1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #include <net/tcp.h> 38 39 #include <linux/compiler.h> 40 #include <linux/gfp.h> 41 #include <linux/module.h> 42 43 /* People can turn this off for buggy TCP's found in printers etc. */ 44 int sysctl_tcp_retrans_collapse __read_mostly = 1; 45 46 /* People can turn this on to work with those rare, broken TCPs that 47 * interpret the window field as a signed quantity. 48 */ 49 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 50 51 /* This limits the percentage of the congestion window which we 52 * will allow a single TSO frame to consume. Building TSO frames 53 * which are too large can cause TCP streams to be bursty. 54 */ 55 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 56 57 int sysctl_tcp_mtu_probing __read_mostly = 0; 58 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS; 59 60 /* By default, RFC2861 behavior. */ 61 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 62 63 int sysctl_tcp_cookie_size __read_mostly = 0; /* TCP_COOKIE_MAX */ 64 EXPORT_SYMBOL_GPL(sysctl_tcp_cookie_size); 65 66 67 /* Account for new data that has been sent to the network. */ 68 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 69 { 70 struct tcp_sock *tp = tcp_sk(sk); 71 unsigned int prior_packets = tp->packets_out; 72 73 tcp_advance_send_head(sk, skb); 74 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 75 76 /* Don't override Nagle indefinitely with F-RTO */ 77 if (tp->frto_counter == 2) 78 tp->frto_counter = 3; 79 80 tp->packets_out += tcp_skb_pcount(skb); 81 if (!prior_packets) 82 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 83 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 84 } 85 86 /* SND.NXT, if window was not shrunk. 87 * If window has been shrunk, what should we make? It is not clear at all. 88 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 89 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 90 * invalid. OK, let's make this for now: 91 */ 92 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 93 { 94 const struct tcp_sock *tp = tcp_sk(sk); 95 96 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 97 return tp->snd_nxt; 98 else 99 return tcp_wnd_end(tp); 100 } 101 102 /* Calculate mss to advertise in SYN segment. 103 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 104 * 105 * 1. It is independent of path mtu. 106 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 107 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 108 * attached devices, because some buggy hosts are confused by 109 * large MSS. 110 * 4. We do not make 3, we advertise MSS, calculated from first 111 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 112 * This may be overridden via information stored in routing table. 113 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 114 * probably even Jumbo". 115 */ 116 static __u16 tcp_advertise_mss(struct sock *sk) 117 { 118 struct tcp_sock *tp = tcp_sk(sk); 119 const struct dst_entry *dst = __sk_dst_get(sk); 120 int mss = tp->advmss; 121 122 if (dst) { 123 unsigned int metric = dst_metric_advmss(dst); 124 125 if (metric < mss) { 126 mss = metric; 127 tp->advmss = mss; 128 } 129 } 130 131 return (__u16)mss; 132 } 133 134 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 135 * This is the first part of cwnd validation mechanism. */ 136 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 137 { 138 struct tcp_sock *tp = tcp_sk(sk); 139 s32 delta = tcp_time_stamp - tp->lsndtime; 140 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 141 u32 cwnd = tp->snd_cwnd; 142 143 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 144 145 tp->snd_ssthresh = tcp_current_ssthresh(sk); 146 restart_cwnd = min(restart_cwnd, cwnd); 147 148 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 149 cwnd >>= 1; 150 tp->snd_cwnd = max(cwnd, restart_cwnd); 151 tp->snd_cwnd_stamp = tcp_time_stamp; 152 tp->snd_cwnd_used = 0; 153 } 154 155 /* Congestion state accounting after a packet has been sent. */ 156 static void tcp_event_data_sent(struct tcp_sock *tp, 157 struct sock *sk) 158 { 159 struct inet_connection_sock *icsk = inet_csk(sk); 160 const u32 now = tcp_time_stamp; 161 162 if (sysctl_tcp_slow_start_after_idle && 163 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 164 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 165 166 tp->lsndtime = now; 167 168 /* If it is a reply for ato after last received 169 * packet, enter pingpong mode. 170 */ 171 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 172 icsk->icsk_ack.pingpong = 1; 173 } 174 175 /* Account for an ACK we sent. */ 176 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 177 { 178 tcp_dec_quickack_mode(sk, pkts); 179 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 180 } 181 182 /* Determine a window scaling and initial window to offer. 183 * Based on the assumption that the given amount of space 184 * will be offered. Store the results in the tp structure. 185 * NOTE: for smooth operation initial space offering should 186 * be a multiple of mss if possible. We assume here that mss >= 1. 187 * This MUST be enforced by all callers. 188 */ 189 void tcp_select_initial_window(int __space, __u32 mss, 190 __u32 *rcv_wnd, __u32 *window_clamp, 191 int wscale_ok, __u8 *rcv_wscale, 192 __u32 init_rcv_wnd) 193 { 194 unsigned int space = (__space < 0 ? 0 : __space); 195 196 /* If no clamp set the clamp to the max possible scaled window */ 197 if (*window_clamp == 0) 198 (*window_clamp) = (65535 << 14); 199 space = min(*window_clamp, space); 200 201 /* Quantize space offering to a multiple of mss if possible. */ 202 if (space > mss) 203 space = (space / mss) * mss; 204 205 /* NOTE: offering an initial window larger than 32767 206 * will break some buggy TCP stacks. If the admin tells us 207 * it is likely we could be speaking with such a buggy stack 208 * we will truncate our initial window offering to 32K-1 209 * unless the remote has sent us a window scaling option, 210 * which we interpret as a sign the remote TCP is not 211 * misinterpreting the window field as a signed quantity. 212 */ 213 if (sysctl_tcp_workaround_signed_windows) 214 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 215 else 216 (*rcv_wnd) = space; 217 218 (*rcv_wscale) = 0; 219 if (wscale_ok) { 220 /* Set window scaling on max possible window 221 * See RFC1323 for an explanation of the limit to 14 222 */ 223 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 224 space = min_t(u32, space, *window_clamp); 225 while (space > 65535 && (*rcv_wscale) < 14) { 226 space >>= 1; 227 (*rcv_wscale)++; 228 } 229 } 230 231 /* Set initial window to a value enough for senders starting with 232 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place 233 * a limit on the initial window when mss is larger than 1460. 234 */ 235 if (mss > (1 << *rcv_wscale)) { 236 int init_cwnd = TCP_DEFAULT_INIT_RCVWND; 237 if (mss > 1460) 238 init_cwnd = 239 max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2); 240 /* when initializing use the value from init_rcv_wnd 241 * rather than the default from above 242 */ 243 if (init_rcv_wnd) 244 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 245 else 246 *rcv_wnd = min(*rcv_wnd, init_cwnd * mss); 247 } 248 249 /* Set the clamp no higher than max representable value */ 250 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 251 } 252 EXPORT_SYMBOL(tcp_select_initial_window); 253 254 /* Chose a new window to advertise, update state in tcp_sock for the 255 * socket, and return result with RFC1323 scaling applied. The return 256 * value can be stuffed directly into th->window for an outgoing 257 * frame. 258 */ 259 static u16 tcp_select_window(struct sock *sk) 260 { 261 struct tcp_sock *tp = tcp_sk(sk); 262 u32 cur_win = tcp_receive_window(tp); 263 u32 new_win = __tcp_select_window(sk); 264 265 /* Never shrink the offered window */ 266 if (new_win < cur_win) { 267 /* Danger Will Robinson! 268 * Don't update rcv_wup/rcv_wnd here or else 269 * we will not be able to advertise a zero 270 * window in time. --DaveM 271 * 272 * Relax Will Robinson. 273 */ 274 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 275 } 276 tp->rcv_wnd = new_win; 277 tp->rcv_wup = tp->rcv_nxt; 278 279 /* Make sure we do not exceed the maximum possible 280 * scaled window. 281 */ 282 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 283 new_win = min(new_win, MAX_TCP_WINDOW); 284 else 285 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 286 287 /* RFC1323 scaling applied */ 288 new_win >>= tp->rx_opt.rcv_wscale; 289 290 /* If we advertise zero window, disable fast path. */ 291 if (new_win == 0) 292 tp->pred_flags = 0; 293 294 return new_win; 295 } 296 297 /* Packet ECN state for a SYN-ACK */ 298 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb) 299 { 300 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 301 if (!(tp->ecn_flags & TCP_ECN_OK)) 302 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 303 } 304 305 /* Packet ECN state for a SYN. */ 306 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb) 307 { 308 struct tcp_sock *tp = tcp_sk(sk); 309 310 tp->ecn_flags = 0; 311 if (sysctl_tcp_ecn == 1) { 312 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 313 tp->ecn_flags = TCP_ECN_OK; 314 } 315 } 316 317 static __inline__ void 318 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th) 319 { 320 if (inet_rsk(req)->ecn_ok) 321 th->ece = 1; 322 } 323 324 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 325 * be sent. 326 */ 327 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb, 328 int tcp_header_len) 329 { 330 struct tcp_sock *tp = tcp_sk(sk); 331 332 if (tp->ecn_flags & TCP_ECN_OK) { 333 /* Not-retransmitted data segment: set ECT and inject CWR. */ 334 if (skb->len != tcp_header_len && 335 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 336 INET_ECN_xmit(sk); 337 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 338 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 339 tcp_hdr(skb)->cwr = 1; 340 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 341 } 342 } else { 343 /* ACK or retransmitted segment: clear ECT|CE */ 344 INET_ECN_dontxmit(sk); 345 } 346 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 347 tcp_hdr(skb)->ece = 1; 348 } 349 } 350 351 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 352 * auto increment end seqno. 353 */ 354 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 355 { 356 skb->ip_summed = CHECKSUM_PARTIAL; 357 skb->csum = 0; 358 359 TCP_SKB_CB(skb)->tcp_flags = flags; 360 TCP_SKB_CB(skb)->sacked = 0; 361 362 skb_shinfo(skb)->gso_segs = 1; 363 skb_shinfo(skb)->gso_size = 0; 364 skb_shinfo(skb)->gso_type = 0; 365 366 TCP_SKB_CB(skb)->seq = seq; 367 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 368 seq++; 369 TCP_SKB_CB(skb)->end_seq = seq; 370 } 371 372 static inline int tcp_urg_mode(const struct tcp_sock *tp) 373 { 374 return tp->snd_una != tp->snd_up; 375 } 376 377 #define OPTION_SACK_ADVERTISE (1 << 0) 378 #define OPTION_TS (1 << 1) 379 #define OPTION_MD5 (1 << 2) 380 #define OPTION_WSCALE (1 << 3) 381 #define OPTION_COOKIE_EXTENSION (1 << 4) 382 383 struct tcp_out_options { 384 u8 options; /* bit field of OPTION_* */ 385 u8 ws; /* window scale, 0 to disable */ 386 u8 num_sack_blocks; /* number of SACK blocks to include */ 387 u8 hash_size; /* bytes in hash_location */ 388 u16 mss; /* 0 to disable */ 389 __u32 tsval, tsecr; /* need to include OPTION_TS */ 390 __u8 *hash_location; /* temporary pointer, overloaded */ 391 }; 392 393 /* The sysctl int routines are generic, so check consistency here. 394 */ 395 static u8 tcp_cookie_size_check(u8 desired) 396 { 397 int cookie_size; 398 399 if (desired > 0) 400 /* previously specified */ 401 return desired; 402 403 cookie_size = ACCESS_ONCE(sysctl_tcp_cookie_size); 404 if (cookie_size <= 0) 405 /* no default specified */ 406 return 0; 407 408 if (cookie_size <= TCP_COOKIE_MIN) 409 /* value too small, specify minimum */ 410 return TCP_COOKIE_MIN; 411 412 if (cookie_size >= TCP_COOKIE_MAX) 413 /* value too large, specify maximum */ 414 return TCP_COOKIE_MAX; 415 416 if (cookie_size & 1) 417 /* 8-bit multiple, illegal, fix it */ 418 cookie_size++; 419 420 return (u8)cookie_size; 421 } 422 423 /* Write previously computed TCP options to the packet. 