xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 6486c0f44ed8e91073c1b08e83075e3832618ae5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 	tcp_check_space(sk);
86 }
87 
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89  * window scaling factor due to loss of precision.
90  * If window has been shrunk, what should we make? It is not clear at all.
91  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93  * invalid. OK, let's make this for now:
94  */
95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 	const struct tcp_sock *tp = tcp_sk(sk);
98 
99 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 	    (tp->rx_opt.wscale_ok &&
101 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tcp_snd_cwnd(tp);
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 	tp->snd_cwnd_stamp = tcp_jiffies32;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_jiffies32;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, enter pingpong mode.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_enter_pingpong_mode(sk);
177 }
178 
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
181 				      u32 rcv_nxt)
182 {
183 	struct tcp_sock *tp = tcp_sk(sk);
184 
185 	if (unlikely(tp->compressed_ack)) {
186 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
187 			      tp->compressed_ack);
188 		tp->compressed_ack = 0;
189 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
190 			__sock_put(sk);
191 	}
192 
193 	if (unlikely(rcv_nxt != tp->rcv_nxt))
194 		return;  /* Special ACK sent by DCTCP to reflect ECN */
195 	tcp_dec_quickack_mode(sk, pkts);
196 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (*window_clamp == 0)
215 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 	space = min(*window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = rounddown(space, mss);
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
234 
235 	if (init_rcv_wnd)
236 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
237 
238 	*rcv_wscale = 0;
239 	if (wscale_ok) {
240 		/* Set window scaling on max possible window */
241 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
242 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
243 		space = min_t(u32, space, *window_clamp);
244 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
245 				      0, TCP_MAX_WSCALE);
246 	}
247 	/* Set the clamp no higher than max representable value */
248 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
249 }
250 EXPORT_SYMBOL(tcp_select_initial_window);
251 
252 /* Chose a new window to advertise, update state in tcp_sock for the
253  * socket, and return result with RFC1323 scaling applied.  The return
254  * value can be stuffed directly into th->window for an outgoing
255  * frame.
256  */
257 static u16 tcp_select_window(struct sock *sk)
258 {
259 	struct tcp_sock *tp = tcp_sk(sk);
260 	struct net *net = sock_net(sk);
261 	u32 old_win = tp->rcv_wnd;
262 	u32 cur_win, new_win;
263 
264 	/* Make the window 0 if we failed to queue the data because we
265 	 * are out of memory. The window is temporary, so we don't store
266 	 * it on the socket.
267 	 */
268 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
269 		return 0;
270 
271 	cur_win = tcp_receive_window(tp);
272 	new_win = __tcp_select_window(sk);
273 	if (new_win < cur_win) {
274 		/* Danger Will Robinson!
275 		 * Don't update rcv_wup/rcv_wnd here or else
276 		 * we will not be able to advertise a zero
277 		 * window in time.  --DaveM
278 		 *
279 		 * Relax Will Robinson.
280 		 */
281 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
282 			/* Never shrink the offered window */
283 			if (new_win == 0)
284 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
285 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
286 		}
287 	}
288 
289 	tp->rcv_wnd = new_win;
290 	tp->rcv_wup = tp->rcv_nxt;
291 
292 	/* Make sure we do not exceed the maximum possible
293 	 * scaled window.
294 	 */
295 	if (!tp->rx_opt.rcv_wscale &&
296 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
297 		new_win = min(new_win, MAX_TCP_WINDOW);
298 	else
299 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
300 
301 	/* RFC1323 scaling applied */
302 	new_win >>= tp->rx_opt.rcv_wscale;
303 
304 	/* If we advertise zero window, disable fast path. */
305 	if (new_win == 0) {
306 		tp->pred_flags = 0;
307 		if (old_win)
308 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
309 	} else if (old_win == 0) {
310 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
311 	}
312 
313 	return new_win;
314 }
315 
316 /* Packet ECN state for a SYN-ACK */
317 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
318 {
319 	const struct tcp_sock *tp = tcp_sk(sk);
320 
321 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
322 	if (!(tp->ecn_flags & TCP_ECN_OK))
323 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
324 	else if (tcp_ca_needs_ecn(sk) ||
325 		 tcp_bpf_ca_needs_ecn(sk))
326 		INET_ECN_xmit(sk);
327 }
328 
329 /* Packet ECN state for a SYN.  */
330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
331 {
332 	struct tcp_sock *tp = tcp_sk(sk);
333 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
334 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
335 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
336 
337 	if (!use_ecn) {
338 		const struct dst_entry *dst = __sk_dst_get(sk);
339 
340 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
341 			use_ecn = true;
342 	}
343 
344 	tp->ecn_flags = 0;
345 
346 	if (use_ecn) {
347 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
348 		tp->ecn_flags = TCP_ECN_OK;
349 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
350 			INET_ECN_xmit(sk);
351 	}
352 }
353 
354 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
355 {
356 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
357 		/* tp->ecn_flags are cleared at a later point in time when
358 		 * SYN ACK is ultimatively being received.
359 		 */
360 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
361 }
362 
363 static void
364 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
365 {
366 	if (inet_rsk(req)->ecn_ok)
367 		th->ece = 1;
368 }
369 
370 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
371  * be sent.
372  */
373 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
374 			 struct tcphdr *th, int tcp_header_len)
375 {
376 	struct tcp_sock *tp = tcp_sk(sk);
377 
378 	if (tp->ecn_flags & TCP_ECN_OK) {
379 		/* Not-retransmitted data segment: set ECT and inject CWR. */
380 		if (skb->len != tcp_header_len &&
381 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
382 			INET_ECN_xmit(sk);
383 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
384 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
385 				th->cwr = 1;
386 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
387 			}
388 		} else if (!tcp_ca_needs_ecn(sk)) {
389 			/* ACK or retransmitted segment: clear ECT|CE */
390 			INET_ECN_dontxmit(sk);
391 		}
392 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
393 			th->ece = 1;
394 	}
395 }
396 
397 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
398  * auto increment end seqno.
399  */
400 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
401 {
402 	skb->ip_summed = CHECKSUM_PARTIAL;
403 
404 	TCP_SKB_CB(skb)->tcp_flags = flags;
405 
406 	tcp_skb_pcount_set(skb, 1);
407 
408 	TCP_SKB_CB(skb)->seq = seq;
409 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
410 		seq++;
411 	TCP_SKB_CB(skb)->end_seq = seq;
412 }
413 
414 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
415 {
416 	return tp->snd_una != tp->snd_up;
417 }
418 
419 #define OPTION_SACK_ADVERTISE	BIT(0)
420 #define OPTION_TS		BIT(1)
421 #define OPTION_MD5		BIT(2)
422 #define OPTION_WSCALE		BIT(3)
423 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
424 #define OPTION_SMC		BIT(9)
425 #define OPTION_MPTCP		BIT(10)
426 
427 static void smc_options_write(__be32 *ptr, u16 *options)
428 {
429 #if IS_ENABLED(CONFIG_SMC)
430 	if (static_branch_unlikely(&tcp_have_smc)) {
431 		if (unlikely(OPTION_SMC & *options)) {
432 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
433 				       (TCPOPT_NOP  << 16) |
434 				       (TCPOPT_EXP <<  8) |
435 				       (TCPOLEN_EXP_SMC_BASE));
436 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
437 		}
438 	}
439 #endif
440 }
441 
442 struct tcp_out_options {
443 	u16 options;		/* bit field of OPTION_* */
444 	u16 mss;		/* 0 to disable */
445 	u8 ws;			/* window scale, 0 to disable */
446 	u8 num_sack_blocks;	/* number of SACK blocks to include */
447 	u8 hash_size;		/* bytes in hash_location */
448 	u8 bpf_opt_len;		/* length of BPF hdr option */
449 	__u8 *hash_location;	/* temporary pointer, overloaded */
450 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
451 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
452 	struct mptcp_out_options mptcp;
453 };
454 
455 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
456 				struct tcp_sock *tp,
457 				struct tcp_out_options *opts)
458 {
459 #if IS_ENABLED(CONFIG_MPTCP)
460 	if (unlikely(OPTION_MPTCP & opts->options))
461 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
462 #endif
463 }
464 
465 #ifdef CONFIG_CGROUP_BPF
466 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
467 					enum tcp_synack_type synack_type)
468 {
469 	if (unlikely(!skb))
470 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
471 
472 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
473 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
474 
475 	return 0;
476 }
477 
478 /* req, syn_skb and synack_type are used when writing synack */
479 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
480 				  struct request_sock *req,
481 				  struct sk_buff *syn_skb,
482 				  enum tcp_synack_type synack_type,
483 				  struct tcp_out_options *opts,
484 				  unsigned int *remaining)
485 {
486 	struct bpf_sock_ops_kern sock_ops;
487 	int err;
488 
489 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
490 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
491 	    !*remaining)
492 		return;
493 
494 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
495 
496 	/* init sock_ops */
497 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
498 
499 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
500 
501 	if (req) {
502 		/* The listen "sk" cannot be passed here because
503 		 * it is not locked.  It would not make too much
504 		 * sense to do bpf_setsockopt(listen_sk) based
505 		 * on individual connection request also.
506 		 *
507 		 * Thus, "req" is passed here and the cgroup-bpf-progs
508 		 * of the listen "sk" will be run.
509 		 *
510 		 * "req" is also used here for fastopen even the "sk" here is
511 		 * a fullsock "child" sk.  It is to keep the behavior
512 		 * consistent between fastopen and non-fastopen on
513 		 * the bpf programming side.
514 		 */
515 		sock_ops.sk = (struct sock *)req;
516 		sock_ops.syn_skb = syn_skb;
517 	} else {
518 		sock_owned_by_me(sk);
519 
520 		sock_ops.is_fullsock = 1;
521 		sock_ops.sk = sk;
522 	}
523 
524 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
525 	sock_ops.remaining_opt_len = *remaining;
526 	/* tcp_current_mss() does not pass a skb */
527 	if (skb)
528 		bpf_skops_init_skb(&sock_ops, skb, 0);
529 
530 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
531 
532 	if (err || sock_ops.remaining_opt_len == *remaining)
533 		return;
534 
535 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
536 	/* round up to 4 bytes */
537 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
538 
539 	*remaining -= opts->bpf_opt_len;
540 }
541 
542 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
543 				    struct request_sock *req,
544 				    struct sk_buff *syn_skb,
545 				    enum tcp_synack_type synack_type,
546 				    struct tcp_out_options *opts)
547 {
548 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
549 	struct bpf_sock_ops_kern sock_ops;
550 	int err;
551 
552 	if (likely(!max_opt_len))
553 		return;
554 
555 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
556 
557 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
558 
559 	if (req) {
560 		sock_ops.sk = (struct sock *)req;
561 		sock_ops.syn_skb = syn_skb;
562 	} else {
563 		sock_owned_by_me(sk);
564 
565 		sock_ops.is_fullsock = 1;
566 		sock_ops.sk = sk;
567 	}
568 
569 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
570 	sock_ops.remaining_opt_len = max_opt_len;
571 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
572 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
573 
574 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
575 
576 	if (err)
577 		nr_written = 0;
578 	else
579 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
580 
581 	if (nr_written < max_opt_len)
582 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
583 		       max_opt_len - nr_written);
584 }
585 #else
586 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
587 				  struct request_sock *req,
588 				  struct sk_buff *syn_skb,
589 				  enum tcp_synack_type synack_type,
590 				  struct tcp_out_options *opts,
591 				  unsigned int *remaining)
592 {
593 }
594 
595 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
596 				    struct request_sock *req,
597 				    struct sk_buff *syn_skb,
598 				    enum tcp_synack_type synack_type,
599 				    struct tcp_out_options *opts)
600 {
601 }
602 #endif
603 
604 /* Write previously computed TCP options to the packet.
605  *
606  * Beware: Something in the Internet is very sensitive to the ordering of
607  * TCP options, we learned this through the hard way, so be careful here.
608  * Luckily we can at least blame others for their non-compliance but from
609  * inter-operability perspective it seems that we're somewhat stuck with
610  * the ordering which we have been using if we want to keep working with
611  * those broken things (not that it currently hurts anybody as there isn't
612  * particular reason why the ordering would need to be changed).
613  *
614  * At least SACK_PERM as the first option is known to lead to a disaster
615  * (but it may well be that other scenarios fail similarly).
616  */
617 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
618 			      struct tcp_out_options *opts)
619 {
620 	__be32 *ptr = (__be32 *)(th + 1);
621 	u16 options = opts->options;	/* mungable copy */
622 
623 	if (unlikely(OPTION_MD5 & options)) {
624 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
625 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
626 		/* overload cookie hash location */
627 		opts->hash_location = (__u8 *)ptr;
628 		ptr += 4;
629 	}
630 
631 	if (unlikely(opts->mss)) {
632 		*ptr++ = htonl((TCPOPT_MSS << 24) |
633 			       (TCPOLEN_MSS << 16) |
634 			       opts->mss);
635 	}
636 
637 	if (likely(OPTION_TS & options)) {
638 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
639 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
640 				       (TCPOLEN_SACK_PERM << 16) |
641 				       (TCPOPT_TIMESTAMP << 8) |
642 				       TCPOLEN_TIMESTAMP);
643 			options &= ~OPTION_SACK_ADVERTISE;
644 		} else {
645 			*ptr++ = htonl((TCPOPT_NOP << 24) |
646 				       (TCPOPT_NOP << 16) |
647 				       (TCPOPT_TIMESTAMP << 8) |
648 				       TCPOLEN_TIMESTAMP);
649 		}
650 		*ptr++ = htonl(opts->tsval);
651 		*ptr++ = htonl(opts->tsecr);
652 	}
653 
654 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
655 		*ptr++ = htonl((TCPOPT_NOP << 24) |
656 			       (TCPOPT_NOP << 16) |
657 			       (TCPOPT_SACK_PERM << 8) |
658 			       TCPOLEN_SACK_PERM);
659 	}
660 
661 	if (unlikely(OPTION_WSCALE & options)) {
662 		*ptr++ = htonl((TCPOPT_NOP << 24) |
663 			       (TCPOPT_WINDOW << 16) |
664 			       (TCPOLEN_WINDOW << 8) |
665 			       opts->ws);
666 	}
667 
668 	if (unlikely(opts->num_sack_blocks)) {
669 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
670 			tp->duplicate_sack : tp->selective_acks;
671 		int this_sack;
672 
673 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
674 			       (TCPOPT_NOP  << 16) |
675 			       (TCPOPT_SACK <<  8) |
676 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
677 						     TCPOLEN_SACK_PERBLOCK)));
678 
679 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
680 		     ++this_sack) {
681 			*ptr++ = htonl(sp[this_sack].start_seq);
682 			*ptr++ = htonl(sp[this_sack].end_seq);
683 		}
684 
685 		tp->rx_opt.dsack = 0;
686 	}
687 
688 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
689 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
690 		u8 *p = (u8 *)ptr;
691 		u32 len; /* Fast Open option length */
692 
693 		if (foc->exp) {
694 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
695 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
696 				     TCPOPT_FASTOPEN_MAGIC);
697 			p += TCPOLEN_EXP_FASTOPEN_BASE;
698 		} else {
699 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
700 			*p++ = TCPOPT_FASTOPEN;
701 			*p++ = len;
702 		}
703 
704 		memcpy(p, foc->val, foc->len);
705 		if ((len & 3) == 2) {
706 			p[foc->len] = TCPOPT_NOP;
707 			p[foc->len + 1] = TCPOPT_NOP;
708 		}
709 		ptr += (len + 3) >> 2;
710 	}
711 
712 	smc_options_write(ptr, &options);
713 
714 	mptcp_options_write(th, ptr, tp, opts);
715 }
716 
717 static void smc_set_option(const struct tcp_sock *tp,
718 			   struct tcp_out_options *opts,
719 			   unsigned int *remaining)
720 {
721 #if IS_ENABLED(CONFIG_SMC)
722 	if (static_branch_unlikely(&tcp_have_smc)) {
723 		if (tp->syn_smc) {
724 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
725 				opts->options |= OPTION_SMC;
726 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
727 			}
728 		}
729 	}
730 #endif
731 }
732 
733 static void smc_set_option_cond(const struct tcp_sock *tp,
734 				const struct inet_request_sock *ireq,
735 				struct tcp_out_options *opts,
736 				unsigned int *remaining)
737 {
738 #if IS_ENABLED(CONFIG_SMC)
739 	if (static_branch_unlikely(&tcp_have_smc)) {
740 		if (tp->syn_smc && ireq->smc_ok) {
741 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
742 				opts->options |= OPTION_SMC;
743 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
744 			}
745 		}
746 	}
747 #endif
748 }
749 
750 static void mptcp_set_option_cond(const struct request_sock *req,
751 				  struct tcp_out_options *opts,
752 				  unsigned int *remaining)
753 {
754 	if (rsk_is_mptcp(req)) {
755 		unsigned int size;
756 
757 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
758 			if (*remaining >= size) {
759 				opts->options |= OPTION_MPTCP;
760 				*remaining -= size;
761 			}
762 		}
763 	}
764 }
765 
766 /* Compute TCP options for SYN packets. This is not the final
767  * network wire format yet.
