1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of two TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 int sysctl_tcp_mtu_probing __read_mostly = 0; 63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS; 64 65 /* By default, RFC2861 behavior. */ 66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 67 68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX; 69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat); 70 71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 72 int push_one, gfp_t gfp); 73 74 /* Account for new data that has been sent to the network. */ 75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 76 { 77 struct inet_connection_sock *icsk = inet_csk(sk); 78 struct tcp_sock *tp = tcp_sk(sk); 79 unsigned int prior_packets = tp->packets_out; 80 81 tcp_advance_send_head(sk, skb); 82 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 83 84 tp->packets_out += tcp_skb_pcount(skb); 85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 86 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 87 tcp_rearm_rto(sk); 88 } 89 90 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 91 tcp_skb_pcount(skb)); 92 } 93 94 /* SND.NXT, if window was not shrunk. 95 * If window has been shrunk, what should we make? It is not clear at all. 96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 98 * invalid. OK, let's make this for now: 99 */ 100 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 101 { 102 const struct tcp_sock *tp = tcp_sk(sk); 103 104 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 105 return tp->snd_nxt; 106 else 107 return tcp_wnd_end(tp); 108 } 109 110 /* Calculate mss to advertise in SYN segment. 111 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 112 * 113 * 1. It is independent of path mtu. 114 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 115 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 116 * attached devices, because some buggy hosts are confused by 117 * large MSS. 118 * 4. We do not make 3, we advertise MSS, calculated from first 119 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 120 * This may be overridden via information stored in routing table. 121 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 122 * probably even Jumbo". 123 */ 124 static __u16 tcp_advertise_mss(struct sock *sk) 125 { 126 struct tcp_sock *tp = tcp_sk(sk); 127 const struct dst_entry *dst = __sk_dst_get(sk); 128 int mss = tp->advmss; 129 130 if (dst) { 131 unsigned int metric = dst_metric_advmss(dst); 132 133 if (metric < mss) { 134 mss = metric; 135 tp->advmss = mss; 136 } 137 } 138 139 return (__u16)mss; 140 } 141 142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 143 * This is the first part of cwnd validation mechanism. */ 144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 145 { 146 struct tcp_sock *tp = tcp_sk(sk); 147 s32 delta = tcp_time_stamp - tp->lsndtime; 148 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 149 u32 cwnd = tp->snd_cwnd; 150 151 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 152 153 tp->snd_ssthresh = tcp_current_ssthresh(sk); 154 restart_cwnd = min(restart_cwnd, cwnd); 155 156 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 157 cwnd >>= 1; 158 tp->snd_cwnd = max(cwnd, restart_cwnd); 159 tp->snd_cwnd_stamp = tcp_time_stamp; 160 tp->snd_cwnd_used = 0; 161 } 162 163 /* Congestion state accounting after a packet has been sent. */ 164 static void tcp_event_data_sent(struct tcp_sock *tp, 165 struct sock *sk) 166 { 167 struct inet_connection_sock *icsk = inet_csk(sk); 168 const u32 now = tcp_time_stamp; 169 const struct dst_entry *dst = __sk_dst_get(sk); 170 171 if (sysctl_tcp_slow_start_after_idle && 172 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 173 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 174 175 tp->lsndtime = now; 176 177 /* If it is a reply for ato after last received 178 * packet, enter pingpong mode. 179 */ 180 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato && 181 (!dst || !dst_metric(dst, RTAX_QUICKACK))) 182 icsk->icsk_ack.pingpong = 1; 183 } 184 185 /* Account for an ACK we sent. */ 186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 187 { 188 tcp_dec_quickack_mode(sk, pkts); 189 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 190 } 191 192 193 u32 tcp_default_init_rwnd(u32 mss) 194 { 195 /* Initial receive window should be twice of TCP_INIT_CWND to 196 * enable proper sending of new unsent data during fast recovery 197 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 198 * limit when mss is larger than 1460. 199 */ 200 u32 init_rwnd = TCP_INIT_CWND * 2; 201 202 if (mss > 1460) 203 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 204 return init_rwnd; 205 } 206 207 /* Determine a window scaling and initial window to offer. 208 * Based on the assumption that the given amount of space 209 * will be offered. Store the results in the tp structure. 210 * NOTE: for smooth operation initial space offering should 211 * be a multiple of mss if possible. We assume here that mss >= 1. 212 * This MUST be enforced by all callers. 213 */ 214 void tcp_select_initial_window(int __space, __u32 mss, 215 __u32 *rcv_wnd, __u32 *window_clamp, 216 int wscale_ok, __u8 *rcv_wscale, 217 __u32 init_rcv_wnd) 218 { 219 unsigned int space = (__space < 0 ? 0 : __space); 220 221 /* If no clamp set the clamp to the max possible scaled window */ 222 if (*window_clamp == 0) 223 (*window_clamp) = (65535 << 14); 224 space = min(*window_clamp, space); 225 226 /* Quantize space offering to a multiple of mss if possible. */ 227 if (space > mss) 228 space = (space / mss) * mss; 229 230 /* NOTE: offering an initial window larger than 32767 231 * will break some buggy TCP stacks. If the admin tells us 232 * it is likely we could be speaking with such a buggy stack 233 * we will truncate our initial window offering to 32K-1 234 * unless the remote has sent us a window scaling option, 235 * which we interpret as a sign the remote TCP is not 236 * misinterpreting the window field as a signed quantity. 237 */ 238 if (sysctl_tcp_workaround_signed_windows) 239 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 240 else 241 (*rcv_wnd) = space; 242 243 (*rcv_wscale) = 0; 244 if (wscale_ok) { 245 /* Set window scaling on max possible window 246 * See RFC1323 for an explanation of the limit to 14 247 */ 248 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 249 space = min_t(u32, space, *window_clamp); 250 while (space > 65535 && (*rcv_wscale) < 14) { 251 space >>= 1; 252 (*rcv_wscale)++; 253 } 254 } 255 256 if (mss > (1 << *rcv_wscale)) { 257 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 258 init_rcv_wnd = tcp_default_init_rwnd(mss); 259 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 260 } 261 262 /* Set the clamp no higher than max representable value */ 263 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 264 } 265 EXPORT_SYMBOL(tcp_select_initial_window); 266 267 /* Chose a new window to advertise, update state in tcp_sock for the 268 * socket, and return result with RFC1323 scaling applied. The return 269 * value can be stuffed directly into th->window for an outgoing 270 * frame. 271 */ 272 static u16 tcp_select_window(struct sock *sk) 273 { 274 struct tcp_sock *tp = tcp_sk(sk); 275 u32 old_win = tp->rcv_wnd; 276 u32 cur_win = tcp_receive_window(tp); 277 u32 new_win = __tcp_select_window(sk); 278 279 /* Never shrink the offered window */ 280 if (new_win < cur_win) { 281 /* Danger Will Robinson! 282 * Don't update rcv_wup/rcv_wnd here or else 283 * we will not be able to advertise a zero 284 * window in time. --DaveM 285 * 286 * Relax Will Robinson. 287 */ 288 if (new_win == 0) 289 NET_INC_STATS(sock_net(sk), 290 LINUX_MIB_TCPWANTZEROWINDOWADV); 291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 292 } 293 tp->rcv_wnd = new_win; 294 tp->rcv_wup = tp->rcv_nxt; 295 296 /* Make sure we do not exceed the maximum possible 297 * scaled window. 298 */ 299 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 300 new_win = min(new_win, MAX_TCP_WINDOW); 301 else 302 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 303 304 /* RFC1323 scaling applied */ 305 new_win >>= tp->rx_opt.rcv_wscale; 306 307 /* If we advertise zero window, disable fast path. */ 308 if (new_win == 0) { 309 tp->pred_flags = 0; 310 if (old_win) 311 NET_INC_STATS(sock_net(sk), 312 LINUX_MIB_TCPTOZEROWINDOWADV); 313 } else if (old_win == 0) { 314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 315 } 316 317 return new_win; 318 } 319 320 /* Packet ECN state for a SYN-ACK */ 321 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb) 322 { 323 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 324 if (!(tp->ecn_flags & TCP_ECN_OK)) 325 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 326 } 327 328 /* Packet ECN state for a SYN. */ 329 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb) 330 { 331 struct tcp_sock *tp = tcp_sk(sk); 332 333 tp->ecn_flags = 0; 334 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) { 335 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 336 tp->ecn_flags = TCP_ECN_OK; 337 } 338 } 339 340 static __inline__ void 341 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th) 342 { 343 if (inet_rsk(req)->ecn_ok) 344 th->ece = 1; 345 } 346 347 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 348 * be sent. 349 */ 350 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb, 351 int tcp_header_len) 352 { 353 struct tcp_sock *tp = tcp_sk(sk); 354 355 if (tp->ecn_flags & TCP_ECN_OK) { 356 /* Not-retransmitted data segment: set ECT and inject CWR. */ 357 if (skb->len != tcp_header_len && 358 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 359 INET_ECN_xmit(sk); 360 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 361 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 362 tcp_hdr(skb)->cwr = 1; 363 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 364 } 365 } else { 366 /* ACK or retransmitted segment: clear ECT|CE */ 367 INET_ECN_dontxmit(sk); 368 } 369 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 370 tcp_hdr(skb)->ece = 1; 371 } 372 } 373 374 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 375 * auto increment end seqno. 376 */ 377 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 378 { 379 struct skb_shared_info *shinfo = skb_shinfo(skb); 380 381 skb->ip_summed = CHECKSUM_PARTIAL; 382 skb->csum = 0; 383 384 TCP_SKB_CB(skb)->tcp_flags = flags; 385 TCP_SKB_CB(skb)->sacked = 0; 386 387 shinfo->gso_segs = 1; 388 shinfo->gso_size = 0; 389 shinfo->gso_type = 0; 390 391 TCP_SKB_CB(skb)->seq = seq; 392 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 393 seq++; 394 TCP_SKB_CB(skb)->end_seq = seq; 395 } 396 397 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 398 { 399 return tp->snd_una != tp->snd_up; 400 } 401 402 #define OPTION_SACK_ADVERTISE (1 << 0) 403 #define OPTION_TS (1 << 1) 404 #define OPTION_MD5 (1 << 2) 405 #define OPTION_WSCALE (1 << 3) 406 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 407 408 struct tcp_out_options { 409 u16 options; /* bit field of OPTION_* */ 410 u16 mss; /* 0 to disable */ 411 u8 ws; /* window scale, 0 to disable */ 412 u8 num_sack_blocks; /* number of SACK blocks to include */ 413 u8 hash_size; /* bytes in hash_location */ 414 __u8 *hash_location; /* temporary pointer, overloaded */ 415 __u32 tsval, tsecr; /* need to include OPTION_TS */ 416 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 417 }; 418 419 /* Write previously computed TCP options to the packet. 420 * 421 * Beware: Something in the Internet is very sensitive to the ordering of 422 * TCP options, we learned this through the hard way, so be careful here. 423 * Luckily we can at least blame others for their non-compliance but from 424 * inter-operability perspective it seems that we're somewhat stuck with 425 * the ordering which we have been using if we want to keep working with 426 * those broken things (not that it currently hurts anybody as there isn't 427 * particular reason why the ordering would need to be changed). 428 * 429 * At least SACK_PERM as the first option is known to lead to a disaster 430 * (but it may well be that other scenarios fail similarly). 