424 * 425 * Beware: Something in the Internet is very sensitive to the ordering of 426 * TCP options, we learned this through the hard way, so be careful here. 427 * Luckily we can at least blame others for their non-compliance but from 428 * inter-operatibility perspective it seems that we're somewhat stuck with 429 * the ordering which we have been using if we want to keep working with 430 * those broken things (not that it currently hurts anybody as there isn't 431 * particular reason why the ordering would need to be changed). 432 * 433 * At least SACK_PERM as the first option is known to lead to a disaster 434 * (but it may well be that other scenarios fail similarly). 435 */ 436 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 437 struct tcp_out_options *opts) 438 { 439 u8 options = opts->options; /* mungable copy */ 440 441 /* Having both authentication and cookies for security is redundant, 442 * and there's certainly not enough room. Instead, the cookie-less 443 * extension variant is proposed. 444 * 445 * Consider the pessimal case with authentication. The options 446 * could look like: 447 * COOKIE|MD5(20) + MSS(4) + SACK|TS(12) + WSCALE(4) == 40 448 */ 449 if (unlikely(OPTION_MD5 & options)) { 450 if (unlikely(OPTION_COOKIE_EXTENSION & options)) { 451 *ptr++ = htonl((TCPOPT_COOKIE << 24) | 452 (TCPOLEN_COOKIE_BASE << 16) | 453 (TCPOPT_MD5SIG << 8) | 454 TCPOLEN_MD5SIG); 455 } else { 456 *ptr++ = htonl((TCPOPT_NOP << 24) | 457 (TCPOPT_NOP << 16) | 458 (TCPOPT_MD5SIG << 8) | 459 TCPOLEN_MD5SIG); 460 } 461 options &= ~OPTION_COOKIE_EXTENSION; 462 /* overload cookie hash location */ 463 opts->hash_location = (__u8 *)ptr; 464 ptr += 4; 465 } 466 467 if (unlikely(opts->mss)) { 468 *ptr++ = htonl((TCPOPT_MSS << 24) | 469 (TCPOLEN_MSS << 16) | 470 opts->mss); 471 } 472 473 if (likely(OPTION_TS & options)) { 474 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 475 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 476 (TCPOLEN_SACK_PERM << 16) | 477 (TCPOPT_TIMESTAMP << 8) | 478 TCPOLEN_TIMESTAMP); 479 options &= ~OPTION_SACK_ADVERTISE; 480 } else { 481 *ptr++ = htonl((TCPOPT_NOP << 24) | 482 (TCPOPT_NOP << 16) | 483 (TCPOPT_TIMESTAMP << 8) | 484 TCPOLEN_TIMESTAMP); 485 } 486 *ptr++ = htonl(opts->tsval); 487 *ptr++ = htonl(opts->tsecr); 488 } 489 490 /* Specification requires after timestamp, so do it now. 491 * 492 * Consider the pessimal case without authentication. The options 493 * could look like: 494 * MSS(4) + SACK|TS(12) + COOKIE(20) + WSCALE(4) == 40 495 */ 496 if (unlikely(OPTION_COOKIE_EXTENSION & options)) { 497 __u8 *cookie_copy = opts->hash_location; 498 u8 cookie_size = opts->hash_size; 499 500 /* 8-bit multiple handled in tcp_cookie_size_check() above, 501 * and elsewhere. 502 */ 503 if (0x2 & cookie_size) { 504 __u8 *p = (__u8 *)ptr; 505 506 /* 16-bit multiple */ 507 *p++ = TCPOPT_COOKIE; 508 *p++ = TCPOLEN_COOKIE_BASE + cookie_size; 509 *p++ = *cookie_copy++; 510 *p++ = *cookie_copy++; 511 ptr++; 512 cookie_size -= 2; 513 } else { 514 /* 32-bit multiple */ 515 *ptr++ = htonl(((TCPOPT_NOP << 24) | 516 (TCPOPT_NOP << 16) | 517 (TCPOPT_COOKIE << 8) | 518 TCPOLEN_COOKIE_BASE) + 519 cookie_size); 520 } 521 522 if (cookie_size > 0) { 523 memcpy(ptr, cookie_copy, cookie_size); 524 ptr += (cookie_size / 4); 525 } 526 } 527 528 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 529 *ptr++ = htonl((TCPOPT_NOP << 24) | 530 (TCPOPT_NOP << 16) | 531 (TCPOPT_SACK_PERM << 8) | 532 TCPOLEN_SACK_PERM); 533 } 534 535 if (unlikely(OPTION_WSCALE & options)) { 536 *ptr++ = htonl((TCPOPT_NOP << 24) | 537 (TCPOPT_WINDOW << 16) | 538 (TCPOLEN_WINDOW << 8) | 539 opts->ws); 540 } 541 542 if (unlikely(opts->num_sack_blocks)) { 543 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 544 tp->duplicate_sack : tp->selective_acks; 545 int this_sack; 546 547 *ptr++ = htonl((TCPOPT_NOP << 24) | 548 (TCPOPT_NOP << 16) | 549 (TCPOPT_SACK << 8) | 550 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 551 TCPOLEN_SACK_PERBLOCK))); 552 553 for (this_sack = 0; this_sack < opts->num_sack_blocks; 554 ++this_sack) { 555 *ptr++ = htonl(sp[this_sack].start_seq); 556 *ptr++ = htonl(sp[this_sack].end_seq); 557 } 558 559 tp->rx_opt.dsack = 0; 560 } 561 } 562 563 /* Compute TCP options for SYN packets. This is not the final 564 * network wire format yet. 565 */ 566 static unsigned tcp_syn_options(struct sock *sk, struct sk_buff *skb, 567 struct tcp_out_options *opts, 568 struct tcp_md5sig_key **md5) 569 { 570 struct tcp_sock *tp = tcp_sk(sk); 571 struct tcp_cookie_values *cvp = tp->cookie_values; 572 unsigned remaining = MAX_TCP_OPTION_SPACE; 573 u8 cookie_size = (!tp->rx_opt.cookie_out_never && cvp != NULL) ? 574 tcp_cookie_size_check(cvp->cookie_desired) : 575 0; 576 577 #ifdef CONFIG_TCP_MD5SIG 578 *md5 = tp->af_specific->md5_lookup(sk, sk); 579 if (*md5) { 580 opts->options |= OPTION_MD5; 581 remaining -= TCPOLEN_MD5SIG_ALIGNED; 582 } 583 #else 584 *md5 = NULL; 585 #endif 586 587 /* We always get an MSS option. The option bytes which will be seen in 588 * normal data packets should timestamps be used, must be in the MSS 589 * advertised. But we subtract them from tp->mss_cache so that 590 * calculations in tcp_sendmsg are simpler etc. So account for this 591 * fact here if necessary. If we don't do this correctly, as a 592 * receiver we won't recognize data packets as being full sized when we 593 * should, and thus we won't abide by the delayed ACK rules correctly. 594 * SACKs don't matter, we never delay an ACK when we have any of those 595 * going out. */ 596 opts->mss = tcp_advertise_mss(sk); 597 remaining -= TCPOLEN_MSS_ALIGNED; 598 599 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 600 opts->options |= OPTION_TS; 601 opts->tsval = TCP_SKB_CB(skb)->when; 602 opts->tsecr = tp->rx_opt.ts_recent; 603 remaining -= TCPOLEN_TSTAMP_ALIGNED; 604 } 605 if (likely(sysctl_tcp_window_scaling)) { 606 opts->ws = tp->rx_opt.rcv_wscale; 607 opts->options |= OPTION_WSCALE; 608 remaining -= TCPOLEN_WSCALE_ALIGNED; 609 } 610 if (likely(sysctl_tcp_sack)) { 611 opts->options |= OPTION_SACK_ADVERTISE; 612 if (unlikely(!(OPTION_TS & opts->options))) 613 remaining -= TCPOLEN_SACKPERM_ALIGNED; 614 } 615 616 /* Note that timestamps are required by the specification. 617 * 618 * Odd numbers of bytes are prohibited by the specification, ensuring 619 * that the cookie is 16-bit aligned, and the resulting cookie pair is 620 * 32-bit aligned. 621 */ 622 if (*md5 == NULL && 623 (OPTION_TS & opts->options) && 624 cookie_size > 0) { 625 int need = TCPOLEN_COOKIE_BASE + cookie_size; 626 627 if (0x2 & need) { 628 /* 32-bit multiple */ 629 need += 2; /* NOPs */ 630 631 if (need > remaining) { 632 /* try shrinking cookie to fit */ 633 cookie_size -= 2; 634 need -= 4; 635 } 636 } 637 while (need > remaining && TCP_COOKIE_MIN <= cookie_size) { 638 cookie_size -= 4; 639 need -= 4; 640 } 641 if (TCP_COOKIE_MIN <= cookie_size) { 642 opts->options |= OPTION_COOKIE_EXTENSION; 643 opts->hash_location = (__u8 *)&cvp->cookie_pair[0]; 644 opts->hash_size = cookie_size; 645 646 /* Remember for future incarnations. */ 647 cvp->cookie_desired = cookie_size; 648 649 if (cvp->cookie_desired != cvp->cookie_pair_size) { 650 /* Currently use random bytes as a nonce, 651 * assuming these are completely unpredictable 652 * by hostile users of the same system. 653 */ 654 get_random_bytes(&cvp->cookie_pair[0], 655 cookie_size); 656 cvp->cookie_pair_size = cookie_size; 657 } 658 659 remaining -= need; 660 } 661 } 662 return MAX_TCP_OPTION_SPACE - remaining; 663 } 664 665 /* Set up TCP options for SYN-ACKs. */ 666 static unsigned tcp_synack_options(struct sock *sk, 667 struct request_sock *req, 668 unsigned mss, struct sk_buff *skb, 669 struct tcp_out_options *opts, 670 struct tcp_md5sig_key **md5, 671 struct tcp_extend_values *xvp) 672 { 673 struct inet_request_sock *ireq = inet_rsk(req); 674 unsigned remaining = MAX_TCP_OPTION_SPACE; 675 u8 cookie_plus = (xvp != NULL && !xvp->cookie_out_never) ? 676 xvp->cookie_plus : 677 0; 678 679 #ifdef CONFIG_TCP_MD5SIG 680 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 681 if (*md5) { 682 opts->options |= OPTION_MD5; 683 remaining -= TCPOLEN_MD5SIG_ALIGNED; 684 685 /* We can't fit any SACK blocks in a packet with MD5 + TS 686 * options. There was discussion about disabling SACK 687 * rather than TS in order to fit in better with old, 688 * buggy kernels, but that was deemed to be unnecessary. 689 */ 690 ireq->tstamp_ok &= !ireq->sack_ok; 691 } 692 #else 693 *md5 = NULL; 694 #endif 695 696 /* We always send an MSS option. */ 697 opts->mss = mss; 698 remaining -= TCPOLEN_MSS_ALIGNED; 699 700 if (likely(ireq->wscale_ok)) { 701 opts->ws = ireq->rcv_wscale; 702 opts->options |= OPTION_WSCALE; 703 remaining -= TCPOLEN_WSCALE_ALIGNED; 704 } 705 if (likely(ireq->tstamp_ok)) { 706 opts->options |= OPTION_TS; 707 opts->tsval = TCP_SKB_CB(skb)->when; 708 opts->tsecr = req->ts_recent; 709 remaining -= TCPOLEN_TSTAMP_ALIGNED; 710 } 711 if (likely(ireq->sack_ok)) { 712 opts->options |= OPTION_SACK_ADVERTISE; 713 if (unlikely(!ireq->tstamp_ok)) 714 remaining -= TCPOLEN_SACKPERM_ALIGNED; 715 } 716 717 /* Similar rationale to tcp_syn_options() applies here, too. 718 * If the <SYN> options fit, the same options should fit now! 719 */ 720 if (*md5 == NULL && 721 ireq->tstamp_ok && 722 cookie_plus > TCPOLEN_COOKIE_BASE) { 723 int need = cookie_plus; /* has TCPOLEN_COOKIE_BASE */ 724 725 if (0x2 & need) { 726 /* 32-bit multiple */ 727 need += 2; /* NOPs */ 728 } 729 if (need <= remaining) { 730 opts->options |= OPTION_COOKIE_EXTENSION; 731 opts->hash_size = cookie_plus - TCPOLEN_COOKIE_BASE; 732 remaining -= need; 733 } else { 734 /* There's no error return, so flag it. */ 735 xvp->cookie_out_never = 1; /* true */ 736 opts->hash_size = 0; 737 } 738 } 739 return MAX_TCP_OPTION_SPACE - remaining; 740 } 741 742 /* Compute TCP options for ESTABLISHED sockets. This is not the 743 * final wire format yet. 744 */ 745 static unsigned tcp_established_options(struct sock *sk, struct sk_buff *skb, 746 struct tcp_out_options *opts, 747 struct tcp_md5sig_key **md5) 748 { 749 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL; 750 struct tcp_sock *tp = tcp_sk(sk); 751 unsigned size = 0; 752 unsigned int eff_sacks; 753 754 #ifdef CONFIG_TCP_MD5SIG 755 *md5 = tp->af_specific->md5_lookup(sk, sk); 756 if (unlikely(*md5)) { 757 opts->options |= OPTION_MD5; 758 size += TCPOLEN_MD5SIG_ALIGNED; 759 } 760 #else 761 *md5 = NULL; 762 #endif 763 764 if (likely(tp->rx_opt.tstamp_ok)) { 765 opts->options |= OPTION_TS; 766 opts->tsval = tcb ? tcb->when : 0; 767 opts->tsecr = tp->rx_opt.ts_recent; 768 size += TCPOLEN_TSTAMP_ALIGNED; 769 } 770 771 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 772 if (unlikely(eff_sacks)) { 773 const unsigned remaining = MAX_TCP_OPTION_SPACE - size; 774 opts->num_sack_blocks = 775 min_t(unsigned, eff_sacks, 776 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 777 TCPOLEN_SACK_PERBLOCK); 778 size += TCPOLEN_SACK_BASE_ALIGNED + 779 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 780 } 781 782 return size; 783 } 784 785 /* This routine actually transmits TCP packets queued in by 786 * tcp_do_sendmsg(). This is used by both the initial 787 * transmission and possible later retransmissions. 