768  */
769 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
770 				struct tcp_out_options *opts,
771 				struct tcp_md5sig_key **md5)
772 {
773 	struct tcp_sock *tp = tcp_sk(sk);
774 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
775 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
776 
777 	*md5 = NULL;
778 #ifdef CONFIG_TCP_MD5SIG
779 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
780 	    rcu_access_pointer(tp->md5sig_info)) {
781 		*md5 = tp->af_specific->md5_lookup(sk, sk);
782 		if (*md5) {
783 			opts->options |= OPTION_MD5;
784 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
785 		}
786 	}
787 #endif
788 
789 	/* We always get an MSS option.  The option bytes which will be seen in
790 	 * normal data packets should timestamps be used, must be in the MSS
791 	 * advertised.  But we subtract them from tp->mss_cache so that
792 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
793 	 * fact here if necessary.  If we don't do this correctly, as a
794 	 * receiver we won't recognize data packets as being full sized when we
795 	 * should, and thus we won't abide by the delayed ACK rules correctly.
796 	 * SACKs don't matter, we never delay an ACK when we have any of those
797 	 * going out.  */
798 	opts->mss = tcp_advertise_mss(sk);
799 	remaining -= TCPOLEN_MSS_ALIGNED;
800 
801 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
802 		opts->options |= OPTION_TS;
803 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
804 		opts->tsecr = tp->rx_opt.ts_recent;
805 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
806 	}
807 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
808 		opts->ws = tp->rx_opt.rcv_wscale;
809 		opts->options |= OPTION_WSCALE;
810 		remaining -= TCPOLEN_WSCALE_ALIGNED;
811 	}
812 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
813 		opts->options |= OPTION_SACK_ADVERTISE;
814 		if (unlikely(!(OPTION_TS & opts->options)))
815 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
816 	}
817 
818 	if (fastopen && fastopen->cookie.len >= 0) {
819 		u32 need = fastopen->cookie.len;
820 
821 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
822 					       TCPOLEN_FASTOPEN_BASE;
823 		need = (need + 3) & ~3U;  /* Align to 32 bits */
824 		if (remaining >= need) {
825 			opts->options |= OPTION_FAST_OPEN_COOKIE;
826 			opts->fastopen_cookie = &fastopen->cookie;
827 			remaining -= need;
828 			tp->syn_fastopen = 1;
829 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
830 		}
831 	}
832 
833 	smc_set_option(tp, opts, &remaining);
834 
835 	if (sk_is_mptcp(sk)) {
836 		unsigned int size;
837 
838 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
839 			opts->options |= OPTION_MPTCP;
840 			remaining -= size;
841 		}
842 	}
843 
844 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
845 
846 	return MAX_TCP_OPTION_SPACE - remaining;
847 }
848 
849 /* Set up TCP options for SYN-ACKs. */
850 static unsigned int tcp_synack_options(const struct sock *sk,
851 				       struct request_sock *req,
852 				       unsigned int mss, struct sk_buff *skb,
853 				       struct tcp_out_options *opts,
854 				       const struct tcp_md5sig_key *md5,
855 				       struct tcp_fastopen_cookie *foc,
856 				       enum tcp_synack_type synack_type,
857 				       struct sk_buff *syn_skb)
858 {
859 	struct inet_request_sock *ireq = inet_rsk(req);
860 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
861 
862 #ifdef CONFIG_TCP_MD5SIG
863 	if (md5) {
864 		opts->options |= OPTION_MD5;
865 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
866 
867 		/* We can't fit any SACK blocks in a packet with MD5 + TS
868 		 * options. There was discussion about disabling SACK
869 		 * rather than TS in order to fit in better with old,
870 		 * buggy kernels, but that was deemed to be unnecessary.
871 		 */
872 		if (synack_type != TCP_SYNACK_COOKIE)
873 			ireq->tstamp_ok &= !ireq->sack_ok;
874 	}
875 #endif
876 
877 	/* We always send an MSS option. */
878 	opts->mss = mss;
879 	remaining -= TCPOLEN_MSS_ALIGNED;
880 
881 	if (likely(ireq->wscale_ok)) {
882 		opts->ws = ireq->rcv_wscale;
883 		opts->options |= OPTION_WSCALE;
884 		remaining -= TCPOLEN_WSCALE_ALIGNED;
885 	}
886 	if (likely(ireq->tstamp_ok)) {
887 		opts->options |= OPTION_TS;
888 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
889 		opts->tsecr = READ_ONCE(req->ts_recent);
890 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
891 	}
892 	if (likely(ireq->sack_ok)) {
893 		opts->options |= OPTION_SACK_ADVERTISE;
894 		if (unlikely(!ireq->tstamp_ok))
895 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
896 	}
897 	if (foc != NULL && foc->len >= 0) {
898 		u32 need = foc->len;
899 
900 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
901 				   TCPOLEN_FASTOPEN_BASE;
902 		need = (need + 3) & ~3U;  /* Align to 32 bits */
903 		if (remaining >= need) {
904 			opts->options |= OPTION_FAST_OPEN_COOKIE;
905 			opts->fastopen_cookie = foc;
906 			remaining -= need;
907 		}
908 	}
909 
910 	mptcp_set_option_cond(req, opts, &remaining);
911 
912 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
913 
914 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
915 			      synack_type, opts, &remaining);
916 
917 	return MAX_TCP_OPTION_SPACE - remaining;
918 }
919 
920 /* Compute TCP options for ESTABLISHED sockets. This is not the
921  * final wire format yet.
922  */
923 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
924 					struct tcp_out_options *opts,
925 					struct tcp_md5sig_key **md5)
926 {
927 	struct tcp_sock *tp = tcp_sk(sk);
928 	unsigned int size = 0;
929 	unsigned int eff_sacks;
930 
931 	opts->options = 0;
932 
933 	*md5 = NULL;
934 #ifdef CONFIG_TCP_MD5SIG
935 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
936 	    rcu_access_pointer(tp->md5sig_info)) {
937 		*md5 = tp->af_specific->md5_lookup(sk, sk);
938 		if (*md5) {
939 			opts->options |= OPTION_MD5;
940 			size += TCPOLEN_MD5SIG_ALIGNED;
941 		}
942 	}
943 #endif
944 
945 	if (likely(tp->rx_opt.tstamp_ok)) {
946 		opts->options |= OPTION_TS;
947 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
948 		opts->tsecr = tp->rx_opt.ts_recent;
949 		size += TCPOLEN_TSTAMP_ALIGNED;
950 	}
951 
952 	/* MPTCP options have precedence over SACK for the limited TCP
953 	 * option space because a MPTCP connection would be forced to
954 	 * fall back to regular TCP if a required multipath option is
955 	 * missing. SACK still gets a chance to use whatever space is
956 	 * left.
957 	 */
958 	if (sk_is_mptcp(sk)) {
959 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
960 		unsigned int opt_size = 0;
961 
962 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
963 					      &opts->mptcp)) {
964 			opts->options |= OPTION_MPTCP;
965 			size += opt_size;
966 		}
967 	}
968 
969 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
970 	if (unlikely(eff_sacks)) {
971 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
972 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
973 					 TCPOLEN_SACK_PERBLOCK))
974 			return size;
975 
976 		opts->num_sack_blocks =
977 			min_t(unsigned int, eff_sacks,
978 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
979 			      TCPOLEN_SACK_PERBLOCK);
980 
981 		size += TCPOLEN_SACK_BASE_ALIGNED +
982 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
983 	}
984 
985 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
986 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
987 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
988 
989 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
990 
991 		size = MAX_TCP_OPTION_SPACE - remaining;
992 	}
993 
994 	return size;
995 }
996 
997 
998 /* TCP SMALL QUEUES (TSQ)
999  *
1000  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1001  * to reduce RTT and bufferbloat.
1002  * We do this using a special skb destructor (tcp_wfree).
1003  *
1004  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1005  * needs to be reallocated in a driver.
1006  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1007  *
1008  * Since transmit from skb destructor is forbidden, we use a tasklet
1009  * to process all sockets that eventually need to send more skbs.
1010  * We use one tasklet per cpu, with its own queue of sockets.
1011  */
1012 struct tsq_tasklet {
1013 	struct tasklet_struct	tasklet;
1014 	struct list_head	head; /* queue of tcp sockets */
1015 };
1016 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1017 
1018 static void tcp_tsq_write(struct sock *sk)
1019 {
1020 	if ((1 << sk->sk_state) &
1021 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1022 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1023 		struct tcp_sock *tp = tcp_sk(sk);
1024 
1025 		if (tp->lost_out > tp->retrans_out &&
1026 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1027 			tcp_mstamp_refresh(tp);
1028 			tcp_xmit_retransmit_queue(sk);
1029 		}
1030 
1031 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1032 			       0, GFP_ATOMIC);
1033 	}
1034 }
1035 
1036 static void tcp_tsq_handler(struct sock *sk)
1037 {
1038 	bh_lock_sock(sk);
1039 	if (!sock_owned_by_user(sk))
1040 		tcp_tsq_write(sk);
1041 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1042 		sock_hold(sk);
1043 	bh_unlock_sock(sk);
1044 }
1045 /*
1046  * One tasklet per cpu tries to send more skbs.
1047  * We run in tasklet context but need to disable irqs when
1048  * transferring tsq->head because tcp_wfree() might
1049  * interrupt us (non NAPI drivers)
1050  */
1051 static void tcp_tasklet_func(struct tasklet_struct *t)
1052 {
1053 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1054 	LIST_HEAD(list);
1055 	unsigned long flags;
1056 	struct list_head *q, *n;
1057 	struct tcp_sock *tp;
1058 	struct sock *sk;
1059 
1060 	local_irq_save(flags);
1061 	list_splice_init(&tsq->head, &list);
1062 	local_irq_restore(flags);
1063 
1064 	list_for_each_safe(q, n, &list) {
1065 		tp = list_entry(q, struct tcp_sock, tsq_node);
1066 		list_del(&tp->tsq_node);
1067 
1068 		sk = (struct sock *)tp;
1069 		smp_mb__before_atomic();
1070 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1071 
1072 		tcp_tsq_handler(sk);
1073 		sk_free(sk);
1074 	}
1075 }
1076 
1077 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1078 			  TCPF_WRITE_TIMER_DEFERRED |	\
1079 			  TCPF_DELACK_TIMER_DEFERRED |	\
1080 			  TCPF_MTU_REDUCED_DEFERRED)
1081 /**
1082  * tcp_release_cb - tcp release_sock() callback
1083  * @sk: socket
1084  *
1085  * called from release_sock() to perform protocol dependent
1086  * actions before socket release.
1087  */
1088 void tcp_release_cb(struct sock *sk)
1089 {
1090 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1091 	unsigned long nflags;
1092 
1093 	/* perform an atomic operation only if at least one flag is set */
1094 	do {
1095 		if (!(flags & TCP_DEFERRED_ALL))
1096 			return;
1097 		nflags = flags & ~TCP_DEFERRED_ALL;
1098 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1099 
1100 	if (flags & TCPF_TSQ_DEFERRED) {
1101 		tcp_tsq_write(sk);
1102 		__sock_put(sk);
1103 	}
1104 	/* Here begins the tricky part :
1105 	 * We are called from release_sock() with :
1106 	 * 1) BH disabled
1107 	 * 2) sk_lock.slock spinlock held
1108 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1109 	 *
1110 	 * But following code is meant to be called from BH handlers,
1111 	 * so we should keep BH disabled, but early release socket ownership
1112 	 */
1113 	sock_release_ownership(sk);
1114 
1115 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1116 		tcp_write_timer_handler(sk);
1117 		__sock_put(sk);
1118 	}
1119 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1120 		tcp_delack_timer_handler(sk);
1121 		__sock_put(sk);
1122 	}
1123 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1124 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1125 		__sock_put(sk);
1126 	}
1127 }
1128 EXPORT_SYMBOL(tcp_release_cb);
1129 
1130 void __init tcp_tasklet_init(void)
1131 {
1132 	int i;
1133 
1134 	for_each_possible_cpu(i) {
1135 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1136 
1137 		INIT_LIST_HEAD(&tsq->head);
1138 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1139 	}
1140 }
1141 
1142 /*
1143  * Write buffer destructor automatically called from kfree_skb.
1144  * We can't xmit new skbs from this context, as we might already
1145  * hold qdisc lock.
1146  */
1147 void tcp_wfree(struct sk_buff *skb)
1148 {
1149 	struct sock *sk = skb->sk;
1150 	struct tcp_sock *tp = tcp_sk(sk);
1151 	unsigned long flags, nval, oval;
1152 	struct tsq_tasklet *tsq;
1153 	bool empty;
1154 
1155 	/* Keep one reference on sk_wmem_alloc.
1156 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1157 	 */
1158 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1159 
1160 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1161 	 * Wait until our queues (qdisc + devices) are drained.
1162 	 * This gives :
1163 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1164 	 * - chance for incoming ACK (processed by another cpu maybe)
1165 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1166 	 */
1167 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1168 		goto out;
1169 
1170 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1171 	do {
1172 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1173 			goto out;
1174 
1175 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1176 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1177 
1178 	/* queue this socket to tasklet queue */
1179 	local_irq_save(flags);
1180 	tsq = this_cpu_ptr(&tsq_tasklet);
1181 	empty = list_empty(&tsq->head);
1182 	list_add(&tp->tsq_node, &tsq->head);
1183 	if (empty)
1184 		tasklet_schedule(&tsq->tasklet);
1185 	local_irq_restore(flags);
1186 	return;
1187 out:
1188 	sk_free(sk);
1189 }
1190 
1191 /* Note: Called under soft irq.
1192  * We can call TCP stack right away, unless socket is owned by user.
1193  */
1194 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1195 {
1196 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1197 	struct sock *sk = (struct sock *)tp;
1198 
1199 	tcp_tsq_handler(sk);
1200 	sock_put(sk);
1201 
1202 	return HRTIMER_NORESTART;
1203 }
1204 
1205 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1206 				      u64 prior_wstamp)
1207 {
1208 	struct tcp_sock *tp = tcp_sk(sk);
1209 
1210 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1211 		unsigned long rate = sk->sk_pacing_rate;
1212 
1213 		/* Original sch_fq does not pace first 10 MSS
1214 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1215 		 * this is a minor annoyance.
1216 		 */
1217 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1218 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1219 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1220 
1221 			/* take into account OS jitter */
1222 			len_ns -= min_t(u64, len_ns / 2, credit);
1223 			tp->tcp_wstamp_ns += len_ns;
1224 		}
1225 	}
1226 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1227 }
1228 
1229 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1230 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1231 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1232 
1233 /* This routine actually transmits TCP packets queued in by
1234  * tcp_do_sendmsg().  This is used by both the initial
1235  * transmission and possible later retransmissions.