431 */ 432 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 433 struct tcp_out_options *opts) 434 { 435 u16 options = opts->options; /* mungable copy */ 436 437 if (unlikely(OPTION_MD5 & options)) { 438 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 439 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 440 /* overload cookie hash location */ 441 opts->hash_location = (__u8 *)ptr; 442 ptr += 4; 443 } 444 445 if (unlikely(opts->mss)) { 446 *ptr++ = htonl((TCPOPT_MSS << 24) | 447 (TCPOLEN_MSS << 16) | 448 opts->mss); 449 } 450 451 if (likely(OPTION_TS & options)) { 452 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 453 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 454 (TCPOLEN_SACK_PERM << 16) | 455 (TCPOPT_TIMESTAMP << 8) | 456 TCPOLEN_TIMESTAMP); 457 options &= ~OPTION_SACK_ADVERTISE; 458 } else { 459 *ptr++ = htonl((TCPOPT_NOP << 24) | 460 (TCPOPT_NOP << 16) | 461 (TCPOPT_TIMESTAMP << 8) | 462 TCPOLEN_TIMESTAMP); 463 } 464 *ptr++ = htonl(opts->tsval); 465 *ptr++ = htonl(opts->tsecr); 466 } 467 468 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 469 *ptr++ = htonl((TCPOPT_NOP << 24) | 470 (TCPOPT_NOP << 16) | 471 (TCPOPT_SACK_PERM << 8) | 472 TCPOLEN_SACK_PERM); 473 } 474 475 if (unlikely(OPTION_WSCALE & options)) { 476 *ptr++ = htonl((TCPOPT_NOP << 24) | 477 (TCPOPT_WINDOW << 16) | 478 (TCPOLEN_WINDOW << 8) | 479 opts->ws); 480 } 481 482 if (unlikely(opts->num_sack_blocks)) { 483 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 484 tp->duplicate_sack : tp->selective_acks; 485 int this_sack; 486 487 *ptr++ = htonl((TCPOPT_NOP << 24) | 488 (TCPOPT_NOP << 16) | 489 (TCPOPT_SACK << 8) | 490 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 491 TCPOLEN_SACK_PERBLOCK))); 492 493 for (this_sack = 0; this_sack < opts->num_sack_blocks; 494 ++this_sack) { 495 *ptr++ = htonl(sp[this_sack].start_seq); 496 *ptr++ = htonl(sp[this_sack].end_seq); 497 } 498 499 tp->rx_opt.dsack = 0; 500 } 501 502 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 503 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 504 505 *ptr++ = htonl((TCPOPT_EXP << 24) | 506 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) | 507 TCPOPT_FASTOPEN_MAGIC); 508 509 memcpy(ptr, foc->val, foc->len); 510 if ((foc->len & 3) == 2) { 511 u8 *align = ((u8 *)ptr) + foc->len; 512 align[0] = align[1] = TCPOPT_NOP; 513 } 514 ptr += (foc->len + 3) >> 2; 515 } 516 } 517 518 /* Compute TCP options for SYN packets. This is not the final 519 * network wire format yet. 520 */ 521 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 522 struct tcp_out_options *opts, 523 struct tcp_md5sig_key **md5) 524 { 525 struct tcp_sock *tp = tcp_sk(sk); 526 unsigned int remaining = MAX_TCP_OPTION_SPACE; 527 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 528 529 #ifdef CONFIG_TCP_MD5SIG 530 *md5 = tp->af_specific->md5_lookup(sk, sk); 531 if (*md5) { 532 opts->options |= OPTION_MD5; 533 remaining -= TCPOLEN_MD5SIG_ALIGNED; 534 } 535 #else 536 *md5 = NULL; 537 #endif 538 539 /* We always get an MSS option. The option bytes which will be seen in 540 * normal data packets should timestamps be used, must be in the MSS 541 * advertised. But we subtract them from tp->mss_cache so that 542 * calculations in tcp_sendmsg are simpler etc. So account for this 543 * fact here if necessary. If we don't do this correctly, as a 544 * receiver we won't recognize data packets as being full sized when we 545 * should, and thus we won't abide by the delayed ACK rules correctly. 546 * SACKs don't matter, we never delay an ACK when we have any of those 547 * going out. */ 548 opts->mss = tcp_advertise_mss(sk); 549 remaining -= TCPOLEN_MSS_ALIGNED; 550 551 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 552 opts->options |= OPTION_TS; 553 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset; 554 opts->tsecr = tp->rx_opt.ts_recent; 555 remaining -= TCPOLEN_TSTAMP_ALIGNED; 556 } 557 if (likely(sysctl_tcp_window_scaling)) { 558 opts->ws = tp->rx_opt.rcv_wscale; 559 opts->options |= OPTION_WSCALE; 560 remaining -= TCPOLEN_WSCALE_ALIGNED; 561 } 562 if (likely(sysctl_tcp_sack)) { 563 opts->options |= OPTION_SACK_ADVERTISE; 564 if (unlikely(!(OPTION_TS & opts->options))) 565 remaining -= TCPOLEN_SACKPERM_ALIGNED; 566 } 567 568 if (fastopen && fastopen->cookie.len >= 0) { 569 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len; 570 need = (need + 3) & ~3U; /* Align to 32 bits */ 571 if (remaining >= need) { 572 opts->options |= OPTION_FAST_OPEN_COOKIE; 573 opts->fastopen_cookie = &fastopen->cookie; 574 remaining -= need; 575 tp->syn_fastopen = 1; 576 } 577 } 578 579 return MAX_TCP_OPTION_SPACE - remaining; 580 } 581 582 /* Set up TCP options for SYN-ACKs. */ 583 static unsigned int tcp_synack_options(struct sock *sk, 584 struct request_sock *req, 585 unsigned int mss, struct sk_buff *skb, 586 struct tcp_out_options *opts, 587 struct tcp_md5sig_key **md5, 588 struct tcp_fastopen_cookie *foc) 589 { 590 struct inet_request_sock *ireq = inet_rsk(req); 591 unsigned int remaining = MAX_TCP_OPTION_SPACE; 592 593 #ifdef CONFIG_TCP_MD5SIG 594 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 595 if (*md5) { 596 opts->options |= OPTION_MD5; 597 remaining -= TCPOLEN_MD5SIG_ALIGNED; 598 599 /* We can't fit any SACK blocks in a packet with MD5 + TS 600 * options. There was discussion about disabling SACK 601 * rather than TS in order to fit in better with old, 602 * buggy kernels, but that was deemed to be unnecessary. 603 */ 604 ireq->tstamp_ok &= !ireq->sack_ok; 605 } 606 #else 607 *md5 = NULL; 608 #endif 609 610 /* We always send an MSS option. */ 611 opts->mss = mss; 612 remaining -= TCPOLEN_MSS_ALIGNED; 613 614 if (likely(ireq->wscale_ok)) { 615 opts->ws = ireq->rcv_wscale; 616 opts->options |= OPTION_WSCALE; 617 remaining -= TCPOLEN_WSCALE_ALIGNED; 618 } 619 if (likely(ireq->tstamp_ok)) { 620 opts->options |= OPTION_TS; 621 opts->tsval = TCP_SKB_CB(skb)->when; 622 opts->tsecr = req->ts_recent; 623 remaining -= TCPOLEN_TSTAMP_ALIGNED; 624 } 625 if (likely(ireq->sack_ok)) { 626 opts->options |= OPTION_SACK_ADVERTISE; 627 if (unlikely(!ireq->tstamp_ok)) 628 remaining -= TCPOLEN_SACKPERM_ALIGNED; 629 } 630 if (foc != NULL && foc->len >= 0) { 631 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 632 need = (need + 3) & ~3U; /* Align to 32 bits */ 633 if (remaining >= need) { 634 opts->options |= OPTION_FAST_OPEN_COOKIE; 635 opts->fastopen_cookie = foc; 636 remaining -= need; 637 } 638 } 639 640 return MAX_TCP_OPTION_SPACE - remaining; 641 } 642 643 /* Compute TCP options for ESTABLISHED sockets. This is not the 644 * final wire format yet. 645 */ 646 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 647 struct tcp_out_options *opts, 648 struct tcp_md5sig_key **md5) 649 { 650 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL; 651 struct tcp_sock *tp = tcp_sk(sk); 652 unsigned int size = 0; 653 unsigned int eff_sacks; 654 655 opts->options = 0; 656 657 #ifdef CONFIG_TCP_MD5SIG 658 *md5 = tp->af_specific->md5_lookup(sk, sk); 659 if (unlikely(*md5)) { 660 opts->options |= OPTION_MD5; 661 size += TCPOLEN_MD5SIG_ALIGNED; 662 } 663 #else 664 *md5 = NULL; 665 #endif 666 667 if (likely(tp->rx_opt.tstamp_ok)) { 668 opts->options |= OPTION_TS; 669 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0; 670 opts->tsecr = tp->rx_opt.ts_recent; 671 size += TCPOLEN_TSTAMP_ALIGNED; 672 } 673 674 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 675 if (unlikely(eff_sacks)) { 676 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 677 opts->num_sack_blocks = 678 min_t(unsigned int, eff_sacks, 679 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 680 TCPOLEN_SACK_PERBLOCK); 681 size += TCPOLEN_SACK_BASE_ALIGNED + 682 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 683 } 684 685 return size; 686 } 687 688 689 /* TCP SMALL QUEUES (TSQ) 690 * 691 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 692 * to reduce RTT and bufferbloat. 693 * We do this using a special skb destructor (tcp_wfree). 694 * 695 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 696 * needs to be reallocated in a driver. 697 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 698 * 699 * Since transmit from skb destructor is forbidden, we use a tasklet 700 * to process all sockets that eventually need to send more skbs. 701 * We use one tasklet per cpu, with its own queue of sockets. 702 */ 703 struct tsq_tasklet { 704 struct tasklet_struct tasklet; 705 struct list_head head; /* queue of tcp sockets */ 706 }; 707 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 708 709 static void tcp_tsq_handler(struct sock *sk) 710 { 711 if ((1 << sk->sk_state) & 712 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 713 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 714 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle, 715 0, GFP_ATOMIC); 716 } 717 /* 718 * One tasklet per cpu tries to send more skbs. 719 * We run in tasklet context but need to disable irqs when 720 * transferring tsq->head because tcp_wfree() might 721 * interrupt us (non NAPI drivers) 722 */ 723 static void tcp_tasklet_func(unsigned long data) 724 { 725 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 726 LIST_HEAD(list); 727 unsigned long flags; 728 struct list_head *q, *n; 729 struct tcp_sock *tp; 730 struct sock *sk; 731 732 local_irq_save(flags); 733 list_splice_init(&tsq->head, &list); 734 local_irq_restore(flags); 735 736 list_for_each_safe(q, n, &list) { 737 tp = list_entry(q, struct tcp_sock, tsq_node); 738 list_del(&tp->tsq_node); 739 740 sk = (struct sock *)tp; 741 bh_lock_sock(sk); 742 743 if (!sock_owned_by_user(sk)) { 744 tcp_tsq_handler(sk); 745 } else { 746 /* defer the work to tcp_release_cb() */ 747 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 748 } 749 bh_unlock_sock(sk); 750 751 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 752 sk_free(sk); 753 } 754 } 755 756 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 757 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 758 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 759 (1UL << TCP_MTU_REDUCED_DEFERRED)) 760 /** 761 * tcp_release_cb - tcp release_sock() callback 762 * @sk: socket 763 * 764 * called from release_sock() to perform protocol dependent 765 * actions before socket release. 766 */ 767 void tcp_release_cb(struct sock *sk) 768 { 769 struct tcp_sock *tp = tcp_sk(sk); 770 unsigned long flags, nflags; 771 772 /* perform an atomic operation only if at least one flag is set */ 773 do { 774 flags = tp->tsq_flags; 775 if (!(flags & TCP_DEFERRED_ALL)) 776 return; 777 nflags = flags & ~TCP_DEFERRED_ALL; 778 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 779 780 if (flags & (1UL << TCP_TSQ_DEFERRED)) 781 tcp_tsq_handler(sk); 782 783 /* Here begins the tricky part : 784 * We are called from release_sock() with : 785 * 1) BH disabled 786 * 2) sk_lock.slock spinlock held 787 * 3) socket owned by us (sk->sk_lock.owned == 1) 788 * 789 * But following code is meant to be called from BH handlers, 790 * so we should keep BH disabled, but early release socket ownership 791 */ 792 sock_release_ownership(sk); 793 794 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 795 tcp_write_timer_handler(sk); 796 __sock_put(sk); 797 } 798 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 799 tcp_delack_timer_handler(sk); 800 __sock_put(sk); 801 } 802 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 803 sk->sk_prot->mtu_reduced(sk); 804 __sock_put(sk); 805 } 806 } 807 EXPORT_SYMBOL(tcp_release_cb); 808 809 void __init tcp_tasklet_init(void) 810 { 811 int i; 812 813 for_each_possible_cpu(i) { 814 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 815 816 INIT_LIST_HEAD(&tsq->head); 817 tasklet_init(&tsq->tasklet, 818 tcp_tasklet_func, 819 (unsigned long)tsq); 820 } 821 } 822 823 /* 824 * Write buffer destructor automatically called from kfree_skb. 825 * We can't xmit new skbs from this context, as we might already 826 * hold qdisc lock. 827 */ 828 void tcp_wfree(struct sk_buff *skb) 829 { 830 struct sock *sk = skb->sk; 831 struct tcp_sock *tp = tcp_sk(sk); 832 833 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 834 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 835 unsigned long flags; 836 struct tsq_tasklet *tsq; 837 838 /* Keep a ref on socket. 839 * This last ref will be released in tcp_tasklet_func() 840 */ 841 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc); 842 843 /* queue this socket to tasklet queue */ 844 local_irq_save(flags); 845 tsq = &__get_cpu_var(tsq_tasklet); 846 list_add(&tp->tsq_node, &tsq->head); 847 tasklet_schedule(&tsq->tasklet); 848 local_irq_restore(flags); 849 } else { 850 sock_wfree(skb); 851 } 852 } 853 854 /* This routine actually transmits TCP packets queued in by 855 * tcp_do_sendmsg(). This is used by both the initial 856 * transmission and possible later retransmissions. 857 * All SKB's seen here are completely headerless. It is our 858 * job to build the TCP header, and pass the packet down to 859 * IP so it can do the same plus pass the packet off to the 860 * device. 861 * 862 * We are working here with either a clone of the original 863 * SKB, or a fresh unique copy made by the retransmit engine. 