fragmentation, tunneling, mangling etc.
2840 	 */
2841 	if (refcount_read(&sk->sk_wmem_alloc) >
2842 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2843 		  sk->sk_sndbuf))
2844 		return -EAGAIN;
2845 
2846 	if (skb_still_in_host_queue(sk, skb))
2847 		return -EBUSY;
2848 
2849 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2850 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2851 			WARN_ON_ONCE(1);
2852 			return -EINVAL;
2853 		}
2854 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2855 			return -ENOMEM;
2856 	}
2857 
2858 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2859 		return -EHOSTUNREACH; /* Routing failure or similar. */
2860 
2861 	cur_mss = tcp_current_mss(sk);
2862 
2863 	/* If receiver has shrunk his window, and skb is out of
2864 	 * new window, do not retransmit it. The exception is the
2865 	 * case, when window is shrunk to zero. In this case
2866 	 * our retransmit serves as a zero window probe.
2867 	 */
2868 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2869 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2870 		return -EAGAIN;
2871 
2872 	len = cur_mss * segs;
2873 	if (skb->len > len) {
2874 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2875 				 cur_mss, GFP_ATOMIC))
2876 			return -ENOMEM; /* We'll try again later. */
2877 	} else {
2878 		if (skb_unclone(skb, GFP_ATOMIC))
2879 			return -ENOMEM;
2880 
2881 		diff = tcp_skb_pcount(skb);
2882 		tcp_set_skb_tso_segs(skb, cur_mss);
2883 		diff -= tcp_skb_pcount(skb);
2884 		if (diff)
2885 			tcp_adjust_pcount(sk, skb, diff);
2886 		if (skb->len < cur_mss)
2887 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2888 	}
2889 
2890 	/* RFC3168, section 6.1.1.1. ECN fallback */
2891 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2892 		tcp_ecn_clear_syn(sk, skb);
2893 
2894 	/* Update global and local TCP statistics. */
2895 	segs = tcp_skb_pcount(skb);
2896 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2897 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2898 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2899 	tp->total_retrans += segs;
2900 	tp->bytes_retrans += skb->len;
2901 
2902 	/* make sure skb->data is aligned on arches that require it
2903 	 * and check if ack-trimming & collapsing extended the headroom
2904 	 * beyond what csum_start can cover.
2905 	 */
2906 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2907 		     skb_headroom(skb) >= 0xFFFF)) {
2908 		struct sk_buff *nskb;
2909 
2910 		tcp_skb_tsorted_save(skb) {
2911 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2912 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2913 				     -ENOBUFS;
2914 		} tcp_skb_tsorted_restore(skb);
2915 
2916 		if (!err) {
2917 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
2918 			tcp_rate_skb_sent(sk, skb);
2919 		}
2920 	} else {
2921 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2922 	}
2923 
2924 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2925 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2926 				  TCP_SKB_CB(skb)->seq, segs, err);
2927 
2928 	if (likely(!err)) {
2929 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2930 		trace_tcp_retransmit_skb(sk, skb);
2931 	} else if (err != -EBUSY) {
2932 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2933 	}
2934 	return err;
2935 }
2936 
2937 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2938 {
2939 	struct tcp_sock *tp = tcp_sk(sk);
2940 	int err = __tcp_retransmit_skb(sk, skb, segs);
2941 
2942 	if (err == 0) {
2943 #if FASTRETRANS_DEBUG > 0
2944 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2945 			net_dbg_ratelimited("retrans_out leaked\n");
2946 		}
2947 #endif
2948 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2949 		tp->retrans_out += tcp_skb_pcount(skb);
2950 
2951 		/* Save stamp of the first retransmit. */
2952 		if (!tp->retrans_stamp)
2953 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2954 
2955 	}
2956 
2957 	if (tp->undo_retrans < 0)
2958 		tp->undo_retrans = 0;
2959 	tp->undo_retrans += tcp_skb_pcount(skb);
2960 	return err;
2961 }
2962 
2963 /* This gets called after a retransmit timeout, and the initially
2964  * retransmitted data is acknowledged.  It tries to continue
2965  * resending the rest of the retransmit queue, until either
2966  * we've sent it all or the congestion window limit is reached.
