xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 703e7713)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 	tcp_check_space(sk);
86 }
87 
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89  * window scaling factor due to loss of precision.
90  * If window has been shrunk, what should we make? It is not clear at all.
91  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93  * invalid. OK, let's make this for now:
94  */
95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 	const struct tcp_sock *tp = tcp_sk(sk);
98 
99 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 	    (tp->rx_opt.wscale_ok &&
101 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tcp_snd_cwnd(tp);
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 	tp->snd_cwnd_stamp = tcp_jiffies32;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_jiffies32;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, enter pingpong mode.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_enter_pingpong_mode(sk);
177 }
178 
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
181 				      u32 rcv_nxt)
182 {
183 	struct tcp_sock *tp = tcp_sk(sk);
184 
185 	if (unlikely(tp->compressed_ack)) {
186 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
187 			      tp->compressed_ack);
188 		tp->compressed_ack = 0;
189 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
190 			__sock_put(sk);
191 	}
192 
193 	if (unlikely(rcv_nxt != tp->rcv_nxt))
194 		return;  /* Special ACK sent by DCTCP to reflect ECN */
195 	tcp_dec_quickack_mode(sk, pkts);
196 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (*window_clamp == 0)
215 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 	space = min(*window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = rounddown(space, mss);
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
234 
235 	if (init_rcv_wnd)
236 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
237 
238 	*rcv_wscale = 0;
239 	if (wscale_ok) {
240 		/* Set window scaling on max possible window */
241 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
242 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
243 		space = min_t(u32, space, *window_clamp);
244 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
245 				      0, TCP_MAX_WSCALE);
246 	}
247 	/* Set the clamp no higher than max representable value */
248 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
249 }
250 EXPORT_SYMBOL(tcp_select_initial_window);
251 
252 /* Chose a new window to advertise, update state in tcp_sock for the
253  * socket, and return result with RFC1323 scaling applied.  The return
254  * value can be stuffed directly into th->window for an outgoing
255  * frame.
256  */
257 static u16 tcp_select_window(struct sock *sk)
258 {
259 	struct tcp_sock *tp = tcp_sk(sk);
260 	u32 old_win = tp->rcv_wnd;
261 	u32 cur_win = tcp_receive_window(tp);
262 	u32 new_win = __tcp_select_window(sk);
263 	struct net *net = sock_net(sk);
264 
265 	if (new_win < cur_win) {
266 		/* Danger Will Robinson!
267 		 * Don't update rcv_wup/rcv_wnd here or else
268 		 * we will not be able to advertise a zero
269 		 * window in time.  --DaveM
270 		 *
271 		 * Relax Will Robinson.
272 		 */
273 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
274 			/* Never shrink the offered window */
275 			if (new_win == 0)
276 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
277 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
278 		}
279 	}
280 
281 	tp->rcv_wnd = new_win;
282 	tp->rcv_wup = tp->rcv_nxt;
283 
284 	/* Make sure we do not exceed the maximum possible
285 	 * scaled window.
286 	 */
287 	if (!tp->rx_opt.rcv_wscale &&
288 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
289 		new_win = min(new_win, MAX_TCP_WINDOW);
290 	else
291 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
292 
293 	/* RFC1323 scaling applied */
294 	new_win >>= tp->rx_opt.rcv_wscale;
295 
296 	/* If we advertise zero window, disable fast path. */
297 	if (new_win == 0) {
298 		tp->pred_flags = 0;
299 		if (old_win)
300 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
301 	} else if (old_win == 0) {
302 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
303 	}
304 
305 	return new_win;
306 }
307 
308 /* Packet ECN state for a SYN-ACK */
309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
310 {
311 	const struct tcp_sock *tp = tcp_sk(sk);
312 
313 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
314 	if (!(tp->ecn_flags & TCP_ECN_OK))
315 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
316 	else if (tcp_ca_needs_ecn(sk) ||
317 		 tcp_bpf_ca_needs_ecn(sk))
318 		INET_ECN_xmit(sk);
319 }
320 
321 /* Packet ECN state for a SYN.  */
322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
323 {
324 	struct tcp_sock *tp = tcp_sk(sk);
325 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
326 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
327 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
328 
329 	if (!use_ecn) {
330 		const struct dst_entry *dst = __sk_dst_get(sk);
331 
332 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
333 			use_ecn = true;
334 	}
335 
336 	tp->ecn_flags = 0;
337 
338 	if (use_ecn) {
339 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
340 		tp->ecn_flags = TCP_ECN_OK;
341 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
342 			INET_ECN_xmit(sk);
343 	}
344 }
345 
346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
347 {
348 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
349 		/* tp->ecn_flags are cleared at a later point in time when
350 		 * SYN ACK is ultimatively being received.
351 		 */
352 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
353 }
354 
355 static void
356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
357 {
358 	if (inet_rsk(req)->ecn_ok)
359 		th->ece = 1;
360 }
361 
362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
363  * be sent.
364  */
365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
366 			 struct tcphdr *th, int tcp_header_len)
367 {
368 	struct tcp_sock *tp = tcp_sk(sk);
369 
370 	if (tp->ecn_flags & TCP_ECN_OK) {
371 		/* Not-retransmitted data segment: set ECT and inject CWR. */
372 		if (skb->len != tcp_header_len &&
373 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
374 			INET_ECN_xmit(sk);
375 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
376 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
377 				th->cwr = 1;
378 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
379 			}
380 		} else if (!tcp_ca_needs_ecn(sk)) {
381 			/* ACK or retransmitted segment: clear ECT|CE */
382 			INET_ECN_dontxmit(sk);
383 		}
384 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
385 			th->ece = 1;
386 	}
387 }
388 
389 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390  * auto increment end seqno.
391  */
392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
393 {
394 	skb->ip_summed = CHECKSUM_PARTIAL;
395 
396 	TCP_SKB_CB(skb)->tcp_flags = flags;
397 
398 	tcp_skb_pcount_set(skb, 1);
399 
400 	TCP_SKB_CB(skb)->seq = seq;
401 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
402 		seq++;
403 	TCP_SKB_CB(skb)->end_seq = seq;
404 }
405 
406 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
407 {
408 	return tp->snd_una != tp->snd_up;
409 }
410 
411 #define OPTION_SACK_ADVERTISE	BIT(0)
412 #define OPTION_TS		BIT(1)
413 #define OPTION_MD5		BIT(2)
414 #define OPTION_WSCALE		BIT(3)
415 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
416 #define OPTION_SMC		BIT(9)
417 #define OPTION_MPTCP		BIT(10)
418 
419 static void smc_options_write(__be32 *ptr, u16 *options)
420 {
421 #if IS_ENABLED(CONFIG_SMC)
422 	if (static_branch_unlikely(&tcp_have_smc)) {
423 		if (unlikely(OPTION_SMC & *options)) {
424 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
425 				       (TCPOPT_NOP  << 16) |
426 				       (TCPOPT_EXP <<  8) |
427 				       (TCPOLEN_EXP_SMC_BASE));
428 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
429 		}
430 	}
431 #endif
432 }
433 
434 struct tcp_out_options {
435 	u16 options;		/* bit field of OPTION_* */
436 	u16 mss;		/* 0 to disable */
437 	u8 ws;			/* window scale, 0 to disable */
438 	u8 num_sack_blocks;	/* number of SACK blocks to include */
439 	u8 hash_size;		/* bytes in hash_location */
440 	u8 bpf_opt_len;		/* length of BPF hdr option */
441 	__u8 *hash_location;	/* temporary pointer, overloaded */
442 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
443 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
444 	struct mptcp_out_options mptcp;
445 };
446 
447 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
448 				struct tcp_sock *tp,
449 				struct tcp_out_options *opts)
450 {
451 #if IS_ENABLED(CONFIG_MPTCP)
452 	if (unlikely(OPTION_MPTCP & opts->options))
453 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
454 #endif
455 }
456 
457 #ifdef CONFIG_CGROUP_BPF
458 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
459 					enum tcp_synack_type synack_type)
460 {
461 	if (unlikely(!skb))
462 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
463 
464 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
465 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
466 
467 	return 0;
468 }
469 
470 /* req, syn_skb and synack_type are used when writing synack */
471 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
472 				  struct request_sock *req,
473 				  struct sk_buff *syn_skb,
474 				  enum tcp_synack_type synack_type,
475 				  struct tcp_out_options *opts,
476 				  unsigned int *remaining)
477 {
478 	struct bpf_sock_ops_kern sock_ops;
479 	int err;
480 
481 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
482 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
483 	    !*remaining)
484 		return;
485 
486 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
487 
488 	/* init sock_ops */
489 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
490 
491 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
492 
493 	if (req) {
494 		/* The listen "sk" cannot be passed here because
495 		 * it is not locked.  It would not make too much
496 		 * sense to do bpf_setsockopt(listen_sk) based
497 		 * on individual connection request also.
498 		 *
499 		 * Thus, "req" is passed here and the cgroup-bpf-progs
500 		 * of the listen "sk" will be run.
501 		 *
502 		 * "req" is also used here for fastopen even the "sk" here is
503 		 * a fullsock "child" sk.  It is to keep the behavior
504 		 * consistent between fastopen and non-fastopen on
505 		 * the bpf programming side.
506 		 */
507 		sock_ops.sk = (struct sock *)req;
508 		sock_ops.syn_skb = syn_skb;
509 	} else {
510 		sock_owned_by_me(sk);
511 
512 		sock_ops.is_fullsock = 1;
513 		sock_ops.sk = sk;
514 	}
515 
516 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
517 	sock_ops.remaining_opt_len = *remaining;
518 	/* tcp_current_mss() does not pass a skb */
519 	if (skb)
520 		bpf_skops_init_skb(&sock_ops, skb, 0);
521 
522 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
523 
524 	if (err || sock_ops.remaining_opt_len == *remaining)
525 		return;
526 
527 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
528 	/* round up to 4 bytes */
529 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
530 
531 	*remaining -= opts->bpf_opt_len;
532 }
533 
534 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
535 				    struct request_sock *req,
536 				    struct sk_buff *syn_skb,
537 				    enum tcp_synack_type synack_type,
538 				    struct tcp_out_options *opts)
539 {
540 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
541 	struct bpf_sock_ops_kern sock_ops;
542 	int err;
543 
544 	if (likely(!max_opt_len))
545 		return;
546 
547 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
548 
549 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
550 
551 	if (req) {
552 		sock_ops.sk = (struct sock *)req;
553 		sock_ops.syn_skb = syn_skb;
554 	} else {
555 		sock_owned_by_me(sk);
556 
557 		sock_ops.is_fullsock = 1;
558 		sock_ops.sk = sk;
559 	}
560 
561 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
562 	sock_ops.remaining_opt_len = max_opt_len;
563 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
564 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
565 
566 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
567 
568 	if (err)
569 		nr_written = 0;
570 	else
571 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
572 
573 	if (nr_written < max_opt_len)
574 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
575 		       max_opt_len - nr_written);
576 }
577 #else
578 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
579 				  struct request_sock *req,
580 				  struct sk_buff *syn_skb,
581 				  enum tcp_synack_type synack_type,
582 				  struct tcp_out_options *opts,
583 				  unsigned int *remaining)
584 {
585 }
586 
587 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
588 				    struct request_sock *req,
589 				    struct sk_buff *syn_skb,
590 				    enum tcp_synack_type synack_type,
591 				    struct tcp_out_options *opts)
592 {
593 }
594 #endif
595 
596 /* Write previously computed TCP options to the packet.
597  *
598  * Beware: Something in the Internet is very sensitive to the ordering of
599  * TCP options, we learned this through the hard way, so be careful here.
600  * Luckily we can at least blame others for their non-compliance but from
601  * inter-operability perspective it seems that we're somewhat stuck with
602  * the ordering which we have been using if we want to keep working with
603  * those broken things (not that it currently hurts anybody as there isn't
604  * particular reason why the ordering would need to be changed).
605  *
606  * At least SACK_PERM as the first option is known to lead to a disaster
607  * (but it may well be that other scenarios fail similarly).
608  */
609 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
610 			      struct tcp_out_options *opts)
611 {
612 	__be32 *ptr = (__be32 *)(th + 1);
613 	u16 options = opts->options;	/* mungable copy */
614 
615 	if (unlikely(OPTION_MD5 & options)) {
616 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
617 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
618 		/* overload cookie hash location */
619 		opts->hash_location = (__u8 *)ptr;
620 		ptr += 4;
621 	}
622 
623 	if (unlikely(opts->mss)) {
624 		*ptr++ = htonl((TCPOPT_MSS << 24) |
625 			       (TCPOLEN_MSS << 16) |
626 			       opts->mss);
627 	}
628 
629 	if (likely(OPTION_TS & options)) {
630 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
631 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
632 				       (TCPOLEN_SACK_PERM << 16) |
633 				       (TCPOPT_TIMESTAMP << 8) |
634 				       TCPOLEN_TIMESTAMP);
635 			options &= ~OPTION_SACK_ADVERTISE;
636 		} else {
637 			*ptr++ = htonl((TCPOPT_NOP << 24) |
638 				       (TCPOPT_NOP << 16) |
639 				       (TCPOPT_TIMESTAMP << 8) |
640 				       TCPOLEN_TIMESTAMP);
641 		}
642 		*ptr++ = htonl(opts->tsval);
643 		*ptr++ = htonl(opts->tsecr);
644 	}
645 
646 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
647 		*ptr++ = htonl((TCPOPT_NOP << 24) |
648 			       (TCPOPT_NOP << 16) |
649 			       (TCPOPT_SACK_PERM << 8) |
650 			       TCPOLEN_SACK_PERM);
651 	}
652 
653 	if (unlikely(OPTION_WSCALE & options)) {
654 		*ptr++ = htonl((TCPOPT_NOP << 24) |
655 			       (TCPOPT_WINDOW << 16) |
656 			       (TCPOLEN_WINDOW << 8) |
657 			       opts->ws);
658 	}
659 
660 	if (unlikely(opts->num_sack_blocks)) {
661 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
662 			tp->duplicate_sack : tp->selective_acks;
663 		int this_sack;
664 
665 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
666 			       (TCPOPT_NOP  << 16) |
667 			       (TCPOPT_SACK <<  8) |
668 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
669 						     TCPOLEN_SACK_PERBLOCK)));
670 
671 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
672 		     ++this_sack) {
673 			*ptr++ = htonl(sp[this_sack].start_seq);
674 			*ptr++ = htonl(sp[this_sack].end_seq);
675 		}
676 
677 		tp->rx_opt.dsack = 0;
678 	}
679 
680 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
681 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
682 		u8 *p = (u8 *)ptr;
683 		u32 len; /* Fast Open option length */
684 
685 		if (foc->exp) {
686 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
687 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
688 				     TCPOPT_FASTOPEN_MAGIC);
689 			p += TCPOLEN_EXP_FASTOPEN_BASE;
690 		} else {
691 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
692 			*p++ = TCPOPT_FASTOPEN;
693 			*p++ = len;
694 		}
695 
696 		memcpy(p, foc->val, foc->len);
697 		if ((len & 3) == 2) {
698 			p[foc->len] = TCPOPT_NOP;
699 			p[foc->len + 1] = TCPOPT_NOP;
700 		}
701 		ptr += (len + 3) >> 2;
702 	}
703 
704 	smc_options_write(ptr, &options);
705 
706 	mptcp_options_write(th, ptr, tp, opts);
707 }
708 
709 static void smc_set_option(const struct tcp_sock *tp,
710 			   struct tcp_out_options *opts,
711 			   unsigned int *remaining)
712 {
713 #if IS_ENABLED(CONFIG_SMC)
714 	if (static_branch_unlikely(&tcp_have_smc)) {
715 		if (tp->syn_smc) {
716 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
717 				opts->options |= OPTION_SMC;
718 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
719 			}
720 		}
721 	}
722 #endif
723 }
724 
725 static void smc_set_option_cond(const struct tcp_sock *tp,
726 				const struct inet_request_sock *ireq,
727 				struct tcp_out_options *opts,
728 				unsigned int *remaining)
729 {
730 #if IS_ENABLED(CONFIG_SMC)
731 	if (static_branch_unlikely(&tcp_have_smc)) {
732 		if (tp->syn_smc && ireq->smc_ok) {
733 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
734 				opts->options |= OPTION_SMC;
735 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
736 			}
737 		}
738 	}
739 #endif
740 }
741 
742 static void mptcp_set_option_cond(const struct request_sock *req,
743 				  struct tcp_out_options *opts,
744 				  unsigned int *remaining)
745 {
746 	if (rsk_is_mptcp(req)) {
747 		unsigned int size;
748 
749 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
750 			if (*remaining >= size) {
751 				opts->options |= OPTION_MPTCP;
752 				*remaining -= size;
753 			}
754 		}
755 	}
756 }
757 
758 /* Compute TCP options for SYN packets. This is not the final
759  * network wire format yet.