864 */ 865 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 866 gfp_t gfp_mask) 867 { 868 const struct inet_connection_sock *icsk = inet_csk(sk); 869 struct inet_sock *inet; 870 struct tcp_sock *tp; 871 struct tcp_skb_cb *tcb; 872 struct tcp_out_options opts; 873 unsigned int tcp_options_size, tcp_header_size; 874 struct tcp_md5sig_key *md5; 875 struct tcphdr *th; 876 int err; 877 878 BUG_ON(!skb || !tcp_skb_pcount(skb)); 879 880 if (clone_it) { 881 skb_mstamp_get(&skb->skb_mstamp); 882 883 if (unlikely(skb_cloned(skb))) 884 skb = pskb_copy(skb, gfp_mask); 885 else 886 skb = skb_clone(skb, gfp_mask); 887 if (unlikely(!skb)) 888 return -ENOBUFS; 889 /* Our usage of tstamp should remain private */ 890 skb->tstamp.tv64 = 0; 891 } 892 893 inet = inet_sk(sk); 894 tp = tcp_sk(sk); 895 tcb = TCP_SKB_CB(skb); 896 memset(&opts, 0, sizeof(opts)); 897 898 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 899 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 900 else 901 tcp_options_size = tcp_established_options(sk, skb, &opts, 902 &md5); 903 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 904 905 if (tcp_packets_in_flight(tp) == 0) 906 tcp_ca_event(sk, CA_EVENT_TX_START); 907 908 /* if no packet is in qdisc/device queue, then allow XPS to select 909 * another queue. 910 */ 911 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0; 912 913 skb_push(skb, tcp_header_size); 914 skb_reset_transport_header(skb); 915 916 skb_orphan(skb); 917 skb->sk = sk; 918 skb->destructor = tcp_wfree; 919 skb_set_hash_from_sk(skb, sk); 920 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 921 922 /* Build TCP header and checksum it. */ 923 th = tcp_hdr(skb); 924 th->source = inet->inet_sport; 925 th->dest = inet->inet_dport; 926 th->seq = htonl(tcb->seq); 927 th->ack_seq = htonl(tp->rcv_nxt); 928 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 929 tcb->tcp_flags); 930 931 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 932 /* RFC1323: The window in SYN & SYN/ACK segments 933 * is never scaled. 934 */ 935 th->window = htons(min(tp->rcv_wnd, 65535U)); 936 } else { 937 th->window = htons(tcp_select_window(sk)); 938 } 939 th->check = 0; 940 th->urg_ptr = 0; 941 942 /* The urg_mode check is necessary during a below snd_una win probe */ 943 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 944 if (before(tp->snd_up, tcb->seq + 0x10000)) { 945 th->urg_ptr = htons(tp->snd_up - tcb->seq); 946 th->urg = 1; 947 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 948 th->urg_ptr = htons(0xFFFF); 949 th->urg = 1; 950 } 951 } 952 953 tcp_options_write((__be32 *)(th + 1), tp, &opts); 954 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 955 TCP_ECN_send(sk, skb, tcp_header_size); 956 957 #ifdef CONFIG_TCP_MD5SIG 958 /* Calculate the MD5 hash, as we have all we need now */ 959 if (md5) { 960 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 961 tp->af_specific->calc_md5_hash(opts.hash_location, 962 md5, sk, NULL, skb); 963 } 964 #endif 965 966 icsk->icsk_af_ops->send_check(sk, skb); 967 968 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 969 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 970 971 if (skb->len != tcp_header_size) 972 tcp_event_data_sent(tp, sk); 973 974 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 975 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 976 tcp_skb_pcount(skb)); 977 978 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 979 if (likely(err <= 0)) 980 return err; 981 982 tcp_enter_cwr(sk); 983 984 return net_xmit_eval(err); 985 } 986 987 /* This routine just queues the buffer for sending. 988 * 989 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 990 * otherwise socket can stall. 991 */ 992 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 993 { 994 struct tcp_sock *tp = tcp_sk(sk); 995 996 /* Advance write_seq and place onto the write_queue. */ 997 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 998 skb_header_release(skb); 999 tcp_add_write_queue_tail(sk, skb); 1000 sk->sk_wmem_queued += skb->truesize; 1001 sk_mem_charge(sk, skb->truesize); 1002 } 1003 1004 /* Initialize TSO segments for a packet. */ 1005 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 1006 unsigned int mss_now) 1007 { 1008 struct skb_shared_info *shinfo = skb_shinfo(skb); 1009 1010 /* Make sure we own this skb before messing gso_size/gso_segs */ 1011 WARN_ON_ONCE(skb_cloned(skb)); 1012 1013 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1014 /* Avoid the costly divide in the normal 1015 * non-TSO case. 1016 */ 1017 shinfo->gso_segs = 1; 1018 shinfo->gso_size = 0; 1019 shinfo->gso_type = 0; 1020 } else { 1021 shinfo->gso_segs = DIV_ROUND_UP(skb->len, mss_now); 1022 shinfo->gso_size = mss_now; 1023 shinfo->gso_type = sk->sk_gso_type; 1024 } 1025 } 1026 1027 /* When a modification to fackets out becomes necessary, we need to check 1028 * skb is counted to fackets_out or not. 1029 */ 1030 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1031 int decr) 1032 { 1033 struct tcp_sock *tp = tcp_sk(sk); 1034 1035 if (!tp->sacked_out || tcp_is_reno(tp)) 1036 return; 1037 1038 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1039 tp->fackets_out -= decr; 1040 } 1041 1042 /* Pcount in the middle of the write queue got changed, we need to do various 1043 * tweaks to fix counters 1044 */ 1045 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1046 { 1047 struct tcp_sock *tp = tcp_sk(sk); 1048 1049 tp->packets_out -= decr; 1050 1051 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1052 tp->sacked_out -= decr; 1053 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1054 tp->retrans_out -= decr; 1055 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1056 tp->lost_out -= decr; 1057 1058 /* Reno case is special. Sigh... */ 1059 if (tcp_is_reno(tp) && decr > 0) 1060 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1061 1062 tcp_adjust_fackets_out(sk, skb, decr); 1063 1064 if (tp->lost_skb_hint && 1065 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1066 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1067 tp->lost_cnt_hint -= decr; 1068 1069 tcp_verify_left_out(tp); 1070 } 1071 1072 /* Function to create two new TCP segments. Shrinks the given segment 1073 * to the specified size and appends a new segment with the rest of the 1074 * packet to the list. This won't be called frequently, I hope. 1075 * Remember, these are still headerless SKBs at this point. 1076 */ 1077 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1078 unsigned int mss_now, gfp_t gfp) 1079 { 1080 struct tcp_sock *tp = tcp_sk(sk); 1081 struct sk_buff *buff; 1082 int nsize, old_factor; 1083 int nlen; 1084 u8 flags; 1085 1086 if (WARN_ON(len > skb->len)) 1087 return -EINVAL; 1088 1089 nsize = skb_headlen(skb) - len; 1090 if (nsize < 0) 1091 nsize = 0; 1092 1093 if (skb_unclone(skb, gfp)) 1094 return -ENOMEM; 1095 1096 /* Get a new skb... force flag on. */ 1097 buff = sk_stream_alloc_skb(sk, nsize, gfp); 1098 if (buff == NULL) 1099 return -ENOMEM; /* We'll just try again later. */ 1100 1101 sk->sk_wmem_queued += buff->truesize; 1102 sk_mem_charge(sk, buff->truesize); 1103 nlen = skb->len - len - nsize; 1104 buff->truesize += nlen; 1105 skb->truesize -= nlen; 1106 1107 /* Correct the sequence numbers. */ 1108 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1109 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1110 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1111 1112 /* PSH and FIN should only be set in the second packet. */ 1113 flags = TCP_SKB_CB(skb)->tcp_flags; 1114 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1115 TCP_SKB_CB(buff)->tcp_flags = flags; 1116 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1117 1118 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1119 /* Copy and checksum data tail into the new buffer. */ 1120 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1121 skb_put(buff, nsize), 1122 nsize, 0); 1123 1124 skb_trim(skb, len); 1125 1126 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1127 } else { 1128 skb->ip_summed = CHECKSUM_PARTIAL; 1129 skb_split(skb, buff, len); 1130 } 1131 1132 buff->ip_summed = skb->ip_summed; 1133 1134 /* Looks stupid, but our code really uses when of 1135 * skbs, which it never sent before. --ANK 1136 */ 1137 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 1138 buff->tstamp = skb->tstamp; 1139 1140 old_factor = tcp_skb_pcount(skb); 1141 1142 /* Fix up tso_factor for both original and new SKB. */ 1143 tcp_set_skb_tso_segs(sk, skb, mss_now); 1144 tcp_set_skb_tso_segs(sk, buff, mss_now); 1145 1146 /* If this packet has been sent out already, we must 1147 * adjust the various packet counters. 1148 */ 1149 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1150 int diff = old_factor - tcp_skb_pcount(skb) - 1151 tcp_skb_pcount(buff); 1152 1153 if (diff) 1154 tcp_adjust_pcount(sk, skb, diff); 1155 } 1156 1157 /* Link BUFF into the send queue. */ 1158 skb_header_release(buff); 1159 tcp_insert_write_queue_after(skb, buff, sk); 1160 1161 return 0; 1162 } 1163 1164 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1165 * eventually). The difference is that pulled data not copied, but 1166 * immediately discarded. 1167 */ 1168 static void __pskb_trim_head(struct sk_buff *skb, int len) 1169 { 1170 struct skb_shared_info *shinfo; 1171 int i, k, eat; 1172 1173 eat = min_t(int, len, skb_headlen(skb)); 1174 if (eat) { 1175 __skb_pull(skb, eat); 1176 len -= eat; 1177 if (!len) 1178 return; 1179 } 1180 eat = len; 1181 k = 0; 1182 shinfo = skb_shinfo(skb); 1183 for (i = 0; i < shinfo->nr_frags; i++) { 1184 int size = skb_frag_size(&shinfo->frags[i]); 1185 1186 if (size <= eat) { 1187 skb_frag_unref(skb, i); 1188 eat -= size; 1189 } else { 1190 shinfo->frags[k] = shinfo->frags[i]; 1191 if (eat) { 1192 shinfo->frags[k].page_offset += eat; 1193 skb_frag_size_sub(&shinfo->frags[k], eat); 1194 eat = 0; 1195 } 1196 k++; 1197 } 1198 } 1199 shinfo->nr_frags = k; 1200 1201 skb_reset_tail_pointer(skb); 1202 skb->data_len -= len; 1203 skb->len = skb->data_len; 1204 } 1205 1206 /* Remove acked data from a packet in the transmit queue. */ 1207 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1208 { 1209 if (skb_unclone(skb, GFP_ATOMIC)) 1210 return -ENOMEM; 1211 1212 __pskb_trim_head(skb, len); 1213 1214 TCP_SKB_CB(skb)->seq += len; 1215 skb->ip_summed = CHECKSUM_PARTIAL; 1216 1217 skb->truesize -= len; 1218 sk->sk_wmem_queued -= len; 1219 sk_mem_uncharge(sk, len); 1220 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1221 1222 /* Any change of skb->len requires recalculation of tso factor. */ 1223 if (tcp_skb_pcount(skb) > 1) 1224 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1225 1226 return 0; 1227 } 1228 1229 /* Calculate MSS not accounting any TCP options. */ 1230 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1231 { 1232 const struct tcp_sock *tp = tcp_sk(sk); 1233 const struct inet_connection_sock *icsk = inet_csk(sk); 1234 int mss_now; 1235 1236 /* Calculate base mss without TCP options: 1237 It is MMS_S - sizeof(tcphdr) of rfc1122 1238 */ 1239 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1240 1241 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1242 if (icsk->icsk_af_ops->net_frag_header_len) { 1243 const struct dst_entry *dst = __sk_dst_get(sk); 1244 1245 if (dst && dst_allfrag(dst)) 1246 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1247 } 1248 1249 /* Clamp it (mss_clamp does not include tcp options) */ 1250 if (mss_now > tp->rx_opt.mss_clamp) 1251 mss_now = tp->rx_opt.mss_clamp; 1252 1253 /* Now subtract optional transport overhead */ 1254 mss_now -= icsk->icsk_ext_hdr_len; 1255 1256 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1257 if (mss_now < 48) 1258 mss_now = 48; 1259 return mss_now; 1260 } 1261 1262 /* Calculate MSS. Not accounting for SACKs here. */ 1263 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1264 { 1265 /* Subtract TCP options size, not including SACKs */ 1266 return __tcp_mtu_to_mss(sk, pmtu) - 1267 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1268 } 1269 1270 /* Inverse of above */ 1271 int tcp_mss_to_mtu(struct sock *sk, int mss) 1272 { 1273 const struct tcp_sock *tp = tcp_sk(sk); 1274 const struct inet_connection_sock *icsk = inet_csk(sk); 1275 int mtu; 1276 1277 mtu = mss + 1278 tp->tcp_header_len + 1279 icsk->icsk_ext_hdr_len + 1280 icsk->icsk_af_ops->net_header_len; 1281 1282 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1283 if (icsk->icsk_af_ops->net_frag_header_len) { 1284 const struct dst_entry *dst = __sk_dst_get(sk); 1285 1286 if (dst && dst_allfrag(dst)) 1287 mtu += icsk->icsk_af_ops->net_frag_header_len; 1288 } 1289 return mtu; 1290 } 1291 1292 /* MTU probing init per socket */ 1293 void tcp_mtup_init(struct sock *sk) 1294 { 1295 struct tcp_sock *tp = tcp_sk(sk); 1296 struct inet_connection_sock *icsk = inet_csk(sk); 1297 1298 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 1299 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1300 icsk->icsk_af_ops->net_header_len; 1301 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 1302 icsk->icsk_mtup.probe_size = 0; 1303 } 1304 EXPORT_SYMBOL(tcp_mtup_init); 1305 1306 /* This function synchronize snd mss to current pmtu/exthdr set. 1307 1308 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1309 for TCP options, but includes only bare TCP header. 1310 1311 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1312 It is minimum of user_mss and mss received with SYN. 1313 It also does not include TCP options. 