1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 42 #include <linux/compiler.h> 43 #include <linux/gfp.h> 44 #include <linux/module.h> 45 #include <linux/static_key.h> 46 47 #include <trace/events/tcp.h> 48 49 /* Refresh clocks of a TCP socket, 50 * ensuring monotically increasing values. 51 */ 52 void tcp_mstamp_refresh(struct tcp_sock *tp) 53 { 54 u64 val = tcp_clock_ns(); 55 56 tp->tcp_clock_cache = val; 57 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 58 } 59 60 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 61 int push_one, gfp_t gfp); 62 63 /* Account for new data that has been sent to the network. */ 64 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 65 { 66 struct inet_connection_sock *icsk = inet_csk(sk); 67 struct tcp_sock *tp = tcp_sk(sk); 68 unsigned int prior_packets = tp->packets_out; 69 70 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 71 72 __skb_unlink(skb, &sk->sk_write_queue); 73 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 74 75 if (tp->highest_sack == NULL) 76 tp->highest_sack = skb; 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 80 tcp_rearm_rto(sk); 81 82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 83 tcp_skb_pcount(skb)); 84 } 85 86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 87 * window scaling factor due to loss of precision. 88 * If window has been shrunk, what should we make? It is not clear at all. 89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 91 * invalid. OK, let's make this for now: 92 */ 93 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 94 { 95 const struct tcp_sock *tp = tcp_sk(sk); 96 97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 98 (tp->rx_opt.wscale_ok && 99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 100 return tp->snd_nxt; 101 else 102 return tcp_wnd_end(tp); 103 } 104 105 /* Calculate mss to advertise in SYN segment. 106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 107 * 108 * 1. It is independent of path mtu. 109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 111 * attached devices, because some buggy hosts are confused by 112 * large MSS. 113 * 4. We do not make 3, we advertise MSS, calculated from first 114 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 115 * This may be overridden via information stored in routing table. 116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 117 * probably even Jumbo". 118 */ 119 static __u16 tcp_advertise_mss(struct sock *sk) 120 { 121 struct tcp_sock *tp = tcp_sk(sk); 122 const struct dst_entry *dst = __sk_dst_get(sk); 123 int mss = tp->advmss; 124 125 if (dst) { 126 unsigned int metric = dst_metric_advmss(dst); 127 128 if (metric < mss) { 129 mss = metric; 130 tp->advmss = mss; 131 } 132 } 133 134 return (__u16)mss; 135 } 136 137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 138 * This is the first part of cwnd validation mechanism. 139 */ 140 void tcp_cwnd_restart(struct sock *sk, s32 delta) 141 { 142 struct tcp_sock *tp = tcp_sk(sk); 143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 144 u32 cwnd = tp->snd_cwnd; 145 146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 147 148 tp->snd_ssthresh = tcp_current_ssthresh(sk); 149 restart_cwnd = min(restart_cwnd, cwnd); 150 151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 152 cwnd >>= 1; 153 tp->snd_cwnd = max(cwnd, restart_cwnd); 154 tp->snd_cwnd_stamp = tcp_jiffies32; 155 tp->snd_cwnd_used = 0; 156 } 157 158 /* Congestion state accounting after a packet has been sent. */ 159 static void tcp_event_data_sent(struct tcp_sock *tp, 160 struct sock *sk) 161 { 162 struct inet_connection_sock *icsk = inet_csk(sk); 163 const u32 now = tcp_jiffies32; 164 165 if (tcp_packets_in_flight(tp) == 0) 166 tcp_ca_event(sk, CA_EVENT_TX_START); 167 168 /* If this is the first data packet sent in response to the 169 * previous received data, 170 * and it is a reply for ato after last received packet, 171 * increase pingpong count. 172 */ 173 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) && 174 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 175 inet_csk_inc_pingpong_cnt(sk); 176 177 tp->lsndtime = now; 178 } 179 180 /* Account for an ACK we sent. */ 181 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 182 u32 rcv_nxt) 183 { 184 struct tcp_sock *tp = tcp_sk(sk); 185 186 if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) { 187 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 188 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 189 tp->compressed_ack = TCP_FASTRETRANS_THRESH; 190 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 191 __sock_put(sk); 192 } 193 194 if (unlikely(rcv_nxt != tp->rcv_nxt)) 195 return; /* Special ACK sent by DCTCP to reflect ECN */ 196 tcp_dec_quickack_mode(sk, pkts); 197 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 198 } 199 200 /* Determine a window scaling and initial window to offer. 201 * Based on the assumption that the given amount of space 202 * will be offered. Store the results in the tp structure. 203 * NOTE: for smooth operation initial space offering should 204 * be a multiple of mss if possible. We assume here that mss >= 1. 205 * This MUST be enforced by all callers. 206 */ 207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 208 __u32 *rcv_wnd, __u32 *window_clamp, 209 int wscale_ok, __u8 *rcv_wscale, 210 __u32 init_rcv_wnd) 211 { 212 unsigned int space = (__space < 0 ? 0 : __space); 213 214 /* If no clamp set the clamp to the max possible scaled window */ 215 if (*window_clamp == 0) 216 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 217 space = min(*window_clamp, space); 218 219 /* Quantize space offering to a multiple of mss if possible. */ 220 if (space > mss) 221 space = rounddown(space, mss); 222 223 /* NOTE: offering an initial window larger than 32767 224 * will break some buggy TCP stacks. If the admin tells us 225 * it is likely we could be speaking with such a buggy stack 226 * we will truncate our initial window offering to 32K-1 227 * unless the remote has sent us a window scaling option, 228 * which we interpret as a sign the remote TCP is not 229 * misinterpreting the window field as a signed quantity. 230 */ 231 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 232 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 233 else 234 (*rcv_wnd) = min_t(u32, space, U16_MAX); 235 236 if (init_rcv_wnd) 237 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 238 239 *rcv_wscale = 0; 240 if (wscale_ok) { 241 /* Set window scaling on max possible window */ 242 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 243 space = max_t(u32, space, sysctl_rmem_max); 244 space = min_t(u32, space, *window_clamp); 245 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 246 0, TCP_MAX_WSCALE); 247 } 248 /* Set the clamp no higher than max representable value */ 249 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 250 } 251 EXPORT_SYMBOL(tcp_select_initial_window); 252 253 /* Chose a new window to advertise, update state in tcp_sock for the 254 * socket, and return result with RFC1323 scaling applied. The return 255 * value can be stuffed directly into th->window for an outgoing 256 * frame. 257 */ 258 static u16 tcp_select_window(struct sock *sk) 259 { 260 struct tcp_sock *tp = tcp_sk(sk); 261 u32 old_win = tp->rcv_wnd; 262 u32 cur_win = tcp_receive_window(tp); 263 u32 new_win = __tcp_select_window(sk); 264 265 /* Never shrink the offered window */ 266 if (new_win < cur_win) { 267 /* Danger Will Robinson! 268 * Don't update rcv_wup/rcv_wnd here or else 269 * we will not be able to advertise a zero 270 * window in time. --DaveM 271 * 272 * Relax Will Robinson. 273 */ 274 if (new_win == 0) 275 NET_INC_STATS(sock_net(sk), 276 LINUX_MIB_TCPWANTZEROWINDOWADV); 277 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 278 } 279 tp->rcv_wnd = new_win; 280 tp->rcv_wup = tp->rcv_nxt; 281 282 /* Make sure we do not exceed the maximum possible 283 * scaled window. 284 */ 285 if (!tp->rx_opt.rcv_wscale && 286 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 287 new_win = min(new_win, MAX_TCP_WINDOW); 288 else 289 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 290 291 /* RFC1323 scaling applied */ 292 new_win >>= tp->rx_opt.rcv_wscale; 293 294 /* If we advertise zero window, disable fast path. */ 295 if (new_win == 0) { 296 tp->pred_flags = 0; 297 if (old_win) 298 NET_INC_STATS(sock_net(sk), 299 LINUX_MIB_TCPTOZEROWINDOWADV); 300 } else if (old_win == 0) { 301 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 302 } 303 304 return new_win; 305 } 306 307 /* Packet ECN state for a SYN-ACK */ 308 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 309 { 310 const struct tcp_sock *tp = tcp_sk(sk); 311 312 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 313 if (!(tp->ecn_flags & TCP_ECN_OK)) 314 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 315 else if (tcp_ca_needs_ecn(sk) || 316 tcp_bpf_ca_needs_ecn(sk)) 317 INET_ECN_xmit(sk); 318 } 319 320 /* Packet ECN state for a SYN. */ 321 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 322 { 323 struct tcp_sock *tp = tcp_sk(sk); 324 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 325 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 326 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 327 328 if (!use_ecn) { 329 const struct dst_entry *dst = __sk_dst_get(sk); 330 331 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 332 use_ecn = true; 333 } 334 335 tp->ecn_flags = 0; 336 337 if (use_ecn) { 338 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 339 tp->ecn_flags = TCP_ECN_OK; 340 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 341 INET_ECN_xmit(sk); 342 } 343 } 344 345 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 346 { 347 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 348 /* tp->ecn_flags are cleared at a later point in time when 349 * SYN ACK is ultimatively being received. 350 */ 351 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 352 } 353 354 static void 355 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 356 { 357 if (inet_rsk(req)->ecn_ok) 358 th->ece = 1; 359 } 360 361 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 362 * be sent. 363 */ 364 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 365 struct tcphdr *th, int tcp_header_len) 366 { 367 struct tcp_sock *tp = tcp_sk(sk); 368 369 if (tp->ecn_flags & TCP_ECN_OK) { 370 /* Not-retransmitted data segment: set ECT and inject CWR. */ 371 if (skb->len != tcp_header_len && 372 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 373 INET_ECN_xmit(sk); 374 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 375 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 376 th->cwr = 1; 377 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 378 } 379 } else if (!tcp_ca_needs_ecn(sk)) { 380 /* ACK or retransmitted segment: clear ECT|CE */ 381 INET_ECN_dontxmit(sk); 382 } 383 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 384 th->ece = 1; 385 } 386 } 387 388 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 389 * auto increment end seqno. 390 */ 391 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 392 { 393 skb->ip_summed = CHECKSUM_PARTIAL; 394 395 TCP_SKB_CB(skb)->tcp_flags = flags; 396 TCP_SKB_CB(skb)->sacked = 0; 397 398 tcp_skb_pcount_set(skb, 1); 399 400 TCP_SKB_CB(skb)->seq = seq; 401 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 402 seq++; 403 TCP_SKB_CB(skb)->end_seq = seq; 404 } 405 406 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 407 { 408 return tp->snd_una != tp->snd_up; 409 } 410 411 #define OPTION_SACK_ADVERTISE (1 << 0) 412 #define OPTION_TS (1 << 1) 413 #define OPTION_MD5 (1 << 2) 414 #define OPTION_WSCALE (1 << 3) 415 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 416 #define OPTION_SMC (1 << 9) 417 418 static void smc_options_write(__be32 *ptr, u16 *options) 419 { 420 #if IS_ENABLED(CONFIG_SMC) 421 if (static_branch_unlikely(&tcp_have_smc)) { 422 if (unlikely(OPTION_SMC & *options)) { 423 *ptr++ = htonl((TCPOPT_NOP << 24) | 424 (TCPOPT_NOP << 16) | 425 (TCPOPT_EXP << 8) | 426 (TCPOLEN_EXP_SMC_BASE)); 427 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 428 } 429 } 430 #endif 431 } 432 433 struct tcp_out_options { 434 u16 options; /* bit field of OPTION_* */ 435 u16 mss; /* 0 to disable */ 436 u8 ws; /* window scale, 0 to disable */ 437 u8 num_sack_blocks; /* number of SACK blocks to include */ 438 u8 hash_size; /* bytes in hash_location */ 439 __u8 *hash_location; /* temporary pointer, overloaded */ 440 __u32 tsval, tsecr; /* need to include OPTION_TS */ 441 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 442 }; 443 444 /* Write previously computed TCP options to the packet. 445 * 446 * Beware: Something in the Internet is very sensitive to the ordering of 447 * TCP options, we learned this through the hard way, so be careful here. 448 * Luckily we can at least blame others for their non-compliance but from 449 * inter-operability perspective it seems that we're somewhat stuck with 450 * the ordering which we have been using if we want to keep working with 451 * those broken things (not that it currently hurts anybody as there isn't 452 * particular reason why the ordering would need to be changed). 453 * 454 * At least SACK_PERM as the first option is known to lead to a disaster 455 * (but it may well be that other scenarios fail similarly). 