788 * All SKB's seen here are completely headerless. It is our 789 * job to build the TCP header, and pass the packet down to 790 * IP so it can do the same plus pass the packet off to the 791 * device. 792 * 793 * We are working here with either a clone of the original 794 * SKB, or a fresh unique copy made by the retransmit engine. 795 */ 796 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 797 gfp_t gfp_mask) 798 { 799 const struct inet_connection_sock *icsk = inet_csk(sk); 800 struct inet_sock *inet; 801 struct tcp_sock *tp; 802 struct tcp_skb_cb *tcb; 803 struct tcp_out_options opts; 804 unsigned tcp_options_size, tcp_header_size; 805 struct tcp_md5sig_key *md5; 806 struct tcphdr *th; 807 int err; 808 809 BUG_ON(!skb || !tcp_skb_pcount(skb)); 810 811 /* If congestion control is doing timestamping, we must 812 * take such a timestamp before we potentially clone/copy. 813 */ 814 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP) 815 __net_timestamp(skb); 816 817 if (likely(clone_it)) { 818 if (unlikely(skb_cloned(skb))) 819 skb = pskb_copy(skb, gfp_mask); 820 else 821 skb = skb_clone(skb, gfp_mask); 822 if (unlikely(!skb)) 823 return -ENOBUFS; 824 } 825 826 inet = inet_sk(sk); 827 tp = tcp_sk(sk); 828 tcb = TCP_SKB_CB(skb); 829 memset(&opts, 0, sizeof(opts)); 830 831 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 832 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 833 else 834 tcp_options_size = tcp_established_options(sk, skb, &opts, 835 &md5); 836 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 837 838 if (tcp_packets_in_flight(tp) == 0) { 839 tcp_ca_event(sk, CA_EVENT_TX_START); 840 skb->ooo_okay = 1; 841 } else 842 skb->ooo_okay = 0; 843 844 skb_push(skb, tcp_header_size); 845 skb_reset_transport_header(skb); 846 skb_set_owner_w(skb, sk); 847 848 /* Build TCP header and checksum it. */ 849 th = tcp_hdr(skb); 850 th->source = inet->inet_sport; 851 th->dest = inet->inet_dport; 852 th->seq = htonl(tcb->seq); 853 th->ack_seq = htonl(tp->rcv_nxt); 854 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 855 tcb->tcp_flags); 856 857 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 858 /* RFC1323: The window in SYN & SYN/ACK segments 859 * is never scaled. 860 */ 861 th->window = htons(min(tp->rcv_wnd, 65535U)); 862 } else { 863 th->window = htons(tcp_select_window(sk)); 864 } 865 th->check = 0; 866 th->urg_ptr = 0; 867 868 /* The urg_mode check is necessary during a below snd_una win probe */ 869 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 870 if (before(tp->snd_up, tcb->seq + 0x10000)) { 871 th->urg_ptr = htons(tp->snd_up - tcb->seq); 872 th->urg = 1; 873 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 874 th->urg_ptr = htons(0xFFFF); 875 th->urg = 1; 876 } 877 } 878 879 tcp_options_write((__be32 *)(th + 1), tp, &opts); 880 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 881 TCP_ECN_send(sk, skb, tcp_header_size); 882 883 #ifdef CONFIG_TCP_MD5SIG 884 /* Calculate the MD5 hash, as we have all we need now */ 885 if (md5) { 886 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 887 tp->af_specific->calc_md5_hash(opts.hash_location, 888 md5, sk, NULL, skb); 889 } 890 #endif 891 892 icsk->icsk_af_ops->send_check(sk, skb); 893 894 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 895 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 896 897 if (skb->len != tcp_header_size) 898 tcp_event_data_sent(tp, sk); 899 900 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 901 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 902 tcp_skb_pcount(skb)); 903 904 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl); 905 if (likely(err <= 0)) 906 return err; 907 908 tcp_enter_cwr(sk, 1); 909 910 return net_xmit_eval(err); 911 } 912 913 /* This routine just queues the buffer for sending. 914 * 915 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 916 * otherwise socket can stall. 917 */ 918 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 919 { 920 struct tcp_sock *tp = tcp_sk(sk); 921 922 /* Advance write_seq and place onto the write_queue. */ 923 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 924 skb_header_release(skb); 925 tcp_add_write_queue_tail(sk, skb); 926 sk->sk_wmem_queued += skb->truesize; 927 sk_mem_charge(sk, skb->truesize); 928 } 929 930 /* Initialize TSO segments for a packet. */ 931 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 932 unsigned int mss_now) 933 { 934 if (skb->len <= mss_now || !sk_can_gso(sk) || 935 skb->ip_summed == CHECKSUM_NONE) { 936 /* Avoid the costly divide in the normal 937 * non-TSO case. 938 */ 939 skb_shinfo(skb)->gso_segs = 1; 940 skb_shinfo(skb)->gso_size = 0; 941 skb_shinfo(skb)->gso_type = 0; 942 } else { 943 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now); 944 skb_shinfo(skb)->gso_size = mss_now; 945 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 946 } 947 } 948 949 /* When a modification to fackets out becomes necessary, we need to check 950 * skb is counted to fackets_out or not. 951 */ 952 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 953 int decr) 954 { 955 struct tcp_sock *tp = tcp_sk(sk); 956 957 if (!tp->sacked_out || tcp_is_reno(tp)) 958 return; 959 960 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 961 tp->fackets_out -= decr; 962 } 963 964 /* Pcount in the middle of the write queue got changed, we need to do various 965 * tweaks to fix counters 966 */ 967 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 968 { 969 struct tcp_sock *tp = tcp_sk(sk); 970 971 tp->packets_out -= decr; 972 973 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 974 tp->sacked_out -= decr; 975 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 976 tp->retrans_out -= decr; 977 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 978 tp->lost_out -= decr; 979 980 /* Reno case is special. Sigh... */ 981 if (tcp_is_reno(tp) && decr > 0) 982 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 983 984 tcp_adjust_fackets_out(sk, skb, decr); 985 986 if (tp->lost_skb_hint && 987 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 988 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 989 tp->lost_cnt_hint -= decr; 990 991 tcp_verify_left_out(tp); 992 } 993 994 /* Function to create two new TCP segments. Shrinks the given segment 995 * to the specified size and appends a new segment with the rest of the 996 * packet to the list. This won't be called frequently, I hope. 997 * Remember, these are still headerless SKBs at this point. 998 */ 999 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1000 unsigned int mss_now) 1001 { 1002 struct tcp_sock *tp = tcp_sk(sk); 1003 struct sk_buff *buff; 1004 int nsize, old_factor; 1005 int nlen; 1006 u8 flags; 1007 1008 if (WARN_ON(len > skb->len)) 1009 return -EINVAL; 1010 1011 nsize = skb_headlen(skb) - len; 1012 if (nsize < 0) 1013 nsize = 0; 1014 1015 if (skb_cloned(skb) && 1016 skb_is_nonlinear(skb) && 1017 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1018 return -ENOMEM; 1019 1020 /* Get a new skb... force flag on. */ 1021 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 1022 if (buff == NULL) 1023 return -ENOMEM; /* We'll just try again later. */ 1024 1025 sk->sk_wmem_queued += buff->truesize; 1026 sk_mem_charge(sk, buff->truesize); 1027 nlen = skb->len - len - nsize; 1028 buff->truesize += nlen; 1029 skb->truesize -= nlen; 1030 1031 /* Correct the sequence numbers. */ 1032 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1033 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1034 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1035 1036 /* PSH and FIN should only be set in the second packet. */ 1037 flags = TCP_SKB_CB(skb)->tcp_flags; 1038 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1039 TCP_SKB_CB(buff)->tcp_flags = flags; 1040 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1041 1042 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1043 /* Copy and checksum data tail into the new buffer. */ 1044 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1045 skb_put(buff, nsize), 1046 nsize, 0); 1047 1048 skb_trim(skb, len); 1049 1050 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1051 } else { 1052 skb->ip_summed = CHECKSUM_PARTIAL; 1053 skb_split(skb, buff, len); 1054 } 1055 1056 buff->ip_summed = skb->ip_summed; 1057 1058 /* Looks stupid, but our code really uses when of 1059 * skbs, which it never sent before. --ANK 1060 */ 1061 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 1062 buff->tstamp = skb->tstamp; 1063 1064 old_factor = tcp_skb_pcount(skb); 1065 1066 /* Fix up tso_factor for both original and new SKB. */ 1067 tcp_set_skb_tso_segs(sk, skb, mss_now); 1068 tcp_set_skb_tso_segs(sk, buff, mss_now); 1069 1070 /* If this packet has been sent out already, we must 1071 * adjust the various packet counters. 1072 */ 1073 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1074 int diff = old_factor - tcp_skb_pcount(skb) - 1075 tcp_skb_pcount(buff); 1076 1077 if (diff) 1078 tcp_adjust_pcount(sk, skb, diff); 1079 } 1080 1081 /* Link BUFF into the send queue. */ 1082 skb_header_release(buff); 1083 tcp_insert_write_queue_after(skb, buff, sk); 1084 1085 return 0; 1086 } 1087 1088 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1089 * eventually). The difference is that pulled data not copied, but 1090 * immediately discarded. 