1236  * All SKB's seen here are completely headerless.  It is our
1237  * job to build the TCP header, and pass the packet down to
1238  * IP so it can do the same plus pass the packet off to the
1239  * device.
1240  *
1241  * We are working here with either a clone of the original
1242  * SKB, or a fresh unique copy made by the retransmit engine.
1243  */
1244 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1245 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1246 {
1247 	const struct inet_connection_sock *icsk = inet_csk(sk);
1248 	struct inet_sock *inet;
1249 	struct tcp_sock *tp;
1250 	struct tcp_skb_cb *tcb;
1251 	struct tcp_out_options opts;
1252 	unsigned int tcp_options_size, tcp_header_size;
1253 	struct sk_buff *oskb = NULL;
1254 	struct tcp_md5sig_key *md5;
1255 	struct tcphdr *th;
1256 	u64 prior_wstamp;
1257 	int err;
1258 
1259 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1260 	tp = tcp_sk(sk);
1261 	prior_wstamp = tp->tcp_wstamp_ns;
1262 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1263 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1264 	if (clone_it) {
1265 		oskb = skb;
1266 
1267 		tcp_skb_tsorted_save(oskb) {
1268 			if (unlikely(skb_cloned(oskb)))
1269 				skb = pskb_copy(oskb, gfp_mask);
1270 			else
1271 				skb = skb_clone(oskb, gfp_mask);
1272 		} tcp_skb_tsorted_restore(oskb);
1273 
1274 		if (unlikely(!skb))
1275 			return -ENOBUFS;
1276 		/* retransmit skbs might have a non zero value in skb->dev
1277 		 * because skb->dev is aliased with skb->rbnode.rb_left
1278 		 */
1279 		skb->dev = NULL;
1280 	}
1281 
1282 	inet = inet_sk(sk);
1283 	tcb = TCP_SKB_CB(skb);
1284 	memset(&opts, 0, sizeof(opts));
1285 
1286 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1287 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1288 	} else {
1289 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1290 							   &md5);
1291 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1292 		 * at receiver : This slightly improve GRO performance.
1293 		 * Note that we do not force the PSH flag for non GSO packets,
1294 		 * because they might be sent under high congestion events,
1295 		 * and in this case it is better to delay the delivery of 1-MSS
1296 		 * packets and thus the corresponding ACK packet that would
1297 		 * release the following packet.
1298 		 */
1299 		if (tcp_skb_pcount(skb) > 1)
1300 			tcb->tcp_flags |= TCPHDR_PSH;
1301 	}
1302 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1303 
1304 	/* if no packet is in qdisc/device queue, then allow XPS to select
1305 	 * another queue. We can be called from tcp_tsq_handler()
1306 	 * which holds one reference to sk.
1307 	 *
1308 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1309 	 * One way to get this would be to set skb->truesize = 2 on them.
1310 	 */
1311 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1312 
1313 	/* If we had to use memory reserve to allocate this skb,
1314 	 * this might cause drops if packet is looped back :
1315 	 * Other socket might not have SOCK_MEMALLOC.
1316 	 * Packets not looped back do not care about pfmemalloc.
1317 	 */
1318 	skb->pfmemalloc = 0;
1319 
1320 	skb_push(skb, tcp_header_size);
1321 	skb_reset_transport_header(skb);
1322 
1323 	skb_orphan(skb);
1324 	skb->sk = sk;
1325 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1326 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1327 
1328 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1329 
1330 	/* Build TCP header and checksum it. */
1331 	th = (struct tcphdr *)skb->data;
1332 	th->source		= inet->inet_sport;
1333 	th->dest		= inet->inet_dport;
1334 	th->seq			= htonl(tcb->seq);
1335 	th->ack_seq		= htonl(rcv_nxt);
1336 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1337 					tcb->tcp_flags);
1338 
1339 	th->check		= 0;
1340 	th->urg_ptr		= 0;
1341 
1342 	/* The urg_mode check is necessary during a below snd_una win probe */
1343 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1344 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1345 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1346 			th->urg = 1;
1347 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1348 			th->urg_ptr = htons(0xFFFF);
1349 			th->urg = 1;
1350 		}
1351 	}
1352 
1353 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1354 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1355 		th->window      = htons(tcp_select_window(sk));
1356 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1357 	} else {
1358 		/* RFC1323: The window in SYN & SYN/ACK segments
1359 		 * is never scaled.
1360 		 */
1361 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1362 	}
1363 
1364 	tcp_options_write(th, tp, &opts);
1365 
1366 #ifdef CONFIG_TCP_MD5SIG
1367 	/* Calculate the MD5 hash, as we have all we need now */
1368 	if (md5) {
1369 		sk_gso_disable(sk);
1370 		tp->af_specific->calc_md5_hash(opts.hash_location,
1371 					       md5, sk, skb);
1372 	}
1373 #endif
1374 
1375 	/* BPF prog is the last one writing header option */
1376 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1377 
1378 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1379 			   tcp_v6_send_check, tcp_v4_send_check,
1380 			   sk, skb);
1381 
1382 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1383 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1384 
1385 	if (skb->len != tcp_header_size) {
1386 		tcp_event_data_sent(tp, sk);
1387 		tp->data_segs_out += tcp_skb_pcount(skb);
1388 		tp->bytes_sent += skb->len - tcp_header_size;
1389 	}
1390 
1391 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1392 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1393 			      tcp_skb_pcount(skb));
1394 
1395 	tp->segs_out += tcp_skb_pcount(skb);
1396 	skb_set_hash_from_sk(skb, sk);
1397 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1398 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1399 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1400 
1401 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1402 
1403 	/* Cleanup our debris for IP stacks */
1404 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1405 			       sizeof(struct inet6_skb_parm)));
1406 
1407 	tcp_add_tx_delay(skb, tp);
1408 
1409 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1410 				 inet6_csk_xmit, ip_queue_xmit,
1411 				 sk, skb, &inet->cork.fl);
1412 
1413 	if (unlikely(err > 0)) {
1414 		tcp_enter_cwr(sk);
1415 		err = net_xmit_eval(err);
1416 	}
1417 	if (!err && oskb) {
1418 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1419 		tcp_rate_skb_sent(sk, oskb);
1420 	}
1421 	return err;
1422 }
1423 
1424 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1425 			    gfp_t gfp_mask)
1426 {
1427 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1428 				  tcp_sk(sk)->rcv_nxt);
1429 }
1430 
1431 /* This routine just queues the buffer for sending.
1432  *
1433  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1434  * otherwise socket can stall.
1435  */
1436 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1437 {
1438 	struct tcp_sock *tp = tcp_sk(sk);
1439 
1440 	/* Advance write_seq and place onto the write_queue. */
1441 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1442 	__skb_header_release(skb);
1443 	tcp_add_write_queue_tail(sk, skb);
1444 	sk_wmem_queued_add(sk, skb->truesize);
1445 	sk_mem_charge(sk, skb->truesize);
1446 }
1447 
1448 /* Initialize TSO segments for a packet. */
1449 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1450 {
1451 	if (skb->len <= mss_now) {
1452 		/* Avoid the costly divide in the normal
1453 		 * non-TSO case.
1454 		 */
1455 		tcp_skb_pcount_set(skb, 1);
1456 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1457 	} else {
1458 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1459 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1460 	}
1461 }
1462 
1463 /* Pcount in the middle of the write queue got changed, we need to do various
1464  * tweaks to fix counters
1465  */
1466 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1467 {
1468 	struct tcp_sock *tp = tcp_sk(sk);
1469 
1470 	tp->packets_out -= decr;
1471 
1472 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1473 		tp->sacked_out -= decr;
1474 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1475 		tp->retrans_out -= decr;
1476 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1477 		tp->lost_out -= decr;
1478 
1479 	/* Reno case is special. Sigh... */
1480 	if (tcp_is_reno(tp) && decr > 0)
1481 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1482 
1483 	if (tp->lost_skb_hint &&
1484 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1485 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1486 		tp->lost_cnt_hint -= decr;
1487 
1488 	tcp_verify_left_out(tp);
1489 }
1490 
1491 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1492 {
1493 	return TCP_SKB_CB(skb)->txstamp_ack ||
1494 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1495 }
1496 
1497 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1498 {
1499 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1500 
1501 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1502 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1503 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1504 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1505 
1506 		shinfo->tx_flags &= ~tsflags;
1507 		shinfo2->tx_flags |= tsflags;
1508 		swap(shinfo->tskey, shinfo2->tskey);
1509 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1510 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1511 	}
1512 }
1513 
1514 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1515 {
1516 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1517 	TCP_SKB_CB(skb)->eor = 0;
1518 }
1519 
1520 /* Insert buff after skb on the write or rtx queue of sk.  */
1521 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1522 					 struct sk_buff *buff,
1523 					 struct sock *sk,
1524 					 enum tcp_queue tcp_queue)
1525 {
1526 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1527 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1528 	else
1529 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1530 }
1531 
1532 /* Function to create two new TCP segments.  Shrinks the given segment
1533  * to the specified size and appends a new segment with the rest of the
1534  * packet to the list.  This won't be called frequently, I hope.
1535  * Remember, these are still headerless SKBs at this point.
1536  */
1537 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1538 		 struct sk_buff *skb, u32 len,
1539 		 unsigned int mss_now, gfp_t gfp)
1540 {
1541 	struct tcp_sock *tp = tcp_sk(sk);
1542 	struct sk_buff *buff;
1543 	int old_factor;
1544 	long limit;
1545 	int nlen;
1546 	u8 flags;
1547 
1548 	if (WARN_ON(len > skb->len))
1549 		return -EINVAL;
1550 
1551 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1552 
1553 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1554 	 * We need some allowance to not penalize applications setting small
1555 	 * SO_SNDBUF values.
1556 	 * Also allow first and last skb in retransmit queue to be split.
1557 	 */
1558 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1559 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1560 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1561 		     skb != tcp_rtx_queue_head(sk) &&
1562 		     skb != tcp_rtx_queue_tail(sk))) {
1563 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1564 		return -ENOMEM;
1565 	}
1566 
1567 	if (skb_unclone_keeptruesize(skb, gfp))
1568 		return -ENOMEM;
1569 
1570 	/* Get a new skb... force flag on. */
1571 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1572 	if (!buff)
1573 		return -ENOMEM; /* We'll just try again later. */
1574 	skb_copy_decrypted(buff, skb);
1575 	mptcp_skb_ext_copy(buff, skb);
1576 
1577 	sk_wmem_queued_add(sk, buff->truesize);
1578 	sk_mem_charge(sk, buff->truesize);
1579 	nlen = skb->len - len;
1580 	buff->truesize += nlen;
1581 	skb->truesize -= nlen;
1582 
1583 	/* Correct the sequence numbers. */
1584 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1585 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1586 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1587 
1588 	/* PSH and FIN should only be set in the second packet. */
1589 	flags = TCP_SKB_CB(skb)->tcp_flags;
1590 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1591 	TCP_SKB_CB(buff)->tcp_flags = flags;
1592 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1593 	tcp_skb_fragment_eor(skb, buff);
1594 
1595 	skb_split(skb, buff, len);
1596 
1597 	skb_set_delivery_time(buff, skb->tstamp, true);
1598 	tcp_fragment_tstamp(skb, buff);
1599 
1600 	old_factor = tcp_skb_pcount(skb);
1601 
1602 	/* Fix up tso_factor for both original and new SKB.  */
1603 	tcp_set_skb_tso_segs(skb, mss_now);
1604 	tcp_set_skb_tso_segs(buff, mss_now);
1605 
1606 	/* Update delivered info for the new segment */
1607 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1608 
1609 	/* If this packet has been sent out already, we must
1610 	 * adjust the various packet counters.
1611 	 */
1612 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1613 		int diff = old_factor - tcp_skb_pcount(skb) -
1614 			tcp_skb_pcount(buff);
1615 
1616 		if (diff)
1617 			tcp_adjust_pcount(sk, skb, diff);
1618 	}
1619 
1620 	/* Link BUFF into the send queue. */
1621 	__skb_header_release(buff);
1622 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1623 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1624 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1625 
1626 	return 0;
1627 }
1628 
1629 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1630  * data is not copied, but immediately discarded.
1631  */
1632 static int __pskb_trim_head(struct sk_buff *skb, int len)
1633 {
1634 	struct skb_shared_info *shinfo;
1635 	int i, k, eat;
1636 
1637 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1638 	eat = len;
1639 	k = 0;
1640 	shinfo = skb_shinfo(skb);
1641 	for (i = 0; i < shinfo->nr_frags; i++) {
1642 		int size = skb_frag_size(&shinfo->frags[i]);
1643 
1644 		if (size <= eat) {
1645 			skb_frag_unref(skb, i);
1646 			eat -= size;
1647 		} else {
1648 			shinfo->frags[k] = shinfo->frags[i];
1649 			if (eat) {
1650 				skb_frag_off_add(&shinfo->frags[k], eat);
1651 				skb_frag_size_sub(&shinfo->frags[k], eat);
1652 				eat = 0;
1653 			}
1654 			k++;
1655 		}
1656 	}
1657 	shinfo->nr_frags = k;
1658 
1659 	skb->data_len -= len;
1660 	skb->len = skb->data_len;
1661 	return len;
1662 }
1663 
1664 /* Remove acked data from a packet in the transmit queue. */
1665 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1666 {
1667 	u32 delta_truesize;
1668 
1669 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1670 		return -ENOMEM;
1671 
1672 	delta_truesize = __pskb_trim_head(skb, len);
1673 
1674 	TCP_SKB_CB(skb)->seq += len;
1675 
1676 	skb->truesize	   -= delta_truesize;
1677 	sk_wmem_queued_add(sk, -delta_truesize);
1678 	if (!skb_zcopy_pure(skb))
1679 		sk_mem_uncharge(sk, delta_truesize);
1680 
1681 	/* Any change of skb->len requires recalculation of tso factor. */
1682 	if (tcp_skb_pcount(skb) > 1)
1683 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1684 
1685 	return 0;
1686 }
1687 
1688 /* Calculate MSS not accounting any TCP options.  */
1689 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1690 {
1691 	const struct tcp_sock *tp = tcp_sk(sk);
1692 	const struct inet_connection_sock *icsk = inet_csk(sk);
1693 	int mss_now;
1694 
1695 	/* Calculate base mss without TCP options:
1696 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1697 	 */
1698 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1699 
1700 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1701 	if (icsk->icsk_af_ops->net_frag_header_len) {
1702 		const struct dst_entry *dst = __sk_dst_get(sk);
1703 
1704 		if (dst && dst_allfrag(dst))
1705 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1706 	}
1707 
1708 	/* Clamp it (mss_clamp does not include tcp options) */
1709 	if (mss_now > tp->rx_opt.mss_clamp)
1710 		mss_now = tp->rx_opt.mss_clamp;
1711 
1712 	/* Now subtract optional transport overhead */
1713 	mss_now -= icsk->icsk_ext_hdr_len;
1714 
1715 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1716 	mss_now = max(mss_now,
1717 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1718 	return mss_now;
1719 }
1720 
1721 /* Calculate MSS. Not accounting for SACKs here.  */
1722 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1723 {
1724 	/* Subtract TCP options size, not including SACKs */
1725 	return __tcp_mtu_to_mss(sk, pmtu) -
1726 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1727 }
1728 EXPORT_SYMBOL(tcp_mtu_to_mss);
1729 
1730 /* Inverse of above */
1731 int tcp_mss_to_mtu(struct sock *sk, int mss)
1732 {
1733 	const struct tcp_sock *tp = tcp_sk(sk);
1734 	const struct inet_connection_sock *icsk = inet_csk(sk);
1735 	int mtu;
1736 
1737 	mtu = mss +
1738 	      tp->tcp_header_len +
1739 	      icsk->icsk_ext_hdr_len +
1740 	      icsk->icsk_af_ops->net_header_len;
1741 
1742 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1743 	if (icsk->icsk_af_ops->net_frag_header_len) {
1744 		const struct dst_entry *dst = __sk_dst_get(sk);
1745 
1746 		if (dst && dst_allfrag(dst))
1747 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1748 	}
1749 	return mtu;
1750 }
1751 EXPORT_SYMBOL(tcp_mss_to_mtu);
1752 
1753 /* MTU probing init per socket */
1754 void tcp_mtup_init(struct sock *sk)
1755 {
1756 	struct tcp_sock *tp = tcp_sk(sk);
1757 	struct inet_connection_sock *icsk = inet_csk(sk);
1758 	struct net *net = sock_net(sk);
1759 
1760 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1761 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1762 			       icsk->icsk_af_ops->net_header_len;
1763 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1764 	icsk->icsk_mtup.probe_size = 0;
1765 	if (icsk->icsk_mtup.enabled)
1766 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1767 }
1768 EXPORT_SYMBOL(tcp_mtup_init);
1769 
1770 /* This function synchronize snd mss to current pmtu/exthdr set.