456 */ 457 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 458 struct tcp_out_options *opts) 459 { 460 u16 options = opts->options; /* mungable copy */ 461 462 if (unlikely(OPTION_MD5 & options)) { 463 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 464 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 465 /* overload cookie hash location */ 466 opts->hash_location = (__u8 *)ptr; 467 ptr += 4; 468 } 469 470 if (unlikely(opts->mss)) { 471 *ptr++ = htonl((TCPOPT_MSS << 24) | 472 (TCPOLEN_MSS << 16) | 473 opts->mss); 474 } 475 476 if (likely(OPTION_TS & options)) { 477 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 478 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 479 (TCPOLEN_SACK_PERM << 16) | 480 (TCPOPT_TIMESTAMP << 8) | 481 TCPOLEN_TIMESTAMP); 482 options &= ~OPTION_SACK_ADVERTISE; 483 } else { 484 *ptr++ = htonl((TCPOPT_NOP << 24) | 485 (TCPOPT_NOP << 16) | 486 (TCPOPT_TIMESTAMP << 8) | 487 TCPOLEN_TIMESTAMP); 488 } 489 *ptr++ = htonl(opts->tsval); 490 *ptr++ = htonl(opts->tsecr); 491 } 492 493 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 494 *ptr++ = htonl((TCPOPT_NOP << 24) | 495 (TCPOPT_NOP << 16) | 496 (TCPOPT_SACK_PERM << 8) | 497 TCPOLEN_SACK_PERM); 498 } 499 500 if (unlikely(OPTION_WSCALE & options)) { 501 *ptr++ = htonl((TCPOPT_NOP << 24) | 502 (TCPOPT_WINDOW << 16) | 503 (TCPOLEN_WINDOW << 8) | 504 opts->ws); 505 } 506 507 if (unlikely(opts->num_sack_blocks)) { 508 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 509 tp->duplicate_sack : tp->selective_acks; 510 int this_sack; 511 512 *ptr++ = htonl((TCPOPT_NOP << 24) | 513 (TCPOPT_NOP << 16) | 514 (TCPOPT_SACK << 8) | 515 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 516 TCPOLEN_SACK_PERBLOCK))); 517 518 for (this_sack = 0; this_sack < opts->num_sack_blocks; 519 ++this_sack) { 520 *ptr++ = htonl(sp[this_sack].start_seq); 521 *ptr++ = htonl(sp[this_sack].end_seq); 522 } 523 524 tp->rx_opt.dsack = 0; 525 } 526 527 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 528 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 529 u8 *p = (u8 *)ptr; 530 u32 len; /* Fast Open option length */ 531 532 if (foc->exp) { 533 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 534 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 535 TCPOPT_FASTOPEN_MAGIC); 536 p += TCPOLEN_EXP_FASTOPEN_BASE; 537 } else { 538 len = TCPOLEN_FASTOPEN_BASE + foc->len; 539 *p++ = TCPOPT_FASTOPEN; 540 *p++ = len; 541 } 542 543 memcpy(p, foc->val, foc->len); 544 if ((len & 3) == 2) { 545 p[foc->len] = TCPOPT_NOP; 546 p[foc->len + 1] = TCPOPT_NOP; 547 } 548 ptr += (len + 3) >> 2; 549 } 550 551 smc_options_write(ptr, &options); 552 } 553 554 static void smc_set_option(const struct tcp_sock *tp, 555 struct tcp_out_options *opts, 556 unsigned int *remaining) 557 { 558 #if IS_ENABLED(CONFIG_SMC) 559 if (static_branch_unlikely(&tcp_have_smc)) { 560 if (tp->syn_smc) { 561 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 562 opts->options |= OPTION_SMC; 563 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 564 } 565 } 566 } 567 #endif 568 } 569 570 static void smc_set_option_cond(const struct tcp_sock *tp, 571 const struct inet_request_sock *ireq, 572 struct tcp_out_options *opts, 573 unsigned int *remaining) 574 { 575 #if IS_ENABLED(CONFIG_SMC) 576 if (static_branch_unlikely(&tcp_have_smc)) { 577 if (tp->syn_smc && ireq->smc_ok) { 578 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 579 opts->options |= OPTION_SMC; 580 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 581 } 582 } 583 } 584 #endif 585 } 586 587 /* Compute TCP options for SYN packets. This is not the final 588 * network wire format yet. 589 */ 590 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 591 struct tcp_out_options *opts, 592 struct tcp_md5sig_key **md5) 593 { 594 struct tcp_sock *tp = tcp_sk(sk); 595 unsigned int remaining = MAX_TCP_OPTION_SPACE; 596 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 597 598 *md5 = NULL; 599 #ifdef CONFIG_TCP_MD5SIG 600 if (static_branch_unlikely(&tcp_md5_needed) && 601 rcu_access_pointer(tp->md5sig_info)) { 602 *md5 = tp->af_specific->md5_lookup(sk, sk); 603 if (*md5) { 604 opts->options |= OPTION_MD5; 605 remaining -= TCPOLEN_MD5SIG_ALIGNED; 606 } 607 } 608 #endif 609 610 /* We always get an MSS option. The option bytes which will be seen in 611 * normal data packets should timestamps be used, must be in the MSS 612 * advertised. But we subtract them from tp->mss_cache so that 613 * calculations in tcp_sendmsg are simpler etc. So account for this 614 * fact here if necessary. If we don't do this correctly, as a 615 * receiver we won't recognize data packets as being full sized when we 616 * should, and thus we won't abide by the delayed ACK rules correctly. 617 * SACKs don't matter, we never delay an ACK when we have any of those 618 * going out. */ 619 opts->mss = tcp_advertise_mss(sk); 620 remaining -= TCPOLEN_MSS_ALIGNED; 621 622 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 623 opts->options |= OPTION_TS; 624 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 625 opts->tsecr = tp->rx_opt.ts_recent; 626 remaining -= TCPOLEN_TSTAMP_ALIGNED; 627 } 628 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 629 opts->ws = tp->rx_opt.rcv_wscale; 630 opts->options |= OPTION_WSCALE; 631 remaining -= TCPOLEN_WSCALE_ALIGNED; 632 } 633 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 634 opts->options |= OPTION_SACK_ADVERTISE; 635 if (unlikely(!(OPTION_TS & opts->options))) 636 remaining -= TCPOLEN_SACKPERM_ALIGNED; 637 } 638 639 if (fastopen && fastopen->cookie.len >= 0) { 640 u32 need = fastopen->cookie.len; 641 642 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 643 TCPOLEN_FASTOPEN_BASE; 644 need = (need + 3) & ~3U; /* Align to 32 bits */ 645 if (remaining >= need) { 646 opts->options |= OPTION_FAST_OPEN_COOKIE; 647 opts->fastopen_cookie = &fastopen->cookie; 648 remaining -= need; 649 tp->syn_fastopen = 1; 650 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 651 } 652 } 653 654 smc_set_option(tp, opts, &remaining); 655 656 return MAX_TCP_OPTION_SPACE - remaining; 657 } 658 659 /* Set up TCP options for SYN-ACKs. */ 660 static unsigned int tcp_synack_options(const struct sock *sk, 661 struct request_sock *req, 662 unsigned int mss, struct sk_buff *skb, 663 struct tcp_out_options *opts, 664 const struct tcp_md5sig_key *md5, 665 struct tcp_fastopen_cookie *foc) 666 { 667 struct inet_request_sock *ireq = inet_rsk(req); 668 unsigned int remaining = MAX_TCP_OPTION_SPACE; 669 670 #ifdef CONFIG_TCP_MD5SIG 671 if (md5) { 672 opts->options |= OPTION_MD5; 673 remaining -= TCPOLEN_MD5SIG_ALIGNED; 674 675 /* We can't fit any SACK blocks in a packet with MD5 + TS 676 * options. There was discussion about disabling SACK 677 * rather than TS in order to fit in better with old, 678 * buggy kernels, but that was deemed to be unnecessary. 679 */ 680 ireq->tstamp_ok &= !ireq->sack_ok; 681 } 682 #endif 683 684 /* We always send an MSS option. */ 685 opts->mss = mss; 686 remaining -= TCPOLEN_MSS_ALIGNED; 687 688 if (likely(ireq->wscale_ok)) { 689 opts->ws = ireq->rcv_wscale; 690 opts->options |= OPTION_WSCALE; 691 remaining -= TCPOLEN_WSCALE_ALIGNED; 692 } 693 if (likely(ireq->tstamp_ok)) { 694 opts->options |= OPTION_TS; 695 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 696 opts->tsecr = req->ts_recent; 697 remaining -= TCPOLEN_TSTAMP_ALIGNED; 698 } 699 if (likely(ireq->sack_ok)) { 700 opts->options |= OPTION_SACK_ADVERTISE; 701 if (unlikely(!ireq->tstamp_ok)) 702 remaining -= TCPOLEN_SACKPERM_ALIGNED; 703 } 704 if (foc != NULL && foc->len >= 0) { 705 u32 need = foc->len; 706 707 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 708 TCPOLEN_FASTOPEN_BASE; 709 need = (need + 3) & ~3U; /* Align to 32 bits */ 710 if (remaining >= need) { 711 opts->options |= OPTION_FAST_OPEN_COOKIE; 712 opts->fastopen_cookie = foc; 713 remaining -= need; 714 } 715 } 716 717 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 718 719 return MAX_TCP_OPTION_SPACE - remaining; 720 } 721 722 /* Compute TCP options for ESTABLISHED sockets. This is not the 723 * final wire format yet. 724 */ 725 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 726 struct tcp_out_options *opts, 727 struct tcp_md5sig_key **md5) 728 { 729 struct tcp_sock *tp = tcp_sk(sk); 730 unsigned int size = 0; 731 unsigned int eff_sacks; 732 733 opts->options = 0; 734 735 *md5 = NULL; 736 #ifdef CONFIG_TCP_MD5SIG 737 if (static_branch_unlikely(&tcp_md5_needed) && 738 rcu_access_pointer(tp->md5sig_info)) { 739 *md5 = tp->af_specific->md5_lookup(sk, sk); 740 if (*md5) { 741 opts->options |= OPTION_MD5; 742 size += TCPOLEN_MD5SIG_ALIGNED; 743 } 744 } 745 #endif 746 747 if (likely(tp->rx_opt.tstamp_ok)) { 748 opts->options |= OPTION_TS; 749 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 750 opts->tsecr = tp->rx_opt.ts_recent; 751 size += TCPOLEN_TSTAMP_ALIGNED; 752 } 753 754 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 755 if (unlikely(eff_sacks)) { 756 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 757 opts->num_sack_blocks = 758 min_t(unsigned int, eff_sacks, 759 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 760 TCPOLEN_SACK_PERBLOCK); 761 if (likely(opts->num_sack_blocks)) 762 size += TCPOLEN_SACK_BASE_ALIGNED + 763 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 764 } 765 766 return size; 767 } 768 769 770 /* TCP SMALL QUEUES (TSQ) 771 * 772 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 773 * to reduce RTT and bufferbloat. 774 * We do this using a special skb destructor (tcp_wfree). 775 * 776 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 777 * needs to be reallocated in a driver. 778 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 779 * 780 * Since transmit from skb destructor is forbidden, we use a tasklet 781 * to process all sockets that eventually need to send more skbs. 782 * We use one tasklet per cpu, with its own queue of sockets. 783 */ 784 struct tsq_tasklet { 785 struct tasklet_struct tasklet; 786 struct list_head head; /* queue of tcp sockets */ 787 }; 788 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 789 790 static void tcp_tsq_write(struct sock *sk) 791 { 792 if ((1 << sk->sk_state) & 793 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 794 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 795 struct tcp_sock *tp = tcp_sk(sk); 796 797 if (tp->lost_out > tp->retrans_out && 798 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 799 tcp_mstamp_refresh(tp); 800 tcp_xmit_retransmit_queue(sk); 801 } 802 803 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 804 0, GFP_ATOMIC); 805 } 806 } 807 808 static void tcp_tsq_handler(struct sock *sk) 809 { 810 bh_lock_sock(sk); 811 if (!sock_owned_by_user(sk)) 812 tcp_tsq_write(sk); 813 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 814 sock_hold(sk); 815 bh_unlock_sock(sk); 816 } 817 /* 818 * One tasklet per cpu tries to send more skbs. 819 * We run in tasklet context but need to disable irqs when 820 * transferring tsq->head because tcp_wfree() might 821 * interrupt us (non NAPI drivers) 822 */ 823 static void tcp_tasklet_func(unsigned long data) 824 { 825 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 826 LIST_HEAD(list); 827 unsigned long flags; 828 struct list_head *q, *n; 829 struct tcp_sock *tp; 830 struct sock *sk; 831 832 local_irq_save(flags); 833 list_splice_init(&tsq->head, &list); 834 local_irq_restore(flags); 835 836 list_for_each_safe(q, n, &list) { 837 tp = list_entry(q, struct tcp_sock, tsq_node); 838 list_del(&tp->tsq_node); 839 840 sk = (struct sock *)tp; 841 smp_mb__before_atomic(); 842 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 843 844 tcp_tsq_handler(sk); 845 sk_free(sk); 846 } 847 } 848 849 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 850 TCPF_WRITE_TIMER_DEFERRED | \ 851 TCPF_DELACK_TIMER_DEFERRED | \ 852 TCPF_MTU_REDUCED_DEFERRED) 853 /** 854 * tcp_release_cb - tcp release_sock() callback 855 * @sk: socket 856 * 857 * called from release_sock() to perform protocol dependent 858 * actions before socket release. 859 */ 860 void tcp_release_cb(struct sock *sk) 861 { 862 unsigned long flags, nflags; 863 864 /* perform an atomic operation only if at least one flag is set */ 865 do { 866 flags = sk->sk_tsq_flags; 867 if (!(flags & TCP_DEFERRED_ALL)) 868 return; 869 nflags = flags & ~TCP_DEFERRED_ALL; 870 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 871 872 if (flags & TCPF_TSQ_DEFERRED) { 873 tcp_tsq_write(sk); 874 __sock_put(sk); 875 } 876 /* Here begins the tricky part : 877 * We are called from release_sock() with : 878 * 1) BH disabled 879 * 2) sk_lock.slock spinlock held 880 * 3) socket owned by us (sk->sk_lock.owned == 1) 881 * 882 * But following code is meant to be called from BH handlers, 883 * so we should keep BH disabled, but early release socket ownership 884 */ 885 sock_release_ownership(sk); 886 887 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 888 tcp_write_timer_handler(sk); 889 __sock_put(sk); 890 } 891 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 892 tcp_delack_timer_handler(sk); 893 __sock_put(sk); 894 } 895 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 896 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 897 __sock_put(sk); 898 } 899 } 900 EXPORT_SYMBOL(tcp_release_cb); 901 902 void __init tcp_tasklet_init(void) 903 { 904 int i; 905 906 for_each_possible_cpu(i) { 907 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 908 909 INIT_LIST_HEAD(&tsq->head); 910 tasklet_init(&tsq->tasklet, 911 tcp_tasklet_func, 912 (unsigned long)tsq); 913 } 914 } 915 916 /* 917 * Write buffer destructor automatically called from kfree_skb. 918 * We can't xmit new skbs from this context, as we might already 919 * hold qdisc lock. 920 */ 921 void tcp_wfree(struct sk_buff *skb) 922 { 923 struct sock *sk = skb->sk; 924 struct tcp_sock *tp = tcp_sk(sk); 925 unsigned long flags, nval, oval; 926 927 /* Keep one reference on sk_wmem_alloc. 928 * Will be released by sk_free() from here or tcp_tasklet_func() 929 */ 930 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 931 932 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 933 * Wait until our queues (qdisc + devices) are drained. 934 * This gives : 935 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 936 * - chance for incoming ACK (processed by another cpu maybe) 937 * to migrate this flow (skb->ooo_okay will be eventually set) 938 */ 939 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 940 goto out; 941 942 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 943 struct tsq_tasklet *tsq; 944 bool empty; 945 946 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 947 goto out; 948 949 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 950 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 951 if (nval != oval) 952 continue; 953 954 /* queue this socket to tasklet queue */ 955 local_irq_save(flags); 956 tsq = this_cpu_ptr(&tsq_tasklet); 957 empty = list_empty(&tsq->head); 958 list_add(&tp->tsq_node, &tsq->head); 959 if (empty) 960 tasklet_schedule(&tsq->tasklet); 961 local_irq_restore(flags); 962 return; 963 } 964 out: 965 sk_free(sk); 966 } 967 968 /* Note: Called under soft irq. 969 * We can call TCP stack right away, unless socket is owned by user. 970 */ 971 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 972 { 973 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 974 struct sock *sk = (struct sock *)tp; 975 976 tcp_tsq_handler(sk); 977 sock_put(sk); 978 979 return HRTIMER_NORESTART; 980 } 981 982 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 983 u64 prior_wstamp) 984 { 985 struct tcp_sock *tp = tcp_sk(sk); 986 987 if (sk->sk_pacing_status != SK_PACING_NONE) { 988 unsigned long rate = sk->sk_pacing_rate; 989 990 /* Original sch_fq does not pace first 10 MSS 991 * Note that tp->data_segs_out overflows after 2^32 packets, 992 * this is a minor annoyance. 993 */ 994 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 995 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 996 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 997 998 /* take into account OS jitter */ 999 len_ns -= min_t(u64, len_ns / 2, credit); 1000 tp->tcp_wstamp_ns += len_ns; 1001 } 1002 } 1003 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1004 } 1005 1006 /* This routine actually transmits TCP packets queued in by 1007 * tcp_do_sendmsg(). This is used by both the initial 1008 * transmission and possible later retransmissions. 1009 * All SKB's seen here are completely headerless. It is our 1010 * job to build the TCP header, and pass the packet down to 1011 * IP so it can do the same plus pass the packet off to the 1012 * device. 1013 * 1014 * We are working here with either a clone of the original 1015 * SKB, or a fresh unique copy made by the retransmit engine. 