760  */
761 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
762 				struct tcp_out_options *opts,
763 				struct tcp_md5sig_key **md5)
764 {
765 	struct tcp_sock *tp = tcp_sk(sk);
766 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
767 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
768 
769 	*md5 = NULL;
770 #ifdef CONFIG_TCP_MD5SIG
771 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
772 	    rcu_access_pointer(tp->md5sig_info)) {
773 		*md5 = tp->af_specific->md5_lookup(sk, sk);
774 		if (*md5) {
775 			opts->options |= OPTION_MD5;
776 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
777 		}
778 	}
779 #endif
780 
781 	/* We always get an MSS option.  The option bytes which will be seen in
782 	 * normal data packets should timestamps be used, must be in the MSS
783 	 * advertised.  But we subtract them from tp->mss_cache so that
784 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
785 	 * fact here if necessary.  If we don't do this correctly, as a
786 	 * receiver we won't recognize data packets as being full sized when we
787 	 * should, and thus we won't abide by the delayed ACK rules correctly.
788 	 * SACKs don't matter, we never delay an ACK when we have any of those
789 	 * going out.  */
790 	opts->mss = tcp_advertise_mss(sk);
791 	remaining -= TCPOLEN_MSS_ALIGNED;
792 
793 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
794 		opts->options |= OPTION_TS;
795 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
796 		opts->tsecr = tp->rx_opt.ts_recent;
797 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
798 	}
799 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
800 		opts->ws = tp->rx_opt.rcv_wscale;
801 		opts->options |= OPTION_WSCALE;
802 		remaining -= TCPOLEN_WSCALE_ALIGNED;
803 	}
804 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
805 		opts->options |= OPTION_SACK_ADVERTISE;
806 		if (unlikely(!(OPTION_TS & opts->options)))
807 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
808 	}
809 
810 	if (fastopen && fastopen->cookie.len >= 0) {
811 		u32 need = fastopen->cookie.len;
812 
813 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
814 					       TCPOLEN_FASTOPEN_BASE;
815 		need = (need + 3) & ~3U;  /* Align to 32 bits */
816 		if (remaining >= need) {
817 			opts->options |= OPTION_FAST_OPEN_COOKIE;
818 			opts->fastopen_cookie = &fastopen->cookie;
819 			remaining -= need;
820 			tp->syn_fastopen = 1;
821 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
822 		}
823 	}
824 
825 	smc_set_option(tp, opts, &remaining);
826 
827 	if (sk_is_mptcp(sk)) {
828 		unsigned int size;
829 
830 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
831 			opts->options |= OPTION_MPTCP;
832 			remaining -= size;
833 		}
834 	}
835 
836 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
837 
838 	return MAX_TCP_OPTION_SPACE - remaining;
839 }
840 
841 /* Set up TCP options for SYN-ACKs. */
842 static unsigned int tcp_synack_options(const struct sock *sk,
843 				       struct request_sock *req,
844 				       unsigned int mss, struct sk_buff *skb,
845 				       struct tcp_out_options *opts,
846 				       const struct tcp_md5sig_key *md5,
847 				       struct tcp_fastopen_cookie *foc,
848 				       enum tcp_synack_type synack_type,
849 				       struct sk_buff *syn_skb)
850 {
851 	struct inet_request_sock *ireq = inet_rsk(req);
852 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
853 
854 #ifdef CONFIG_TCP_MD5SIG
855 	if (md5) {
856 		opts->options |= OPTION_MD5;
857 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
858 
859 		/* We can't fit any SACK blocks in a packet with MD5 + TS
860 		 * options. There was discussion about disabling SACK
861 		 * rather than TS in order to fit in better with old,
862 		 * buggy kernels, but that was deemed to be unnecessary.
863 		 */
864 		if (synack_type != TCP_SYNACK_COOKIE)
865 			ireq->tstamp_ok &= !ireq->sack_ok;
866 	}
867 #endif
868 
869 	/* We always send an MSS option. */
870 	opts->mss = mss;
871 	remaining -= TCPOLEN_MSS_ALIGNED;
872 
873 	if (likely(ireq->wscale_ok)) {
874 		opts->ws = ireq->rcv_wscale;
875 		opts->options |= OPTION_WSCALE;
876 		remaining -= TCPOLEN_WSCALE_ALIGNED;
877 	}
878 	if (likely(ireq->tstamp_ok)) {
879 		opts->options |= OPTION_TS;
880 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
881 		opts->tsecr = req->ts_recent;
882 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
883 	}
884 	if (likely(ireq->sack_ok)) {
885 		opts->options |= OPTION_SACK_ADVERTISE;
886 		if (unlikely(!ireq->tstamp_ok))
887 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
888 	}
889 	if (foc != NULL && foc->len >= 0) {
890 		u32 need = foc->len;
891 
892 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
893 				   TCPOLEN_FASTOPEN_BASE;
894 		need = (need + 3) & ~3U;  /* Align to 32 bits */
895 		if (remaining >= need) {
896 			opts->options |= OPTION_FAST_OPEN_COOKIE;
897 			opts->fastopen_cookie = foc;
898 			remaining -= need;
899 		}
900 	}
901 
902 	mptcp_set_option_cond(req, opts, &remaining);
903 
904 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
905 
906 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
907 			      synack_type, opts, &remaining);
908 
909 	return MAX_TCP_OPTION_SPACE - remaining;
910 }
911 
912 /* Compute TCP options for ESTABLISHED sockets. This is not the
913  * final wire format yet.
914  */
915 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
916 					struct tcp_out_options *opts,
917 					struct tcp_md5sig_key **md5)
918 {
919 	struct tcp_sock *tp = tcp_sk(sk);
920 	unsigned int size = 0;
921 	unsigned int eff_sacks;
922 
923 	opts->options = 0;
924 
925 	*md5 = NULL;
926 #ifdef CONFIG_TCP_MD5SIG
927 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
928 	    rcu_access_pointer(tp->md5sig_info)) {
929 		*md5 = tp->af_specific->md5_lookup(sk, sk);
930 		if (*md5) {
931 			opts->options |= OPTION_MD5;
932 			size += TCPOLEN_MD5SIG_ALIGNED;
933 		}
934 	}
935 #endif
936 
937 	if (likely(tp->rx_opt.tstamp_ok)) {
938 		opts->options |= OPTION_TS;
939 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
940 		opts->tsecr = tp->rx_opt.ts_recent;
941 		size += TCPOLEN_TSTAMP_ALIGNED;
942 	}
943 
944 	/* MPTCP options have precedence over SACK for the limited TCP
945 	 * option space because a MPTCP connection would be forced to
946 	 * fall back to regular TCP if a required multipath option is
947 	 * missing. SACK still gets a chance to use whatever space is
948 	 * left.
949 	 */
950 	if (sk_is_mptcp(sk)) {
951 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
952 		unsigned int opt_size = 0;
953 
954 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
955 					      &opts->mptcp)) {
956 			opts->options |= OPTION_MPTCP;
957 			size += opt_size;
958 		}
959 	}
960 
961 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
962 	if (unlikely(eff_sacks)) {
963 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
964 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
965 					 TCPOLEN_SACK_PERBLOCK))
966 			return size;
967 
968 		opts->num_sack_blocks =
969 			min_t(unsigned int, eff_sacks,
970 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
971 			      TCPOLEN_SACK_PERBLOCK);
972 
973 		size += TCPOLEN_SACK_BASE_ALIGNED +
974 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
975 	}
976 
977 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
978 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
979 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
980 
981 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
982 
983 		size = MAX_TCP_OPTION_SPACE - remaining;
984 	}
985 
986 	return size;
987 }
988 
989 
990 /* TCP SMALL QUEUES (TSQ)
991  *
992  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
993  * to reduce RTT and bufferbloat.
994  * We do this using a special skb destructor (tcp_wfree).
995  *
996  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
997  * needs to be reallocated in a driver.
998  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
999  *
1000  * Since transmit from skb destructor is forbidden, we use a tasklet
1001  * to process all sockets that eventually need to send more skbs.
1002  * We use one tasklet per cpu, with its own queue of sockets.
1003  */
1004 struct tsq_tasklet {
1005 	struct tasklet_struct	tasklet;
1006 	struct list_head	head; /* queue of tcp sockets */
1007 };
1008 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1009 
1010 static void tcp_tsq_write(struct sock *sk)
1011 {
1012 	if ((1 << sk->sk_state) &
1013 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1014 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1015 		struct tcp_sock *tp = tcp_sk(sk);
1016 
1017 		if (tp->lost_out > tp->retrans_out &&
1018 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1019 			tcp_mstamp_refresh(tp);
1020 			tcp_xmit_retransmit_queue(sk);
1021 		}
1022 
1023 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1024 			       0, GFP_ATOMIC);
1025 	}
1026 }
1027 
1028 static void tcp_tsq_handler(struct sock *sk)
1029 {
1030 	bh_lock_sock(sk);
1031 	if (!sock_owned_by_user(sk))
1032 		tcp_tsq_write(sk);
1033 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1034 		sock_hold(sk);
1035 	bh_unlock_sock(sk);
1036 }
1037 /*
1038  * One tasklet per cpu tries to send more skbs.
1039  * We run in tasklet context but need to disable irqs when
1040  * transferring tsq->head because tcp_wfree() might
1041  * interrupt us (non NAPI drivers)
1042  */
1043 static void tcp_tasklet_func(struct tasklet_struct *t)
1044 {
1045 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1046 	LIST_HEAD(list);
1047 	unsigned long flags;
1048 	struct list_head *q, *n;
1049 	struct tcp_sock *tp;
1050 	struct sock *sk;
1051 
1052 	local_irq_save(flags);
1053 	list_splice_init(&tsq->head, &list);
1054 	local_irq_restore(flags);
1055 
1056 	list_for_each_safe(q, n, &list) {
1057 		tp = list_entry(q, struct tcp_sock, tsq_node);
1058 		list_del(&tp->tsq_node);
1059 
1060 		sk = (struct sock *)tp;
1061 		smp_mb__before_atomic();
1062 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1063 
1064 		tcp_tsq_handler(sk);
1065 		sk_free(sk);
1066 	}
1067 }
1068 
1069 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1070 			  TCPF_WRITE_TIMER_DEFERRED |	\
1071 			  TCPF_DELACK_TIMER_DEFERRED |	\
1072 			  TCPF_MTU_REDUCED_DEFERRED)
1073 /**
1074  * tcp_release_cb - tcp release_sock() callback
1075  * @sk: socket
1076  *
1077  * called from release_sock() to perform protocol dependent
1078  * actions before socket release.
1079  */
1080 void tcp_release_cb(struct sock *sk)
1081 {
1082 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1083 	unsigned long nflags;
1084 
1085 	/* perform an atomic operation only if at least one flag is set */
1086 	do {
1087 		if (!(flags & TCP_DEFERRED_ALL))
1088 			return;
1089 		nflags = flags & ~TCP_DEFERRED_ALL;
1090 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1091 
1092 	if (flags & TCPF_TSQ_DEFERRED) {
1093 		tcp_tsq_write(sk);
1094 		__sock_put(sk);
1095 	}
1096 	/* Here begins the tricky part :
1097 	 * We are called from release_sock() with :
1098 	 * 1) BH disabled
1099 	 * 2) sk_lock.slock spinlock held
1100 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1101 	 *
1102 	 * But following code is meant to be called from BH handlers,
1103 	 * so we should keep BH disabled, but early release socket ownership
1104 	 */
1105 	sock_release_ownership(sk);
1106 
1107 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1108 		tcp_write_timer_handler(sk);
1109 		__sock_put(sk);
1110 	}
1111 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1112 		tcp_delack_timer_handler(sk);
1113 		__sock_put(sk);
1114 	}
1115 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1116 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1117 		__sock_put(sk);
1118 	}
1119 }
1120 EXPORT_SYMBOL(tcp_release_cb);
1121 
1122 void __init tcp_tasklet_init(void)
1123 {
1124 	int i;
1125 
1126 	for_each_possible_cpu(i) {
1127 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1128 
1129 		INIT_LIST_HEAD(&tsq->head);
1130 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1131 	}
1132 }
1133 
1134 /*
1135  * Write buffer destructor automatically called from kfree_skb.
1136  * We can't xmit new skbs from this context, as we might already
1137  * hold qdisc lock.
1138  */
1139 void tcp_wfree(struct sk_buff *skb)
1140 {
1141 	struct sock *sk = skb->sk;
1142 	struct tcp_sock *tp = tcp_sk(sk);
1143 	unsigned long flags, nval, oval;
1144 	struct tsq_tasklet *tsq;
1145 	bool empty;
1146 
1147 	/* Keep one reference on sk_wmem_alloc.
1148 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1149 	 */
1150 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1151 
1152 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1153 	 * Wait until our queues (qdisc + devices) are drained.
1154 	 * This gives :
1155 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1156 	 * - chance for incoming ACK (processed by another cpu maybe)
1157 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1158 	 */
1159 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1160 		goto out;
1161 
1162 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1163 	do {
1164 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1165 			goto out;
1166 
1167 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1168 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1169 
1170 	/* queue this socket to tasklet queue */
1171 	local_irq_save(flags);
1172 	tsq = this_cpu_ptr(&tsq_tasklet);
1173 	empty = list_empty(&tsq->head);
1174 	list_add(&tp->tsq_node, &tsq->head);
1175 	if (empty)
1176 		tasklet_schedule(&tsq->tasklet);
1177 	local_irq_restore(flags);
1178 	return;
1179 out:
1180 	sk_free(sk);
1181 }
1182 
1183 /* Note: Called under soft irq.
1184  * We can call TCP stack right away, unless socket is owned by user.
1185  */
1186 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1187 {
1188 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1189 	struct sock *sk = (struct sock *)tp;
1190 
1191 	tcp_tsq_handler(sk);
1192 	sock_put(sk);
1193 
1194 	return HRTIMER_NORESTART;
1195 }
1196 
1197 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1198 				      u64 prior_wstamp)
1199 {
1200 	struct tcp_sock *tp = tcp_sk(sk);
1201 
1202 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1203 		unsigned long rate = sk->sk_pacing_rate;
1204 
1205 		/* Original sch_fq does not pace first 10 MSS
1206 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1207 		 * this is a minor annoyance.
1208 		 */
1209 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1210 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1211 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1212 
1213 			/* take into account OS jitter */
1214 			len_ns -= min_t(u64, len_ns / 2, credit);
1215 			tp->tcp_wstamp_ns += len_ns;
1216 		}
1217 	}
1218 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1219 }
1220 
1221 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1222 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1223 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1224 
1225 /* This routine actually transmits TCP packets queued in by
1226  * tcp_do_sendmsg().  This is used by both the initial
1227  * transmission and possible later retransmissions.