1091 */ 1092 static void __pskb_trim_head(struct sk_buff *skb, int len) 1093 { 1094 int i, k, eat; 1095 1096 eat = min_t(int, len, skb_headlen(skb)); 1097 if (eat) { 1098 __skb_pull(skb, eat); 1099 skb->avail_size -= eat; 1100 len -= eat; 1101 if (!len) 1102 return; 1103 } 1104 eat = len; 1105 k = 0; 1106 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1107 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1108 1109 if (size <= eat) { 1110 skb_frag_unref(skb, i); 1111 eat -= size; 1112 } else { 1113 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1114 if (eat) { 1115 skb_shinfo(skb)->frags[k].page_offset += eat; 1116 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1117 eat = 0; 1118 } 1119 k++; 1120 } 1121 } 1122 skb_shinfo(skb)->nr_frags = k; 1123 1124 skb_reset_tail_pointer(skb); 1125 skb->data_len -= len; 1126 skb->len = skb->data_len; 1127 } 1128 1129 /* Remove acked data from a packet in the transmit queue. */ 1130 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1131 { 1132 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1133 return -ENOMEM; 1134 1135 __pskb_trim_head(skb, len); 1136 1137 TCP_SKB_CB(skb)->seq += len; 1138 skb->ip_summed = CHECKSUM_PARTIAL; 1139 1140 skb->truesize -= len; 1141 sk->sk_wmem_queued -= len; 1142 sk_mem_uncharge(sk, len); 1143 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1144 1145 /* Any change of skb->len requires recalculation of tso factor. */ 1146 if (tcp_skb_pcount(skb) > 1) 1147 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1148 1149 return 0; 1150 } 1151 1152 /* Calculate MSS. Not accounting for SACKs here. */ 1153 int tcp_mtu_to_mss(const struct sock *sk, int pmtu) 1154 { 1155 const struct tcp_sock *tp = tcp_sk(sk); 1156 const struct inet_connection_sock *icsk = inet_csk(sk); 1157 int mss_now; 1158 1159 /* Calculate base mss without TCP options: 1160 It is MMS_S - sizeof(tcphdr) of rfc1122 1161 */ 1162 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1163 1164 /* Clamp it (mss_clamp does not include tcp options) */ 1165 if (mss_now > tp->rx_opt.mss_clamp) 1166 mss_now = tp->rx_opt.mss_clamp; 1167 1168 /* Now subtract optional transport overhead */ 1169 mss_now -= icsk->icsk_ext_hdr_len; 1170 1171 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1172 if (mss_now < 48) 1173 mss_now = 48; 1174 1175 /* Now subtract TCP options size, not including SACKs */ 1176 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); 1177 1178 return mss_now; 1179 } 1180 1181 /* Inverse of above */ 1182 int tcp_mss_to_mtu(const struct sock *sk, int mss) 1183 { 1184 const struct tcp_sock *tp = tcp_sk(sk); 1185 const struct inet_connection_sock *icsk = inet_csk(sk); 1186 int mtu; 1187 1188 mtu = mss + 1189 tp->tcp_header_len + 1190 icsk->icsk_ext_hdr_len + 1191 icsk->icsk_af_ops->net_header_len; 1192 1193 return mtu; 1194 } 1195 1196 /* MTU probing init per socket */ 1197 void tcp_mtup_init(struct sock *sk) 1198 { 1199 struct tcp_sock *tp = tcp_sk(sk); 1200 struct inet_connection_sock *icsk = inet_csk(sk); 1201 1202 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 1203 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1204 icsk->icsk_af_ops->net_header_len; 1205 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 1206 icsk->icsk_mtup.probe_size = 0; 1207 } 1208 EXPORT_SYMBOL(tcp_mtup_init); 1209 1210 /* This function synchronize snd mss to current pmtu/exthdr set. 1211 1212 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1213 for TCP options, but includes only bare TCP header. 1214 1215 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1216 It is minimum of user_mss and mss received with SYN. 1217 It also does not include TCP options. 1218 1219 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1220 1221 tp->mss_cache is current effective sending mss, including 1222 all tcp options except for SACKs. It is evaluated, 1223 taking into account current pmtu, but never exceeds 1224 tp->rx_opt.mss_clamp. 1225 1226 NOTE1. rfc1122 clearly states that advertised MSS 1227 DOES NOT include either tcp or ip options. 1228 1229 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1230 are READ ONLY outside this function. --ANK (980731) 1231 */ 1232 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1233 { 1234 struct tcp_sock *tp = tcp_sk(sk); 1235 struct inet_connection_sock *icsk = inet_csk(sk); 1236 int mss_now; 1237 1238 if (icsk->icsk_mtup.search_high > pmtu) 1239 icsk->icsk_mtup.search_high = pmtu; 1240 1241 mss_now = tcp_mtu_to_mss(sk, pmtu); 1242 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1243 1244 /* And store cached results */ 1245 icsk->icsk_pmtu_cookie = pmtu; 1246 if (icsk->icsk_mtup.enabled) 1247 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1248 tp->mss_cache = mss_now; 1249 1250 return mss_now; 1251 } 1252 EXPORT_SYMBOL(tcp_sync_mss); 1253 1254 /* Compute the current effective MSS, taking SACKs and IP options, 1255 * and even PMTU discovery events into account. 1256 */ 1257 unsigned int tcp_current_mss(struct sock *sk) 1258 { 1259 const struct tcp_sock *tp = tcp_sk(sk); 1260 const struct dst_entry *dst = __sk_dst_get(sk); 1261 u32 mss_now; 1262 unsigned header_len; 1263 struct tcp_out_options opts; 1264 struct tcp_md5sig_key *md5; 1265 1266 mss_now = tp->mss_cache; 1267 1268 if (dst) { 1269 u32 mtu = dst_mtu(dst); 1270 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1271 mss_now = tcp_sync_mss(sk, mtu); 1272 } 1273 1274 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1275 sizeof(struct tcphdr); 1276 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1277 * some common options. If this is an odd packet (because we have SACK 1278 * blocks etc) then our calculated header_len will be different, and 1279 * we have to adjust mss_now correspondingly */ 1280 if (header_len != tp->tcp_header_len) { 1281 int delta = (int) header_len - tp->tcp_header_len; 1282 mss_now -= delta; 1283 } 1284 1285 return mss_now; 1286 } 1287 1288 /* Congestion window validation. (RFC2861) */ 1289 static void tcp_cwnd_validate(struct sock *sk) 1290 { 1291 struct tcp_sock *tp = tcp_sk(sk); 1292 1293 if (tp->packets_out >= tp->snd_cwnd) { 1294 /* Network is feed fully. */ 1295 tp->snd_cwnd_used = 0; 1296 tp->snd_cwnd_stamp = tcp_time_stamp; 1297 } else { 1298 /* Network starves. */ 1299 if (tp->packets_out > tp->snd_cwnd_used) 1300 tp->snd_cwnd_used = tp->packets_out; 1301 1302 if (sysctl_tcp_slow_start_after_idle && 1303 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1304 tcp_cwnd_application_limited(sk); 1305 } 1306 } 1307 1308 /* Returns the portion of skb which can be sent right away without 1309 * introducing MSS oddities to segment boundaries. In rare cases where 1310 * mss_now != mss_cache, we will request caller to create a small skb 1311 * per input skb which could be mostly avoided here (if desired). 1312 * 1313 * We explicitly want to create a request for splitting write queue tail 1314 * to a small skb for Nagle purposes while avoiding unnecessary modulos, 1315 * thus all the complexity (cwnd_len is always MSS multiple which we 1316 * return whenever allowed by the other factors). Basically we need the 1317 * modulo only when the receiver window alone is the limiting factor or 1318 * when we would be allowed to send the split-due-to-Nagle skb fully. 1319 */ 1320 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb, 1321 unsigned int mss_now, unsigned int cwnd) 1322 { 1323 const struct tcp_sock *tp = tcp_sk(sk); 1324 u32 needed, window, cwnd_len; 1325 1326 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1327 cwnd_len = mss_now * cwnd; 1328 1329 if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk))) 1330 return cwnd_len; 1331 1332 needed = min(skb->len, window); 1333 1334 if (cwnd_len <= needed) 1335 return cwnd_len; 1336 1337 return needed - needed % mss_now; 1338 } 1339 1340 /* Can at least one segment of SKB be sent right now, according to the 1341 * congestion window rules? If so, return how many segments are allowed. 1342 */ 1343 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1344 const struct sk_buff *skb) 1345 { 1346 u32 in_flight, cwnd; 1347 1348 /* Don't be strict about the congestion window for the final FIN. */ 1349 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1350 tcp_skb_pcount(skb) == 1) 1351 return 1; 1352 1353 in_flight = tcp_packets_in_flight(tp); 1354 cwnd = tp->snd_cwnd; 1355 if (in_flight < cwnd) 1356 return (cwnd - in_flight); 1357 1358 return 0; 1359 } 1360 1361 /* Initialize TSO state of a skb. 1362 * This must be invoked the first time we consider transmitting 1363 * SKB onto the wire. 1364 */ 1365 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1366 unsigned int mss_now) 1367 { 1368 int tso_segs = tcp_skb_pcount(skb); 1369 1370 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1371 tcp_set_skb_tso_segs(sk, skb, mss_now); 1372 tso_segs = tcp_skb_pcount(skb); 1373 } 1374 return tso_segs; 1375 } 1376 1377 /* Minshall's variant of the Nagle send check. */ 1378 static inline int tcp_minshall_check(const struct tcp_sock *tp) 1379 { 1380 return after(tp->snd_sml, tp->snd_una) && 1381 !after(tp->snd_sml, tp->snd_nxt); 1382 } 1383 1384 /* Return 0, if packet can be sent now without violation Nagle's rules: 1385 * 1. It is full sized. 1386 * 2. Or it contains FIN. (already checked by caller) 1387 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1388 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1389 * With Minshall's modification: all sent small packets are ACKed. 1390 */ 1391 static inline int tcp_nagle_check(const struct tcp_sock *tp, 1392 const struct sk_buff *skb, 1393 unsigned mss_now, int nonagle) 1394 { 1395 return skb->len < mss_now && 1396 ((nonagle & TCP_NAGLE_CORK) || 1397 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1398 } 1399 1400 /* Return non-zero if the Nagle test allows this packet to be 1401 * sent now. 1402 */ 1403 static inline int tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1404 unsigned int cur_mss, int nonagle) 1405 { 1406 /* Nagle rule does not apply to frames, which sit in the middle of the 1407 * write_queue (they have no chances to get new data). 1408 * 1409 * This is implemented in the callers, where they modify the 'nonagle' 1410 * argument based upon the location of SKB in the send queue. 1411 */ 1412 if (nonagle & TCP_NAGLE_PUSH) 1413 return 1; 1414 1415 /* Don't use the nagle rule for urgent data (or for the final FIN). 1416 * Nagle can be ignored during F-RTO too (see RFC4138). 1417 */ 1418 if (tcp_urg_mode(tp) || (tp->frto_counter == 2) || 1419 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1420 return 1; 1421 1422 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 1423 return 1; 1424 1425 return 0; 1426 } 1427 1428 /* Does at least the first segment of SKB fit into the send window? */ 1429 static inline int tcp_snd_wnd_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1430 unsigned int cur_mss) 1431 { 1432 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1433 1434 if (skb->len > cur_mss) 1435 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1436 1437 return !after(end_seq, tcp_wnd_end(tp)); 1438 } 1439 1440 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1441 * should be put on the wire right now. If so, it returns the number of 1442 * packets allowed by the congestion window. 1443 */ 1444 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1445 unsigned int cur_mss, int nonagle) 1446 { 1447 const struct tcp_sock *tp = tcp_sk(sk); 1448 unsigned int cwnd_quota; 1449 1450 tcp_init_tso_segs(sk, skb, cur_mss); 1451 1452 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1453 return 0; 1454 1455 cwnd_quota = tcp_cwnd_test(tp, skb); 1456 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1457 cwnd_quota = 0; 1458 1459 return cwnd_quota; 1460 } 1461 1462 /* Test if sending is allowed right now. */ 1463 int tcp_may_send_now(struct sock *sk) 1464 { 1465 const struct tcp_sock *tp = tcp_sk(sk); 1466 struct sk_buff *skb = tcp_send_head(sk); 1467 1468 return skb && 1469 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1470 (tcp_skb_is_last(sk, skb) ? 1471 tp->nonagle : TCP_NAGLE_PUSH)); 1472 } 1473 1474 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1475 * which is put after SKB on the list. It is very much like 1476 * tcp_fragment() except that it may make several kinds of assumptions 1477 * in order to speed up the splitting operation. In particular, we 1478 * know that all the data is in scatter-gather pages, and that the 1479 * packet has never been sent out before (and thus is not cloned). 