1771 
1772    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1773    for TCP options, but includes only bare TCP header.
1774 
1775    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1776    It is minimum of user_mss and mss received with SYN.
1777    It also does not include TCP options.
1778 
1779    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1780 
1781    tp->mss_cache is current effective sending mss, including
1782    all tcp options except for SACKs. It is evaluated,
1783    taking into account current pmtu, but never exceeds
1784    tp->rx_opt.mss_clamp.
1785 
1786    NOTE1. rfc1122 clearly states that advertised MSS
1787    DOES NOT include either tcp or ip options.
1788 
1789    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1790    are READ ONLY outside this function.		--ANK (980731)
1791  */
1792 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1793 {
1794 	struct tcp_sock *tp = tcp_sk(sk);
1795 	struct inet_connection_sock *icsk = inet_csk(sk);
1796 	int mss_now;
1797 
1798 	if (icsk->icsk_mtup.search_high > pmtu)
1799 		icsk->icsk_mtup.search_high = pmtu;
1800 
1801 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1802 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1803 
1804 	/* And store cached results */
1805 	icsk->icsk_pmtu_cookie = pmtu;
1806 	if (icsk->icsk_mtup.enabled)
1807 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1808 	tp->mss_cache = mss_now;
1809 
1810 	return mss_now;
1811 }
1812 EXPORT_SYMBOL(tcp_sync_mss);
1813 
1814 /* Compute the current effective MSS, taking SACKs and IP options,
1815  * and even PMTU discovery events into account.
1816  */
1817 unsigned int tcp_current_mss(struct sock *sk)
1818 {
1819 	const struct tcp_sock *tp = tcp_sk(sk);
1820 	const struct dst_entry *dst = __sk_dst_get(sk);
1821 	u32 mss_now;
1822 	unsigned int header_len;
1823 	struct tcp_out_options opts;
1824 	struct tcp_md5sig_key *md5;
1825 
1826 	mss_now = tp->mss_cache;
1827 
1828 	if (dst) {
1829 		u32 mtu = dst_mtu(dst);
1830 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1831 			mss_now = tcp_sync_mss(sk, mtu);
1832 	}
1833 
1834 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1835 		     sizeof(struct tcphdr);
1836 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1837 	 * some common options. If this is an odd packet (because we have SACK
1838 	 * blocks etc) then our calculated header_len will be different, and
1839 	 * we have to adjust mss_now correspondingly */
1840 	if (header_len != tp->tcp_header_len) {
1841 		int delta = (int) header_len - tp->tcp_header_len;
1842 		mss_now -= delta;
1843 	}
1844 
1845 	return mss_now;
1846 }
1847 
1848 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1849  * As additional protections, we do not touch cwnd in retransmission phases,
1850  * and if application hit its sndbuf limit recently.
1851  */
1852 static void tcp_cwnd_application_limited(struct sock *sk)
1853 {
1854 	struct tcp_sock *tp = tcp_sk(sk);
1855 
1856 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1857 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1858 		/* Limited by application or receiver window. */
1859 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1860 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1861 		if (win_used < tcp_snd_cwnd(tp)) {
1862 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1863 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1864 		}
1865 		tp->snd_cwnd_used = 0;
1866 	}
1867 	tp->snd_cwnd_stamp = tcp_jiffies32;
1868 }
1869 
1870 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1871 {
1872 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1873 	struct tcp_sock *tp = tcp_sk(sk);
1874 
1875 	/* Track the strongest available signal of the degree to which the cwnd
1876 	 * is fully utilized. If cwnd-limited then remember that fact for the
1877 	 * current window. If not cwnd-limited then track the maximum number of
1878 	 * outstanding packets in the current window. (If cwnd-limited then we
1879 	 * chose to not update tp->max_packets_out to avoid an extra else
1880 	 * clause with no functional impact.)
1881 	 */
1882 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1883 	    is_cwnd_limited ||
1884 	    (!tp->is_cwnd_limited &&
1885 	     tp->packets_out > tp->max_packets_out)) {
1886 		tp->is_cwnd_limited = is_cwnd_limited;
1887 		tp->max_packets_out = tp->packets_out;
1888 		tp->cwnd_usage_seq = tp->snd_nxt;
1889 	}
1890 
1891 	if (tcp_is_cwnd_limited(sk)) {
1892 		/* Network is feed fully. */
1893 		tp->snd_cwnd_used = 0;
1894 		tp->snd_cwnd_stamp = tcp_jiffies32;
1895 	} else {
1896 		/* Network starves. */
1897 		if (tp->packets_out > tp->snd_cwnd_used)
1898 			tp->snd_cwnd_used = tp->packets_out;
1899 
1900 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1901 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1902 		    !ca_ops->cong_control)
1903 			tcp_cwnd_application_limited(sk);
1904 
1905 		/* The following conditions together indicate the starvation
1906 		 * is caused by insufficient sender buffer:
1907 		 * 1) just sent some data (see tcp_write_xmit)
1908 		 * 2) not cwnd limited (this else condition)
1909 		 * 3) no more data to send (tcp_write_queue_empty())
1910 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1911 		 */
1912 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1913 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1914 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1915 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1916 	}
1917 }
1918 
1919 /* Minshall's variant of the Nagle send check. */
1920 static bool tcp_minshall_check(const struct tcp_sock *tp)
1921 {
1922 	return after(tp->snd_sml, tp->snd_una) &&
1923 		!after(tp->snd_sml, tp->snd_nxt);
1924 }
1925 
1926 /* Update snd_sml if this skb is under mss
1927  * Note that a TSO packet might end with a sub-mss segment
1928  * The test is really :
1929  * if ((skb->len % mss) != 0)
1930  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1931  * But we can avoid doing the divide again given we already have
1932  *  skb_pcount = skb->len / mss_now
1933  */
1934 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1935 				const struct sk_buff *skb)
1936 {
1937 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1938 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1939 }
1940 
1941 /* Return false, if packet can be sent now without violation Nagle's rules:
1942  * 1. It is full sized. (provided by caller in %partial bool)
1943  * 2. Or it contains FIN. (already checked by caller)
1944  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1945  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1946  *    With Minshall's modification: all sent small packets are ACKed.
1947  */
1948 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1949 			    int nonagle)
1950 {
1951 	return partial &&
1952 		((nonagle & TCP_NAGLE_CORK) ||
1953 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1954 }
1955 
1956 /* Return how many segs we'd like on a TSO packet,
1957  * depending on current pacing rate, and how close the peer is.
1958  *
1959  * Rationale is:
1960  * - For close peers, we rather send bigger packets to reduce
1961  *   cpu costs, because occasional losses will be repaired fast.
1962  * - For long distance/rtt flows, we would like to get ACK clocking
1963  *   with 1 ACK per ms.
1964  *
1965  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1966  * in bigger TSO bursts. We we cut the RTT-based allowance in half
1967  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1968  * is below 1500 bytes after 6 * ~500 usec = 3ms.
1969  */
1970 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1971 			    int min_tso_segs)
1972 {
1973 	unsigned long bytes;
1974 	u32 r;
1975 
1976 	bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1977 
1978 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1979 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1980 		bytes += sk->sk_gso_max_size >> r;
1981 
1982 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1983 
1984 	return max_t(u32, bytes / mss_now, min_tso_segs);
1985 }
1986 
1987 /* Return the number of segments we want in the skb we are transmitting.
1988  * See if congestion control module wants to decide; otherwise, autosize.
1989  */
1990 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1991 {
1992 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1993 	u32 min_tso, tso_segs;
1994 
1995 	min_tso = ca_ops->min_tso_segs ?
1996 			ca_ops->min_tso_segs(sk) :
1997 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1998 
1999 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2000 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2001 }
2002 
2003 /* Returns the portion of skb which can be sent right away */
2004 static unsigned int tcp_mss_split_point(const struct sock *sk,
2005 					const struct sk_buff *skb,
2006 					unsigned int mss_now,
2007 					unsigned int max_segs,
2008 					int nonagle)
2009 {
2010 	const struct tcp_sock *tp = tcp_sk(sk);
2011 	u32 partial, needed, window, max_len;
2012 
2013 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2014 	max_len = mss_now * max_segs;
2015 
2016 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2017 		return max_len;
2018 
2019 	needed = min(skb->len, window);
2020 
2021 	if (max_len <= needed)
2022 		return max_len;
2023 
2024 	partial = needed % mss_now;
2025 	/* If last segment is not a full MSS, check if Nagle rules allow us
2026 	 * to include this last segment in this skb.
2027 	 * Otherwise, we'll split the skb at last MSS boundary
2028 	 */
2029 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2030 		return needed - partial;
2031 
2032 	return needed;
2033 }
2034 
2035 /* Can at least one segment of SKB be sent right now, according to the
2036  * congestion window rules?  If so, return how many segments are allowed.
2037  */
2038 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2039 					 const struct sk_buff *skb)
2040 {
2041 	u32 in_flight, cwnd, halfcwnd;
2042 
2043 	/* Don't be strict about the congestion window for the final FIN.  */
2044 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2045 	    tcp_skb_pcount(skb) == 1)
2046 		return 1;
2047 
2048 	in_flight = tcp_packets_in_flight(tp);
2049 	cwnd = tcp_snd_cwnd(tp);
2050 	if (in_flight >= cwnd)
2051 		return 0;
2052 
2053 	/* For better scheduling, ensure we have at least
2054 	 * 2 GSO packets in flight.
2055 	 */
2056 	halfcwnd = max(cwnd >> 1, 1U);
2057 	return min(halfcwnd, cwnd - in_flight);
2058 }
2059 
2060 /* Initialize TSO state of a skb.
2061  * This must be invoked the first time we consider transmitting
2062  * SKB onto the wire.
2063  */
2064 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2065 {
2066 	int tso_segs = tcp_skb_pcount(skb);
2067 
2068 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2069 		tcp_set_skb_tso_segs(skb, mss_now);
2070 		tso_segs = tcp_skb_pcount(skb);
2071 	}
2072 	return tso_segs;
2073 }
2074 
2075 
2076 /* Return true if the Nagle test allows this packet to be
2077  * sent now.
2078  */
2079 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2080 				  unsigned int cur_mss, int nonagle)
2081 {
2082 	/* Nagle rule does not apply to frames, which sit in the middle of the
2083 	 * write_queue (they have no chances to get new data).
2084 	 *
2085 	 * This is implemented in the callers, where they modify the 'nonagle'
2086 	 * argument based upon the location of SKB in the send queue.
2087 	 */
2088 	if (nonagle & TCP_NAGLE_PUSH)
2089 		return true;
2090 
2091 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2092 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2093 		return true;
2094 
2095 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2096 		return true;
2097 
2098 	return false;
2099 }
2100 
2101 /* Does at least the first segment of SKB fit into the send window? */
2102 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2103 			     const struct sk_buff *skb,
2104 			     unsigned int cur_mss)
2105 {
2106 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2107 
2108 	if (skb->len > cur_mss)
2109 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2110 
2111 	return !after(end_seq, tcp_wnd_end(tp));
2112 }
2113 
2114 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2115  * which is put after SKB on the list.  It is very much like
2116  * tcp_fragment() except that it may make several kinds of assumptions
2117  * in order to speed up the splitting operation.  In particular, we
2118  * know that all the data is in scatter-gather pages, and that the
2119  * packet has never been sent out before (and thus is not cloned).
2120  */
2121 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2122 			unsigned int mss_now, gfp_t gfp)
2123 {
2124 	int nlen = skb->len - len;
2125 	struct sk_buff *buff;
2126 	u8 flags;
2127 
2128 	/* All of a TSO frame must be composed of paged data.  */
2129 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2130 
2131 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2132 	if (unlikely(!buff))
2133 		return -ENOMEM;
2134 	skb_copy_decrypted(buff, skb);
2135 	mptcp_skb_ext_copy(buff, skb);
2136 
2137 	sk_wmem_queued_add(sk, buff->truesize);
2138 	sk_mem_charge(sk, buff->truesize);
2139 	buff->truesize += nlen;
2140 	skb->truesize -= nlen;
2141 
2142 	/* Correct the sequence numbers. */
2143 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2144 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2145 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2146 
2147 	/* PSH and FIN should only be set in the second packet. */
2148 	flags = TCP_SKB_CB(skb)->tcp_flags;
2149 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2150 	TCP_SKB_CB(buff)->tcp_flags = flags;
2151 
2152 	tcp_skb_fragment_eor(skb, buff);
2153 
2154 	skb_split(skb, buff, len);
2155 	tcp_fragment_tstamp(skb, buff);
2156 
2157 	/* Fix up tso_factor for both original and new SKB.  */
2158 	tcp_set_skb_tso_segs(skb, mss_now);
2159 	tcp_set_skb_tso_segs(buff, mss_now);
2160 
2161 	/* Link BUFF into the send queue. */
2162 	__skb_header_release(buff);
2163 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2164 
2165 	return 0;
2166 }
2167 
2168 /* Try to defer sending, if possible, in order to minimize the amount
2169  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2170  *
2171  * This algorithm is from John Heffner.
2172  */
2173 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2174 				 bool *is_cwnd_limited,
2175 				 bool *is_rwnd_limited,
2176 				 u32 max_segs)
2177 {
2178 	const struct inet_connection_sock *icsk = inet_csk(sk);
2179 	u32 send_win, cong_win, limit, in_flight;
2180 	struct tcp_sock *tp = tcp_sk(sk);
2181 	struct sk_buff *head;
2182 	int win_divisor;
2183 	s64 delta;
2184 
2185 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2186 		goto send_now;
2187 
2188 	/* Avoid bursty behavior by allowing defer
2189 	 * only if the last write was recent (1 ms).
2190 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2191 	 * packets waiting in a qdisc or device for EDT delivery.
2192 	 */
2193 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2194 	if (delta > 0)
2195 		goto send_now;
2196 
2197 	in_flight = tcp_packets_in_flight(tp);
2198 
2199 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2200 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2201 
2202 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2203 
2204 	/* From in_flight test above, we know that cwnd > in_flight.  */
2205 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2206 
2207 	limit = min(send_win, cong_win);
2208 
2209 	/* If a full-sized TSO skb can be sent, do it. */
2210 	if (limit >= max_segs * tp->mss_cache)
2211 		goto send_now;
2212 
2213 	/* Middle in queue won't get any more data, full sendable already? */
2214 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2215 		goto send_now;
2216 
2217 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2218 	if (win_divisor) {
2219 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2220 
2221 		/* If at least some fraction of a window is available,
2222 		 * just use it.