1016 */ 1017 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1018 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1019 { 1020 const struct inet_connection_sock *icsk = inet_csk(sk); 1021 struct inet_sock *inet; 1022 struct tcp_sock *tp; 1023 struct tcp_skb_cb *tcb; 1024 struct tcp_out_options opts; 1025 unsigned int tcp_options_size, tcp_header_size; 1026 struct sk_buff *oskb = NULL; 1027 struct tcp_md5sig_key *md5; 1028 struct tcphdr *th; 1029 u64 prior_wstamp; 1030 int err; 1031 1032 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1033 tp = tcp_sk(sk); 1034 prior_wstamp = tp->tcp_wstamp_ns; 1035 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1036 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1037 if (clone_it) { 1038 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1039 - tp->snd_una; 1040 oskb = skb; 1041 1042 tcp_skb_tsorted_save(oskb) { 1043 if (unlikely(skb_cloned(oskb))) 1044 skb = pskb_copy(oskb, gfp_mask); 1045 else 1046 skb = skb_clone(oskb, gfp_mask); 1047 } tcp_skb_tsorted_restore(oskb); 1048 1049 if (unlikely(!skb)) 1050 return -ENOBUFS; 1051 } 1052 1053 inet = inet_sk(sk); 1054 tcb = TCP_SKB_CB(skb); 1055 memset(&opts, 0, sizeof(opts)); 1056 1057 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1058 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1059 } else { 1060 tcp_options_size = tcp_established_options(sk, skb, &opts, 1061 &md5); 1062 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1063 * at receiver : This slightly improve GRO performance. 1064 * Note that we do not force the PSH flag for non GSO packets, 1065 * because they might be sent under high congestion events, 1066 * and in this case it is better to delay the delivery of 1-MSS 1067 * packets and thus the corresponding ACK packet that would 1068 * release the following packet. 1069 */ 1070 if (tcp_skb_pcount(skb) > 1) 1071 tcb->tcp_flags |= TCPHDR_PSH; 1072 } 1073 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1074 1075 /* if no packet is in qdisc/device queue, then allow XPS to select 1076 * another queue. We can be called from tcp_tsq_handler() 1077 * which holds one reference to sk. 1078 * 1079 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1080 * One way to get this would be to set skb->truesize = 2 on them. 1081 */ 1082 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1083 1084 /* If we had to use memory reserve to allocate this skb, 1085 * this might cause drops if packet is looped back : 1086 * Other socket might not have SOCK_MEMALLOC. 1087 * Packets not looped back do not care about pfmemalloc. 1088 */ 1089 skb->pfmemalloc = 0; 1090 1091 skb_push(skb, tcp_header_size); 1092 skb_reset_transport_header(skb); 1093 1094 skb_orphan(skb); 1095 skb->sk = sk; 1096 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1097 skb_set_hash_from_sk(skb, sk); 1098 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1099 1100 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1101 1102 /* Build TCP header and checksum it. */ 1103 th = (struct tcphdr *)skb->data; 1104 th->source = inet->inet_sport; 1105 th->dest = inet->inet_dport; 1106 th->seq = htonl(tcb->seq); 1107 th->ack_seq = htonl(rcv_nxt); 1108 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1109 tcb->tcp_flags); 1110 1111 th->check = 0; 1112 th->urg_ptr = 0; 1113 1114 /* The urg_mode check is necessary during a below snd_una win probe */ 1115 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1116 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1117 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1118 th->urg = 1; 1119 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1120 th->urg_ptr = htons(0xFFFF); 1121 th->urg = 1; 1122 } 1123 } 1124 1125 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1126 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1127 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1128 th->window = htons(tcp_select_window(sk)); 1129 tcp_ecn_send(sk, skb, th, tcp_header_size); 1130 } else { 1131 /* RFC1323: The window in SYN & SYN/ACK segments 1132 * is never scaled. 1133 */ 1134 th->window = htons(min(tp->rcv_wnd, 65535U)); 1135 } 1136 #ifdef CONFIG_TCP_MD5SIG 1137 /* Calculate the MD5 hash, as we have all we need now */ 1138 if (md5) { 1139 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1140 tp->af_specific->calc_md5_hash(opts.hash_location, 1141 md5, sk, skb); 1142 } 1143 #endif 1144 1145 icsk->icsk_af_ops->send_check(sk, skb); 1146 1147 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1148 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1149 1150 if (skb->len != tcp_header_size) { 1151 tcp_event_data_sent(tp, sk); 1152 tp->data_segs_out += tcp_skb_pcount(skb); 1153 tp->bytes_sent += skb->len - tcp_header_size; 1154 } 1155 1156 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1157 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1158 tcp_skb_pcount(skb)); 1159 1160 tp->segs_out += tcp_skb_pcount(skb); 1161 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1162 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1163 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1164 1165 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1166 1167 /* Cleanup our debris for IP stacks */ 1168 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1169 sizeof(struct inet6_skb_parm))); 1170 1171 tcp_add_tx_delay(skb, tp); 1172 1173 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1174 1175 if (unlikely(err > 0)) { 1176 tcp_enter_cwr(sk); 1177 err = net_xmit_eval(err); 1178 } 1179 if (!err && oskb) { 1180 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1181 tcp_rate_skb_sent(sk, oskb); 1182 } 1183 return err; 1184 } 1185 1186 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1187 gfp_t gfp_mask) 1188 { 1189 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1190 tcp_sk(sk)->rcv_nxt); 1191 } 1192 1193 /* This routine just queues the buffer for sending. 1194 * 1195 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1196 * otherwise socket can stall. 1197 */ 1198 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1199 { 1200 struct tcp_sock *tp = tcp_sk(sk); 1201 1202 /* Advance write_seq and place onto the write_queue. */ 1203 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1204 __skb_header_release(skb); 1205 tcp_add_write_queue_tail(sk, skb); 1206 sk_wmem_queued_add(sk, skb->truesize); 1207 sk_mem_charge(sk, skb->truesize); 1208 } 1209 1210 /* Initialize TSO segments for a packet. */ 1211 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1212 { 1213 if (skb->len <= mss_now) { 1214 /* Avoid the costly divide in the normal 1215 * non-TSO case. 1216 */ 1217 tcp_skb_pcount_set(skb, 1); 1218 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1219 } else { 1220 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1221 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1222 } 1223 } 1224 1225 /* Pcount in the middle of the write queue got changed, we need to do various 1226 * tweaks to fix counters 1227 */ 1228 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1229 { 1230 struct tcp_sock *tp = tcp_sk(sk); 1231 1232 tp->packets_out -= decr; 1233 1234 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1235 tp->sacked_out -= decr; 1236 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1237 tp->retrans_out -= decr; 1238 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1239 tp->lost_out -= decr; 1240 1241 /* Reno case is special. Sigh... */ 1242 if (tcp_is_reno(tp) && decr > 0) 1243 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1244 1245 if (tp->lost_skb_hint && 1246 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1247 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1248 tp->lost_cnt_hint -= decr; 1249 1250 tcp_verify_left_out(tp); 1251 } 1252 1253 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1254 { 1255 return TCP_SKB_CB(skb)->txstamp_ack || 1256 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1257 } 1258 1259 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1260 { 1261 struct skb_shared_info *shinfo = skb_shinfo(skb); 1262 1263 if (unlikely(tcp_has_tx_tstamp(skb)) && 1264 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1265 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1266 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1267 1268 shinfo->tx_flags &= ~tsflags; 1269 shinfo2->tx_flags |= tsflags; 1270 swap(shinfo->tskey, shinfo2->tskey); 1271 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1272 TCP_SKB_CB(skb)->txstamp_ack = 0; 1273 } 1274 } 1275 1276 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1277 { 1278 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1279 TCP_SKB_CB(skb)->eor = 0; 1280 } 1281 1282 /* Insert buff after skb on the write or rtx queue of sk. */ 1283 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1284 struct sk_buff *buff, 1285 struct sock *sk, 1286 enum tcp_queue tcp_queue) 1287 { 1288 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1289 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1290 else 1291 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1292 } 1293 1294 /* Function to create two new TCP segments. Shrinks the given segment 1295 * to the specified size and appends a new segment with the rest of the 1296 * packet to the list. This won't be called frequently, I hope. 1297 * Remember, these are still headerless SKBs at this point. 1298 */ 1299 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1300 struct sk_buff *skb, u32 len, 1301 unsigned int mss_now, gfp_t gfp) 1302 { 1303 struct tcp_sock *tp = tcp_sk(sk); 1304 struct sk_buff *buff; 1305 int nsize, old_factor; 1306 long limit; 1307 int nlen; 1308 u8 flags; 1309 1310 if (WARN_ON(len > skb->len)) 1311 return -EINVAL; 1312 1313 nsize = skb_headlen(skb) - len; 1314 if (nsize < 0) 1315 nsize = 0; 1316 1317 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1318 * We need some allowance to not penalize applications setting small 1319 * SO_SNDBUF values. 1320 * Also allow first and last skb in retransmit queue to be split. 1321 */ 1322 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE); 1323 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1324 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1325 skb != tcp_rtx_queue_head(sk) && 1326 skb != tcp_rtx_queue_tail(sk))) { 1327 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1328 return -ENOMEM; 1329 } 1330 1331 if (skb_unclone(skb, gfp)) 1332 return -ENOMEM; 1333 1334 /* Get a new skb... force flag on. */ 1335 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1336 if (!buff) 1337 return -ENOMEM; /* We'll just try again later. */ 1338 skb_copy_decrypted(buff, skb); 1339 1340 sk_wmem_queued_add(sk, buff->truesize); 1341 sk_mem_charge(sk, buff->truesize); 1342 nlen = skb->len - len - nsize; 1343 buff->truesize += nlen; 1344 skb->truesize -= nlen; 1345 1346 /* Correct the sequence numbers. */ 1347 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1348 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1349 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1350 1351 /* PSH and FIN should only be set in the second packet. */ 1352 flags = TCP_SKB_CB(skb)->tcp_flags; 1353 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1354 TCP_SKB_CB(buff)->tcp_flags = flags; 1355 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1356 tcp_skb_fragment_eor(skb, buff); 1357 1358 skb_split(skb, buff, len); 1359 1360 buff->ip_summed = CHECKSUM_PARTIAL; 1361 1362 buff->tstamp = skb->tstamp; 1363 tcp_fragment_tstamp(skb, buff); 1364 1365 old_factor = tcp_skb_pcount(skb); 1366 1367 /* Fix up tso_factor for both original and new SKB. */ 1368 tcp_set_skb_tso_segs(skb, mss_now); 1369 tcp_set_skb_tso_segs(buff, mss_now); 1370 1371 /* Update delivered info for the new segment */ 1372 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1373 1374 /* If this packet has been sent out already, we must 1375 * adjust the various packet counters. 1376 */ 1377 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1378 int diff = old_factor - tcp_skb_pcount(skb) - 1379 tcp_skb_pcount(buff); 1380 1381 if (diff) 1382 tcp_adjust_pcount(sk, skb, diff); 1383 } 1384 1385 /* Link BUFF into the send queue. */ 1386 __skb_header_release(buff); 1387 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1388 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1389 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1390 1391 return 0; 1392 } 1393 1394 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1395 * data is not copied, but immediately discarded. 1396 */ 1397 static int __pskb_trim_head(struct sk_buff *skb, int len) 1398 { 1399 struct skb_shared_info *shinfo; 1400 int i, k, eat; 1401 1402 eat = min_t(int, len, skb_headlen(skb)); 1403 if (eat) { 1404 __skb_pull(skb, eat); 1405 len -= eat; 1406 if (!len) 1407 return 0; 1408 } 1409 eat = len; 1410 k = 0; 1411 shinfo = skb_shinfo(skb); 1412 for (i = 0; i < shinfo->nr_frags; i++) { 1413 int size = skb_frag_size(&shinfo->frags[i]); 1414 1415 if (size <= eat) { 1416 skb_frag_unref(skb, i); 1417 eat -= size; 1418 } else { 1419 shinfo->frags[k] = shinfo->frags[i]; 1420 if (eat) { 1421 skb_frag_off_add(&shinfo->frags[k], eat); 1422 skb_frag_size_sub(&shinfo->frags[k], eat); 1423 eat = 0; 1424 } 1425 k++; 1426 } 1427 } 1428 shinfo->nr_frags = k; 1429 1430 skb->data_len -= len; 1431 skb->len = skb->data_len; 1432 return len; 1433 } 1434 1435 /* Remove acked data from a packet in the transmit queue. */ 1436 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1437 { 1438 u32 delta_truesize; 1439 1440 if (skb_unclone(skb, GFP_ATOMIC)) 1441 return -ENOMEM; 1442 1443 delta_truesize = __pskb_trim_head(skb, len); 1444 1445 TCP_SKB_CB(skb)->seq += len; 1446 skb->ip_summed = CHECKSUM_PARTIAL; 1447 1448 if (delta_truesize) { 1449 skb->truesize -= delta_truesize; 1450 sk_wmem_queued_add(sk, -delta_truesize); 1451 sk_mem_uncharge(sk, delta_truesize); 1452 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1453 } 1454 1455 /* Any change of skb->len requires recalculation of tso factor. */ 1456 if (tcp_skb_pcount(skb) > 1) 1457 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1458 1459 return 0; 1460 } 1461 1462 /* Calculate MSS not accounting any TCP options. */ 1463 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1464 { 1465 const struct tcp_sock *tp = tcp_sk(sk); 1466 const struct inet_connection_sock *icsk = inet_csk(sk); 1467 int mss_now; 1468 1469 /* Calculate base mss without TCP options: 1470 It is MMS_S - sizeof(tcphdr) of rfc1122 1471 */ 1472 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1473 1474 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1475 if (icsk->icsk_af_ops->net_frag_header_len) { 1476 const struct dst_entry *dst = __sk_dst_get(sk); 1477 1478 if (dst && dst_allfrag(dst)) 1479 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1480 } 1481 1482 /* Clamp it (mss_clamp does not include tcp options) */ 1483 if (mss_now > tp->rx_opt.mss_clamp) 1484 mss_now = tp->rx_opt.mss_clamp; 1485 1486 /* Now subtract optional transport overhead */ 1487 mss_now -= icsk->icsk_ext_hdr_len; 1488 1489 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1490 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss); 1491 return mss_now; 1492 } 1493 1494 /* Calculate MSS. Not accounting for SACKs here. */ 1495 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1496 { 1497 /* Subtract TCP options size, not including SACKs */ 1498 return __tcp_mtu_to_mss(sk, pmtu) - 1499 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1500 } 1501 1502 /* Inverse of above */ 1503 int tcp_mss_to_mtu(struct sock *sk, int mss) 1504 { 1505 const struct tcp_sock *tp = tcp_sk(sk); 1506 const struct inet_connection_sock *icsk = inet_csk(sk); 1507 int mtu; 1508 1509 mtu = mss + 1510 tp->tcp_header_len + 1511 icsk->icsk_ext_hdr_len + 1512 icsk->icsk_af_ops->net_header_len; 1513 1514 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1515 if (icsk->icsk_af_ops->net_frag_header_len) { 1516 const struct dst_entry *dst = __sk_dst_get(sk); 1517 1518 if (dst && dst_allfrag(dst)) 1519 mtu += icsk->icsk_af_ops->net_frag_header_len; 1520 } 1521 return mtu; 1522 } 1523 EXPORT_SYMBOL(tcp_mss_to_mtu); 1524 1525 /* MTU probing init per socket */ 1526 void tcp_mtup_init(struct sock *sk) 1527 { 1528 struct tcp_sock *tp = tcp_sk(sk); 1529 struct inet_connection_sock *icsk = inet_csk(sk); 1530 struct net *net = sock_net(sk); 1531 1532 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1533 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1534 icsk->icsk_af_ops->net_header_len; 1535 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1536 icsk->icsk_mtup.probe_size = 0; 1537 if (icsk->icsk_mtup.enabled) 1538 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1539 } 1540 EXPORT_SYMBOL(tcp_mtup_init); 1541 1542 /* This function synchronize snd mss to current pmtu/exthdr set. 1543 1544 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1545 for TCP options, but includes only bare TCP header. 