1480 */ 1481 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1482 unsigned int mss_now, gfp_t gfp) 1483 { 1484 struct sk_buff *buff; 1485 int nlen = skb->len - len; 1486 u8 flags; 1487 1488 /* All of a TSO frame must be composed of paged data. */ 1489 if (skb->len != skb->data_len) 1490 return tcp_fragment(sk, skb, len, mss_now); 1491 1492 buff = sk_stream_alloc_skb(sk, 0, gfp); 1493 if (unlikely(buff == NULL)) 1494 return -ENOMEM; 1495 1496 sk->sk_wmem_queued += buff->truesize; 1497 sk_mem_charge(sk, buff->truesize); 1498 buff->truesize += nlen; 1499 skb->truesize -= nlen; 1500 1501 /* Correct the sequence numbers. */ 1502 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1503 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1504 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1505 1506 /* PSH and FIN should only be set in the second packet. */ 1507 flags = TCP_SKB_CB(skb)->tcp_flags; 1508 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1509 TCP_SKB_CB(buff)->tcp_flags = flags; 1510 1511 /* This packet was never sent out yet, so no SACK bits. */ 1512 TCP_SKB_CB(buff)->sacked = 0; 1513 1514 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1515 skb_split(skb, buff, len); 1516 1517 /* Fix up tso_factor for both original and new SKB. */ 1518 tcp_set_skb_tso_segs(sk, skb, mss_now); 1519 tcp_set_skb_tso_segs(sk, buff, mss_now); 1520 1521 /* Link BUFF into the send queue. */ 1522 skb_header_release(buff); 1523 tcp_insert_write_queue_after(skb, buff, sk); 1524 1525 return 0; 1526 } 1527 1528 /* Try to defer sending, if possible, in order to minimize the amount 1529 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1530 * 1531 * This algorithm is from John Heffner. 1532 */ 1533 static int tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb) 1534 { 1535 struct tcp_sock *tp = tcp_sk(sk); 1536 const struct inet_connection_sock *icsk = inet_csk(sk); 1537 u32 send_win, cong_win, limit, in_flight; 1538 int win_divisor; 1539 1540 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1541 goto send_now; 1542 1543 if (icsk->icsk_ca_state != TCP_CA_Open) 1544 goto send_now; 1545 1546 /* Defer for less than two clock ticks. */ 1547 if (tp->tso_deferred && 1548 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1549 goto send_now; 1550 1551 in_flight = tcp_packets_in_flight(tp); 1552 1553 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1554 1555 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1556 1557 /* From in_flight test above, we know that cwnd > in_flight. */ 1558 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1559 1560 limit = min(send_win, cong_win); 1561 1562 /* If a full-sized TSO skb can be sent, do it. */ 1563 if (limit >= sk->sk_gso_max_size) 1564 goto send_now; 1565 1566 /* Middle in queue won't get any more data, full sendable already? */ 1567 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1568 goto send_now; 1569 1570 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1571 if (win_divisor) { 1572 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1573 1574 /* If at least some fraction of a window is available, 1575 * just use it. 1576 */ 1577 chunk /= win_divisor; 1578 if (limit >= chunk) 1579 goto send_now; 1580 } else { 1581 /* Different approach, try not to defer past a single 1582 * ACK. Receiver should ACK every other full sized 1583 * frame, so if we have space for more than 3 frames 1584 * then send now. 1585 */ 1586 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1587 goto send_now; 1588 } 1589 1590 /* Ok, it looks like it is advisable to defer. */ 1591 tp->tso_deferred = 1 | (jiffies << 1); 1592 1593 return 1; 1594 1595 send_now: 1596 tp->tso_deferred = 0; 1597 return 0; 1598 } 1599 1600 /* Create a new MTU probe if we are ready. 1601 * MTU probe is regularly attempting to increase the path MTU by 1602 * deliberately sending larger packets. This discovers routing 1603 * changes resulting in larger path MTUs. 1604 * 1605 * Returns 0 if we should wait to probe (no cwnd available), 1606 * 1 if a probe was sent, 1607 * -1 otherwise 1608 */ 1609 static int tcp_mtu_probe(struct sock *sk) 1610 { 1611 struct tcp_sock *tp = tcp_sk(sk); 1612 struct inet_connection_sock *icsk = inet_csk(sk); 1613 struct sk_buff *skb, *nskb, *next; 1614 int len; 1615 int probe_size; 1616 int size_needed; 1617 int copy; 1618 int mss_now; 1619 1620 /* Not currently probing/verifying, 1621 * not in recovery, 1622 * have enough cwnd, and 1623 * not SACKing (the variable headers throw things off) */ 1624 if (!icsk->icsk_mtup.enabled || 1625 icsk->icsk_mtup.probe_size || 1626 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1627 tp->snd_cwnd < 11 || 1628 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1629 return -1; 1630 1631 /* Very simple search strategy: just double the MSS. */ 1632 mss_now = tcp_current_mss(sk); 1633 probe_size = 2 * tp->mss_cache; 1634 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1635 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1636 /* TODO: set timer for probe_converge_event */ 1637 return -1; 1638 } 1639 1640 /* Have enough data in the send queue to probe? */ 1641 if (tp->write_seq - tp->snd_nxt < size_needed) 1642 return -1; 1643 1644 if (tp->snd_wnd < size_needed) 1645 return -1; 1646 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1647 return 0; 1648 1649 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1650 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1651 if (!tcp_packets_in_flight(tp)) 1652 return -1; 1653 else 1654 return 0; 1655 } 1656 1657 /* We're allowed to probe. Build it now. */ 1658 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1659 return -1; 1660 sk->sk_wmem_queued += nskb->truesize; 1661 sk_mem_charge(sk, nskb->truesize); 1662 1663 skb = tcp_send_head(sk); 1664 1665 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1666 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1667 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1668 TCP_SKB_CB(nskb)->sacked = 0; 1669 nskb->csum = 0; 1670 nskb->ip_summed = skb->ip_summed; 1671 1672 tcp_insert_write_queue_before(nskb, skb, sk); 1673 1674 len = 0; 1675 tcp_for_write_queue_from_safe(skb, next, sk) { 1676 copy = min_t(int, skb->len, probe_size - len); 1677 if (nskb->ip_summed) 1678 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1679 else 1680 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1681 skb_put(nskb, copy), 1682 copy, nskb->csum); 1683 1684 if (skb->len <= copy) { 1685 /* We've eaten all the data from this skb. 1686 * Throw it away. */ 1687 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1688 tcp_unlink_write_queue(skb, sk); 1689 sk_wmem_free_skb(sk, skb); 1690 } else { 1691 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1692 ~(TCPHDR_FIN|TCPHDR_PSH); 1693 if (!skb_shinfo(skb)->nr_frags) { 1694 skb_pull(skb, copy); 1695 if (skb->ip_summed != CHECKSUM_PARTIAL) 1696 skb->csum = csum_partial(skb->data, 1697 skb->len, 0); 1698 } else { 1699 __pskb_trim_head(skb, copy); 1700 tcp_set_skb_tso_segs(sk, skb, mss_now); 1701 } 1702 TCP_SKB_CB(skb)->seq += copy; 1703 } 1704 1705 len += copy; 1706 1707 if (len >= probe_size) 1708 break; 1709 } 1710 tcp_init_tso_segs(sk, nskb, nskb->len); 1711 1712 /* We're ready to send. If this fails, the probe will 1713 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1714 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1715 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1716 /* Decrement cwnd here because we are sending 1717 * effectively two packets. */ 1718 tp->snd_cwnd--; 1719 tcp_event_new_data_sent(sk, nskb); 1720 1721 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1722 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1723 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1724 1725 return 1; 1726 } 1727 1728 return -1; 1729 } 1730 1731 /* This routine writes packets to the network. It advances the 1732 * send_head. This happens as incoming acks open up the remote 1733 * window for us. 1734 * 1735 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1736 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1737 * account rare use of URG, this is not a big flaw. 1738 * 1739 * Returns 1, if no segments are in flight and we have queued segments, but 1740 * cannot send anything now because of SWS or another problem. 1741 */ 1742 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1743 int push_one, gfp_t gfp) 1744 { 1745 struct tcp_sock *tp = tcp_sk(sk); 1746 struct sk_buff *skb; 1747 unsigned int tso_segs, sent_pkts; 1748 int cwnd_quota; 1749 int result; 1750 1751 sent_pkts = 0; 1752 1753 if (!push_one) { 1754 /* Do MTU probing. */ 1755 result = tcp_mtu_probe(sk); 1756 if (!result) { 1757 return 0; 1758 } else if (result > 0) { 1759 sent_pkts = 1; 1760 } 1761 } 1762 1763 while ((skb = tcp_send_head(sk))) { 1764 unsigned int limit; 1765 1766 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1767 BUG_ON(!tso_segs); 1768 1769 cwnd_quota = tcp_cwnd_test(tp, skb); 1770 if (!cwnd_quota) 1771 break; 1772 1773 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1774 break; 1775 1776 if (tso_segs == 1) { 1777 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1778 (tcp_skb_is_last(sk, skb) ? 1779 nonagle : TCP_NAGLE_PUSH)))) 1780 break; 1781 } else { 1782 if (!push_one && tcp_tso_should_defer(sk, skb)) 1783 break; 1784 } 1785 1786 limit = mss_now; 1787 if (tso_segs > 1 && !tcp_urg_mode(tp)) 1788 limit = tcp_mss_split_point(sk, skb, mss_now, 1789 cwnd_quota); 1790 1791 if (skb->len > limit && 1792 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 1793 break; 1794 1795 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1796 1797 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 1798 break; 1799 1800 /* Advance the send_head. This one is sent out. 1801 * This call will increment packets_out. 1802 */ 1803 tcp_event_new_data_sent(sk, skb); 1804 1805 tcp_minshall_update(tp, mss_now, skb); 1806 sent_pkts += tcp_skb_pcount(skb); 1807 1808 if (push_one) 1809 break; 1810 } 1811 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Recovery) 1812 tp->prr_out += sent_pkts; 1813 1814 if (likely(sent_pkts)) { 1815 tcp_cwnd_validate(sk); 1816 return 0; 1817 } 1818 return !tp->packets_out && tcp_send_head(sk); 1819 } 1820 1821 /* Push out any pending frames which were held back due to 1822 * TCP_CORK or attempt at coalescing tiny packets. 1823 * The socket must be locked by the caller. 1824 */ 1825 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 1826 int nonagle) 1827 { 1828 /* If we are closed, the bytes will have to remain here. 1829 * In time closedown will finish, we empty the write queue and 1830 * all will be happy. 1831 */ 1832 if (unlikely(sk->sk_state == TCP_CLOSE)) 1833 return; 1834 1835 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, GFP_ATOMIC)) 1836 tcp_check_probe_timer(sk); 1837 } 1838 1839 /* Send _single_ skb sitting at the send head. This function requires 1840 * true push pending frames to setup probe timer etc. 1841 */ 1842 void tcp_push_one(struct sock *sk, unsigned int mss_now) 1843 { 1844 struct sk_buff *skb = tcp_send_head(sk); 1845 1846 BUG_ON(!skb || skb->len < mss_now); 1847 1848 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 1849 } 1850 1851 /* This function returns the amount that we can raise the 1852 * usable window based on the following constraints 1853 * 1854 * 1. The window can never be shrunk once it is offered (RFC 793) 1855 * 2. We limit memory per socket 1856 * 1857 * RFC 1122: 1858 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 1859 * RECV.NEXT + RCV.WIN fixed until: 1860 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 1861 * 1862 * i.e. don't raise the right edge of the window until you can raise 1863 * it at least MSS bytes. 