1314 1315 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1316 1317 tp->mss_cache is current effective sending mss, including 1318 all tcp options except for SACKs. It is evaluated, 1319 taking into account current pmtu, but never exceeds 1320 tp->rx_opt.mss_clamp. 1321 1322 NOTE1. rfc1122 clearly states that advertised MSS 1323 DOES NOT include either tcp or ip options. 1324 1325 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1326 are READ ONLY outside this function. --ANK (980731) 1327 */ 1328 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1329 { 1330 struct tcp_sock *tp = tcp_sk(sk); 1331 struct inet_connection_sock *icsk = inet_csk(sk); 1332 int mss_now; 1333 1334 if (icsk->icsk_mtup.search_high > pmtu) 1335 icsk->icsk_mtup.search_high = pmtu; 1336 1337 mss_now = tcp_mtu_to_mss(sk, pmtu); 1338 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1339 1340 /* And store cached results */ 1341 icsk->icsk_pmtu_cookie = pmtu; 1342 if (icsk->icsk_mtup.enabled) 1343 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1344 tp->mss_cache = mss_now; 1345 1346 return mss_now; 1347 } 1348 EXPORT_SYMBOL(tcp_sync_mss); 1349 1350 /* Compute the current effective MSS, taking SACKs and IP options, 1351 * and even PMTU discovery events into account. 1352 */ 1353 unsigned int tcp_current_mss(struct sock *sk) 1354 { 1355 const struct tcp_sock *tp = tcp_sk(sk); 1356 const struct dst_entry *dst = __sk_dst_get(sk); 1357 u32 mss_now; 1358 unsigned int header_len; 1359 struct tcp_out_options opts; 1360 struct tcp_md5sig_key *md5; 1361 1362 mss_now = tp->mss_cache; 1363 1364 if (dst) { 1365 u32 mtu = dst_mtu(dst); 1366 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1367 mss_now = tcp_sync_mss(sk, mtu); 1368 } 1369 1370 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1371 sizeof(struct tcphdr); 1372 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1373 * some common options. If this is an odd packet (because we have SACK 1374 * blocks etc) then our calculated header_len will be different, and 1375 * we have to adjust mss_now correspondingly */ 1376 if (header_len != tp->tcp_header_len) { 1377 int delta = (int) header_len - tp->tcp_header_len; 1378 mss_now -= delta; 1379 } 1380 1381 return mss_now; 1382 } 1383 1384 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1385 * As additional protections, we do not touch cwnd in retransmission phases, 1386 * and if application hit its sndbuf limit recently. 1387 */ 1388 static void tcp_cwnd_application_limited(struct sock *sk) 1389 { 1390 struct tcp_sock *tp = tcp_sk(sk); 1391 1392 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1393 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1394 /* Limited by application or receiver window. */ 1395 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1396 u32 win_used = max(tp->snd_cwnd_used, init_win); 1397 if (win_used < tp->snd_cwnd) { 1398 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1399 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1400 } 1401 tp->snd_cwnd_used = 0; 1402 } 1403 tp->snd_cwnd_stamp = tcp_time_stamp; 1404 } 1405 1406 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1407 { 1408 struct tcp_sock *tp = tcp_sk(sk); 1409 1410 /* Track the maximum number of outstanding packets in each 1411 * window, and remember whether we were cwnd-limited then. 1412 */ 1413 if (!before(tp->snd_una, tp->max_packets_seq) || 1414 tp->packets_out > tp->max_packets_out) { 1415 tp->max_packets_out = tp->packets_out; 1416 tp->max_packets_seq = tp->snd_nxt; 1417 tp->is_cwnd_limited = is_cwnd_limited; 1418 } 1419 1420 if (tcp_is_cwnd_limited(sk)) { 1421 /* Network is feed fully. */ 1422 tp->snd_cwnd_used = 0; 1423 tp->snd_cwnd_stamp = tcp_time_stamp; 1424 } else { 1425 /* Network starves. */ 1426 if (tp->packets_out > tp->snd_cwnd_used) 1427 tp->snd_cwnd_used = tp->packets_out; 1428 1429 if (sysctl_tcp_slow_start_after_idle && 1430 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1431 tcp_cwnd_application_limited(sk); 1432 } 1433 } 1434 1435 /* Minshall's variant of the Nagle send check. */ 1436 static bool tcp_minshall_check(const struct tcp_sock *tp) 1437 { 1438 return after(tp->snd_sml, tp->snd_una) && 1439 !after(tp->snd_sml, tp->snd_nxt); 1440 } 1441 1442 /* Update snd_sml if this skb is under mss 1443 * Note that a TSO packet might end with a sub-mss segment 1444 * The test is really : 1445 * if ((skb->len % mss) != 0) 1446 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1447 * But we can avoid doing the divide again given we already have 1448 * skb_pcount = skb->len / mss_now 1449 */ 1450 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1451 const struct sk_buff *skb) 1452 { 1453 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1454 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1455 } 1456 1457 /* Return false, if packet can be sent now without violation Nagle's rules: 1458 * 1. It is full sized. (provided by caller in %partial bool) 1459 * 2. Or it contains FIN. (already checked by caller) 1460 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1461 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1462 * With Minshall's modification: all sent small packets are ACKed. 1463 */ 1464 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1465 int nonagle) 1466 { 1467 return partial && 1468 ((nonagle & TCP_NAGLE_CORK) || 1469 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1470 } 1471 /* Returns the portion of skb which can be sent right away */ 1472 static unsigned int tcp_mss_split_point(const struct sock *sk, 1473 const struct sk_buff *skb, 1474 unsigned int mss_now, 1475 unsigned int max_segs, 1476 int nonagle) 1477 { 1478 const struct tcp_sock *tp = tcp_sk(sk); 1479 u32 partial, needed, window, max_len; 1480 1481 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1482 max_len = mss_now * max_segs; 1483 1484 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1485 return max_len; 1486 1487 needed = min(skb->len, window); 1488 1489 if (max_len <= needed) 1490 return max_len; 1491 1492 partial = needed % mss_now; 1493 /* If last segment is not a full MSS, check if Nagle rules allow us 1494 * to include this last segment in this skb. 1495 * Otherwise, we'll split the skb at last MSS boundary 1496 */ 1497 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1498 return needed - partial; 1499 1500 return needed; 1501 } 1502 1503 /* Can at least one segment of SKB be sent right now, according to the 1504 * congestion window rules? If so, return how many segments are allowed. 1505 */ 1506 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1507 const struct sk_buff *skb) 1508 { 1509 u32 in_flight, cwnd; 1510 1511 /* Don't be strict about the congestion window for the final FIN. */ 1512 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1513 tcp_skb_pcount(skb) == 1) 1514 return 1; 1515 1516 in_flight = tcp_packets_in_flight(tp); 1517 cwnd = tp->snd_cwnd; 1518 if (in_flight < cwnd) 1519 return (cwnd - in_flight); 1520 1521 return 0; 1522 } 1523 1524 /* Initialize TSO state of a skb. 1525 * This must be invoked the first time we consider transmitting 1526 * SKB onto the wire. 1527 */ 1528 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1529 unsigned int mss_now) 1530 { 1531 int tso_segs = tcp_skb_pcount(skb); 1532 1533 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1534 tcp_set_skb_tso_segs(sk, skb, mss_now); 1535 tso_segs = tcp_skb_pcount(skb); 1536 } 1537 return tso_segs; 1538 } 1539 1540 1541 /* Return true if the Nagle test allows this packet to be 1542 * sent now. 1543 */ 1544 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1545 unsigned int cur_mss, int nonagle) 1546 { 1547 /* Nagle rule does not apply to frames, which sit in the middle of the 1548 * write_queue (they have no chances to get new data). 1549 * 1550 * This is implemented in the callers, where they modify the 'nonagle' 1551 * argument based upon the location of SKB in the send queue. 1552 */ 1553 if (nonagle & TCP_NAGLE_PUSH) 1554 return true; 1555 1556 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1557 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1558 return true; 1559 1560 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1561 return true; 1562 1563 return false; 1564 } 1565 1566 /* Does at least the first segment of SKB fit into the send window? */ 1567 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1568 const struct sk_buff *skb, 1569 unsigned int cur_mss) 1570 { 1571 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1572 1573 if (skb->len > cur_mss) 1574 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1575 1576 return !after(end_seq, tcp_wnd_end(tp)); 1577 } 1578 1579 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1580 * should be put on the wire right now. If so, it returns the number of 1581 * packets allowed by the congestion window. 1582 */ 1583 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1584 unsigned int cur_mss, int nonagle) 1585 { 1586 const struct tcp_sock *tp = tcp_sk(sk); 1587 unsigned int cwnd_quota; 1588 1589 tcp_init_tso_segs(sk, skb, cur_mss); 1590 1591 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1592 return 0; 1593 1594 cwnd_quota = tcp_cwnd_test(tp, skb); 1595 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1596 cwnd_quota = 0; 1597 1598 return cwnd_quota; 1599 } 1600 1601 /* Test if sending is allowed right now. */ 1602 bool tcp_may_send_now(struct sock *sk) 1603 { 1604 const struct tcp_sock *tp = tcp_sk(sk); 1605 struct sk_buff *skb = tcp_send_head(sk); 1606 1607 return skb && 1608 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1609 (tcp_skb_is_last(sk, skb) ? 1610 tp->nonagle : TCP_NAGLE_PUSH)); 1611 } 1612 1613 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1614 * which is put after SKB on the list. It is very much like 1615 * tcp_fragment() except that it may make several kinds of assumptions 1616 * in order to speed up the splitting operation. In particular, we 1617 * know that all the data is in scatter-gather pages, and that the 1618 * packet has never been sent out before (and thus is not cloned). 1619 */ 1620 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1621 unsigned int mss_now, gfp_t gfp) 1622 { 1623 struct sk_buff *buff; 1624 int nlen = skb->len - len; 1625 u8 flags; 1626 1627 /* All of a TSO frame must be composed of paged data. */ 1628 if (skb->len != skb->data_len) 1629 return tcp_fragment(sk, skb, len, mss_now, gfp); 1630 1631 buff = sk_stream_alloc_skb(sk, 0, gfp); 1632 if (unlikely(buff == NULL)) 1633 return -ENOMEM; 1634 1635 sk->sk_wmem_queued += buff->truesize; 1636 sk_mem_charge(sk, buff->truesize); 1637 buff->truesize += nlen; 1638 skb->truesize -= nlen; 1639 1640 /* Correct the sequence numbers. */ 1641 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1642 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1643 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1644 1645 /* PSH and FIN should only be set in the second packet. */ 1646 flags = TCP_SKB_CB(skb)->tcp_flags; 1647 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1648 TCP_SKB_CB(buff)->tcp_flags = flags; 1649 1650 /* This packet was never sent out yet, so no SACK bits. */ 1651 TCP_SKB_CB(buff)->sacked = 0; 1652 1653 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1654 skb_split(skb, buff, len); 1655 1656 /* Fix up tso_factor for both original and new SKB. */ 1657 tcp_set_skb_tso_segs(sk, skb, mss_now); 1658 tcp_set_skb_tso_segs(sk, buff, mss_now); 1659 1660 /* Link BUFF into the send queue. */ 1661 skb_header_release(buff); 1662 tcp_insert_write_queue_after(skb, buff, sk); 1663 1664 return 0; 1665 } 1666 1667 /* Try to defer sending, if possible, in order to minimize the amount 1668 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1669 * 1670 * This algorithm is from John Heffner. 1671 */ 1672 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1673 bool *is_cwnd_limited) 1674 { 1675 struct tcp_sock *tp = tcp_sk(sk); 1676 const struct inet_connection_sock *icsk = inet_csk(sk); 1677 u32 send_win, cong_win, limit, in_flight; 1678 int win_divisor; 1679 1680 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1681 goto send_now; 1682 1683 if (icsk->icsk_ca_state != TCP_CA_Open) 1684 goto send_now; 1685 1686 /* Defer for less than two clock ticks. */ 1687 if (tp->tso_deferred && 1688 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1689 goto send_now; 1690 1691 in_flight = tcp_packets_in_flight(tp); 1692 1693 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1694 1695 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1696 1697 /* From in_flight test above, we know that cwnd > in_flight. */ 1698 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1699 1700 limit = min(send_win, cong_win); 1701 1702 /* If a full-sized TSO skb can be sent, do it. */ 1703 if (limit >= min_t(unsigned int, sk->sk_gso_max_size, 1704 tp->xmit_size_goal_segs * tp->mss_cache)) 1705 goto send_now; 1706 1707 /* Middle in queue won't get any more data, full sendable already? */ 1708 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1709 goto send_now; 1710 1711 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1712 if (win_divisor) { 1713 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1714 1715 /* If at least some fraction of a window is available, 1716 * just use it. 1717 */ 1718 chunk /= win_divisor; 1719 if (limit >= chunk) 1720 goto send_now; 1721 } else { 1722 /* Different approach, try not to defer past a single 1723 * ACK. Receiver should ACK every other full sized 1724 * frame, so if we have space for more than 3 frames 1725 * then send now. 1726 */ 1727 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1728 goto send_now; 1729 } 1730 1731 /* Ok, it looks like it is advisable to defer. 