2967  */
2968 void tcp_xmit_retransmit_queue(struct sock *sk)
2969 {
2970 	const struct inet_connection_sock *icsk = inet_csk(sk);
2971 	struct sk_buff *skb, *rtx_head, *hole = NULL;
2972 	struct tcp_sock *tp = tcp_sk(sk);
2973 	u32 max_segs;
2974 	int mib_idx;
2975 
2976 	if (!tp->packets_out)
2977 		return;
2978 
2979 	rtx_head = tcp_rtx_queue_head(sk);
2980 	skb = tp->retransmit_skb_hint ?: rtx_head;
2981 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2982 	skb_rbtree_walk_from(skb) {
2983 		__u8 sacked;
2984 		int segs;
2985 
2986 		if (tcp_pacing_check(sk))
2987 			break;
2988 
2989 		/* we could do better than to assign each time */
2990 		if (!hole)
2991 			tp->retransmit_skb_hint = skb;
2992 
2993 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2994 		if (segs <= 0)
2995 			return;
2996 		sacked = TCP_SKB_CB(skb)->sacked;
2997 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2998 		 * we need to make sure not sending too bigs TSO packets
2999 		 */
3000 		segs = min_t(int, segs, max_segs);
3001 
3002 		if (tp->retrans_out >= tp->lost_out) {
3003 			break;
3004 		} else if (!(sacked & TCPCB_LOST)) {
3005 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3006 				hole = skb;
3007 			continue;
3008 
3009 		} else {
3010 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3011 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3012 			else
3013 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3014 		}
3015 
3016 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3017 			continue;
3018 
3019 		if (tcp_small_queue_check(sk, skb, 1))
3020 			return;
3021 
3022 		if (tcp_retransmit_skb(sk, skb, segs))
3023 			return;
3024 
3025 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3026 
3027 		if (tcp_in_cwnd_reduction(sk))
3028 			tp->prr_out += tcp_skb_pcount(skb);
3029 
3030 		if (skb == rtx_head &&
3031 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3032 			tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3033 					     inet_csk(sk)->icsk_rto,
3034 					     TCP_RTO_MAX,
3035 					     skb);
3036 	}
3037 }
3038 
3039 /* We allow to exceed memory limits for FIN packets to expedite
3040  * connection tear down and (memory) recovery.
3041  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3042  * or even be forced to close flow without any FIN.
3043  * In general, we want to allow one skb per socket to avoid hangs
3044  * with edge trigger epoll()
3045  */
3046 void sk_forced_mem_schedule(struct sock *sk, int size)
3047 {
3048 	int amt;
3049 
3050 	if (size <= sk->sk_forward_alloc)
3051 		return;
3052 	amt = sk_mem_pages(size);
3053 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3054 	sk_memory_allocated_add(sk, amt);
3055 
3056 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3057 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3058 }
3059 
3060 /* Send a FIN. The caller locks the socket for us.
3061  * We should try to send a FIN packet really hard, but eventually give up.
3062  */
3063 void tcp_send_fin(struct sock *sk)
3064 {
3065 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3066 	struct tcp_sock *tp = tcp_sk(sk);
3067 
3068 	/* Optimization, tack on the FIN if we have one skb in write queue and
3069 	 * this skb was not yet sent, or we are under memory pressure.
3070 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3071 	 * as TCP stack thinks it has already been transmitted.
3072 	 */
3073 	if (!tskb && tcp_under_memory_pressure(sk))
3074 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3075 
3076 	if (tskb) {
3077 coalesce:
3078 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3079 		TCP_SKB_CB(tskb)->end_seq++;
3080 		tp->write_seq++;
3081 		if (tcp_write_queue_empty(sk)) {
3082 			/* This means tskb was already sent.