1228  * All SKB's seen here are completely headerless.  It is our
1229  * job to build the TCP header, and pass the packet down to
1230  * IP so it can do the same plus pass the packet off to the
1231  * device.
1232  *
1233  * We are working here with either a clone of the original
1234  * SKB, or a fresh unique copy made by the retransmit engine.
1235  */
1236 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1237 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1238 {
1239 	const struct inet_connection_sock *icsk = inet_csk(sk);
1240 	struct inet_sock *inet;
1241 	struct tcp_sock *tp;
1242 	struct tcp_skb_cb *tcb;
1243 	struct tcp_out_options opts;
1244 	unsigned int tcp_options_size, tcp_header_size;
1245 	struct sk_buff *oskb = NULL;
1246 	struct tcp_md5sig_key *md5;
1247 	struct tcphdr *th;
1248 	u64 prior_wstamp;
1249 	int err;
1250 
1251 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1252 	tp = tcp_sk(sk);
1253 	prior_wstamp = tp->tcp_wstamp_ns;
1254 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1255 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1256 	if (clone_it) {
1257 		oskb = skb;
1258 
1259 		tcp_skb_tsorted_save(oskb) {
1260 			if (unlikely(skb_cloned(oskb)))
1261 				skb = pskb_copy(oskb, gfp_mask);
1262 			else
1263 				skb = skb_clone(oskb, gfp_mask);
1264 		} tcp_skb_tsorted_restore(oskb);
1265 
1266 		if (unlikely(!skb))
1267 			return -ENOBUFS;
1268 		/* retransmit skbs might have a non zero value in skb->dev
1269 		 * because skb->dev is aliased with skb->rbnode.rb_left
1270 		 */
1271 		skb->dev = NULL;
1272 	}
1273 
1274 	inet = inet_sk(sk);
1275 	tcb = TCP_SKB_CB(skb);
1276 	memset(&opts, 0, sizeof(opts));
1277 
1278 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1279 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1280 	} else {
1281 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1282 							   &md5);
1283 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1284 		 * at receiver : This slightly improve GRO performance.
1285 		 * Note that we do not force the PSH flag for non GSO packets,
1286 		 * because they might be sent under high congestion events,
1287 		 * and in this case it is better to delay the delivery of 1-MSS
1288 		 * packets and thus the corresponding ACK packet that would
1289 		 * release the following packet.
1290 		 */
1291 		if (tcp_skb_pcount(skb) > 1)
1292 			tcb->tcp_flags |= TCPHDR_PSH;
1293 	}
1294 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1295 
1296 	/* if no packet is in qdisc/device queue, then allow XPS to select
1297 	 * another queue. We can be called from tcp_tsq_handler()
1298 	 * which holds one reference to sk.
1299 	 *
1300 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1301 	 * One way to get this would be to set skb->truesize = 2 on them.
1302 	 */
1303 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1304 
1305 	/* If we had to use memory reserve to allocate this skb,
1306 	 * this might cause drops if packet is looped back :
1307 	 * Other socket might not have SOCK_MEMALLOC.
1308 	 * Packets not looped back do not care about pfmemalloc.
1309 	 */
1310 	skb->pfmemalloc = 0;
1311 
1312 	skb_push(skb, tcp_header_size);
1313 	skb_reset_transport_header(skb);
1314 
1315 	skb_orphan(skb);
1316 	skb->sk = sk;
1317 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1318 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1319 
1320 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1321 
1322 	/* Build TCP header and checksum it. */
1323 	th = (struct tcphdr *)skb->data;
1324 	th->source		= inet->inet_sport;
1325 	th->dest		= inet->inet_dport;
1326 	th->seq			= htonl(tcb->seq);
1327 	th->ack_seq		= htonl(rcv_nxt);
1328 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1329 					tcb->tcp_flags);
1330 
1331 	th->check		= 0;
1332 	th->urg_ptr		= 0;
1333 
1334 	/* The urg_mode check is necessary during a below snd_una win probe */
1335 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1336 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1337 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1338 			th->urg = 1;
1339 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1340 			th->urg_ptr = htons(0xFFFF);
1341 			th->urg = 1;
1342 		}
1343 	}
1344 
1345 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1346 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1347 		th->window      = htons(tcp_select_window(sk));
1348 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1349 	} else {
1350 		/* RFC1323: The window in SYN & SYN/ACK segments
1351 		 * is never scaled.
1352 		 */
1353 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1354 	}
1355 
1356 	tcp_options_write(th, tp, &opts);
1357 
1358 #ifdef CONFIG_TCP_MD5SIG
1359 	/* Calculate the MD5 hash, as we have all we need now */
1360 	if (md5) {
1361 		sk_gso_disable(sk);
1362 		tp->af_specific->calc_md5_hash(opts.hash_location,
1363 					       md5, sk, skb);
1364 	}
1365 #endif
1366 
1367 	/* BPF prog is the last one writing header option */
1368 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1369 
1370 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1371 			   tcp_v6_send_check, tcp_v4_send_check,
1372 			   sk, skb);
1373 
1374 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1375 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1376 
1377 	if (skb->len != tcp_header_size) {
1378 		tcp_event_data_sent(tp, sk);
1379 		tp->data_segs_out += tcp_skb_pcount(skb);
1380 		tp->bytes_sent += skb->len - tcp_header_size;
1381 	}
1382 
1383 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1384 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1385 			      tcp_skb_pcount(skb));
1386 
1387 	tp->segs_out += tcp_skb_pcount(skb);
1388 	skb_set_hash_from_sk(skb, sk);
1389 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1390 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1391 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1392 
1393 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1394 
1395 	/* Cleanup our debris for IP stacks */
1396 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1397 			       sizeof(struct inet6_skb_parm)));
1398 
1399 	tcp_add_tx_delay(skb, tp);
1400 
1401 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1402 				 inet6_csk_xmit, ip_queue_xmit,
1403 				 sk, skb, &inet->cork.fl);
1404 
1405 	if (unlikely(err > 0)) {
1406 		tcp_enter_cwr(sk);
1407 		err = net_xmit_eval(err);
1408 	}
1409 	if (!err && oskb) {
1410 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1411 		tcp_rate_skb_sent(sk, oskb);
1412 	}
1413 	return err;
1414 }
1415 
1416 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1417 			    gfp_t gfp_mask)
1418 {
1419 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1420 				  tcp_sk(sk)->rcv_nxt);
1421 }
1422 
1423 /* This routine just queues the buffer for sending.
1424  *
1425  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1426  * otherwise socket can stall.
1427  */
1428 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1429 {
1430 	struct tcp_sock *tp = tcp_sk(sk);
1431 
1432 	/* Advance write_seq and place onto the write_queue. */
1433 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1434 	__skb_header_release(skb);
1435 	tcp_add_write_queue_tail(sk, skb);
1436 	sk_wmem_queued_add(sk, skb->truesize);
1437 	sk_mem_charge(sk, skb->truesize);
1438 }
1439 
1440 /* Initialize TSO segments for a packet. */
1441 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1442 {
1443 	if (skb->len <= mss_now) {
1444 		/* Avoid the costly divide in the normal
1445 		 * non-TSO case.
1446 		 */
1447 		tcp_skb_pcount_set(skb, 1);
1448 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1449 	} else {
1450 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1451 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1452 	}
1453 }
1454 
1455 /* Pcount in the middle of the write queue got changed, we need to do various
1456  * tweaks to fix counters
1457  */
1458 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1459 {
1460 	struct tcp_sock *tp = tcp_sk(sk);
1461 
1462 	tp->packets_out -= decr;
1463 
1464 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1465 		tp->sacked_out -= decr;
1466 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1467 		tp->retrans_out -= decr;
1468 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1469 		tp->lost_out -= decr;
1470 
1471 	/* Reno case is special. Sigh... */
1472 	if (tcp_is_reno(tp) && decr > 0)
1473 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1474 
1475 	if (tp->lost_skb_hint &&
1476 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1477 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1478 		tp->lost_cnt_hint -= decr;
1479 
1480 	tcp_verify_left_out(tp);
1481 }
1482 
1483 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1484 {
1485 	return TCP_SKB_CB(skb)->txstamp_ack ||
1486 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1487 }
1488 
1489 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1490 {
1491 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1492 
1493 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1494 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1495 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1496 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1497 
1498 		shinfo->tx_flags &= ~tsflags;
1499 		shinfo2->tx_flags |= tsflags;
1500 		swap(shinfo->tskey, shinfo2->tskey);
1501 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1502 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1503 	}
1504 }
1505 
1506 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1507 {
1508 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1509 	TCP_SKB_CB(skb)->eor = 0;
1510 }
1511 
1512 /* Insert buff after skb on the write or rtx queue of sk.  */
1513 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1514 					 struct sk_buff *buff,
1515 					 struct sock *sk,
1516 					 enum tcp_queue tcp_queue)
1517 {
1518 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1519 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1520 	else
1521 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1522 }
1523 
1524 /* Function to create two new TCP segments.  Shrinks the given segment
1525  * to the specified size and appends a new segment with the rest of the
1526  * packet to the list.  This won't be called frequently, I hope.
1527  * Remember, these are still headerless SKBs at this point.
1528  */
1529 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1530 		 struct sk_buff *skb, u32 len,
1531 		 unsigned int mss_now, gfp_t gfp)
1532 {
1533 	struct tcp_sock *tp = tcp_sk(sk);
1534 	struct sk_buff *buff;
1535 	int old_factor;
1536 	long limit;
1537 	int nlen;
1538 	u8 flags;
1539 
1540 	if (WARN_ON(len > skb->len))
1541 		return -EINVAL;
1542 
1543 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1544 
1545 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1546 	 * We need some allowance to not penalize applications setting small
1547 	 * SO_SNDBUF values.
1548 	 * Also allow first and last skb in retransmit queue to be split.
1549 	 */
1550 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1551 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1552 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1553 		     skb != tcp_rtx_queue_head(sk) &&
1554 		     skb != tcp_rtx_queue_tail(sk))) {
1555 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1556 		return -ENOMEM;
1557 	}
1558 
1559 	if (skb_unclone_keeptruesize(skb, gfp))
1560 		return -ENOMEM;
1561 
1562 	/* Get a new skb... force flag on. */
1563 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1564 	if (!buff)
1565 		return -ENOMEM; /* We'll just try again later. */
1566 	skb_copy_decrypted(buff, skb);
1567 	mptcp_skb_ext_copy(buff, skb);
1568 
1569 	sk_wmem_queued_add(sk, buff->truesize);
1570 	sk_mem_charge(sk, buff->truesize);
1571 	nlen = skb->len - len;
1572 	buff->truesize += nlen;
1573 	skb->truesize -= nlen;
1574 
1575 	/* Correct the sequence numbers. */
1576 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1577 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1578 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1579 
1580 	/* PSH and FIN should only be set in the second packet. */
1581 	flags = TCP_SKB_CB(skb)->tcp_flags;
1582 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1583 	TCP_SKB_CB(buff)->tcp_flags = flags;
1584 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1585 	tcp_skb_fragment_eor(skb, buff);
1586 
1587 	skb_split(skb, buff, len);
1588 
1589 	skb_set_delivery_time(buff, skb->tstamp, true);
1590 	tcp_fragment_tstamp(skb, buff);
1591 
1592 	old_factor = tcp_skb_pcount(skb);
1593 
1594 	/* Fix up tso_factor for both original and new SKB.  */
1595 	tcp_set_skb_tso_segs(skb, mss_now);
1596 	tcp_set_skb_tso_segs(buff, mss_now);
1597 
1598 	/* Update delivered info for the new segment */
1599 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1600 
1601 	/* If this packet has been sent out already, we must
1602 	 * adjust the various packet counters.
1603 	 */
1604 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1605 		int diff = old_factor - tcp_skb_pcount(skb) -
1606 			tcp_skb_pcount(buff);
1607 
1608 		if (diff)
1609 			tcp_adjust_pcount(sk, skb, diff);
1610 	}
1611 
1612 	/* Link BUFF into the send queue. */
1613 	__skb_header_release(buff);
1614 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1615 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1616 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1617 
1618 	return 0;
1619 }
1620 
1621 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1622  * data is not copied, but immediately discarded.
1623  */
1624 static int __pskb_trim_head(struct sk_buff *skb, int len)
1625 {
1626 	struct skb_shared_info *shinfo;
1627 	int i, k, eat;
1628 
1629 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1630 	eat = len;
1631 	k = 0;
1632 	shinfo = skb_shinfo(skb);
1633 	for (i = 0; i < shinfo->nr_frags; i++) {
1634 		int size = skb_frag_size(&shinfo->frags[i]);
1635 
1636 		if (size <= eat) {
1637 			skb_frag_unref(skb, i);
1638 			eat -= size;
1639 		} else {
1640 			shinfo->frags[k] = shinfo->frags[i];
1641 			if (eat) {
1642 				skb_frag_off_add(&shinfo->frags[k], eat);
1643 				skb_frag_size_sub(&shinfo->frags[k], eat);
1644 				eat = 0;
1645 			}
1646 			k++;
1647 		}
1648 	}
1649 	shinfo->nr_frags = k;
1650 
1651 	skb->data_len -= len;
1652 	skb->len = skb->data_len;
1653 	return len;
1654 }
1655 
1656 /* Remove acked data from a packet in the transmit queue. */
1657 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1658 {
1659 	u32 delta_truesize;
1660 
1661 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1662 		return -ENOMEM;
1663 
1664 	delta_truesize = __pskb_trim_head(skb, len);
1665 
1666 	TCP_SKB_CB(skb)->seq += len;
1667 
1668 	skb->truesize	   -= delta_truesize;
1669 	sk_wmem_queued_add(sk, -delta_truesize);
1670 	if (!skb_zcopy_pure(skb))
1671 		sk_mem_uncharge(sk, delta_truesize);
1672 
1673 	/* Any change of skb->len requires recalculation of tso factor. */
1674 	if (tcp_skb_pcount(skb) > 1)
1675 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1676 
1677 	return 0;
1678 }
1679 
1680 /* Calculate MSS not accounting any TCP options.  */
1681 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1682 {
1683 	const struct tcp_sock *tp = tcp_sk(sk);
1684 	const struct inet_connection_sock *icsk = inet_csk(sk);
1685 	int mss_now;
1686 
1687 	/* Calculate base mss without TCP options:
1688 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1689 	 */
1690 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1691 
1692 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1693 	if (icsk->icsk_af_ops->net_frag_header_len) {
1694 		const struct dst_entry *dst = __sk_dst_get(sk);
1695 
1696 		if (dst && dst_allfrag(dst))
1697 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1698 	}
1699 
1700 	/* Clamp it (mss_clamp does not include tcp options) */
1701 	if (mss_now > tp->rx_opt.mss_clamp)
1702 		mss_now = tp->rx_opt.mss_clamp;
1703 
1704 	/* Now subtract optional transport overhead */
1705 	mss_now -= icsk->icsk_ext_hdr_len;
1706 
1707 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1708 	mss_now = max(mss_now,
1709 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1710 	return mss_now;
1711 }
1712 
1713 /* Calculate MSS. Not accounting for SACKs here.  */
1714 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1715 {
1716 	/* Subtract TCP options size, not including SACKs */
1717 	return __tcp_mtu_to_mss(sk, pmtu) -
1718 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1719 }
1720 EXPORT_SYMBOL(tcp_mtu_to_mss);
1721 
1722 /* Inverse of above */
1723 int tcp_mss_to_mtu(struct sock *sk, int mss)
1724 {
1725 	const struct tcp_sock *tp = tcp_sk(sk);
1726 	const struct inet_connection_sock *icsk = inet_csk(sk);
1727 	int mtu;
1728 
1729 	mtu = mss +
1730 	      tp->tcp_header_len +
1731 	      icsk->icsk_ext_hdr_len +
1732 	      icsk->icsk_af_ops->net_header_len;
1733 
1734 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1735 	if (icsk->icsk_af_ops->net_frag_header_len) {
1736 		const struct dst_entry *dst = __sk_dst_get(sk);
1737 
1738 		if (dst && dst_allfrag(dst))
1739 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1740 	}
1741 	return mtu;
1742 }
1743 EXPORT_SYMBOL(tcp_mss_to_mtu);
1744 
1745 /* MTU probing init per socket */
1746 void tcp_mtup_init(struct sock *sk)
1747 {
1748 	struct tcp_sock *tp = tcp_sk(sk);
1749 	struct inet_connection_sock *icsk = inet_csk(sk);
1750 	struct net *net = sock_net(sk);
1751 
1752 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1753 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1754 			       icsk->icsk_af_ops->net_header_len;
1755 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1756 	icsk->icsk_mtup.probe_size = 0;
1757 	if (icsk->icsk_mtup.enabled)
1758 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1759 }
1760 EXPORT_SYMBOL(tcp_mtup_init);
1761 
1762 /* This function synchronize snd mss to current pmtu/exthdr set.