1732 * Do not rearm the timer if already set to not break TCP ACK clocking. 1733 */ 1734 if (!tp->tso_deferred) 1735 tp->tso_deferred = 1 | (jiffies << 1); 1736 1737 if (cong_win < send_win && cong_win < skb->len) 1738 *is_cwnd_limited = true; 1739 1740 return true; 1741 1742 send_now: 1743 tp->tso_deferred = 0; 1744 return false; 1745 } 1746 1747 /* Create a new MTU probe if we are ready. 1748 * MTU probe is regularly attempting to increase the path MTU by 1749 * deliberately sending larger packets. This discovers routing 1750 * changes resulting in larger path MTUs. 1751 * 1752 * Returns 0 if we should wait to probe (no cwnd available), 1753 * 1 if a probe was sent, 1754 * -1 otherwise 1755 */ 1756 static int tcp_mtu_probe(struct sock *sk) 1757 { 1758 struct tcp_sock *tp = tcp_sk(sk); 1759 struct inet_connection_sock *icsk = inet_csk(sk); 1760 struct sk_buff *skb, *nskb, *next; 1761 int len; 1762 int probe_size; 1763 int size_needed; 1764 int copy; 1765 int mss_now; 1766 1767 /* Not currently probing/verifying, 1768 * not in recovery, 1769 * have enough cwnd, and 1770 * not SACKing (the variable headers throw things off) */ 1771 if (!icsk->icsk_mtup.enabled || 1772 icsk->icsk_mtup.probe_size || 1773 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1774 tp->snd_cwnd < 11 || 1775 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1776 return -1; 1777 1778 /* Very simple search strategy: just double the MSS. */ 1779 mss_now = tcp_current_mss(sk); 1780 probe_size = 2 * tp->mss_cache; 1781 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1782 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1783 /* TODO: set timer for probe_converge_event */ 1784 return -1; 1785 } 1786 1787 /* Have enough data in the send queue to probe? */ 1788 if (tp->write_seq - tp->snd_nxt < size_needed) 1789 return -1; 1790 1791 if (tp->snd_wnd < size_needed) 1792 return -1; 1793 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1794 return 0; 1795 1796 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1797 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1798 if (!tcp_packets_in_flight(tp)) 1799 return -1; 1800 else 1801 return 0; 1802 } 1803 1804 /* We're allowed to probe. Build it now. */ 1805 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1806 return -1; 1807 sk->sk_wmem_queued += nskb->truesize; 1808 sk_mem_charge(sk, nskb->truesize); 1809 1810 skb = tcp_send_head(sk); 1811 1812 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1813 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1814 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1815 TCP_SKB_CB(nskb)->sacked = 0; 1816 nskb->csum = 0; 1817 nskb->ip_summed = skb->ip_summed; 1818 1819 tcp_insert_write_queue_before(nskb, skb, sk); 1820 1821 len = 0; 1822 tcp_for_write_queue_from_safe(skb, next, sk) { 1823 copy = min_t(int, skb->len, probe_size - len); 1824 if (nskb->ip_summed) 1825 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1826 else 1827 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1828 skb_put(nskb, copy), 1829 copy, nskb->csum); 1830 1831 if (skb->len <= copy) { 1832 /* We've eaten all the data from this skb. 1833 * Throw it away. */ 1834 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1835 tcp_unlink_write_queue(skb, sk); 1836 sk_wmem_free_skb(sk, skb); 1837 } else { 1838 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1839 ~(TCPHDR_FIN|TCPHDR_PSH); 1840 if (!skb_shinfo(skb)->nr_frags) { 1841 skb_pull(skb, copy); 1842 if (skb->ip_summed != CHECKSUM_PARTIAL) 1843 skb->csum = csum_partial(skb->data, 1844 skb->len, 0); 1845 } else { 1846 __pskb_trim_head(skb, copy); 1847 tcp_set_skb_tso_segs(sk, skb, mss_now); 1848 } 1849 TCP_SKB_CB(skb)->seq += copy; 1850 } 1851 1852 len += copy; 1853 1854 if (len >= probe_size) 1855 break; 1856 } 1857 tcp_init_tso_segs(sk, nskb, nskb->len); 1858 1859 /* We're ready to send. If this fails, the probe will 1860 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1861 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1862 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1863 /* Decrement cwnd here because we are sending 1864 * effectively two packets. */ 1865 tp->snd_cwnd--; 1866 tcp_event_new_data_sent(sk, nskb); 1867 1868 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1869 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1870 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1871 1872 return 1; 1873 } 1874 1875 return -1; 1876 } 1877 1878 /* This routine writes packets to the network. It advances the 1879 * send_head. This happens as incoming acks open up the remote 1880 * window for us. 1881 * 1882 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1883 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1884 * account rare use of URG, this is not a big flaw. 1885 * 1886 * Send at most one packet when push_one > 0. Temporarily ignore 1887 * cwnd limit to force at most one packet out when push_one == 2. 1888 1889 * Returns true, if no segments are in flight and we have queued segments, 1890 * but cannot send anything now because of SWS or another problem. 1891 */ 1892 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1893 int push_one, gfp_t gfp) 1894 { 1895 struct tcp_sock *tp = tcp_sk(sk); 1896 struct sk_buff *skb; 1897 unsigned int tso_segs, sent_pkts; 1898 int cwnd_quota; 1899 int result; 1900 bool is_cwnd_limited = false; 1901 1902 sent_pkts = 0; 1903 1904 if (!push_one) { 1905 /* Do MTU probing. */ 1906 result = tcp_mtu_probe(sk); 1907 if (!result) { 1908 return false; 1909 } else if (result > 0) { 1910 sent_pkts = 1; 1911 } 1912 } 1913 1914 while ((skb = tcp_send_head(sk))) { 1915 unsigned int limit; 1916 1917 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1918 BUG_ON(!tso_segs); 1919 1920 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) 1921 goto repair; /* Skip network transmission */ 1922 1923 cwnd_quota = tcp_cwnd_test(tp, skb); 1924 if (!cwnd_quota) { 1925 is_cwnd_limited = true; 1926 if (push_one == 2) 1927 /* Force out a loss probe pkt. */ 1928 cwnd_quota = 1; 1929 else 1930 break; 1931 } 1932 1933 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1934 break; 1935 1936 if (tso_segs == 1) { 1937 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1938 (tcp_skb_is_last(sk, skb) ? 1939 nonagle : TCP_NAGLE_PUSH)))) 1940 break; 1941 } else { 1942 if (!push_one && 1943 tcp_tso_should_defer(sk, skb, &is_cwnd_limited)) 1944 break; 1945 } 1946 1947 /* TCP Small Queues : 1948 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 1949 * This allows for : 1950 * - better RTT estimation and ACK scheduling 1951 * - faster recovery 1952 * - high rates 1953 * Alas, some drivers / subsystems require a fair amount 1954 * of queued bytes to ensure line rate. 1955 * One example is wifi aggregation (802.11 AMPDU) 1956 */ 1957 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes, 1958 sk->sk_pacing_rate >> 10); 1959 1960 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 1961 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 1962 /* It is possible TX completion already happened 1963 * before we set TSQ_THROTTLED, so we must 1964 * test again the condition. 1965 */ 1966 smp_mb__after_atomic(); 1967 if (atomic_read(&sk->sk_wmem_alloc) > limit) 1968 break; 1969 } 1970 1971 limit = mss_now; 1972 if (tso_segs > 1 && !tcp_urg_mode(tp)) 1973 limit = tcp_mss_split_point(sk, skb, mss_now, 1974 min_t(unsigned int, 1975 cwnd_quota, 1976 sk->sk_gso_max_segs), 1977 nonagle); 1978 1979 if (skb->len > limit && 1980 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 1981 break; 1982 1983 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1984 1985 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 1986 break; 1987 1988 repair: 1989 /* Advance the send_head. This one is sent out. 1990 * This call will increment packets_out. 1991 */ 1992 tcp_event_new_data_sent(sk, skb); 1993 1994 tcp_minshall_update(tp, mss_now, skb); 1995 sent_pkts += tcp_skb_pcount(skb); 1996 1997 if (push_one) 1998 break; 1999 } 2000 2001 if (likely(sent_pkts)) { 2002 if (tcp_in_cwnd_reduction(sk)) 2003 tp->prr_out += sent_pkts; 2004 2005 /* Send one loss probe per tail loss episode. */ 2006 if (push_one != 2) 2007 tcp_schedule_loss_probe(sk); 2008 tcp_cwnd_validate(sk, is_cwnd_limited); 2009 return false; 2010 } 2011 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk)); 2012 } 2013 2014 bool tcp_schedule_loss_probe(struct sock *sk) 2015 { 2016 struct inet_connection_sock *icsk = inet_csk(sk); 2017 struct tcp_sock *tp = tcp_sk(sk); 2018 u32 timeout, tlp_time_stamp, rto_time_stamp; 2019 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2020 2021 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 2022 return false; 2023 /* No consecutive loss probes. */ 2024 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2025 tcp_rearm_rto(sk); 2026 return false; 2027 } 2028 /* Don't do any loss probe on a Fast Open connection before 3WHS 2029 * finishes. 2030 */ 2031 if (sk->sk_state == TCP_SYN_RECV) 2032 return false; 2033 2034 /* TLP is only scheduled when next timer event is RTO. */ 2035 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2036 return false; 2037 2038 /* Schedule a loss probe in 2*RTT for SACK capable connections 2039 * in Open state, that are either limited by cwnd or application. 2040 */ 2041 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out || 2042 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2043 return false; 2044 2045 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2046 tcp_send_head(sk)) 2047 return false; 2048 2049 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2050 * for delayed ack when there's one outstanding packet. 2051 */ 2052 timeout = rtt << 1; 2053 if (tp->packets_out == 1) 2054 timeout = max_t(u32, timeout, 2055 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2056 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2057 2058 /* If RTO is shorter, just schedule TLP in its place. */ 2059 tlp_time_stamp = tcp_time_stamp + timeout; 2060 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2061 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2062 s32 delta = rto_time_stamp - tcp_time_stamp; 2063 if (delta > 0) 2064 timeout = delta; 2065 } 2066 2067 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2068 TCP_RTO_MAX); 2069 return true; 2070 } 2071 2072 /* Thanks to skb fast clones, we can detect if a prior transmit of 2073 * a packet is still in a qdisc or driver queue. 2074 * In this case, there is very little point doing a retransmit ! 2075 * Note: This is called from BH context only. 2076 */ 2077 static bool skb_still_in_host_queue(const struct sock *sk, 2078 const struct sk_buff *skb) 2079 { 2080 const struct sk_buff *fclone = skb + 1; 2081 2082 if (unlikely(skb->fclone == SKB_FCLONE_ORIG && 2083 fclone->fclone == SKB_FCLONE_CLONE)) { 2084 NET_INC_STATS_BH(sock_net(sk), 2085 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2086 return true; 2087 } 2088 return false; 2089 } 2090 2091 /* When probe timeout (PTO) fires, send a new segment if one exists, else 2092 * retransmit the last segment. 2093 */ 2094 void tcp_send_loss_probe(struct sock *sk) 2095 { 2096 struct tcp_sock *tp = tcp_sk(sk); 2097 struct sk_buff *skb; 2098 int pcount; 2099 int mss = tcp_current_mss(sk); 2100 int err = -1; 2101 2102 if (tcp_send_head(sk) != NULL) { 2103 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2104 goto rearm_timer; 2105 } 2106 2107 /* At most one outstanding TLP retransmission. */ 2108 if (tp->tlp_high_seq) 2109 goto rearm_timer; 2110 2111 /* Retransmit last segment. */ 2112 skb = tcp_write_queue_tail(sk); 2113 if (WARN_ON(!skb)) 2114 goto rearm_timer; 2115 2116 if (skb_still_in_host_queue(sk, skb)) 2117 goto rearm_timer; 2118 2119 pcount = tcp_skb_pcount(skb); 2120 if (WARN_ON(!pcount)) 2121 goto rearm_timer; 2122 2123 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2124 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2125 GFP_ATOMIC))) 2126 goto rearm_timer; 2127 skb = tcp_write_queue_tail(sk); 2128 } 2129 2130 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2131 goto rearm_timer; 2132 2133 err = __tcp_retransmit_skb(sk, skb); 2134 2135 /* Record snd_nxt for loss detection. */ 2136 if (likely(!err)) 2137 tp->tlp_high_seq = tp->snd_nxt; 2138 2139 rearm_timer: 2140 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2141 inet_csk(sk)->icsk_rto, 2142 TCP_RTO_MAX); 2143 2144 if (likely(!err)) 2145 NET_INC_STATS_BH(sock_net(sk), 2146 LINUX_MIB_TCPLOSSPROBES); 2147 } 2148 2149 /* Push out any pending frames which were held back due to 2150 * TCP_CORK or attempt at coalescing tiny packets. 