1546 1547 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1548 It is minimum of user_mss and mss received with SYN. 1549 It also does not include TCP options. 1550 1551 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1552 1553 tp->mss_cache is current effective sending mss, including 1554 all tcp options except for SACKs. It is evaluated, 1555 taking into account current pmtu, but never exceeds 1556 tp->rx_opt.mss_clamp. 1557 1558 NOTE1. rfc1122 clearly states that advertised MSS 1559 DOES NOT include either tcp or ip options. 1560 1561 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1562 are READ ONLY outside this function. --ANK (980731) 1563 */ 1564 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1565 { 1566 struct tcp_sock *tp = tcp_sk(sk); 1567 struct inet_connection_sock *icsk = inet_csk(sk); 1568 int mss_now; 1569 1570 if (icsk->icsk_mtup.search_high > pmtu) 1571 icsk->icsk_mtup.search_high = pmtu; 1572 1573 mss_now = tcp_mtu_to_mss(sk, pmtu); 1574 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1575 1576 /* And store cached results */ 1577 icsk->icsk_pmtu_cookie = pmtu; 1578 if (icsk->icsk_mtup.enabled) 1579 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1580 tp->mss_cache = mss_now; 1581 1582 return mss_now; 1583 } 1584 EXPORT_SYMBOL(tcp_sync_mss); 1585 1586 /* Compute the current effective MSS, taking SACKs and IP options, 1587 * and even PMTU discovery events into account. 1588 */ 1589 unsigned int tcp_current_mss(struct sock *sk) 1590 { 1591 const struct tcp_sock *tp = tcp_sk(sk); 1592 const struct dst_entry *dst = __sk_dst_get(sk); 1593 u32 mss_now; 1594 unsigned int header_len; 1595 struct tcp_out_options opts; 1596 struct tcp_md5sig_key *md5; 1597 1598 mss_now = tp->mss_cache; 1599 1600 if (dst) { 1601 u32 mtu = dst_mtu(dst); 1602 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1603 mss_now = tcp_sync_mss(sk, mtu); 1604 } 1605 1606 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1607 sizeof(struct tcphdr); 1608 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1609 * some common options. If this is an odd packet (because we have SACK 1610 * blocks etc) then our calculated header_len will be different, and 1611 * we have to adjust mss_now correspondingly */ 1612 if (header_len != tp->tcp_header_len) { 1613 int delta = (int) header_len - tp->tcp_header_len; 1614 mss_now -= delta; 1615 } 1616 1617 return mss_now; 1618 } 1619 1620 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1621 * As additional protections, we do not touch cwnd in retransmission phases, 1622 * and if application hit its sndbuf limit recently. 1623 */ 1624 static void tcp_cwnd_application_limited(struct sock *sk) 1625 { 1626 struct tcp_sock *tp = tcp_sk(sk); 1627 1628 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1629 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1630 /* Limited by application or receiver window. */ 1631 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1632 u32 win_used = max(tp->snd_cwnd_used, init_win); 1633 if (win_used < tp->snd_cwnd) { 1634 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1635 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1636 } 1637 tp->snd_cwnd_used = 0; 1638 } 1639 tp->snd_cwnd_stamp = tcp_jiffies32; 1640 } 1641 1642 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1643 { 1644 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1645 struct tcp_sock *tp = tcp_sk(sk); 1646 1647 /* Track the maximum number of outstanding packets in each 1648 * window, and remember whether we were cwnd-limited then. 1649 */ 1650 if (!before(tp->snd_una, tp->max_packets_seq) || 1651 tp->packets_out > tp->max_packets_out) { 1652 tp->max_packets_out = tp->packets_out; 1653 tp->max_packets_seq = tp->snd_nxt; 1654 tp->is_cwnd_limited = is_cwnd_limited; 1655 } 1656 1657 if (tcp_is_cwnd_limited(sk)) { 1658 /* Network is feed fully. */ 1659 tp->snd_cwnd_used = 0; 1660 tp->snd_cwnd_stamp = tcp_jiffies32; 1661 } else { 1662 /* Network starves. */ 1663 if (tp->packets_out > tp->snd_cwnd_used) 1664 tp->snd_cwnd_used = tp->packets_out; 1665 1666 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1667 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1668 !ca_ops->cong_control) 1669 tcp_cwnd_application_limited(sk); 1670 1671 /* The following conditions together indicate the starvation 1672 * is caused by insufficient sender buffer: 1673 * 1) just sent some data (see tcp_write_xmit) 1674 * 2) not cwnd limited (this else condition) 1675 * 3) no more data to send (tcp_write_queue_empty()) 1676 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1677 */ 1678 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1679 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1680 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1681 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1682 } 1683 } 1684 1685 /* Minshall's variant of the Nagle send check. */ 1686 static bool tcp_minshall_check(const struct tcp_sock *tp) 1687 { 1688 return after(tp->snd_sml, tp->snd_una) && 1689 !after(tp->snd_sml, tp->snd_nxt); 1690 } 1691 1692 /* Update snd_sml if this skb is under mss 1693 * Note that a TSO packet might end with a sub-mss segment 1694 * The test is really : 1695 * if ((skb->len % mss) != 0) 1696 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1697 * But we can avoid doing the divide again given we already have 1698 * skb_pcount = skb->len / mss_now 1699 */ 1700 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1701 const struct sk_buff *skb) 1702 { 1703 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1704 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1705 } 1706 1707 /* Return false, if packet can be sent now without violation Nagle's rules: 1708 * 1. It is full sized. (provided by caller in %partial bool) 1709 * 2. Or it contains FIN. (already checked by caller) 1710 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1711 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1712 * With Minshall's modification: all sent small packets are ACKed. 1713 */ 1714 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1715 int nonagle) 1716 { 1717 return partial && 1718 ((nonagle & TCP_NAGLE_CORK) || 1719 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1720 } 1721 1722 /* Return how many segs we'd like on a TSO packet, 1723 * to send one TSO packet per ms 1724 */ 1725 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1726 int min_tso_segs) 1727 { 1728 u32 bytes, segs; 1729 1730 bytes = min_t(unsigned long, 1731 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift), 1732 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1733 1734 /* Goal is to send at least one packet per ms, 1735 * not one big TSO packet every 100 ms. 1736 * This preserves ACK clocking and is consistent 1737 * with tcp_tso_should_defer() heuristic. 1738 */ 1739 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1740 1741 return segs; 1742 } 1743 1744 /* Return the number of segments we want in the skb we are transmitting. 1745 * See if congestion control module wants to decide; otherwise, autosize. 1746 */ 1747 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1748 { 1749 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1750 u32 min_tso, tso_segs; 1751 1752 min_tso = ca_ops->min_tso_segs ? 1753 ca_ops->min_tso_segs(sk) : 1754 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1755 1756 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1757 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1758 } 1759 1760 /* Returns the portion of skb which can be sent right away */ 1761 static unsigned int tcp_mss_split_point(const struct sock *sk, 1762 const struct sk_buff *skb, 1763 unsigned int mss_now, 1764 unsigned int max_segs, 1765 int nonagle) 1766 { 1767 const struct tcp_sock *tp = tcp_sk(sk); 1768 u32 partial, needed, window, max_len; 1769 1770 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1771 max_len = mss_now * max_segs; 1772 1773 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1774 return max_len; 1775 1776 needed = min(skb->len, window); 1777 1778 if (max_len <= needed) 1779 return max_len; 1780 1781 partial = needed % mss_now; 1782 /* If last segment is not a full MSS, check if Nagle rules allow us 1783 * to include this last segment in this skb. 1784 * Otherwise, we'll split the skb at last MSS boundary 1785 */ 1786 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1787 return needed - partial; 1788 1789 return needed; 1790 } 1791 1792 /* Can at least one segment of SKB be sent right now, according to the 1793 * congestion window rules? If so, return how many segments are allowed. 1794 */ 1795 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1796 const struct sk_buff *skb) 1797 { 1798 u32 in_flight, cwnd, halfcwnd; 1799 1800 /* Don't be strict about the congestion window for the final FIN. */ 1801 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1802 tcp_skb_pcount(skb) == 1) 1803 return 1; 1804 1805 in_flight = tcp_packets_in_flight(tp); 1806 cwnd = tp->snd_cwnd; 1807 if (in_flight >= cwnd) 1808 return 0; 1809 1810 /* For better scheduling, ensure we have at least 1811 * 2 GSO packets in flight. 1812 */ 1813 halfcwnd = max(cwnd >> 1, 1U); 1814 return min(halfcwnd, cwnd - in_flight); 1815 } 1816 1817 /* Initialize TSO state of a skb. 1818 * This must be invoked the first time we consider transmitting 1819 * SKB onto the wire. 1820 */ 1821 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1822 { 1823 int tso_segs = tcp_skb_pcount(skb); 1824 1825 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1826 tcp_set_skb_tso_segs(skb, mss_now); 1827 tso_segs = tcp_skb_pcount(skb); 1828 } 1829 return tso_segs; 1830 } 1831 1832 1833 /* Return true if the Nagle test allows this packet to be 1834 * sent now. 1835 */ 1836 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1837 unsigned int cur_mss, int nonagle) 1838 { 1839 /* Nagle rule does not apply to frames, which sit in the middle of the 1840 * write_queue (they have no chances to get new data). 1841 * 1842 * This is implemented in the callers, where they modify the 'nonagle' 1843 * argument based upon the location of SKB in the send queue. 1844 */ 1845 if (nonagle & TCP_NAGLE_PUSH) 1846 return true; 1847 1848 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1849 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1850 return true; 1851 1852 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1853 return true; 1854 1855 return false; 1856 } 1857 1858 /* Does at least the first segment of SKB fit into the send window? */ 1859 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1860 const struct sk_buff *skb, 1861 unsigned int cur_mss) 1862 { 1863 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1864 1865 if (skb->len > cur_mss) 1866 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1867 1868 return !after(end_seq, tcp_wnd_end(tp)); 1869 } 1870 1871 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1872 * which is put after SKB on the list. It is very much like 1873 * tcp_fragment() except that it may make several kinds of assumptions 1874 * in order to speed up the splitting operation. In particular, we 1875 * know that all the data is in scatter-gather pages, and that the 1876 * packet has never been sent out before (and thus is not cloned). 1877 */ 1878 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1879 unsigned int mss_now, gfp_t gfp) 1880 { 1881 int nlen = skb->len - len; 1882 struct sk_buff *buff; 1883 u8 flags; 1884 1885 /* All of a TSO frame must be composed of paged data. */ 1886 if (skb->len != skb->data_len) 1887 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 1888 skb, len, mss_now, gfp); 1889 1890 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1891 if (unlikely(!buff)) 1892 return -ENOMEM; 1893 skb_copy_decrypted(buff, skb); 1894 1895 sk_wmem_queued_add(sk, buff->truesize); 1896 sk_mem_charge(sk, buff->truesize); 1897 buff->truesize += nlen; 1898 skb->truesize -= nlen; 1899 1900 /* Correct the sequence numbers. */ 1901 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1902 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1903 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1904 1905 /* PSH and FIN should only be set in the second packet. */ 1906 flags = TCP_SKB_CB(skb)->tcp_flags; 1907 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1908 TCP_SKB_CB(buff)->tcp_flags = flags; 1909 1910 /* This packet was never sent out yet, so no SACK bits. */ 1911 TCP_SKB_CB(buff)->sacked = 0; 1912 1913 tcp_skb_fragment_eor(skb, buff); 1914 1915 buff->ip_summed = CHECKSUM_PARTIAL; 1916 skb_split(skb, buff, len); 1917 tcp_fragment_tstamp(skb, buff); 1918 1919 /* Fix up tso_factor for both original and new SKB. */ 1920 tcp_set_skb_tso_segs(skb, mss_now); 1921 tcp_set_skb_tso_segs(buff, mss_now); 1922 1923 /* Link BUFF into the send queue. */ 1924 __skb_header_release(buff); 1925 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 1926 1927 return 0; 1928 } 1929 1930 /* Try to defer sending, if possible, in order to minimize the amount 1931 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1932 * 1933 * This algorithm is from John Heffner. 1934 */ 1935 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1936 bool *is_cwnd_limited, 1937 bool *is_rwnd_limited, 1938 u32 max_segs) 1939 { 1940 const struct inet_connection_sock *icsk = inet_csk(sk); 1941 u32 send_win, cong_win, limit, in_flight; 1942 struct tcp_sock *tp = tcp_sk(sk); 1943 struct sk_buff *head; 1944 int win_divisor; 1945 s64 delta; 1946 1947 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1948 goto send_now; 1949 1950 /* Avoid bursty behavior by allowing defer 1951 * only if the last write was recent (1 ms). 1952 * Note that tp->tcp_wstamp_ns can be in the future if we have 1953 * packets waiting in a qdisc or device for EDT delivery. 