1763 
1764    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1765    for TCP options, but includes only bare TCP header.
1766 
1767    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1768    It is minimum of user_mss and mss received with SYN.
1769    It also does not include TCP options.
1770 
1771    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1772 
1773    tp->mss_cache is current effective sending mss, including
1774    all tcp options except for SACKs. It is evaluated,
1775    taking into account current pmtu, but never exceeds
1776    tp->rx_opt.mss_clamp.
1777 
1778    NOTE1. rfc1122 clearly states that advertised MSS
1779    DOES NOT include either tcp or ip options.
1780 
1781    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1782    are READ ONLY outside this function.		--ANK (980731)
1783  */
1784 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1785 {
1786 	struct tcp_sock *tp = tcp_sk(sk);
1787 	struct inet_connection_sock *icsk = inet_csk(sk);
1788 	int mss_now;
1789 
1790 	if (icsk->icsk_mtup.search_high > pmtu)
1791 		icsk->icsk_mtup.search_high = pmtu;
1792 
1793 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1794 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1795 
1796 	/* And store cached results */
1797 	icsk->icsk_pmtu_cookie = pmtu;
1798 	if (icsk->icsk_mtup.enabled)
1799 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1800 	tp->mss_cache = mss_now;
1801 
1802 	return mss_now;
1803 }
1804 EXPORT_SYMBOL(tcp_sync_mss);
1805 
1806 /* Compute the current effective MSS, taking SACKs and IP options,
1807  * and even PMTU discovery events into account.
1808  */
1809 unsigned int tcp_current_mss(struct sock *sk)
1810 {
1811 	const struct tcp_sock *tp = tcp_sk(sk);
1812 	const struct dst_entry *dst = __sk_dst_get(sk);
1813 	u32 mss_now;
1814 	unsigned int header_len;
1815 	struct tcp_out_options opts;
1816 	struct tcp_md5sig_key *md5;
1817 
1818 	mss_now = tp->mss_cache;
1819 
1820 	if (dst) {
1821 		u32 mtu = dst_mtu(dst);
1822 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1823 			mss_now = tcp_sync_mss(sk, mtu);
1824 	}
1825 
1826 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1827 		     sizeof(struct tcphdr);
1828 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1829 	 * some common options. If this is an odd packet (because we have SACK
1830 	 * blocks etc) then our calculated header_len will be different, and
1831 	 * we have to adjust mss_now correspondingly */
1832 	if (header_len != tp->tcp_header_len) {
1833 		int delta = (int) header_len - tp->tcp_header_len;
1834 		mss_now -= delta;
1835 	}
1836 
1837 	return mss_now;
1838 }
1839 
1840 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1841  * As additional protections, we do not touch cwnd in retransmission phases,
1842  * and if application hit its sndbuf limit recently.
1843  */
1844 static void tcp_cwnd_application_limited(struct sock *sk)
1845 {
1846 	struct tcp_sock *tp = tcp_sk(sk);
1847 
1848 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1849 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1850 		/* Limited by application or receiver window. */
1851 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1852 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1853 		if (win_used < tcp_snd_cwnd(tp)) {
1854 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1855 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1856 		}
1857 		tp->snd_cwnd_used = 0;
1858 	}
1859 	tp->snd_cwnd_stamp = tcp_jiffies32;
1860 }
1861 
1862 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1863 {
1864 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1865 	struct tcp_sock *tp = tcp_sk(sk);
1866 
1867 	/* Track the strongest available signal of the degree to which the cwnd
1868 	 * is fully utilized. If cwnd-limited then remember that fact for the
1869 	 * current window. If not cwnd-limited then track the maximum number of
1870 	 * outstanding packets in the current window. (If cwnd-limited then we
1871 	 * chose to not update tp->max_packets_out to avoid an extra else
1872 	 * clause with no functional impact.)
1873 	 */
1874 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1875 	    is_cwnd_limited ||
1876 	    (!tp->is_cwnd_limited &&
1877 	     tp->packets_out > tp->max_packets_out)) {
1878 		tp->is_cwnd_limited = is_cwnd_limited;
1879 		tp->max_packets_out = tp->packets_out;
1880 		tp->cwnd_usage_seq = tp->snd_nxt;
1881 	}
1882 
1883 	if (tcp_is_cwnd_limited(sk)) {
1884 		/* Network is feed fully. */
1885 		tp->snd_cwnd_used = 0;
1886 		tp->snd_cwnd_stamp = tcp_jiffies32;
1887 	} else {
1888 		/* Network starves. */
1889 		if (tp->packets_out > tp->snd_cwnd_used)
1890 			tp->snd_cwnd_used = tp->packets_out;
1891 
1892 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1893 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1894 		    !ca_ops->cong_control)
1895 			tcp_cwnd_application_limited(sk);
1896 
1897 		/* The following conditions together indicate the starvation
1898 		 * is caused by insufficient sender buffer:
1899 		 * 1) just sent some data (see tcp_write_xmit)
1900 		 * 2) not cwnd limited (this else condition)
1901 		 * 3) no more data to send (tcp_write_queue_empty())
1902 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1903 		 */
1904 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1905 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1906 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1907 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1908 	}
1909 }
1910 
1911 /* Minshall's variant of the Nagle send check. */
1912 static bool tcp_minshall_check(const struct tcp_sock *tp)
1913 {
1914 	return after(tp->snd_sml, tp->snd_una) &&
1915 		!after(tp->snd_sml, tp->snd_nxt);
1916 }
1917 
1918 /* Update snd_sml if this skb is under mss
1919  * Note that a TSO packet might end with a sub-mss segment
1920  * The test is really :
1921  * if ((skb->len % mss) != 0)
1922  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1923  * But we can avoid doing the divide again given we already have
1924  *  skb_pcount = skb->len / mss_now
1925  */
1926 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1927 				const struct sk_buff *skb)
1928 {
1929 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1930 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1931 }
1932 
1933 /* Return false, if packet can be sent now without violation Nagle's rules:
1934  * 1. It is full sized. (provided by caller in %partial bool)
1935  * 2. Or it contains FIN. (already checked by caller)
1936  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1937  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1938  *    With Minshall's modification: all sent small packets are ACKed.
1939  */
1940 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1941 			    int nonagle)
1942 {
1943 	return partial &&
1944 		((nonagle & TCP_NAGLE_CORK) ||
1945 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1946 }
1947 
1948 /* Return how many segs we'd like on a TSO packet,
1949  * depending on current pacing rate, and how close the peer is.
1950  *
1951  * Rationale is:
1952  * - For close peers, we rather send bigger packets to reduce
1953  *   cpu costs, because occasional losses will be repaired fast.
1954  * - For long distance/rtt flows, we would like to get ACK clocking
1955  *   with 1 ACK per ms.
1956  *
1957  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1958  * in bigger TSO bursts. We we cut the RTT-based allowance in half
1959  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1960  * is below 1500 bytes after 6 * ~500 usec = 3ms.
1961  */
1962 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1963 			    int min_tso_segs)
1964 {
1965 	unsigned long bytes;
1966 	u32 r;
1967 
1968 	bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1969 
1970 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1971 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1972 		bytes += sk->sk_gso_max_size >> r;
1973 
1974 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1975 
1976 	return max_t(u32, bytes / mss_now, min_tso_segs);
1977 }
1978 
1979 /* Return the number of segments we want in the skb we are transmitting.
1980  * See if congestion control module wants to decide; otherwise, autosize.
1981  */
1982 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1983 {
1984 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1985 	u32 min_tso, tso_segs;
1986 
1987 	min_tso = ca_ops->min_tso_segs ?
1988 			ca_ops->min_tso_segs(sk) :
1989 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1990 
1991 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1992 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1993 }
1994 
1995 /* Returns the portion of skb which can be sent right away */
1996 static unsigned int tcp_mss_split_point(const struct sock *sk,
1997 					const struct sk_buff *skb,
1998 					unsigned int mss_now,
1999 					unsigned int max_segs,
2000 					int nonagle)
2001 {
2002 	const struct tcp_sock *tp = tcp_sk(sk);
2003 	u32 partial, needed, window, max_len;
2004 
2005 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2006 	max_len = mss_now * max_segs;
2007 
2008 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2009 		return max_len;
2010 
2011 	needed = min(skb->len, window);
2012 
2013 	if (max_len <= needed)
2014 		return max_len;
2015 
2016 	partial = needed % mss_now;
2017 	/* If last segment is not a full MSS, check if Nagle rules allow us
2018 	 * to include this last segment in this skb.
2019 	 * Otherwise, we'll split the skb at last MSS boundary
2020 	 */
2021 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2022 		return needed - partial;
2023 
2024 	return needed;
2025 }
2026 
2027 /* Can at least one segment of SKB be sent right now, according to the
2028  * congestion window rules?  If so, return how many segments are allowed.
2029  */
2030 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2031 					 const struct sk_buff *skb)
2032 {
2033 	u32 in_flight, cwnd, halfcwnd;
2034 
2035 	/* Don't be strict about the congestion window for the final FIN.  */
2036 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2037 	    tcp_skb_pcount(skb) == 1)
2038 		return 1;
2039 
2040 	in_flight = tcp_packets_in_flight(tp);
2041 	cwnd = tcp_snd_cwnd(tp);
2042 	if (in_flight >= cwnd)
2043 		return 0;
2044 
2045 	/* For better scheduling, ensure we have at least
2046 	 * 2 GSO packets in flight.
2047 	 */
2048 	halfcwnd = max(cwnd >> 1, 1U);
2049 	return min(halfcwnd, cwnd - in_flight);
2050 }
2051 
2052 /* Initialize TSO state of a skb.
2053  * This must be invoked the first time we consider transmitting
2054  * SKB onto the wire.
2055  */
2056 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2057 {
2058 	int tso_segs = tcp_skb_pcount(skb);
2059 
2060 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2061 		tcp_set_skb_tso_segs(skb, mss_now);
2062 		tso_segs = tcp_skb_pcount(skb);
2063 	}
2064 	return tso_segs;
2065 }
2066 
2067 
2068 /* Return true if the Nagle test allows this packet to be
2069  * sent now.
2070  */
2071 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2072 				  unsigned int cur_mss, int nonagle)
2073 {
2074 	/* Nagle rule does not apply to frames, which sit in the middle of the
2075 	 * write_queue (they have no chances to get new data).
2076 	 *
2077 	 * This is implemented in the callers, where they modify the 'nonagle'
2078 	 * argument based upon the location of SKB in the send queue.
2079 	 */
2080 	if (nonagle & TCP_NAGLE_PUSH)
2081 		return true;
2082 
2083 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2084 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2085 		return true;
2086 
2087 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2088 		return true;
2089 
2090 	return false;
2091 }
2092 
2093 /* Does at least the first segment of SKB fit into the send window? */
2094 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2095 			     const struct sk_buff *skb,
2096 			     unsigned int cur_mss)
2097 {
2098 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2099 
2100 	if (skb->len > cur_mss)
2101 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2102 
2103 	return !after(end_seq, tcp_wnd_end(tp));
2104 }
2105 
2106 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2107  * which is put after SKB on the list.  It is very much like
2108  * tcp_fragment() except that it may make several kinds of assumptions
2109  * in order to speed up the splitting operation.  In particular, we
2110  * know that all the data is in scatter-gather pages, and that the
2111  * packet has never been sent out before (and thus is not cloned).
2112  */
2113 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2114 			unsigned int mss_now, gfp_t gfp)
2115 {
2116 	int nlen = skb->len - len;
2117 	struct sk_buff *buff;
2118 	u8 flags;
2119 
2120 	/* All of a TSO frame must be composed of paged data.  */
2121 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2122 
2123 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2124 	if (unlikely(!buff))
2125 		return -ENOMEM;
2126 	skb_copy_decrypted(buff, skb);
2127 	mptcp_skb_ext_copy(buff, skb);
2128 
2129 	sk_wmem_queued_add(sk, buff->truesize);
2130 	sk_mem_charge(sk, buff->truesize);
2131 	buff->truesize += nlen;
2132 	skb->truesize -= nlen;
2133 
2134 	/* Correct the sequence numbers. */
2135 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2136 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2137 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2138 
2139 	/* PSH and FIN should only be set in the second packet. */
2140 	flags = TCP_SKB_CB(skb)->tcp_flags;
2141 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2142 	TCP_SKB_CB(buff)->tcp_flags = flags;
2143 
2144 	tcp_skb_fragment_eor(skb, buff);
2145 
2146 	skb_split(skb, buff, len);
2147 	tcp_fragment_tstamp(skb, buff);
2148 
2149 	/* Fix up tso_factor for both original and new SKB.  */
2150 	tcp_set_skb_tso_segs(skb, mss_now);
2151 	tcp_set_skb_tso_segs(buff, mss_now);
2152 
2153 	/* Link BUFF into the send queue. */
2154 	__skb_header_release(buff);
2155 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2156 
2157 	return 0;
2158 }
2159 
2160 /* Try to defer sending, if possible, in order to minimize the amount
2161  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2162  *
2163  * This algorithm is from John Heffner.
2164  */
2165 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2166 				 bool *is_cwnd_limited,
2167 				 bool *is_rwnd_limited,
2168 				 u32 max_segs)
2169 {
2170 	const struct inet_connection_sock *icsk = inet_csk(sk);
2171 	u32 send_win, cong_win, limit, in_flight;
2172 	struct tcp_sock *tp = tcp_sk(sk);
2173 	struct sk_buff *head;
2174 	int win_divisor;
2175 	s64 delta;
2176 
2177 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2178 		goto send_now;
2179 
2180 	/* Avoid bursty behavior by allowing defer
2181 	 * only if the last write was recent (1 ms).
2182 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2183 	 * packets waiting in a qdisc or device for EDT delivery.
2184 	 */
2185 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2186 	if (delta > 0)
2187 		goto send_now;
2188 
2189 	in_flight = tcp_packets_in_flight(tp);
2190 
2191 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2192 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2193 
2194 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2195 
2196 	/* From in_flight test above, we know that cwnd > in_flight.  */
2197 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2198 
2199 	limit = min(send_win, cong_win);
2200 
2201 	/* If a full-sized TSO skb can be sent, do it. */
2202 	if (limit >= max_segs * tp->mss_cache)
2203 		goto send_now;
2204 
2205 	/* Middle in queue won't get any more data, full sendable already? */
2206 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2207 		goto send_now;
2208 
2209 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2210 	if (win_divisor) {
2211 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2212 
2213 		/* If at least some fraction of a window is available,
2214 		 * just use it.
2215 		 */
2216 		chunk /= win_divisor;
2217 		if (limit >= chunk)
2218 			goto send_now;
2219 	} else {
2220 		/* Different approach, try not to defer past a single
2221 		 * ACK.  Receiver should ACK every other full sized
2222 		 * frame, so if we have space for more than 3 frames
2223 		 * then send now.