2151 * The socket must be locked by the caller. 2152 */ 2153 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2154 int nonagle) 2155 { 2156 /* If we are closed, the bytes will have to remain here. 2157 * In time closedown will finish, we empty the write queue and 2158 * all will be happy. 2159 */ 2160 if (unlikely(sk->sk_state == TCP_CLOSE)) 2161 return; 2162 2163 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2164 sk_gfp_atomic(sk, GFP_ATOMIC))) 2165 tcp_check_probe_timer(sk); 2166 } 2167 2168 /* Send _single_ skb sitting at the send head. This function requires 2169 * true push pending frames to setup probe timer etc. 2170 */ 2171 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2172 { 2173 struct sk_buff *skb = tcp_send_head(sk); 2174 2175 BUG_ON(!skb || skb->len < mss_now); 2176 2177 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2178 } 2179 2180 /* This function returns the amount that we can raise the 2181 * usable window based on the following constraints 2182 * 2183 * 1. The window can never be shrunk once it is offered (RFC 793) 2184 * 2. We limit memory per socket 2185 * 2186 * RFC 1122: 2187 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2188 * RECV.NEXT + RCV.WIN fixed until: 2189 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2190 * 2191 * i.e. don't raise the right edge of the window until you can raise 2192 * it at least MSS bytes. 2193 * 2194 * Unfortunately, the recommended algorithm breaks header prediction, 2195 * since header prediction assumes th->window stays fixed. 2196 * 2197 * Strictly speaking, keeping th->window fixed violates the receiver 2198 * side SWS prevention criteria. The problem is that under this rule 2199 * a stream of single byte packets will cause the right side of the 2200 * window to always advance by a single byte. 2201 * 2202 * Of course, if the sender implements sender side SWS prevention 2203 * then this will not be a problem. 2204 * 2205 * BSD seems to make the following compromise: 2206 * 2207 * If the free space is less than the 1/4 of the maximum 2208 * space available and the free space is less than 1/2 mss, 2209 * then set the window to 0. 2210 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2211 * Otherwise, just prevent the window from shrinking 2212 * and from being larger than the largest representable value. 2213 * 2214 * This prevents incremental opening of the window in the regime 2215 * where TCP is limited by the speed of the reader side taking 2216 * data out of the TCP receive queue. It does nothing about 2217 * those cases where the window is constrained on the sender side 2218 * because the pipeline is full. 2219 * 2220 * BSD also seems to "accidentally" limit itself to windows that are a 2221 * multiple of MSS, at least until the free space gets quite small. 2222 * This would appear to be a side effect of the mbuf implementation. 2223 * Combining these two algorithms results in the observed behavior 2224 * of having a fixed window size at almost all times. 2225 * 2226 * Below we obtain similar behavior by forcing the offered window to 2227 * a multiple of the mss when it is feasible to do so. 2228 * 2229 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2230 * Regular options like TIMESTAMP are taken into account. 2231 */ 2232 u32 __tcp_select_window(struct sock *sk) 2233 { 2234 struct inet_connection_sock *icsk = inet_csk(sk); 2235 struct tcp_sock *tp = tcp_sk(sk); 2236 /* MSS for the peer's data. Previous versions used mss_clamp 2237 * here. I don't know if the value based on our guesses 2238 * of peer's MSS is better for the performance. It's more correct 2239 * but may be worse for the performance because of rcv_mss 2240 * fluctuations. --SAW 1998/11/1 2241 */ 2242 int mss = icsk->icsk_ack.rcv_mss; 2243 int free_space = tcp_space(sk); 2244 int allowed_space = tcp_full_space(sk); 2245 int full_space = min_t(int, tp->window_clamp, allowed_space); 2246 int window; 2247 2248 if (mss > full_space) 2249 mss = full_space; 2250 2251 if (free_space < (full_space >> 1)) { 2252 icsk->icsk_ack.quick = 0; 2253 2254 if (sk_under_memory_pressure(sk)) 2255 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2256 4U * tp->advmss); 2257 2258 /* free_space might become our new window, make sure we don't 2259 * increase it due to wscale. 2260 */ 2261 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2262 2263 /* if free space is less than mss estimate, or is below 1/16th 2264 * of the maximum allowed, try to move to zero-window, else 2265 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2266 * new incoming data is dropped due to memory limits. 2267 * With large window, mss test triggers way too late in order 2268 * to announce zero window in time before rmem limit kicks in. 2269 */ 2270 if (free_space < (allowed_space >> 4) || free_space < mss) 2271 return 0; 2272 } 2273 2274 if (free_space > tp->rcv_ssthresh) 2275 free_space = tp->rcv_ssthresh; 2276 2277 /* Don't do rounding if we are using window scaling, since the 2278 * scaled window will not line up with the MSS boundary anyway. 2279 */ 2280 window = tp->rcv_wnd; 2281 if (tp->rx_opt.rcv_wscale) { 2282 window = free_space; 2283 2284 /* Advertise enough space so that it won't get scaled away. 2285 * Import case: prevent zero window announcement if 2286 * 1<<rcv_wscale > mss. 2287 */ 2288 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2289 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2290 << tp->rx_opt.rcv_wscale); 2291 } else { 2292 /* Get the largest window that is a nice multiple of mss. 2293 * Window clamp already applied above. 2294 * If our current window offering is within 1 mss of the 2295 * free space we just keep it. This prevents the divide 2296 * and multiply from happening most of the time. 2297 * We also don't do any window rounding when the free space 2298 * is too small. 2299 */ 2300 if (window <= free_space - mss || window > free_space) 2301 window = (free_space / mss) * mss; 2302 else if (mss == full_space && 2303 free_space > window + (full_space >> 1)) 2304 window = free_space; 2305 } 2306 2307 return window; 2308 } 2309 2310 /* Collapses two adjacent SKB's during retransmission. */ 2311 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2312 { 2313 struct tcp_sock *tp = tcp_sk(sk); 2314 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2315 int skb_size, next_skb_size; 2316 2317 skb_size = skb->len; 2318 next_skb_size = next_skb->len; 2319 2320 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2321 2322 tcp_highest_sack_combine(sk, next_skb, skb); 2323 2324 tcp_unlink_write_queue(next_skb, sk); 2325 2326 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2327 next_skb_size); 2328 2329 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2330 skb->ip_summed = CHECKSUM_PARTIAL; 2331 2332 if (skb->ip_summed != CHECKSUM_PARTIAL) 2333 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2334 2335 /* Update sequence range on original skb. */ 2336 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2337 2338 /* Merge over control information. This moves PSH/FIN etc. over */ 2339 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2340 2341 /* All done, get rid of second SKB and account for it so 2342 * packet counting does not break. 2343 */ 2344 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2345 2346 /* changed transmit queue under us so clear hints */ 2347 tcp_clear_retrans_hints_partial(tp); 2348 if (next_skb == tp->retransmit_skb_hint) 2349 tp->retransmit_skb_hint = skb; 2350 2351 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2352 2353 sk_wmem_free_skb(sk, next_skb); 2354 } 2355 2356 /* Check if coalescing SKBs is legal. */ 2357 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2358 { 2359 if (tcp_skb_pcount(skb) > 1) 2360 return false; 2361 /* TODO: SACK collapsing could be used to remove this condition */ 2362 if (skb_shinfo(skb)->nr_frags != 0) 2363 return false; 2364 if (skb_cloned(skb)) 2365 return false; 2366 if (skb == tcp_send_head(sk)) 2367 return false; 2368 /* Some heurestics for collapsing over SACK'd could be invented */ 2369 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2370 return false; 2371 2372 return true; 2373 } 2374 2375 /* Collapse packets in the retransmit queue to make to create 2376 * less packets on the wire. This is only done on retransmission. 2377 */ 2378 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2379 int space) 2380 { 2381 struct tcp_sock *tp = tcp_sk(sk); 2382 struct sk_buff *skb = to, *tmp; 2383 bool first = true; 2384 2385 if (!sysctl_tcp_retrans_collapse) 2386 return; 2387 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2388 return; 2389 2390 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2391 if (!tcp_can_collapse(sk, skb)) 2392 break; 2393 2394 space -= skb->len; 2395 2396 if (first) { 2397 first = false; 2398 continue; 2399 } 2400 2401 if (space < 0) 2402 break; 2403 /* Punt if not enough space exists in the first SKB for 2404 * the data in the second 2405 */ 2406 if (skb->len > skb_availroom(to)) 2407 break; 2408 2409 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2410 break; 2411 2412 tcp_collapse_retrans(sk, to); 2413 } 2414 } 2415 2416 /* This retransmits one SKB. Policy decisions and retransmit queue 2417 * state updates are done by the caller. Returns non-zero if an 2418 * error occurred which prevented the send. 2419 */ 2420 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2421 { 2422 struct tcp_sock *tp = tcp_sk(sk); 2423 struct inet_connection_sock *icsk = inet_csk(sk); 2424 unsigned int cur_mss; 2425 int err; 2426 2427 /* Inconslusive MTU probe */ 2428 if (icsk->icsk_mtup.probe_size) { 2429 icsk->icsk_mtup.probe_size = 0; 2430 } 2431 2432 /* Do not sent more than we queued. 1/4 is reserved for possible 2433 * copying overhead: fragmentation, tunneling, mangling etc. 2434 */ 2435 if (atomic_read(&sk->sk_wmem_alloc) > 2436 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2437 return -EAGAIN; 2438 2439 if (skb_still_in_host_queue(sk, skb)) 2440 return -EBUSY; 2441 2442 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2443 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2444 BUG(); 2445 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2446 return -ENOMEM; 2447 } 2448 2449 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2450 return -EHOSTUNREACH; /* Routing failure or similar. */ 2451 2452 cur_mss = tcp_current_mss(sk); 2453 2454 /* If receiver has shrunk his window, and skb is out of 2455 * new window, do not retransmit it. The exception is the 2456 * case, when window is shrunk to zero. In this case 2457 * our retransmit serves as a zero window probe. 2458 */ 2459 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2460 TCP_SKB_CB(skb)->seq != tp->snd_una) 2461 return -EAGAIN; 2462 2463 if (skb->len > cur_mss) { 2464 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC)) 2465 return -ENOMEM; /* We'll try again later. */ 2466 } else { 2467 int oldpcount = tcp_skb_pcount(skb); 2468 2469 if (unlikely(oldpcount > 1)) { 2470 if (skb_unclone(skb, GFP_ATOMIC)) 2471 return -ENOMEM; 2472 tcp_init_tso_segs(sk, skb, cur_mss); 2473 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2474 } 2475 } 2476 2477 tcp_retrans_try_collapse(sk, skb, cur_mss); 2478 2479 /* Make a copy, if the first transmission SKB clone we made 2480 * is still in somebody's hands, else make a clone. 2481 */ 2482 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2483 2484 /* make sure skb->data is aligned on arches that require it 2485 * and check if ack-trimming & collapsing extended the headroom 2486 * beyond what csum_start can cover. 2487 */ 2488 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2489 skb_headroom(skb) >= 0xFFFF)) { 2490 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2491 GFP_ATOMIC); 2492 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2493 -ENOBUFS; 2494 } else { 2495 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2496 } 2497 2498 if (likely(!err)) { 2499 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2500 /* Update global TCP statistics. */ 2501 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2502 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2503 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2504 tp->total_retrans++; 2505 } 2506 return err; 2507 } 2508 2509 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2510 { 2511 struct tcp_sock *tp = tcp_sk(sk); 2512 int err = __tcp_retransmit_skb(sk, skb); 2513 2514 if (err == 0) { 2515 #if FASTRETRANS_DEBUG > 0 2516 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2517 net_dbg_ratelimited("retrans_out leaked\n"); 2518 } 2519 #endif 2520 if (!tp->retrans_out) 2521 tp->lost_retrans_low = tp->snd_nxt; 2522 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2523 tp->retrans_out += tcp_skb_pcount(skb); 2524 2525 /* Save stamp of the first retransmit. */ 2526 if (!tp->retrans_stamp) 2527 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 2528 2529 /* snd_nxt is stored to detect loss of retransmitted segment, 2530 * see tcp_input.c tcp_sacktag_write_queue(). 