1954 */ 1955 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 1956 if (delta > 0) 1957 goto send_now; 1958 1959 in_flight = tcp_packets_in_flight(tp); 1960 1961 BUG_ON(tcp_skb_pcount(skb) <= 1); 1962 BUG_ON(tp->snd_cwnd <= in_flight); 1963 1964 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1965 1966 /* From in_flight test above, we know that cwnd > in_flight. */ 1967 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1968 1969 limit = min(send_win, cong_win); 1970 1971 /* If a full-sized TSO skb can be sent, do it. */ 1972 if (limit >= max_segs * tp->mss_cache) 1973 goto send_now; 1974 1975 /* Middle in queue won't get any more data, full sendable already? */ 1976 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1977 goto send_now; 1978 1979 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1980 if (win_divisor) { 1981 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1982 1983 /* If at least some fraction of a window is available, 1984 * just use it. 1985 */ 1986 chunk /= win_divisor; 1987 if (limit >= chunk) 1988 goto send_now; 1989 } else { 1990 /* Different approach, try not to defer past a single 1991 * ACK. Receiver should ACK every other full sized 1992 * frame, so if we have space for more than 3 frames 1993 * then send now. 1994 */ 1995 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1996 goto send_now; 1997 } 1998 1999 /* TODO : use tsorted_sent_queue ? */ 2000 head = tcp_rtx_queue_head(sk); 2001 if (!head) 2002 goto send_now; 2003 delta = tp->tcp_clock_cache - head->tstamp; 2004 /* If next ACK is likely to come too late (half srtt), do not defer */ 2005 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2006 goto send_now; 2007 2008 /* Ok, it looks like it is advisable to defer. 2009 * Three cases are tracked : 2010 * 1) We are cwnd-limited 2011 * 2) We are rwnd-limited 2012 * 3) We are application limited. 2013 */ 2014 if (cong_win < send_win) { 2015 if (cong_win <= skb->len) { 2016 *is_cwnd_limited = true; 2017 return true; 2018 } 2019 } else { 2020 if (send_win <= skb->len) { 2021 *is_rwnd_limited = true; 2022 return true; 2023 } 2024 } 2025 2026 /* If this packet won't get more data, do not wait. */ 2027 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2028 TCP_SKB_CB(skb)->eor) 2029 goto send_now; 2030 2031 return true; 2032 2033 send_now: 2034 return false; 2035 } 2036 2037 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2038 { 2039 struct inet_connection_sock *icsk = inet_csk(sk); 2040 struct tcp_sock *tp = tcp_sk(sk); 2041 struct net *net = sock_net(sk); 2042 u32 interval; 2043 s32 delta; 2044 2045 interval = net->ipv4.sysctl_tcp_probe_interval; 2046 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2047 if (unlikely(delta >= interval * HZ)) { 2048 int mss = tcp_current_mss(sk); 2049 2050 /* Update current search range */ 2051 icsk->icsk_mtup.probe_size = 0; 2052 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2053 sizeof(struct tcphdr) + 2054 icsk->icsk_af_ops->net_header_len; 2055 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2056 2057 /* Update probe time stamp */ 2058 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2059 } 2060 } 2061 2062 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2063 { 2064 struct sk_buff *skb, *next; 2065 2066 skb = tcp_send_head(sk); 2067 tcp_for_write_queue_from_safe(skb, next, sk) { 2068 if (len <= skb->len) 2069 break; 2070 2071 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb)) 2072 return false; 2073 2074 len -= skb->len; 2075 } 2076 2077 return true; 2078 } 2079 2080 /* Create a new MTU probe if we are ready. 2081 * MTU probe is regularly attempting to increase the path MTU by 2082 * deliberately sending larger packets. This discovers routing 2083 * changes resulting in larger path MTUs. 2084 * 2085 * Returns 0 if we should wait to probe (no cwnd available), 2086 * 1 if a probe was sent, 2087 * -1 otherwise 2088 */ 2089 static int tcp_mtu_probe(struct sock *sk) 2090 { 2091 struct inet_connection_sock *icsk = inet_csk(sk); 2092 struct tcp_sock *tp = tcp_sk(sk); 2093 struct sk_buff *skb, *nskb, *next; 2094 struct net *net = sock_net(sk); 2095 int probe_size; 2096 int size_needed; 2097 int copy, len; 2098 int mss_now; 2099 int interval; 2100 2101 /* Not currently probing/verifying, 2102 * not in recovery, 2103 * have enough cwnd, and 2104 * not SACKing (the variable headers throw things off) 2105 */ 2106 if (likely(!icsk->icsk_mtup.enabled || 2107 icsk->icsk_mtup.probe_size || 2108 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2109 tp->snd_cwnd < 11 || 2110 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2111 return -1; 2112 2113 /* Use binary search for probe_size between tcp_mss_base, 2114 * and current mss_clamp. if (search_high - search_low) 2115 * smaller than a threshold, backoff from probing. 2116 */ 2117 mss_now = tcp_current_mss(sk); 2118 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2119 icsk->icsk_mtup.search_low) >> 1); 2120 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2121 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2122 /* When misfortune happens, we are reprobing actively, 2123 * and then reprobe timer has expired. We stick with current 2124 * probing process by not resetting search range to its orignal. 2125 */ 2126 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2127 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2128 /* Check whether enough time has elaplased for 2129 * another round of probing. 2130 */ 2131 tcp_mtu_check_reprobe(sk); 2132 return -1; 2133 } 2134 2135 /* Have enough data in the send queue to probe? */ 2136 if (tp->write_seq - tp->snd_nxt < size_needed) 2137 return -1; 2138 2139 if (tp->snd_wnd < size_needed) 2140 return -1; 2141 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2142 return 0; 2143 2144 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2145 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2146 if (!tcp_packets_in_flight(tp)) 2147 return -1; 2148 else 2149 return 0; 2150 } 2151 2152 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2153 return -1; 2154 2155 /* We're allowed to probe. Build it now. */ 2156 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2157 if (!nskb) 2158 return -1; 2159 sk_wmem_queued_add(sk, nskb->truesize); 2160 sk_mem_charge(sk, nskb->truesize); 2161 2162 skb = tcp_send_head(sk); 2163 skb_copy_decrypted(nskb, skb); 2164 2165 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2166 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2167 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2168 TCP_SKB_CB(nskb)->sacked = 0; 2169 nskb->csum = 0; 2170 nskb->ip_summed = CHECKSUM_PARTIAL; 2171 2172 tcp_insert_write_queue_before(nskb, skb, sk); 2173 tcp_highest_sack_replace(sk, skb, nskb); 2174 2175 len = 0; 2176 tcp_for_write_queue_from_safe(skb, next, sk) { 2177 copy = min_t(int, skb->len, probe_size - len); 2178 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2179 2180 if (skb->len <= copy) { 2181 /* We've eaten all the data from this skb. 2182 * Throw it away. */ 2183 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2184 /* If this is the last SKB we copy and eor is set 2185 * we need to propagate it to the new skb. 2186 */ 2187 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2188 tcp_skb_collapse_tstamp(nskb, skb); 2189 tcp_unlink_write_queue(skb, sk); 2190 sk_wmem_free_skb(sk, skb); 2191 } else { 2192 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2193 ~(TCPHDR_FIN|TCPHDR_PSH); 2194 if (!skb_shinfo(skb)->nr_frags) { 2195 skb_pull(skb, copy); 2196 } else { 2197 __pskb_trim_head(skb, copy); 2198 tcp_set_skb_tso_segs(skb, mss_now); 2199 } 2200 TCP_SKB_CB(skb)->seq += copy; 2201 } 2202 2203 len += copy; 2204 2205 if (len >= probe_size) 2206 break; 2207 } 2208 tcp_init_tso_segs(nskb, nskb->len); 2209 2210 /* We're ready to send. If this fails, the probe will 2211 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2212 */ 2213 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2214 /* Decrement cwnd here because we are sending 2215 * effectively two packets. */ 2216 tp->snd_cwnd--; 2217 tcp_event_new_data_sent(sk, nskb); 2218 2219 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2220 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2221 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2222 2223 return 1; 2224 } 2225 2226 return -1; 2227 } 2228 2229 static bool tcp_pacing_check(struct sock *sk) 2230 { 2231 struct tcp_sock *tp = tcp_sk(sk); 2232 2233 if (!tcp_needs_internal_pacing(sk)) 2234 return false; 2235 2236 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2237 return false; 2238 2239 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2240 hrtimer_start(&tp->pacing_timer, 2241 ns_to_ktime(tp->tcp_wstamp_ns), 2242 HRTIMER_MODE_ABS_PINNED_SOFT); 2243 sock_hold(sk); 2244 } 2245 return true; 2246 } 2247 2248 /* TCP Small Queues : 2249 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2250 * (These limits are doubled for retransmits) 2251 * This allows for : 2252 * - better RTT estimation and ACK scheduling 2253 * - faster recovery 2254 * - high rates 2255 * Alas, some drivers / subsystems require a fair amount 2256 * of queued bytes to ensure line rate. 2257 * One example is wifi aggregation (802.11 AMPDU) 2258 */ 2259 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2260 unsigned int factor) 2261 { 2262 unsigned long limit; 2263 2264 limit = max_t(unsigned long, 2265 2 * skb->truesize, 2266 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift)); 2267 if (sk->sk_pacing_status == SK_PACING_NONE) 2268 limit = min_t(unsigned long, limit, 2269 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2270 limit <<= factor; 2271 2272 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2273 tcp_sk(sk)->tcp_tx_delay) { 2274 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2275 2276 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2277 * approximate our needs assuming an ~100% skb->truesize overhead. 2278 * USEC_PER_SEC is approximated by 2^20. 2279 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2280 */ 2281 extra_bytes >>= (20 - 1); 2282 limit += extra_bytes; 2283 } 2284 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2285 /* Always send skb if rtx queue is empty. 2286 * No need to wait for TX completion to call us back, 2287 * after softirq/tasklet schedule. 2288 * This helps when TX completions are delayed too much. 2289 */ 2290 if (tcp_rtx_queue_empty(sk)) 2291 return false; 2292 2293 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2294 /* It is possible TX completion already happened 2295 * before we set TSQ_THROTTLED, so we must 2296 * test again the condition. 2297 */ 2298 smp_mb__after_atomic(); 2299 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2300 return true; 2301 } 2302 return false; 2303 } 2304 2305 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2306 { 2307 const u32 now = tcp_jiffies32; 2308 enum tcp_chrono old = tp->chrono_type; 2309 2310 if (old > TCP_CHRONO_UNSPEC) 2311 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2312 tp->chrono_start = now; 2313 tp->chrono_type = new; 2314 } 2315 2316 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2317 { 2318 struct tcp_sock *tp = tcp_sk(sk); 2319 2320 /* If there are multiple conditions worthy of tracking in a 2321 * chronograph then the highest priority enum takes precedence 2322 * over the other conditions. So that if something "more interesting" 2323 * starts happening, stop the previous chrono and start a new one. 2324 */ 2325 if (type > tp->chrono_type) 2326 tcp_chrono_set(tp, type); 2327 } 2328 2329 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2330 { 2331 struct tcp_sock *tp = tcp_sk(sk); 2332 2333 2334 /* There are multiple conditions worthy of tracking in a 2335 * chronograph, so that the highest priority enum takes 2336 * precedence over the other conditions (see tcp_chrono_start). 2337 * If a condition stops, we only stop chrono tracking if 2338 * it's the "most interesting" or current chrono we are 2339 * tracking and starts busy chrono if we have pending data. 2340 */ 2341 if (tcp_rtx_and_write_queues_empty(sk)) 2342 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2343 else if (type == tp->chrono_type) 2344 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2345 } 2346 2347 /* This routine writes packets to the network. It advances the 2348 * send_head. This happens as incoming acks open up the remote 2349 * window for us. 2350 * 2351 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2352 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2353 * account rare use of URG, this is not a big flaw. 2354 * 2355 * Send at most one packet when push_one > 0. Temporarily ignore 2356 * cwnd limit to force at most one packet out when push_one == 2. 2357 2358 * Returns true, if no segments are in flight and we have queued segments, 2359 * but cannot send anything now because of SWS or another problem. 2360 */ 2361 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2362 int push_one, gfp_t gfp) 2363 { 2364 struct tcp_sock *tp = tcp_sk(sk); 2365 struct sk_buff *skb; 2366 unsigned int tso_segs, sent_pkts; 2367 int cwnd_quota; 2368 int result; 2369 bool is_cwnd_limited = false, is_rwnd_limited = false; 2370 u32 max_segs; 2371 2372 sent_pkts = 0; 2373 2374 tcp_mstamp_refresh(tp); 2375 if (!push_one) { 2376 /* Do MTU probing. */ 2377 result = tcp_mtu_probe(sk); 2378 if (!result) { 2379 return false; 2380 } else if (result > 0) { 2381 sent_pkts = 1; 2382 } 2383 } 2384 2385 max_segs = tcp_tso_segs(sk, mss_now); 2386 while ((skb = tcp_send_head(sk))) { 2387 unsigned int limit; 2388 2389 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2390 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2391 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2392 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2393 tcp_init_tso_segs(skb, mss_now); 2394 goto repair; /* Skip network transmission */ 2395 } 2396 2397 if (tcp_pacing_check(sk)) 2398 break; 2399 2400 tso_segs = tcp_init_tso_segs(skb, mss_now); 2401 BUG_ON(!tso_segs); 2402 2403 cwnd_quota = tcp_cwnd_test(tp, skb); 2404 if (!cwnd_quota) { 2405 if (push_one == 2) 2406 /* Force out a loss probe pkt. */ 2407 cwnd_quota = 1; 2408 else 2409 break; 2410 } 2411 2412 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2413 is_rwnd_limited = true; 2414 break; 2415 } 2416 2417 if (tso_segs == 1) { 2418 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2419 (tcp_skb_is_last(sk, skb) ? 2420 nonagle : TCP_NAGLE_PUSH)))) 2421 break; 2422 } else { 2423 if (!push_one && 2424 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2425 &is_rwnd_limited, max_segs)) 2426 break; 2427 } 2428 2429 limit = mss_now; 2430 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2431 limit = tcp_mss_split_point(sk, skb, mss_now, 2432 min_t(unsigned int, 2433 cwnd_quota, 2434 max_segs), 2435 nonagle); 2436 2437 if (skb->len > limit && 2438 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2439 break; 2440 2441 if (tcp_small_queue_check(sk, skb, 0)) 2442 break; 2443 2444 /* Argh, we hit an empty skb(), presumably a thread 2445 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2446 * We do not want to send a pure-ack packet and have 2447 * a strange looking rtx queue with empty packet(s). 