xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 62e7ca52)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64 
65 /* By default, RFC2861 behavior.  */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67 
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70 
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 			   int push_one, gfp_t gfp);
73 
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 	struct inet_connection_sock *icsk = inet_csk(sk);
78 	struct tcp_sock *tp = tcp_sk(sk);
79 	unsigned int prior_packets = tp->packets_out;
80 
81 	tcp_advance_send_head(sk, skb);
82 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83 
84 	tp->packets_out += tcp_skb_pcount(skb);
85 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 		tcp_rearm_rto(sk);
88 	}
89 
90 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
91 		      tcp_skb_pcount(skb));
92 }
93 
94 /* SND.NXT, if window was not shrunk.
95  * If window has been shrunk, what should we make? It is not clear at all.
96  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
97  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
98  * invalid. OK, let's make this for now:
99  */
100 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
101 {
102 	const struct tcp_sock *tp = tcp_sk(sk);
103 
104 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
105 		return tp->snd_nxt;
106 	else
107 		return tcp_wnd_end(tp);
108 }
109 
110 /* Calculate mss to advertise in SYN segment.
111  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
112  *
113  * 1. It is independent of path mtu.
114  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116  *    attached devices, because some buggy hosts are confused by
117  *    large MSS.
118  * 4. We do not make 3, we advertise MSS, calculated from first
119  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
120  *    This may be overridden via information stored in routing table.
121  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122  *    probably even Jumbo".
123  */
124 static __u16 tcp_advertise_mss(struct sock *sk)
125 {
126 	struct tcp_sock *tp = tcp_sk(sk);
127 	const struct dst_entry *dst = __sk_dst_get(sk);
128 	int mss = tp->advmss;
129 
130 	if (dst) {
131 		unsigned int metric = dst_metric_advmss(dst);
132 
133 		if (metric < mss) {
134 			mss = metric;
135 			tp->advmss = mss;
136 		}
137 	}
138 
139 	return (__u16)mss;
140 }
141 
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143  * This is the first part of cwnd validation mechanism. */
144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
145 {
146 	struct tcp_sock *tp = tcp_sk(sk);
147 	s32 delta = tcp_time_stamp - tp->lsndtime;
148 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
149 	u32 cwnd = tp->snd_cwnd;
150 
151 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
152 
153 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 	restart_cwnd = min(restart_cwnd, cwnd);
155 
156 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 		cwnd >>= 1;
158 	tp->snd_cwnd = max(cwnd, restart_cwnd);
159 	tp->snd_cwnd_stamp = tcp_time_stamp;
160 	tp->snd_cwnd_used = 0;
161 }
162 
163 /* Congestion state accounting after a packet has been sent. */
164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 				struct sock *sk)
166 {
167 	struct inet_connection_sock *icsk = inet_csk(sk);
168 	const u32 now = tcp_time_stamp;
169 	const struct dst_entry *dst = __sk_dst_get(sk);
170 
171 	if (sysctl_tcp_slow_start_after_idle &&
172 	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
173 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
174 
175 	tp->lsndtime = now;
176 
177 	/* If it is a reply for ato after last received
178 	 * packet, enter pingpong mode.
179 	 */
180 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
181 	    (!dst || !dst_metric(dst, RTAX_QUICKACK)))
182 			icsk->icsk_ack.pingpong = 1;
183 }
184 
185 /* Account for an ACK we sent. */
186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
187 {
188 	tcp_dec_quickack_mode(sk, pkts);
189 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
190 }
191 
192 
193 u32 tcp_default_init_rwnd(u32 mss)
194 {
195 	/* Initial receive window should be twice of TCP_INIT_CWND to
196 	 * enable proper sending of new unsent data during fast recovery
197 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
198 	 * limit when mss is larger than 1460.
199 	 */
200 	u32 init_rwnd = TCP_INIT_CWND * 2;
201 
202 	if (mss > 1460)
203 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
204 	return init_rwnd;
205 }
206 
207 /* Determine a window scaling and initial window to offer.
208  * Based on the assumption that the given amount of space
209  * will be offered. Store the results in the tp structure.
210  * NOTE: for smooth operation initial space offering should
211  * be a multiple of mss if possible. We assume here that mss >= 1.
212  * This MUST be enforced by all callers.
213  */
214 void tcp_select_initial_window(int __space, __u32 mss,
215 			       __u32 *rcv_wnd, __u32 *window_clamp,
216 			       int wscale_ok, __u8 *rcv_wscale,
217 			       __u32 init_rcv_wnd)
218 {
219 	unsigned int space = (__space < 0 ? 0 : __space);
220 
221 	/* If no clamp set the clamp to the max possible scaled window */
222 	if (*window_clamp == 0)
223 		(*window_clamp) = (65535 << 14);
224 	space = min(*window_clamp, space);
225 
226 	/* Quantize space offering to a multiple of mss if possible. */
227 	if (space > mss)
228 		space = (space / mss) * mss;
229 
230 	/* NOTE: offering an initial window larger than 32767
231 	 * will break some buggy TCP stacks. If the admin tells us
232 	 * it is likely we could be speaking with such a buggy stack
233 	 * we will truncate our initial window offering to 32K-1
234 	 * unless the remote has sent us a window scaling option,
235 	 * which we interpret as a sign the remote TCP is not
236 	 * misinterpreting the window field as a signed quantity.
237 	 */
238 	if (sysctl_tcp_workaround_signed_windows)
239 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
240 	else
241 		(*rcv_wnd) = space;
242 
243 	(*rcv_wscale) = 0;
244 	if (wscale_ok) {
245 		/* Set window scaling on max possible window
246 		 * See RFC1323 for an explanation of the limit to 14
247 		 */
248 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
249 		space = min_t(u32, space, *window_clamp);
250 		while (space > 65535 && (*rcv_wscale) < 14) {
251 			space >>= 1;
252 			(*rcv_wscale)++;
253 		}
254 	}
255 
256 	if (mss > (1 << *rcv_wscale)) {
257 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
258 			init_rcv_wnd = tcp_default_init_rwnd(mss);
259 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
260 	}
261 
262 	/* Set the clamp no higher than max representable value */
263 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
264 }
265 EXPORT_SYMBOL(tcp_select_initial_window);
266 
267 /* Chose a new window to advertise, update state in tcp_sock for the
268  * socket, and return result with RFC1323 scaling applied.  The return
269  * value can be stuffed directly into th->window for an outgoing
270  * frame.