2531 */ 2532 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2533 } else if (err != -EBUSY) { 2534 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2535 } 2536 2537 if (tp->undo_retrans < 0) 2538 tp->undo_retrans = 0; 2539 tp->undo_retrans += tcp_skb_pcount(skb); 2540 return err; 2541 } 2542 2543 /* Check if we forward retransmits are possible in the current 2544 * window/congestion state. 2545 */ 2546 static bool tcp_can_forward_retransmit(struct sock *sk) 2547 { 2548 const struct inet_connection_sock *icsk = inet_csk(sk); 2549 const struct tcp_sock *tp = tcp_sk(sk); 2550 2551 /* Forward retransmissions are possible only during Recovery. */ 2552 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2553 return false; 2554 2555 /* No forward retransmissions in Reno are possible. */ 2556 if (tcp_is_reno(tp)) 2557 return false; 2558 2559 /* Yeah, we have to make difficult choice between forward transmission 2560 * and retransmission... Both ways have their merits... 2561 * 2562 * For now we do not retransmit anything, while we have some new 2563 * segments to send. In the other cases, follow rule 3 for 2564 * NextSeg() specified in RFC3517. 2565 */ 2566 2567 if (tcp_may_send_now(sk)) 2568 return false; 2569 2570 return true; 2571 } 2572 2573 /* This gets called after a retransmit timeout, and the initially 2574 * retransmitted data is acknowledged. It tries to continue 2575 * resending the rest of the retransmit queue, until either 2576 * we've sent it all or the congestion window limit is reached. 2577 * If doing SACK, the first ACK which comes back for a timeout 2578 * based retransmit packet might feed us FACK information again. 2579 * If so, we use it to avoid unnecessarily retransmissions. 2580 */ 2581 void tcp_xmit_retransmit_queue(struct sock *sk) 2582 { 2583 const struct inet_connection_sock *icsk = inet_csk(sk); 2584 struct tcp_sock *tp = tcp_sk(sk); 2585 struct sk_buff *skb; 2586 struct sk_buff *hole = NULL; 2587 u32 last_lost; 2588 int mib_idx; 2589 int fwd_rexmitting = 0; 2590 2591 if (!tp->packets_out) 2592 return; 2593 2594 if (!tp->lost_out) 2595 tp->retransmit_high = tp->snd_una; 2596 2597 if (tp->retransmit_skb_hint) { 2598 skb = tp->retransmit_skb_hint; 2599 last_lost = TCP_SKB_CB(skb)->end_seq; 2600 if (after(last_lost, tp->retransmit_high)) 2601 last_lost = tp->retransmit_high; 2602 } else { 2603 skb = tcp_write_queue_head(sk); 2604 last_lost = tp->snd_una; 2605 } 2606 2607 tcp_for_write_queue_from(skb, sk) { 2608 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2609 2610 if (skb == tcp_send_head(sk)) 2611 break; 2612 /* we could do better than to assign each time */ 2613 if (hole == NULL) 2614 tp->retransmit_skb_hint = skb; 2615 2616 /* Assume this retransmit will generate 2617 * only one packet for congestion window 2618 * calculation purposes. This works because 2619 * tcp_retransmit_skb() will chop up the 2620 * packet to be MSS sized and all the 2621 * packet counting works out. 2622 */ 2623 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2624 return; 2625 2626 if (fwd_rexmitting) { 2627 begin_fwd: 2628 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2629 break; 2630 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2631 2632 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2633 tp->retransmit_high = last_lost; 2634 if (!tcp_can_forward_retransmit(sk)) 2635 break; 2636 /* Backtrack if necessary to non-L'ed skb */ 2637 if (hole != NULL) { 2638 skb = hole; 2639 hole = NULL; 2640 } 2641 fwd_rexmitting = 1; 2642 goto begin_fwd; 2643 2644 } else if (!(sacked & TCPCB_LOST)) { 2645 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2646 hole = skb; 2647 continue; 2648 2649 } else { 2650 last_lost = TCP_SKB_CB(skb)->end_seq; 2651 if (icsk->icsk_ca_state != TCP_CA_Loss) 2652 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2653 else 2654 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2655 } 2656 2657 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2658 continue; 2659 2660 if (tcp_retransmit_skb(sk, skb)) 2661 return; 2662 2663 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2664 2665 if (tcp_in_cwnd_reduction(sk)) 2666 tp->prr_out += tcp_skb_pcount(skb); 2667 2668 if (skb == tcp_write_queue_head(sk)) 2669 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2670 inet_csk(sk)->icsk_rto, 2671 TCP_RTO_MAX); 2672 } 2673 } 2674 2675 /* Send a fin. The caller locks the socket for us. This cannot be 2676 * allowed to fail queueing a FIN frame under any circumstances. 2677 */ 2678 void tcp_send_fin(struct sock *sk) 2679 { 2680 struct tcp_sock *tp = tcp_sk(sk); 2681 struct sk_buff *skb = tcp_write_queue_tail(sk); 2682 int mss_now; 2683 2684 /* Optimization, tack on the FIN if we have a queue of 2685 * unsent frames. But be careful about outgoing SACKS 2686 * and IP options. 2687 */ 2688 mss_now = tcp_current_mss(sk); 2689 2690 if (tcp_send_head(sk) != NULL) { 2691 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN; 2692 TCP_SKB_CB(skb)->end_seq++; 2693 tp->write_seq++; 2694 } else { 2695 /* Socket is locked, keep trying until memory is available. */ 2696 for (;;) { 2697 skb = alloc_skb_fclone(MAX_TCP_HEADER, 2698 sk->sk_allocation); 2699 if (skb) 2700 break; 2701 yield(); 2702 } 2703 2704 /* Reserve space for headers and prepare control bits. */ 2705 skb_reserve(skb, MAX_TCP_HEADER); 2706 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2707 tcp_init_nondata_skb(skb, tp->write_seq, 2708 TCPHDR_ACK | TCPHDR_FIN); 2709 tcp_queue_skb(sk, skb); 2710 } 2711 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2712 } 2713 2714 /* We get here when a process closes a file descriptor (either due to 2715 * an explicit close() or as a byproduct of exit()'ing) and there 2716 * was unread data in the receive queue. This behavior is recommended 2717 * by RFC 2525, section 2.17. -DaveM 2718 */ 2719 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2720 { 2721 struct sk_buff *skb; 2722 2723 /* NOTE: No TCP options attached and we never retransmit this. */ 2724 skb = alloc_skb(MAX_TCP_HEADER, priority); 2725 if (!skb) { 2726 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2727 return; 2728 } 2729 2730 /* Reserve space for headers and prepare control bits. */ 2731 skb_reserve(skb, MAX_TCP_HEADER); 2732 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2733 TCPHDR_ACK | TCPHDR_RST); 2734 /* Send it off. */ 2735 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2736 if (tcp_transmit_skb(sk, skb, 0, priority)) 2737 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2738 2739 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2740 } 2741 2742 /* Send a crossed SYN-ACK during socket establishment. 2743 * WARNING: This routine must only be called when we have already sent 2744 * a SYN packet that crossed the incoming SYN that caused this routine 2745 * to get called. If this assumption fails then the initial rcv_wnd 2746 * and rcv_wscale values will not be correct. 2747 */ 2748 int tcp_send_synack(struct sock *sk) 2749 { 2750 struct sk_buff *skb; 2751 2752 skb = tcp_write_queue_head(sk); 2753 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2754 pr_debug("%s: wrong queue state\n", __func__); 2755 return -EFAULT; 2756 } 2757 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2758 if (skb_cloned(skb)) { 2759 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2760 if (nskb == NULL) 2761 return -ENOMEM; 2762 tcp_unlink_write_queue(skb, sk); 2763 skb_header_release(nskb); 2764 __tcp_add_write_queue_head(sk, nskb); 2765 sk_wmem_free_skb(sk, skb); 2766 sk->sk_wmem_queued += nskb->truesize; 2767 sk_mem_charge(sk, nskb->truesize); 2768 skb = nskb; 2769 } 2770 2771 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2772 TCP_ECN_send_synack(tcp_sk(sk), skb); 2773 } 2774 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2775 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2776 } 2777 2778 /** 2779 * tcp_make_synack - Prepare a SYN-ACK. 2780 * sk: listener socket 2781 * dst: dst entry attached to the SYNACK 2782 * req: request_sock pointer 2783 * 2784 * Allocate one skb and build a SYNACK packet. 2785 * @dst is consumed : Caller should not use it again. 2786 */ 2787 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2788 struct request_sock *req, 2789 struct tcp_fastopen_cookie *foc) 2790 { 2791 struct tcp_out_options opts; 2792 struct inet_request_sock *ireq = inet_rsk(req); 2793 struct tcp_sock *tp = tcp_sk(sk); 2794 struct tcphdr *th; 2795 struct sk_buff *skb; 2796 struct tcp_md5sig_key *md5; 2797 int tcp_header_size; 2798 int mss; 2799 2800 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC); 2801 if (unlikely(!skb)) { 2802 dst_release(dst); 2803 return NULL; 2804 } 2805 /* Reserve space for headers. */ 2806 skb_reserve(skb, MAX_TCP_HEADER); 2807 2808 skb_dst_set(skb, dst); 2809 security_skb_owned_by(skb, sk); 2810 2811 mss = dst_metric_advmss(dst); 2812 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2813 mss = tp->rx_opt.user_mss; 2814 2815 memset(&opts, 0, sizeof(opts)); 2816 #ifdef CONFIG_SYN_COOKIES 2817 if (unlikely(req->cookie_ts)) 2818 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req); 2819 else 2820 #endif 2821 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2822 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5, 2823 foc) + sizeof(*th); 2824 2825 skb_push(skb, tcp_header_size); 2826 skb_reset_transport_header(skb); 2827 2828 th = tcp_hdr(skb); 2829 memset(th, 0, sizeof(struct tcphdr)); 2830 th->syn = 1; 2831 th->ack = 1; 2832 TCP_ECN_make_synack(req, th); 2833 th->source = htons(ireq->ir_num); 2834 th->dest = ireq->ir_rmt_port; 2835 /* Setting of flags are superfluous here for callers (and ECE is 2836 * not even correctly set) 2837 */ 2838 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2839 TCPHDR_SYN | TCPHDR_ACK); 2840 2841 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2842 /* XXX data is queued and acked as is. No buffer/window check */ 2843 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 2844 2845 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2846 th->window = htons(min(req->rcv_wnd, 65535U)); 2847 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2848 th->doff = (tcp_header_size >> 2); 2849 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS); 2850 2851 #ifdef CONFIG_TCP_MD5SIG 2852 /* Okay, we have all we need - do the md5 hash if needed */ 2853 if (md5) { 2854 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2855 md5, NULL, req, skb); 2856 } 2857 #endif 2858 2859 return skb; 2860 } 2861 EXPORT_SYMBOL(tcp_make_synack); 2862 2863 /* Do all connect socket setups that can be done AF independent. */ 2864 static void tcp_connect_init(struct sock *sk) 2865 { 2866 const struct dst_entry *dst = __sk_dst_get(sk); 2867 struct tcp_sock *tp = tcp_sk(sk); 2868 __u8 rcv_wscale; 2869 2870 /* We'll fix this up when we get a response from the other end. 2871 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2872 */ 2873 tp->tcp_header_len = sizeof(struct tcphdr) + 2874 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2875 2876 #ifdef CONFIG_TCP_MD5SIG 2877 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2878 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2879 #endif 2880 2881 /* If user gave his TCP_MAXSEG, record it to clamp */ 2882 if (tp->rx_opt.user_mss) 2883 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2884 tp->max_window = 0; 2885 tcp_mtup_init(sk); 2886 tcp_sync_mss(sk, dst_mtu(dst)); 2887 2888 if (!tp->window_clamp) 2889 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2890 tp->advmss = dst_metric_advmss(dst); 2891 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2892 tp->advmss = tp->rx_opt.user_mss; 2893 2894 tcp_initialize_rcv_mss(sk); 2895 2896 /* limit the window selection if the user enforce a smaller rx buffer */ 2897 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2898 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 2899 tp->window_clamp = tcp_full_space(sk); 2900 2901 tcp_select_initial_window(tcp_full_space(sk), 2902 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2903 &tp->rcv_wnd, 2904 &tp->window_clamp, 2905 sysctl_tcp_window_scaling, 2906 &rcv_wscale, 2907 dst_metric(dst, RTAX_INITRWND)); 2908 2909 tp->rx_opt.rcv_wscale = rcv_wscale; 2910 tp->rcv_ssthresh = tp->rcv_wnd; 2911 2912 sk->sk_err = 0; 2913 sock_reset_flag(sk, SOCK_DONE); 2914 tp->snd_wnd = 0; 2915 tcp_init_wl(tp, 0); 2916 tp->snd_una = tp->write_seq; 2917 tp->snd_sml = tp->write_seq; 2918 tp->snd_up = tp->write_seq; 2919 tp->snd_nxt = tp->write_seq; 2920 2921 if (likely(!tp->repair)) 2922 tp->rcv_nxt = 0; 2923 else 2924 tp->rcv_tstamp = tcp_time_stamp; 2925 tp->rcv_wup = tp->rcv_nxt; 2926 tp->copied_seq = tp->rcv_nxt; 2927 2928 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2929 inet_csk(sk)->icsk_retransmits = 0; 2930 tcp_clear_retrans(tp); 2931 } 2932 2933 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 2934 { 2935 struct tcp_sock *tp = tcp_sk(sk); 2936 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 2937 2938 tcb->end_seq += skb->len; 2939 skb_header_release(skb); 2940 __tcp_add_write_queue_tail(sk, skb); 2941 sk->sk_wmem_queued += skb->truesize; 2942 sk_mem_charge(sk, skb->truesize); 2943 tp->write_seq = tcb->end_seq; 2944 tp->packets_out += tcp_skb_pcount(skb); 2945 } 2946 2947 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 2948 * queue a data-only packet after the regular SYN, such that regular SYNs 2949 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 2950 * only the SYN sequence, the data are retransmitted in the first ACK. 2951 * If cookie is not cached or other error occurs, falls back to send a 2952 * regular SYN with Fast Open cookie request option. 