3083 			 * Pretend we included the FIN on previous transmit.
3084 			 * We need to set tp->snd_nxt to the value it would have
3085 			 * if FIN had been sent. This is because retransmit path
3086 			 * does not change tp->snd_nxt.
3087 			 */
3088 			tp->snd_nxt++;
3089 			return;
3090 		}
3091 	} else {
3092 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3093 		if (unlikely(!skb)) {
3094 			if (tskb)
3095 				goto coalesce;
3096 			return;
3097 		}
3098 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3099 		skb_reserve(skb, MAX_TCP_HEADER);
3100 		sk_forced_mem_schedule(sk, skb->truesize);
3101 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3102 		tcp_init_nondata_skb(skb, tp->write_seq,
3103 				     TCPHDR_ACK | TCPHDR_FIN);
3104 		tcp_queue_skb(sk, skb);
3105 	}
3106 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3107 }
3108 
3109 /* We get here when a process closes a file descriptor (either due to
3110  * an explicit close() or as a byproduct of exit()'ing) and there
3111  * was unread data in the receive queue.  This behavior is recommended
3112  * by RFC 2525, section 2.17.  -DaveM
3113  */
3114 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3115 {
3116 	struct sk_buff *skb;
3117 
3118 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3119 
3120 	/* NOTE: No TCP options attached and we never retransmit this. */
3121 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3122 	if (!skb) {
3123 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3124 		return;
3125 	}
3126 
3127 	/* Reserve space for headers and prepare control bits. */
3128 	skb_reserve(skb, MAX_TCP_HEADER);
3129 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3130 			     TCPHDR_ACK | TCPHDR_RST);
3131 	tcp_mstamp_refresh(tcp_sk(sk));
3132 	/* Send it off. */
3133 	if (tcp_transmit_skb(sk, skb, 0, priority))
3134 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3135 
3136 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3137 	 * skb here is different to the troublesome skb, so use NULL
3138 	 */
3139 	trace_tcp_send_reset(sk, NULL);
3140 }
3141 
3142 /* Send a crossed SYN-ACK during socket establishment.
3143  * WARNING: This routine must only be called when we have already sent
3144  * a SYN packet that crossed the incoming SYN that caused this routine
3145  * to get called. If this assumption fails then the initial rcv_wnd
3146  * and rcv_wscale values will not be correct.
3147  */
3148 int tcp_send_synack(struct sock *sk)
3149 {
3150 	struct sk_buff *skb;
3151 
3152 	skb = tcp_rtx_queue_head(sk);
3153 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3154 		pr_err("%s: wrong queue state\n", __func__);
3155 		return -EFAULT;
3156 	}
3157 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3158 		if (skb_cloned(skb)) {
3159 			struct sk_buff *nskb;
3160 
3161 			tcp_skb_tsorted_save(skb) {
3162 				nskb = skb_copy(skb, GFP_ATOMIC);
3163 			} tcp_skb_tsorted_restore(skb);
3164 			if (!nskb)
3165 				return -ENOMEM;
3166 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3167 			tcp_rtx_queue_unlink_and_free(skb, sk);
3168 			__skb_header_release(nskb);
3169 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3170 			sk->sk_wmem_queued += nskb->truesize;
3171 			sk_mem_charge(sk, nskb->truesize);
3172 			skb = nskb;
3173 		}
3174 
3175 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3176 		tcp_ecn_send_synack(sk, skb);
3177 	}
3178 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3179 }
3180 
3181 /**
3182  * tcp_make_synack - Prepare a SYN-ACK.
3183  * sk: listener socket
3184  * dst: dst entry attached to the SYNACK
3185  * req: request_sock pointer
3186  *
3187  * Allocate one skb and build a SYNACK packet.
3188  * @dst is consumed : Caller should not use it again.