271  */
272 static u16 tcp_select_window(struct sock *sk)
273 {
274 	struct tcp_sock *tp = tcp_sk(sk);
275 	u32 old_win = tp->rcv_wnd;
276 	u32 cur_win = tcp_receive_window(tp);
277 	u32 new_win = __tcp_select_window(sk);
278 
279 	/* Never shrink the offered window */
280 	if (new_win < cur_win) {
281 		/* Danger Will Robinson!
282 		 * Don't update rcv_wup/rcv_wnd here or else
283 		 * we will not be able to advertise a zero
284 		 * window in time.  --DaveM
285 		 *
286 		 * Relax Will Robinson.
287 		 */
288 		if (new_win == 0)
289 			NET_INC_STATS(sock_net(sk),
290 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
291 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 	}
293 	tp->rcv_wnd = new_win;
294 	tp->rcv_wup = tp->rcv_nxt;
295 
296 	/* Make sure we do not exceed the maximum possible
297 	 * scaled window.
298 	 */
299 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
300 		new_win = min(new_win, MAX_TCP_WINDOW);
301 	else
302 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
303 
304 	/* RFC1323 scaling applied */
305 	new_win >>= tp->rx_opt.rcv_wscale;
306 
307 	/* If we advertise zero window, disable fast path. */
308 	if (new_win == 0) {
309 		tp->pred_flags = 0;
310 		if (old_win)
311 			NET_INC_STATS(sock_net(sk),
312 				      LINUX_MIB_TCPTOZEROWINDOWADV);
313 	} else if (old_win == 0) {
314 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
315 	}
316 
317 	return new_win;
318 }
319 
320 /* Packet ECN state for a SYN-ACK */
321 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
322 {
323 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
324 	if (!(tp->ecn_flags & TCP_ECN_OK))
325 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
326 }
327 
328 /* Packet ECN state for a SYN.  */
329 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
330 {
331 	struct tcp_sock *tp = tcp_sk(sk);
332 
333 	tp->ecn_flags = 0;
334 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
335 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 		tp->ecn_flags = TCP_ECN_OK;
337 	}
338 }
339 
340 static __inline__ void
341 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
342 {
343 	if (inet_rsk(req)->ecn_ok)
344 		th->ece = 1;
345 }
346 
347 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
348  * be sent.
349  */
350 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
351 				int tcp_header_len)
352 {
353 	struct tcp_sock *tp = tcp_sk(sk);
354 
355 	if (tp->ecn_flags & TCP_ECN_OK) {
356 		/* Not-retransmitted data segment: set ECT and inject CWR. */
357 		if (skb->len != tcp_header_len &&
358 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
359 			INET_ECN_xmit(sk);
360 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
361 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
362 				tcp_hdr(skb)->cwr = 1;
363 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
364 			}
365 		} else {
366 			/* ACK or retransmitted segment: clear ECT|CE */
367 			INET_ECN_dontxmit(sk);
368 		}
369 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
370 			tcp_hdr(skb)->ece = 1;
371 	}
372 }
373 
374 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
375  * auto increment end seqno.
376  */
377 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
378 {
379 	struct skb_shared_info *shinfo = skb_shinfo(skb);
380 
381 	skb->ip_summed = CHECKSUM_PARTIAL;
382 	skb->csum = 0;
383 
384 	TCP_SKB_CB(skb)->tcp_flags = flags;
385 	TCP_SKB_CB(skb)->sacked = 0;
386 
387 	shinfo->gso_segs = 1;
388 	shinfo->gso_size = 0;
389 	shinfo->gso_type = 0;
390 
391 	TCP_SKB_CB(skb)->seq = seq;
392 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
393 		seq++;
394 	TCP_SKB_CB(skb)->end_seq = seq;
395 }
396 
397 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
398 {
399 	return tp->snd_una != tp->snd_up;
400 }
401 
402 #define OPTION_SACK_ADVERTISE	(1 << 0)
403 #define OPTION_TS		(1 << 1)
404 #define OPTION_MD5		(1 << 2)
405 #define OPTION_WSCALE		(1 << 3)
406 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
407 
408 struct tcp_out_options {
409 	u16 options;		/* bit field of OPTION_* */
410 	u16 mss;		/* 0 to disable */
411 	u8 ws;			/* window scale, 0 to disable */
412 	u8 num_sack_blocks;	/* number of SACK blocks to include */
413 	u8 hash_size;		/* bytes in hash_location */
414 	__u8 *hash_location;	/* temporary pointer, overloaded */
415 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
416 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
417 };
418 
419 /* Write previously computed TCP options to the packet.
420  *
421  * Beware: Something in the Internet is very sensitive to the ordering of
422  * TCP options, we learned this through the hard way, so be careful here.
423  * Luckily we can at least blame others for their non-compliance but from
424  * inter-operability perspective it seems that we're somewhat stuck with
425  * the ordering which we have been using if we want to keep working with
426  * those broken things (not that it currently hurts anybody as there isn't
427  * particular reason why the ordering would need to be changed).
428  *
429  * At least SACK_PERM as the first option is known to lead to a disaster
430  * (but it may well be that other scenarios fail similarly).