1864 * 1865 * Unfortunately, the recommended algorithm breaks header prediction, 1866 * since header prediction assumes th->window stays fixed. 1867 * 1868 * Strictly speaking, keeping th->window fixed violates the receiver 1869 * side SWS prevention criteria. The problem is that under this rule 1870 * a stream of single byte packets will cause the right side of the 1871 * window to always advance by a single byte. 1872 * 1873 * Of course, if the sender implements sender side SWS prevention 1874 * then this will not be a problem. 1875 * 1876 * BSD seems to make the following compromise: 1877 * 1878 * If the free space is less than the 1/4 of the maximum 1879 * space available and the free space is less than 1/2 mss, 1880 * then set the window to 0. 1881 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 1882 * Otherwise, just prevent the window from shrinking 1883 * and from being larger than the largest representable value. 1884 * 1885 * This prevents incremental opening of the window in the regime 1886 * where TCP is limited by the speed of the reader side taking 1887 * data out of the TCP receive queue. It does nothing about 1888 * those cases where the window is constrained on the sender side 1889 * because the pipeline is full. 1890 * 1891 * BSD also seems to "accidentally" limit itself to windows that are a 1892 * multiple of MSS, at least until the free space gets quite small. 1893 * This would appear to be a side effect of the mbuf implementation. 1894 * Combining these two algorithms results in the observed behavior 1895 * of having a fixed window size at almost all times. 1896 * 1897 * Below we obtain similar behavior by forcing the offered window to 1898 * a multiple of the mss when it is feasible to do so. 1899 * 1900 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 1901 * Regular options like TIMESTAMP are taken into account. 1902 */ 1903 u32 __tcp_select_window(struct sock *sk) 1904 { 1905 struct inet_connection_sock *icsk = inet_csk(sk); 1906 struct tcp_sock *tp = tcp_sk(sk); 1907 /* MSS for the peer's data. Previous versions used mss_clamp 1908 * here. I don't know if the value based on our guesses 1909 * of peer's MSS is better for the performance. It's more correct 1910 * but may be worse for the performance because of rcv_mss 1911 * fluctuations. --SAW 1998/11/1 1912 */ 1913 int mss = icsk->icsk_ack.rcv_mss; 1914 int free_space = tcp_space(sk); 1915 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 1916 int window; 1917 1918 if (mss > full_space) 1919 mss = full_space; 1920 1921 if (free_space < (full_space >> 1)) { 1922 icsk->icsk_ack.quick = 0; 1923 1924 if (sk_under_memory_pressure(sk)) 1925 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 1926 4U * tp->advmss); 1927 1928 if (free_space < mss) 1929 return 0; 1930 } 1931 1932 if (free_space > tp->rcv_ssthresh) 1933 free_space = tp->rcv_ssthresh; 1934 1935 /* Don't do rounding if we are using window scaling, since the 1936 * scaled window will not line up with the MSS boundary anyway. 1937 */ 1938 window = tp->rcv_wnd; 1939 if (tp->rx_opt.rcv_wscale) { 1940 window = free_space; 1941 1942 /* Advertise enough space so that it won't get scaled away. 1943 * Import case: prevent zero window announcement if 1944 * 1<<rcv_wscale > mss. 1945 */ 1946 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 1947 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 1948 << tp->rx_opt.rcv_wscale); 1949 } else { 1950 /* Get the largest window that is a nice multiple of mss. 1951 * Window clamp already applied above. 1952 * If our current window offering is within 1 mss of the 1953 * free space we just keep it. This prevents the divide 1954 * and multiply from happening most of the time. 1955 * We also don't do any window rounding when the free space 1956 * is too small. 1957 */ 1958 if (window <= free_space - mss || window > free_space) 1959 window = (free_space / mss) * mss; 1960 else if (mss == full_space && 1961 free_space > window + (full_space >> 1)) 1962 window = free_space; 1963 } 1964 1965 return window; 1966 } 1967 1968 /* Collapses two adjacent SKB's during retransmission. */ 1969 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 1970 { 1971 struct tcp_sock *tp = tcp_sk(sk); 1972 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 1973 int skb_size, next_skb_size; 1974 1975 skb_size = skb->len; 1976 next_skb_size = next_skb->len; 1977 1978 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 1979 1980 tcp_highest_sack_combine(sk, next_skb, skb); 1981 1982 tcp_unlink_write_queue(next_skb, sk); 1983 1984 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 1985 next_skb_size); 1986 1987 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 1988 skb->ip_summed = CHECKSUM_PARTIAL; 1989 1990 if (skb->ip_summed != CHECKSUM_PARTIAL) 1991 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 1992 1993 /* Update sequence range on original skb. */ 1994 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 1995 1996 /* Merge over control information. This moves PSH/FIN etc. over */ 1997 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 1998 1999 /* All done, get rid of second SKB and account for it so 2000 * packet counting does not break. 2001 */ 2002 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2003 2004 /* changed transmit queue under us so clear hints */ 2005 tcp_clear_retrans_hints_partial(tp); 2006 if (next_skb == tp->retransmit_skb_hint) 2007 tp->retransmit_skb_hint = skb; 2008 2009 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2010 2011 sk_wmem_free_skb(sk, next_skb); 2012 } 2013 2014 /* Check if coalescing SKBs is legal. */ 2015 static int tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2016 { 2017 if (tcp_skb_pcount(skb) > 1) 2018 return 0; 2019 /* TODO: SACK collapsing could be used to remove this condition */ 2020 if (skb_shinfo(skb)->nr_frags != 0) 2021 return 0; 2022 if (skb_cloned(skb)) 2023 return 0; 2024 if (skb == tcp_send_head(sk)) 2025 return 0; 2026 /* Some heurestics for collapsing over SACK'd could be invented */ 2027 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2028 return 0; 2029 2030 return 1; 2031 } 2032 2033 /* Collapse packets in the retransmit queue to make to create 2034 * less packets on the wire. This is only done on retransmission. 2035 */ 2036 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2037 int space) 2038 { 2039 struct tcp_sock *tp = tcp_sk(sk); 2040 struct sk_buff *skb = to, *tmp; 2041 int first = 1; 2042 2043 if (!sysctl_tcp_retrans_collapse) 2044 return; 2045 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2046 return; 2047 2048 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2049 if (!tcp_can_collapse(sk, skb)) 2050 break; 2051 2052 space -= skb->len; 2053 2054 if (first) { 2055 first = 0; 2056 continue; 2057 } 2058 2059 if (space < 0) 2060 break; 2061 /* Punt if not enough space exists in the first SKB for 2062 * the data in the second 2063 */ 2064 if (skb->len > skb_availroom(to)) 2065 break; 2066 2067 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2068 break; 2069 2070 tcp_collapse_retrans(sk, to); 2071 } 2072 } 2073 2074 /* This retransmits one SKB. Policy decisions and retransmit queue 2075 * state updates are done by the caller. Returns non-zero if an 2076 * error occurred which prevented the send. 2077 */ 2078 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2079 { 2080 struct tcp_sock *tp = tcp_sk(sk); 2081 struct inet_connection_sock *icsk = inet_csk(sk); 2082 unsigned int cur_mss; 2083 int err; 2084 2085 /* Inconslusive MTU probe */ 2086 if (icsk->icsk_mtup.probe_size) { 2087 icsk->icsk_mtup.probe_size = 0; 2088 } 2089 2090 /* Do not sent more than we queued. 1/4 is reserved for possible 2091 * copying overhead: fragmentation, tunneling, mangling etc. 2092 */ 2093 if (atomic_read(&sk->sk_wmem_alloc) > 2094 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2095 return -EAGAIN; 2096 2097 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2098 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2099 BUG(); 2100 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2101 return -ENOMEM; 2102 } 2103 2104 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2105 return -EHOSTUNREACH; /* Routing failure or similar. */ 2106 2107 cur_mss = tcp_current_mss(sk); 2108 2109 /* If receiver has shrunk his window, and skb is out of 2110 * new window, do not retransmit it. The exception is the 2111 * case, when window is shrunk to zero. In this case 2112 * our retransmit serves as a zero window probe. 2113 */ 2114 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2115 TCP_SKB_CB(skb)->seq != tp->snd_una) 2116 return -EAGAIN; 2117 2118 if (skb->len > cur_mss) { 2119 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 2120 return -ENOMEM; /* We'll try again later. */ 2121 } else { 2122 int oldpcount = tcp_skb_pcount(skb); 2123 2124 if (unlikely(oldpcount > 1)) { 2125 tcp_init_tso_segs(sk, skb, cur_mss); 2126 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2127 } 2128 } 2129 2130 tcp_retrans_try_collapse(sk, skb, cur_mss); 2131 2132 /* Some Solaris stacks overoptimize and ignore the FIN on a 2133 * retransmit when old data is attached. So strip it off 2134 * since it is cheap to do so and saves bytes on the network. 2135 */ 2136 if (skb->len > 0 && 2137 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2138 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 2139 if (!pskb_trim(skb, 0)) { 2140 /* Reuse, even though it does some unnecessary work */ 2141 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1, 2142 TCP_SKB_CB(skb)->tcp_flags); 2143 skb->ip_summed = CHECKSUM_NONE; 2144 } 2145 } 2146 2147 /* Make a copy, if the first transmission SKB clone we made 2148 * is still in somebody's hands, else make a clone. 2149 */ 2150 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2151 2152 /* make sure skb->data is aligned on arches that require it */ 2153 if (unlikely(NET_IP_ALIGN && ((unsigned long)skb->data & 3))) { 2154 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2155 GFP_ATOMIC); 2156 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2157 -ENOBUFS; 2158 } else { 2159 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2160 } 2161 2162 if (err == 0) { 2163 /* Update global TCP statistics. */ 2164 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2165 2166 tp->total_retrans++; 2167 2168 #if FASTRETRANS_DEBUG > 0 2169 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2170 if (net_ratelimit()) 2171 printk(KERN_DEBUG "retrans_out leaked.\n"); 2172 } 2173 #endif 2174 if (!tp->retrans_out) 2175 tp->lost_retrans_low = tp->snd_nxt; 2176 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2177 tp->retrans_out += tcp_skb_pcount(skb); 2178 2179 /* Save stamp of the first retransmit. */ 2180 if (!tp->retrans_stamp) 2181 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 2182 2183 tp->undo_retrans += tcp_skb_pcount(skb); 2184 2185 /* snd_nxt is stored to detect loss of retransmitted segment, 2186 * see tcp_input.c tcp_sacktag_write_queue(). 