2448 */ 2449 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2450 break; 2451 2452 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2453 break; 2454 2455 repair: 2456 /* Advance the send_head. This one is sent out. 2457 * This call will increment packets_out. 2458 */ 2459 tcp_event_new_data_sent(sk, skb); 2460 2461 tcp_minshall_update(tp, mss_now, skb); 2462 sent_pkts += tcp_skb_pcount(skb); 2463 2464 if (push_one) 2465 break; 2466 } 2467 2468 if (is_rwnd_limited) 2469 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2470 else 2471 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2472 2473 if (likely(sent_pkts)) { 2474 if (tcp_in_cwnd_reduction(sk)) 2475 tp->prr_out += sent_pkts; 2476 2477 /* Send one loss probe per tail loss episode. */ 2478 if (push_one != 2) 2479 tcp_schedule_loss_probe(sk, false); 2480 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2481 tcp_cwnd_validate(sk, is_cwnd_limited); 2482 return false; 2483 } 2484 return !tp->packets_out && !tcp_write_queue_empty(sk); 2485 } 2486 2487 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2488 { 2489 struct inet_connection_sock *icsk = inet_csk(sk); 2490 struct tcp_sock *tp = tcp_sk(sk); 2491 u32 timeout, rto_delta_us; 2492 int early_retrans; 2493 2494 /* Don't do any loss probe on a Fast Open connection before 3WHS 2495 * finishes. 2496 */ 2497 if (rcu_access_pointer(tp->fastopen_rsk)) 2498 return false; 2499 2500 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2501 /* Schedule a loss probe in 2*RTT for SACK capable connections 2502 * not in loss recovery, that are either limited by cwnd or application. 2503 */ 2504 if ((early_retrans != 3 && early_retrans != 4) || 2505 !tp->packets_out || !tcp_is_sack(tp) || 2506 (icsk->icsk_ca_state != TCP_CA_Open && 2507 icsk->icsk_ca_state != TCP_CA_CWR)) 2508 return false; 2509 2510 /* Probe timeout is 2*rtt. Add minimum RTO to account 2511 * for delayed ack when there's one outstanding packet. If no RTT 2512 * sample is available then probe after TCP_TIMEOUT_INIT. 2513 */ 2514 if (tp->srtt_us) { 2515 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2516 if (tp->packets_out == 1) 2517 timeout += TCP_RTO_MIN; 2518 else 2519 timeout += TCP_TIMEOUT_MIN; 2520 } else { 2521 timeout = TCP_TIMEOUT_INIT; 2522 } 2523 2524 /* If the RTO formula yields an earlier time, then use that time. */ 2525 rto_delta_us = advancing_rto ? 2526 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2527 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2528 if (rto_delta_us > 0) 2529 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2530 2531 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2532 TCP_RTO_MAX, NULL); 2533 return true; 2534 } 2535 2536 /* Thanks to skb fast clones, we can detect if a prior transmit of 2537 * a packet is still in a qdisc or driver queue. 2538 * In this case, there is very little point doing a retransmit ! 2539 */ 2540 static bool skb_still_in_host_queue(const struct sock *sk, 2541 const struct sk_buff *skb) 2542 { 2543 if (unlikely(skb_fclone_busy(sk, skb))) { 2544 NET_INC_STATS(sock_net(sk), 2545 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2546 return true; 2547 } 2548 return false; 2549 } 2550 2551 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2552 * retransmit the last segment. 2553 */ 2554 void tcp_send_loss_probe(struct sock *sk) 2555 { 2556 struct tcp_sock *tp = tcp_sk(sk); 2557 struct sk_buff *skb; 2558 int pcount; 2559 int mss = tcp_current_mss(sk); 2560 2561 skb = tcp_send_head(sk); 2562 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2563 pcount = tp->packets_out; 2564 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2565 if (tp->packets_out > pcount) 2566 goto probe_sent; 2567 goto rearm_timer; 2568 } 2569 skb = skb_rb_last(&sk->tcp_rtx_queue); 2570 if (unlikely(!skb)) { 2571 WARN_ONCE(tp->packets_out, 2572 "invalid inflight: %u state %u cwnd %u mss %d\n", 2573 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); 2574 inet_csk(sk)->icsk_pending = 0; 2575 return; 2576 } 2577 2578 /* At most one outstanding TLP retransmission. */ 2579 if (tp->tlp_high_seq) 2580 goto rearm_timer; 2581 2582 if (skb_still_in_host_queue(sk, skb)) 2583 goto rearm_timer; 2584 2585 pcount = tcp_skb_pcount(skb); 2586 if (WARN_ON(!pcount)) 2587 goto rearm_timer; 2588 2589 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2590 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2591 (pcount - 1) * mss, mss, 2592 GFP_ATOMIC))) 2593 goto rearm_timer; 2594 skb = skb_rb_next(skb); 2595 } 2596 2597 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2598 goto rearm_timer; 2599 2600 if (__tcp_retransmit_skb(sk, skb, 1)) 2601 goto rearm_timer; 2602 2603 /* Record snd_nxt for loss detection. */ 2604 tp->tlp_high_seq = tp->snd_nxt; 2605 2606 probe_sent: 2607 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2608 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2609 inet_csk(sk)->icsk_pending = 0; 2610 rearm_timer: 2611 tcp_rearm_rto(sk); 2612 } 2613 2614 /* Push out any pending frames which were held back due to 2615 * TCP_CORK or attempt at coalescing tiny packets. 2616 * The socket must be locked by the caller. 2617 */ 2618 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2619 int nonagle) 2620 { 2621 /* If we are closed, the bytes will have to remain here. 2622 * In time closedown will finish, we empty the write queue and 2623 * all will be happy. 2624 */ 2625 if (unlikely(sk->sk_state == TCP_CLOSE)) 2626 return; 2627 2628 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2629 sk_gfp_mask(sk, GFP_ATOMIC))) 2630 tcp_check_probe_timer(sk); 2631 } 2632 2633 /* Send _single_ skb sitting at the send head. This function requires 2634 * true push pending frames to setup probe timer etc. 2635 */ 2636 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2637 { 2638 struct sk_buff *skb = tcp_send_head(sk); 2639 2640 BUG_ON(!skb || skb->len < mss_now); 2641 2642 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2643 } 2644 2645 /* This function returns the amount that we can raise the 2646 * usable window based on the following constraints 2647 * 2648 * 1. The window can never be shrunk once it is offered (RFC 793) 2649 * 2. We limit memory per socket 2650 * 2651 * RFC 1122: 2652 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2653 * RECV.NEXT + RCV.WIN fixed until: 2654 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2655 * 2656 * i.e. don't raise the right edge of the window until you can raise 2657 * it at least MSS bytes. 2658 * 2659 * Unfortunately, the recommended algorithm breaks header prediction, 2660 * since header prediction assumes th->window stays fixed. 2661 * 2662 * Strictly speaking, keeping th->window fixed violates the receiver 2663 * side SWS prevention criteria. The problem is that under this rule 2664 * a stream of single byte packets will cause the right side of the 2665 * window to always advance by a single byte. 2666 * 2667 * Of course, if the sender implements sender side SWS prevention 2668 * then this will not be a problem. 2669 * 2670 * BSD seems to make the following compromise: 2671 * 2672 * If the free space is less than the 1/4 of the maximum 2673 * space available and the free space is less than 1/2 mss, 2674 * then set the window to 0. 2675 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2676 * Otherwise, just prevent the window from shrinking 2677 * and from being larger than the largest representable value. 2678 * 2679 * This prevents incremental opening of the window in the regime 2680 * where TCP is limited by the speed of the reader side taking 2681 * data out of the TCP receive queue. It does nothing about 2682 * those cases where the window is constrained on the sender side 2683 * because the pipeline is full. 2684 * 2685 * BSD also seems to "accidentally" limit itself to windows that are a 2686 * multiple of MSS, at least until the free space gets quite small. 2687 * This would appear to be a side effect of the mbuf implementation. 2688 * Combining these two algorithms results in the observed behavior 2689 * of having a fixed window size at almost all times. 2690 * 2691 * Below we obtain similar behavior by forcing the offered window to 2692 * a multiple of the mss when it is feasible to do so. 2693 * 2694 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2695 * Regular options like TIMESTAMP are taken into account. 2696 */ 2697 u32 __tcp_select_window(struct sock *sk) 2698 { 2699 struct inet_connection_sock *icsk = inet_csk(sk); 2700 struct tcp_sock *tp = tcp_sk(sk); 2701 /* MSS for the peer's data. Previous versions used mss_clamp 2702 * here. I don't know if the value based on our guesses 2703 * of peer's MSS is better for the performance. It's more correct 2704 * but may be worse for the performance because of rcv_mss 2705 * fluctuations. --SAW 1998/11/1 2706 */ 2707 int mss = icsk->icsk_ack.rcv_mss; 2708 int free_space = tcp_space(sk); 2709 int allowed_space = tcp_full_space(sk); 2710 int full_space = min_t(int, tp->window_clamp, allowed_space); 2711 int window; 2712 2713 if (unlikely(mss > full_space)) { 2714 mss = full_space; 2715 if (mss <= 0) 2716 return 0; 2717 } 2718 if (free_space < (full_space >> 1)) { 2719 icsk->icsk_ack.quick = 0; 2720 2721 if (tcp_under_memory_pressure(sk)) 2722 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2723 4U * tp->advmss); 2724 2725 /* free_space might become our new window, make sure we don't 2726 * increase it due to wscale. 2727 */ 2728 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2729 2730 /* if free space is less than mss estimate, or is below 1/16th 2731 * of the maximum allowed, try to move to zero-window, else 2732 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2733 * new incoming data is dropped due to memory limits. 2734 * With large window, mss test triggers way too late in order 2735 * to announce zero window in time before rmem limit kicks in. 2736 */ 2737 if (free_space < (allowed_space >> 4) || free_space < mss) 2738 return 0; 2739 } 2740 2741 if (free_space > tp->rcv_ssthresh) 2742 free_space = tp->rcv_ssthresh; 2743 2744 /* Don't do rounding if we are using window scaling, since the 2745 * scaled window will not line up with the MSS boundary anyway. 2746 */ 2747 if (tp->rx_opt.rcv_wscale) { 2748 window = free_space; 2749 2750 /* Advertise enough space so that it won't get scaled away. 2751 * Import case: prevent zero window announcement if 2752 * 1<<rcv_wscale > mss. 2753 */ 2754 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2755 } else { 2756 window = tp->rcv_wnd; 2757 /* Get the largest window that is a nice multiple of mss. 2758 * Window clamp already applied above. 2759 * If our current window offering is within 1 mss of the 2760 * free space we just keep it. This prevents the divide 2761 * and multiply from happening most of the time. 2762 * We also don't do any window rounding when the free space 2763 * is too small. 2764 */ 2765 if (window <= free_space - mss || window > free_space) 2766 window = rounddown(free_space, mss); 2767 else if (mss == full_space && 2768 free_space > window + (full_space >> 1)) 2769 window = free_space; 2770 } 2771 2772 return window; 2773 } 2774 2775 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2776 const struct sk_buff *next_skb) 2777 { 2778 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2779 const struct skb_shared_info *next_shinfo = 2780 skb_shinfo(next_skb); 2781 struct skb_shared_info *shinfo = skb_shinfo(skb); 2782 2783 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2784 shinfo->tskey = next_shinfo->tskey; 2785 TCP_SKB_CB(skb)->txstamp_ack |= 2786 TCP_SKB_CB(next_skb)->txstamp_ack; 2787 } 2788 } 2789 2790 /* Collapses two adjacent SKB's during retransmission. */ 2791 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2792 { 2793 struct tcp_sock *tp = tcp_sk(sk); 2794 struct sk_buff *next_skb = skb_rb_next(skb); 2795 int next_skb_size; 2796 2797 next_skb_size = next_skb->len; 2798 2799 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2800 2801 if (next_skb_size) { 2802 if (next_skb_size <= skb_availroom(skb)) 2803 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2804 next_skb_size); 2805 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 2806 return false; 2807 } 2808 tcp_highest_sack_replace(sk, next_skb, skb); 2809 2810 /* Update sequence range on original skb. */ 2811 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2812 2813 /* Merge over control information. This moves PSH/FIN etc. over */ 2814 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2815 2816 /* All done, get rid of second SKB and account for it so 2817 * packet counting does not break. 2818 */ 2819 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2820 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2821 2822 /* changed transmit queue under us so clear hints */ 2823 tcp_clear_retrans_hints_partial(tp); 2824 if (next_skb == tp->retransmit_skb_hint) 2825 tp->retransmit_skb_hint = skb; 2826 2827 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2828 2829 tcp_skb_collapse_tstamp(skb, next_skb); 2830 2831 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2832 return true; 2833 } 2834 2835 /* Check if coalescing SKBs is legal. */ 2836 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2837 { 2838 if (tcp_skb_pcount(skb) > 1) 2839 return false; 2840 if (skb_cloned(skb)) 2841 return false; 2842 /* Some heuristics for collapsing over SACK'd could be invented */ 2843 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2844 return false; 2845 2846 return true; 2847 } 2848 2849 /* Collapse packets in the retransmit queue to make to create 2850 * less packets on the wire. This is only done on retransmission. 2851 */ 2852 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2853 int space) 2854 { 2855 struct tcp_sock *tp = tcp_sk(sk); 2856 struct sk_buff *skb = to, *tmp; 2857 bool first = true; 2858 2859 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2860 return; 2861 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2862 return; 2863 2864 skb_rbtree_walk_from_safe(skb, tmp) { 2865 if (!tcp_can_collapse(sk, skb)) 2866 break; 2867 2868 if (!tcp_skb_can_collapse_to(to)) 2869 break; 2870 2871 space -= skb->len; 2872 2873 if (first) { 2874 first = false; 2875 continue; 2876 } 2877 2878 if (space < 0) 2879 break; 2880 2881 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2882 break; 2883 2884 if (!tcp_collapse_retrans(sk, to)) 2885 break; 2886 } 2887 } 2888 2889 /* This retransmits one SKB. Policy decisions and retransmit queue 2890 * state updates are done by the caller. Returns non-zero if an 2891 * error occurred which prevented the send. 2892 */ 2893 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2894 { 2895 struct inet_connection_sock *icsk = inet_csk(sk); 2896 struct tcp_sock *tp = tcp_sk(sk); 2897 unsigned int cur_mss; 2898 int diff, len, err; 2899 2900 2901 /* Inconclusive MTU probe */ 2902 if (icsk->icsk_mtup.probe_size) 2903 icsk->icsk_mtup.probe_size = 0; 2904 2905 /* Do not sent more than we queued. 