xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 6b66a6f2)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 			   int push_one, gfp_t gfp);
67 
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 	struct inet_connection_sock *icsk = inet_csk(sk);
72 	struct tcp_sock *tp = tcp_sk(sk);
73 	unsigned int prior_packets = tp->packets_out;
74 
75 	tcp_advance_send_head(sk, skb);
76 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
80 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
81 		tcp_rearm_rto(sk);
82 	}
83 
84 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 		      tcp_skb_pcount(skb));
86 }
87 
88 /* SND.NXT, if window was not shrunk.
89  * If window has been shrunk, what should we make? It is not clear at all.
90  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92  * invalid. OK, let's make this for now:
93  */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 	const struct tcp_sock *tp = tcp_sk(sk);
97 
98 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 		return tp->snd_nxt;
100 	else
101 		return tcp_wnd_end(tp);
102 }
103 
104 /* Calculate mss to advertise in SYN segment.
105  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106  *
107  * 1. It is independent of path mtu.
108  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110  *    attached devices, because some buggy hosts are confused by
111  *    large MSS.
112  * 4. We do not make 3, we advertise MSS, calculated from first
113  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
114  *    This may be overridden via information stored in routing table.
115  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116  *    probably even Jumbo".
117  */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 	struct tcp_sock *tp = tcp_sk(sk);
121 	const struct dst_entry *dst = __sk_dst_get(sk);
122 	int mss = tp->advmss;
123 
124 	if (dst) {
125 		unsigned int metric = dst_metric_advmss(dst);
126 
127 		if (metric < mss) {
128 			mss = metric;
129 			tp->advmss = mss;
130 		}
131 	}
132 
133 	return (__u16)mss;
134 }
135 
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137  * This is the first part of cwnd validation mechanism.
138  */
139 void tcp_cwnd_restart(struct sock *sk, s32 delta)
140 {
141 	struct tcp_sock *tp = tcp_sk(sk);
142 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
143 	u32 cwnd = tp->snd_cwnd;
144 
145 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146 
147 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 	restart_cwnd = min(restart_cwnd, cwnd);
149 
150 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 		cwnd >>= 1;
152 	tp->snd_cwnd = max(cwnd, restart_cwnd);
153 	tp->snd_cwnd_stamp = tcp_time_stamp;
154 	tp->snd_cwnd_used = 0;
155 }
156 
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 				struct sock *sk)
160 {
161 	struct inet_connection_sock *icsk = inet_csk(sk);
162 	const u32 now = tcp_time_stamp;
163 
164 	if (tcp_packets_in_flight(tp) == 0)
165 		tcp_ca_event(sk, CA_EVENT_TX_START);
166 
167 	tp->lsndtime = now;
168 
169 	/* If it is a reply for ato after last received
170 	 * packet, enter pingpong mode.
171 	 */
172 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
173 		icsk->icsk_ack.pingpong = 1;
174 }
175 
176 /* Account for an ACK we sent. */
177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
178 {
179 	tcp_dec_quickack_mode(sk, pkts);
180 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
181 }
182 
183 
184 u32 tcp_default_init_rwnd(u32 mss)
185 {
186 	/* Initial receive window should be twice of TCP_INIT_CWND to
187 	 * enable proper sending of new unsent data during fast recovery
188 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
189 	 * limit when mss is larger than 1460.
190 	 */
191 	u32 init_rwnd = TCP_INIT_CWND * 2;
192 
193 	if (mss > 1460)
194 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
195 	return init_rwnd;
196 }
197 
198 /* Determine a window scaling and initial window to offer.
199  * Based on the assumption that the given amount of space
200  * will be offered. Store the results in the tp structure.
201  * NOTE: for smooth operation initial space offering should
202  * be a multiple of mss if possible. We assume here that mss >= 1.
203  * This MUST be enforced by all callers.
204  */
205 void tcp_select_initial_window(int __space, __u32 mss,
206 			       __u32 *rcv_wnd, __u32 *window_clamp,
207 			       int wscale_ok, __u8 *rcv_wscale,
208 			       __u32 init_rcv_wnd)
209 {
210 	unsigned int space = (__space < 0 ? 0 : __space);
211 
212 	/* If no clamp set the clamp to the max possible scaled window */
213 	if (*window_clamp == 0)
214 		(*window_clamp) = (65535 << 14);
215 	space = min(*window_clamp, space);
216 
217 	/* Quantize space offering to a multiple of mss if possible. */
218 	if (space > mss)
219 		space = (space / mss) * mss;
220 
221 	/* NOTE: offering an initial window larger than 32767
222 	 * will break some buggy TCP stacks. If the admin tells us
223 	 * it is likely we could be speaking with such a buggy stack
224 	 * we will truncate our initial window offering to 32K-1
225 	 * unless the remote has sent us a window scaling option,
226 	 * which we interpret as a sign the remote TCP is not
227 	 * misinterpreting the window field as a signed quantity.
228 	 */
229 	if (sysctl_tcp_workaround_signed_windows)
230 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 	else
232 		(*rcv_wnd) = space;
233 
234 	(*rcv_wscale) = 0;
235 	if (wscale_ok) {
236 		/* Set window scaling on max possible window
237 		 * See RFC1323 for an explanation of the limit to 14
238 		 */
239 		space = max_t(u32, space, sysctl_tcp_rmem[2]);
240 		space = max_t(u32, space, sysctl_rmem_max);
241 		space = min_t(u32, space, *window_clamp);
242 		while (space > 65535 && (*rcv_wscale) < 14) {
243 			space >>= 1;
244 			(*rcv_wscale)++;
245 		}
246 	}
247 
248 	if (mss > (1 << *rcv_wscale)) {
249 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
250 			init_rcv_wnd = tcp_default_init_rwnd(mss);
251 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
252 	}
253 
254 	/* Set the clamp no higher than max representable value */
255 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
256 }
257 EXPORT_SYMBOL(tcp_select_initial_window);
258 
259 /* Chose a new window to advertise, update state in tcp_sock for the
260  * socket, and return result with RFC1323 scaling applied.  The return
261  * value can be stuffed directly into th->window for an outgoing
262  * frame.
263  */
264 static u16 tcp_select_window(struct sock *sk)
265 {
266 	struct tcp_sock *tp = tcp_sk(sk);
267 	u32 old_win = tp->rcv_wnd;
268 	u32 cur_win = tcp_receive_window(tp);
269 	u32 new_win = __tcp_select_window(sk);
270 
271 	/* Never shrink the offered window */
272 	if (new_win < cur_win) {
273 		/* Danger Will Robinson!
274 		 * Don't update rcv_wup/rcv_wnd here or else
275 		 * we will not be able to advertise a zero
276 		 * window in time.  --DaveM
277 		 *
278 		 * Relax Will Robinson.
279 		 */
280 		if (new_win == 0)
281 			NET_INC_STATS(sock_net(sk),
282 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
283 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
284 	}
285 	tp->rcv_wnd = new_win;
286 	tp->rcv_wup = tp->rcv_nxt;
287 
288 	/* Make sure we do not exceed the maximum possible
289 	 * scaled window.
290 	 */
291 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
292 		new_win = min(new_win, MAX_TCP_WINDOW);
293 	else
294 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
295 
296 	/* RFC1323 scaling applied */
297 	new_win >>= tp->rx_opt.rcv_wscale;
298 
299 	/* If we advertise zero window, disable fast path. */
300 	if (new_win == 0) {
301 		tp->pred_flags = 0;
302 		if (old_win)
303 			NET_INC_STATS(sock_net(sk),
304 				      LINUX_MIB_TCPTOZEROWINDOWADV);
305 	} else if (old_win == 0) {
306 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
307 	}
308 
309 	return new_win;
310 }
311 
312 /* Packet ECN state for a SYN-ACK */
313 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
314 {
315 	const struct tcp_sock *tp = tcp_sk(sk);
316 
317 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
318 	if (!(tp->ecn_flags & TCP_ECN_OK))
319 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
320 	else if (tcp_ca_needs_ecn(sk))
321 		INET_ECN_xmit(sk);
322 }
323 
324 /* Packet ECN state for a SYN.  */
325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
326 {
327 	struct tcp_sock *tp = tcp_sk(sk);
328 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
329 		       tcp_ca_needs_ecn(sk);
330 
331 	if (!use_ecn) {
332 		const struct dst_entry *dst = __sk_dst_get(sk);
333 
334 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
335 			use_ecn = true;
336 	}
337 
338 	tp->ecn_flags = 0;
339 
340 	if (use_ecn) {
341 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
342 		tp->ecn_flags = TCP_ECN_OK;
343 		if (tcp_ca_needs_ecn(sk))
344 			INET_ECN_xmit(sk);
345 	}
346 }
347 
348 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
349 {
350 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
351 		/* tp->ecn_flags are cleared at a later point in time when
352 		 * SYN ACK is ultimatively being received.
353 		 */
354 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
355 }
356 
357 static void
358 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
359 {
360 	if (inet_rsk(req)->ecn_ok)
361 		th->ece = 1;
362 }
363 
364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365  * be sent.
366  */
367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
368 			 struct tcphdr *th, int tcp_header_len)
369 {
370 	struct tcp_sock *tp = tcp_sk(sk);
371 
372 	if (tp->ecn_flags & TCP_ECN_OK) {
373 		/* Not-retransmitted data segment: set ECT and inject CWR. */
374 		if (skb->len != tcp_header_len &&
375 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
376 			INET_ECN_xmit(sk);
377 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
378 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
379 				th->cwr = 1;
380 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381 			}
382 		} else if (!tcp_ca_needs_ecn(sk)) {
383 			/* ACK or retransmitted segment: clear ECT|CE */
384 			INET_ECN_dontxmit(sk);
385 		}
386 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
387 			th->ece = 1;
388 	}
389 }
390 
391 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
392  * auto increment end seqno.
393  */
394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395 {
396 	skb->ip_summed = CHECKSUM_PARTIAL;
397 	skb->csum = 0;
398 
399 	TCP_SKB_CB(skb)->tcp_flags = flags;
400 	TCP_SKB_CB(skb)->sacked = 0;
401 
402 	tcp_skb_pcount_set(skb, 1);
403 
404 	TCP_SKB_CB(skb)->seq = seq;
405 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
406 		seq++;
407 	TCP_SKB_CB(skb)->end_seq = seq;
408 }
409 
410 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
411 {
412 	return tp->snd_una != tp->snd_up;
413 }
414 
415 #define OPTION_SACK_ADVERTISE	(1 << 0)
416 #define OPTION_TS		(1 << 1)
417 #define OPTION_MD5		(1 << 2)
418 #define OPTION_WSCALE		(1 << 3)
419 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
420 
421 struct tcp_out_options {
422 	u16 options;		/* bit field of OPTION_* */
423 	u16 mss;		/* 0 to disable */
424 	u8 ws;			/* window scale, 0 to disable */
425 	u8 num_sack_blocks;	/* number of SACK blocks to include */
426 	u8 hash_size;		/* bytes in hash_location */
427 	__u8 *hash_location;	/* temporary pointer, overloaded */
428 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
429 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
430 };
431 
432 /* Write previously computed TCP options to the packet.
433  *
434  * Beware: Something in the Internet is very sensitive to the ordering of
435  * TCP options, we learned this through the hard way, so be careful here.
436  * Luckily we can at least blame others for their non-compliance but from
437  * inter-operability perspective it seems that we're somewhat stuck with
438  * the ordering which we have been using if we want to keep working with
439  * those broken things (not that it currently hurts anybody as there isn't
440  * particular reason why the ordering would need to be changed).
441  *
442  * At least SACK_PERM as the first option is known to lead to a disaster
443  * (but it may well be that other scenarios fail similarly).
444  */
445 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
446 			      struct tcp_out_options *opts)
447 {
448 	u16 options = opts->options;	/* mungable copy */
449 
450 	if (unlikely(OPTION_MD5 & options)) {
451 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
452 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
453 		/* overload cookie hash location */
454 		opts->hash_location = (__u8 *)ptr;
455 		ptr += 4;
456 	}
457 
458 	if (unlikely(opts->mss)) {
459 		*ptr++ = htonl((TCPOPT_MSS << 24) |
460 			       (TCPOLEN_MSS << 16) |
461 			       opts->mss);
462 	}
463 
464 	if (likely(OPTION_TS & options)) {
465 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
466 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
467 				       (TCPOLEN_SACK_PERM << 16) |
468 				       (TCPOPT_TIMESTAMP << 8) |
469 				       TCPOLEN_TIMESTAMP);
470 			options &= ~OPTION_SACK_ADVERTISE;
471 		} else {
472 			*ptr++ = htonl((TCPOPT_NOP << 24) |
473 				       (TCPOPT_NOP << 16) |
474 				       (TCPOPT_TIMESTAMP << 8) |
475 				       TCPOLEN_TIMESTAMP);
476 		}
477 		*ptr++ = htonl(opts->tsval);
478 		*ptr++ = htonl(opts->tsecr);
479 	}
480 
481 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
482 		*ptr++ = htonl((TCPOPT_NOP << 24) |
483 			       (TCPOPT_NOP << 16) |
484 			       (TCPOPT_SACK_PERM << 8) |
485 			       TCPOLEN_SACK_PERM);
486 	}
487 
488 	if (unlikely(OPTION_WSCALE & options)) {
489 		*ptr++ = htonl((TCPOPT_NOP << 24) |
490 			       (TCPOPT_WINDOW << 16) |
491 			       (TCPOLEN_WINDOW << 8) |
492 			       opts->ws);
493 	}
494 
495 	if (unlikely(opts->num_sack_blocks)) {
496 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
497 			tp->duplicate_sack : tp->selective_acks;
498 		int this_sack;
499 
500 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
501 			       (TCPOPT_NOP  << 16) |
502 			       (TCPOPT_SACK <<  8) |
503 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
504 						     TCPOLEN_SACK_PERBLOCK)));
505 
506 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
507 		     ++this_sack) {
508 			*ptr++ = htonl(sp[this_sack].start_seq);
509 			*ptr++ = htonl(sp[this_sack].end_seq);
510 		}
511 
512 		tp->rx_opt.dsack = 0;
513 	}
514 
515 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
516 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
517 		u8 *p = (u8 *)ptr;
518 		u32 len; /* Fast Open option length */
519 
520 		if (foc->exp) {
521 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
522 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
523 				     TCPOPT_FASTOPEN_MAGIC);
524 			p += TCPOLEN_EXP_FASTOPEN_BASE;
525 		} else {
526 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
527 			*p++ = TCPOPT_FASTOPEN;
528 			*p++ = len;
529 		}
530 
531 		memcpy(p, foc->val, foc->len);
532 		if ((len & 3) == 2) {
533 			p[foc->len] = TCPOPT_NOP;
534 			p[foc->len + 1] = TCPOPT_NOP;
535 		}
536 		ptr += (len + 3) >> 2;
537 	}
538 }
539 
540 /* Compute TCP options for SYN packets. This is not the final
541  * network wire format yet.