431  */
432 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
433 			      struct tcp_out_options *opts)
434 {
435 	u16 options = opts->options;	/* mungable copy */
436 
437 	if (unlikely(OPTION_MD5 & options)) {
438 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
439 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
440 		/* overload cookie hash location */
441 		opts->hash_location = (__u8 *)ptr;
442 		ptr += 4;
443 	}
444 
445 	if (unlikely(opts->mss)) {
446 		*ptr++ = htonl((TCPOPT_MSS << 24) |
447 			       (TCPOLEN_MSS << 16) |
448 			       opts->mss);
449 	}
450 
451 	if (likely(OPTION_TS & options)) {
452 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
453 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
454 				       (TCPOLEN_SACK_PERM << 16) |
455 				       (TCPOPT_TIMESTAMP << 8) |
456 				       TCPOLEN_TIMESTAMP);
457 			options &= ~OPTION_SACK_ADVERTISE;
458 		} else {
459 			*ptr++ = htonl((TCPOPT_NOP << 24) |
460 				       (TCPOPT_NOP << 16) |
461 				       (TCPOPT_TIMESTAMP << 8) |
462 				       TCPOLEN_TIMESTAMP);
463 		}
464 		*ptr++ = htonl(opts->tsval);
465 		*ptr++ = htonl(opts->tsecr);
466 	}
467 
468 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
469 		*ptr++ = htonl((TCPOPT_NOP << 24) |
470 			       (TCPOPT_NOP << 16) |
471 			       (TCPOPT_SACK_PERM << 8) |
472 			       TCPOLEN_SACK_PERM);
473 	}
474 
475 	if (unlikely(OPTION_WSCALE & options)) {
476 		*ptr++ = htonl((TCPOPT_NOP << 24) |
477 			       (TCPOPT_WINDOW << 16) |
478 			       (TCPOLEN_WINDOW << 8) |
479 			       opts->ws);
480 	}
481 
482 	if (unlikely(opts->num_sack_blocks)) {
483 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
484 			tp->duplicate_sack : tp->selective_acks;
485 		int this_sack;
486 
487 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
488 			       (TCPOPT_NOP  << 16) |
489 			       (TCPOPT_SACK <<  8) |
490 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
491 						     TCPOLEN_SACK_PERBLOCK)));
492 
493 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
494 		     ++this_sack) {
495 			*ptr++ = htonl(sp[this_sack].start_seq);
496 			*ptr++ = htonl(sp[this_sack].end_seq);
497 		}
498 
499 		tp->rx_opt.dsack = 0;
500 	}
501 
502 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
503 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
504 
505 		*ptr++ = htonl((TCPOPT_EXP << 24) |
506 			       ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
507 			       TCPOPT_FASTOPEN_MAGIC);
508 
509 		memcpy(ptr, foc->val, foc->len);
510 		if ((foc->len & 3) == 2) {
511 			u8 *align = ((u8 *)ptr) + foc->len;
512 			align[0] = align[1] = TCPOPT_NOP;
513 		}
514 		ptr += (foc->len + 3) >> 2;
515 	}
516 }
517 
518 /* Compute TCP options for SYN packets. This is not the final
519  * network wire format yet.
520  */
521 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
522 				struct tcp_out_options *opts,
523 				struct tcp_md5sig_key **md5)
524 {
525 	struct tcp_sock *tp = tcp_sk(sk);
526 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
527 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
528 
529 #ifdef CONFIG_TCP_MD5SIG
530 	*md5 = tp->af_specific->md5_lookup(sk, sk);
531 	if (*md5) {
532 		opts->options |= OPTION_MD5;
533 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
534 	}
535 #else
536 	*md5 = NULL;
537 #endif
538 
539 	/* We always get an MSS option.  The option bytes which will be seen in
540 	 * normal data packets should timestamps be used, must be in the MSS
541 	 * advertised.  But we subtract them from tp->mss_cache so that
542 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
543 	 * fact here if necessary.  If we don't do this correctly, as a
544 	 * receiver we won't recognize data packets as being full sized when we
545 	 * should, and thus we won't abide by the delayed ACK rules correctly.
546 	 * SACKs don't matter, we never delay an ACK when we have any of those
547 	 * going out.  */
548 	opts->mss = tcp_advertise_mss(sk);
549 	remaining -= TCPOLEN_MSS_ALIGNED;
550 
551 	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
552 		opts->options |= OPTION_TS;
553 		opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
554 		opts->tsecr = tp->rx_opt.ts_recent;
555 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
556 	}
557 	if (likely(sysctl_tcp_window_scaling)) {
558 		opts->ws = tp->rx_opt.rcv_wscale;
559 		opts->options |= OPTION_WSCALE;
560 		remaining -= TCPOLEN_WSCALE_ALIGNED;
561 	}
562 	if (likely(sysctl_tcp_sack)) {
563 		opts->options |= OPTION_SACK_ADVERTISE;
564 		if (unlikely(!(OPTION_TS & opts->options)))
565 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
566 	}
567 
568 	if (fastopen && fastopen->cookie.len >= 0) {
569 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
570 		need = (need + 3) & ~3U;  /* Align to 32 bits */
571 		if (remaining >= need) {
572 			opts->options |= OPTION_FAST_OPEN_COOKIE;
573 			opts->fastopen_cookie = &fastopen->cookie;
574 			remaining -= need;
575 			tp->syn_fastopen = 1;
576 		}
577 	}
578 
579 	return MAX_TCP_OPTION_SPACE - remaining;
580 }
581 
582 /* Set up TCP options for SYN-ACKs. */
583 static unsigned int tcp_synack_options(struct sock *sk,
584 				   struct request_sock *req,
585 				   unsigned int mss, struct sk_buff *skb,
586 				   struct tcp_out_options *opts,
587 				   struct tcp_md5sig_key **md5,
588 				   struct tcp_fastopen_cookie *foc)
589 {
590 	struct inet_request_sock *ireq = inet_rsk(req);
591 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
592 
593 #ifdef CONFIG_TCP_MD5SIG
594 	*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
595 	if (*md5) {
596 		opts->options |= OPTION_MD5;
597 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
598 
599 		/* We can't fit any SACK blocks in a packet with MD5 + TS
600 		 * options. There was discussion about disabling SACK
601 		 * rather than TS in order to fit in better with old,
602 		 * buggy kernels, but that was deemed to be unnecessary.