3189  */
3190 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3191 				struct request_sock *req,
3192 				struct tcp_fastopen_cookie *foc,
3193 				enum tcp_synack_type synack_type)
3194 {
3195 	struct inet_request_sock *ireq = inet_rsk(req);
3196 	const struct tcp_sock *tp = tcp_sk(sk);
3197 	struct tcp_md5sig_key *md5 = NULL;
3198 	struct tcp_out_options opts;
3199 	struct sk_buff *skb;
3200 	int tcp_header_size;
3201 	struct tcphdr *th;
3202 	int mss;
3203 
3204 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3205 	if (unlikely(!skb)) {
3206 		dst_release(dst);
3207 		return NULL;
3208 	}
3209 	/* Reserve space for headers. */
3210 	skb_reserve(skb, MAX_TCP_HEADER);
3211 
3212 	switch (synack_type) {
3213 	case TCP_SYNACK_NORMAL:
3214 		skb_set_owner_w(skb, req_to_sk(req));
3215 		break;
3216 	case TCP_SYNACK_COOKIE:
3217 		/* Under synflood, we do not attach skb to a socket,
3218 		 * to avoid false sharing.
3219 		 */
3220 		break;
3221 	case TCP_SYNACK_FASTOPEN:
3222 		/* sk is a const pointer, because we want to express multiple
3223 		 * cpu might call us concurrently.
3224 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3225 		 */
3226 		skb_set_owner_w(skb, (struct sock *)sk);
3227 		break;
3228 	}
3229 	skb_dst_set(skb, dst);
3230 
3231 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3232 
3233 	memset(&opts, 0, sizeof(opts));
3234 #ifdef CONFIG_SYN_COOKIES
3235 	if (unlikely(req->cookie_ts))
3236 		skb->skb_mstamp_ns = cookie_init_timestamp(req);
3237 	else
3238 #endif
3239 		skb->skb_mstamp_ns = tcp_clock_ns();
3240 
3241 #ifdef CONFIG_TCP_MD5SIG
3242 	rcu_read_lock();
3243 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3244 #endif
3245 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3246 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3247 					     foc) + sizeof(*th);
3248 
3249 	skb_push(skb, tcp_header_size);
3250 	skb_reset_transport_header(skb);
3251 
3252 	th = (struct tcphdr *)skb->data;
3253 	memset(th, 0, sizeof(struct tcphdr));
3254 	th->syn = 1;
3255 	th->ack = 1;
3256 	tcp_ecn_make_synack(req, th);
3257 	th->source = htons(ireq->ir_num);
3258 	th->dest = ireq->ir_rmt_port;
3259 	skb->mark = ireq->ir_mark;
3260 	skb->ip_summed = CHECKSUM_PARTIAL;
3261 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3262 	/* XXX data is queued and acked as is. No buffer/window check */
3263 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3264 
3265 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3266 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3267 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3268 	th->doff = (tcp_header_size >> 2);
3269 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3270 
3271 #ifdef CONFIG_TCP_MD5SIG
3272 	/* Okay, we have all we need - do the md5 hash if needed */
3273 	if (md5)
3274 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3275 					       md5, req_to_sk(req), skb);
3276 	rcu_read_unlock();
3277 #endif
3278 
3279 	/* Do not fool tcpdump (if any), clean our debris */
3280 	skb->tstamp = 0;
3281 	return skb;
3282 }
3283 EXPORT_SYMBOL(tcp_make_synack);
3284 
3285 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3286 {
3287 	struct inet_connection_sock *icsk = inet_csk(sk);
3288 	const struct tcp_congestion_ops *ca;
3289 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3290 
3291 	if (ca_key == TCP_CA_UNSPEC)
3292 		return;
3293 
3294 	rcu_read_lock();
3295 	ca = tcp_ca_find_key(ca_key);
3296 	if (likely(ca && try_module_get(ca->owner))) {
3297 		module_put(icsk->icsk_ca_ops->owner);
3298 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3299 		icsk->icsk_ca_ops = ca;
3300 	}
3301 	rcu_read_unlock();
3302 }
3303 
3304 /* Do all connect socket setups that can be done AF independent. */
3305 static void tcp_connect_init(struct sock *sk)
3306 {
3307 	const struct dst_entry *dst = __sk_dst_get(sk);
3308 	struct tcp_sock *tp = tcp_sk(sk);
3309 	__u8 rcv_wscale;
3310 	u32 rcv_wnd;
3311 
3312 	/* We'll fix this up when we get a response from the other end.