2223 		 */
2224 		chunk /= win_divisor;
2225 		if (limit >= chunk)
2226 			goto send_now;
2227 	} else {
2228 		/* Different approach, try not to defer past a single
2229 		 * ACK.  Receiver should ACK every other full sized
2230 		 * frame, so if we have space for more than 3 frames
2231 		 * then send now.
2232 		 */
2233 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2234 			goto send_now;
2235 	}
2236 
2237 	/* TODO : use tsorted_sent_queue ? */
2238 	head = tcp_rtx_queue_head(sk);
2239 	if (!head)
2240 		goto send_now;
2241 	delta = tp->tcp_clock_cache - head->tstamp;
2242 	/* If next ACK is likely to come too late (half srtt), do not defer */
2243 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2244 		goto send_now;
2245 
2246 	/* Ok, it looks like it is advisable to defer.
2247 	 * Three cases are tracked :
2248 	 * 1) We are cwnd-limited
2249 	 * 2) We are rwnd-limited
2250 	 * 3) We are application limited.
2251 	 */
2252 	if (cong_win < send_win) {
2253 		if (cong_win <= skb->len) {
2254 			*is_cwnd_limited = true;
2255 			return true;
2256 		}
2257 	} else {
2258 		if (send_win <= skb->len) {
2259 			*is_rwnd_limited = true;
2260 			return true;
2261 		}
2262 	}
2263 
2264 	/* If this packet won't get more data, do not wait. */
2265 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2266 	    TCP_SKB_CB(skb)->eor)
2267 		goto send_now;
2268 
2269 	return true;
2270 
2271 send_now:
2272 	return false;
2273 }
2274 
2275 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2276 {
2277 	struct inet_connection_sock *icsk = inet_csk(sk);
2278 	struct tcp_sock *tp = tcp_sk(sk);
2279 	struct net *net = sock_net(sk);
2280 	u32 interval;
2281 	s32 delta;
2282 
2283 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2284 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2285 	if (unlikely(delta >= interval * HZ)) {
2286 		int mss = tcp_current_mss(sk);
2287 
2288 		/* Update current search range */
2289 		icsk->icsk_mtup.probe_size = 0;
2290 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2291 			sizeof(struct tcphdr) +
2292 			icsk->icsk_af_ops->net_header_len;
2293 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2294 
2295 		/* Update probe time stamp */
2296 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2297 	}
2298 }
2299 
2300 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2301 {
2302 	struct sk_buff *skb, *next;
2303 
2304 	skb = tcp_send_head(sk);
2305 	tcp_for_write_queue_from_safe(skb, next, sk) {
2306 		if (len <= skb->len)
2307 			break;
2308 
2309 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2310 		    tcp_has_tx_tstamp(skb) ||
2311 		    !skb_pure_zcopy_same(skb, next))
2312 			return false;
2313 
2314 		len -= skb->len;
2315 	}
2316 
2317 	return true;
2318 }
2319 
2320 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2321 			     int probe_size)
2322 {
2323 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2324 	int i, todo, len = 0, nr_frags = 0;
2325 	const struct sk_buff *skb;
2326 
2327 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2328 		return -ENOMEM;
2329 
2330 	skb_queue_walk(&sk->sk_write_queue, skb) {
2331 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2332 
2333 		if (skb_headlen(skb))
2334 			return -EINVAL;
2335 
2336 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2337 			if (len >= probe_size)
2338 				goto commit;
2339 			todo = min_t(int, skb_frag_size(fragfrom),
2340 				     probe_size - len);
2341 			len += todo;
2342 			if (lastfrag &&
2343 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2344 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2345 						      skb_frag_size(lastfrag)) {
2346 				skb_frag_size_add(lastfrag, todo);
2347 				continue;
2348 			}
2349 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2350 				return -E2BIG;
2351 			skb_frag_page_copy(fragto, fragfrom);
2352 			skb_frag_off_copy(fragto, fragfrom);
2353 			skb_frag_size_set(fragto, todo);
2354 			nr_frags++;
2355 			lastfrag = fragto++;
2356 		}
2357 	}
2358 commit:
2359 	WARN_ON_ONCE(len != probe_size);
2360 	for (i = 0; i < nr_frags; i++)
2361 		skb_frag_ref(to, i);
2362 
2363 	skb_shinfo(to)->nr_frags = nr_frags;
2364 	to->truesize += probe_size;
2365 	to->len += probe_size;
2366 	to->data_len += probe_size;
2367 	__skb_header_release(to);
2368 	return 0;
2369 }
2370 
2371 /* Create a new MTU probe if we are ready.
2372  * MTU probe is regularly attempting to increase the path MTU by
2373  * deliberately sending larger packets.  This discovers routing
2374  * changes resulting in larger path MTUs.
2375  *
2376  * Returns 0 if we should wait to probe (no cwnd available),
2377  *         1 if a probe was sent,
2378  *         -1 otherwise
2379  */
2380 static int tcp_mtu_probe(struct sock *sk)
2381 {
2382 	struct inet_connection_sock *icsk = inet_csk(sk);
2383 	struct tcp_sock *tp = tcp_sk(sk);
2384 	struct sk_buff *skb, *nskb, *next;
2385 	struct net *net = sock_net(sk);
2386 	int probe_size;
2387 	int size_needed;
2388 	int copy, len;
2389 	int mss_now;
2390 	int interval;
2391 
2392 	/* Not currently probing/verifying,
2393 	 * not in recovery,
2394 	 * have enough cwnd, and
2395 	 * not SACKing (the variable headers throw things off)
2396 	 */
2397 	if (likely(!icsk->icsk_mtup.enabled ||
2398 		   icsk->icsk_mtup.probe_size ||
2399 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2400 		   tcp_snd_cwnd(tp) < 11 ||
2401 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2402 		return -1;
2403 
2404 	/* Use binary search for probe_size between tcp_mss_base,
2405 	 * and current mss_clamp. if (search_high - search_low)
2406 	 * smaller than a threshold, backoff from probing.
2407 	 */
2408 	mss_now = tcp_current_mss(sk);
2409 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2410 				    icsk->icsk_mtup.search_low) >> 1);
2411 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2412 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2413 	/* When misfortune happens, we are reprobing actively,
2414 	 * and then reprobe timer has expired. We stick with current
2415 	 * probing process by not resetting search range to its orignal.
2416 	 */
2417 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2418 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2419 		/* Check whether enough time has elaplased for
2420 		 * another round of probing.
2421 		 */
2422 		tcp_mtu_check_reprobe(sk);
2423 		return -1;
2424 	}
2425 
2426 	/* Have enough data in the send queue to probe? */
2427 	if (tp->write_seq - tp->snd_nxt < size_needed)
2428 		return -1;
2429 
2430 	if (tp->snd_wnd < size_needed)
2431 		return -1;
2432 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2433 		return 0;
2434 
2435 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2436 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2437 		if (!tcp_packets_in_flight(tp))
2438 			return -1;
2439 		else
2440 			return 0;
2441 	}
2442 
2443 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2444 		return -1;
2445 
2446 	/* We're allowed to probe.  Build it now. */
2447 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2448 	if (!nskb)
2449 		return -1;
2450 
2451 	/* build the payload, and be prepared to abort if this fails. */
2452 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2453 		consume_skb(nskb);
2454 		return -1;
2455 	}
2456 	sk_wmem_queued_add(sk, nskb->truesize);
2457 	sk_mem_charge(sk, nskb->truesize);
2458 
2459 	skb = tcp_send_head(sk);
2460 	skb_copy_decrypted(nskb, skb);
2461 	mptcp_skb_ext_copy(nskb, skb);
2462 
2463 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2464 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2465 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2466 
2467 	tcp_insert_write_queue_before(nskb, skb, sk);
2468 	tcp_highest_sack_replace(sk, skb, nskb);
2469 
2470 	len = 0;
2471 	tcp_for_write_queue_from_safe(skb, next, sk) {
2472 		copy = min_t(int, skb->len, probe_size - len);
2473 
2474 		if (skb->len <= copy) {
2475 			/* We've eaten all the data from this skb.
2476 			 * Throw it away. */
2477 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2478 			/* If this is the last SKB we copy and eor is set
2479 			 * we need to propagate it to the new skb.
2480 			 */
2481 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2482 			tcp_skb_collapse_tstamp(nskb, skb);
2483 			tcp_unlink_write_queue(skb, sk);
2484 			tcp_wmem_free_skb(sk, skb);
2485 		} else {
2486 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2487 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2488 			__pskb_trim_head(skb, copy);
2489 			tcp_set_skb_tso_segs(skb, mss_now);
2490 			TCP_SKB_CB(skb)->seq += copy;
2491 		}
2492 
2493 		len += copy;
2494 
2495 		if (len >= probe_size)
2496 			break;
2497 	}
2498 	tcp_init_tso_segs(nskb, nskb->len);
2499 
2500 	/* We're ready to send.  If this fails, the probe will
2501 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2502 	 */
2503 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2504 		/* Decrement cwnd here because we are sending
2505 		 * effectively two packets. */
2506 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2507 		tcp_event_new_data_sent(sk, nskb);
2508 
2509 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2510 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2511 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2512 
2513 		return 1;
2514 	}
2515 
2516 	return -1;
2517 }
2518 
2519 static bool tcp_pacing_check(struct sock *sk)
2520 {
2521 	struct tcp_sock *tp = tcp_sk(sk);
2522 
2523 	if (!tcp_needs_internal_pacing(sk))
2524 		return false;
2525 
2526 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2527 		return false;
2528 
2529 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2530 		hrtimer_start(&tp->pacing_timer,
2531 			      ns_to_ktime(tp->tcp_wstamp_ns),
2532 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2533 		sock_hold(sk);
2534 	}
2535 	return true;
2536 }
2537 
2538 /* TCP Small Queues :
2539  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2540  * (These limits are doubled for retransmits)
2541  * This allows for :
2542  *  - better RTT estimation and ACK scheduling
2543  *  - faster recovery
2544  *  - high rates
2545  * Alas, some drivers / subsystems require a fair amount
2546  * of queued bytes to ensure line rate.
2547  * One example is wifi aggregation (802.11 AMPDU)
2548  */
2549 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2550 				  unsigned int factor)
2551 {
2552 	unsigned long limit;
2553 
2554 	limit = max_t(unsigned long,
2555 		      2 * skb->truesize,
2556 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2557 	if (sk->sk_pacing_status == SK_PACING_NONE)
2558 		limit = min_t(unsigned long, limit,
2559 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2560 	limit <<= factor;
2561 
2562 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2563 	    tcp_sk(sk)->tcp_tx_delay) {
2564 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2565 
2566 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2567 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2568 		 * USEC_PER_SEC is approximated by 2^20.
2569 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2570 		 */
2571 		extra_bytes >>= (20 - 1);
2572 		limit += extra_bytes;
2573 	}
2574 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2575 		/* Always send skb if rtx queue is empty.
2576 		 * No need to wait for TX completion to call us back,
2577 		 * after softirq/tasklet schedule.
2578 		 * This helps when TX completions are delayed too much.
2579 		 */
2580 		if (tcp_rtx_queue_empty(sk))
2581 			return false;
2582 
2583 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2584 		/* It is possible TX completion already happened
2585 		 * before we set TSQ_THROTTLED, so we must
2586 		 * test again the condition.
2587 		 */
2588 		smp_mb__after_atomic();
2589 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2590 			return true;
2591 	}
2592 	return false;
2593 }
2594 
2595 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2596 {
2597 	const u32 now = tcp_jiffies32;
2598 	enum tcp_chrono old = tp->chrono_type;
2599 
2600 	if (old > TCP_CHRONO_UNSPEC)
2601 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2602 	tp->chrono_start = now;
2603 	tp->chrono_type = new;
2604 }
2605 
2606 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2607 {
2608 	struct tcp_sock *tp = tcp_sk(sk);
2609 
2610 	/* If there are multiple conditions worthy of tracking in a
2611 	 * chronograph then the highest priority enum takes precedence
2612 	 * over the other conditions. So that if something "more interesting"
2613 	 * starts happening, stop the previous chrono and start a new one.
2614 	 */
2615 	if (type > tp->chrono_type)
2616 		tcp_chrono_set(tp, type);
2617 }
2618 
2619 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2620 {
2621 	struct tcp_sock *tp = tcp_sk(sk);
2622 
2623 
2624 	/* There are multiple conditions worthy of tracking in a
2625 	 * chronograph, so that the highest priority enum takes
2626 	 * precedence over the other conditions (see tcp_chrono_start).
2627 	 * If a condition stops, we only stop chrono tracking if
2628 	 * it's the "most interesting" or current chrono we are
2629 	 * tracking and starts busy chrono if we have pending data.
2630 	 */
2631 	if (tcp_rtx_and_write_queues_empty(sk))
2632 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2633 	else if (type == tp->chrono_type)
2634 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2635 }
2636 
2637 /* This routine writes packets to the network.  It advances the
2638  * send_head.  This happens as incoming acks open up the remote
2639  * window for us.
2640  *
2641  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2642  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2643  * account rare use of URG, this is not a big flaw.
2644  *
2645  * Send at most one packet when push_one > 0. Temporarily ignore
2646  * cwnd limit to force at most one packet out when push_one == 2.
2647 
2648  * Returns true, if no segments are in flight and we have queued segments,
2649  * but cannot send anything now because of SWS or another problem.
2650  */
2651 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2652 			   int push_one, gfp_t gfp)
2653 {
2654 	struct tcp_sock *tp = tcp_sk(sk);
2655 	struct sk_buff *skb;
2656 	unsigned int tso_segs, sent_pkts;
2657 	int cwnd_quota;
2658 	int result;
2659 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2660 	u32 max_segs;
2661 
2662 	sent_pkts = 0;
2663 
2664 	tcp_mstamp_refresh(tp);
2665 	if (!push_one) {
2666 		/* Do MTU probing. */
2667 		result = tcp_mtu_probe(sk);
2668 		if (!result) {
2669 			return false;
2670 		} else if (result > 0) {
2671 			sent_pkts = 1;
2672 		}
2673 	}
2674 
2675 	max_segs = tcp_tso_segs(sk, mss_now);
2676 	while ((skb = tcp_send_head(sk))) {
2677 		unsigned int limit;
2678 
2679 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2680 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2681 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2682 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2683 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2684 			tcp_init_tso_segs(skb, mss_now);
2685 			goto repair; /* Skip network transmission */
2686 		}
2687 
2688 		if (tcp_pacing_check(sk))
2689 			break;
2690 
2691 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2692 		BUG_ON(!tso_segs);
2693 
2694 		cwnd_quota = tcp_cwnd_test(tp, skb);
2695 		if (!cwnd_quota) {
2696 			if (push_one == 2)
2697 				/* Force out a loss probe pkt. */
2698 				cwnd_quota = 1;
2699 			else
2700 				break;
2701 		}
2702 
2703 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2704 			is_rwnd_limited = true;
2705 			break;
2706 		}
2707 
2708 		if (tso_segs == 1) {
2709 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2710 						     (tcp_skb_is_last(sk, skb) ?
2711 						      nonagle : TCP_NAGLE_PUSH))))
2712 				break;
2713 		} else {
2714 			if (!push_one &&
2715 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2716 						 &is_rwnd_limited, max_segs))
2717 				break;
2718 		}
2719 
2720 		limit = mss_now;
2721 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2722 			limit = tcp_mss_split_point(sk, skb, mss_now,
2723 						    min_t(unsigned int,
2724 							  cwnd_quota,
2725 							  max_segs),
2726 						    nonagle);
2727 
2728 		if (skb->len > limit &&
2729 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2730 			break;
2731 
2732 		if (tcp_small_queue_check(sk, skb, 0))
2733 			break;
2734 
2735 		/* Argh, we hit an empty skb(), presumably a thread
2736 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2737 		 * We do not want to send a pure-ack packet and have
2738 		 * a strange looking rtx queue with empty packet(s).