1/4 is reserved for possible 2906 * copying overhead: fragmentation, tunneling, mangling etc. 2907 */ 2908 if (refcount_read(&sk->sk_wmem_alloc) > 2909 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2910 sk->sk_sndbuf)) 2911 return -EAGAIN; 2912 2913 if (skb_still_in_host_queue(sk, skb)) 2914 return -EBUSY; 2915 2916 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2917 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2918 WARN_ON_ONCE(1); 2919 return -EINVAL; 2920 } 2921 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2922 return -ENOMEM; 2923 } 2924 2925 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2926 return -EHOSTUNREACH; /* Routing failure or similar. */ 2927 2928 cur_mss = tcp_current_mss(sk); 2929 2930 /* If receiver has shrunk his window, and skb is out of 2931 * new window, do not retransmit it. The exception is the 2932 * case, when window is shrunk to zero. In this case 2933 * our retransmit serves as a zero window probe. 2934 */ 2935 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2936 TCP_SKB_CB(skb)->seq != tp->snd_una) 2937 return -EAGAIN; 2938 2939 len = cur_mss * segs; 2940 if (skb->len > len) { 2941 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2942 cur_mss, GFP_ATOMIC)) 2943 return -ENOMEM; /* We'll try again later. */ 2944 } else { 2945 if (skb_unclone(skb, GFP_ATOMIC)) 2946 return -ENOMEM; 2947 2948 diff = tcp_skb_pcount(skb); 2949 tcp_set_skb_tso_segs(skb, cur_mss); 2950 diff -= tcp_skb_pcount(skb); 2951 if (diff) 2952 tcp_adjust_pcount(sk, skb, diff); 2953 if (skb->len < cur_mss) 2954 tcp_retrans_try_collapse(sk, skb, cur_mss); 2955 } 2956 2957 /* RFC3168, section 6.1.1.1. ECN fallback */ 2958 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2959 tcp_ecn_clear_syn(sk, skb); 2960 2961 /* Update global and local TCP statistics. */ 2962 segs = tcp_skb_pcount(skb); 2963 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2964 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2965 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2966 tp->total_retrans += segs; 2967 tp->bytes_retrans += skb->len; 2968 2969 /* make sure skb->data is aligned on arches that require it 2970 * and check if ack-trimming & collapsing extended the headroom 2971 * beyond what csum_start can cover. 2972 */ 2973 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2974 skb_headroom(skb) >= 0xFFFF)) { 2975 struct sk_buff *nskb; 2976 2977 tcp_skb_tsorted_save(skb) { 2978 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2979 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2980 -ENOBUFS; 2981 } tcp_skb_tsorted_restore(skb); 2982 2983 if (!err) { 2984 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 2985 tcp_rate_skb_sent(sk, skb); 2986 } 2987 } else { 2988 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2989 } 2990 2991 /* To avoid taking spuriously low RTT samples based on a timestamp 2992 * for a transmit that never happened, always mark EVER_RETRANS 2993 */ 2994 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2995 2996 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2997 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2998 TCP_SKB_CB(skb)->seq, segs, err); 2999 3000 if (likely(!err)) { 3001 trace_tcp_retransmit_skb(sk, skb); 3002 } else if (err != -EBUSY) { 3003 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3004 } 3005 return err; 3006 } 3007 3008 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3009 { 3010 struct tcp_sock *tp = tcp_sk(sk); 3011 int err = __tcp_retransmit_skb(sk, skb, segs); 3012 3013 if (err == 0) { 3014 #if FASTRETRANS_DEBUG > 0 3015 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3016 net_dbg_ratelimited("retrans_out leaked\n"); 3017 } 3018 #endif 3019 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3020 tp->retrans_out += tcp_skb_pcount(skb); 3021 } 3022 3023 /* Save stamp of the first (attempted) retransmit. */ 3024 if (!tp->retrans_stamp) 3025 tp->retrans_stamp = tcp_skb_timestamp(skb); 3026 3027 if (tp->undo_retrans < 0) 3028 tp->undo_retrans = 0; 3029 tp->undo_retrans += tcp_skb_pcount(skb); 3030 return err; 3031 } 3032 3033 /* This gets called after a retransmit timeout, and the initially 3034 * retransmitted data is acknowledged. It tries to continue 3035 * resending the rest of the retransmit queue, until either 3036 * we've sent it all or the congestion window limit is reached. 3037 */ 3038 void tcp_xmit_retransmit_queue(struct sock *sk) 3039 { 3040 const struct inet_connection_sock *icsk = inet_csk(sk); 3041 struct sk_buff *skb, *rtx_head, *hole = NULL; 3042 struct tcp_sock *tp = tcp_sk(sk); 3043 u32 max_segs; 3044 int mib_idx; 3045 3046 if (!tp->packets_out) 3047 return; 3048 3049 rtx_head = tcp_rtx_queue_head(sk); 3050 skb = tp->retransmit_skb_hint ?: rtx_head; 3051 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3052 skb_rbtree_walk_from(skb) { 3053 __u8 sacked; 3054 int segs; 3055 3056 if (tcp_pacing_check(sk)) 3057 break; 3058 3059 /* we could do better than to assign each time */ 3060 if (!hole) 3061 tp->retransmit_skb_hint = skb; 3062 3063 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 3064 if (segs <= 0) 3065 return; 3066 sacked = TCP_SKB_CB(skb)->sacked; 3067 /* In case tcp_shift_skb_data() have aggregated large skbs, 3068 * we need to make sure not sending too bigs TSO packets 3069 */ 3070 segs = min_t(int, segs, max_segs); 3071 3072 if (tp->retrans_out >= tp->lost_out) { 3073 break; 3074 } else if (!(sacked & TCPCB_LOST)) { 3075 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3076 hole = skb; 3077 continue; 3078 3079 } else { 3080 if (icsk->icsk_ca_state != TCP_CA_Loss) 3081 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3082 else 3083 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3084 } 3085 3086 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3087 continue; 3088 3089 if (tcp_small_queue_check(sk, skb, 1)) 3090 return; 3091 3092 if (tcp_retransmit_skb(sk, skb, segs)) 3093 return; 3094 3095 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3096 3097 if (tcp_in_cwnd_reduction(sk)) 3098 tp->prr_out += tcp_skb_pcount(skb); 3099 3100 if (skb == rtx_head && 3101 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3102 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3103 inet_csk(sk)->icsk_rto, 3104 TCP_RTO_MAX, 3105 skb); 3106 } 3107 } 3108 3109 /* We allow to exceed memory limits for FIN packets to expedite 3110 * connection tear down and (memory) recovery. 3111 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3112 * or even be forced to close flow without any FIN. 3113 * In general, we want to allow one skb per socket to avoid hangs 3114 * with edge trigger epoll() 3115 */ 3116 void sk_forced_mem_schedule(struct sock *sk, int size) 3117 { 3118 int amt; 3119 3120 if (size <= sk->sk_forward_alloc) 3121 return; 3122 amt = sk_mem_pages(size); 3123 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3124 sk_memory_allocated_add(sk, amt); 3125 3126 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3127 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3128 } 3129 3130 /* Send a FIN. The caller locks the socket for us. 3131 * We should try to send a FIN packet really hard, but eventually give up. 3132 */ 3133 void tcp_send_fin(struct sock *sk) 3134 { 3135 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3136 struct tcp_sock *tp = tcp_sk(sk); 3137 3138 /* Optimization, tack on the FIN if we have one skb in write queue and 3139 * this skb was not yet sent, or we are under memory pressure. 3140 * Note: in the latter case, FIN packet will be sent after a timeout, 3141 * as TCP stack thinks it has already been transmitted. 3142 */ 3143 tskb = tail; 3144 if (!tskb && tcp_under_memory_pressure(sk)) 3145 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3146 3147 if (tskb) { 3148 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3149 TCP_SKB_CB(tskb)->end_seq++; 3150 tp->write_seq++; 3151 if (!tail) { 3152 /* This means tskb was already sent. 3153 * Pretend we included the FIN on previous transmit. 3154 * We need to set tp->snd_nxt to the value it would have 3155 * if FIN had been sent. This is because retransmit path 3156 * does not change tp->snd_nxt. 3157 */ 3158 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3159 return; 3160 } 3161 } else { 3162 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3163 if (unlikely(!skb)) 3164 return; 3165 3166 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3167 skb_reserve(skb, MAX_TCP_HEADER); 3168 sk_forced_mem_schedule(sk, skb->truesize); 3169 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3170 tcp_init_nondata_skb(skb, tp->write_seq, 3171 TCPHDR_ACK | TCPHDR_FIN); 3172 tcp_queue_skb(sk, skb); 3173 } 3174 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3175 } 3176 3177 /* We get here when a process closes a file descriptor (either due to 3178 * an explicit close() or as a byproduct of exit()'ing) and there 3179 * was unread data in the receive queue. This behavior is recommended 3180 * by RFC 2525, section 2.17. -DaveM 3181 */ 3182 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3183 { 3184 struct sk_buff *skb; 3185 3186 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3187 3188 /* NOTE: No TCP options attached and we never retransmit this. */ 3189 skb = alloc_skb(MAX_TCP_HEADER, priority); 3190 if (!skb) { 3191 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3192 return; 3193 } 3194 3195 /* Reserve space for headers and prepare control bits. */ 3196 skb_reserve(skb, MAX_TCP_HEADER); 3197 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3198 TCPHDR_ACK | TCPHDR_RST); 3199 tcp_mstamp_refresh(tcp_sk(sk)); 3200 /* Send it off. */ 3201 if (tcp_transmit_skb(sk, skb, 0, priority)) 3202 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3203 3204 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3205 * skb here is different to the troublesome skb, so use NULL 3206 */ 3207 trace_tcp_send_reset(sk, NULL); 3208 } 3209 3210 /* Send a crossed SYN-ACK during socket establishment. 3211 * WARNING: This routine must only be called when we have already sent 3212 * a SYN packet that crossed the incoming SYN that caused this routine 3213 * to get called. If this assumption fails then the initial rcv_wnd 3214 * and rcv_wscale values will not be correct. 3215 */ 3216 int tcp_send_synack(struct sock *sk) 3217 { 3218 struct sk_buff *skb; 3219 3220 skb = tcp_rtx_queue_head(sk); 3221 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3222 pr_err("%s: wrong queue state\n", __func__); 3223 return -EFAULT; 3224 } 3225 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3226 if (skb_cloned(skb)) { 3227 struct sk_buff *nskb; 3228 3229 tcp_skb_tsorted_save(skb) { 3230 nskb = skb_copy(skb, GFP_ATOMIC); 3231 } tcp_skb_tsorted_restore(skb); 3232 if (!nskb) 3233 return -ENOMEM; 3234 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3235 tcp_rtx_queue_unlink_and_free(skb, sk); 3236 __skb_header_release(nskb); 3237 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3238 sk_wmem_queued_add(sk, nskb->truesize); 3239 sk_mem_charge(sk, nskb->truesize); 3240 skb = nskb; 3241 } 3242 3243 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3244 tcp_ecn_send_synack(sk, skb); 3245 } 3246 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3247 } 3248 3249 /** 3250 * tcp_make_synack - Prepare a SYN-ACK. 3251 * sk: listener socket 3252 * dst: dst entry attached to the SYNACK 3253 * req: request_sock pointer 3254 * 3255 * Allocate one skb and build a SYNACK packet. 3256 * @dst is consumed : Caller should not use it again. 3257 */ 3258 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3259 struct request_sock *req, 3260 struct tcp_fastopen_cookie *foc, 3261 enum tcp_synack_type synack_type) 3262 { 3263 struct inet_request_sock *ireq = inet_rsk(req); 3264 const struct tcp_sock *tp = tcp_sk(sk); 3265 struct tcp_md5sig_key *md5 = NULL; 3266 struct tcp_out_options opts; 3267 struct sk_buff *skb; 3268 int tcp_header_size; 3269 struct tcphdr *th; 3270 int mss; 3271 u64 now; 3272 3273 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3274 if (unlikely(!skb)) { 3275 dst_release(dst); 3276 return NULL; 3277 } 3278 /* Reserve space for headers. */ 3279 skb_reserve(skb, MAX_TCP_HEADER); 3280 3281 switch (synack_type) { 3282 case TCP_SYNACK_NORMAL: 3283 skb_set_owner_w(skb, req_to_sk(req)); 3284 break; 3285 case TCP_SYNACK_COOKIE: 3286 /* Under synflood, we do not attach skb to a socket, 3287 * to avoid false sharing. 3288 */ 3289 break; 3290 case TCP_SYNACK_FASTOPEN: 3291 /* sk is a const pointer, because we want to express multiple 3292 * cpu might call us concurrently. 3293 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3294 */ 3295 skb_set_owner_w(skb, (struct sock *)sk); 3296 break; 3297 } 3298 skb_dst_set(skb, dst); 3299 3300 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3301 3302 memset(&opts, 0, sizeof(opts)); 3303 now = tcp_clock_ns(); 3304 #ifdef CONFIG_SYN_COOKIES 3305 if (unlikely(req->cookie_ts)) 3306 skb->skb_mstamp_ns = cookie_init_timestamp(req, now); 3307 else 3308 #endif 3309 { 3310 skb->skb_mstamp_ns = now; 3311 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3312 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3313 } 3314 3315 #ifdef CONFIG_TCP_MD5SIG 3316 rcu_read_lock(); 3317 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3318 #endif 3319 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3320 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3321 foc) + sizeof(*th); 3322 3323 skb_push(skb, tcp_header_size); 3324 skb_reset_transport_header(skb); 3325 3326 th = (struct tcphdr *)skb->data; 3327 memset(th, 0, sizeof(struct tcphdr)); 3328 th->syn = 1; 3329 th->ack = 1; 3330 tcp_ecn_make_synack(req, th); 3331 th->source = htons(ireq->ir_num); 3332 th->dest = ireq->ir_rmt_port; 3333 skb->mark = ireq->ir_mark; 3334 skb->ip_summed = CHECKSUM_PARTIAL; 3335 th->seq = htonl(tcp_rsk(req)->snt_isn); 3336 /* XXX data is queued and acked as is. No buffer/window check */ 3337 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3338 3339 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3340 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3341 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3342 th->doff = (tcp_header_size >> 2); 3343 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3344 3345 #ifdef CONFIG_TCP_MD5SIG 3346 /* Okay, we have all we need - do the md5 hash if needed */ 3347 if (md5) 3348 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3349 md5, req_to_sk(req), skb); 3350 rcu_read_unlock(); 3351 #endif 3352 3353 skb->skb_mstamp_ns = now; 3354 tcp_add_tx_delay(skb, tp); 3355 3356 return skb; 3357 } 3358 EXPORT_SYMBOL(tcp_make_synack); 3359 3360 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3361 { 3362 struct inet_connection_sock *icsk = inet_csk(sk); 3363 const struct tcp_congestion_ops *ca; 3364 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3365 3366 if (ca_key == TCP_CA_UNSPEC) 3367 return; 3368 3369 rcu_read_lock(); 3370 ca = tcp_ca_find_key(ca_key); 3371 if (likely(ca && try_module_get(ca->owner))) { 3372 module_put(icsk->icsk_ca_ops->owner); 3373 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3374 icsk->icsk_ca_ops = ca; 3375 } 3376 rcu_read_unlock(); 3377 } 3378 3379 /* Do all connect socket setups that can be done AF independent. */ 3380 static void tcp_connect_init(struct sock *sk) 3381 { 3382 const struct dst_entry *dst = __sk_dst_get(sk); 3383 struct tcp_sock *tp = tcp_sk(sk); 3384 __u8 rcv_wscale; 3385 u32 rcv_wnd; 3386 3387 /* We'll fix this up when we get a response from the other end. 3388 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3389 */ 3390 tp->tcp_header_len = sizeof(struct tcphdr); 3391 