3313 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3314 	 */
3315 	tp->tcp_header_len = sizeof(struct tcphdr);
3316 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3317 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3318 
3319 #ifdef CONFIG_TCP_MD5SIG
3320 	if (tp->af_specific->md5_lookup(sk, sk))
3321 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3322 #endif
3323 
3324 	/* If user gave his TCP_MAXSEG, record it to clamp */
3325 	if (tp->rx_opt.user_mss)
3326 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3327 	tp->max_window = 0;
3328 	tcp_mtup_init(sk);
3329 	tcp_sync_mss(sk, dst_mtu(dst));
3330 
3331 	tcp_ca_dst_init(sk, dst);
3332 
3333 	if (!tp->window_clamp)
3334 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3335 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3336 
3337 	tcp_initialize_rcv_mss(sk);
3338 
3339 	/* limit the window selection if the user enforce a smaller rx buffer */
3340 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3341 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3342 		tp->window_clamp = tcp_full_space(sk);
3343 
3344 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3345 	if (rcv_wnd == 0)
3346 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3347 
3348 	tcp_select_initial_window(sk, tcp_full_space(sk),
3349 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3350 				  &tp->rcv_wnd,
3351 				  &tp->window_clamp,
3352 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3353 				  &rcv_wscale,
3354 				  rcv_wnd);
3355 
3356 	tp->rx_opt.rcv_wscale = rcv_wscale;
3357 	tp->rcv_ssthresh = tp->rcv_wnd;
3358 
3359 	sk->sk_err = 0;
3360 	sock_reset_flag(sk, SOCK_DONE);
3361 	tp->snd_wnd = 0;
3362 	tcp_init_wl(tp, 0);
3363 	tcp_write_queue_purge(sk);
3364 	tp->snd_una = tp->write_seq;
3365 	tp->snd_sml = tp->write_seq;
3366 	tp->snd_up = tp->write_seq;
3367 	tp->snd_nxt = tp->write_seq;
3368 
3369 	if (likely(!tp->repair))
3370 		tp->rcv_nxt = 0;
3371 	else
3372 		tp->rcv_tstamp = tcp_jiffies32;
3373 	tp->rcv_wup = tp->rcv_nxt;
3374 	tp->copied_seq = tp->rcv_nxt;
3375 
3376 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3377 	inet_csk(sk)->icsk_retransmits = 0;
3378 	tcp_clear_retrans(tp);
3379 }
3380 
3381 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3382 {
3383 	struct tcp_sock *tp = tcp_sk(sk);
3384 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3385 
3386 	tcb->end_seq += skb->len;
3387 	__skb_header_release(skb);
3388 	sk->sk_wmem_queued += skb->truesize;
3389 	sk_mem_charge(sk, skb->truesize);
3390 	tp->write_seq = tcb->end_seq;
3391 	tp->packets_out += tcp_skb_pcount(skb);
3392 }
3393 
3394 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3395  * queue a data-only packet after the regular SYN, such that regular SYNs
3396  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3397  * only the SYN sequence, the data are retransmitted in the first ACK.
3398  * If cookie is not cached or other error occurs, falls back to send a
3399  * regular SYN with Fast Open cookie request option.