542  */
543 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
544 				struct tcp_out_options *opts,
545 				struct tcp_md5sig_key **md5)
546 {
547 	struct tcp_sock *tp = tcp_sk(sk);
548 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
549 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
550 
551 #ifdef CONFIG_TCP_MD5SIG
552 	*md5 = tp->af_specific->md5_lookup(sk, sk);
553 	if (*md5) {
554 		opts->options |= OPTION_MD5;
555 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
556 	}
557 #else
558 	*md5 = NULL;
559 #endif
560 
561 	/* We always get an MSS option.  The option bytes which will be seen in
562 	 * normal data packets should timestamps be used, must be in the MSS
563 	 * advertised.  But we subtract them from tp->mss_cache so that
564 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
565 	 * fact here if necessary.  If we don't do this correctly, as a
566 	 * receiver we won't recognize data packets as being full sized when we
567 	 * should, and thus we won't abide by the delayed ACK rules correctly.
568 	 * SACKs don't matter, we never delay an ACK when we have any of those
569 	 * going out.  */
570 	opts->mss = tcp_advertise_mss(sk);
571 	remaining -= TCPOLEN_MSS_ALIGNED;
572 
573 	if (likely(sysctl_tcp_timestamps && !*md5)) {
574 		opts->options |= OPTION_TS;
575 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
576 		opts->tsecr = tp->rx_opt.ts_recent;
577 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
578 	}
579 	if (likely(sysctl_tcp_window_scaling)) {
580 		opts->ws = tp->rx_opt.rcv_wscale;
581 		opts->options |= OPTION_WSCALE;
582 		remaining -= TCPOLEN_WSCALE_ALIGNED;
583 	}
584 	if (likely(sysctl_tcp_sack)) {
585 		opts->options |= OPTION_SACK_ADVERTISE;
586 		if (unlikely(!(OPTION_TS & opts->options)))
587 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
588 	}
589 
590 	if (fastopen && fastopen->cookie.len >= 0) {
591 		u32 need = fastopen->cookie.len;
592 
593 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
594 					       TCPOLEN_FASTOPEN_BASE;
595 		need = (need + 3) & ~3U;  /* Align to 32 bits */
596 		if (remaining >= need) {
597 			opts->options |= OPTION_FAST_OPEN_COOKIE;
598 			opts->fastopen_cookie = &fastopen->cookie;
599 			remaining -= need;
600 			tp->syn_fastopen = 1;
601 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
602 		}
603 	}
604 
605 	return MAX_TCP_OPTION_SPACE - remaining;
606 }
607 
608 /* Set up TCP options for SYN-ACKs. */
609 static unsigned int tcp_synack_options(struct request_sock *req,
610 				       unsigned int mss, struct sk_buff *skb,
611 				       struct tcp_out_options *opts,
612 				       const struct tcp_md5sig_key *md5,
613 				       struct tcp_fastopen_cookie *foc)
614 {
615 	struct inet_request_sock *ireq = inet_rsk(req);
616 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
617 
618 #ifdef CONFIG_TCP_MD5SIG
619 	if (md5) {
620 		opts->options |= OPTION_MD5;
621 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
622 
623 		/* We can't fit any SACK blocks in a packet with MD5 + TS
624 		 * options. There was discussion about disabling SACK
625 		 * rather than TS in order to fit in better with old,
626 		 * buggy kernels, but that was deemed to be unnecessary.
627 		 */
628 		ireq->tstamp_ok &= !ireq->sack_ok;
629 	}
630 #endif
631 
632 	/* We always send an MSS option. */
633 	opts->mss = mss;
634 	remaining -= TCPOLEN_MSS_ALIGNED;
635 
636 	if (likely(ireq->wscale_ok)) {
637 		opts->ws = ireq->rcv_wscale;
638 		opts->options |= OPTION_WSCALE;
639 		remaining -= TCPOLEN_WSCALE_ALIGNED;
640 	}
641 	if (likely(ireq->tstamp_ok)) {
642 		opts->options |= OPTION_TS;
643 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
644 		opts->tsecr = req->ts_recent;
645 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
646 	}
647 	if (likely(ireq->sack_ok)) {
648 		opts->options |= OPTION_SACK_ADVERTISE;
649 		if (unlikely(!ireq->tstamp_ok))
650 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
651 	}
652 	if (foc != NULL && foc->len >= 0) {
653 		u32 need = foc->len;
654 
655 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
656 				   TCPOLEN_FASTOPEN_BASE;
657 		need = (need + 3) & ~3U;  /* Align to 32 bits */
658 		if (remaining >= need) {
659 			opts->options |= OPTION_FAST_OPEN_COOKIE;
660 			opts->fastopen_cookie = foc;
661 			remaining -= need;
662 		}
663 	}
664 
665 	return MAX_TCP_OPTION_SPACE - remaining;
666 }
667 
668 /* Compute TCP options for ESTABLISHED sockets. This is not the
669  * final wire format yet.
670  */
671 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
672 					struct tcp_out_options *opts,
673 					struct tcp_md5sig_key **md5)
674 {
675 	struct tcp_sock *tp = tcp_sk(sk);
676 	unsigned int size = 0;
677 	unsigned int eff_sacks;
678 
679 	opts->options = 0;
680 
681 #ifdef CONFIG_TCP_MD5SIG
682 	*md5 = tp->af_specific->md5_lookup(sk, sk);
683 	if (unlikely(*md5)) {
684 		opts->options |= OPTION_MD5;
685 		size += TCPOLEN_MD5SIG_ALIGNED;
686 	}
687 #else
688 	*md5 = NULL;
689 #endif
690 
691 	if (likely(tp->rx_opt.tstamp_ok)) {
692 		opts->options |= OPTION_TS;
693 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
694 		opts->tsecr = tp->rx_opt.ts_recent;
695 		size += TCPOLEN_TSTAMP_ALIGNED;
696 	}
697 
698 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
699 	if (unlikely(eff_sacks)) {
700 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
701 		opts->num_sack_blocks =
702 			min_t(unsigned int, eff_sacks,
703 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
704 			      TCPOLEN_SACK_PERBLOCK);
705 		size += TCPOLEN_SACK_BASE_ALIGNED +
706 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
707 	}
708 
709 	return size;
710 }
711 
712 
713 /* TCP SMALL QUEUES (TSQ)
714  *
715  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
716  * to reduce RTT and bufferbloat.
717  * We do this using a special skb destructor (tcp_wfree).
718  *
719  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
720  * needs to be reallocated in a driver.
721  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
722  *
723  * Since transmit from skb destructor is forbidden, we use a tasklet
724  * to process all sockets that eventually need to send more skbs.
725  * We use one tasklet per cpu, with its own queue of sockets.
726  */
727 struct tsq_tasklet {
728 	struct tasklet_struct	tasklet;
729 	struct list_head	head; /* queue of tcp sockets */
730 };
731 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
732 
733 static void tcp_tsq_handler(struct sock *sk)
734 {
735 	if ((1 << sk->sk_state) &
736 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
737 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
738 		struct tcp_sock *tp = tcp_sk(sk);
739 
740 		if (tp->lost_out > tp->retrans_out &&
741 		    tp->snd_cwnd > tcp_packets_in_flight(tp))
742 			tcp_xmit_retransmit_queue(sk);
743 
744 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
745 			       0, GFP_ATOMIC);
746 	}
747 }
748 /*
749  * One tasklet per cpu tries to send more skbs.
750  * We run in tasklet context but need to disable irqs when
751  * transferring tsq->head because tcp_wfree() might
752  * interrupt us (non NAPI drivers)
753  */
754 static void tcp_tasklet_func(unsigned long data)
755 {
756 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
757 	LIST_HEAD(list);
758 	unsigned long flags;
759 	struct list_head *q, *n;
760 	struct tcp_sock *tp;
761 	struct sock *sk;
762 
763 	local_irq_save(flags);
764 	list_splice_init(&tsq->head, &list);
765 	local_irq_restore(flags);
766 
767 	list_for_each_safe(q, n, &list) {
768 		tp = list_entry(q, struct tcp_sock, tsq_node);
769 		list_del(&tp->tsq_node);
770 
771 		sk = (struct sock *)tp;
772 		smp_mb__before_atomic();
773 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
774 
775 		if (!sk->sk_lock.owned &&
776 		    test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
777 			bh_lock_sock(sk);
778 			if (!sock_owned_by_user(sk)) {
779 				clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
780 				tcp_tsq_handler(sk);
781 			}
782 			bh_unlock_sock(sk);
783 		}
784 
785 		sk_free(sk);
786 	}
787 }
788 
789 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
790 			  TCPF_WRITE_TIMER_DEFERRED |	\
791 			  TCPF_DELACK_TIMER_DEFERRED |	\
792 			  TCPF_MTU_REDUCED_DEFERRED)
793 /**
794  * tcp_release_cb - tcp release_sock() callback
795  * @sk: socket
796  *
797  * called from release_sock() to perform protocol dependent
798  * actions before socket release.
799  */
800 void tcp_release_cb(struct sock *sk)
801 {
802 	unsigned long flags, nflags;
803 
804 	/* perform an atomic operation only if at least one flag is set */
805 	do {
806 		flags = sk->sk_tsq_flags;
807 		if (!(flags & TCP_DEFERRED_ALL))
808 			return;
809 		nflags = flags & ~TCP_DEFERRED_ALL;
810 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
811 
812 	if (flags & TCPF_TSQ_DEFERRED)
813 		tcp_tsq_handler(sk);
814 
815 	/* Here begins the tricky part :
816 	 * We are called from release_sock() with :
817 	 * 1) BH disabled
818 	 * 2) sk_lock.slock spinlock held
819 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
820 	 *
821 	 * But following code is meant to be called from BH handlers,
822 	 * so we should keep BH disabled, but early release socket ownership
823 	 */
824 	sock_release_ownership(sk);
825 
826 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
827 		tcp_write_timer_handler(sk);
828 		__sock_put(sk);
829 	}
830 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
831 		tcp_delack_timer_handler(sk);
832 		__sock_put(sk);
833 	}
834 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
835 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
836 		__sock_put(sk);
837 	}
838 }
839 EXPORT_SYMBOL(tcp_release_cb);
840 
841 void __init tcp_tasklet_init(void)
842 {
843 	int i;
844 
845 	for_each_possible_cpu(i) {
846 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
847 
848 		INIT_LIST_HEAD(&tsq->head);
849 		tasklet_init(&tsq->tasklet,
850 			     tcp_tasklet_func,
851 			     (unsigned long)tsq);
852 	}
853 }
854 
855 /*
856  * Write buffer destructor automatically called from kfree_skb.
857  * We can't xmit new skbs from this context, as we might already
858  * hold qdisc lock.
859  */
860 void tcp_wfree(struct sk_buff *skb)
861 {
862 	struct sock *sk = skb->sk;
863 	struct tcp_sock *tp = tcp_sk(sk);
864 	unsigned long flags, nval, oval;
865 	int wmem;
866 
867 	/* Keep one reference on sk_wmem_alloc.
868 	 * Will be released by sk_free() from here or tcp_tasklet_func()
869 	 */
870 	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
871 
872 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
873 	 * Wait until our queues (qdisc + devices) are drained.
874 	 * This gives :
875 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
876 	 * - chance for incoming ACK (processed by another cpu maybe)
877 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
878 	 */
879 	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
880 		goto out;
881 
882 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
883 		struct tsq_tasklet *tsq;
884 		bool empty;
885 
886 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
887 			goto out;
888 
889 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
890 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
891 		if (nval != oval)
892 			continue;
893 
894 		/* queue this socket to tasklet queue */
895 		local_irq_save(flags);
896 		tsq = this_cpu_ptr(&tsq_tasklet);
897 		empty = list_empty(&tsq->head);
898 		list_add(&tp->tsq_node, &tsq->head);
899 		if (empty)
900 			tasklet_schedule(&tsq->tasklet);
901 		local_irq_restore(flags);
902 		return;
903 	}
904 out:
905 	sk_free(sk);
906 }
907 
908 /* This routine actually transmits TCP packets queued in by
909  * tcp_do_sendmsg().  This is used by both the initial
910  * transmission and possible later retransmissions.
911  * All SKB's seen here are completely headerless.  It is our
912  * job to build the TCP header, and pass the packet down to
913  * IP so it can do the same plus pass the packet off to the
914  * device.
915  *
916  * We are working here with either a clone of the original
917  * SKB, or a fresh unique copy made by the retransmit engine.
918  */
919 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
920 			    gfp_t gfp_mask)
921 {
922 	const struct inet_connection_sock *icsk = inet_csk(sk);
923 	struct inet_sock *inet;
924 	struct tcp_sock *tp;
925 	struct tcp_skb_cb *tcb;
926 	struct tcp_out_options opts;
927 	unsigned int tcp_options_size, tcp_header_size;
928 	struct tcp_md5sig_key *md5;
929 	struct tcphdr *th;
930 	int err;
931 
932 	BUG_ON(!skb || !tcp_skb_pcount(skb));
933 	tp = tcp_sk(sk);
934 
935 	if (clone_it) {
936 		skb_mstamp_get(&skb->skb_mstamp);
937 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
938 			- tp->snd_una;
939 		tcp_rate_skb_sent(sk, skb);
940 
941 		if (unlikely(skb_cloned(skb)))
942 			skb = pskb_copy(skb, gfp_mask);
943 		else
944 			skb = skb_clone(skb, gfp_mask);
945 		if (unlikely(!skb))
946 			return -ENOBUFS;
947 	}
948 
949 	inet = inet_sk(sk);
950 	tcb = TCP_SKB_CB(skb);
951 	memset(&opts, 0, sizeof(opts));
952 
953 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
954 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
955 	else
956 		tcp_options_size = tcp_established_options(sk, skb, &opts,
957 							   &md5);
958 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
959 
960 	/* if no packet is in qdisc/device queue, then allow XPS to select
961 	 * another queue. We can be called from tcp_tsq_handler()
962 	 * which holds one reference to sk_wmem_alloc.
963 	 *
964 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
965 	 * One way to get this would be to set skb->truesize = 2 on them.