2739 		 */
2740 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2741 			break;
2742 
2743 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2744 			break;
2745 
2746 repair:
2747 		/* Advance the send_head.  This one is sent out.
2748 		 * This call will increment packets_out.
2749 		 */
2750 		tcp_event_new_data_sent(sk, skb);
2751 
2752 		tcp_minshall_update(tp, mss_now, skb);
2753 		sent_pkts += tcp_skb_pcount(skb);
2754 
2755 		if (push_one)
2756 			break;
2757 	}
2758 
2759 	if (is_rwnd_limited)
2760 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2761 	else
2762 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2763 
2764 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2765 	if (likely(sent_pkts || is_cwnd_limited))
2766 		tcp_cwnd_validate(sk, is_cwnd_limited);
2767 
2768 	if (likely(sent_pkts)) {
2769 		if (tcp_in_cwnd_reduction(sk))
2770 			tp->prr_out += sent_pkts;
2771 
2772 		/* Send one loss probe per tail loss episode. */
2773 		if (push_one != 2)
2774 			tcp_schedule_loss_probe(sk, false);
2775 		return false;
2776 	}
2777 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2778 }
2779 
2780 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2781 {
2782 	struct inet_connection_sock *icsk = inet_csk(sk);
2783 	struct tcp_sock *tp = tcp_sk(sk);
2784 	u32 timeout, rto_delta_us;
2785 	int early_retrans;
2786 
2787 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2788 	 * finishes.
2789 	 */
2790 	if (rcu_access_pointer(tp->fastopen_rsk))
2791 		return false;
2792 
2793 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2794 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2795 	 * not in loss recovery, that are either limited by cwnd or application.
2796 	 */
2797 	if ((early_retrans != 3 && early_retrans != 4) ||
2798 	    !tp->packets_out || !tcp_is_sack(tp) ||
2799 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2800 	     icsk->icsk_ca_state != TCP_CA_CWR))
2801 		return false;
2802 
2803 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2804 	 * for delayed ack when there's one outstanding packet. If no RTT
2805 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2806 	 */
2807 	if (tp->srtt_us) {
2808 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2809 		if (tp->packets_out == 1)
2810 			timeout += TCP_RTO_MIN;
2811 		else
2812 			timeout += TCP_TIMEOUT_MIN;
2813 	} else {
2814 		timeout = TCP_TIMEOUT_INIT;
2815 	}
2816 
2817 	/* If the RTO formula yields an earlier time, then use that time. */
2818 	rto_delta_us = advancing_rto ?
2819 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2820 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2821 	if (rto_delta_us > 0)
2822 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2823 
2824 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2825 	return true;
2826 }
2827 
2828 /* Thanks to skb fast clones, we can detect if a prior transmit of
2829  * a packet is still in a qdisc or driver queue.
2830  * In this case, there is very little point doing a retransmit !
2831  */
2832 static bool skb_still_in_host_queue(struct sock *sk,
2833 				    const struct sk_buff *skb)
2834 {
2835 	if (unlikely(skb_fclone_busy(sk, skb))) {
2836 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2837 		smp_mb__after_atomic();
2838 		if (skb_fclone_busy(sk, skb)) {
2839 			NET_INC_STATS(sock_net(sk),
2840 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2841 			return true;
2842 		}
2843 	}
2844 	return false;
2845 }
2846 
2847 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2848  * retransmit the last segment.
2849  */
2850 void tcp_send_loss_probe(struct sock *sk)
2851 {
2852 	struct tcp_sock *tp = tcp_sk(sk);
2853 	struct sk_buff *skb;
2854 	int pcount;
2855 	int mss = tcp_current_mss(sk);
2856 
2857 	/* At most one outstanding TLP */
2858 	if (tp->tlp_high_seq)
2859 		goto rearm_timer;
2860 
2861 	tp->tlp_retrans = 0;
2862 	skb = tcp_send_head(sk);
2863 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2864 		pcount = tp->packets_out;
2865 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2866 		if (tp->packets_out > pcount)
2867 			goto probe_sent;
2868 		goto rearm_timer;
2869 	}
2870 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2871 	if (unlikely(!skb)) {
2872 		WARN_ONCE(tp->packets_out,
2873 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2874 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2875 		inet_csk(sk)->icsk_pending = 0;
2876 		return;
2877 	}
2878 
2879 	if (skb_still_in_host_queue(sk, skb))
2880 		goto rearm_timer;
2881 
2882 	pcount = tcp_skb_pcount(skb);
2883 	if (WARN_ON(!pcount))
2884 		goto rearm_timer;
2885 
2886 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2887 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2888 					  (pcount - 1) * mss, mss,
2889 					  GFP_ATOMIC)))
2890 			goto rearm_timer;
2891 		skb = skb_rb_next(skb);
2892 	}
2893 
2894 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2895 		goto rearm_timer;
2896 
2897 	if (__tcp_retransmit_skb(sk, skb, 1))
2898 		goto rearm_timer;
2899 
2900 	tp->tlp_retrans = 1;
2901 
2902 probe_sent:
2903 	/* Record snd_nxt for loss detection. */
2904 	tp->tlp_high_seq = tp->snd_nxt;
2905 
2906 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2907 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2908 	inet_csk(sk)->icsk_pending = 0;
2909 rearm_timer:
2910 	tcp_rearm_rto(sk);
2911 }
2912 
2913 /* Push out any pending frames which were held back due to
2914  * TCP_CORK or attempt at coalescing tiny packets.
2915  * The socket must be locked by the caller.
2916  */
2917 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2918 			       int nonagle)
2919 {
2920 	/* If we are closed, the bytes will have to remain here.
2921 	 * In time closedown will finish, we empty the write queue and
2922 	 * all will be happy.
2923 	 */
2924 	if (unlikely(sk->sk_state == TCP_CLOSE))
2925 		return;
2926 
2927 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2928 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2929 		tcp_check_probe_timer(sk);
2930 }
2931 
2932 /* Send _single_ skb sitting at the send head. This function requires
2933  * true push pending frames to setup probe timer etc.
2934  */
2935 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2936 {
2937 	struct sk_buff *skb = tcp_send_head(sk);
2938 
2939 	BUG_ON(!skb || skb->len < mss_now);
2940 
2941 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2942 }
2943 
2944 /* This function returns the amount that we can raise the
2945  * usable window based on the following constraints
2946  *
2947  * 1. The window can never be shrunk once it is offered (RFC 793)
2948  * 2. We limit memory per socket
2949  *
2950  * RFC 1122:
2951  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2952  *  RECV.NEXT + RCV.WIN fixed until:
2953  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2954  *
2955  * i.e. don't raise the right edge of the window until you can raise
2956  * it at least MSS bytes.
2957  *
2958  * Unfortunately, the recommended algorithm breaks header prediction,
2959  * since header prediction assumes th->window stays fixed.
2960  *
2961  * Strictly speaking, keeping th->window fixed violates the receiver
2962  * side SWS prevention criteria. The problem is that under this rule
2963  * a stream of single byte packets will cause the right side of the
2964  * window to always advance by a single byte.
2965  *
2966  * Of course, if the sender implements sender side SWS prevention
2967  * then this will not be a problem.
2968  *
2969  * BSD seems to make the following compromise:
2970  *
2971  *	If the free space is less than the 1/4 of the maximum
2972  *	space available and the free space is less than 1/2 mss,
2973  *	then set the window to 0.
2974  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2975  *	Otherwise, just prevent the window from shrinking
2976  *	and from being larger than the largest representable value.
2977  *
2978  * This prevents incremental opening of the window in the regime
2979  * where TCP is limited by the speed of the reader side taking
2980  * data out of the TCP receive queue. It does nothing about
2981  * those cases where the window is constrained on the sender side
2982  * because the pipeline is full.
2983  *
2984  * BSD also seems to "accidentally" limit itself to windows that are a
2985  * multiple of MSS, at least until the free space gets quite small.
2986  * This would appear to be a side effect of the mbuf implementation.
2987  * Combining these two algorithms results in the observed behavior
2988  * of having a fixed window size at almost all times.
2989  *
2990  * Below we obtain similar behavior by forcing the offered window to
2991  * a multiple of the mss when it is feasible to do so.
2992  *
2993  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2994  * Regular options like TIMESTAMP are taken into account.
2995  */
2996 u32 __tcp_select_window(struct sock *sk)
2997 {
2998 	struct inet_connection_sock *icsk = inet_csk(sk);
2999 	struct tcp_sock *tp = tcp_sk(sk);
3000 	struct net *net = sock_net(sk);
3001 	/* MSS for the peer's data.  Previous versions used mss_clamp
3002 	 * here.  I don't know if the value based on our guesses
3003 	 * of peer's MSS is better for the performance.  It's more correct
3004 	 * but may be worse for the performance because of rcv_mss
3005 	 * fluctuations.  --SAW  1998/11/1
3006 	 */
3007 	int mss = icsk->icsk_ack.rcv_mss;
3008 	int free_space = tcp_space(sk);
3009 	int allowed_space = tcp_full_space(sk);
3010 	int full_space, window;
3011 
3012 	if (sk_is_mptcp(sk))
3013 		mptcp_space(sk, &free_space, &allowed_space);
3014 
3015 	full_space = min_t(int, tp->window_clamp, allowed_space);
3016 
3017 	if (unlikely(mss > full_space)) {
3018 		mss = full_space;
3019 		if (mss <= 0)
3020 			return 0;
3021 	}
3022 
3023 	/* Only allow window shrink if the sysctl is enabled and we have
3024 	 * a non-zero scaling factor in effect.
3025 	 */
3026 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3027 		goto shrink_window_allowed;
3028 
3029 	/* do not allow window to shrink */
3030 
3031 	if (free_space < (full_space >> 1)) {
3032 		icsk->icsk_ack.quick = 0;
3033 
3034 		if (tcp_under_memory_pressure(sk))
3035 			tcp_adjust_rcv_ssthresh(sk);
3036 
3037 		/* free_space might become our new window, make sure we don't
3038 		 * increase it due to wscale.
3039 		 */
3040 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3041 
3042 		/* if free space is less than mss estimate, or is below 1/16th
3043 		 * of the maximum allowed, try to move to zero-window, else
3044 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3045 		 * new incoming data is dropped due to memory limits.
3046 		 * With large window, mss test triggers way too late in order
3047 		 * to announce zero window in time before rmem limit kicks in.
3048 		 */
3049 		if (free_space < (allowed_space >> 4) || free_space < mss)
3050 			return 0;
3051 	}
3052 
3053 	if (free_space > tp->rcv_ssthresh)
3054 		free_space = tp->rcv_ssthresh;
3055 
3056 	/* Don't do rounding if we are using window scaling, since the
3057 	 * scaled window will not line up with the MSS boundary anyway.
3058 	 */
3059 	if (tp->rx_opt.rcv_wscale) {
3060 		window = free_space;
3061 
3062 		/* Advertise enough space so that it won't get scaled away.
3063 		 * Import case: prevent zero window announcement if
3064 		 * 1<<rcv_wscale > mss.
3065 		 */
3066 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3067 	} else {
3068 		window = tp->rcv_wnd;
3069 		/* Get the largest window that is a nice multiple of mss.
3070 		 * Window clamp already applied above.
3071 		 * If our current window offering is within 1 mss of the
3072 		 * free space we just keep it. This prevents the divide
3073 		 * and multiply from happening most of the time.
3074 		 * We also don't do any window rounding when the free space
3075 		 * is too small.
3076 		 */
3077 		if (window <= free_space - mss || window > free_space)
3078 			window = rounddown(free_space, mss);
3079 		else if (mss == full_space &&
3080 			 free_space > window + (full_space >> 1))
3081 			window = free_space;
3082 	}
3083 
3084 	return window;
3085 
3086 shrink_window_allowed:
3087 	/* new window should always be an exact multiple of scaling factor */
3088 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3089 
3090 	if (free_space < (full_space >> 1)) {
3091 		icsk->icsk_ack.quick = 0;
3092 
3093 		if (tcp_under_memory_pressure(sk))
3094 			tcp_adjust_rcv_ssthresh(sk);
3095 
3096 		/* if free space is too low, return a zero window */
3097 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3098 			free_space < (1 << tp->rx_opt.rcv_wscale))
3099 			return 0;
3100 	}
3101 
3102 	if (free_space > tp->rcv_ssthresh) {
3103 		free_space = tp->rcv_ssthresh;
3104 		/* new window should always be an exact multiple of scaling factor
3105 		 *
3106 		 * For this case, we ALIGN "up" (increase free_space) because
3107 		 * we know free_space is not zero here, it has been reduced from
3108 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3109 		 * (unlike sk_rcvbuf).
3110 		 */
3111 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3112 	}
3113 
3114 	return free_space;
3115 }
3116 
3117 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3118 			     const struct sk_buff *next_skb)
3119 {
3120 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3121 		const struct skb_shared_info *next_shinfo =
3122 			skb_shinfo(next_skb);
3123 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3124 
3125 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3126 		shinfo->tskey = next_shinfo->tskey;
3127 		TCP_SKB_CB(skb)->txstamp_ack |=
3128 			TCP_SKB_CB(next_skb)->txstamp_ack;
3129 	}
3130 }
3131 
3132 /* Collapses two adjacent SKB's during retransmission. */
3133 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3134 {
3135 	struct tcp_sock *tp = tcp_sk(sk);
3136 	struct sk_buff *next_skb = skb_rb_next(skb);
3137 	int next_skb_size;
3138 
3139 	next_skb_size = next_skb->len;
3140 
3141 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3142 
3143 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3144 		return false;
3145 
3146 	tcp_highest_sack_replace(sk, next_skb, skb);
3147 
3148 	/* Update sequence range on original skb. */
3149 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3150 
3151 	/* Merge over control information. This moves PSH/FIN etc. over */
3152 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3153 
3154 	/* All done, get rid of second SKB and account for it so
3155 	 * packet counting does not break.
3156 	 */
3157 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3158 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3159 
3160 	/* changed transmit queue under us so clear hints */
3161 	tcp_clear_retrans_hints_partial(tp);
3162 	if (next_skb == tp->retransmit_skb_hint)
3163 		tp->retransmit_skb_hint = skb;
3164 
3165 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3166 
3167 	tcp_skb_collapse_tstamp(skb, next_skb);
3168 
3169 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3170 	return true;
3171 }
3172 
3173 /* Check if coalescing SKBs is legal. */
3174 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3175 {
3176 	if (tcp_skb_pcount(skb) > 1)
3177 		return false;
3178 	if (skb_cloned(skb))
3179 		return false;
3180 	/* Some heuristics for collapsing over SACK'd could be invented */
3181 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3182 		return false;
3183 
3184 	return true;
3185 }
3186 
3187 /* Collapse packets in the retransmit queue to make to create
3188  * less packets on the wire. This is only done on retransmission.
3189  */
3190 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3191 				     int space)
3192 {
3193 	struct tcp_sock *tp = tcp_sk(sk);
3194 	struct sk_buff *skb = to, *tmp;
3195 	bool first = true;
3196 
3197 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3198 		return;
3199 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3200 		return;
3201 
3202 	skb_rbtree_walk_from_safe(skb, tmp) {
3203 		if (!tcp_can_collapse(sk, skb))
3204 			break;
3205 
3206 		if (!tcp_skb_can_collapse(to, skb))
3207 			break;
3208 
3209 		space -= skb->len;
3210 
3211 		if (first) {
3212 			first = false;
3213 			continue;
3214 		}
3215 
3216 		if (space < 0)
3217 			break;
3218 
3219 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3220 			break;
3221 
3222 		if (!tcp_collapse_retrans(sk, to))
3223 			break;
3224 	}
3225 }
3226 
3227 /* This retransmits one SKB.  Policy decisions and retransmit queue
3228  * state updates are done by the caller.  Returns non-zero if an
3229  * error occurred which prevented the send.