3400  */
3401 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3402 {
3403 	struct tcp_sock *tp = tcp_sk(sk);
3404 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3405 	int space, err = 0;
3406 	struct sk_buff *syn_data;
3407 
3408 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3409 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3410 		goto fallback;
3411 
3412 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3413 	 * user-MSS. Reserve maximum option space for middleboxes that add
3414 	 * private TCP options. The cost is reduced data space in SYN :(
3415 	 */
3416 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3417 
3418 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3419 		MAX_TCP_OPTION_SPACE;
3420 
3421 	space = min_t(size_t, space, fo->size);
3422 
3423 	/* limit to order-0 allocations */
3424 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3425 
3426 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3427 	if (!syn_data)
3428 		goto fallback;
3429 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3430 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3431 	if (space) {
3432 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3433 					    &fo->data->msg_iter);
3434 		if (unlikely(!copied)) {
3435 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3436 			kfree_skb(syn_data);
3437 			goto fallback;
3438 		}
3439 		if (copied != space) {
3440 			skb_trim(syn_data, copied);
3441 			space = copied;
3442 		}
3443 	}
3444 	/* No more data pending in inet_wait_for_connect() */
3445 	if (space == fo->size)
3446 		fo->data = NULL;
3447 	fo->copied = space;
3448 
3449 	tcp_connect_queue_skb(sk, syn_data);
3450 	if (syn_data->len)
3451 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3452 
3453 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3454 
3455 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3456 
3457 	/* Now full SYN+DATA was cloned and sent (or not),
3458 	 * remove the SYN from the original skb (syn_data)
3459 	 * we keep in write queue in case of a retransmit, as we
3460 	 * also have the SYN packet (with no data) in the same queue.
3461 	 */
3462 	TCP_SKB_CB(syn_data)->seq++;
3463 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3464 	if (!err) {
3465 		tp->syn_data = (fo->copied > 0);
3466 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3467 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3468 		goto done;
3469 	}
3470 
3471 	/* data was not sent, put it in write_queue */
3472 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3473 	tp->packets_out -= tcp_skb_pcount(syn_data);
3474 
3475 fallback:
3476 	/* Send a regular SYN with Fast Open cookie request option */
3477 	if (fo->cookie.len > 0)
3478 		fo->cookie.len = 0;
3479 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3480 	if (err)
3481 		tp->syn_fastopen = 0;
3482 done:
3483 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3484 	return err;
3485 }
3486 
3487 /* Build a SYN and send it off. */
3488 int tcp_connect(struct sock *sk)
3489 {
3490 	struct tcp_sock *tp = tcp_sk(sk);
3491 	struct sk_buff *buff;
3492 	int err;
3493 
3494 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3495 
3496 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3497 		return -EHOSTUNREACH; /* Routing failure or similar. */
3498 
3499 	tcp_connect_init(sk);
3500 
3501 	if (unlikely(tp->repair)) {
3502 		tcp_finish_connect(sk, NULL);
3503 		return 0;
3504 	}
3505 
3506 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3507 	if (unlikely(!buff))
3508 		return -ENOBUFS;
3509 
3510 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3511 	tcp_mstamp_refresh(tp);
3512 	tp->retrans_stamp = tcp_time_stamp(tp);
3513 	tcp_connect_queue_skb(sk, buff);
3514 	tcp_ecn_send_syn(sk, buff);
3515 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3516 
3517 	/* Send off SYN; include data in Fast Open. */
3518 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3519 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3520 	if (err == -ECONNREFUSED)
3521 		return err;
3522 
3523 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3524 	 * in order to make this packet get counted in tcpOutSegs.
3525 	 */
3526 	tp->snd_nxt = tp->write_seq;
3527 	tp->pushed_seq = tp->write_seq;
3528 	buff = tcp_send_head(sk);
3529 	if (unlikely(buff)) {
3530 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3531 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3532 	}
3533 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3534 
3535 	/* Timer for repeating the SYN until an answer. */
3536 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3537 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3538 	return 0;
3539 }
3540 EXPORT_SYMBOL(tcp_connect);
3541 
3542 /* Send out a delayed ack, the caller does the policy checking
3543  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3544  * for details.