966 	 */
967 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
968 
969 	skb_push(skb, tcp_header_size);
970 	skb_reset_transport_header(skb);
971 
972 	skb_orphan(skb);
973 	skb->sk = sk;
974 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
975 	skb_set_hash_from_sk(skb, sk);
976 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
977 
978 	/* Build TCP header and checksum it. */
979 	th = (struct tcphdr *)skb->data;
980 	th->source		= inet->inet_sport;
981 	th->dest		= inet->inet_dport;
982 	th->seq			= htonl(tcb->seq);
983 	th->ack_seq		= htonl(tp->rcv_nxt);
984 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
985 					tcb->tcp_flags);
986 
987 	th->check		= 0;
988 	th->urg_ptr		= 0;
989 
990 	/* The urg_mode check is necessary during a below snd_una win probe */
991 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
992 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
993 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
994 			th->urg = 1;
995 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
996 			th->urg_ptr = htons(0xFFFF);
997 			th->urg = 1;
998 		}
999 	}
1000 
1001 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1002 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1003 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1004 		th->window      = htons(tcp_select_window(sk));
1005 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1006 	} else {
1007 		/* RFC1323: The window in SYN & SYN/ACK segments
1008 		 * is never scaled.
1009 		 */
1010 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1011 	}
1012 #ifdef CONFIG_TCP_MD5SIG
1013 	/* Calculate the MD5 hash, as we have all we need now */
1014 	if (md5) {
1015 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1016 		tp->af_specific->calc_md5_hash(opts.hash_location,
1017 					       md5, sk, skb);
1018 	}
1019 #endif
1020 
1021 	icsk->icsk_af_ops->send_check(sk, skb);
1022 
1023 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1024 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1025 
1026 	if (skb->len != tcp_header_size) {
1027 		tcp_event_data_sent(tp, sk);
1028 		tp->data_segs_out += tcp_skb_pcount(skb);
1029 	}
1030 
1031 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1032 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1033 			      tcp_skb_pcount(skb));
1034 
1035 	tp->segs_out += tcp_skb_pcount(skb);
1036 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1037 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1038 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1039 
1040 	/* Our usage of tstamp should remain private */
1041 	skb->tstamp = 0;
1042 
1043 	/* Cleanup our debris for IP stacks */
1044 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1045 			       sizeof(struct inet6_skb_parm)));
1046 
1047 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1048 
1049 	if (likely(err <= 0))
1050 		return err;
1051 
1052 	tcp_enter_cwr(sk);
1053 
1054 	return net_xmit_eval(err);
1055 }
1056 
1057 /* This routine just queues the buffer for sending.
1058  *
1059  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1060  * otherwise socket can stall.
1061  */
1062 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1063 {
1064 	struct tcp_sock *tp = tcp_sk(sk);
1065 
1066 	/* Advance write_seq and place onto the write_queue. */
1067 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1068 	__skb_header_release(skb);
1069 	tcp_add_write_queue_tail(sk, skb);
1070 	sk->sk_wmem_queued += skb->truesize;
1071 	sk_mem_charge(sk, skb->truesize);
1072 }
1073 
1074 /* Initialize TSO segments for a packet. */
1075 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1076 {
1077 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1078 		/* Avoid the costly divide in the normal
1079 		 * non-TSO case.
1080 		 */
1081 		tcp_skb_pcount_set(skb, 1);
1082 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1083 	} else {
1084 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1085 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1086 	}
1087 }
1088 
1089 /* When a modification to fackets out becomes necessary, we need to check
1090  * skb is counted to fackets_out or not.
1091  */
1092 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1093 				   int decr)
1094 {
1095 	struct tcp_sock *tp = tcp_sk(sk);
1096 
1097 	if (!tp->sacked_out || tcp_is_reno(tp))
1098 		return;
1099 
1100 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1101 		tp->fackets_out -= decr;
1102 }
1103 
1104 /* Pcount in the middle of the write queue got changed, we need to do various
1105  * tweaks to fix counters
1106  */
1107 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1108 {
1109 	struct tcp_sock *tp = tcp_sk(sk);
1110 
1111 	tp->packets_out -= decr;
1112 
1113 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1114 		tp->sacked_out -= decr;
1115 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1116 		tp->retrans_out -= decr;
1117 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1118 		tp->lost_out -= decr;
1119 
1120 	/* Reno case is special. Sigh... */
1121 	if (tcp_is_reno(tp) && decr > 0)
1122 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1123 
1124 	tcp_adjust_fackets_out(sk, skb, decr);
1125 
1126 	if (tp->lost_skb_hint &&
1127 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1128 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1129 		tp->lost_cnt_hint -= decr;
1130 
1131 	tcp_verify_left_out(tp);
1132 }
1133 
1134 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1135 {
1136 	return TCP_SKB_CB(skb)->txstamp_ack ||
1137 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1138 }
1139 
1140 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1141 {
1142 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1143 
1144 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1145 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1146 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1147 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1148 
1149 		shinfo->tx_flags &= ~tsflags;
1150 		shinfo2->tx_flags |= tsflags;
1151 		swap(shinfo->tskey, shinfo2->tskey);
1152 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1153 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1154 	}
1155 }
1156 
1157 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1158 {
1159 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1160 	TCP_SKB_CB(skb)->eor = 0;
1161 }
1162 
1163 /* Function to create two new TCP segments.  Shrinks the given segment
1164  * to the specified size and appends a new segment with the rest of the
1165  * packet to the list.  This won't be called frequently, I hope.
1166  * Remember, these are still headerless SKBs at this point.
1167  */
1168 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1169 		 unsigned int mss_now, gfp_t gfp)
1170 {
1171 	struct tcp_sock *tp = tcp_sk(sk);
1172 	struct sk_buff *buff;
1173 	int nsize, old_factor;
1174 	int nlen;
1175 	u8 flags;
1176 
1177 	if (WARN_ON(len > skb->len))
1178 		return -EINVAL;
1179 
1180 	nsize = skb_headlen(skb) - len;
1181 	if (nsize < 0)
1182 		nsize = 0;
1183 
1184 	if (skb_unclone(skb, gfp))
1185 		return -ENOMEM;
1186 
1187 	/* Get a new skb... force flag on. */
1188 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1189 	if (!buff)
1190 		return -ENOMEM; /* We'll just try again later. */
1191 
1192 	sk->sk_wmem_queued += buff->truesize;
1193 	sk_mem_charge(sk, buff->truesize);
1194 	nlen = skb->len - len - nsize;
1195 	buff->truesize += nlen;
1196 	skb->truesize -= nlen;
1197 
1198 	/* Correct the sequence numbers. */
1199 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1200 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1201 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1202 
1203 	/* PSH and FIN should only be set in the second packet. */
1204 	flags = TCP_SKB_CB(skb)->tcp_flags;
1205 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1206 	TCP_SKB_CB(buff)->tcp_flags = flags;
1207 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1208 	tcp_skb_fragment_eor(skb, buff);
1209 
1210 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1211 		/* Copy and checksum data tail into the new buffer. */
1212 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1213 						       skb_put(buff, nsize),
1214 						       nsize, 0);
1215 
1216 		skb_trim(skb, len);
1217 
1218 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1219 	} else {
1220 		skb->ip_summed = CHECKSUM_PARTIAL;
1221 		skb_split(skb, buff, len);
1222 	}
1223 
1224 	buff->ip_summed = skb->ip_summed;
1225 
1226 	buff->tstamp = skb->tstamp;
1227 	tcp_fragment_tstamp(skb, buff);
1228 
1229 	old_factor = tcp_skb_pcount(skb);
1230 
1231 	/* Fix up tso_factor for both original and new SKB.  */
1232 	tcp_set_skb_tso_segs(skb, mss_now);
1233 	tcp_set_skb_tso_segs(buff, mss_now);
1234 
1235 	/* Update delivered info for the new segment */
1236 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1237 
1238 	/* If this packet has been sent out already, we must
1239 	 * adjust the various packet counters.
1240 	 */
1241 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1242 		int diff = old_factor - tcp_skb_pcount(skb) -
1243 			tcp_skb_pcount(buff);
1244 
1245 		if (diff)
1246 			tcp_adjust_pcount(sk, skb, diff);
1247 	}
1248 
1249 	/* Link BUFF into the send queue. */
1250 	__skb_header_release(buff);
1251 	tcp_insert_write_queue_after(skb, buff, sk);
1252 
1253 	return 0;
1254 }
1255 
1256 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1257  * eventually). The difference is that pulled data not copied, but
1258  * immediately discarded.
1259  */
1260 static void __pskb_trim_head(struct sk_buff *skb, int len)
1261 {
1262 	struct skb_shared_info *shinfo;
1263 	int i, k, eat;
1264 
1265 	eat = min_t(int, len, skb_headlen(skb));
1266 	if (eat) {
1267 		__skb_pull(skb, eat);
1268 		len -= eat;
1269 		if (!len)
1270 			return;
1271 	}
1272 	eat = len;
1273 	k = 0;
1274 	shinfo = skb_shinfo(skb);
1275 	for (i = 0; i < shinfo->nr_frags; i++) {
1276 		int size = skb_frag_size(&shinfo->frags[i]);
1277 
1278 		if (size <= eat) {
1279 			skb_frag_unref(skb, i);
1280 			eat -= size;
1281 		} else {
1282 			shinfo->frags[k] = shinfo->frags[i];
1283 			if (eat) {
1284 				shinfo->frags[k].page_offset += eat;
1285 				skb_frag_size_sub(&shinfo->frags[k], eat);
1286 				eat = 0;
1287 			}
1288 			k++;
1289 		}
1290 	}
1291 	shinfo->nr_frags = k;
1292 
1293 	skb_reset_tail_pointer(skb);
1294 	skb->data_len -= len;
1295 	skb->len = skb->data_len;
1296 }
1297 
1298 /* Remove acked data from a packet in the transmit queue. */
1299 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1300 {
1301 	if (skb_unclone(skb, GFP_ATOMIC))
1302 		return -ENOMEM;
1303 
1304 	__pskb_trim_head(skb, len);
1305 
1306 	TCP_SKB_CB(skb)->seq += len;
1307 	skb->ip_summed = CHECKSUM_PARTIAL;
1308 
1309 	skb->truesize	     -= len;
1310 	sk->sk_wmem_queued   -= len;
1311 	sk_mem_uncharge(sk, len);
1312 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1313 
1314 	/* Any change of skb->len requires recalculation of tso factor. */
1315 	if (tcp_skb_pcount(skb) > 1)
1316 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1317 
1318 	return 0;
1319 }
1320 
1321 /* Calculate MSS not accounting any TCP options.  */
1322 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1323 {
1324 	const struct tcp_sock *tp = tcp_sk(sk);
1325 	const struct inet_connection_sock *icsk = inet_csk(sk);
1326 	int mss_now;
1327 
1328 	/* Calculate base mss without TCP options:
1329 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1330 	 */
1331 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1332 
1333 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1334 	if (icsk->icsk_af_ops->net_frag_header_len) {
1335 		const struct dst_entry *dst = __sk_dst_get(sk);
1336 
1337 		if (dst && dst_allfrag(dst))
1338 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1339 	}
1340 
1341 	/* Clamp it (mss_clamp does not include tcp options) */
1342 	if (mss_now > tp->rx_opt.mss_clamp)
1343 		mss_now = tp->rx_opt.mss_clamp;
1344 
1345 	/* Now subtract optional transport overhead */
1346 	mss_now -= icsk->icsk_ext_hdr_len;
1347 
1348 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1349 	if (mss_now < 48)
1350 		mss_now = 48;
1351 	return mss_now;
1352 }
1353 
1354 /* Calculate MSS. Not accounting for SACKs here.  */
1355 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1356 {
1357 	/* Subtract TCP options size, not including SACKs */
1358 	return __tcp_mtu_to_mss(sk, pmtu) -
1359 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1360 }
1361 
1362 /* Inverse of above */
1363 int tcp_mss_to_mtu(struct sock *sk, int mss)
1364 {
1365 	const struct tcp_sock *tp = tcp_sk(sk);
1366 	const struct inet_connection_sock *icsk = inet_csk(sk);
1367 	int mtu;
1368 
1369 	mtu = mss +
1370 	      tp->tcp_header_len +
1371 	      icsk->icsk_ext_hdr_len +
1372 	      icsk->icsk_af_ops->net_header_len;
1373 
1374 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1375 	if (icsk->icsk_af_ops->net_frag_header_len) {
1376 		const struct dst_entry *dst = __sk_dst_get(sk);
1377 
1378 		if (dst && dst_allfrag(dst))
1379 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1380 	}
1381 	return mtu;
1382 }
1383 EXPORT_SYMBOL(tcp_mss_to_mtu);
1384 
1385 /* MTU probing init per socket */
1386 void tcp_mtup_init(struct sock *sk)
1387 {
1388 	struct tcp_sock *tp = tcp_sk(sk);
1389 	struct inet_connection_sock *icsk = inet_csk(sk);
1390 	struct net *net = sock_net(sk);
1391 
1392 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1393 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1394 			       icsk->icsk_af_ops->net_header_len;
1395 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1396 	icsk->icsk_mtup.probe_size = 0;
1397 	if (icsk->icsk_mtup.enabled)
1398 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1399 }
1400 EXPORT_SYMBOL(tcp_mtup_init);
1401 
1402 /* This function synchronize snd mss to current pmtu/exthdr set.
1403 
1404    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1405    for TCP options, but includes only bare TCP header.
1406 
1407    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1408    It is minimum of user_mss and mss received with SYN.
1409    It also does not include TCP options.
1410 
1411    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1412 
1413    tp->mss_cache is current effective sending mss, including
1414    all tcp options except for SACKs. It is evaluated,
1415    taking into account current pmtu, but never exceeds
1416    tp->rx_opt.mss_clamp.
1417 
1418    NOTE1. rfc1122 clearly states that advertised MSS
1419    DOES NOT include either tcp or ip options.
1420 
1421    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1422    are READ ONLY outside this function.		--ANK (980731)
1423  */
1424 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1425 {
1426 	struct tcp_sock *tp = tcp_sk(sk);
1427 	struct inet_connection_sock *icsk = inet_csk(sk);
1428 	int mss_now;
1429 
1430 	if (icsk->icsk_mtup.search_high > pmtu)
1431 		icsk->icsk_mtup.search_high = pmtu;
1432 
1433 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1434 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1435 
1436 	/* And store cached results */
1437 	icsk->icsk_pmtu_cookie = pmtu;
1438 	if (icsk->icsk_mtup.enabled)
1439 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1440 	tp->mss_cache = mss_now;
1441 
1442 	return mss_now;
1443 }
1444 EXPORT_SYMBOL(tcp_sync_mss);
1445 
1446 /* Compute the current effective MSS, taking SACKs and IP options,
1447  * and even PMTU discovery events into account.