3230  */
3231 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3232 {
3233 	struct inet_connection_sock *icsk = inet_csk(sk);
3234 	struct tcp_sock *tp = tcp_sk(sk);
3235 	unsigned int cur_mss;
3236 	int diff, len, err;
3237 	int avail_wnd;
3238 
3239 	/* Inconclusive MTU probe */
3240 	if (icsk->icsk_mtup.probe_size)
3241 		icsk->icsk_mtup.probe_size = 0;
3242 
3243 	if (skb_still_in_host_queue(sk, skb))
3244 		return -EBUSY;
3245 
3246 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3247 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3248 			WARN_ON_ONCE(1);
3249 			return -EINVAL;
3250 		}
3251 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3252 			return -ENOMEM;
3253 	}
3254 
3255 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3256 		return -EHOSTUNREACH; /* Routing failure or similar. */
3257 
3258 	cur_mss = tcp_current_mss(sk);
3259 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3260 
3261 	/* If receiver has shrunk his window, and skb is out of
3262 	 * new window, do not retransmit it. The exception is the
3263 	 * case, when window is shrunk to zero. In this case
3264 	 * our retransmit of one segment serves as a zero window probe.
3265 	 */
3266 	if (avail_wnd <= 0) {
3267 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3268 			return -EAGAIN;
3269 		avail_wnd = cur_mss;
3270 	}
3271 
3272 	len = cur_mss * segs;
3273 	if (len > avail_wnd) {
3274 		len = rounddown(avail_wnd, cur_mss);
3275 		if (!len)
3276 			len = avail_wnd;
3277 	}
3278 	if (skb->len > len) {
3279 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3280 				 cur_mss, GFP_ATOMIC))
3281 			return -ENOMEM; /* We'll try again later. */
3282 	} else {
3283 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3284 			return -ENOMEM;
3285 
3286 		diff = tcp_skb_pcount(skb);
3287 		tcp_set_skb_tso_segs(skb, cur_mss);
3288 		diff -= tcp_skb_pcount(skb);
3289 		if (diff)
3290 			tcp_adjust_pcount(sk, skb, diff);
3291 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3292 		if (skb->len < avail_wnd)
3293 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3294 	}
3295 
3296 	/* RFC3168, section 6.1.1.1. ECN fallback */
3297 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3298 		tcp_ecn_clear_syn(sk, skb);
3299 
3300 	/* Update global and local TCP statistics. */
3301 	segs = tcp_skb_pcount(skb);
3302 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3303 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3304 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3305 	tp->total_retrans += segs;
3306 	tp->bytes_retrans += skb->len;
3307 
3308 	/* make sure skb->data is aligned on arches that require it
3309 	 * and check if ack-trimming & collapsing extended the headroom
3310 	 * beyond what csum_start can cover.
3311 	 */
3312 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3313 		     skb_headroom(skb) >= 0xFFFF)) {
3314 		struct sk_buff *nskb;
3315 
3316 		tcp_skb_tsorted_save(skb) {
3317 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3318 			if (nskb) {
3319 				nskb->dev = NULL;
3320 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3321 			} else {
3322 				err = -ENOBUFS;
3323 			}
3324 		} tcp_skb_tsorted_restore(skb);
3325 
3326 		if (!err) {
3327 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3328 			tcp_rate_skb_sent(sk, skb);
3329 		}
3330 	} else {
3331 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3332 	}
3333 
3334 	/* To avoid taking spuriously low RTT samples based on a timestamp
3335 	 * for a transmit that never happened, always mark EVER_RETRANS
3336 	 */
3337 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3338 
3339 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3340 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3341 				  TCP_SKB_CB(skb)->seq, segs, err);
3342 
3343 	if (likely(!err)) {
3344 		trace_tcp_retransmit_skb(sk, skb);
3345 	} else if (err != -EBUSY) {
3346 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3347 	}
3348 	return err;
3349 }
3350 
3351 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3352 {
3353 	struct tcp_sock *tp = tcp_sk(sk);
3354 	int err = __tcp_retransmit_skb(sk, skb, segs);
3355 
3356 	if (err == 0) {
3357 #if FASTRETRANS_DEBUG > 0
3358 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3359 			net_dbg_ratelimited("retrans_out leaked\n");
3360 		}
3361 #endif
3362 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3363 		tp->retrans_out += tcp_skb_pcount(skb);
3364 	}
3365 
3366 	/* Save stamp of the first (attempted) retransmit. */
3367 	if (!tp->retrans_stamp)
3368 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3369 
3370 	if (tp->undo_retrans < 0)
3371 		tp->undo_retrans = 0;
3372 	tp->undo_retrans += tcp_skb_pcount(skb);
3373 	return err;
3374 }
3375 
3376 /* This gets called after a retransmit timeout, and the initially
3377  * retransmitted data is acknowledged.  It tries to continue
3378  * resending the rest of the retransmit queue, until either
3379  * we've sent it all or the congestion window limit is reached.
3380  */
3381 void tcp_xmit_retransmit_queue(struct sock *sk)
3382 {
3383 	const struct inet_connection_sock *icsk = inet_csk(sk);
3384 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3385 	struct tcp_sock *tp = tcp_sk(sk);
3386 	bool rearm_timer = false;
3387 	u32 max_segs;
3388 	int mib_idx;
3389 
3390 	if (!tp->packets_out)
3391 		return;
3392 
3393 	rtx_head = tcp_rtx_queue_head(sk);
3394 	skb = tp->retransmit_skb_hint ?: rtx_head;
3395 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3396 	skb_rbtree_walk_from(skb) {
3397 		__u8 sacked;
3398 		int segs;
3399 
3400 		if (tcp_pacing_check(sk))
3401 			break;
3402 
3403 		/* we could do better than to assign each time */
3404 		if (!hole)
3405 			tp->retransmit_skb_hint = skb;
3406 
3407 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3408 		if (segs <= 0)
3409 			break;
3410 		sacked = TCP_SKB_CB(skb)->sacked;
3411 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3412 		 * we need to make sure not sending too bigs TSO packets
3413 		 */
3414 		segs = min_t(int, segs, max_segs);
3415 
3416 		if (tp->retrans_out >= tp->lost_out) {
3417 			break;
3418 		} else if (!(sacked & TCPCB_LOST)) {
3419 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3420 				hole = skb;
3421 			continue;
3422 
3423 		} else {
3424 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3425 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3426 			else
3427 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3428 		}
3429 
3430 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3431 			continue;
3432 
3433 		if (tcp_small_queue_check(sk, skb, 1))
3434 			break;
3435 
3436 		if (tcp_retransmit_skb(sk, skb, segs))
3437 			break;
3438 
3439 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3440 
3441 		if (tcp_in_cwnd_reduction(sk))
3442 			tp->prr_out += tcp_skb_pcount(skb);
3443 
3444 		if (skb == rtx_head &&
3445 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3446 			rearm_timer = true;
3447 
3448 	}
3449 	if (rearm_timer)
3450 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3451 				     inet_csk(sk)->icsk_rto,
3452 				     TCP_RTO_MAX);
3453 }
3454 
3455 /* We allow to exceed memory limits for FIN packets to expedite
3456  * connection tear down and (memory) recovery.
3457  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3458  * or even be forced to close flow without any FIN.
3459  * In general, we want to allow one skb per socket to avoid hangs
3460  * with edge trigger epoll()
3461  */
3462 void sk_forced_mem_schedule(struct sock *sk, int size)
3463 {
3464 	int delta, amt;
3465 
3466 	delta = size - sk->sk_forward_alloc;
3467 	if (delta <= 0)
3468 		return;
3469 	amt = sk_mem_pages(delta);
3470 	sk->sk_forward_alloc += amt << PAGE_SHIFT;
3471 	sk_memory_allocated_add(sk, amt);
3472 
3473 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3474 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3475 					gfp_memcg_charge() | __GFP_NOFAIL);
3476 }
3477 
3478 /* Send a FIN. The caller locks the socket for us.
3479  * We should try to send a FIN packet really hard, but eventually give up.
3480  */
3481 void tcp_send_fin(struct sock *sk)
3482 {
3483 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3484 	struct tcp_sock *tp = tcp_sk(sk);
3485 
3486 	/* Optimization, tack on the FIN if we have one skb in write queue and
3487 	 * this skb was not yet sent, or we are under memory pressure.
3488 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3489 	 * as TCP stack thinks it has already been transmitted.
3490 	 */
3491 	tskb = tail;
3492 	if (!tskb && tcp_under_memory_pressure(sk))
3493 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3494 
3495 	if (tskb) {
3496 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3497 		TCP_SKB_CB(tskb)->end_seq++;
3498 		tp->write_seq++;
3499 		if (!tail) {
3500 			/* This means tskb was already sent.
3501 			 * Pretend we included the FIN on previous transmit.
3502 			 * We need to set tp->snd_nxt to the value it would have
3503 			 * if FIN had been sent. This is because retransmit path
3504 			 * does not change tp->snd_nxt.
3505 			 */
3506 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3507 			return;
3508 		}
3509 	} else {
3510 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3511 		if (unlikely(!skb))
3512 			return;
3513 
3514 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3515 		skb_reserve(skb, MAX_TCP_HEADER);
3516 		sk_forced_mem_schedule(sk, skb->truesize);
3517 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3518 		tcp_init_nondata_skb(skb, tp->write_seq,
3519 				     TCPHDR_ACK | TCPHDR_FIN);
3520 		tcp_queue_skb(sk, skb);
3521 	}
3522 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3523 }
3524 
3525 /* We get here when a process closes a file descriptor (either due to
3526  * an explicit close() or as a byproduct of exit()'ing) and there
3527  * was unread data in the receive queue.  This behavior is recommended
3528  * by RFC 2525, section 2.17.  -DaveM
3529  */
3530 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3531 {
3532 	struct sk_buff *skb;
3533 
3534 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3535 
3536 	/* NOTE: No TCP options attached and we never retransmit this. */
3537 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3538 	if (!skb) {
3539 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3540 		return;
3541 	}
3542 
3543 	/* Reserve space for headers and prepare control bits. */
3544 	skb_reserve(skb, MAX_TCP_HEADER);
3545 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3546 			     TCPHDR_ACK | TCPHDR_RST);
3547 	tcp_mstamp_refresh(tcp_sk(sk));
3548 	/* Send it off. */
3549 	if (tcp_transmit_skb(sk, skb, 0, priority))
3550 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3551 
3552 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3553 	 * skb here is different to the troublesome skb, so use NULL
3554 	 */
3555 	trace_tcp_send_reset(sk, NULL);
3556 }
3557 
3558 /* Send a crossed SYN-ACK during socket establishment.
3559  * WARNING: This routine must only be called when we have already sent
3560  * a SYN packet that crossed the incoming SYN that caused this routine
3561  * to get called. If this assumption fails then the initial rcv_wnd
3562  * and rcv_wscale values will not be correct.
3563  */
3564 int tcp_send_synack(struct sock *sk)
3565 {
3566 	struct sk_buff *skb;
3567 
3568 	skb = tcp_rtx_queue_head(sk);
3569 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3570 		pr_err("%s: wrong queue state\n", __func__);
3571 		return -EFAULT;
3572 	}
3573 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3574 		if (skb_cloned(skb)) {
3575 			struct sk_buff *nskb;
3576 
3577 			tcp_skb_tsorted_save(skb) {
3578 				nskb = skb_copy(skb, GFP_ATOMIC);
3579 			} tcp_skb_tsorted_restore(skb);
3580 			if (!nskb)
3581 				return -ENOMEM;
3582 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3583 			tcp_highest_sack_replace(sk, skb, nskb);
3584 			tcp_rtx_queue_unlink_and_free(skb, sk);
3585 			__skb_header_release(nskb);
3586 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3587 			sk_wmem_queued_add(sk, nskb->truesize);
3588 			sk_mem_charge(sk, nskb->truesize);
3589 			skb = nskb;
3590 		}
3591 
3592 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3593 		tcp_ecn_send_synack(sk, skb);
3594 	}
3595 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3596 }
3597 
3598 /**
3599  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3600  * @sk: listener socket
3601  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3602  *       should not use it again.
3603  * @req: request_sock pointer
3604  * @foc: cookie for tcp fast open
3605  * @synack_type: Type of synack to prepare
3606  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3607  */
3608 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3609 				struct request_sock *req,
3610 				struct tcp_fastopen_cookie *foc,
3611 				enum tcp_synack_type synack_type,
3612 				struct sk_buff *syn_skb)
3613 {
3614 	struct inet_request_sock *ireq = inet_rsk(req);
3615 	const struct tcp_sock *tp = tcp_sk(sk);
3616 	struct tcp_md5sig_key *md5 = NULL;
3617 	struct tcp_out_options opts;
3618 	struct sk_buff *skb;
3619 	int tcp_header_size;
3620 	struct tcphdr *th;
3621 	int mss;
3622 	u64 now;
3623 
3624 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3625 	if (unlikely(!skb)) {
3626 		dst_release(dst);
3627 		return NULL;
3628 	}
3629 	/* Reserve space for headers. */
3630 	skb_reserve(skb, MAX_TCP_HEADER);
3631 
3632 	switch (synack_type) {
3633 	case TCP_SYNACK_NORMAL:
3634 		skb_set_owner_w(skb, req_to_sk(req));
3635 		break;
3636 	case TCP_SYNACK_COOKIE:
3637 		/* Under synflood, we do not attach skb to a socket,
3638 		 * to avoid false sharing.
3639 		 */
3640 		break;
3641 	case TCP_SYNACK_FASTOPEN:
3642 		/* sk is a const pointer, because we want to express multiple
3643 		 * cpu might call us concurrently.
3644 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3645 		 */
3646 		skb_set_owner_w(skb, (struct sock *)sk);
3647 		break;
3648 	}
3649 	skb_dst_set(skb, dst);
3650 
3651 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3652 
3653 	memset(&opts, 0, sizeof(opts));
3654 	now = tcp_clock_ns();
3655 #ifdef CONFIG_SYN_COOKIES
3656 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3657 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3658 				      true);
3659 	else
3660 #endif
3661 	{
3662 		skb_set_delivery_time(skb, now, true);
3663 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3664 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3665 	}
3666 
3667 #ifdef CONFIG_TCP_MD5SIG
3668 	rcu_read_lock();
3669 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3670 #endif
3671 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3672 	/* bpf program will be interested in the tcp_flags */
3673 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3674 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3675 					     foc, synack_type,
3676 					     syn_skb) + sizeof(*th);
3677 
3678 	skb_push(skb, tcp_header_size);
3679 	skb_reset_transport_header(skb);
3680 
3681 	th = (struct tcphdr *)skb->data;
3682 	memset(th, 0, sizeof(struct tcphdr));
3683 	th->syn = 1;
3684 	th->ack = 1;
3685 	tcp_ecn_make_synack(req, th);
3686 	th->source = htons(ireq->ir_num);
3687 	th->dest = ireq->ir_rmt_port;
3688 	skb->mark = ireq->ir_mark;
3689 	skb->ip_summed = CHECKSUM_PARTIAL;
3690 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3691 	/* XXX data is queued and acked as is. No buffer/window check */
3692 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3693 
3694 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3695 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3696 	tcp_options_write(th, NULL, &opts);
3697 	th->doff = (tcp_header_size >> 2);
3698 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3699 
3700 #ifdef CONFIG_TCP_MD5SIG
3701 	/* Okay, we have all we need - do the md5 hash if needed */
3702 	if (md5)
3703 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3704 					       md5, req_to_sk(req), skb);
3705 	rcu_read_unlock();
3706 #endif
3707 
3708 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3709 				synack_type, &opts);
3710 
3711 	skb_set_delivery_time(skb, now, true);
3712 	tcp_add_tx_delay(skb, tp);
3713 
3714 	return skb;
3715 }
3716 EXPORT_SYMBOL(tcp_make_synack);
3717 
3718 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3719 {
3720 	struct inet_connection_sock *icsk = inet_csk(sk);
3721 	const struct tcp_congestion_ops *ca;
3722 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3723 
3724 	if (ca_key == TCP_CA_UNSPEC)
3725 		return;
3726 
3727 	rcu_read_lock();
3728 	ca = tcp_ca_find_key(ca_key);
3729 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3730 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3731 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3732 		icsk->icsk_ca_ops = ca;
3733 	}
3734 	rcu_read_unlock();
3735 }
3736 
3737 /* Do all connect socket setups that can be done AF independent. */
3738 static void tcp_connect_init(struct sock *sk)
3739 {
3740 	const struct dst_entry *dst = __sk_dst_get(sk);
3741 	struct tcp_sock *tp = tcp_sk(sk);
3742 	__u8 rcv_wscale;
3743 	u32 rcv_wnd;
3744 
3745 	/* We'll fix this up when we get a response from the other end.