3545  */
3546 void tcp_send_delayed_ack(struct sock *sk)
3547 {
3548 	struct inet_connection_sock *icsk = inet_csk(sk);
3549 	int ato = icsk->icsk_ack.ato;
3550 	unsigned long timeout;
3551 
3552 	if (ato > TCP_DELACK_MIN) {
3553 		const struct tcp_sock *tp = tcp_sk(sk);
3554 		int max_ato = HZ / 2;
3555 
3556 		if (icsk->icsk_ack.pingpong ||
3557 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3558 			max_ato = TCP_DELACK_MAX;
3559 
3560 		/* Slow path, intersegment interval is "high". */
3561 
3562 		/* If some rtt estimate is known, use it to bound delayed ack.
3563 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3564 		 * directly.
3565 		 */
3566 		if (tp->srtt_us) {
3567 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3568 					TCP_DELACK_MIN);
3569 
3570 			if (rtt < max_ato)
3571 				max_ato = rtt;
3572 		}
3573 
3574 		ato = min(ato, max_ato);
3575 	}
3576 
3577 	/* Stay within the limit we were given */
3578 	timeout = jiffies + ato;
3579 
3580 	/* Use new timeout only if there wasn't a older one earlier. */
3581 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3582 		/* If delack timer was blocked or is about to expire,
3583 		 * send ACK now.
3584 		 */
3585 		if (icsk->icsk_ack.blocked ||
3586 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3587 			tcp_send_ack(sk);
3588 			return;
3589 		}
3590 
3591 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3592 			timeout = icsk->icsk_ack.timeout;
3593 	}
3594 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3595 	icsk->icsk_ack.timeout = timeout;
3596 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3597 }
3598 
3599 /* This routine sends an ack and also updates the window. */
3600 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3601 {
3602 	struct sk_buff *buff;
3603 
3604 	/* If we have been reset, we may not send again. */
3605 	if (sk->sk_state == TCP_CLOSE)
3606 		return;
3607 
3608 	/* We are not putting this on the write queue, so
3609 	 * tcp_transmit_skb() will set the ownership to this
3610 	 * sock.
3611 	 */
3612 	buff = alloc_skb(MAX_TCP_HEADER,
3613 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3614 	if (unlikely(!buff)) {
3615 		inet_csk_schedule_ack(sk);
3616 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3617 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3618 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3619 		return;
3620 	}
3621 
3622 	/* Reserve space for headers and prepare control bits. */
3623 	skb_reserve(buff, MAX_TCP_HEADER);
3624 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3625 
3626 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3627 	 * too much.
3628 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3629 	 */
3630 	skb_set_tcp_pure_ack(buff);
3631 
3632 	/* Send it off, this clears delayed acks for us. */
3633 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3634 }
3635 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3636 
3637 void tcp_send_ack(struct sock *sk)
3638 {
3639 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3640 }
3641 
3642 /* This routine sends a packet with an out of date sequence
3643  * number. It assumes the other end will try to ack it.
3644  *
3645  * Question: what should we make while urgent mode?
3646  * 4.4BSD forces sending single byte of data. We cannot send
3647  * out of window data, because we have SND.NXT==SND.MAX...
3648  *
3649  * Current solution: to send TWO zero-length segments in urgent mode:
3650  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3651  * out-of-date with SND.UNA-1 to probe window.
3652  */
3653 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3654 {
3655 	struct tcp_sock *tp = tcp_sk(sk);
3656 	struct sk_buff *skb;
3657 
3658 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3659 	skb = alloc_skb(MAX_TCP_HEADER,
3660 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3661 	if (!skb)
3662 		return -1;
3663 
3664 	/* Reserve space for headers and set control bits. */
3665 	skb_reserve(skb, MAX_TCP_HEADER);
3666 	/* Use a previous sequence.  This should cause the other
3667 	 * end to send an ack.  Don't queue or clone SKB, just
3668 	 * send it.