1448  */
1449 unsigned int tcp_current_mss(struct sock *sk)
1450 {
1451 	const struct tcp_sock *tp = tcp_sk(sk);
1452 	const struct dst_entry *dst = __sk_dst_get(sk);
1453 	u32 mss_now;
1454 	unsigned int header_len;
1455 	struct tcp_out_options opts;
1456 	struct tcp_md5sig_key *md5;
1457 
1458 	mss_now = tp->mss_cache;
1459 
1460 	if (dst) {
1461 		u32 mtu = dst_mtu(dst);
1462 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1463 			mss_now = tcp_sync_mss(sk, mtu);
1464 	}
1465 
1466 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1467 		     sizeof(struct tcphdr);
1468 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1469 	 * some common options. If this is an odd packet (because we have SACK
1470 	 * blocks etc) then our calculated header_len will be different, and
1471 	 * we have to adjust mss_now correspondingly */
1472 	if (header_len != tp->tcp_header_len) {
1473 		int delta = (int) header_len - tp->tcp_header_len;
1474 		mss_now -= delta;
1475 	}
1476 
1477 	return mss_now;
1478 }
1479 
1480 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1481  * As additional protections, we do not touch cwnd in retransmission phases,
1482  * and if application hit its sndbuf limit recently.
1483  */
1484 static void tcp_cwnd_application_limited(struct sock *sk)
1485 {
1486 	struct tcp_sock *tp = tcp_sk(sk);
1487 
1488 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1489 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1490 		/* Limited by application or receiver window. */
1491 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1492 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1493 		if (win_used < tp->snd_cwnd) {
1494 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1495 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1496 		}
1497 		tp->snd_cwnd_used = 0;
1498 	}
1499 	tp->snd_cwnd_stamp = tcp_time_stamp;
1500 }
1501 
1502 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1503 {
1504 	struct tcp_sock *tp = tcp_sk(sk);
1505 
1506 	/* Track the maximum number of outstanding packets in each
1507 	 * window, and remember whether we were cwnd-limited then.
1508 	 */
1509 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1510 	    tp->packets_out > tp->max_packets_out) {
1511 		tp->max_packets_out = tp->packets_out;
1512 		tp->max_packets_seq = tp->snd_nxt;
1513 		tp->is_cwnd_limited = is_cwnd_limited;
1514 	}
1515 
1516 	if (tcp_is_cwnd_limited(sk)) {
1517 		/* Network is feed fully. */
1518 		tp->snd_cwnd_used = 0;
1519 		tp->snd_cwnd_stamp = tcp_time_stamp;
1520 	} else {
1521 		/* Network starves. */
1522 		if (tp->packets_out > tp->snd_cwnd_used)
1523 			tp->snd_cwnd_used = tp->packets_out;
1524 
1525 		if (sysctl_tcp_slow_start_after_idle &&
1526 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1527 			tcp_cwnd_application_limited(sk);
1528 
1529 		/* The following conditions together indicate the starvation
1530 		 * is caused by insufficient sender buffer:
1531 		 * 1) just sent some data (see tcp_write_xmit)
1532 		 * 2) not cwnd limited (this else condition)
1533 		 * 3) no more data to send (null tcp_send_head )
1534 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1535 		 */
1536 		if (!tcp_send_head(sk) && sk->sk_socket &&
1537 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1538 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1539 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1540 	}
1541 }
1542 
1543 /* Minshall's variant of the Nagle send check. */
1544 static bool tcp_minshall_check(const struct tcp_sock *tp)
1545 {
1546 	return after(tp->snd_sml, tp->snd_una) &&
1547 		!after(tp->snd_sml, tp->snd_nxt);
1548 }
1549 
1550 /* Update snd_sml if this skb is under mss
1551  * Note that a TSO packet might end with a sub-mss segment
1552  * The test is really :
1553  * if ((skb->len % mss) != 0)
1554  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1555  * But we can avoid doing the divide again given we already have
1556  *  skb_pcount = skb->len / mss_now
1557  */
1558 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1559 				const struct sk_buff *skb)
1560 {
1561 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1562 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1563 }
1564 
1565 /* Return false, if packet can be sent now without violation Nagle's rules:
1566  * 1. It is full sized. (provided by caller in %partial bool)
1567  * 2. Or it contains FIN. (already checked by caller)
1568  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1569  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1570  *    With Minshall's modification: all sent small packets are ACKed.
1571  */
1572 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1573 			    int nonagle)
1574 {
1575 	return partial &&
1576 		((nonagle & TCP_NAGLE_CORK) ||
1577 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1578 }
1579 
1580 /* Return how many segs we'd like on a TSO packet,
1581  * to send one TSO packet per ms
1582  */
1583 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1584 		     int min_tso_segs)
1585 {
1586 	u32 bytes, segs;
1587 
1588 	bytes = min(sk->sk_pacing_rate >> 10,
1589 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1590 
1591 	/* Goal is to send at least one packet per ms,
1592 	 * not one big TSO packet every 100 ms.
1593 	 * This preserves ACK clocking and is consistent
1594 	 * with tcp_tso_should_defer() heuristic.
1595 	 */
1596 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1597 
1598 	return min_t(u32, segs, sk->sk_gso_max_segs);
1599 }
1600 EXPORT_SYMBOL(tcp_tso_autosize);
1601 
1602 /* Return the number of segments we want in the skb we are transmitting.
1603  * See if congestion control module wants to decide; otherwise, autosize.
1604  */
1605 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1606 {
1607 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1608 	u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1609 
1610 	return tso_segs ? :
1611 		tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1612 }
1613 
1614 /* Returns the portion of skb which can be sent right away */
1615 static unsigned int tcp_mss_split_point(const struct sock *sk,
1616 					const struct sk_buff *skb,
1617 					unsigned int mss_now,
1618 					unsigned int max_segs,
1619 					int nonagle)
1620 {
1621 	const struct tcp_sock *tp = tcp_sk(sk);
1622 	u32 partial, needed, window, max_len;
1623 
1624 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1625 	max_len = mss_now * max_segs;
1626 
1627 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1628 		return max_len;
1629 
1630 	needed = min(skb->len, window);
1631 
1632 	if (max_len <= needed)
1633 		return max_len;
1634 
1635 	partial = needed % mss_now;
1636 	/* If last segment is not a full MSS, check if Nagle rules allow us
1637 	 * to include this last segment in this skb.
1638 	 * Otherwise, we'll split the skb at last MSS boundary
1639 	 */
1640 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1641 		return needed - partial;
1642 
1643 	return needed;
1644 }
1645 
1646 /* Can at least one segment of SKB be sent right now, according to the
1647  * congestion window rules?  If so, return how many segments are allowed.
1648  */
1649 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1650 					 const struct sk_buff *skb)
1651 {
1652 	u32 in_flight, cwnd, halfcwnd;
1653 
1654 	/* Don't be strict about the congestion window for the final FIN.  */
1655 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1656 	    tcp_skb_pcount(skb) == 1)
1657 		return 1;
1658 
1659 	in_flight = tcp_packets_in_flight(tp);
1660 	cwnd = tp->snd_cwnd;
1661 	if (in_flight >= cwnd)
1662 		return 0;
1663 
1664 	/* For better scheduling, ensure we have at least
1665 	 * 2 GSO packets in flight.
1666 	 */
1667 	halfcwnd = max(cwnd >> 1, 1U);
1668 	return min(halfcwnd, cwnd - in_flight);
1669 }
1670 
1671 /* Initialize TSO state of a skb.
1672  * This must be invoked the first time we consider transmitting
1673  * SKB onto the wire.
1674  */
1675 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1676 {
1677 	int tso_segs = tcp_skb_pcount(skb);
1678 
1679 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1680 		tcp_set_skb_tso_segs(skb, mss_now);
1681 		tso_segs = tcp_skb_pcount(skb);
1682 	}
1683 	return tso_segs;
1684 }
1685 
1686 
1687 /* Return true if the Nagle test allows this packet to be
1688  * sent now.
1689  */
1690 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1691 				  unsigned int cur_mss, int nonagle)
1692 {
1693 	/* Nagle rule does not apply to frames, which sit in the middle of the
1694 	 * write_queue (they have no chances to get new data).
1695 	 *
1696 	 * This is implemented in the callers, where they modify the 'nonagle'
1697 	 * argument based upon the location of SKB in the send queue.
1698 	 */
1699 	if (nonagle & TCP_NAGLE_PUSH)
1700 		return true;
1701 
1702 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1703 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1704 		return true;
1705 
1706 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1707 		return true;
1708 
1709 	return false;
1710 }
1711 
1712 /* Does at least the first segment of SKB fit into the send window? */
1713 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1714 			     const struct sk_buff *skb,
1715 			     unsigned int cur_mss)
1716 {
1717 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1718 
1719 	if (skb->len > cur_mss)
1720 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1721 
1722 	return !after(end_seq, tcp_wnd_end(tp));
1723 }
1724 
1725 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1726  * should be put on the wire right now.  If so, it returns the number of
1727  * packets allowed by the congestion window.
1728  */
1729 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1730 				 unsigned int cur_mss, int nonagle)
1731 {
1732 	const struct tcp_sock *tp = tcp_sk(sk);
1733 	unsigned int cwnd_quota;
1734 
1735 	tcp_init_tso_segs(skb, cur_mss);
1736 
1737 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1738 		return 0;
1739 
1740 	cwnd_quota = tcp_cwnd_test(tp, skb);
1741 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1742 		cwnd_quota = 0;
1743 
1744 	return cwnd_quota;
1745 }
1746 
1747 /* Test if sending is allowed right now. */
1748 bool tcp_may_send_now(struct sock *sk)
1749 {
1750 	const struct tcp_sock *tp = tcp_sk(sk);
1751 	struct sk_buff *skb = tcp_send_head(sk);
1752 
1753 	return skb &&
1754 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1755 			     (tcp_skb_is_last(sk, skb) ?
1756 			      tp->nonagle : TCP_NAGLE_PUSH));
1757 }
1758 
1759 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1760  * which is put after SKB on the list.  It is very much like
1761  * tcp_fragment() except that it may make several kinds of assumptions
1762  * in order to speed up the splitting operation.  In particular, we
1763  * know that all the data is in scatter-gather pages, and that the
1764  * packet has never been sent out before (and thus is not cloned).
1765  */
1766 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1767 			unsigned int mss_now, gfp_t gfp)
1768 {
1769 	struct sk_buff *buff;
1770 	int nlen = skb->len - len;
1771 	u8 flags;
1772 
1773 	/* All of a TSO frame must be composed of paged data.  */
1774 	if (skb->len != skb->data_len)
1775 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1776 
1777 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1778 	if (unlikely(!buff))
1779 		return -ENOMEM;
1780 
1781 	sk->sk_wmem_queued += buff->truesize;
1782 	sk_mem_charge(sk, buff->truesize);
1783 	buff->truesize += nlen;
1784 	skb->truesize -= nlen;
1785 
1786 	/* Correct the sequence numbers. */
1787 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1788 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1789 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1790 
1791 	/* PSH and FIN should only be set in the second packet. */
1792 	flags = TCP_SKB_CB(skb)->tcp_flags;
1793 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1794 	TCP_SKB_CB(buff)->tcp_flags = flags;
1795 
1796 	/* This packet was never sent out yet, so no SACK bits. */
1797 	TCP_SKB_CB(buff)->sacked = 0;
1798 
1799 	tcp_skb_fragment_eor(skb, buff);
1800 
1801 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1802 	skb_split(skb, buff, len);
1803 	tcp_fragment_tstamp(skb, buff);
1804 
1805 	/* Fix up tso_factor for both original and new SKB.  */
1806 	tcp_set_skb_tso_segs(skb, mss_now);
1807 	tcp_set_skb_tso_segs(buff, mss_now);
1808 
1809 	/* Link BUFF into the send queue. */
1810 	__skb_header_release(buff);
1811 	tcp_insert_write_queue_after(skb, buff, sk);
1812 
1813 	return 0;
1814 }
1815 
1816 /* Try to defer sending, if possible, in order to minimize the amount
1817  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1818  *
1819  * This algorithm is from John Heffner.
1820  */
1821 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1822 				 bool *is_cwnd_limited, u32 max_segs)
1823 {
1824 	const struct inet_connection_sock *icsk = inet_csk(sk);
1825 	u32 age, send_win, cong_win, limit, in_flight;
1826 	struct tcp_sock *tp = tcp_sk(sk);
1827 	struct skb_mstamp now;
1828 	struct sk_buff *head;
1829 	int win_divisor;
1830 
1831 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1832 		goto send_now;
1833 
1834 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1835 		goto send_now;
1836 
1837 	/* Avoid bursty behavior by allowing defer
1838 	 * only if the last write was recent.
1839 	 */
1840 	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1841 		goto send_now;
1842 
1843 	in_flight = tcp_packets_in_flight(tp);
1844 
1845 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1846 
1847 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1848 
1849 	/* From in_flight test above, we know that cwnd > in_flight.  */
1850 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1851 
1852 	limit = min(send_win, cong_win);
1853 
1854 	/* If a full-sized TSO skb can be sent, do it. */
1855 	if (limit >= max_segs * tp->mss_cache)
1856 		goto send_now;
1857 
1858 	/* Middle in queue won't get any more data, full sendable already? */
1859 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1860 		goto send_now;
1861 
1862 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1863 	if (win_divisor) {
1864 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1865 
1866 		/* If at least some fraction of a window is available,
1867 		 * just use it.
1868 		 */
1869 		chunk /= win_divisor;
1870 		if (limit >= chunk)
1871 			goto send_now;
1872 	} else {
1873 		/* Different approach, try not to defer past a single
1874 		 * ACK.  Receiver should ACK every other full sized
1875 		 * frame, so if we have space for more than 3 frames
1876 		 * then send now.
1877 		 */
1878 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1879 			goto send_now;
1880 	}
1881 
1882 	head = tcp_write_queue_head(sk);
1883 	skb_mstamp_get(&now);
1884 	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1885 	/* If next ACK is likely to come too late (half srtt), do not defer */
1886 	if (age < (tp->srtt_us >> 4))
1887 		goto send_now;
1888 
1889 	/* Ok, it looks like it is advisable to defer. */
1890 
1891 	if (cong_win < send_win && cong_win <= skb->len)
1892 		*is_cwnd_limited = true;
1893 
1894 	return true;
1895 
1896 send_now:
1897 	return false;
1898 }
1899 
1900 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1901 {
1902 	struct inet_connection_sock *icsk = inet_csk(sk);
1903 	struct tcp_sock *tp = tcp_sk(sk);
1904 	struct net *net = sock_net(sk);
1905 	u32 interval;
1906 	s32 delta;
1907 
1908 	interval = net->ipv4.sysctl_tcp_probe_interval;
1909 	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1910 	if (unlikely(delta >= interval * HZ)) {
1911 		int mss = tcp_current_mss(sk);
1912 
1913 		/* Update current search range */
1914 		icsk->icsk_mtup.probe_size = 0;
1915 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1916 			sizeof(struct tcphdr) +
1917 			icsk->icsk_af_ops->net_header_len;
1918 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1919 
1920 		/* Update probe time stamp */
1921 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1922 	}
1923 }
1924 
1925 /* Create a new MTU probe if we are ready.