2224 		 */
2225 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2226 			goto send_now;
2227 	}
2228 
2229 	/* TODO : use tsorted_sent_queue ? */
2230 	head = tcp_rtx_queue_head(sk);
2231 	if (!head)
2232 		goto send_now;
2233 	delta = tp->tcp_clock_cache - head->tstamp;
2234 	/* If next ACK is likely to come too late (half srtt), do not defer */
2235 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2236 		goto send_now;
2237 
2238 	/* Ok, it looks like it is advisable to defer.
2239 	 * Three cases are tracked :
2240 	 * 1) We are cwnd-limited
2241 	 * 2) We are rwnd-limited
2242 	 * 3) We are application limited.
2243 	 */
2244 	if (cong_win < send_win) {
2245 		if (cong_win <= skb->len) {
2246 			*is_cwnd_limited = true;
2247 			return true;
2248 		}
2249 	} else {
2250 		if (send_win <= skb->len) {
2251 			*is_rwnd_limited = true;
2252 			return true;
2253 		}
2254 	}
2255 
2256 	/* If this packet won't get more data, do not wait. */
2257 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2258 	    TCP_SKB_CB(skb)->eor)
2259 		goto send_now;
2260 
2261 	return true;
2262 
2263 send_now:
2264 	return false;
2265 }
2266 
2267 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2268 {
2269 	struct inet_connection_sock *icsk = inet_csk(sk);
2270 	struct tcp_sock *tp = tcp_sk(sk);
2271 	struct net *net = sock_net(sk);
2272 	u32 interval;
2273 	s32 delta;
2274 
2275 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2276 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2277 	if (unlikely(delta >= interval * HZ)) {
2278 		int mss = tcp_current_mss(sk);
2279 
2280 		/* Update current search range */
2281 		icsk->icsk_mtup.probe_size = 0;
2282 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2283 			sizeof(struct tcphdr) +
2284 			icsk->icsk_af_ops->net_header_len;
2285 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2286 
2287 		/* Update probe time stamp */
2288 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2289 	}
2290 }
2291 
2292 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2293 {
2294 	struct sk_buff *skb, *next;
2295 
2296 	skb = tcp_send_head(sk);
2297 	tcp_for_write_queue_from_safe(skb, next, sk) {
2298 		if (len <= skb->len)
2299 			break;
2300 
2301 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2302 		    tcp_has_tx_tstamp(skb) ||
2303 		    !skb_pure_zcopy_same(skb, next))
2304 			return false;
2305 
2306 		len -= skb->len;
2307 	}
2308 
2309 	return true;
2310 }
2311 
2312 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2313 			     int probe_size)
2314 {
2315 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2316 	int i, todo, len = 0, nr_frags = 0;
2317 	const struct sk_buff *skb;
2318 
2319 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2320 		return -ENOMEM;
2321 
2322 	skb_queue_walk(&sk->sk_write_queue, skb) {
2323 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2324 
2325 		if (skb_headlen(skb))
2326 			return -EINVAL;
2327 
2328 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2329 			if (len >= probe_size)
2330 				goto commit;
2331 			todo = min_t(int, skb_frag_size(fragfrom),
2332 				     probe_size - len);
2333 			len += todo;
2334 			if (lastfrag &&
2335 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2336 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2337 						      skb_frag_size(lastfrag)) {
2338 				skb_frag_size_add(lastfrag, todo);
2339 				continue;
2340 			}
2341 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2342 				return -E2BIG;
2343 			skb_frag_page_copy(fragto, fragfrom);
2344 			skb_frag_off_copy(fragto, fragfrom);
2345 			skb_frag_size_set(fragto, todo);
2346 			nr_frags++;
2347 			lastfrag = fragto++;
2348 		}
2349 	}
2350 commit:
2351 	WARN_ON_ONCE(len != probe_size);
2352 	for (i = 0; i < nr_frags; i++)
2353 		skb_frag_ref(to, i);
2354 
2355 	skb_shinfo(to)->nr_frags = nr_frags;
2356 	to->truesize += probe_size;
2357 	to->len += probe_size;
2358 	to->data_len += probe_size;
2359 	__skb_header_release(to);
2360 	return 0;
2361 }
2362 
2363 /* Create a new MTU probe if we are ready.
2364  * MTU probe is regularly attempting to increase the path MTU by
2365  * deliberately sending larger packets.  This discovers routing
2366  * changes resulting in larger path MTUs.
2367  *
2368  * Returns 0 if we should wait to probe (no cwnd available),
2369  *         1 if a probe was sent,
2370  *         -1 otherwise
2371  */
2372 static int tcp_mtu_probe(struct sock *sk)
2373 {
2374 	struct inet_connection_sock *icsk = inet_csk(sk);
2375 	struct tcp_sock *tp = tcp_sk(sk);
2376 	struct sk_buff *skb, *nskb, *next;
2377 	struct net *net = sock_net(sk);
2378 	int probe_size;
2379 	int size_needed;
2380 	int copy, len;
2381 	int mss_now;
2382 	int interval;
2383 
2384 	/* Not currently probing/verifying,
2385 	 * not in recovery,
2386 	 * have enough cwnd, and
2387 	 * not SACKing (the variable headers throw things off)
2388 	 */
2389 	if (likely(!icsk->icsk_mtup.enabled ||
2390 		   icsk->icsk_mtup.probe_size ||
2391 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2392 		   tcp_snd_cwnd(tp) < 11 ||
2393 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2394 		return -1;
2395 
2396 	/* Use binary search for probe_size between tcp_mss_base,
2397 	 * and current mss_clamp. if (search_high - search_low)
2398 	 * smaller than a threshold, backoff from probing.
2399 	 */
2400 	mss_now = tcp_current_mss(sk);
2401 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2402 				    icsk->icsk_mtup.search_low) >> 1);
2403 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2404 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2405 	/* When misfortune happens, we are reprobing actively,
2406 	 * and then reprobe timer has expired. We stick with current
2407 	 * probing process by not resetting search range to its orignal.
2408 	 */
2409 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2410 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2411 		/* Check whether enough time has elaplased for
2412 		 * another round of probing.
2413 		 */
2414 		tcp_mtu_check_reprobe(sk);
2415 		return -1;
2416 	}
2417 
2418 	/* Have enough data in the send queue to probe? */
2419 	if (tp->write_seq - tp->snd_nxt < size_needed)
2420 		return -1;
2421 
2422 	if (tp->snd_wnd < size_needed)
2423 		return -1;
2424 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2425 		return 0;
2426 
2427 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2428 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2429 		if (!tcp_packets_in_flight(tp))
2430 			return -1;
2431 		else
2432 			return 0;
2433 	}
2434 
2435 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2436 		return -1;
2437 
2438 	/* We're allowed to probe.  Build it now. */
2439 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2440 	if (!nskb)
2441 		return -1;
2442 
2443 	/* build the payload, and be prepared to abort if this fails. */
2444 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2445 		consume_skb(nskb);
2446 		return -1;
2447 	}
2448 	sk_wmem_queued_add(sk, nskb->truesize);
2449 	sk_mem_charge(sk, nskb->truesize);
2450 
2451 	skb = tcp_send_head(sk);
2452 	skb_copy_decrypted(nskb, skb);
2453 	mptcp_skb_ext_copy(nskb, skb);
2454 
2455 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2456 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2457 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2458 
2459 	tcp_insert_write_queue_before(nskb, skb, sk);
2460 	tcp_highest_sack_replace(sk, skb, nskb);
2461 
2462 	len = 0;
2463 	tcp_for_write_queue_from_safe(skb, next, sk) {
2464 		copy = min_t(int, skb->len, probe_size - len);
2465 
2466 		if (skb->len <= copy) {
2467 			/* We've eaten all the data from this skb.
2468 			 * Throw it away. */
2469 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2470 			/* If this is the last SKB we copy and eor is set
2471 			 * we need to propagate it to the new skb.
2472 			 */
2473 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2474 			tcp_skb_collapse_tstamp(nskb, skb);
2475 			tcp_unlink_write_queue(skb, sk);
2476 			tcp_wmem_free_skb(sk, skb);
2477 		} else {
2478 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2479 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2480 			__pskb_trim_head(skb, copy);
2481 			tcp_set_skb_tso_segs(skb, mss_now);
2482 			TCP_SKB_CB(skb)->seq += copy;
2483 		}
2484 
2485 		len += copy;
2486 
2487 		if (len >= probe_size)
2488 			break;
2489 	}
2490 	tcp_init_tso_segs(nskb, nskb->len);
2491 
2492 	/* We're ready to send.  If this fails, the probe will
2493 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2494 	 */
2495 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2496 		/* Decrement cwnd here because we are sending
2497 		 * effectively two packets. */
2498 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2499 		tcp_event_new_data_sent(sk, nskb);
2500 
2501 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2502 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2503 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2504 
2505 		return 1;
2506 	}
2507 
2508 	return -1;
2509 }
2510 
2511 static bool tcp_pacing_check(struct sock *sk)
2512 {
2513 	struct tcp_sock *tp = tcp_sk(sk);
2514 
2515 	if (!tcp_needs_internal_pacing(sk))
2516 		return false;
2517 
2518 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2519 		return false;
2520 
2521 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2522 		hrtimer_start(&tp->pacing_timer,
2523 			      ns_to_ktime(tp->tcp_wstamp_ns),
2524 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2525 		sock_hold(sk);
2526 	}
2527 	return true;
2528 }
2529 
2530 /* TCP Small Queues :
2531  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2532  * (These limits are doubled for retransmits)
2533  * This allows for :
2534  *  - better RTT estimation and ACK scheduling
2535  *  - faster recovery
2536  *  - high rates
2537  * Alas, some drivers / subsystems require a fair amount
2538  * of queued bytes to ensure line rate.
2539  * One example is wifi aggregation (802.11 AMPDU)
2540  */
2541 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2542 				  unsigned int factor)
2543 {
2544 	unsigned long limit;
2545 
2546 	limit = max_t(unsigned long,
2547 		      2 * skb->truesize,
2548 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2549 	if (sk->sk_pacing_status == SK_PACING_NONE)
2550 		limit = min_t(unsigned long, limit,
2551 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2552 	limit <<= factor;
2553 
2554 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2555 	    tcp_sk(sk)->tcp_tx_delay) {
2556 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2557 
2558 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2559 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2560 		 * USEC_PER_SEC is approximated by 2^20.
2561 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2562 		 */
2563 		extra_bytes >>= (20 - 1);
2564 		limit += extra_bytes;
2565 	}
2566 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2567 		/* Always send skb if rtx queue is empty.
2568 		 * No need to wait for TX completion to call us back,
2569 		 * after softirq/tasklet schedule.
2570 		 * This helps when TX completions are delayed too much.
2571 		 */
2572 		if (tcp_rtx_queue_empty(sk))
2573 			return false;
2574 
2575 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2576 		/* It is possible TX completion already happened
2577 		 * before we set TSQ_THROTTLED, so we must
2578 		 * test again the condition.
2579 		 */
2580 		smp_mb__after_atomic();
2581 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2582 			return true;
2583 	}
2584 	return false;
2585 }
2586 
2587 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2588 {
2589 	const u32 now = tcp_jiffies32;
2590 	enum tcp_chrono old = tp->chrono_type;
2591 
2592 	if (old > TCP_CHRONO_UNSPEC)
2593 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2594 	tp->chrono_start = now;
2595 	tp->chrono_type = new;
2596 }
2597 
2598 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2599 {
2600 	struct tcp_sock *tp = tcp_sk(sk);
2601 
2602 	/* If there are multiple conditions worthy of tracking in a
2603 	 * chronograph then the highest priority enum takes precedence
2604 	 * over the other conditions. So that if something "more interesting"
2605 	 * starts happening, stop the previous chrono and start a new one.
2606 	 */
2607 	if (type > tp->chrono_type)
2608 		tcp_chrono_set(tp, type);
2609 }
2610 
2611 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2612 {
2613 	struct tcp_sock *tp = tcp_sk(sk);
2614 
2615 
2616 	/* There are multiple conditions worthy of tracking in a
2617 	 * chronograph, so that the highest priority enum takes
2618 	 * precedence over the other conditions (see tcp_chrono_start).
2619 	 * If a condition stops, we only stop chrono tracking if
2620 	 * it's the "most interesting" or current chrono we are
2621 	 * tracking and starts busy chrono if we have pending data.
2622 	 */
2623 	if (tcp_rtx_and_write_queues_empty(sk))
2624 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2625 	else if (type == tp->chrono_type)
2626 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2627 }
2628 
2629 /* This routine writes packets to the network.  It advances the
2630  * send_head.  This happens as incoming acks open up the remote
2631  * window for us.
2632  *
2633  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2634  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2635  * account rare use of URG, this is not a big flaw.
2636  *
2637  * Send at most one packet when push_one > 0. Temporarily ignore
2638  * cwnd limit to force at most one packet out when push_one == 2.
2639 
2640  * Returns true, if no segments are in flight and we have queued segments,
2641  * but cannot send anything now because of SWS or another problem.
2642  */
2643 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2644 			   int push_one, gfp_t gfp)
2645 {
2646 	struct tcp_sock *tp = tcp_sk(sk);
2647 	struct sk_buff *skb;
2648 	unsigned int tso_segs, sent_pkts;
2649 	int cwnd_quota;
2650 	int result;
2651 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2652 	u32 max_segs;
2653 
2654 	sent_pkts = 0;
2655 
2656 	tcp_mstamp_refresh(tp);
2657 	if (!push_one) {
2658 		/* Do MTU probing. */
2659 		result = tcp_mtu_probe(sk);
2660 		if (!result) {
2661 			return false;
2662 		} else if (result > 0) {
2663 			sent_pkts = 1;
2664 		}
2665 	}
2666 
2667 	max_segs = tcp_tso_segs(sk, mss_now);
2668 	while ((skb = tcp_send_head(sk))) {
2669 		unsigned int limit;
2670 
2671 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2672 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2673 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2674 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2675 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2676 			tcp_init_tso_segs(skb, mss_now);
2677 			goto repair; /* Skip network transmission */
2678 		}
2679 
2680 		if (tcp_pacing_check(sk))
2681 			break;
2682 
2683 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2684 		BUG_ON(!tso_segs);
2685 
2686 		cwnd_quota = tcp_cwnd_test(tp, skb);
2687 		if (!cwnd_quota) {
2688 			if (push_one == 2)
2689 				/* Force out a loss probe pkt. */
2690 				cwnd_quota = 1;
2691 			else
2692 				break;
2693 		}
2694 
2695 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2696 			is_rwnd_limited = true;
2697 			break;
2698 		}
2699 
2700 		if (tso_segs == 1) {
2701 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2702 						     (tcp_skb_is_last(sk, skb) ?
2703 						      nonagle : TCP_NAGLE_PUSH))))
2704 				break;
2705 		} else {
2706 			if (!push_one &&
2707 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2708 						 &is_rwnd_limited, max_segs))
2709 				break;
2710 		}
2711 
2712 		limit = mss_now;
2713 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2714 			limit = tcp_mss_split_point(sk, skb, mss_now,
2715 						    min_t(unsigned int,
2716 							  cwnd_quota,
2717 							  max_segs),
2718 						    nonagle);
2719 
2720 		if (skb->len > limit &&
2721 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2722 			break;
2723 
2724 		if (tcp_small_queue_check(sk, skb, 0))
2725 			break;
2726 
2727 		/* Argh, we hit an empty skb(), presumably a thread
2728 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2729 		 * We do not want to send a pure-ack packet and have
2730 		 * a strange looking rtx queue with empty packet(s).
2731 		 */
2732 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2733 			break;
2734 
2735 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2736 			break;
2737 
2738 repair:
2739 		/* Advance the send_head.  This one is sent out.
2740 		 * This call will increment packets_out.