3669 	 */
3670 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3671 	NET_INC_STATS(sock_net(sk), mib);
3672 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3673 }
3674 
3675 /* Called from setsockopt( ... TCP_REPAIR ) */
3676 void tcp_send_window_probe(struct sock *sk)
3677 {
3678 	if (sk->sk_state == TCP_ESTABLISHED) {
3679 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3680 		tcp_mstamp_refresh(tcp_sk(sk));
3681 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3682 	}
3683 }
3684 
3685 /* Initiate keepalive or window probe from timer. */
3686 int tcp_write_wakeup(struct sock *sk, int mib)
3687 {
3688 	struct tcp_sock *tp = tcp_sk(sk);
3689 	struct sk_buff *skb;
3690 
3691 	if (sk->sk_state == TCP_CLOSE)
3692 		return -1;
3693 
3694 	skb = tcp_send_head(sk);
3695 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3696 		int err;
3697 		unsigned int mss = tcp_current_mss(sk);
3698 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3699 
3700 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3701 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3702 
3703 		/* We are probing the opening of a window
3704 		 * but the window size is != 0
3705 		 * must have been a result SWS avoidance ( sender )
3706 		 */
3707 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3708 		    skb->len > mss) {
3709 			seg_size = min(seg_size, mss);
3710 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3711 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3712 					 skb, seg_size, mss, GFP_ATOMIC))
3713 				return -1;
3714 		} else if (!tcp_skb_pcount(skb))
3715 			tcp_set_skb_tso_segs(skb, mss);
3716 
3717 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3718 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3719 		if (!err)
3720 			tcp_event_new_data_sent(sk, skb);
3721 		return err;
3722 	} else {
3723 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3724 			tcp_xmit_probe_skb(sk, 1, mib);
3725 		return tcp_xmit_probe_skb(sk, 0, mib);
3726 	}
3727 }
3728 
3729 /* A window probe timeout has occurred.  If window is not closed send
3730  * a partial packet else a zero probe.
3731  */
3732 void tcp_send_probe0(struct sock *sk)
3733 {
3734 	struct inet_connection_sock *icsk = inet_csk(sk);
3735 	struct tcp_sock *tp = tcp_sk(sk);
3736 	struct net *net = sock_net(sk);
3737 	unsigned long probe_max;
3738 	int err;
3739 
3740 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3741 
3742 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3743 		/* Cancel probe timer, if it is not required. */
3744 		icsk->icsk_probes_out = 0;
3745 		icsk->icsk_backoff = 0;
3746 		return;
3747 	}
3748 
3749 	if (err <= 0) {
3750 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3751 			icsk->icsk_backoff++;
3752 		icsk->icsk_probes_out++;
3753 		probe_max = TCP_RTO_MAX;
3754 	} else {
3755 		/* If packet was not sent due to local congestion,
3756 		 * do not backoff and do not remember icsk_probes_out.
3757 		 * Let local senders to fight for local resources.
3758 		 *
3759 		 * Use accumulated backoff yet.
3760 		 */
3761 		if (!icsk->icsk_probes_out)
3762 			icsk->icsk_probes_out = 1;
3763 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3764 	}
3765 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3766 			     tcp_probe0_when(sk, probe_max),
3767 			     TCP_RTO_MAX,
3768 			     NULL);
3769 }
3770 
3771 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3772 {
3773 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3774 	struct flowi fl;
3775 	int res;
3776 
3777 	tcp_rsk(req)->txhash = net_tx_rndhash();
3778 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3779 	if (!res) {
3780 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3781 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3782 		if (unlikely(tcp_passive_fastopen(sk)))
3783 			tcp_sk(sk)->total_retrans++;
3784 		trace_tcp_retransmit_synack(sk, req);
3785 	}
3786 	return res;
3787 }
3788 EXPORT_SYMBOL(tcp_rtx_synack);
3789