1926  * MTU probe is regularly attempting to increase the path MTU by
1927  * deliberately sending larger packets.  This discovers routing
1928  * changes resulting in larger path MTUs.
1929  *
1930  * Returns 0 if we should wait to probe (no cwnd available),
1931  *         1 if a probe was sent,
1932  *         -1 otherwise
1933  */
1934 static int tcp_mtu_probe(struct sock *sk)
1935 {
1936 	struct inet_connection_sock *icsk = inet_csk(sk);
1937 	struct tcp_sock *tp = tcp_sk(sk);
1938 	struct sk_buff *skb, *nskb, *next;
1939 	struct net *net = sock_net(sk);
1940 	int probe_size;
1941 	int size_needed;
1942 	int copy, len;
1943 	int mss_now;
1944 	int interval;
1945 
1946 	/* Not currently probing/verifying,
1947 	 * not in recovery,
1948 	 * have enough cwnd, and
1949 	 * not SACKing (the variable headers throw things off)
1950 	 */
1951 	if (likely(!icsk->icsk_mtup.enabled ||
1952 		   icsk->icsk_mtup.probe_size ||
1953 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1954 		   tp->snd_cwnd < 11 ||
1955 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
1956 		return -1;
1957 
1958 	/* Use binary search for probe_size between tcp_mss_base,
1959 	 * and current mss_clamp. if (search_high - search_low)
1960 	 * smaller than a threshold, backoff from probing.
1961 	 */
1962 	mss_now = tcp_current_mss(sk);
1963 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1964 				    icsk->icsk_mtup.search_low) >> 1);
1965 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1966 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1967 	/* When misfortune happens, we are reprobing actively,
1968 	 * and then reprobe timer has expired. We stick with current
1969 	 * probing process by not resetting search range to its orignal.
1970 	 */
1971 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1972 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1973 		/* Check whether enough time has elaplased for
1974 		 * another round of probing.
1975 		 */
1976 		tcp_mtu_check_reprobe(sk);
1977 		return -1;
1978 	}
1979 
1980 	/* Have enough data in the send queue to probe? */
1981 	if (tp->write_seq - tp->snd_nxt < size_needed)
1982 		return -1;
1983 
1984 	if (tp->snd_wnd < size_needed)
1985 		return -1;
1986 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1987 		return 0;
1988 
1989 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1990 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1991 		if (!tcp_packets_in_flight(tp))
1992 			return -1;
1993 		else
1994 			return 0;
1995 	}
1996 
1997 	/* We're allowed to probe.  Build it now. */
1998 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1999 	if (!nskb)
2000 		return -1;
2001 	sk->sk_wmem_queued += nskb->truesize;
2002 	sk_mem_charge(sk, nskb->truesize);
2003 
2004 	skb = tcp_send_head(sk);
2005 
2006 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2007 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2008 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2009 	TCP_SKB_CB(nskb)->sacked = 0;
2010 	nskb->csum = 0;
2011 	nskb->ip_summed = skb->ip_summed;
2012 
2013 	tcp_insert_write_queue_before(nskb, skb, sk);
2014 
2015 	len = 0;
2016 	tcp_for_write_queue_from_safe(skb, next, sk) {
2017 		copy = min_t(int, skb->len, probe_size - len);
2018 		if (nskb->ip_summed) {
2019 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2020 		} else {
2021 			__wsum csum = skb_copy_and_csum_bits(skb, 0,
2022 							     skb_put(nskb, copy),
2023 							     copy, 0);
2024 			nskb->csum = csum_block_add(nskb->csum, csum, len);
2025 		}
2026 
2027 		if (skb->len <= copy) {
2028 			/* We've eaten all the data from this skb.
2029 			 * Throw it away. */
2030 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2031 			tcp_unlink_write_queue(skb, sk);
2032 			sk_wmem_free_skb(sk, skb);
2033 		} else {
2034 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2035 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2036 			if (!skb_shinfo(skb)->nr_frags) {
2037 				skb_pull(skb, copy);
2038 				if (skb->ip_summed != CHECKSUM_PARTIAL)
2039 					skb->csum = csum_partial(skb->data,
2040 								 skb->len, 0);
2041 			} else {
2042 				__pskb_trim_head(skb, copy);
2043 				tcp_set_skb_tso_segs(skb, mss_now);
2044 			}
2045 			TCP_SKB_CB(skb)->seq += copy;
2046 		}
2047 
2048 		len += copy;
2049 
2050 		if (len >= probe_size)
2051 			break;
2052 	}
2053 	tcp_init_tso_segs(nskb, nskb->len);
2054 
2055 	/* We're ready to send.  If this fails, the probe will
2056 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2057 	 */
2058 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2059 		/* Decrement cwnd here because we are sending
2060 		 * effectively two packets. */
2061 		tp->snd_cwnd--;
2062 		tcp_event_new_data_sent(sk, nskb);
2063 
2064 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2065 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2066 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2067 
2068 		return 1;
2069 	}
2070 
2071 	return -1;
2072 }
2073 
2074 /* TCP Small Queues :
2075  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2076  * (These limits are doubled for retransmits)
2077  * This allows for :
2078  *  - better RTT estimation and ACK scheduling
2079  *  - faster recovery
2080  *  - high rates
2081  * Alas, some drivers / subsystems require a fair amount
2082  * of queued bytes to ensure line rate.
2083  * One example is wifi aggregation (802.11 AMPDU)
2084  */
2085 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2086 				  unsigned int factor)
2087 {
2088 	unsigned int limit;
2089 
2090 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2091 	limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2092 	limit <<= factor;
2093 
2094 	if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2095 		/* Always send the 1st or 2nd skb in write queue.
2096 		 * No need to wait for TX completion to call us back,
2097 		 * after softirq/tasklet schedule.
2098 		 * This helps when TX completions are delayed too much.
2099 		 */
2100 		if (skb == sk->sk_write_queue.next ||
2101 		    skb->prev == sk->sk_write_queue.next)
2102 			return false;
2103 
2104 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2105 		/* It is possible TX completion already happened
2106 		 * before we set TSQ_THROTTLED, so we must
2107 		 * test again the condition.
2108 		 */
2109 		smp_mb__after_atomic();
2110 		if (atomic_read(&sk->sk_wmem_alloc) > limit)
2111 			return true;
2112 	}
2113 	return false;
2114 }
2115 
2116 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2117 {
2118 	const u32 now = tcp_time_stamp;
2119 
2120 	if (tp->chrono_type > TCP_CHRONO_UNSPEC)
2121 		tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
2122 	tp->chrono_start = now;
2123 	tp->chrono_type = new;
2124 }
2125 
2126 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2127 {
2128 	struct tcp_sock *tp = tcp_sk(sk);
2129 
2130 	/* If there are multiple conditions worthy of tracking in a
2131 	 * chronograph then the highest priority enum takes precedence
2132 	 * over the other conditions. So that if something "more interesting"
2133 	 * starts happening, stop the previous chrono and start a new one.
2134 	 */
2135 	if (type > tp->chrono_type)
2136 		tcp_chrono_set(tp, type);
2137 }
2138 
2139 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2140 {
2141 	struct tcp_sock *tp = tcp_sk(sk);
2142 
2143 
2144 	/* There are multiple conditions worthy of tracking in a
2145 	 * chronograph, so that the highest priority enum takes
2146 	 * precedence over the other conditions (see tcp_chrono_start).
2147 	 * If a condition stops, we only stop chrono tracking if
2148 	 * it's the "most interesting" or current chrono we are
2149 	 * tracking and starts busy chrono if we have pending data.
2150 	 */
2151 	if (tcp_write_queue_empty(sk))
2152 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2153 	else if (type == tp->chrono_type)
2154 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2155 }
2156 
2157 /* This routine writes packets to the network.  It advances the
2158  * send_head.  This happens as incoming acks open up the remote
2159  * window for us.
2160  *
2161  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2162  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2163  * account rare use of URG, this is not a big flaw.
2164  *
2165  * Send at most one packet when push_one > 0. Temporarily ignore
2166  * cwnd limit to force at most one packet out when push_one == 2.
2167 
2168  * Returns true, if no segments are in flight and we have queued segments,
2169  * but cannot send anything now because of SWS or another problem.
2170  */
2171 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2172 			   int push_one, gfp_t gfp)
2173 {
2174 	struct tcp_sock *tp = tcp_sk(sk);
2175 	struct sk_buff *skb;
2176 	unsigned int tso_segs, sent_pkts;
2177 	int cwnd_quota;
2178 	int result;
2179 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2180 	u32 max_segs;
2181 
2182 	sent_pkts = 0;
2183 
2184 	if (!push_one) {
2185 		/* Do MTU probing. */
2186 		result = tcp_mtu_probe(sk);
2187 		if (!result) {
2188 			return false;
2189 		} else if (result > 0) {
2190 			sent_pkts = 1;
2191 		}
2192 	}
2193 
2194 	max_segs = tcp_tso_segs(sk, mss_now);
2195 	while ((skb = tcp_send_head(sk))) {
2196 		unsigned int limit;
2197 
2198 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2199 		BUG_ON(!tso_segs);
2200 
2201 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2202 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2203 			skb_mstamp_get(&skb->skb_mstamp);
2204 			goto repair; /* Skip network transmission */
2205 		}
2206 
2207 		cwnd_quota = tcp_cwnd_test(tp, skb);
2208 		if (!cwnd_quota) {
2209 			if (push_one == 2)
2210 				/* Force out a loss probe pkt. */
2211 				cwnd_quota = 1;
2212 			else
2213 				break;
2214 		}
2215 
2216 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2217 			is_rwnd_limited = true;
2218 			break;
2219 		}
2220 
2221 		if (tso_segs == 1) {
2222 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2223 						     (tcp_skb_is_last(sk, skb) ?
2224 						      nonagle : TCP_NAGLE_PUSH))))
2225 				break;
2226 		} else {
2227 			if (!push_one &&
2228 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2229 						 max_segs))
2230 				break;
2231 		}
2232 
2233 		limit = mss_now;
2234 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2235 			limit = tcp_mss_split_point(sk, skb, mss_now,
2236 						    min_t(unsigned int,
2237 							  cwnd_quota,
2238 							  max_segs),
2239 						    nonagle);
2240 
2241 		if (skb->len > limit &&
2242 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2243 			break;
2244 
2245 		if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2246 			clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2247 		if (tcp_small_queue_check(sk, skb, 0))
2248 			break;
2249 
2250 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2251 			break;
2252 
2253 repair:
2254 		/* Advance the send_head.  This one is sent out.
2255 		 * This call will increment packets_out.
2256 		 */
2257 		tcp_event_new_data_sent(sk, skb);
2258 
2259 		tcp_minshall_update(tp, mss_now, skb);
2260 		sent_pkts += tcp_skb_pcount(skb);
2261 
2262 		if (push_one)
2263 			break;
2264 	}
2265 
2266 	if (is_rwnd_limited)
2267 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2268 	else
2269 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2270 
2271 	if (likely(sent_pkts)) {
2272 		if (tcp_in_cwnd_reduction(sk))
2273 			tp->prr_out += sent_pkts;
2274 
2275 		/* Send one loss probe per tail loss episode. */
2276 		if (push_one != 2)
2277 			tcp_schedule_loss_probe(sk);
2278 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2279 		tcp_cwnd_validate(sk, is_cwnd_limited);
2280 		return false;
2281 	}
2282 	return !tp->packets_out && tcp_send_head(sk);
2283 }
2284 
2285 bool tcp_schedule_loss_probe(struct sock *sk)
2286 {
2287 	struct inet_connection_sock *icsk = inet_csk(sk);
2288 	struct tcp_sock *tp = tcp_sk(sk);
2289 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2290 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2291 
2292 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2293 		return false;
2294 	/* No consecutive loss probes. */
2295 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2296 		tcp_rearm_rto(sk);
2297 		return false;
2298 	}
2299 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2300 	 * finishes.
2301 	 */
2302 	if (tp->fastopen_rsk)
2303 		return false;
2304 
2305 	/* TLP is only scheduled when next timer event is RTO. */
2306 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2307 		return false;
2308 
2309 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2310 	 * in Open state, that are either limited by cwnd or application.
2311 	 */
2312 	if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2313 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2314 		return false;
2315 
2316 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2317 	     tcp_send_head(sk))
2318 		return false;
2319 
2320 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2321 	 * for delayed ack when there's one outstanding packet. If no RTT
2322 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2323 	 */
2324 	timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2325 	if (tp->packets_out == 1)
2326 		timeout = max_t(u32, timeout,
2327 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2328 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2329 
2330 	/* If RTO is shorter, just schedule TLP in its place. */
2331 	tlp_time_stamp = tcp_time_stamp + timeout;
2332 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2333 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2334 		s32 delta = rto_time_stamp - tcp_time_stamp;
2335 		if (delta > 0)
2336 			timeout = delta;
2337 	}
2338 
2339 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2340 				  TCP_RTO_MAX);
2341 	return true;
2342 }
2343 
2344 /* Thanks to skb fast clones, we can detect if a prior transmit of
2345  * a packet is still in a qdisc or driver queue.
2346  * In this case, there is very little point doing a retransmit !
2347  */
2348 static bool skb_still_in_host_queue(const struct sock *sk,
2349 				    const struct sk_buff *skb)
2350 {
2351 	if (unlikely(skb_fclone_busy(sk, skb))) {
2352 		NET_INC_STATS(sock_net(sk),
2353 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2354 		return true;
2355 	}
2356 	return false;
2357 }
2358 
2359 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2360  * retransmit the last segment.