2187 */ 2188 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2189 } 2190 return err; 2191 } 2192 2193 /* Check if we forward retransmits are possible in the current 2194 * window/congestion state. 2195 */ 2196 static int tcp_can_forward_retransmit(struct sock *sk) 2197 { 2198 const struct inet_connection_sock *icsk = inet_csk(sk); 2199 const struct tcp_sock *tp = tcp_sk(sk); 2200 2201 /* Forward retransmissions are possible only during Recovery. */ 2202 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2203 return 0; 2204 2205 /* No forward retransmissions in Reno are possible. */ 2206 if (tcp_is_reno(tp)) 2207 return 0; 2208 2209 /* Yeah, we have to make difficult choice between forward transmission 2210 * and retransmission... Both ways have their merits... 2211 * 2212 * For now we do not retransmit anything, while we have some new 2213 * segments to send. In the other cases, follow rule 3 for 2214 * NextSeg() specified in RFC3517. 2215 */ 2216 2217 if (tcp_may_send_now(sk)) 2218 return 0; 2219 2220 return 1; 2221 } 2222 2223 /* This gets called after a retransmit timeout, and the initially 2224 * retransmitted data is acknowledged. It tries to continue 2225 * resending the rest of the retransmit queue, until either 2226 * we've sent it all or the congestion window limit is reached. 2227 * If doing SACK, the first ACK which comes back for a timeout 2228 * based retransmit packet might feed us FACK information again. 2229 * If so, we use it to avoid unnecessarily retransmissions. 2230 */ 2231 void tcp_xmit_retransmit_queue(struct sock *sk) 2232 { 2233 const struct inet_connection_sock *icsk = inet_csk(sk); 2234 struct tcp_sock *tp = tcp_sk(sk); 2235 struct sk_buff *skb; 2236 struct sk_buff *hole = NULL; 2237 u32 last_lost; 2238 int mib_idx; 2239 int fwd_rexmitting = 0; 2240 2241 if (!tp->packets_out) 2242 return; 2243 2244 if (!tp->lost_out) 2245 tp->retransmit_high = tp->snd_una; 2246 2247 if (tp->retransmit_skb_hint) { 2248 skb = tp->retransmit_skb_hint; 2249 last_lost = TCP_SKB_CB(skb)->end_seq; 2250 if (after(last_lost, tp->retransmit_high)) 2251 last_lost = tp->retransmit_high; 2252 } else { 2253 skb = tcp_write_queue_head(sk); 2254 last_lost = tp->snd_una; 2255 } 2256 2257 tcp_for_write_queue_from(skb, sk) { 2258 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2259 2260 if (skb == tcp_send_head(sk)) 2261 break; 2262 /* we could do better than to assign each time */ 2263 if (hole == NULL) 2264 tp->retransmit_skb_hint = skb; 2265 2266 /* Assume this retransmit will generate 2267 * only one packet for congestion window 2268 * calculation purposes. This works because 2269 * tcp_retransmit_skb() will chop up the 2270 * packet to be MSS sized and all the 2271 * packet counting works out. 2272 */ 2273 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2274 return; 2275 2276 if (fwd_rexmitting) { 2277 begin_fwd: 2278 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2279 break; 2280 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2281 2282 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2283 tp->retransmit_high = last_lost; 2284 if (!tcp_can_forward_retransmit(sk)) 2285 break; 2286 /* Backtrack if necessary to non-L'ed skb */ 2287 if (hole != NULL) { 2288 skb = hole; 2289 hole = NULL; 2290 } 2291 fwd_rexmitting = 1; 2292 goto begin_fwd; 2293 2294 } else if (!(sacked & TCPCB_LOST)) { 2295 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2296 hole = skb; 2297 continue; 2298 2299 } else { 2300 last_lost = TCP_SKB_CB(skb)->end_seq; 2301 if (icsk->icsk_ca_state != TCP_CA_Loss) 2302 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2303 else 2304 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2305 } 2306 2307 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2308 continue; 2309 2310 if (tcp_retransmit_skb(sk, skb)) { 2311 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2312 return; 2313 } 2314 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2315 2316 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Recovery) 2317 tp->prr_out += tcp_skb_pcount(skb); 2318 2319 if (skb == tcp_write_queue_head(sk)) 2320 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2321 inet_csk(sk)->icsk_rto, 2322 TCP_RTO_MAX); 2323 } 2324 } 2325 2326 /* Send a fin. The caller locks the socket for us. This cannot be 2327 * allowed to fail queueing a FIN frame under any circumstances. 2328 */ 2329 void tcp_send_fin(struct sock *sk) 2330 { 2331 struct tcp_sock *tp = tcp_sk(sk); 2332 struct sk_buff *skb = tcp_write_queue_tail(sk); 2333 int mss_now; 2334 2335 /* Optimization, tack on the FIN if we have a queue of 2336 * unsent frames. But be careful about outgoing SACKS 2337 * and IP options. 2338 */ 2339 mss_now = tcp_current_mss(sk); 2340 2341 if (tcp_send_head(sk) != NULL) { 2342 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN; 2343 TCP_SKB_CB(skb)->end_seq++; 2344 tp->write_seq++; 2345 } else { 2346 /* Socket is locked, keep trying until memory is available. */ 2347 for (;;) { 2348 skb = alloc_skb_fclone(MAX_TCP_HEADER, 2349 sk->sk_allocation); 2350 if (skb) 2351 break; 2352 yield(); 2353 } 2354 2355 /* Reserve space for headers and prepare control bits. */ 2356 skb_reserve(skb, MAX_TCP_HEADER); 2357 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2358 tcp_init_nondata_skb(skb, tp->write_seq, 2359 TCPHDR_ACK | TCPHDR_FIN); 2360 tcp_queue_skb(sk, skb); 2361 } 2362 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2363 } 2364 2365 /* We get here when a process closes a file descriptor (either due to 2366 * an explicit close() or as a byproduct of exit()'ing) and there 2367 * was unread data in the receive queue. This behavior is recommended 2368 * by RFC 2525, section 2.17. -DaveM 2369 */ 2370 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2371 { 2372 struct sk_buff *skb; 2373 2374 /* NOTE: No TCP options attached and we never retransmit this. */ 2375 skb = alloc_skb(MAX_TCP_HEADER, priority); 2376 if (!skb) { 2377 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2378 return; 2379 } 2380 2381 /* Reserve space for headers and prepare control bits. */ 2382 skb_reserve(skb, MAX_TCP_HEADER); 2383 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2384 TCPHDR_ACK | TCPHDR_RST); 2385 /* Send it off. */ 2386 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2387 if (tcp_transmit_skb(sk, skb, 0, priority)) 2388 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2389 2390 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2391 } 2392 2393 /* Send a crossed SYN-ACK during socket establishment. 2394 * WARNING: This routine must only be called when we have already sent 2395 * a SYN packet that crossed the incoming SYN that caused this routine 2396 * to get called. If this assumption fails then the initial rcv_wnd 2397 * and rcv_wscale values will not be correct. 2398 */ 2399 int tcp_send_synack(struct sock *sk) 2400 { 2401 struct sk_buff *skb; 2402 2403 skb = tcp_write_queue_head(sk); 2404 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2405 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); 2406 return -EFAULT; 2407 } 2408 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2409 if (skb_cloned(skb)) { 2410 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2411 if (nskb == NULL) 2412 return -ENOMEM; 2413 tcp_unlink_write_queue(skb, sk); 2414 skb_header_release(nskb); 2415 __tcp_add_write_queue_head(sk, nskb); 2416 sk_wmem_free_skb(sk, skb); 2417 sk->sk_wmem_queued += nskb->truesize; 2418 sk_mem_charge(sk, nskb->truesize); 2419 skb = nskb; 2420 } 2421 2422 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2423 TCP_ECN_send_synack(tcp_sk(sk), skb); 2424 } 2425 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2426 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2427 } 2428 2429 /* Prepare a SYN-ACK. */ 2430 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2431 struct request_sock *req, 2432 struct request_values *rvp) 2433 { 2434 struct tcp_out_options opts; 2435 struct tcp_extend_values *xvp = tcp_xv(rvp); 2436 struct inet_request_sock *ireq = inet_rsk(req); 2437 struct tcp_sock *tp = tcp_sk(sk); 2438 const struct tcp_cookie_values *cvp = tp->cookie_values; 2439 struct tcphdr *th; 2440 struct sk_buff *skb; 2441 struct tcp_md5sig_key *md5; 2442 int tcp_header_size; 2443 int mss; 2444 int s_data_desired = 0; 2445 2446 if (cvp != NULL && cvp->s_data_constant && cvp->s_data_desired) 2447 s_data_desired = cvp->s_data_desired; 2448 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15 + s_data_desired, 1, GFP_ATOMIC); 2449 if (skb == NULL) 2450 return NULL; 2451 2452 /* Reserve space for headers. */ 2453 skb_reserve(skb, MAX_TCP_HEADER); 2454 2455 skb_dst_set(skb, dst_clone(dst)); 2456 2457 mss = dst_metric_advmss(dst); 2458 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2459 mss = tp->rx_opt.user_mss; 2460 2461 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 2462 __u8 rcv_wscale; 2463 /* Set this up on the first call only */ 2464 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 2465 2466 /* limit the window selection if the user enforce a smaller rx buffer */ 2467 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2468 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0)) 2469 req->window_clamp = tcp_full_space(sk); 2470 2471 /* tcp_full_space because it is guaranteed to be the first packet */ 2472 tcp_select_initial_window(tcp_full_space(sk), 2473 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 2474 &req->rcv_wnd, 2475 &req->window_clamp, 2476 ireq->wscale_ok, 2477 &rcv_wscale, 2478 dst_metric(dst, RTAX_INITRWND)); 2479 ireq->rcv_wscale = rcv_wscale; 2480 } 2481 2482 memset(&opts, 0, sizeof(opts)); 2483 #ifdef CONFIG_SYN_COOKIES 2484 if (unlikely(req->cookie_ts)) 2485 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req); 2486 else 2487 #endif 2488 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2489 tcp_header_size = tcp_synack_options(sk, req, mss, 2490 skb, &opts, &md5, xvp) 2491 + sizeof(*th); 2492 2493 skb_push(skb, tcp_header_size); 2494 skb_reset_transport_header(skb); 2495 2496 th = tcp_hdr(skb); 2497 memset(th, 0, sizeof(struct tcphdr)); 2498 th->syn = 1; 2499 th->ack = 1; 2500 TCP_ECN_make_synack(req, th); 2501 th->source = ireq->loc_port; 2502 th->dest = ireq->rmt_port; 2503 /* Setting of flags are superfluous here for callers (and ECE is 2504 * not even correctly set) 2505 */ 2506 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2507 TCPHDR_SYN | TCPHDR_ACK); 2508 2509 if (OPTION_COOKIE_EXTENSION & opts.options) { 2510 if (s_data_desired) { 2511 u8 *buf = skb_put(skb, s_data_desired); 2512 2513 /* copy data directly from the listening socket. */ 2514 memcpy(buf, cvp->s_data_payload, s_data_desired); 2515 TCP_SKB_CB(skb)->end_seq += s_data_desired; 2516 } 2517 2518 if (opts.hash_size > 0) { 2519 __u32 workspace[SHA_WORKSPACE_WORDS]; 2520 u32 *mess = &xvp->cookie_bakery[COOKIE_DIGEST_WORDS]; 2521 u32 *tail = &mess[COOKIE_MESSAGE_WORDS-1]; 2522 2523 /* Secret recipe depends on the Timestamp, (future) 2524 * Sequence and Acknowledgment Numbers, Initiator 2525 * Cookie, and others handled by IP variant caller. 