603 		 */
604 		ireq->tstamp_ok &= !ireq->sack_ok;
605 	}
606 #else
607 	*md5 = NULL;
608 #endif
609 
610 	/* We always send an MSS option. */
611 	opts->mss = mss;
612 	remaining -= TCPOLEN_MSS_ALIGNED;
613 
614 	if (likely(ireq->wscale_ok)) {
615 		opts->ws = ireq->rcv_wscale;
616 		opts->options |= OPTION_WSCALE;
617 		remaining -= TCPOLEN_WSCALE_ALIGNED;
618 	}
619 	if (likely(ireq->tstamp_ok)) {
620 		opts->options |= OPTION_TS;
621 		opts->tsval = TCP_SKB_CB(skb)->when;
622 		opts->tsecr = req->ts_recent;
623 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
624 	}
625 	if (likely(ireq->sack_ok)) {
626 		opts->options |= OPTION_SACK_ADVERTISE;
627 		if (unlikely(!ireq->tstamp_ok))
628 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
629 	}
630 	if (foc != NULL && foc->len >= 0) {
631 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
632 		need = (need + 3) & ~3U;  /* Align to 32 bits */
633 		if (remaining >= need) {
634 			opts->options |= OPTION_FAST_OPEN_COOKIE;
635 			opts->fastopen_cookie = foc;
636 			remaining -= need;
637 		}
638 	}
639 
640 	return MAX_TCP_OPTION_SPACE - remaining;
641 }
642 
643 /* Compute TCP options for ESTABLISHED sockets. This is not the
644  * final wire format yet.
645  */
646 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
647 					struct tcp_out_options *opts,
648 					struct tcp_md5sig_key **md5)
649 {
650 	struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
651 	struct tcp_sock *tp = tcp_sk(sk);
652 	unsigned int size = 0;
653 	unsigned int eff_sacks;
654 
655 	opts->options = 0;
656 
657 #ifdef CONFIG_TCP_MD5SIG
658 	*md5 = tp->af_specific->md5_lookup(sk, sk);
659 	if (unlikely(*md5)) {
660 		opts->options |= OPTION_MD5;
661 		size += TCPOLEN_MD5SIG_ALIGNED;
662 	}
663 #else
664 	*md5 = NULL;
665 #endif
666 
667 	if (likely(tp->rx_opt.tstamp_ok)) {
668 		opts->options |= OPTION_TS;
669 		opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
670 		opts->tsecr = tp->rx_opt.ts_recent;
671 		size += TCPOLEN_TSTAMP_ALIGNED;
672 	}
673 
674 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
675 	if (unlikely(eff_sacks)) {
676 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
677 		opts->num_sack_blocks =
678 			min_t(unsigned int, eff_sacks,
679 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
680 			      TCPOLEN_SACK_PERBLOCK);
681 		size += TCPOLEN_SACK_BASE_ALIGNED +
682 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
683 	}
684 
685 	return size;
686 }
687 
688 
689 /* TCP SMALL QUEUES (TSQ)
690  *
691  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
692  * to reduce RTT and bufferbloat.
693  * We do this using a special skb destructor (tcp_wfree).
694  *
695  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
696  * needs to be reallocated in a driver.
697  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
698  *
699  * Since transmit from skb destructor is forbidden, we use a tasklet
700  * to process all sockets that eventually need to send more skbs.
701  * We use one tasklet per cpu, with its own queue of sockets.
702  */
703 struct tsq_tasklet {
704 	struct tasklet_struct	tasklet;
705 	struct list_head	head; /* queue of tcp sockets */
706 };
707 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
708 
709 static void tcp_tsq_handler(struct sock *sk)
710 {
711 	if ((1 << sk->sk_state) &
712 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
713 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
714 		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
715 			       0, GFP_ATOMIC);
716 }
717 /*
718  * One tasklet per cpu tries to send more skbs.
719  * We run in tasklet context but need to disable irqs when
720  * transferring tsq->head because tcp_wfree() might
721  * interrupt us (non NAPI drivers)
722  */
723 static void tcp_tasklet_func(unsigned long data)
724 {
725 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
726 	LIST_HEAD(list);
727 	unsigned long flags;
728 	struct list_head *q, *n;
729 	struct tcp_sock *tp;
730 	struct sock *sk;
731 
732 	local_irq_save(flags);
733 	list_splice_init(&tsq->head, &list);
734 	local_irq_restore(flags);
735 
736 	list_for_each_safe(q, n, &list) {
737 		tp = list_entry(q, struct tcp_sock, tsq_node);
738 		list_del(&tp->tsq_node);
739 
740 		sk = (struct sock *)tp;
741 		bh_lock_sock(sk);
742 
743 		if (!sock_owned_by_user(sk)) {
744 			tcp_tsq_handler(sk);
745 		} else {
746 			/* defer the work to tcp_release_cb() */
747 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
748 		}
749 		bh_unlock_sock(sk);
750 
751 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
752 		sk_free(sk);
753 	}
754 }
755 
756 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
757 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
758 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
759 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
760 /**
761  * tcp_release_cb - tcp release_sock() callback
762  * @sk: socket
763  *
764  * called from release_sock() to perform protocol dependent
765  * actions before socket release.