2361  */
2362 void tcp_send_loss_probe(struct sock *sk)
2363 {
2364 	struct tcp_sock *tp = tcp_sk(sk);
2365 	struct sk_buff *skb;
2366 	int pcount;
2367 	int mss = tcp_current_mss(sk);
2368 
2369 	skb = tcp_send_head(sk);
2370 	if (skb) {
2371 		if (tcp_snd_wnd_test(tp, skb, mss)) {
2372 			pcount = tp->packets_out;
2373 			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2374 			if (tp->packets_out > pcount)
2375 				goto probe_sent;
2376 			goto rearm_timer;
2377 		}
2378 		skb = tcp_write_queue_prev(sk, skb);
2379 	} else {
2380 		skb = tcp_write_queue_tail(sk);
2381 	}
2382 
2383 	/* At most one outstanding TLP retransmission. */
2384 	if (tp->tlp_high_seq)
2385 		goto rearm_timer;
2386 
2387 	/* Retransmit last segment. */
2388 	if (WARN_ON(!skb))
2389 		goto rearm_timer;
2390 
2391 	if (skb_still_in_host_queue(sk, skb))
2392 		goto rearm_timer;
2393 
2394 	pcount = tcp_skb_pcount(skb);
2395 	if (WARN_ON(!pcount))
2396 		goto rearm_timer;
2397 
2398 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2399 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2400 					  GFP_ATOMIC)))
2401 			goto rearm_timer;
2402 		skb = tcp_write_queue_next(sk, skb);
2403 	}
2404 
2405 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2406 		goto rearm_timer;
2407 
2408 	if (__tcp_retransmit_skb(sk, skb, 1))
2409 		goto rearm_timer;
2410 
2411 	/* Record snd_nxt for loss detection. */
2412 	tp->tlp_high_seq = tp->snd_nxt;
2413 
2414 probe_sent:
2415 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2416 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2417 	inet_csk(sk)->icsk_pending = 0;
2418 rearm_timer:
2419 	tcp_rearm_rto(sk);
2420 }
2421 
2422 /* Push out any pending frames which were held back due to
2423  * TCP_CORK or attempt at coalescing tiny packets.
2424  * The socket must be locked by the caller.
2425  */
2426 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2427 			       int nonagle)
2428 {
2429 	/* If we are closed, the bytes will have to remain here.
2430 	 * In time closedown will finish, we empty the write queue and
2431 	 * all will be happy.
2432 	 */
2433 	if (unlikely(sk->sk_state == TCP_CLOSE))
2434 		return;
2435 
2436 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2437 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2438 		tcp_check_probe_timer(sk);
2439 }
2440 
2441 /* Send _single_ skb sitting at the send head. This function requires
2442  * true push pending frames to setup probe timer etc.
2443  */
2444 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2445 {
2446 	struct sk_buff *skb = tcp_send_head(sk);
2447 
2448 	BUG_ON(!skb || skb->len < mss_now);
2449 
2450 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2451 }
2452 
2453 /* This function returns the amount that we can raise the
2454  * usable window based on the following constraints
2455  *
2456  * 1. The window can never be shrunk once it is offered (RFC 793)
2457  * 2. We limit memory per socket
2458  *
2459  * RFC 1122:
2460  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2461  *  RECV.NEXT + RCV.WIN fixed until:
2462  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2463  *
2464  * i.e. don't raise the right edge of the window until you can raise
2465  * it at least MSS bytes.
2466  *
2467  * Unfortunately, the recommended algorithm breaks header prediction,
2468  * since header prediction assumes th->window stays fixed.
2469  *
2470  * Strictly speaking, keeping th->window fixed violates the receiver
2471  * side SWS prevention criteria. The problem is that under this rule
2472  * a stream of single byte packets will cause the right side of the
2473  * window to always advance by a single byte.
2474  *
2475  * Of course, if the sender implements sender side SWS prevention
2476  * then this will not be a problem.
2477  *
2478  * BSD seems to make the following compromise:
2479  *
2480  *	If the free space is less than the 1/4 of the maximum
2481  *	space available and the free space is less than 1/2 mss,
2482  *	then set the window to 0.
2483  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2484  *	Otherwise, just prevent the window from shrinking
2485  *	and from being larger than the largest representable value.
2486  *
2487  * This prevents incremental opening of the window in the regime
2488  * where TCP is limited by the speed of the reader side taking
2489  * data out of the TCP receive queue. It does nothing about
2490  * those cases where the window is constrained on the sender side
2491  * because the pipeline is full.
2492  *
2493  * BSD also seems to "accidentally" limit itself to windows that are a
2494  * multiple of MSS, at least until the free space gets quite small.
2495  * This would appear to be a side effect of the mbuf implementation.
2496  * Combining these two algorithms results in the observed behavior
2497  * of having a fixed window size at almost all times.
2498  *
2499  * Below we obtain similar behavior by forcing the offered window to
2500  * a multiple of the mss when it is feasible to do so.
2501  *
2502  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2503  * Regular options like TIMESTAMP are taken into account.
2504  */
2505 u32 __tcp_select_window(struct sock *sk)
2506 {
2507 	struct inet_connection_sock *icsk = inet_csk(sk);
2508 	struct tcp_sock *tp = tcp_sk(sk);
2509 	/* MSS for the peer's data.  Previous versions used mss_clamp
2510 	 * here.  I don't know if the value based on our guesses
2511 	 * of peer's MSS is better for the performance.  It's more correct
2512 	 * but may be worse for the performance because of rcv_mss
2513 	 * fluctuations.  --SAW  1998/11/1
2514 	 */
2515 	int mss = icsk->icsk_ack.rcv_mss;
2516 	int free_space = tcp_space(sk);
2517 	int allowed_space = tcp_full_space(sk);
2518 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2519 	int window;
2520 
2521 	if (mss > full_space)
2522 		mss = full_space;
2523 
2524 	if (free_space < (full_space >> 1)) {
2525 		icsk->icsk_ack.quick = 0;
2526 
2527 		if (tcp_under_memory_pressure(sk))
2528 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2529 					       4U * tp->advmss);
2530 
2531 		/* free_space might become our new window, make sure we don't
2532 		 * increase it due to wscale.
2533 		 */
2534 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2535 
2536 		/* if free space is less than mss estimate, or is below 1/16th
2537 		 * of the maximum allowed, try to move to zero-window, else
2538 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2539 		 * new incoming data is dropped due to memory limits.
2540 		 * With large window, mss test triggers way too late in order
2541 		 * to announce zero window in time before rmem limit kicks in.
2542 		 */
2543 		if (free_space < (allowed_space >> 4) || free_space < mss)
2544 			return 0;
2545 	}
2546 
2547 	if (free_space > tp->rcv_ssthresh)
2548 		free_space = tp->rcv_ssthresh;
2549 
2550 	/* Don't do rounding if we are using window scaling, since the
2551 	 * scaled window will not line up with the MSS boundary anyway.
2552 	 */
2553 	window = tp->rcv_wnd;
2554 	if (tp->rx_opt.rcv_wscale) {
2555 		window = free_space;
2556 
2557 		/* Advertise enough space so that it won't get scaled away.
2558 		 * Import case: prevent zero window announcement if
2559 		 * 1<<rcv_wscale > mss.
2560 		 */
2561 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2562 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2563 				  << tp->rx_opt.rcv_wscale);
2564 	} else {
2565 		/* Get the largest window that is a nice multiple of mss.
2566 		 * Window clamp already applied above.
2567 		 * If our current window offering is within 1 mss of the
2568 		 * free space we just keep it. This prevents the divide
2569 		 * and multiply from happening most of the time.
2570 		 * We also don't do any window rounding when the free space
2571 		 * is too small.
2572 		 */
2573 		if (window <= free_space - mss || window > free_space)
2574 			window = (free_space / mss) * mss;
2575 		else if (mss == full_space &&
2576 			 free_space > window + (full_space >> 1))
2577 			window = free_space;
2578 	}
2579 
2580 	return window;
2581 }
2582 
2583 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2584 			     const struct sk_buff *next_skb)
2585 {
2586 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2587 		const struct skb_shared_info *next_shinfo =
2588 			skb_shinfo(next_skb);
2589 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2590 
2591 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2592 		shinfo->tskey = next_shinfo->tskey;
2593 		TCP_SKB_CB(skb)->txstamp_ack |=
2594 			TCP_SKB_CB(next_skb)->txstamp_ack;
2595 	}
2596 }
2597 
2598 /* Collapses two adjacent SKB's during retransmission. */
2599 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2600 {
2601 	struct tcp_sock *tp = tcp_sk(sk);
2602 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2603 	int skb_size, next_skb_size;
2604 
2605 	skb_size = skb->len;
2606 	next_skb_size = next_skb->len;
2607 
2608 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2609 
2610 	if (next_skb_size) {
2611 		if (next_skb_size <= skb_availroom(skb))
2612 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2613 				      next_skb_size);
2614 		else if (!skb_shift(skb, next_skb, next_skb_size))
2615 			return false;
2616 	}
2617 	tcp_highest_sack_combine(sk, next_skb, skb);
2618 
2619 	tcp_unlink_write_queue(next_skb, sk);
2620 
2621 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2622 		skb->ip_summed = CHECKSUM_PARTIAL;
2623 
2624 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2625 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2626 
2627 	/* Update sequence range on original skb. */
2628 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2629 
2630 	/* Merge over control information. This moves PSH/FIN etc. over */
2631 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2632 
2633 	/* All done, get rid of second SKB and account for it so
2634 	 * packet counting does not break.
2635 	 */
2636 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2637 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2638 
2639 	/* changed transmit queue under us so clear hints */
2640 	tcp_clear_retrans_hints_partial(tp);
2641 	if (next_skb == tp->retransmit_skb_hint)
2642 		tp->retransmit_skb_hint = skb;
2643 
2644 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2645 
2646 	tcp_skb_collapse_tstamp(skb, next_skb);
2647 
2648 	sk_wmem_free_skb(sk, next_skb);
2649 	return true;
2650 }
2651 
2652 /* Check if coalescing SKBs is legal. */
2653 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2654 {
2655 	if (tcp_skb_pcount(skb) > 1)
2656 		return false;
2657 	if (skb_cloned(skb))
2658 		return false;
2659 	if (skb == tcp_send_head(sk))
2660 		return false;
2661 	/* Some heuristics for collapsing over SACK'd could be invented */
2662 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2663 		return false;
2664 
2665 	return true;
2666 }
2667 
2668 /* Collapse packets in the retransmit queue to make to create
2669  * less packets on the wire. This is only done on retransmission.
2670  */
2671 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2672 				     int space)
2673 {
2674 	struct tcp_sock *tp = tcp_sk(sk);
2675 	struct sk_buff *skb = to, *tmp;
2676 	bool first = true;
2677 
2678 	if (!sysctl_tcp_retrans_collapse)
2679 		return;
2680 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2681 		return;
2682 
2683 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2684 		if (!tcp_can_collapse(sk, skb))
2685 			break;
2686 
2687 		if (!tcp_skb_can_collapse_to(to))
2688 			break;
2689 
2690 		space -= skb->len;
2691 
2692 		if (first) {
2693 			first = false;
2694 			continue;
2695 		}
2696 
2697 		if (space < 0)
2698 			break;
2699 
2700 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2701 			break;
2702 
2703 		if (!tcp_collapse_retrans(sk, to))
2704 			break;
2705 	}
2706 }
2707 
2708 /* This retransmits one SKB.  Policy decisions and retransmit queue
2709  * state updates are done by the caller.  Returns non-zero if an
2710  * error occurred which prevented the send.
2711  */
2712 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2713 {
2714 	struct inet_connection_sock *icsk = inet_csk(sk);
2715 	struct tcp_sock *tp = tcp_sk(sk);
2716 	unsigned int cur_mss;
2717 	int diff, len, err;
2718 
2719 
2720 	/* Inconclusive MTU probe */
2721 	if (icsk->icsk_mtup.probe_size)
2722 		icsk->icsk_mtup.probe_size = 0;
2723 
2724 	/* Do not sent more than we queued. 1/4 is reserved for possible
2725 	 * copying overhead: fragmentation, tunneling, mangling etc.
2726 	 */
2727 	if (atomic_read(&sk->sk_wmem_alloc) >
2728 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2729 		  sk->sk_sndbuf))
2730 		return -EAGAIN;
2731 
2732 	if (skb_still_in_host_queue(sk, skb))
2733 		return -EBUSY;
2734 
2735 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2736 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2737 			BUG();
2738 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2739 			return -ENOMEM;
2740 	}
2741 
2742 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2743 		return -EHOSTUNREACH; /* Routing failure or similar. */
2744 
2745 	cur_mss = tcp_current_mss(sk);
2746 
2747 	/* If receiver has shrunk his window, and skb is out of
2748 	 * new window, do not retransmit it. The exception is the
2749 	 * case, when window is shrunk to zero. In this case
2750 	 * our retransmit serves as a zero window probe.
2751 	 */
2752 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2753 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2754 		return -EAGAIN;
2755 
2756 	len = cur_mss * segs;
2757 	if (skb->len > len) {
2758 		if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2759 			return -ENOMEM; /* We'll try again later. */
2760 	} else {
2761 		if (skb_unclone(skb, GFP_ATOMIC))
2762 			return -ENOMEM;
2763 
2764 		diff = tcp_skb_pcount(skb);
2765 		tcp_set_skb_tso_segs(skb, cur_mss);
2766 		diff -= tcp_skb_pcount(skb);
2767 		if (diff)
2768 			tcp_adjust_pcount(sk, skb, diff);
2769 		if (skb->len < cur_mss)
2770 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2771 	}
2772 
2773 	/* RFC3168, section 6.1.1.1. ECN fallback */
2774 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2775 		tcp_ecn_clear_syn(sk, skb);
2776 
2777 	/* make sure skb->data is aligned on arches that require it
2778 	 * and check if ack-trimming & collapsing extended the headroom
2779 	 * beyond what csum_start can cover.
2780 	 */
2781 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2782 		     skb_headroom(skb) >= 0xFFFF)) {
2783 		struct sk_buff *nskb;
2784 
2785 		skb_mstamp_get(&skb->skb_mstamp);
2786 		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2787 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2788 			     -ENOBUFS;
2789 	} else {
2790 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2791 	}
2792 
2793 	if (likely(!err)) {
2794 		segs = tcp_skb_pcount(skb);
2795 
2796 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2797 		/* Update global TCP statistics. */
2798 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2799 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2800 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2801 		tp->total_retrans += segs;
2802 	}
2803 	return err;
2804 }
2805 
2806 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2807 {
2808 	struct tcp_sock *tp = tcp_sk(sk);
2809 	int err = __tcp_retransmit_skb(sk, skb, segs);
2810 
2811 	if (err == 0) {
2812 #if FASTRETRANS_DEBUG > 0
2813 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2814 			net_dbg_ratelimited("retrans_out leaked\n");
2815 		}
2816 #endif
2817 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2818 		tp->retrans_out += tcp_skb_pcount(skb);
2819 
2820 		/* Save stamp of the first retransmit. */
2821 		if (!tp->retrans_stamp)
2822 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2823 
2824 	} else if (err != -EBUSY) {
2825 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2826 	}
2827 
2828 	if (tp->undo_retrans < 0)
2829 		tp->undo_retrans = 0;
2830 	tp->undo_retrans += tcp_skb_pcount(skb);
2831 	return err;
2832 }
2833 
2834 /* Check if we forward retransmits are possible in the current
2835  * window/congestion state.