3746 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3747 	 */
3748 	tp->tcp_header_len = sizeof(struct tcphdr);
3749 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3750 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3751 
3752 	/* If user gave his TCP_MAXSEG, record it to clamp */
3753 	if (tp->rx_opt.user_mss)
3754 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3755 	tp->max_window = 0;
3756 	tcp_mtup_init(sk);
3757 	tcp_sync_mss(sk, dst_mtu(dst));
3758 
3759 	tcp_ca_dst_init(sk, dst);
3760 
3761 	if (!tp->window_clamp)
3762 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3763 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3764 
3765 	tcp_initialize_rcv_mss(sk);
3766 
3767 	/* limit the window selection if the user enforce a smaller rx buffer */
3768 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3769 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3770 		tp->window_clamp = tcp_full_space(sk);
3771 
3772 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3773 	if (rcv_wnd == 0)
3774 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3775 
3776 	tcp_select_initial_window(sk, tcp_full_space(sk),
3777 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3778 				  &tp->rcv_wnd,
3779 				  &tp->window_clamp,
3780 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3781 				  &rcv_wscale,
3782 				  rcv_wnd);
3783 
3784 	tp->rx_opt.rcv_wscale = rcv_wscale;
3785 	tp->rcv_ssthresh = tp->rcv_wnd;
3786 
3787 	WRITE_ONCE(sk->sk_err, 0);
3788 	sock_reset_flag(sk, SOCK_DONE);
3789 	tp->snd_wnd = 0;
3790 	tcp_init_wl(tp, 0);
3791 	tcp_write_queue_purge(sk);
3792 	tp->snd_una = tp->write_seq;
3793 	tp->snd_sml = tp->write_seq;
3794 	tp->snd_up = tp->write_seq;
3795 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3796 
3797 	if (likely(!tp->repair))
3798 		tp->rcv_nxt = 0;
3799 	else
3800 		tp->rcv_tstamp = tcp_jiffies32;
3801 	tp->rcv_wup = tp->rcv_nxt;
3802 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3803 
3804 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3805 	inet_csk(sk)->icsk_retransmits = 0;
3806 	tcp_clear_retrans(tp);
3807 }
3808 
3809 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3810 {
3811 	struct tcp_sock *tp = tcp_sk(sk);
3812 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3813 
3814 	tcb->end_seq += skb->len;
3815 	__skb_header_release(skb);
3816 	sk_wmem_queued_add(sk, skb->truesize);
3817 	sk_mem_charge(sk, skb->truesize);
3818 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3819 	tp->packets_out += tcp_skb_pcount(skb);
3820 }
3821 
3822 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3823  * queue a data-only packet after the regular SYN, such that regular SYNs
3824  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3825  * only the SYN sequence, the data are retransmitted in the first ACK.
3826  * If cookie is not cached or other error occurs, falls back to send a
3827  * regular SYN with Fast Open cookie request option.
3828  */
3829 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3830 {
3831 	struct inet_connection_sock *icsk = inet_csk(sk);
3832 	struct tcp_sock *tp = tcp_sk(sk);
3833 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3834 	struct page_frag *pfrag = sk_page_frag(sk);
3835 	struct sk_buff *syn_data;
3836 	int space, err = 0;
3837 
3838 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3839 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3840 		goto fallback;
3841 
3842 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3843 	 * user-MSS. Reserve maximum option space for middleboxes that add
3844 	 * private TCP options. The cost is reduced data space in SYN :(
3845 	 */
3846 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3847 	/* Sync mss_cache after updating the mss_clamp */
3848 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3849 
3850 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3851 		MAX_TCP_OPTION_SPACE;
3852 
3853 	space = min_t(size_t, space, fo->size);
3854 
3855 	if (space &&
3856 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3857 				  pfrag, sk->sk_allocation))
3858 		goto fallback;
3859 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3860 	if (!syn_data)
3861 		goto fallback;
3862 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3863 	if (space) {
3864 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3865 		space = tcp_wmem_schedule(sk, space);
3866 	}
3867 	if (space) {
3868 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3869 					    space, &fo->data->msg_iter);
3870 		if (unlikely(!space)) {
3871 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3872 			kfree_skb(syn_data);
3873 			goto fallback;
3874 		}
3875 		skb_fill_page_desc(syn_data, 0, pfrag->page,
3876 				   pfrag->offset, space);
3877 		page_ref_inc(pfrag->page);
3878 		pfrag->offset += space;
3879 		skb_len_add(syn_data, space);
3880 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3881 	}
3882 	/* No more data pending in inet_wait_for_connect() */
3883 	if (space == fo->size)
3884 		fo->data = NULL;
3885 	fo->copied = space;
3886 
3887 	tcp_connect_queue_skb(sk, syn_data);
3888 	if (syn_data->len)
3889 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3890 
3891 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3892 
3893 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3894 
3895 	/* Now full SYN+DATA was cloned and sent (or not),
3896 	 * remove the SYN from the original skb (syn_data)
3897 	 * we keep in write queue in case of a retransmit, as we
3898 	 * also have the SYN packet (with no data) in the same queue.
3899 	 */
3900 	TCP_SKB_CB(syn_data)->seq++;
3901 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3902 	if (!err) {
3903 		tp->syn_data = (fo->copied > 0);
3904 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3905 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3906 		goto done;
3907 	}
3908 
3909 	/* data was not sent, put it in write_queue */
3910 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3911 	tp->packets_out -= tcp_skb_pcount(syn_data);
3912 
3913 fallback:
3914 	/* Send a regular SYN with Fast Open cookie request option */
3915 	if (fo->cookie.len > 0)
3916 		fo->cookie.len = 0;
3917 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3918 	if (err)
3919 		tp->syn_fastopen = 0;
3920 done:
3921 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3922 	return err;
3923 }
3924 
3925 /* Build a SYN and send it off. */
3926 int tcp_connect(struct sock *sk)
3927 {
3928 	struct tcp_sock *tp = tcp_sk(sk);
3929 	struct sk_buff *buff;
3930 	int err;
3931 
3932 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3933 
3934 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3935 		return -EHOSTUNREACH; /* Routing failure or similar. */
3936 
3937 	tcp_connect_init(sk);
3938 
3939 	if (unlikely(tp->repair)) {
3940 		tcp_finish_connect(sk, NULL);
3941 		return 0;
3942 	}
3943 
3944 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
3945 	if (unlikely(!buff))
3946 		return -ENOBUFS;
3947 
3948 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3949 	tcp_mstamp_refresh(tp);
3950 	tp->retrans_stamp = tcp_time_stamp(tp);
3951 	tcp_connect_queue_skb(sk, buff);
3952 	tcp_ecn_send_syn(sk, buff);
3953 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3954 
3955 	/* Send off SYN; include data in Fast Open. */
3956 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3957 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3958 	if (err == -ECONNREFUSED)
3959 		return err;
3960 
3961 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3962 	 * in order to make this packet get counted in tcpOutSegs.
3963 	 */
3964 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3965 	tp->pushed_seq = tp->write_seq;
3966 	buff = tcp_send_head(sk);
3967 	if (unlikely(buff)) {
3968 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3969 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3970 	}
3971 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3972 
3973 	/* Timer for repeating the SYN until an answer. */
3974 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3975 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3976 	return 0;
3977 }
3978 EXPORT_SYMBOL(tcp_connect);
3979 
3980 /* Send out a delayed ack, the caller does the policy checking
3981  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3982  * for details.
3983  */
3984 void tcp_send_delayed_ack(struct sock *sk)
3985 {
3986 	struct inet_connection_sock *icsk = inet_csk(sk);
3987 	int ato = icsk->icsk_ack.ato;
3988 	unsigned long timeout;
3989 
3990 	if (ato > TCP_DELACK_MIN) {
3991 		const struct tcp_sock *tp = tcp_sk(sk);
3992 		int max_ato = HZ / 2;
3993 
3994 		if (inet_csk_in_pingpong_mode(sk) ||
3995 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3996 			max_ato = TCP_DELACK_MAX;
3997 
3998 		/* Slow path, intersegment interval is "high". */
3999 
4000 		/* If some rtt estimate is known, use it to bound delayed ack.
4001 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4002 		 * directly.
4003 		 */
4004 		if (tp->srtt_us) {
4005 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4006 					TCP_DELACK_MIN);
4007 
4008 			if (rtt < max_ato)
4009 				max_ato = rtt;
4010 		}
4011 
4012 		ato = min(ato, max_ato);
4013 	}
4014 
4015 	ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
4016 
4017 	/* Stay within the limit we were given */
4018 	timeout = jiffies + ato;
4019 
4020 	/* Use new timeout only if there wasn't a older one earlier. */
4021 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4022 		/* If delack timer is about to expire, send ACK now. */
4023 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4024 			tcp_send_ack(sk);
4025 			return;
4026 		}
4027 
4028 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4029 			timeout = icsk->icsk_ack.timeout;
4030 	}
4031 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4032 	icsk->icsk_ack.timeout = timeout;
4033 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4034 }
4035 
4036 /* This routine sends an ack and also updates the window. */
4037 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4038 {
4039 	struct sk_buff *buff;
4040 
4041 	/* If we have been reset, we may not send again. */
4042 	if (sk->sk_state == TCP_CLOSE)
4043 		return;
4044 
4045 	/* We are not putting this on the write queue, so
4046 	 * tcp_transmit_skb() will set the ownership to this
4047 	 * sock.
4048 	 */
4049 	buff = alloc_skb(MAX_TCP_HEADER,
4050 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4051 	if (unlikely(!buff)) {
4052 		struct inet_connection_sock *icsk = inet_csk(sk);
4053 		unsigned long delay;
4054 
4055 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4056 		if (delay < TCP_RTO_MAX)
4057 			icsk->icsk_ack.retry++;
4058 		inet_csk_schedule_ack(sk);
4059 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4060 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4061 		return;
4062 	}
4063 
4064 	/* Reserve space for headers and prepare control bits. */
4065 	skb_reserve(buff, MAX_TCP_HEADER);
4066 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4067 
4068 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4069 	 * too much.
4070 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4071 	 */
4072 	skb_set_tcp_pure_ack(buff);
4073 
4074 	/* Send it off, this clears delayed acks for us. */
4075 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4076 }
4077 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4078 
4079 void tcp_send_ack(struct sock *sk)
4080 {
4081 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4082 }
4083 
4084 /* This routine sends a packet with an out of date sequence
4085  * number. It assumes the other end will try to ack it.
4086  *
4087  * Question: what should we make while urgent mode?
4088  * 4.4BSD forces sending single byte of data. We cannot send
4089  * out of window data, because we have SND.NXT==SND.MAX...
4090  *
4091  * Current solution: to send TWO zero-length segments in urgent mode:
4092  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4093  * out-of-date with SND.UNA-1 to probe window.
4094  */
4095 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4096 {
4097 	struct tcp_sock *tp = tcp_sk(sk);
4098 	struct sk_buff *skb;
4099 
4100 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4101 	skb = alloc_skb(MAX_TCP_HEADER,
4102 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4103 	if (!skb)
4104 		return -1;
4105 
4106 	/* Reserve space for headers and set control bits. */
4107 	skb_reserve(skb, MAX_TCP_HEADER);
4108 	/* Use a previous sequence.  This should cause the other
4109 	 * end to send an ack.  Don't queue or clone SKB, just
4110 	 * send it.
4111 	 */
4112 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4113 	NET_INC_STATS(sock_net(sk), mib);
4114 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4115 }
4116 
4117 /* Called from setsockopt( ... TCP_REPAIR ) */
4118 void tcp_send_window_probe(struct sock *sk)
4119 {
4120 	if (sk->sk_state == TCP_ESTABLISHED) {
4121 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4122 		tcp_mstamp_refresh(tcp_sk(sk));
4123 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4124 	}
4125 }
4126 
4127 /* Initiate keepalive or window probe from timer. */
4128 int tcp_write_wakeup(struct sock *sk, int mib)
4129 {
4130 	struct tcp_sock *tp = tcp_sk(sk);
4131 	struct sk_buff *skb;
4132 
4133 	if (sk->sk_state == TCP_CLOSE)
4134 		return -1;
4135 
4136 	skb = tcp_send_head(sk);
4137 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4138 		int err;
4139 		unsigned int mss = tcp_current_mss(sk);
4140 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4141 
4142 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4143 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4144 
4145 		/* We are probing the opening of a window
4146 		 * but the window size is != 0
4147 		 * must have been a result SWS avoidance ( sender )
4148 		 */
4149 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4150 		    skb->len > mss) {
4151 			seg_size = min(seg_size, mss);
4152 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4153 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4154 					 skb, seg_size, mss, GFP_ATOMIC))
4155 				return -1;
4156 		} else if (!tcp_skb_pcount(skb))
4157 			tcp_set_skb_tso_segs(skb, mss);
4158 
4159 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4160 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4161 		if (!err)
4162 			tcp_event_new_data_sent(sk, skb);
4163 		return err;
4164 	} else {
4165 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4166 			tcp_xmit_probe_skb(sk, 1, mib);
4167 		return tcp_xmit_probe_skb(sk, 0, mib);
4168 	}
4169 }
4170 
4171 /* A window probe timeout has occurred.  If window is not closed send
4172  * a partial packet else a zero probe.
4173  */
4174 void tcp_send_probe0(struct sock *sk)
4175 {
4176 	struct inet_connection_sock *icsk = inet_csk(sk);
4177 	struct tcp_sock *tp = tcp_sk(sk);
4178 	struct net *net = sock_net(sk);
4179 	unsigned long timeout;
4180 	int err;
4181 
4182 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4183 
4184 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4185 		/* Cancel probe timer, if it is not required. */
4186 		icsk->icsk_probes_out = 0;
4187 		icsk->icsk_backoff = 0;
4188 		icsk->icsk_probes_tstamp = 0;
4189 		return;
4190 	}
4191 
4192 	icsk->icsk_probes_out++;
4193 	if (err <= 0) {
4194 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4195 			icsk->icsk_backoff++;
4196 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4197 	} else {
4198 		/* If packet was not sent due to local congestion,
4199 		 * Let senders fight for local resources conservatively.
4200 		 */
4201 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4202 	}
4203 
4204 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4205 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4206 }
4207 
4208 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4209 {
4210 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4211 	struct flowi fl;
4212 	int res;
4213 
4214 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4215 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4216 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4217 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4218 				  NULL);
4219 	if (!res) {
4220 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4221 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4222 		if (unlikely(tcp_passive_fastopen(sk))) {
4223 			/* sk has const attribute because listeners are lockless.
4224 			 * However in this case, we are dealing with a passive fastopen
4225 			 * socket thus we can change total_retrans value.
4226 			 */
4227 			tcp_sk_rw(sk)->total_retrans++;
4228 		}
4229 		trace_tcp_retransmit_synack(sk, req);
4230 	}
4231 	return res;
4232 }
4233 EXPORT_SYMBOL(tcp_rtx_synack);
4234