766  */
767 void tcp_release_cb(struct sock *sk)
768 {
769 	struct tcp_sock *tp = tcp_sk(sk);
770 	unsigned long flags, nflags;
771 
772 	/* perform an atomic operation only if at least one flag is set */
773 	do {
774 		flags = tp->tsq_flags;
775 		if (!(flags & TCP_DEFERRED_ALL))
776 			return;
777 		nflags = flags & ~TCP_DEFERRED_ALL;
778 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
779 
780 	if (flags & (1UL << TCP_TSQ_DEFERRED))
781 		tcp_tsq_handler(sk);
782 
783 	/* Here begins the tricky part :
784 	 * We are called from release_sock() with :
785 	 * 1) BH disabled
786 	 * 2) sk_lock.slock spinlock held
787 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
788 	 *
789 	 * But following code is meant to be called from BH handlers,
790 	 * so we should keep BH disabled, but early release socket ownership
791 	 */
792 	sock_release_ownership(sk);
793 
794 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
795 		tcp_write_timer_handler(sk);
796 		__sock_put(sk);
797 	}
798 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
799 		tcp_delack_timer_handler(sk);
800 		__sock_put(sk);
801 	}
802 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
803 		sk->sk_prot->mtu_reduced(sk);
804 		__sock_put(sk);
805 	}
806 }
807 EXPORT_SYMBOL(tcp_release_cb);
808 
809 void __init tcp_tasklet_init(void)
810 {
811 	int i;
812 
813 	for_each_possible_cpu(i) {
814 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
815 
816 		INIT_LIST_HEAD(&tsq->head);
817 		tasklet_init(&tsq->tasklet,
818 			     tcp_tasklet_func,
819 			     (unsigned long)tsq);
820 	}
821 }
822 
823 /*
824  * Write buffer destructor automatically called from kfree_skb.
825  * We can't xmit new skbs from this context, as we might already
826  * hold qdisc lock.
827  */
828 void tcp_wfree(struct sk_buff *skb)
829 {
830 	struct sock *sk = skb->sk;
831 	struct tcp_sock *tp = tcp_sk(sk);
832 
833 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
834 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
835 		unsigned long flags;
836 		struct tsq_tasklet *tsq;
837 
838 		/* Keep a ref on socket.
839 		 * This last ref will be released in tcp_tasklet_func()
840 		 */
841 		atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
842 
843 		/* queue this socket to tasklet queue */
844 		local_irq_save(flags);
845 		tsq = &__get_cpu_var(tsq_tasklet);
846 		list_add(&tp->tsq_node, &tsq->head);
847 		tasklet_schedule(&tsq->tasklet);
848 		local_irq_restore(flags);
849 	} else {
850 		sock_wfree(skb);
851 	}
852 }
853 
854 /* This routine actually transmits TCP packets queued in by
855  * tcp_do_sendmsg().  This is used by both the initial
856  * transmission and possible later retransmissions.
857  * All SKB's seen here are completely headerless.  It is our
858  * job to build the TCP header, and pass the packet down to
859  * IP so it can do the same plus pass the packet off to the
860  * device.
861  *
862  * We are working here with either a clone of the original
863  * SKB, or a fresh unique copy made by the retransmit engine.
864  */
865 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
866 			    gfp_t gfp_mask)
867 {
868 	const struct inet_connection_sock *icsk = inet_csk(sk);
869 	struct inet_sock *inet;
870 	struct tcp_sock *tp;
871 	struct tcp_skb_cb *tcb;
872 	struct tcp_out_options opts;
873 	unsigned int tcp_options_size, tcp_header_size;
874 	struct tcp_md5sig_key *md5;
875 	struct tcphdr *th;
876 	int err;
877 
878 	BUG_ON(!skb || !tcp_skb_pcount(skb));
879 
880 	if (clone_it) {
881 		skb_mstamp_get(&skb->skb_mstamp);
882 
883 		if (unlikely(skb_cloned(skb)))
884 			skb = pskb_copy(skb, gfp_mask);
885 		else
886 			skb = skb_clone(skb, gfp_mask);
887 		if (unlikely(!skb))
888 			return -ENOBUFS;
889 		/* Our usage of tstamp should remain private */
890 		skb->tstamp.tv64 = 0;
891 	}
892 
893 	inet = inet_sk(sk);
894 	tp = tcp_sk(sk);
895 	tcb = TCP_SKB_CB(skb);
896 	memset(&opts, 0, sizeof(opts));
897 
898 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
899 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
900 	else
901 		tcp_options_size = tcp_established_options(sk, skb, &opts,
902 							   &md5);
903 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
904 
905 	if (tcp_packets_in_flight(tp) == 0)
906 		tcp_ca_event(sk, CA_EVENT_TX_START);
907 
908 	/* if no packet is in qdisc/device queue, then allow XPS to select
909 	 * another queue.
910 	 */
911 	skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
912 
913 	skb_push(skb, tcp_header_size);
914 	skb_reset_transport_header(skb);
915 
916 	skb_orphan(skb);
917 	skb->sk = sk;
918 	skb->destructor = tcp_wfree;
919 	skb_set_hash_from_sk(skb, sk);
920 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
921 
922 	/* Build TCP header and checksum it. */
923 	th = tcp_hdr(skb);
924 	th->source		= inet->inet_sport;
925 	th->dest		= inet->inet_dport;
926 	th->seq			= htonl(tcb->seq);
927 	th->ack_seq		= htonl(tp->rcv_nxt);
928 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
929 					tcb->tcp_flags);
930 
931 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
932 		/* RFC1323: The window in SYN & SYN/ACK segments
933 		 * is never scaled.
934 		 */
935 		th->window	= htons(min(tp->rcv_wnd, 65535U));
936 	} else {
937 		th->window	= htons(tcp_select_window(sk));
938 	}
939 	th->check		= 0;
940 	th->urg_ptr		= 0;
941 
942 	/* The urg_mode check is necessary during a below snd_una win probe */
943 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
944 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
945 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
946 			th->urg = 1;
947 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
948 			th->urg_ptr = htons(0xFFFF);
949 			th->urg = 1;
950 		}
951 	}
952 
953 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
954 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
955 		TCP_ECN_send(sk, skb, tcp_header_size);
956 
957 #ifdef CONFIG_TCP_MD5SIG
958 	/* Calculate the MD5 hash, as we have all we need now */
959 	if (md5) {
960 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
961 		tp->af_specific->calc_md5_hash(opts.hash_location,
962 					       md5, sk, NULL, skb);
963 	}
964 #endif
965 
966 	icsk->icsk_af_ops->send_check(sk, skb);
967 
968 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
969 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
970 
971 	if (skb->len != tcp_header_size)
972 		tcp_event_data_sent(tp, sk);
973 
974 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
975 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
976 			      tcp_skb_pcount(skb));
977 
978 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
979 	if (likely(err <= 0))
980 		return err;
981 
982 	tcp_enter_cwr(sk);
983 
984 	return net_xmit_eval(err);
985 }
986 
987 /* This routine just queues the buffer for sending.