2526 */ 2527 *tail-- ^= opts.tsval; 2528 *tail-- ^= tcp_rsk(req)->rcv_isn + 1; 2529 *tail-- ^= TCP_SKB_CB(skb)->seq + 1; 2530 2531 /* recommended */ 2532 *tail-- ^= (((__force u32)th->dest << 16) | (__force u32)th->source); 2533 *tail-- ^= (u32)(unsigned long)cvp; /* per sockopt */ 2534 2535 sha_transform((__u32 *)&xvp->cookie_bakery[0], 2536 (char *)mess, 2537 &workspace[0]); 2538 opts.hash_location = 2539 (__u8 *)&xvp->cookie_bakery[0]; 2540 } 2541 } 2542 2543 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2544 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); 2545 2546 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2547 th->window = htons(min(req->rcv_wnd, 65535U)); 2548 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2549 th->doff = (tcp_header_size >> 2); 2550 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb)); 2551 2552 #ifdef CONFIG_TCP_MD5SIG 2553 /* Okay, we have all we need - do the md5 hash if needed */ 2554 if (md5) { 2555 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2556 md5, NULL, req, skb); 2557 } 2558 #endif 2559 2560 return skb; 2561 } 2562 EXPORT_SYMBOL(tcp_make_synack); 2563 2564 /* Do all connect socket setups that can be done AF independent. */ 2565 static void tcp_connect_init(struct sock *sk) 2566 { 2567 const struct dst_entry *dst = __sk_dst_get(sk); 2568 struct tcp_sock *tp = tcp_sk(sk); 2569 __u8 rcv_wscale; 2570 2571 /* We'll fix this up when we get a response from the other end. 2572 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2573 */ 2574 tp->tcp_header_len = sizeof(struct tcphdr) + 2575 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2576 2577 #ifdef CONFIG_TCP_MD5SIG 2578 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2579 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2580 #endif 2581 2582 /* If user gave his TCP_MAXSEG, record it to clamp */ 2583 if (tp->rx_opt.user_mss) 2584 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2585 tp->max_window = 0; 2586 tcp_mtup_init(sk); 2587 tcp_sync_mss(sk, dst_mtu(dst)); 2588 2589 if (!tp->window_clamp) 2590 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2591 tp->advmss = dst_metric_advmss(dst); 2592 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2593 tp->advmss = tp->rx_opt.user_mss; 2594 2595 tcp_initialize_rcv_mss(sk); 2596 2597 /* limit the window selection if the user enforce a smaller rx buffer */ 2598 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2599 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 2600 tp->window_clamp = tcp_full_space(sk); 2601 2602 tcp_select_initial_window(tcp_full_space(sk), 2603 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2604 &tp->rcv_wnd, 2605 &tp->window_clamp, 2606 sysctl_tcp_window_scaling, 2607 &rcv_wscale, 2608 dst_metric(dst, RTAX_INITRWND)); 2609 2610 tp->rx_opt.rcv_wscale = rcv_wscale; 2611 tp->rcv_ssthresh = tp->rcv_wnd; 2612 2613 sk->sk_err = 0; 2614 sock_reset_flag(sk, SOCK_DONE); 2615 tp->snd_wnd = 0; 2616 tcp_init_wl(tp, 0); 2617 tp->snd_una = tp->write_seq; 2618 tp->snd_sml = tp->write_seq; 2619 tp->snd_up = tp->write_seq; 2620 tp->rcv_nxt = 0; 2621 tp->rcv_wup = 0; 2622 tp->copied_seq = 0; 2623 2624 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2625 inet_csk(sk)->icsk_retransmits = 0; 2626 tcp_clear_retrans(tp); 2627 } 2628 2629 /* Build a SYN and send it off. */ 2630 int tcp_connect(struct sock *sk) 2631 { 2632 struct tcp_sock *tp = tcp_sk(sk); 2633 struct sk_buff *buff; 2634 int err; 2635 2636 tcp_connect_init(sk); 2637 2638 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 2639 if (unlikely(buff == NULL)) 2640 return -ENOBUFS; 2641 2642 /* Reserve space for headers. */ 2643 skb_reserve(buff, MAX_TCP_HEADER); 2644 2645 tp->snd_nxt = tp->write_seq; 2646 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 2647 TCP_ECN_send_syn(sk, buff); 2648 2649 /* Send it off. */ 2650 TCP_SKB_CB(buff)->when = tcp_time_stamp; 2651 tp->retrans_stamp = TCP_SKB_CB(buff)->when; 2652 skb_header_release(buff); 2653 __tcp_add_write_queue_tail(sk, buff); 2654 sk->sk_wmem_queued += buff->truesize; 2655 sk_mem_charge(sk, buff->truesize); 2656 tp->packets_out += tcp_skb_pcount(buff); 2657 err = tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 2658 if (err == -ECONNREFUSED) 2659 return err; 2660 2661 /* We change tp->snd_nxt after the tcp_transmit_skb() call 2662 * in order to make this packet get counted in tcpOutSegs. 2663 */ 2664 tp->snd_nxt = tp->write_seq; 2665 tp->pushed_seq = tp->write_seq; 2666 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 2667 2668 /* Timer for repeating the SYN until an answer. */ 2669 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2670 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2671 return 0; 2672 } 2673 EXPORT_SYMBOL(tcp_connect); 2674 2675 /* Send out a delayed ack, the caller does the policy checking 2676 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 2677 * for details. 2678 */ 2679 void tcp_send_delayed_ack(struct sock *sk) 2680 { 2681 struct inet_connection_sock *icsk = inet_csk(sk); 2682 int ato = icsk->icsk_ack.ato; 2683 unsigned long timeout; 2684 2685 if (ato > TCP_DELACK_MIN) { 2686 const struct tcp_sock *tp = tcp_sk(sk); 2687 int max_ato = HZ / 2; 2688 2689 if (icsk->icsk_ack.pingpong || 2690 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 2691 max_ato = TCP_DELACK_MAX; 2692 2693 /* Slow path, intersegment interval is "high". */ 2694 2695 /* If some rtt estimate is known, use it to bound delayed ack. 2696 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 2697 * directly. 2698 */ 2699 if (tp->srtt) { 2700 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN); 2701 2702 if (rtt < max_ato) 2703 max_ato = rtt; 2704 } 2705 2706 ato = min(ato, max_ato); 2707 } 2708 2709 /* Stay within the limit we were given */ 2710 timeout = jiffies + ato; 2711 2712 /* Use new timeout only if there wasn't a older one earlier. */ 2713 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 2714 /* If delack timer was blocked or is about to expire, 2715 * send ACK now. 2716 */ 2717 if (icsk->icsk_ack.blocked || 2718 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 2719 tcp_send_ack(sk); 2720 return; 2721 } 2722 2723 if (!time_before(timeout, icsk->icsk_ack.timeout)) 2724 timeout = icsk->icsk_ack.timeout; 2725 } 2726 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 2727 icsk->icsk_ack.timeout = timeout; 2728 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 2729 } 2730 2731 /* This routine sends an ack and also updates the window. */ 2732 void tcp_send_ack(struct sock *sk) 2733 { 2734 struct sk_buff *buff; 2735 2736 /* If we have been reset, we may not send again. */ 2737 if (sk->sk_state == TCP_CLOSE) 2738 return; 2739 2740 /* We are not putting this on the write queue, so 2741 * tcp_transmit_skb() will set the ownership to this 2742 * sock. 2743 */ 2744 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2745 if (buff == NULL) { 2746 inet_csk_schedule_ack(sk); 2747 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 2748 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 2749 TCP_DELACK_MAX, TCP_RTO_MAX); 2750 return; 2751 } 2752 2753 /* Reserve space for headers and prepare control bits. */ 2754 skb_reserve(buff, MAX_TCP_HEADER); 2755 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 2756 2757 /* Send it off, this clears delayed acks for us. */ 2758 TCP_SKB_CB(buff)->when = tcp_time_stamp; 2759 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC); 2760 } 2761 2762 /* This routine sends a packet with an out of date sequence 2763 * number. It assumes the other end will try to ack it. 2764 * 2765 * Question: what should we make while urgent mode? 2766 * 4.4BSD forces sending single byte of data. We cannot send 2767 * out of window data, because we have SND.NXT==SND.MAX... 2768 * 2769 * Current solution: to send TWO zero-length segments in urgent mode: 2770 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 2771 * out-of-date with SND.UNA-1 to probe window. 2772 */ 2773 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 2774 { 2775 struct tcp_sock *tp = tcp_sk(sk); 2776 struct sk_buff *skb; 2777 2778 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 2779 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2780 if (skb == NULL) 2781 return -1; 2782 2783 /* Reserve space for headers and set control bits. */ 2784 skb_reserve(skb, MAX_TCP_HEADER); 2785 /* Use a previous sequence. This should cause the other 2786 * end to send an ack. Don't queue or clone SKB, just 2787 * send it. 2788 */ 2789 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 2790 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2791 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 2792 } 2793 2794 /* Initiate keepalive or window probe from timer. */ 2795 int tcp_write_wakeup(struct sock *sk) 2796 { 2797 struct tcp_sock *tp = tcp_sk(sk); 2798 struct sk_buff *skb; 2799 2800 if (sk->sk_state == TCP_CLOSE) 2801 return -1; 2802 2803 if ((skb = tcp_send_head(sk)) != NULL && 2804 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 2805 int err; 2806 unsigned int mss = tcp_current_mss(sk); 2807 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2808 2809 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 2810 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 2811 2812 /* We are probing the opening of a window 2813 * but the window size is != 0 2814 * must have been a result SWS avoidance ( sender ) 2815 */ 2816 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 2817 skb->len > mss) { 2818 seg_size = min(seg_size, mss); 2819 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 2820 if (tcp_fragment(sk, skb, seg_size, mss)) 2821 return -1; 2822 } else if (!tcp_skb_pcount(skb)) 2823 tcp_set_skb_tso_segs(sk, skb, mss); 2824 2825 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 2826 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2827 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2828 if (!err) 2829 tcp_event_new_data_sent(sk, skb); 2830 return err; 2831 } else { 2832 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 2833 tcp_xmit_probe_skb(sk, 1); 2834 return tcp_xmit_probe_skb(sk, 0); 2835 } 2836 } 2837 2838 /* A window probe timeout has occurred. If window is not closed send 2839 * a partial packet else a zero probe. 2840 */ 2841 void tcp_send_probe0(struct sock *sk) 2842 { 2843 struct inet_connection_sock *icsk = inet_csk(sk); 2844 struct tcp_sock *tp = tcp_sk(sk); 2845 int err; 2846 2847 err = tcp_write_wakeup(sk); 2848 2849 if (tp->packets_out || !tcp_send_head(sk)) { 2850 /* Cancel probe timer, if it is not required. */ 2851 icsk->icsk_probes_out = 0; 2852 icsk->icsk_backoff = 0; 2853 return; 2854 } 2855 2856 if (err <= 0) { 2857 if (icsk->icsk_backoff < sysctl_tcp_retries2) 2858 icsk->icsk_backoff++; 2859 icsk->icsk_probes_out++; 2860 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2861 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2862 TCP_RTO_MAX); 2863 } else { 2864 /* If packet was not sent due to local congestion, 2865 * do not backoff and do not remember icsk_probes_out. 2866 * Let local senders to fight for local resources. 2867 * 2868 * Use accumulated backoff yet. 2869 */ 2870 if (!icsk->icsk_probes_out) 2871 icsk->icsk_probes_out = 1; 2872 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2873 min(icsk->icsk_rto << icsk->icsk_backoff, 2874 TCP_RESOURCE_PROBE_INTERVAL), 2875 TCP_RTO_MAX); 2876 } 2877 } 2878