2741 		 */
2742 		tcp_event_new_data_sent(sk, skb);
2743 
2744 		tcp_minshall_update(tp, mss_now, skb);
2745 		sent_pkts += tcp_skb_pcount(skb);
2746 
2747 		if (push_one)
2748 			break;
2749 	}
2750 
2751 	if (is_rwnd_limited)
2752 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2753 	else
2754 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2755 
2756 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2757 	if (likely(sent_pkts || is_cwnd_limited))
2758 		tcp_cwnd_validate(sk, is_cwnd_limited);
2759 
2760 	if (likely(sent_pkts)) {
2761 		if (tcp_in_cwnd_reduction(sk))
2762 			tp->prr_out += sent_pkts;
2763 
2764 		/* Send one loss probe per tail loss episode. */
2765 		if (push_one != 2)
2766 			tcp_schedule_loss_probe(sk, false);
2767 		return false;
2768 	}
2769 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2770 }
2771 
2772 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2773 {
2774 	struct inet_connection_sock *icsk = inet_csk(sk);
2775 	struct tcp_sock *tp = tcp_sk(sk);
2776 	u32 timeout, rto_delta_us;
2777 	int early_retrans;
2778 
2779 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2780 	 * finishes.
2781 	 */
2782 	if (rcu_access_pointer(tp->fastopen_rsk))
2783 		return false;
2784 
2785 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2786 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2787 	 * not in loss recovery, that are either limited by cwnd or application.
2788 	 */
2789 	if ((early_retrans != 3 && early_retrans != 4) ||
2790 	    !tp->packets_out || !tcp_is_sack(tp) ||
2791 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2792 	     icsk->icsk_ca_state != TCP_CA_CWR))
2793 		return false;
2794 
2795 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2796 	 * for delayed ack when there's one outstanding packet. If no RTT
2797 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2798 	 */
2799 	if (tp->srtt_us) {
2800 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2801 		if (tp->packets_out == 1)
2802 			timeout += TCP_RTO_MIN;
2803 		else
2804 			timeout += TCP_TIMEOUT_MIN;
2805 	} else {
2806 		timeout = TCP_TIMEOUT_INIT;
2807 	}
2808 
2809 	/* If the RTO formula yields an earlier time, then use that time. */
2810 	rto_delta_us = advancing_rto ?
2811 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2812 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2813 	if (rto_delta_us > 0)
2814 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2815 
2816 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2817 	return true;
2818 }
2819 
2820 /* Thanks to skb fast clones, we can detect if a prior transmit of
2821  * a packet is still in a qdisc or driver queue.
2822  * In this case, there is very little point doing a retransmit !
2823  */
2824 static bool skb_still_in_host_queue(struct sock *sk,
2825 				    const struct sk_buff *skb)
2826 {
2827 	if (unlikely(skb_fclone_busy(sk, skb))) {
2828 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2829 		smp_mb__after_atomic();
2830 		if (skb_fclone_busy(sk, skb)) {
2831 			NET_INC_STATS(sock_net(sk),
2832 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2833 			return true;
2834 		}
2835 	}
2836 	return false;
2837 }
2838 
2839 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2840  * retransmit the last segment.
2841  */
2842 void tcp_send_loss_probe(struct sock *sk)
2843 {
2844 	struct tcp_sock *tp = tcp_sk(sk);
2845 	struct sk_buff *skb;
2846 	int pcount;
2847 	int mss = tcp_current_mss(sk);
2848 
2849 	/* At most one outstanding TLP */
2850 	if (tp->tlp_high_seq)
2851 		goto rearm_timer;
2852 
2853 	tp->tlp_retrans = 0;
2854 	skb = tcp_send_head(sk);
2855 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2856 		pcount = tp->packets_out;
2857 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2858 		if (tp->packets_out > pcount)
2859 			goto probe_sent;
2860 		goto rearm_timer;
2861 	}
2862 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2863 	if (unlikely(!skb)) {
2864 		WARN_ONCE(tp->packets_out,
2865 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2866 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2867 		inet_csk(sk)->icsk_pending = 0;
2868 		return;
2869 	}
2870 
2871 	if (skb_still_in_host_queue(sk, skb))
2872 		goto rearm_timer;
2873 
2874 	pcount = tcp_skb_pcount(skb);
2875 	if (WARN_ON(!pcount))
2876 		goto rearm_timer;
2877 
2878 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2879 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2880 					  (pcount - 1) * mss, mss,
2881 					  GFP_ATOMIC)))
2882 			goto rearm_timer;
2883 		skb = skb_rb_next(skb);
2884 	}
2885 
2886 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2887 		goto rearm_timer;
2888 
2889 	if (__tcp_retransmit_skb(sk, skb, 1))
2890 		goto rearm_timer;
2891 
2892 	tp->tlp_retrans = 1;
2893 
2894 probe_sent:
2895 	/* Record snd_nxt for loss detection. */
2896 	tp->tlp_high_seq = tp->snd_nxt;
2897 
2898 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2899 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2900 	inet_csk(sk)->icsk_pending = 0;
2901 rearm_timer:
2902 	tcp_rearm_rto(sk);
2903 }
2904 
2905 /* Push out any pending frames which were held back due to
2906  * TCP_CORK or attempt at coalescing tiny packets.
2907  * The socket must be locked by the caller.
2908  */
2909 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2910 			       int nonagle)
2911 {
2912 	/* If we are closed, the bytes will have to remain here.
2913 	 * In time closedown will finish, we empty the write queue and
2914 	 * all will be happy.
2915 	 */
2916 	if (unlikely(sk->sk_state == TCP_CLOSE))
2917 		return;
2918 
2919 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2920 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2921 		tcp_check_probe_timer(sk);
2922 }
2923 
2924 /* Send _single_ skb sitting at the send head. This function requires
2925  * true push pending frames to setup probe timer etc.
2926  */
2927 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2928 {
2929 	struct sk_buff *skb = tcp_send_head(sk);
2930 
2931 	BUG_ON(!skb || skb->len < mss_now);
2932 
2933 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2934 }
2935 
2936 /* This function returns the amount that we can raise the
2937  * usable window based on the following constraints
2938  *
2939  * 1. The window can never be shrunk once it is offered (RFC 793)
2940  * 2. We limit memory per socket
2941  *
2942  * RFC 1122:
2943  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2944  *  RECV.NEXT + RCV.WIN fixed until:
2945  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2946  *
2947  * i.e. don't raise the right edge of the window until you can raise
2948  * it at least MSS bytes.
2949  *
2950  * Unfortunately, the recommended algorithm breaks header prediction,
2951  * since header prediction assumes th->window stays fixed.
2952  *
2953  * Strictly speaking, keeping th->window fixed violates the receiver
2954  * side SWS prevention criteria. The problem is that under this rule
2955  * a stream of single byte packets will cause the right side of the
2956  * window to always advance by a single byte.
2957  *
2958  * Of course, if the sender implements sender side SWS prevention
2959  * then this will not be a problem.
2960  *
2961  * BSD seems to make the following compromise:
2962  *
2963  *	If the free space is less than the 1/4 of the maximum
2964  *	space available and the free space is less than 1/2 mss,
2965  *	then set the window to 0.
2966  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2967  *	Otherwise, just prevent the window from shrinking
2968  *	and from being larger than the largest representable value.
2969  *
2970  * This prevents incremental opening of the window in the regime
2971  * where TCP is limited by the speed of the reader side taking
2972  * data out of the TCP receive queue. It does nothing about
2973  * those cases where the window is constrained on the sender side
2974  * because the pipeline is full.
2975  *
2976  * BSD also seems to "accidentally" limit itself to windows that are a
2977  * multiple of MSS, at least until the free space gets quite small.
2978  * This would appear to be a side effect of the mbuf implementation.
2979  * Combining these two algorithms results in the observed behavior
2980  * of having a fixed window size at almost all times.
2981  *
2982  * Below we obtain similar behavior by forcing the offered window to
2983  * a multiple of the mss when it is feasible to do so.
2984  *
2985  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2986  * Regular options like TIMESTAMP are taken into account.
2987  */
2988 u32 __tcp_select_window(struct sock *sk)
2989 {
2990 	struct inet_connection_sock *icsk = inet_csk(sk);
2991 	struct tcp_sock *tp = tcp_sk(sk);
2992 	struct net *net = sock_net(sk);
2993 	/* MSS for the peer's data.  Previous versions used mss_clamp
2994 	 * here.  I don't know if the value based on our guesses
2995 	 * of peer's MSS is better for the performance.  It's more correct
2996 	 * but may be worse for the performance because of rcv_mss
2997 	 * fluctuations.  --SAW  1998/11/1
2998 	 */
2999 	int mss = icsk->icsk_ack.rcv_mss;
3000 	int free_space = tcp_space(sk);
3001 	int allowed_space = tcp_full_space(sk);
3002 	int full_space, window;
3003 
3004 	if (sk_is_mptcp(sk))
3005 		mptcp_space(sk, &free_space, &allowed_space);
3006 
3007 	full_space = min_t(int, tp->window_clamp, allowed_space);
3008 
3009 	if (unlikely(mss > full_space)) {
3010 		mss = full_space;
3011 		if (mss <= 0)
3012 			return 0;
3013 	}
3014 
3015 	/* Only allow window shrink if the sysctl is enabled and we have
3016 	 * a non-zero scaling factor in effect.
3017 	 */
3018 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3019 		goto shrink_window_allowed;
3020 
3021 	/* do not allow window to shrink */
3022 
3023 	if (free_space < (full_space >> 1)) {
3024 		icsk->icsk_ack.quick = 0;
3025 
3026 		if (tcp_under_memory_pressure(sk))
3027 			tcp_adjust_rcv_ssthresh(sk);
3028 
3029 		/* free_space might become our new window, make sure we don't
3030 		 * increase it due to wscale.
3031 		 */
3032 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3033 
3034 		/* if free space is less than mss estimate, or is below 1/16th
3035 		 * of the maximum allowed, try to move to zero-window, else
3036 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3037 		 * new incoming data is dropped due to memory limits.
3038 		 * With large window, mss test triggers way too late in order
3039 		 * to announce zero window in time before rmem limit kicks in.
3040 		 */
3041 		if (free_space < (allowed_space >> 4) || free_space < mss)
3042 			return 0;
3043 	}
3044 
3045 	if (free_space > tp->rcv_ssthresh)
3046 		free_space = tp->rcv_ssthresh;
3047 
3048 	/* Don't do rounding if we are using window scaling, since the
3049 	 * scaled window will not line up with the MSS boundary anyway.
3050 	 */
3051 	if (tp->rx_opt.rcv_wscale) {
3052 		window = free_space;
3053 
3054 		/* Advertise enough space so that it won't get scaled away.
3055 		 * Import case: prevent zero window announcement if
3056 		 * 1<<rcv_wscale > mss.
3057 		 */
3058 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3059 	} else {
3060 		window = tp->rcv_wnd;
3061 		/* Get the largest window that is a nice multiple of mss.
3062 		 * Window clamp already applied above.
3063 		 * If our current window offering is within 1 mss of the
3064 		 * free space we just keep it. This prevents the divide
3065 		 * and multiply from happening most of the time.
3066 		 * We also don't do any window rounding when the free space
3067 		 * is too small.
3068 		 */
3069 		if (window <= free_space - mss || window > free_space)
3070 			window = rounddown(free_space, mss);
3071 		else if (mss == full_space &&
3072 			 free_space > window + (full_space >> 1))
3073 			window = free_space;
3074 	}
3075 
3076 	return window;
3077 
3078 shrink_window_allowed:
3079 	/* new window should always be an exact multiple of scaling factor */
3080 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3081 
3082 	if (free_space < (full_space >> 1)) {
3083 		icsk->icsk_ack.quick = 0;
3084 
3085 		if (tcp_under_memory_pressure(sk))
3086 			tcp_adjust_rcv_ssthresh(sk);
3087 
3088 		/* if free space is too low, return a zero window */
3089 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3090 			free_space < (1 << tp->rx_opt.rcv_wscale))
3091 			return 0;
3092 	}
3093 
3094 	if (free_space > tp->rcv_ssthresh) {
3095 		free_space = tp->rcv_ssthresh;
3096 		/* new window should always be an exact multiple of scaling factor
3097 		 *
3098 		 * For this case, we ALIGN "up" (increase free_space) because
3099 		 * we know free_space is not zero here, it has been reduced from
3100 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3101 		 * (unlike sk_rcvbuf).
3102 		 */
3103 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3104 	}
3105 
3106 	return free_space;
3107 }
3108 
3109 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3110 			     const struct sk_buff *next_skb)
3111 {
3112 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3113 		const struct skb_shared_info *next_shinfo =
3114 			skb_shinfo(next_skb);
3115 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3116 
3117 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3118 		shinfo->tskey = next_shinfo->tskey;
3119 		TCP_SKB_CB(skb)->txstamp_ack |=
3120 			TCP_SKB_CB(next_skb)->txstamp_ack;
3121 	}
3122 }
3123 
3124 /* Collapses two adjacent SKB's during retransmission. */
3125 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3126 {
3127 	struct tcp_sock *tp = tcp_sk(sk);
3128 	struct sk_buff *next_skb = skb_rb_next(skb);
3129 	int next_skb_size;
3130 
3131 	next_skb_size = next_skb->len;
3132 
3133 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3134 
3135 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3136 		return false;
3137 
3138 	tcp_highest_sack_replace(sk, next_skb, skb);
3139 
3140 	/* Update sequence range on original skb. */
3141 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3142 
3143 	/* Merge over control information. This moves PSH/FIN etc. over */
3144 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3145 
3146 	/* All done, get rid of second SKB and account for it so
3147 	 * packet counting does not break.
3148 	 */
3149 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3150 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3151 
3152 	/* changed transmit queue under us so clear hints */
3153 	tcp_clear_retrans_hints_partial(tp);
3154 	if (next_skb == tp->retransmit_skb_hint)
3155 		tp->retransmit_skb_hint = skb;
3156 
3157 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3158 
3159 	tcp_skb_collapse_tstamp(skb, next_skb);
3160 
3161 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3162 	return true;
3163 }
3164 
3165 /* Check if coalescing SKBs is legal. */
3166 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3167 {
3168 	if (tcp_skb_pcount(skb) > 1)
3169 		return false;
3170 	if (skb_cloned(skb))
3171 		return false;
3172 	/* Some heuristics for collapsing over SACK'd could be invented */
3173 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3174 		return false;
3175 
3176 	return true;
3177 }
3178 
3179 /* Collapse packets in the retransmit queue to make to create
3180  * less packets on the wire. This is only done on retransmission.
3181  */
3182 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3183 				     int space)
3184 {
3185 	struct tcp_sock *tp = tcp_sk(sk);
3186 	struct sk_buff *skb = to, *tmp;
3187 	bool first = true;
3188 
3189 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3190 		return;
3191 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3192 		return;
3193 
3194 	skb_rbtree_walk_from_safe(skb, tmp) {
3195 		if (!tcp_can_collapse(sk, skb))
3196 			break;
3197 
3198 		if (!tcp_skb_can_collapse(to, skb))
3199 			break;
3200 
3201 		space -= skb->len;
3202 
3203 		if (first) {
3204 			first = false;
3205 			continue;
3206 		}
3207 
3208 		if (space < 0)
3209 			break;
3210 
3211 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3212 			break;
3213 
3214 		if (!tcp_collapse_retrans(sk, to))
3215 			break;
3216 	}
3217 }
3218 
3219 /* This retransmits one SKB.  Policy decisions and retransmit queue
3220  * state updates are done by the caller.  Returns non-zero if an
3221  * error occurred which prevented the send.