988  *
989  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
990  * otherwise socket can stall.
991  */
992 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
993 {
994 	struct tcp_sock *tp = tcp_sk(sk);
995 
996 	/* Advance write_seq and place onto the write_queue. */
997 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
998 	skb_header_release(skb);
999 	tcp_add_write_queue_tail(sk, skb);
1000 	sk->sk_wmem_queued += skb->truesize;
1001 	sk_mem_charge(sk, skb->truesize);
1002 }
1003 
1004 /* Initialize TSO segments for a packet. */
1005 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1006 				 unsigned int mss_now)
1007 {
1008 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1009 
1010 	/* Make sure we own this skb before messing gso_size/gso_segs */
1011 	WARN_ON_ONCE(skb_cloned(skb));
1012 
1013 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1014 		/* Avoid the costly divide in the normal
1015 		 * non-TSO case.
1016 		 */
1017 		shinfo->gso_segs = 1;
1018 		shinfo->gso_size = 0;
1019 		shinfo->gso_type = 0;
1020 	} else {
1021 		shinfo->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1022 		shinfo->gso_size = mss_now;
1023 		shinfo->gso_type = sk->sk_gso_type;
1024 	}
1025 }
1026 
1027 /* When a modification to fackets out becomes necessary, we need to check
1028  * skb is counted to fackets_out or not.
1029  */
1030 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1031 				   int decr)
1032 {
1033 	struct tcp_sock *tp = tcp_sk(sk);
1034 
1035 	if (!tp->sacked_out || tcp_is_reno(tp))
1036 		return;
1037 
1038 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1039 		tp->fackets_out -= decr;
1040 }
1041 
1042 /* Pcount in the middle of the write queue got changed, we need to do various
1043  * tweaks to fix counters
1044  */
1045 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1046 {
1047 	struct tcp_sock *tp = tcp_sk(sk);
1048 
1049 	tp->packets_out -= decr;
1050 
1051 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1052 		tp->sacked_out -= decr;
1053 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1054 		tp->retrans_out -= decr;
1055 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1056 		tp->lost_out -= decr;
1057 
1058 	/* Reno case is special. Sigh... */
1059 	if (tcp_is_reno(tp) && decr > 0)
1060 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1061 
1062 	tcp_adjust_fackets_out(sk, skb, decr);
1063 
1064 	if (tp->lost_skb_hint &&
1065 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1066 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1067 		tp->lost_cnt_hint -= decr;
1068 
1069 	tcp_verify_left_out(tp);
1070 }
1071 
1072 /* Function to create two new TCP segments.  Shrinks the given segment
1073  * to the specified size and appends a new segment with the rest of the
1074  * packet to the list.  This won't be called frequently, I hope.
1075  * Remember, these are still headerless SKBs at this point.
1076  */
1077 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1078 		 unsigned int mss_now, gfp_t gfp)
1079 {
1080 	struct tcp_sock *tp = tcp_sk(sk);
1081 	struct sk_buff *buff;
1082 	int nsize, old_factor;
1083 	int nlen;
1084 	u8 flags;
1085 
1086 	if (WARN_ON(len > skb->len))
1087 		return -EINVAL;
1088 
1089 	nsize = skb_headlen(skb) - len;
1090 	if (nsize < 0)
1091 		nsize = 0;
1092 
1093 	if (skb_unclone(skb, gfp))
1094 		return -ENOMEM;
1095 
1096 	/* Get a new skb... force flag on. */
1097 	buff = sk_stream_alloc_skb(sk, nsize, gfp);
1098 	if (buff == NULL)
1099 		return -ENOMEM; /* We'll just try again later. */
1100 
1101 	sk->sk_wmem_queued += buff->truesize;
1102 	sk_mem_charge(sk, buff->truesize);
1103 	nlen = skb->len - len - nsize;
1104 	buff->truesize += nlen;
1105 	skb->truesize -= nlen;
1106 
1107 	/* Correct the sequence numbers. */
1108 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1109 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1110 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1111 
1112 	/* PSH and FIN should only be set in the second packet. */
1113 	flags = TCP_SKB_CB(skb)->tcp_flags;
1114 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1115 	TCP_SKB_CB(buff)->tcp_flags = flags;
1116 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1117 
1118 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1119 		/* Copy and checksum data tail into the new buffer. */
1120 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1121 						       skb_put(buff, nsize),
1122 						       nsize, 0);
1123 
1124 		skb_trim(skb, len);
1125 
1126 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1127 	} else {
1128 		skb->ip_summed = CHECKSUM_PARTIAL;
1129 		skb_split(skb, buff, len);
1130 	}
1131 
1132 	buff->ip_summed = skb->ip_summed;
1133 
1134 	/* Looks stupid, but our code really uses when of
1135 	 * skbs, which it never sent before. --ANK
1136 	 */
1137 	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1138 	buff->tstamp = skb->tstamp;
1139 
1140 	old_factor = tcp_skb_pcount(skb);
1141 
1142 	/* Fix up tso_factor for both original and new SKB.  */
1143 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1144 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1145 
1146 	/* If this packet has been sent out already, we must
1147 	 * adjust the various packet counters.