2953 */ 2954 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 2955 { 2956 struct tcp_sock *tp = tcp_sk(sk); 2957 struct tcp_fastopen_request *fo = tp->fastopen_req; 2958 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen; 2959 struct sk_buff *syn_data = NULL, *data; 2960 unsigned long last_syn_loss = 0; 2961 2962 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 2963 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 2964 &syn_loss, &last_syn_loss); 2965 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 2966 if (syn_loss > 1 && 2967 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 2968 fo->cookie.len = -1; 2969 goto fallback; 2970 } 2971 2972 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 2973 fo->cookie.len = -1; 2974 else if (fo->cookie.len <= 0) 2975 goto fallback; 2976 2977 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 2978 * user-MSS. Reserve maximum option space for middleboxes that add 2979 * private TCP options. The cost is reduced data space in SYN :( 2980 */ 2981 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 2982 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2983 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 2984 MAX_TCP_OPTION_SPACE; 2985 2986 space = min_t(size_t, space, fo->size); 2987 2988 /* limit to order-0 allocations */ 2989 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 2990 2991 syn_data = skb_copy_expand(syn, MAX_TCP_HEADER, space, 2992 sk->sk_allocation); 2993 if (syn_data == NULL) 2994 goto fallback; 2995 2996 for (i = 0; i < iovlen && syn_data->len < space; ++i) { 2997 struct iovec *iov = &fo->data->msg_iov[i]; 2998 unsigned char __user *from = iov->iov_base; 2999 int len = iov->iov_len; 3000 3001 if (syn_data->len + len > space) 3002 len = space - syn_data->len; 3003 else if (i + 1 == iovlen) 3004 /* No more data pending in inet_wait_for_connect() */ 3005 fo->data = NULL; 3006 3007 if (skb_add_data(syn_data, from, len)) 3008 goto fallback; 3009 } 3010 3011 /* Queue a data-only packet after the regular SYN for retransmission */ 3012 data = pskb_copy(syn_data, sk->sk_allocation); 3013 if (data == NULL) 3014 goto fallback; 3015 TCP_SKB_CB(data)->seq++; 3016 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN; 3017 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH); 3018 tcp_connect_queue_skb(sk, data); 3019 fo->copied = data->len; 3020 3021 /* syn_data is about to be sent, we need to take current time stamps 3022 * for the packets that are in write queue : SYN packet and DATA 3023 */ 3024 skb_mstamp_get(&syn->skb_mstamp); 3025 data->skb_mstamp = syn->skb_mstamp; 3026 3027 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) { 3028 tp->syn_data = (fo->copied > 0); 3029 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3030 goto done; 3031 } 3032 syn_data = NULL; 3033 3034 fallback: 3035 /* Send a regular SYN with Fast Open cookie request option */ 3036 if (fo->cookie.len > 0) 3037 fo->cookie.len = 0; 3038 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3039 if (err) 3040 tp->syn_fastopen = 0; 3041 kfree_skb(syn_data); 3042 done: 3043 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3044 return err; 3045 } 3046 3047 /* Build a SYN and send it off. */ 3048 int tcp_connect(struct sock *sk) 3049 { 3050 struct tcp_sock *tp = tcp_sk(sk); 3051 struct sk_buff *buff; 3052 int err; 3053 3054 tcp_connect_init(sk); 3055 3056 if (unlikely(tp->repair)) { 3057 tcp_finish_connect(sk, NULL); 3058 return 0; 3059 } 3060 3061 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 3062 if (unlikely(buff == NULL)) 3063 return -ENOBUFS; 3064 3065 /* Reserve space for headers. */ 3066 skb_reserve(buff, MAX_TCP_HEADER); 3067 3068 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3069 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp; 3070 tcp_connect_queue_skb(sk, buff); 3071 TCP_ECN_send_syn(sk, buff); 3072 3073 /* Send off SYN; include data in Fast Open. */ 3074 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3075 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3076 if (err == -ECONNREFUSED) 3077 return err; 3078 3079 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3080 * in order to make this packet get counted in tcpOutSegs. 3081 */ 3082 tp->snd_nxt = tp->write_seq; 3083 tp->pushed_seq = tp->write_seq; 3084 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3085 3086 /* Timer for repeating the SYN until an answer. */ 3087 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3088 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3089 return 0; 3090 } 3091 EXPORT_SYMBOL(tcp_connect); 3092 3093 /* Send out a delayed ack, the caller does the policy checking 3094 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3095 * for details. 3096 */ 3097 void tcp_send_delayed_ack(struct sock *sk) 3098 { 3099 struct inet_connection_sock *icsk = inet_csk(sk); 3100 int ato = icsk->icsk_ack.ato; 3101 unsigned long timeout; 3102 3103 if (ato > TCP_DELACK_MIN) { 3104 const struct tcp_sock *tp = tcp_sk(sk); 3105 int max_ato = HZ / 2; 3106 3107 if (icsk->icsk_ack.pingpong || 3108 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3109 max_ato = TCP_DELACK_MAX; 3110 3111 /* Slow path, intersegment interval is "high". */ 3112 3113 /* If some rtt estimate is known, use it to bound delayed ack. 3114 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3115 * directly. 3116 */ 3117 if (tp->srtt_us) { 3118 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3119 TCP_DELACK_MIN); 3120 3121 if (rtt < max_ato) 3122 max_ato = rtt; 3123 } 3124 3125 ato = min(ato, max_ato); 3126 } 3127 3128 /* Stay within the limit we were given */ 3129 timeout = jiffies + ato; 3130 3131 /* Use new timeout only if there wasn't a older one earlier. */ 3132 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3133 /* If delack timer was blocked or is about to expire, 3134 * send ACK now. 3135 */ 3136 if (icsk->icsk_ack.blocked || 3137 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3138 tcp_send_ack(sk); 3139 return; 3140 } 3141 3142 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3143 timeout = icsk->icsk_ack.timeout; 3144 } 3145 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3146 icsk->icsk_ack.timeout = timeout; 3147 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3148 } 3149 3150 /* This routine sends an ack and also updates the window. */ 3151 void tcp_send_ack(struct sock *sk) 3152 { 3153 struct sk_buff *buff; 3154 3155 /* If we have been reset, we may not send again. */ 3156 if (sk->sk_state == TCP_CLOSE) 3157 return; 3158 3159 /* We are not putting this on the write queue, so 3160 * tcp_transmit_skb() will set the ownership to this 3161 * sock. 3162 */ 3163 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3164 if (buff == NULL) { 3165 inet_csk_schedule_ack(sk); 3166 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3167 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3168 TCP_DELACK_MAX, TCP_RTO_MAX); 3169 return; 3170 } 3171 3172 /* Reserve space for headers and prepare control bits. */ 3173 skb_reserve(buff, MAX_TCP_HEADER); 3174 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3175 3176 /* Send it off, this clears delayed acks for us. */ 3177 TCP_SKB_CB(buff)->when = tcp_time_stamp; 3178 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC)); 3179 } 3180 3181 /* This routine sends a packet with an out of date sequence 3182 * number. It assumes the other end will try to ack it. 3183 * 3184 * Question: what should we make while urgent mode? 3185 * 4.4BSD forces sending single byte of data. We cannot send 3186 * out of window data, because we have SND.NXT==SND.MAX... 3187 * 3188 * Current solution: to send TWO zero-length segments in urgent mode: 3189 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3190 * out-of-date with SND.UNA-1 to probe window. 3191 */ 3192 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 3193 { 3194 struct tcp_sock *tp = tcp_sk(sk); 3195 struct sk_buff *skb; 3196 3197 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3198 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3199 if (skb == NULL) 3200 return -1; 3201 3202 /* Reserve space for headers and set control bits. */ 3203 skb_reserve(skb, MAX_TCP_HEADER); 3204 /* Use a previous sequence. This should cause the other 3205 * end to send an ack. Don't queue or clone SKB, just 3206 * send it. 3207 */ 3208 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3209 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3210 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3211 } 3212 3213 void tcp_send_window_probe(struct sock *sk) 3214 { 3215 if (sk->sk_state == TCP_ESTABLISHED) { 3216 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3217 tcp_xmit_probe_skb(sk, 0); 3218 } 3219 } 3220 3221 /* Initiate keepalive or window probe from timer. */ 3222 int tcp_write_wakeup(struct sock *sk) 3223 { 3224 struct tcp_sock *tp = tcp_sk(sk); 3225 struct sk_buff *skb; 3226 3227 if (sk->sk_state == TCP_CLOSE) 3228 return -1; 3229 3230 if ((skb = tcp_send_head(sk)) != NULL && 3231 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3232 int err; 3233 unsigned int mss = tcp_current_mss(sk); 3234 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3235 3236 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3237 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3238 3239 /* We are probing the opening of a window 3240 * but the window size is != 0 3241 * must have been a result SWS avoidance ( sender ) 3242 */ 3243 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3244 skb->len > mss) { 3245 seg_size = min(seg_size, mss); 3246 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3247 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3248 return -1; 3249 } else if (!tcp_skb_pcount(skb)) 3250 tcp_set_skb_tso_segs(sk, skb, mss); 3251 3252 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3253 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3254 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3255 if (!err) 3256 tcp_event_new_data_sent(sk, skb); 3257 return err; 3258 } else { 3259 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3260 tcp_xmit_probe_skb(sk, 1); 3261 return tcp_xmit_probe_skb(sk, 0); 3262 } 3263 } 3264 3265 /* A window probe timeout has occurred. If window is not closed send 3266 * a partial packet else a zero probe. 3267 */ 3268 void tcp_send_probe0(struct sock *sk) 3269 { 3270 struct inet_connection_sock *icsk = inet_csk(sk); 3271 struct tcp_sock *tp = tcp_sk(sk); 3272 int err; 3273 3274 err = tcp_write_wakeup(sk); 3275 3276 if (tp->packets_out || !tcp_send_head(sk)) { 3277 /* Cancel probe timer, if it is not required. */ 3278 icsk->icsk_probes_out = 0; 3279 icsk->icsk_backoff = 0; 3280 return; 3281 } 3282 3283 if (err <= 0) { 3284 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3285 icsk->icsk_backoff++; 3286 icsk->icsk_probes_out++; 3287 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3288 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3289 TCP_RTO_MAX); 3290 } else { 3291 /* If packet was not sent due to local congestion, 3292 * do not backoff and do not remember icsk_probes_out. 3293 * Let local senders to fight for local resources. 3294 * 3295 * Use accumulated backoff yet. 3296 */ 3297 if (!icsk->icsk_probes_out) 3298 icsk->icsk_probes_out = 1; 3299 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3300 min(icsk->icsk_rto << icsk->icsk_backoff, 3301 TCP_RESOURCE_PROBE_INTERVAL), 3302 TCP_RTO_MAX); 3303 } 3304 } 3305 3306 int tcp_rtx_synack(struct sock *sk, struct request_sock *req) 3307 { 3308 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3309 struct flowi fl; 3310 int res; 3311 3312 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL); 3313 if (!res) { 3314 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS); 3315 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3316 } 3317 return res; 3318 } 3319 EXPORT_SYMBOL(tcp_rtx_synack); 3320