3222  */
3223 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3224 {
3225 	struct inet_connection_sock *icsk = inet_csk(sk);
3226 	struct tcp_sock *tp = tcp_sk(sk);
3227 	unsigned int cur_mss;
3228 	int diff, len, err;
3229 	int avail_wnd;
3230 
3231 	/* Inconclusive MTU probe */
3232 	if (icsk->icsk_mtup.probe_size)
3233 		icsk->icsk_mtup.probe_size = 0;
3234 
3235 	if (skb_still_in_host_queue(sk, skb))
3236 		return -EBUSY;
3237 
3238 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3239 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3240 			WARN_ON_ONCE(1);
3241 			return -EINVAL;
3242 		}
3243 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3244 			return -ENOMEM;
3245 	}
3246 
3247 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3248 		return -EHOSTUNREACH; /* Routing failure or similar. */
3249 
3250 	cur_mss = tcp_current_mss(sk);
3251 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3252 
3253 	/* If receiver has shrunk his window, and skb is out of
3254 	 * new window, do not retransmit it. The exception is the
3255 	 * case, when window is shrunk to zero. In this case
3256 	 * our retransmit of one segment serves as a zero window probe.
3257 	 */
3258 	if (avail_wnd <= 0) {
3259 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3260 			return -EAGAIN;
3261 		avail_wnd = cur_mss;
3262 	}
3263 
3264 	len = cur_mss * segs;
3265 	if (len > avail_wnd) {
3266 		len = rounddown(avail_wnd, cur_mss);
3267 		if (!len)
3268 			len = avail_wnd;
3269 	}
3270 	if (skb->len > len) {
3271 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3272 				 cur_mss, GFP_ATOMIC))
3273 			return -ENOMEM; /* We'll try again later. */
3274 	} else {
3275 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3276 			return -ENOMEM;
3277 
3278 		diff = tcp_skb_pcount(skb);
3279 		tcp_set_skb_tso_segs(skb, cur_mss);
3280 		diff -= tcp_skb_pcount(skb);
3281 		if (diff)
3282 			tcp_adjust_pcount(sk, skb, diff);
3283 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3284 		if (skb->len < avail_wnd)
3285 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3286 	}
3287 
3288 	/* RFC3168, section 6.1.1.1. ECN fallback */
3289 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3290 		tcp_ecn_clear_syn(sk, skb);
3291 
3292 	/* Update global and local TCP statistics. */
3293 	segs = tcp_skb_pcount(skb);
3294 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3295 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3296 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3297 	tp->total_retrans += segs;
3298 	tp->bytes_retrans += skb->len;
3299 
3300 	/* make sure skb->data is aligned on arches that require it
3301 	 * and check if ack-trimming & collapsing extended the headroom
3302 	 * beyond what csum_start can cover.
3303 	 */
3304 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3305 		     skb_headroom(skb) >= 0xFFFF)) {
3306 		struct sk_buff *nskb;
3307 
3308 		tcp_skb_tsorted_save(skb) {
3309 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3310 			if (nskb) {
3311 				nskb->dev = NULL;
3312 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3313 			} else {
3314 				err = -ENOBUFS;
3315 			}
3316 		} tcp_skb_tsorted_restore(skb);
3317 
3318 		if (!err) {
3319 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3320 			tcp_rate_skb_sent(sk, skb);
3321 		}
3322 	} else {
3323 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3324 	}
3325 
3326 	/* To avoid taking spuriously low RTT samples based on a timestamp
3327 	 * for a transmit that never happened, always mark EVER_RETRANS
3328 	 */
3329 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3330 
3331 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3332 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3333 				  TCP_SKB_CB(skb)->seq, segs, err);
3334 
3335 	if (likely(!err)) {
3336 		trace_tcp_retransmit_skb(sk, skb);
3337 	} else if (err != -EBUSY) {
3338 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3339 	}
3340 	return err;
3341 }
3342 
3343 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3344 {
3345 	struct tcp_sock *tp = tcp_sk(sk);
3346 	int err = __tcp_retransmit_skb(sk, skb, segs);
3347 
3348 	if (err == 0) {
3349 #if FASTRETRANS_DEBUG > 0
3350 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3351 			net_dbg_ratelimited("retrans_out leaked\n");
3352 		}
3353 #endif
3354 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3355 		tp->retrans_out += tcp_skb_pcount(skb);
3356 	}
3357 
3358 	/* Save stamp of the first (attempted) retransmit. */
3359 	if (!tp->retrans_stamp)
3360 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3361 
3362 	if (tp->undo_retrans < 0)
3363 		tp->undo_retrans = 0;
3364 	tp->undo_retrans += tcp_skb_pcount(skb);
3365 	return err;
3366 }
3367 
3368 /* This gets called after a retransmit timeout, and the initially
3369  * retransmitted data is acknowledged.  It tries to continue
3370  * resending the rest of the retransmit queue, until either
3371  * we've sent it all or the congestion window limit is reached.
3372  */
3373 void tcp_xmit_retransmit_queue(struct sock *sk)
3374 {
3375 	const struct inet_connection_sock *icsk = inet_csk(sk);
3376 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3377 	struct tcp_sock *tp = tcp_sk(sk);
3378 	bool rearm_timer = false;
3379 	u32 max_segs;
3380 	int mib_idx;
3381 
3382 	if (!tp->packets_out)
3383 		return;
3384 
3385 	rtx_head = tcp_rtx_queue_head(sk);
3386 	skb = tp->retransmit_skb_hint ?: rtx_head;
3387 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3388 	skb_rbtree_walk_from(skb) {
3389 		__u8 sacked;
3390 		int segs;
3391 
3392 		if (tcp_pacing_check(sk))
3393 			break;
3394 
3395 		/* we could do better than to assign each time */
3396 		if (!hole)
3397 			tp->retransmit_skb_hint = skb;
3398 
3399 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3400 		if (segs <= 0)
3401 			break;
3402 		sacked = TCP_SKB_CB(skb)->sacked;
3403 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3404 		 * we need to make sure not sending too bigs TSO packets
3405 		 */
3406 		segs = min_t(int, segs, max_segs);
3407 
3408 		if (tp->retrans_out >= tp->lost_out) {
3409 			break;
3410 		} else if (!(sacked & TCPCB_LOST)) {
3411 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3412 				hole = skb;
3413 			continue;
3414 
3415 		} else {
3416 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3417 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3418 			else
3419 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3420 		}
3421 
3422 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3423 			continue;
3424 
3425 		if (tcp_small_queue_check(sk, skb, 1))
3426 			break;
3427 
3428 		if (tcp_retransmit_skb(sk, skb, segs))
3429 			break;
3430 
3431 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3432 
3433 		if (tcp_in_cwnd_reduction(sk))
3434 			tp->prr_out += tcp_skb_pcount(skb);
3435 
3436 		if (skb == rtx_head &&
3437 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3438 			rearm_timer = true;
3439 
3440 	}
3441 	if (rearm_timer)
3442 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3443 				     inet_csk(sk)->icsk_rto,
3444 				     TCP_RTO_MAX);
3445 }
3446 
3447 /* We allow to exceed memory limits for FIN packets to expedite
3448  * connection tear down and (memory) recovery.
3449  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3450  * or even be forced to close flow without any FIN.
3451  * In general, we want to allow one skb per socket to avoid hangs
3452  * with edge trigger epoll()
3453  */
3454 void sk_forced_mem_schedule(struct sock *sk, int size)
3455 {
3456 	int delta, amt;
3457 
3458 	delta = size - sk->sk_forward_alloc;
3459 	if (delta <= 0)
3460 		return;
3461 	amt = sk_mem_pages(delta);
3462 	sk->sk_forward_alloc += amt << PAGE_SHIFT;
3463 	sk_memory_allocated_add(sk, amt);
3464 
3465 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3466 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3467 					gfp_memcg_charge() | __GFP_NOFAIL);
3468 }
3469 
3470 /* Send a FIN. The caller locks the socket for us.
3471  * We should try to send a FIN packet really hard, but eventually give up.
3472  */
3473 void tcp_send_fin(struct sock *sk)
3474 {
3475 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3476 	struct tcp_sock *tp = tcp_sk(sk);
3477 
3478 	/* Optimization, tack on the FIN if we have one skb in write queue and
3479 	 * this skb was not yet sent, or we are under memory pressure.
3480 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3481 	 * as TCP stack thinks it has already been transmitted.
3482 	 */
3483 	tskb = tail;
3484 	if (!tskb && tcp_under_memory_pressure(sk))
3485 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3486 
3487 	if (tskb) {
3488 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3489 		TCP_SKB_CB(tskb)->end_seq++;
3490 		tp->write_seq++;
3491 		if (!tail) {
3492 			/* This means tskb was already sent.
3493 			 * Pretend we included the FIN on previous transmit.
3494 			 * We need to set tp->snd_nxt to the value it would have
3495 			 * if FIN had been sent. This is because retransmit path
3496 			 * does not change tp->snd_nxt.
3497 			 */
3498 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3499 			return;
3500 		}
3501 	} else {
3502 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3503 		if (unlikely(!skb))
3504 			return;
3505 
3506 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3507 		skb_reserve(skb, MAX_TCP_HEADER);
3508 		sk_forced_mem_schedule(sk, skb->truesize);
3509 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3510 		tcp_init_nondata_skb(skb, tp->write_seq,
3511 				     TCPHDR_ACK | TCPHDR_FIN);
3512 		tcp_queue_skb(sk, skb);
3513 	}
3514 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3515 }
3516 
3517 /* We get here when a process closes a file descriptor (either due to
3518  * an explicit close() or as a byproduct of exit()'ing) and there
3519  * was unread data in the receive queue.  This behavior is recommended
3520  * by RFC 2525, section 2.17.  -DaveM
3521  */
3522 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3523 {
3524 	struct sk_buff *skb;
3525 
3526 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3527 
3528 	/* NOTE: No TCP options attached and we never retransmit this. */
3529 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3530 	if (!skb) {
3531 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3532 		return;
3533 	}
3534 
3535 	/* Reserve space for headers and prepare control bits. */
3536 	skb_reserve(skb, MAX_TCP_HEADER);
3537 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3538 			     TCPHDR_ACK | TCPHDR_RST);
3539 	tcp_mstamp_refresh(tcp_sk(sk));
3540 	/* Send it off. */
3541 	if (tcp_transmit_skb(sk, skb, 0, priority))
3542 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3543 
3544 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3545 	 * skb here is different to the troublesome skb, so use NULL
3546 	 */
3547 	trace_tcp_send_reset(sk, NULL);
3548 }
3549 
3550 /* Send a crossed SYN-ACK during socket establishment.
3551  * WARNING: This routine must only be called when we have already sent
3552  * a SYN packet that crossed the incoming SYN that caused this routine
3553  * to get called. If this assumption fails then the initial rcv_wnd
3554  * and rcv_wscale values will not be correct.
3555  */
3556 int tcp_send_synack(struct sock *sk)
3557 {
3558 	struct sk_buff *skb;
3559 
3560 	skb = tcp_rtx_queue_head(sk);
3561 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3562 		pr_err("%s: wrong queue state\n", __func__);
3563 		return -EFAULT;
3564 	}
3565 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3566 		if (skb_cloned(skb)) {
3567 			struct sk_buff *nskb;
3568 
3569 			tcp_skb_tsorted_save(skb) {
3570 				nskb = skb_copy(skb, GFP_ATOMIC);
3571 			} tcp_skb_tsorted_restore(skb);
3572 			if (!nskb)
3573 				return -ENOMEM;
3574 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3575 			tcp_highest_sack_replace(sk, skb, nskb);
3576 			tcp_rtx_queue_unlink_and_free(skb, sk);
3577 			__skb_header_release(nskb);
3578 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3579 			sk_wmem_queued_add(sk, nskb->truesize);
3580 			sk_mem_charge(sk, nskb->truesize);
3581 			skb = nskb;
3582 		}
3583 
3584 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3585 		tcp_ecn_send_synack(sk, skb);
3586 	}
3587 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3588 }
3589 
3590 /**
3591  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3592  * @sk: listener socket
3593  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3594  *       should not use it again.
3595  * @req: request_sock pointer
3596  * @foc: cookie for tcp fast open
3597  * @synack_type: Type of synack to prepare
3598  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3599  */
3600 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3601 				struct request_sock *req,
3602 				struct tcp_fastopen_cookie *foc,
3603 				enum tcp_synack_type synack_type,
3604 				struct sk_buff *syn_skb)
3605 {
3606 	struct inet_request_sock *ireq = inet_rsk(req);
3607 	const struct tcp_sock *tp = tcp_sk(sk);
3608 	struct tcp_md5sig_key *md5 = NULL;
3609 	struct tcp_out_options opts;
3610 	struct sk_buff *skb;
3611 	int tcp_header_size;
3612 	struct tcphdr *th;
3613 	int mss;
3614 	u64 now;
3615 
3616 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3617 	if (unlikely(!skb)) {
3618 		dst_release(dst);
3619 		return NULL;
3620 	}
3621 	/* Reserve space for headers. */
3622 	skb_reserve(skb, MAX_TCP_HEADER);
3623 
3624 	switch (synack_type) {
3625 	case TCP_SYNACK_NORMAL:
3626 		skb_set_owner_w(skb, req_to_sk(req));
3627 		break;
3628 	case TCP_SYNACK_COOKIE:
3629 		/* Under synflood, we do not attach skb to a socket,
3630 		 * to avoid false sharing.
3631 		 */
3632 		break;
3633 	case TCP_SYNACK_FASTOPEN:
3634 		/* sk is a const pointer, because we want to express multiple
3635 		 * cpu might call us concurrently.
3636 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3637 		 */
3638 		skb_set_owner_w(skb, (struct sock *)sk);
3639 		break;
3640 	}
3641 	skb_dst_set(skb, dst);
3642 
3643 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3644 
3645 	memset(&opts, 0, sizeof(opts));
3646 	now = tcp_clock_ns();
3647 #ifdef CONFIG_SYN_COOKIES
3648 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3649 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3650 				      true);
3651 	else
3652 #endif
3653 	{
3654 		skb_set_delivery_time(skb, now, true);
3655 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3656 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3657 	}
3658 
3659 #ifdef CONFIG_TCP_MD5SIG
3660 	rcu_read_lock();
3661 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3662 #endif
3663 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3664 	/* bpf program will be interested in the tcp_flags */
3665 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3666 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3667 					     foc, synack_type,
3668 					     syn_skb) + sizeof(*th);
3669 
3670 	skb_push(skb, tcp_header_size);
3671 	skb_reset_transport_header(skb);
3672 
3673 	th = (struct tcphdr *)skb->data;
3674 	memset(th, 0, sizeof(struct tcphdr));
3675 	th->syn = 1;
3676 	th->ack = 1;
3677 	tcp_ecn_make_synack(req, th);
3678 	th->source = htons(ireq->ir_num);
3679 	th->dest = ireq->ir_rmt_port;
3680 	skb->mark = ireq->ir_mark;
3681 	skb->ip_summed = CHECKSUM_PARTIAL;
3682 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3683 	/* XXX data is queued and acked as is. No buffer/window check */
3684 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3685 
3686 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3687 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3688 	tcp_options_write(th, NULL, &opts);
3689 	th->doff = (tcp_header_size >> 2);
3690 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3691 
3692 #ifdef CONFIG_TCP_MD5SIG
3693 	/* Okay, we have all we need - do the md5 hash if needed */
3694 	if (md5)
3695 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3696 					       md5, req_to_sk(req), skb);
3697 	rcu_read_unlock();
3698 #endif
3699 
3700 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3701 				synack_type, &opts);
3702 
3703 	skb_set_delivery_time(skb, now, true);
3704 	tcp_add_tx_delay(skb, tp);
3705 
3706 	return skb;
3707 }
3708 EXPORT_SYMBOL(tcp_make_synack);
3709 
3710 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3711 {
3712 	struct inet_connection_sock *icsk = inet_csk(sk);
3713 	const struct tcp_congestion_ops *ca;
3714 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3715 
3716 	if (ca_key == TCP_CA_UNSPEC)
3717 		return;
3718 
3719 	rcu_read_lock();
3720 	ca = tcp_ca_find_key(ca_key);
3721 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3722 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3723 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3724 		icsk->icsk_ca_ops = ca;
3725 	}
3726 	rcu_read_unlock();
3727 }
3728 
3729 /* Do all connect socket setups that can be done AF independent. */
3730 static void tcp_connect_init(struct sock *sk)
3731 {
3732 	const struct dst_entry *dst = __sk_dst_get(sk);
3733 	struct tcp_sock *tp = tcp_sk(sk);
3734 	__u8 rcv_wscale;
3735 	u32 rcv_wnd;
3736 
3737 	/* We'll fix this up when we get a response from the other end.