2836  */
2837 static bool tcp_can_forward_retransmit(struct sock *sk)
2838 {
2839 	const struct inet_connection_sock *icsk = inet_csk(sk);
2840 	const struct tcp_sock *tp = tcp_sk(sk);
2841 
2842 	/* Forward retransmissions are possible only during Recovery. */
2843 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2844 		return false;
2845 
2846 	/* No forward retransmissions in Reno are possible. */
2847 	if (tcp_is_reno(tp))
2848 		return false;
2849 
2850 	/* Yeah, we have to make difficult choice between forward transmission
2851 	 * and retransmission... Both ways have their merits...
2852 	 *
2853 	 * For now we do not retransmit anything, while we have some new
2854 	 * segments to send. In the other cases, follow rule 3 for
2855 	 * NextSeg() specified in RFC3517.
2856 	 */
2857 
2858 	if (tcp_may_send_now(sk))
2859 		return false;
2860 
2861 	return true;
2862 }
2863 
2864 /* This gets called after a retransmit timeout, and the initially
2865  * retransmitted data is acknowledged.  It tries to continue
2866  * resending the rest of the retransmit queue, until either
2867  * we've sent it all or the congestion window limit is reached.
2868  * If doing SACK, the first ACK which comes back for a timeout
2869  * based retransmit packet might feed us FACK information again.
2870  * If so, we use it to avoid unnecessarily retransmissions.
2871  */
2872 void tcp_xmit_retransmit_queue(struct sock *sk)
2873 {
2874 	const struct inet_connection_sock *icsk = inet_csk(sk);
2875 	struct tcp_sock *tp = tcp_sk(sk);
2876 	struct sk_buff *skb;
2877 	struct sk_buff *hole = NULL;
2878 	u32 max_segs, last_lost;
2879 	int mib_idx;
2880 	int fwd_rexmitting = 0;
2881 
2882 	if (!tp->packets_out)
2883 		return;
2884 
2885 	if (!tp->lost_out)
2886 		tp->retransmit_high = tp->snd_una;
2887 
2888 	if (tp->retransmit_skb_hint) {
2889 		skb = tp->retransmit_skb_hint;
2890 		last_lost = TCP_SKB_CB(skb)->end_seq;
2891 		if (after(last_lost, tp->retransmit_high))
2892 			last_lost = tp->retransmit_high;
2893 	} else {
2894 		skb = tcp_write_queue_head(sk);
2895 		last_lost = tp->snd_una;
2896 	}
2897 
2898 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2899 	tcp_for_write_queue_from(skb, sk) {
2900 		__u8 sacked;
2901 		int segs;
2902 
2903 		if (skb == tcp_send_head(sk))
2904 			break;
2905 		/* we could do better than to assign each time */
2906 		if (!hole)
2907 			tp->retransmit_skb_hint = skb;
2908 
2909 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2910 		if (segs <= 0)
2911 			return;
2912 		sacked = TCP_SKB_CB(skb)->sacked;
2913 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2914 		 * we need to make sure not sending too bigs TSO packets
2915 		 */
2916 		segs = min_t(int, segs, max_segs);
2917 
2918 		if (fwd_rexmitting) {
2919 begin_fwd:
2920 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2921 				break;
2922 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2923 
2924 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2925 			tp->retransmit_high = last_lost;
2926 			if (!tcp_can_forward_retransmit(sk))
2927 				break;
2928 			/* Backtrack if necessary to non-L'ed skb */
2929 			if (hole) {
2930 				skb = hole;
2931 				hole = NULL;
2932 			}
2933 			fwd_rexmitting = 1;
2934 			goto begin_fwd;
2935 
2936 		} else if (!(sacked & TCPCB_LOST)) {
2937 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2938 				hole = skb;
2939 			continue;
2940 
2941 		} else {
2942 			last_lost = TCP_SKB_CB(skb)->end_seq;
2943 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2944 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2945 			else
2946 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2947 		}
2948 
2949 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2950 			continue;
2951 
2952 		if (tcp_small_queue_check(sk, skb, 1))
2953 			return;
2954 
2955 		if (tcp_retransmit_skb(sk, skb, segs))
2956 			return;
2957 
2958 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2959 
2960 		if (tcp_in_cwnd_reduction(sk))
2961 			tp->prr_out += tcp_skb_pcount(skb);
2962 
2963 		if (skb == tcp_write_queue_head(sk))
2964 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2965 						  inet_csk(sk)->icsk_rto,
2966 						  TCP_RTO_MAX);
2967 	}
2968 }
2969 
2970 /* We allow to exceed memory limits for FIN packets to expedite
2971  * connection tear down and (memory) recovery.
2972  * Otherwise tcp_send_fin() could be tempted to either delay FIN
2973  * or even be forced to close flow without any FIN.
2974  * In general, we want to allow one skb per socket to avoid hangs
2975  * with edge trigger epoll()
2976  */
2977 void sk_forced_mem_schedule(struct sock *sk, int size)
2978 {
2979 	int amt;
2980 
2981 	if (size <= sk->sk_forward_alloc)
2982 		return;
2983 	amt = sk_mem_pages(size);
2984 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2985 	sk_memory_allocated_add(sk, amt);
2986 
2987 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2988 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2989 }
2990 
2991 /* Send a FIN. The caller locks the socket for us.
2992  * We should try to send a FIN packet really hard, but eventually give up.
2993  */
2994 void tcp_send_fin(struct sock *sk)
2995 {
2996 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2997 	struct tcp_sock *tp = tcp_sk(sk);
2998 
2999 	/* Optimization, tack on the FIN if we have one skb in write queue and
3000 	 * this skb was not yet sent, or we are under memory pressure.
3001 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3002 	 * as TCP stack thinks it has already been transmitted.
3003 	 */
3004 	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
3005 coalesce:
3006 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3007 		TCP_SKB_CB(tskb)->end_seq++;
3008 		tp->write_seq++;
3009 		if (!tcp_send_head(sk)) {
3010 			/* This means tskb was already sent.
3011 			 * Pretend we included the FIN on previous transmit.
3012 			 * We need to set tp->snd_nxt to the value it would have
3013 			 * if FIN had been sent. This is because retransmit path
3014 			 * does not change tp->snd_nxt.
3015 			 */
3016 			tp->snd_nxt++;
3017 			return;
3018 		}
3019 	} else {
3020 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3021 		if (unlikely(!skb)) {
3022 			if (tskb)
3023 				goto coalesce;
3024 			return;
3025 		}
3026 		skb_reserve(skb, MAX_TCP_HEADER);
3027 		sk_forced_mem_schedule(sk, skb->truesize);
3028 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3029 		tcp_init_nondata_skb(skb, tp->write_seq,
3030 				     TCPHDR_ACK | TCPHDR_FIN);
3031 		tcp_queue_skb(sk, skb);
3032 	}
3033 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3034 }
3035 
3036 /* We get here when a process closes a file descriptor (either due to
3037  * an explicit close() or as a byproduct of exit()'ing) and there
3038  * was unread data in the receive queue.  This behavior is recommended
3039  * by RFC 2525, section 2.17.  -DaveM
3040  */
3041 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3042 {
3043 	struct sk_buff *skb;
3044 
3045 	/* NOTE: No TCP options attached and we never retransmit this. */
3046 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3047 	if (!skb) {
3048 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3049 		return;
3050 	}
3051 
3052 	/* Reserve space for headers and prepare control bits. */
3053 	skb_reserve(skb, MAX_TCP_HEADER);
3054 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3055 			     TCPHDR_ACK | TCPHDR_RST);
3056 	skb_mstamp_get(&skb->skb_mstamp);
3057 	/* Send it off. */
3058 	if (tcp_transmit_skb(sk, skb, 0, priority))
3059 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3060 
3061 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3062 }
3063 
3064 /* Send a crossed SYN-ACK during socket establishment.
3065  * WARNING: This routine must only be called when we have already sent
3066  * a SYN packet that crossed the incoming SYN that caused this routine
3067  * to get called. If this assumption fails then the initial rcv_wnd
3068  * and rcv_wscale values will not be correct.
3069  */
3070 int tcp_send_synack(struct sock *sk)
3071 {
3072 	struct sk_buff *skb;
3073 
3074 	skb = tcp_write_queue_head(sk);
3075 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3076 		pr_debug("%s: wrong queue state\n", __func__);
3077 		return -EFAULT;
3078 	}
3079 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3080 		if (skb_cloned(skb)) {
3081 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3082 			if (!nskb)
3083 				return -ENOMEM;
3084 			tcp_unlink_write_queue(skb, sk);
3085 			__skb_header_release(nskb);
3086 			__tcp_add_write_queue_head(sk, nskb);
3087 			sk_wmem_free_skb(sk, skb);
3088 			sk->sk_wmem_queued += nskb->truesize;
3089 			sk_mem_charge(sk, nskb->truesize);
3090 			skb = nskb;
3091 		}
3092 
3093 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3094 		tcp_ecn_send_synack(sk, skb);
3095 	}
3096 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3097 }
3098 
3099 /**
3100  * tcp_make_synack - Prepare a SYN-ACK.
3101  * sk: listener socket
3102  * dst: dst entry attached to the SYNACK
3103  * req: request_sock pointer
3104  *
3105  * Allocate one skb and build a SYNACK packet.
3106  * @dst is consumed : Caller should not use it again.
3107  */
3108 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3109 				struct request_sock *req,
3110 				struct tcp_fastopen_cookie *foc,
3111 				enum tcp_synack_type synack_type)
3112 {
3113 	struct inet_request_sock *ireq = inet_rsk(req);
3114 	const struct tcp_sock *tp = tcp_sk(sk);
3115 	struct tcp_md5sig_key *md5 = NULL;
3116 	struct tcp_out_options opts;
3117 	struct sk_buff *skb;
3118 	int tcp_header_size;
3119 	struct tcphdr *th;
3120 	u16 user_mss;
3121 	int mss;
3122 
3123 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3124 	if (unlikely(!skb)) {
3125 		dst_release(dst);
3126 		return NULL;
3127 	}
3128 	/* Reserve space for headers. */
3129 	skb_reserve(skb, MAX_TCP_HEADER);
3130 
3131 	switch (synack_type) {
3132 	case TCP_SYNACK_NORMAL:
3133 		skb_set_owner_w(skb, req_to_sk(req));
3134 		break;
3135 	case TCP_SYNACK_COOKIE:
3136 		/* Under synflood, we do not attach skb to a socket,
3137 		 * to avoid false sharing.
3138 		 */
3139 		break;
3140 	case TCP_SYNACK_FASTOPEN:
3141 		/* sk is a const pointer, because we want to express multiple
3142 		 * cpu might call us concurrently.
3143 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3144 		 */
3145 		skb_set_owner_w(skb, (struct sock *)sk);
3146 		break;
3147 	}
3148 	skb_dst_set(skb, dst);
3149 
3150 	mss = dst_metric_advmss(dst);
3151 	user_mss = READ_ONCE(tp->rx_opt.user_mss);
3152 	if (user_mss && user_mss < mss)
3153 		mss = user_mss;
3154 
3155 	memset(&opts, 0, sizeof(opts));
3156 #ifdef CONFIG_SYN_COOKIES
3157 	if (unlikely(req->cookie_ts))
3158 		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3159 	else
3160 #endif
3161 	skb_mstamp_get(&skb->skb_mstamp);
3162 
3163 #ifdef CONFIG_TCP_MD5SIG
3164 	rcu_read_lock();
3165 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3166 #endif
3167 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3168 	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3169 			  sizeof(*th);
3170 
3171 	skb_push(skb, tcp_header_size);
3172 	skb_reset_transport_header(skb);
3173 
3174 	th = (struct tcphdr *)skb->data;
3175 	memset(th, 0, sizeof(struct tcphdr));
3176 	th->syn = 1;
3177 	th->ack = 1;
3178 	tcp_ecn_make_synack(req, th);
3179 	th->source = htons(ireq->ir_num);
3180 	th->dest = ireq->ir_rmt_port;
3181 	/* Setting of flags are superfluous here for callers (and ECE is
3182 	 * not even correctly set)
3183 	 */
3184 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3185 			     TCPHDR_SYN | TCPHDR_ACK);
3186 
3187 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3188 	/* XXX data is queued and acked as is. No buffer/window check */
3189 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3190 
3191 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3192 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3193 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3194 	th->doff = (tcp_header_size >> 2);
3195 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3196 
3197 #ifdef CONFIG_TCP_MD5SIG
3198 	/* Okay, we have all we need - do the md5 hash if needed */
3199 	if (md5)
3200 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3201 					       md5, req_to_sk(req), skb);
3202 	rcu_read_unlock();
3203 #endif
3204 
3205 	/* Do not fool tcpdump (if any), clean our debris */
3206 	skb->tstamp = 0;
3207 	return skb;
3208 }
3209 EXPORT_SYMBOL(tcp_make_synack);
3210 
3211 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3212 {
3213 	struct inet_connection_sock *icsk = inet_csk(sk);
3214 	const struct tcp_congestion_ops *ca;
3215 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3216 
3217 	if (ca_key == TCP_CA_UNSPEC)
3218 		return;
3219 
3220 	rcu_read_lock();
3221 	ca = tcp_ca_find_key(ca_key);
3222 	if (likely(ca && try_module_get(ca->owner))) {
3223 		module_put(icsk->icsk_ca_ops->owner);
3224 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3225 		icsk->icsk_ca_ops = ca;
3226 	}
3227 	rcu_read_unlock();
3228 }
3229 
3230 /* Do all connect socket setups that can be done AF independent. */
3231 static void tcp_connect_init(struct sock *sk)
3232 {
3233 	const struct dst_entry *dst = __sk_dst_get(sk);
3234 	struct tcp_sock *tp = tcp_sk(sk);
3235 	__u8 rcv_wscale;
3236 
3237 	/* We'll fix this up when we get a response from the other end.