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3392 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3393 3394 #ifdef CONFIG_TCP_MD5SIG 3395 if (tp->af_specific->md5_lookup(sk, sk)) 3396 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3397 #endif 3398 3399 /* If user gave his TCP_MAXSEG, record it to clamp */ 3400 if (tp->rx_opt.user_mss) 3401 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3402 tp->max_window = 0; 3403 tcp_mtup_init(sk); 3404 tcp_sync_mss(sk, dst_mtu(dst)); 3405 3406 tcp_ca_dst_init(sk, dst); 3407 3408 if (!tp->window_clamp) 3409 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3410 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3411 3412 tcp_initialize_rcv_mss(sk); 3413 3414 /* limit the window selection if the user enforce a smaller rx buffer */ 3415 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3416 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3417 tp->window_clamp = tcp_full_space(sk); 3418 3419 rcv_wnd = tcp_rwnd_init_bpf(sk); 3420 if (rcv_wnd == 0) 3421 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3422 3423 tcp_select_initial_window(sk, tcp_full_space(sk), 3424 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3425 &tp->rcv_wnd, 3426 &tp->window_clamp, 3427 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3428 &rcv_wscale, 3429 rcv_wnd); 3430 3431 tp->rx_opt.rcv_wscale = rcv_wscale; 3432 tp->rcv_ssthresh = tp->rcv_wnd; 3433 3434 sk->sk_err = 0; 3435 sock_reset_flag(sk, SOCK_DONE); 3436 tp->snd_wnd = 0; 3437 tcp_init_wl(tp, 0); 3438 tcp_write_queue_purge(sk); 3439 tp->snd_una = tp->write_seq; 3440 tp->snd_sml = tp->write_seq; 3441 tp->snd_up = tp->write_seq; 3442 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3443 3444 if (likely(!tp->repair)) 3445 tp->rcv_nxt = 0; 3446 else 3447 tp->rcv_tstamp = tcp_jiffies32; 3448 tp->rcv_wup = tp->rcv_nxt; 3449 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3450 3451 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3452 inet_csk(sk)->icsk_retransmits = 0; 3453 tcp_clear_retrans(tp); 3454 } 3455 3456 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3457 { 3458 struct tcp_sock *tp = tcp_sk(sk); 3459 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3460 3461 tcb->end_seq += skb->len; 3462 __skb_header_release(skb); 3463 sk_wmem_queued_add(sk, skb->truesize); 3464 sk_mem_charge(sk, skb->truesize); 3465 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3466 tp->packets_out += tcp_skb_pcount(skb); 3467 } 3468 3469 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3470 * queue a data-only packet after the regular SYN, such that regular SYNs 3471 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3472 * only the SYN sequence, the data are retransmitted in the first ACK. 3473 * If cookie is not cached or other error occurs, falls back to send a 3474 * regular SYN with Fast Open cookie request option. 3475 */ 3476 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3477 { 3478 struct tcp_sock *tp = tcp_sk(sk); 3479 struct tcp_fastopen_request *fo = tp->fastopen_req; 3480 int space, err = 0; 3481 struct sk_buff *syn_data; 3482 3483 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3484 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3485 goto fallback; 3486 3487 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3488 * user-MSS. Reserve maximum option space for middleboxes that add 3489 * private TCP options. The cost is reduced data space in SYN :( 3490 */ 3491 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3492 3493 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3494 MAX_TCP_OPTION_SPACE; 3495 3496 space = min_t(size_t, space, fo->size); 3497 3498 /* limit to order-0 allocations */ 3499 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3500 3501 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3502 if (!syn_data) 3503 goto fallback; 3504 syn_data->ip_summed = CHECKSUM_PARTIAL; 3505 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3506 if (space) { 3507 int copied = copy_from_iter(skb_put(syn_data, space), space, 3508 &fo->data->msg_iter); 3509 if (unlikely(!copied)) { 3510 tcp_skb_tsorted_anchor_cleanup(syn_data); 3511 kfree_skb(syn_data); 3512 goto fallback; 3513 } 3514 if (copied != space) { 3515 skb_trim(syn_data, copied); 3516 space = copied; 3517 } 3518 skb_zcopy_set(syn_data, fo->uarg, NULL); 3519 } 3520 /* No more data pending in inet_wait_for_connect() */ 3521 if (space == fo->size) 3522 fo->data = NULL; 3523 fo->copied = space; 3524 3525 tcp_connect_queue_skb(sk, syn_data); 3526 if (syn_data->len) 3527 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3528 3529 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3530 3531 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3532 3533 /* Now full SYN+DATA was cloned and sent (or not), 3534 * remove the SYN from the original skb (syn_data) 3535 * we keep in write queue in case of a retransmit, as we 3536 * also have the SYN packet (with no data) in the same queue. 3537 */ 3538 TCP_SKB_CB(syn_data)->seq++; 3539 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3540 if (!err) { 3541 tp->syn_data = (fo->copied > 0); 3542 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3543 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3544 goto done; 3545 } 3546 3547 /* data was not sent, put it in write_queue */ 3548 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3549 tp->packets_out -= tcp_skb_pcount(syn_data); 3550 3551 fallback: 3552 /* Send a regular SYN with Fast Open cookie request option */ 3553 if (fo->cookie.len > 0) 3554 fo->cookie.len = 0; 3555 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3556 if (err) 3557 tp->syn_fastopen = 0; 3558 done: 3559 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3560 return err; 3561 } 3562 3563 /* Build a SYN and send it off. */ 3564 int tcp_connect(struct sock *sk) 3565 { 3566 struct tcp_sock *tp = tcp_sk(sk); 3567 struct sk_buff *buff; 3568 int err; 3569 3570 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3571 3572 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3573 return -EHOSTUNREACH; /* Routing failure or similar. */ 3574 3575 tcp_connect_init(sk); 3576 3577 if (unlikely(tp->repair)) { 3578 tcp_finish_connect(sk, NULL); 3579 return 0; 3580 } 3581 3582 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3583 if (unlikely(!buff)) 3584 return -ENOBUFS; 3585 3586 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3587 tcp_mstamp_refresh(tp); 3588 tp->retrans_stamp = tcp_time_stamp(tp); 3589 tcp_connect_queue_skb(sk, buff); 3590 tcp_ecn_send_syn(sk, buff); 3591 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3592 3593 /* Send off SYN; include data in Fast Open. */ 3594 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3595 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3596 if (err == -ECONNREFUSED) 3597 return err; 3598 3599 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3600 * in order to make this packet get counted in tcpOutSegs. 3601 */ 3602 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3603 tp->pushed_seq = tp->write_seq; 3604 buff = tcp_send_head(sk); 3605 if (unlikely(buff)) { 3606 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3607 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3608 } 3609 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3610 3611 /* Timer for repeating the SYN until an answer. */ 3612 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3613 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3614 return 0; 3615 } 3616 EXPORT_SYMBOL(tcp_connect); 3617 3618 /* Send out a delayed ack, the caller does the policy checking 3619 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3620 * for details. 3621 */ 3622 void tcp_send_delayed_ack(struct sock *sk) 3623 { 3624 struct inet_connection_sock *icsk = inet_csk(sk); 3625 int ato = icsk->icsk_ack.ato; 3626 unsigned long timeout; 3627 3628 if (ato > TCP_DELACK_MIN) { 3629 const struct tcp_sock *tp = tcp_sk(sk); 3630 int max_ato = HZ / 2; 3631 3632 if (inet_csk_in_pingpong_mode(sk) || 3633 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3634 max_ato = TCP_DELACK_MAX; 3635 3636 /* Slow path, intersegment interval is "high". */ 3637 3638 /* If some rtt estimate is known, use it to bound delayed ack. 3639 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3640 * directly. 3641 */ 3642 if (tp->srtt_us) { 3643 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3644 TCP_DELACK_MIN); 3645 3646 if (rtt < max_ato) 3647 max_ato = rtt; 3648 } 3649 3650 ato = min(ato, max_ato); 3651 } 3652 3653 /* Stay within the limit we were given */ 3654 timeout = jiffies + ato; 3655 3656 /* Use new timeout only if there wasn't a older one earlier. */ 3657 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3658 /* If delack timer was blocked or is about to expire, 3659 * send ACK now. 3660 */ 3661 if (icsk->icsk_ack.blocked || 3662 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3663 tcp_send_ack(sk); 3664 return; 3665 } 3666 3667 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3668 timeout = icsk->icsk_ack.timeout; 3669 } 3670 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3671 icsk->icsk_ack.timeout = timeout; 3672 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3673 } 3674 3675 /* This routine sends an ack and also updates the window. */ 3676 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3677 { 3678 struct sk_buff *buff; 3679 3680 /* If we have been reset, we may not send again. */ 3681 if (sk->sk_state == TCP_CLOSE) 3682 return; 3683 3684 /* We are not putting this on the write queue, so 3685 * tcp_transmit_skb() will set the ownership to this 3686 * sock. 3687 */ 3688 buff = alloc_skb(MAX_TCP_HEADER, 3689 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3690 if (unlikely(!buff)) { 3691 inet_csk_schedule_ack(sk); 3692 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3693 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3694 TCP_DELACK_MAX, TCP_RTO_MAX); 3695 return; 3696 } 3697 3698 /* Reserve space for headers and prepare control bits. */ 3699 skb_reserve(buff, MAX_TCP_HEADER); 3700 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3701 3702 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3703 * too much. 3704 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3705 */ 3706 skb_set_tcp_pure_ack(buff); 3707 3708 /* Send it off, this clears delayed acks for us. */ 3709 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3710 } 3711 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3712 3713 void tcp_send_ack(struct sock *sk) 3714 { 3715 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3716 } 3717 3718 /* This routine sends a packet with an out of date sequence 3719 * number. It assumes the other end will try to ack it. 3720 * 3721 * Question: what should we make while urgent mode? 3722 * 4.4BSD forces sending single byte of data. We cannot send 3723 * out of window data, because we have SND.NXT==SND.MAX... 3724 * 3725 * Current solution: to send TWO zero-length segments in urgent mode: 3726 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3727 * out-of-date with SND.UNA-1 to probe window. 3728 */ 3729 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3730 { 3731 struct tcp_sock *tp = tcp_sk(sk); 3732 struct sk_buff *skb; 3733 3734 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3735 skb = alloc_skb(MAX_TCP_HEADER, 3736 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3737 if (!skb) 3738 return -1; 3739 3740 /* Reserve space for headers and set control bits. */ 3741 skb_reserve(skb, MAX_TCP_HEADER); 3742 /* Use a previous sequence. This should cause the other 3743 * end to send an ack. Don't queue or clone SKB, just 3744 * send it. 3745 */ 3746 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3747 NET_INC_STATS(sock_net(sk), mib); 3748 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3749 } 3750 3751 /* Called from setsockopt( ... TCP_REPAIR ) */ 3752 void tcp_send_window_probe(struct sock *sk) 3753 { 3754 if (sk->sk_state == TCP_ESTABLISHED) { 3755 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3756 tcp_mstamp_refresh(tcp_sk(sk)); 3757 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3758 } 3759 } 3760 3761 /* Initiate keepalive or window probe from timer. */ 3762 int tcp_write_wakeup(struct sock *sk, int mib) 3763 { 3764 struct tcp_sock *tp = tcp_sk(sk); 3765 struct sk_buff *skb; 3766 3767 if (sk->sk_state == TCP_CLOSE) 3768 return -1; 3769 3770 skb = tcp_send_head(sk); 3771 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3772 int err; 3773 unsigned int mss = tcp_current_mss(sk); 3774 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3775 3776 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3777 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3778 3779 /* We are probing the opening of a window 3780 * but the window size is != 0 3781 * must have been a result SWS avoidance ( sender ) 3782 */ 3783 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3784 skb->len > mss) { 3785 seg_size = min(seg_size, mss); 3786 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3787 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3788 skb, seg_size, mss, GFP_ATOMIC)) 3789 return -1; 3790 } else if (!tcp_skb_pcount(skb)) 3791 tcp_set_skb_tso_segs(skb, mss); 3792 3793 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3794 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3795 if (!err) 3796 tcp_event_new_data_sent(sk, skb); 3797 return err; 3798 } else { 3799 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3800 tcp_xmit_probe_skb(sk, 1, mib); 3801 return tcp_xmit_probe_skb(sk, 0, mib); 3802 } 3803 } 3804 3805 /* A window probe timeout has occurred. If window is not closed send 3806 * a partial packet else a zero probe. 3807 */ 3808 void tcp_send_probe0(struct sock *sk) 3809 { 3810 struct inet_connection_sock *icsk = inet_csk(sk); 3811 struct tcp_sock *tp = tcp_sk(sk); 3812 struct net *net = sock_net(sk); 3813 unsigned long timeout; 3814 int err; 3815 3816 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3817 3818 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3819 /* Cancel probe timer, if it is not required. */ 3820 icsk->icsk_probes_out = 0; 3821 icsk->icsk_backoff = 0; 3822 return; 3823 } 3824 3825 icsk->icsk_probes_out++; 3826 if (err <= 0) { 3827 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3828 icsk->icsk_backoff++; 3829 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 3830 } else { 3831 /* If packet was not sent due to local congestion, 3832 * Let senders fight for local resources conservatively. 3833 */ 3834 timeout = TCP_RESOURCE_PROBE_INTERVAL; 3835 } 3836 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL); 3837 } 3838 3839 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3840 { 3841 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3842 struct flowi fl; 3843 int res; 3844 3845 tcp_rsk(req)->txhash = net_tx_rndhash(); 3846 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3847 if (!res) { 3848 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3849 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3850 if (unlikely(tcp_passive_fastopen(sk))) 3851 tcp_sk(sk)->total_retrans++; 3852 trace_tcp_retransmit_synack(sk, req); 3853 } 3854 return res; 3855 } 3856 EXPORT_SYMBOL(tcp_rtx_synack); 3857