3738 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3739 	 */
3740 	tp->tcp_header_len = sizeof(struct tcphdr);
3741 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3742 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3743 
3744 #ifdef CONFIG_TCP_MD5SIG
3745 	if (tp->af_specific->md5_lookup(sk, sk))
3746 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3747 #endif
3748 
3749 	/* If user gave his TCP_MAXSEG, record it to clamp */
3750 	if (tp->rx_opt.user_mss)
3751 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3752 	tp->max_window = 0;
3753 	tcp_mtup_init(sk);
3754 	tcp_sync_mss(sk, dst_mtu(dst));
3755 
3756 	tcp_ca_dst_init(sk, dst);
3757 
3758 	if (!tp->window_clamp)
3759 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3760 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3761 
3762 	tcp_initialize_rcv_mss(sk);
3763 
3764 	/* limit the window selection if the user enforce a smaller rx buffer */
3765 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3766 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3767 		tp->window_clamp = tcp_full_space(sk);
3768 
3769 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3770 	if (rcv_wnd == 0)
3771 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3772 
3773 	tcp_select_initial_window(sk, tcp_full_space(sk),
3774 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3775 				  &tp->rcv_wnd,
3776 				  &tp->window_clamp,
3777 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3778 				  &rcv_wscale,
3779 				  rcv_wnd);
3780 
3781 	tp->rx_opt.rcv_wscale = rcv_wscale;
3782 	tp->rcv_ssthresh = tp->rcv_wnd;
3783 
3784 	WRITE_ONCE(sk->sk_err, 0);
3785 	sock_reset_flag(sk, SOCK_DONE);
3786 	tp->snd_wnd = 0;
3787 	tcp_init_wl(tp, 0);
3788 	tcp_write_queue_purge(sk);
3789 	tp->snd_una = tp->write_seq;
3790 	tp->snd_sml = tp->write_seq;
3791 	tp->snd_up = tp->write_seq;
3792 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3793 
3794 	if (likely(!tp->repair))
3795 		tp->rcv_nxt = 0;
3796 	else
3797 		tp->rcv_tstamp = tcp_jiffies32;
3798 	tp->rcv_wup = tp->rcv_nxt;
3799 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3800 
3801 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3802 	inet_csk(sk)->icsk_retransmits = 0;
3803 	tcp_clear_retrans(tp);
3804 }
3805 
3806 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3807 {
3808 	struct tcp_sock *tp = tcp_sk(sk);
3809 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3810 
3811 	tcb->end_seq += skb->len;
3812 	__skb_header_release(skb);
3813 	sk_wmem_queued_add(sk, skb->truesize);
3814 	sk_mem_charge(sk, skb->truesize);
3815 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3816 	tp->packets_out += tcp_skb_pcount(skb);
3817 }
3818 
3819 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3820  * queue a data-only packet after the regular SYN, such that regular SYNs
3821  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3822  * only the SYN sequence, the data are retransmitted in the first ACK.
3823  * If cookie is not cached or other error occurs, falls back to send a
3824  * regular SYN with Fast Open cookie request option.
3825  */
3826 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3827 {
3828 	struct inet_connection_sock *icsk = inet_csk(sk);
3829 	struct tcp_sock *tp = tcp_sk(sk);
3830 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3831 	struct page_frag *pfrag = sk_page_frag(sk);
3832 	struct sk_buff *syn_data;
3833 	int space, err = 0;
3834 
3835 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3836 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3837 		goto fallback;
3838 
3839 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3840 	 * user-MSS. Reserve maximum option space for middleboxes that add
3841 	 * private TCP options. The cost is reduced data space in SYN :(
3842 	 */
3843 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3844 	/* Sync mss_cache after updating the mss_clamp */
3845 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3846 
3847 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3848 		MAX_TCP_OPTION_SPACE;
3849 
3850 	space = min_t(size_t, space, fo->size);
3851 
3852 	if (space &&
3853 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3854 				  pfrag, sk->sk_allocation))
3855 		goto fallback;
3856 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3857 	if (!syn_data)
3858 		goto fallback;
3859 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3860 	if (space) {
3861 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3862 		space = tcp_wmem_schedule(sk, space);
3863 	}
3864 	if (space) {
3865 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3866 					    space, &fo->data->msg_iter);
3867 		if (unlikely(!space)) {
3868 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3869 			kfree_skb(syn_data);
3870 			goto fallback;
3871 		}
3872 		skb_fill_page_desc(syn_data, 0, pfrag->page,
3873 				   pfrag->offset, space);
3874 		page_ref_inc(pfrag->page);
3875 		pfrag->offset += space;
3876 		skb_len_add(syn_data, space);
3877 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3878 	}
3879 	/* No more data pending in inet_wait_for_connect() */
3880 	if (space == fo->size)
3881 		fo->data = NULL;
3882 	fo->copied = space;
3883 
3884 	tcp_connect_queue_skb(sk, syn_data);
3885 	if (syn_data->len)
3886 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3887 
3888 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3889 
3890 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3891 
3892 	/* Now full SYN+DATA was cloned and sent (or not),
3893 	 * remove the SYN from the original skb (syn_data)
3894 	 * we keep in write queue in case of a retransmit, as we
3895 	 * also have the SYN packet (with no data) in the same queue.
3896 	 */
3897 	TCP_SKB_CB(syn_data)->seq++;
3898 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3899 	if (!err) {
3900 		tp->syn_data = (fo->copied > 0);
3901 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3902 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3903 		goto done;
3904 	}
3905 
3906 	/* data was not sent, put it in write_queue */
3907 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3908 	tp->packets_out -= tcp_skb_pcount(syn_data);
3909 
3910 fallback:
3911 	/* Send a regular SYN with Fast Open cookie request option */
3912 	if (fo->cookie.len > 0)
3913 		fo->cookie.len = 0;
3914 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3915 	if (err)
3916 		tp->syn_fastopen = 0;
3917 done:
3918 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3919 	return err;
3920 }
3921 
3922 /* Build a SYN and send it off. */
3923 int tcp_connect(struct sock *sk)
3924 {
3925 	struct tcp_sock *tp = tcp_sk(sk);
3926 	struct sk_buff *buff;
3927 	int err;
3928 
3929 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3930 
3931 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3932 		return -EHOSTUNREACH; /* Routing failure or similar. */
3933 
3934 	tcp_connect_init(sk);
3935 
3936 	if (unlikely(tp->repair)) {
3937 		tcp_finish_connect(sk, NULL);
3938 		return 0;
3939 	}
3940 
3941 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
3942 	if (unlikely(!buff))
3943 		return -ENOBUFS;
3944 
3945 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3946 	tcp_mstamp_refresh(tp);
3947 	tp->retrans_stamp = tcp_time_stamp(tp);
3948 	tcp_connect_queue_skb(sk, buff);
3949 	tcp_ecn_send_syn(sk, buff);
3950 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3951 
3952 	/* Send off SYN; include data in Fast Open. */
3953 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3954 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3955 	if (err == -ECONNREFUSED)
3956 		return err;
3957 
3958 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3959 	 * in order to make this packet get counted in tcpOutSegs.
3960 	 */
3961 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3962 	tp->pushed_seq = tp->write_seq;
3963 	buff = tcp_send_head(sk);
3964 	if (unlikely(buff)) {
3965 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3966 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3967 	}
3968 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3969 
3970 	/* Timer for repeating the SYN until an answer. */
3971 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3972 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3973 	return 0;
3974 }
3975 EXPORT_SYMBOL(tcp_connect);
3976 
3977 /* Send out a delayed ack, the caller does the policy checking
3978  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3979  * for details.
3980  */
3981 void tcp_send_delayed_ack(struct sock *sk)
3982 {
3983 	struct inet_connection_sock *icsk = inet_csk(sk);
3984 	int ato = icsk->icsk_ack.ato;
3985 	unsigned long timeout;
3986 
3987 	if (ato > TCP_DELACK_MIN) {
3988 		const struct tcp_sock *tp = tcp_sk(sk);
3989 		int max_ato = HZ / 2;
3990 
3991 		if (inet_csk_in_pingpong_mode(sk) ||
3992 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3993 			max_ato = TCP_DELACK_MAX;
3994 
3995 		/* Slow path, intersegment interval is "high". */
3996 
3997 		/* If some rtt estimate is known, use it to bound delayed ack.
3998 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3999 		 * directly.
4000 		 */
4001 		if (tp->srtt_us) {
4002 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4003 					TCP_DELACK_MIN);
4004 
4005 			if (rtt < max_ato)
4006 				max_ato = rtt;
4007 		}
4008 
4009 		ato = min(ato, max_ato);
4010 	}
4011 
4012 	ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
4013 
4014 	/* Stay within the limit we were given */
4015 	timeout = jiffies + ato;
4016 
4017 	/* Use new timeout only if there wasn't a older one earlier. */
4018 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4019 		/* If delack timer is about to expire, send ACK now. */
4020 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4021 			tcp_send_ack(sk);
4022 			return;
4023 		}
4024 
4025 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4026 			timeout = icsk->icsk_ack.timeout;
4027 	}
4028 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4029 	icsk->icsk_ack.timeout = timeout;
4030 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4031 }
4032 
4033 /* This routine sends an ack and also updates the window. */
4034 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4035 {
4036 	struct sk_buff *buff;
4037 
4038 	/* If we have been reset, we may not send again. */
4039 	if (sk->sk_state == TCP_CLOSE)
4040 		return;
4041 
4042 	/* We are not putting this on the write queue, so
4043 	 * tcp_transmit_skb() will set the ownership to this
4044 	 * sock.
4045 	 */
4046 	buff = alloc_skb(MAX_TCP_HEADER,
4047 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4048 	if (unlikely(!buff)) {
4049 		struct inet_connection_sock *icsk = inet_csk(sk);
4050 		unsigned long delay;
4051 
4052 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4053 		if (delay < TCP_RTO_MAX)
4054 			icsk->icsk_ack.retry++;
4055 		inet_csk_schedule_ack(sk);
4056 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4057 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4058 		return;
4059 	}
4060 
4061 	/* Reserve space for headers and prepare control bits. */
4062 	skb_reserve(buff, MAX_TCP_HEADER);
4063 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4064 
4065 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4066 	 * too much.
4067 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4068 	 */
4069 	skb_set_tcp_pure_ack(buff);
4070 
4071 	/* Send it off, this clears delayed acks for us. */
4072 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4073 }
4074 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4075 
4076 void tcp_send_ack(struct sock *sk)
4077 {
4078 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4079 }
4080 
4081 /* This routine sends a packet with an out of date sequence
4082  * number. It assumes the other end will try to ack it.
4083  *
4084  * Question: what should we make while urgent mode?
4085  * 4.4BSD forces sending single byte of data. We cannot send
4086  * out of window data, because we have SND.NXT==SND.MAX...
4087  *
4088  * Current solution: to send TWO zero-length segments in urgent mode:
4089  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4090  * out-of-date with SND.UNA-1 to probe window.
4091  */
4092 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4093 {
4094 	struct tcp_sock *tp = tcp_sk(sk);
4095 	struct sk_buff *skb;
4096 
4097 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4098 	skb = alloc_skb(MAX_TCP_HEADER,
4099 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4100 	if (!skb)
4101 		return -1;
4102 
4103 	/* Reserve space for headers and set control bits. */
4104 	skb_reserve(skb, MAX_TCP_HEADER);
4105 	/* Use a previous sequence.  This should cause the other
4106 	 * end to send an ack.  Don't queue or clone SKB, just
4107 	 * send it.
4108 	 */
4109 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4110 	NET_INC_STATS(sock_net(sk), mib);
4111 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4112 }
4113 
4114 /* Called from setsockopt( ... TCP_REPAIR ) */
4115 void tcp_send_window_probe(struct sock *sk)
4116 {
4117 	if (sk->sk_state == TCP_ESTABLISHED) {
4118 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4119 		tcp_mstamp_refresh(tcp_sk(sk));
4120 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4121 	}
4122 }
4123 
4124 /* Initiate keepalive or window probe from timer. */
4125 int tcp_write_wakeup(struct sock *sk, int mib)
4126 {
4127 	struct tcp_sock *tp = tcp_sk(sk);
4128 	struct sk_buff *skb;
4129 
4130 	if (sk->sk_state == TCP_CLOSE)
4131 		return -1;
4132 
4133 	skb = tcp_send_head(sk);
4134 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4135 		int err;
4136 		unsigned int mss = tcp_current_mss(sk);
4137 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4138 
4139 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4140 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4141 
4142 		/* We are probing the opening of a window
4143 		 * but the window size is != 0
4144 		 * must have been a result SWS avoidance ( sender )
4145 		 */
4146 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4147 		    skb->len > mss) {
4148 			seg_size = min(seg_size, mss);
4149 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4150 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4151 					 skb, seg_size, mss, GFP_ATOMIC))
4152 				return -1;
4153 		} else if (!tcp_skb_pcount(skb))
4154 			tcp_set_skb_tso_segs(skb, mss);
4155 
4156 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4157 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4158 		if (!err)
4159 			tcp_event_new_data_sent(sk, skb);
4160 		return err;
4161 	} else {
4162 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4163 			tcp_xmit_probe_skb(sk, 1, mib);
4164 		return tcp_xmit_probe_skb(sk, 0, mib);
4165 	}
4166 }
4167 
4168 /* A window probe timeout has occurred.  If window is not closed send
4169  * a partial packet else a zero probe.
4170  */
4171 void tcp_send_probe0(struct sock *sk)
4172 {
4173 	struct inet_connection_sock *icsk = inet_csk(sk);
4174 	struct tcp_sock *tp = tcp_sk(sk);
4175 	struct net *net = sock_net(sk);
4176 	unsigned long timeout;
4177 	int err;
4178 
4179 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4180 
4181 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4182 		/* Cancel probe timer, if it is not required. */
4183 		icsk->icsk_probes_out = 0;
4184 		icsk->icsk_backoff = 0;
4185 		icsk->icsk_probes_tstamp = 0;
4186 		return;
4187 	}
4188 
4189 	icsk->icsk_probes_out++;
4190 	if (err <= 0) {
4191 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4192 			icsk->icsk_backoff++;
4193 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4194 	} else {
4195 		/* If packet was not sent due to local congestion,
4196 		 * Let senders fight for local resources conservatively.
4197 		 */
4198 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4199 	}
4200 
4201 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4202 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4203 }
4204 
4205 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4206 {
4207 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4208 	struct flowi fl;
4209 	int res;
4210 
4211 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4212 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4213 		tcp_rsk(req)->txhash = net_tx_rndhash();
4214 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4215 				  NULL);
4216 	if (!res) {
4217 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4218 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4219 		if (unlikely(tcp_passive_fastopen(sk))) {
4220 			/* sk has const attribute because listeners are lockless.
4221 			 * However in this case, we are dealing with a passive fastopen
4222 			 * socket thus we can change total_retrans value.
4223 			 */
4224 			tcp_sk_rw(sk)->total_retrans++;
4225 		}
4226 		trace_tcp_retransmit_synack(sk, req);
4227 	}
4228 	return res;
4229 }
4230 EXPORT_SYMBOL(tcp_rtx_synack);
4231