3238 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3239 	 */
3240 	tp->tcp_header_len = sizeof(struct tcphdr) +
3241 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3242 
3243 #ifdef CONFIG_TCP_MD5SIG
3244 	if (tp->af_specific->md5_lookup(sk, sk))
3245 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3246 #endif
3247 
3248 	/* If user gave his TCP_MAXSEG, record it to clamp */
3249 	if (tp->rx_opt.user_mss)
3250 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3251 	tp->max_window = 0;
3252 	tcp_mtup_init(sk);
3253 	tcp_sync_mss(sk, dst_mtu(dst));
3254 
3255 	tcp_ca_dst_init(sk, dst);
3256 
3257 	if (!tp->window_clamp)
3258 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3259 	tp->advmss = dst_metric_advmss(dst);
3260 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3261 		tp->advmss = tp->rx_opt.user_mss;
3262 
3263 	tcp_initialize_rcv_mss(sk);
3264 
3265 	/* limit the window selection if the user enforce a smaller rx buffer */
3266 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3267 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3268 		tp->window_clamp = tcp_full_space(sk);
3269 
3270 	tcp_select_initial_window(tcp_full_space(sk),
3271 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3272 				  &tp->rcv_wnd,
3273 				  &tp->window_clamp,
3274 				  sysctl_tcp_window_scaling,
3275 				  &rcv_wscale,
3276 				  dst_metric(dst, RTAX_INITRWND));
3277 
3278 	tp->rx_opt.rcv_wscale = rcv_wscale;
3279 	tp->rcv_ssthresh = tp->rcv_wnd;
3280 
3281 	sk->sk_err = 0;
3282 	sock_reset_flag(sk, SOCK_DONE);
3283 	tp->snd_wnd = 0;
3284 	tcp_init_wl(tp, 0);
3285 	tp->snd_una = tp->write_seq;
3286 	tp->snd_sml = tp->write_seq;
3287 	tp->snd_up = tp->write_seq;
3288 	tp->snd_nxt = tp->write_seq;
3289 
3290 	if (likely(!tp->repair))
3291 		tp->rcv_nxt = 0;
3292 	else
3293 		tp->rcv_tstamp = tcp_time_stamp;
3294 	tp->rcv_wup = tp->rcv_nxt;
3295 	tp->copied_seq = tp->rcv_nxt;
3296 
3297 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3298 	inet_csk(sk)->icsk_retransmits = 0;
3299 	tcp_clear_retrans(tp);
3300 }
3301 
3302 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3303 {
3304 	struct tcp_sock *tp = tcp_sk(sk);
3305 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3306 
3307 	tcb->end_seq += skb->len;
3308 	__skb_header_release(skb);
3309 	__tcp_add_write_queue_tail(sk, skb);
3310 	sk->sk_wmem_queued += skb->truesize;
3311 	sk_mem_charge(sk, skb->truesize);
3312 	tp->write_seq = tcb->end_seq;
3313 	tp->packets_out += tcp_skb_pcount(skb);
3314 }
3315 
3316 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3317  * queue a data-only packet after the regular SYN, such that regular SYNs
3318  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3319  * only the SYN sequence, the data are retransmitted in the first ACK.
3320  * If cookie is not cached or other error occurs, falls back to send a
3321  * regular SYN with Fast Open cookie request option.
3322  */
3323 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3324 {
3325 	struct tcp_sock *tp = tcp_sk(sk);
3326 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3327 	int syn_loss = 0, space, err = 0;
3328 	unsigned long last_syn_loss = 0;
3329 	struct sk_buff *syn_data;
3330 
3331 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3332 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3333 			       &syn_loss, &last_syn_loss);
3334 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
3335 	if (syn_loss > 1 &&
3336 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3337 		fo->cookie.len = -1;
3338 		goto fallback;
3339 	}
3340 
3341 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3342 		fo->cookie.len = -1;
3343 	else if (fo->cookie.len <= 0)
3344 		goto fallback;
3345 
3346 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3347 	 * user-MSS. Reserve maximum option space for middleboxes that add
3348 	 * private TCP options. The cost is reduced data space in SYN :(
3349 	 */
3350 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3351 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3352 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3353 		MAX_TCP_OPTION_SPACE;
3354 
3355 	space = min_t(size_t, space, fo->size);
3356 
3357 	/* limit to order-0 allocations */
3358 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3359 
3360 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3361 	if (!syn_data)
3362 		goto fallback;
3363 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3364 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3365 	if (space) {
3366 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3367 					    &fo->data->msg_iter);
3368 		if (unlikely(!copied)) {
3369 			kfree_skb(syn_data);
3370 			goto fallback;
3371 		}
3372 		if (copied != space) {
3373 			skb_trim(syn_data, copied);
3374 			space = copied;
3375 		}
3376 	}
3377 	/* No more data pending in inet_wait_for_connect() */
3378 	if (space == fo->size)
3379 		fo->data = NULL;
3380 	fo->copied = space;
3381 
3382 	tcp_connect_queue_skb(sk, syn_data);
3383 	if (syn_data->len)
3384 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3385 
3386 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3387 
3388 	syn->skb_mstamp = syn_data->skb_mstamp;
3389 
3390 	/* Now full SYN+DATA was cloned and sent (or not),
3391 	 * remove the SYN from the original skb (syn_data)
3392 	 * we keep in write queue in case of a retransmit, as we
3393 	 * also have the SYN packet (with no data) in the same queue.
3394 	 */
3395 	TCP_SKB_CB(syn_data)->seq++;
3396 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3397 	if (!err) {
3398 		tp->syn_data = (fo->copied > 0);
3399 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3400 		goto done;
3401 	}
3402 
3403 fallback:
3404 	/* Send a regular SYN with Fast Open cookie request option */
3405 	if (fo->cookie.len > 0)
3406 		fo->cookie.len = 0;
3407 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3408 	if (err)
3409 		tp->syn_fastopen = 0;
3410 done:
3411 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3412 	return err;
3413 }
3414 
3415 /* Build a SYN and send it off. */
3416 int tcp_connect(struct sock *sk)
3417 {
3418 	struct tcp_sock *tp = tcp_sk(sk);
3419 	struct sk_buff *buff;
3420 	int err;
3421 
3422 	tcp_connect_init(sk);
3423 
3424 	if (unlikely(tp->repair)) {
3425 		tcp_finish_connect(sk, NULL);
3426 		return 0;
3427 	}
3428 
3429 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3430 	if (unlikely(!buff))
3431 		return -ENOBUFS;
3432 
3433 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3434 	tp->retrans_stamp = tcp_time_stamp;
3435 	tcp_connect_queue_skb(sk, buff);
3436 	tcp_ecn_send_syn(sk, buff);
3437 
3438 	/* Send off SYN; include data in Fast Open. */
3439 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3440 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3441 	if (err == -ECONNREFUSED)
3442 		return err;
3443 
3444 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3445 	 * in order to make this packet get counted in tcpOutSegs.
3446 	 */
3447 	tp->snd_nxt = tp->write_seq;
3448 	tp->pushed_seq = tp->write_seq;
3449 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3450 
3451 	/* Timer for repeating the SYN until an answer. */
3452 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3453 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3454 	return 0;
3455 }
3456 EXPORT_SYMBOL(tcp_connect);
3457 
3458 /* Send out a delayed ack, the caller does the policy checking
3459  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3460  * for details.
3461  */
3462 void tcp_send_delayed_ack(struct sock *sk)
3463 {
3464 	struct inet_connection_sock *icsk = inet_csk(sk);
3465 	int ato = icsk->icsk_ack.ato;
3466 	unsigned long timeout;
3467 
3468 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3469 
3470 	if (ato > TCP_DELACK_MIN) {
3471 		const struct tcp_sock *tp = tcp_sk(sk);
3472 		int max_ato = HZ / 2;
3473 
3474 		if (icsk->icsk_ack.pingpong ||
3475 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3476 			max_ato = TCP_DELACK_MAX;
3477 
3478 		/* Slow path, intersegment interval is "high". */
3479 
3480 		/* If some rtt estimate is known, use it to bound delayed ack.
3481 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3482 		 * directly.
3483 		 */
3484 		if (tp->srtt_us) {
3485 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3486 					TCP_DELACK_MIN);
3487 
3488 			if (rtt < max_ato)
3489 				max_ato = rtt;
3490 		}
3491 
3492 		ato = min(ato, max_ato);
3493 	}
3494 
3495 	/* Stay within the limit we were given */
3496 	timeout = jiffies + ato;
3497 
3498 	/* Use new timeout only if there wasn't a older one earlier. */
3499 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3500 		/* If delack timer was blocked or is about to expire,
3501 		 * send ACK now.
3502 		 */
3503 		if (icsk->icsk_ack.blocked ||
3504 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3505 			tcp_send_ack(sk);
3506 			return;
3507 		}
3508 
3509 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3510 			timeout = icsk->icsk_ack.timeout;
3511 	}
3512 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3513 	icsk->icsk_ack.timeout = timeout;
3514 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3515 }
3516 
3517 /* This routine sends an ack and also updates the window. */
3518 void tcp_send_ack(struct sock *sk)
3519 {
3520 	struct sk_buff *buff;
3521 
3522 	/* If we have been reset, we may not send again. */
3523 	if (sk->sk_state == TCP_CLOSE)
3524 		return;
3525 
3526 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3527 
3528 	/* We are not putting this on the write queue, so
3529 	 * tcp_transmit_skb() will set the ownership to this
3530 	 * sock.
3531 	 */
3532 	buff = alloc_skb(MAX_TCP_HEADER,
3533 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3534 	if (unlikely(!buff)) {
3535 		inet_csk_schedule_ack(sk);
3536 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3537 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3538 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3539 		return;
3540 	}
3541 
3542 	/* Reserve space for headers and prepare control bits. */
3543 	skb_reserve(buff, MAX_TCP_HEADER);
3544 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3545 
3546 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3547 	 * too much.
3548 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3549 	 */
3550 	skb_set_tcp_pure_ack(buff);
3551 
3552 	/* Send it off, this clears delayed acks for us. */
3553 	skb_mstamp_get(&buff->skb_mstamp);
3554 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3555 }
3556 EXPORT_SYMBOL_GPL(tcp_send_ack);
3557 
3558 /* This routine sends a packet with an out of date sequence
3559  * number. It assumes the other end will try to ack it.
3560  *
3561  * Question: what should we make while urgent mode?
3562  * 4.4BSD forces sending single byte of data. We cannot send
3563  * out of window data, because we have SND.NXT==SND.MAX...
3564  *
3565  * Current solution: to send TWO zero-length segments in urgent mode:
3566  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3567  * out-of-date with SND.UNA-1 to probe window.
3568  */
3569 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3570 {
3571 	struct tcp_sock *tp = tcp_sk(sk);
3572 	struct sk_buff *skb;
3573 
3574 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3575 	skb = alloc_skb(MAX_TCP_HEADER,
3576 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3577 	if (!skb)
3578 		return -1;
3579 
3580 	/* Reserve space for headers and set control bits. */
3581 	skb_reserve(skb, MAX_TCP_HEADER);
3582 	/* Use a previous sequence.  This should cause the other
3583 	 * end to send an ack.  Don't queue or clone SKB, just
3584 	 * send it.
3585 	 */
3586 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3587 	skb_mstamp_get(&skb->skb_mstamp);
3588 	NET_INC_STATS(sock_net(sk), mib);
3589 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3590 }
3591 
3592 void tcp_send_window_probe(struct sock *sk)
3593 {
3594 	if (sk->sk_state == TCP_ESTABLISHED) {
3595 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3596 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3597 	}
3598 }
3599 
3600 /* Initiate keepalive or window probe from timer. */
3601 int tcp_write_wakeup(struct sock *sk, int mib)
3602 {
3603 	struct tcp_sock *tp = tcp_sk(sk);
3604 	struct sk_buff *skb;
3605 
3606 	if (sk->sk_state == TCP_CLOSE)
3607 		return -1;
3608 
3609 	skb = tcp_send_head(sk);
3610 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3611 		int err;
3612 		unsigned int mss = tcp_current_mss(sk);
3613 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3614 
3615 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3616 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3617 
3618 		/* We are probing the opening of a window
3619 		 * but the window size is != 0
3620 		 * must have been a result SWS avoidance ( sender )
3621 		 */
3622 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3623 		    skb->len > mss) {
3624 			seg_size = min(seg_size, mss);
3625 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3626 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3627 				return -1;
3628 		} else if (!tcp_skb_pcount(skb))
3629 			tcp_set_skb_tso_segs(skb, mss);
3630 
3631 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3632 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3633 		if (!err)
3634 			tcp_event_new_data_sent(sk, skb);
3635 		return err;
3636 	} else {
3637 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3638 			tcp_xmit_probe_skb(sk, 1, mib);
3639 		return tcp_xmit_probe_skb(sk, 0, mib);
3640 	}
3641 }
3642 
3643 /* A window probe timeout has occurred.  If window is not closed send
3644  * a partial packet else a zero probe.
3645  */
3646 void tcp_send_probe0(struct sock *sk)
3647 {
3648 	struct inet_connection_sock *icsk = inet_csk(sk);
3649 	struct tcp_sock *tp = tcp_sk(sk);
3650 	struct net *net = sock_net(sk);
3651 	unsigned long probe_max;
3652 	int err;
3653 
3654 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3655 
3656 	if (tp->packets_out || !tcp_send_head(sk)) {
3657 		/* Cancel probe timer, if it is not required. */
3658 		icsk->icsk_probes_out = 0;
3659 		icsk->icsk_backoff = 0;
3660 		return;
3661 	}
3662 
3663 	if (err <= 0) {
3664 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3665 			icsk->icsk_backoff++;
3666 		icsk->icsk_probes_out++;
3667 		probe_max = TCP_RTO_MAX;
3668 	} else {
3669 		/* If packet was not sent due to local congestion,
3670 		 * do not backoff and do not remember icsk_probes_out.
3671 		 * Let local senders to fight for local resources.
3672 		 *
3673 		 * Use accumulated backoff yet.
3674 		 */
3675 		if (!icsk->icsk_probes_out)
3676 			icsk->icsk_probes_out = 1;
3677 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3678 	}
3679 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3680 				  tcp_probe0_when(sk, probe_max),
3681 				  TCP_RTO_MAX);
3682 }
3683 
3684 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3685 {
3686 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3687 	struct flowi fl;
3688 	int res;
3689 
3690 	tcp_rsk(req)->txhash = net_tx_rndhash();
3691 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3692 	if (!res) {
3693 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3694 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3695 		if (unlikely(tcp_passive_fastopen(sk)))
3696 			tcp_sk(sk)->total_retrans++;
3697 	}
3698 	return res;
3699 }
3700 EXPORT_SYMBOL(tcp_rtx_synack);
3701