1148 	 */
1149 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1150 		int diff = old_factor - tcp_skb_pcount(skb) -
1151 			tcp_skb_pcount(buff);
1152 
1153 		if (diff)
1154 			tcp_adjust_pcount(sk, skb, diff);
1155 	}
1156 
1157 	/* Link BUFF into the send queue. */
1158 	skb_header_release(buff);
1159 	tcp_insert_write_queue_after(skb, buff, sk);
1160 
1161 	return 0;
1162 }
1163 
1164 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1165  * eventually). The difference is that pulled data not copied, but
1166  * immediately discarded.
1167  */
1168 static void __pskb_trim_head(struct sk_buff *skb, int len)
1169 {
1170 	struct skb_shared_info *shinfo;
1171 	int i, k, eat;
1172 
1173 	eat = min_t(int, len, skb_headlen(skb));
1174 	if (eat) {
1175 		__skb_pull(skb, eat);
1176 		len -= eat;
1177 		if (!len)
1178 			return;
1179 	}
1180 	eat = len;
1181 	k = 0;
1182 	shinfo = skb_shinfo(skb);
1183 	for (i = 0; i < shinfo->nr_frags; i++) {
1184 		int size = skb_frag_size(&shinfo->frags[i]);
1185 
1186 		if (size <= eat) {
1187 			skb_frag_unref(skb, i);
1188 			eat -= size;
1189 		} else {
1190 			shinfo->frags[k] = shinfo->frags[i];
1191 			if (eat) {
1192 				shinfo->frags[k].page_offset += eat;
1193 				skb_frag_size_sub(&shinfo->frags[k], eat);
1194 				eat = 0;
1195 			}
1196 			k++;
1197 		}
1198 	}
1199 	shinfo->nr_frags = k;
1200 
1201 	skb_reset_tail_pointer(skb);
1202 	skb->data_len -= len;
1203 	skb->len = skb->data_len;
1204 }
1205 
1206 /* Remove acked data from a packet in the transmit queue. */
1207 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1208 {
1209 	if (skb_unclone(skb, GFP_ATOMIC))
1210 		return -ENOMEM;
1211 
1212 	__pskb_trim_head(skb, len);
1213 
1214 	TCP_SKB_CB(skb)->seq += len;
1215 	skb->ip_summed = CHECKSUM_PARTIAL;
1216 
1217 	skb->truesize	     -= len;
1218 	sk->sk_wmem_queued   -= len;
1219 	sk_mem_uncharge(sk, len);
1220 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1221 
1222 	/* Any change of skb->len requires recalculation of tso factor. */
1223 	if (tcp_skb_pcount(skb) > 1)
1224 		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1225 
1226 	return 0;
1227 }
1228 
1229 /* Calculate MSS not accounting any TCP options.  */
1230 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1231 {
1232 	const struct tcp_sock *tp = tcp_sk(sk);
1233 	const struct inet_connection_sock *icsk = inet_csk(sk);
1234 	int mss_now;
1235 
1236 	/* Calculate base mss without TCP options:
1237 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1238 	 */
1239 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1240 
1241 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1242 	if (icsk->icsk_af_ops->net_frag_header_len) {
1243 		const struct dst_entry *dst = __sk_dst_get(sk);
1244 
1245 		if (dst && dst_allfrag(dst))
1246 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1247 	}
1248 
1249 	/* Clamp it (mss_clamp does not include tcp options) */
1250 	if (mss_now > tp->rx_opt.mss_clamp)
1251 		mss_now = tp->rx_opt.mss_clamp;
1252 
1253 	/* Now subtract optional transport overhead */
1254 	mss_now -= icsk->icsk_ext_hdr_len;
1255 
1256 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1257 	if (mss_now < 48)
1258 		mss_now = 48;
1259 	return mss_now;
1260 }
1261 
1262 /* Calculate MSS. Not accounting for SACKs here.  */
1263 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1264 {
1265 	/* Subtract TCP options size, not including SACKs */
1266 	return __tcp_mtu_to_mss(sk, pmtu) -
1267 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1268 }
1269 
1270 /* Inverse of above */
1271 int tcp_mss_to_mtu(struct sock *sk, int mss)
1272 {
1273 	const struct tcp_sock *tp = tcp_sk(sk);
1274 	const struct inet_connection_sock *icsk = inet_csk(sk);
1275 	int mtu;
1276 
1277 	mtu = mss +
1278 	      tp->tcp_header_len +
1279 	      icsk->icsk_ext_hdr_len +
1280 	      icsk->icsk_af_ops->net_header_len;
1281 
1282 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1283 	if (icsk->icsk_af_ops->net_frag_header_len) {
1284 		const struct dst_entry *dst = __sk_dst_get(sk);
1285 
1286 		if (dst && dst_allfrag(dst))
1287 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1288 	}
1289 	return mtu;
1290 }
1291 
1292 /* MTU probing init per socket */
1293 void tcp_mtup_init(struct sock *sk)
1294 {
1295 	struct tcp_sock *tp = tcp_sk(sk);
1296 	struct inet_connection_sock *icsk = inet_csk(sk);
1297 
1298 	icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1299 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1300 			       icsk->icsk_af_ops->net_header_len;
1301 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1302 	icsk->icsk_mtup.probe_size = 0;
1303 }
1304 EXPORT_SYMBOL(tcp_mtup_init);
1305 
1306 /* This function synchronize snd mss to current pmtu/exthdr set.
1307 
1308    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1309    for TCP options, but includes only bare TCP header.
1310 
1311    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1312    It is minimum of user_mss and mss received with SYN.
1313    It also does not include TCP options.
1314 
1315    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1316 
1317    tp->mss_cache is current effective sending mss, including
1318    all tcp options except for SACKs. It is evaluated,
1319    taking into account current pmtu, but never exceeds
1320    tp->rx_opt.mss_clamp.
1321 
1322    NOTE1. rfc1122 clearly states that advertised MSS
1323    DOES NOT include either tcp or ip options.
1324 
1325    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1326    are READ ONLY outside this function.		--ANK (980731)
1327  */
1328 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1329 {
1330 	struct tcp_sock *tp = tcp_sk(sk);
1331 	struct inet_connection_sock *icsk = inet_csk(sk);
1332 	int mss_now;
1333 
1334 	if (icsk->icsk_mtup.search_high > pmtu)
1335 		icsk->icsk_mtup.search_high = pmtu;
1336 
1337 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1338 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1339 
1340 	/* And store cached results */
1341 	icsk->icsk_pmtu_cookie = pmtu;
1342 	if (icsk->icsk_mtup.enabled)
1343 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1344 	tp->mss_cache = mss_now;
1345 
1346 	return mss_now;
1347 }
1348 EXPORT_SYMBOL(tcp_sync_mss);
1349 
1350 /* Compute the current effective MSS, taking SACKs and IP options,
1351  * and even PMTU discovery events into account.
1352  */
1353 unsigned int tcp_current_mss(struct sock *sk)
1354 {
1355 	const struct tcp_sock *tp = tcp_sk(sk);
1356 	const struct dst_entry *dst = __sk_dst_get(sk);
1357 	u32 mss_now;
1358 	unsigned int header_len;
1359 	struct tcp_out_options opts;
1360 	struct tcp_md5sig_key *md5;
1361 
1362 	mss_now = tp->mss_cache;
1363 
1364 	if (dst) {
1365 		u32 mtu = dst_mtu(dst);
1366 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1367 			mss_now = tcp_sync_mss(sk, mtu);
1368 	}
1369 
1370 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1371 		     sizeof(struct tcphdr);
1372 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1373 	 * some common options. If this is an odd packet (because we have SACK
1374 	 * blocks etc) then our calculated header_len will be different, and
1375 	 * we have to adjust mss_now correspondingly */
1376 	if (header_len != tp->tcp_header_len) {
1377 		int delta = (int) header_len - tp->tcp_header_len;
1378 		mss_now -= delta;
1379 	}
1380 
1381 	return mss_now;
1382 }
1383 
1384 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1385  * As additional protections, we do not touch cwnd in retransmission phases,
1386  * and if application hit its sndbuf limit recently.
1387  */
1388 static void tcp_cwnd_application_limited(struct sock *sk)
1389 {
1390 	struct tcp_sock *tp = tcp_sk(sk);
1391 
1392 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1393 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1394 		/* Limited by application or receiver window. */
1395 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1396 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1397 		if (win_used < tp->snd_cwnd) {
1398 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1399 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1400 		}
1401 		tp->snd_cwnd_used = 0;
1402 	}
1403 	tp->snd_cwnd_stamp = tcp_time_stamp;
1404 }
1405 
1406 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1407 {
1408 	struct tcp_sock *tp = tcp_sk(sk);
1409 
1410 	/* Track the maximum number of outstanding packets in each
1411 	 * window, and remember whether we were cwnd-limited then.
1412 	 */
1413 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1414 	    tp->packets_out > tp->max_packets_out) {
1415 		tp->max_packets_out = tp->packets_out;
1416 		tp->max_packets_seq = tp->snd_nxt;
1417 		tp->is_cwnd_limited = is_cwnd_limited;
1418 	}
1419 
1420 	if (tcp_is_cwnd_limited(sk)) {
1421 		/* Network is feed fully. */
1422 		tp->snd_cwnd_used = 0;
1423 		tp->snd_cwnd_stamp = tcp_time_stamp;
1424 	} else {
1425 		/* Network starves. */
1426 		if (tp->packets_out > tp->snd_cwnd_used)
1427 			tp->snd_cwnd_used = tp->packets_out;
1428 
1429 		if (sysctl_tcp_slow_start_after_idle &&
1430 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1431 			tcp_cwnd_application_limited(sk);
1432 	}
1433 }
1434 
1435 /* Minshall's variant of the Nagle send check. */
1436 static bool tcp_minshall_check(const struct tcp_sock *tp)
1437 {
1438 	return after(tp->snd_sml, tp->snd_una) &&
1439 		!after(tp->snd_sml, tp->snd_nxt);
1440 }
1441 
1442 /* Update snd_sml if this skb is under mss
1443  * Note that a TSO packet might end with a sub-mss segment
1444  * The test is really :
1445  * if ((skb->len % mss) != 0)
1446  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1447  * But we can avoid doing the divide again given we already have
1448  *  skb_pcount = skb->len / mss_now
1449  */
1450 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1451 				const struct sk_buff *skb)
1452 {
1453 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1454 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1455 }
1456 
1457 /* Return false, if packet can be sent now without violation Nagle's rules:
1458  * 1. It is full sized. (provided by caller in %partial bool)
1459  * 2. Or it contains FIN. (already checked by caller)
1460  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1461  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1462  *    With Minshall's modification: all sent small packets are ACKed.
1463  */
1464 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1465 			    int nonagle)
1466 {
1467 	return partial &&
1468 		((nonagle & TCP_NAGLE_CORK) ||
1469 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1470 }
1471 /* Returns the portion of skb which can be sent right away */
1472 static unsigned int tcp_mss_split_point(const struct sock *sk,
1473 					const struct sk_buff *skb,
1474 					unsigned int mss_now,
1475 					unsigned int max_segs,
1476 					int nonagle)
1477 {
1478 	const struct tcp_sock *tp = tcp_sk(sk);
1479 	u32 partial, needed, window, max_len;
1480 
1481 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1482 	max_len = mss_now * max_segs;
1483 
1484 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1485 		return max_len;
1486 
1487 	needed = min(skb->len, window);
1488 
1489 	if (max_len <= needed)
1490 		return max_len;
1491 
1492 	partial = needed % mss_now;
1493 	/* If last segment is not a full MSS, check if Nagle rules allow us
1494 	 * to include this last segment in this skb.
1495 	 * Otherwise, we'll split the skb at last MSS boundary
1496 	 */
1497 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1498 		return needed - partial;
1499 
1500 	return needed;
1501 }
1502 
1503 /* Can at least one segment of SKB be sent right now, according to the
1504  * congestion window rules?  If so, return how many segments are allowed.
1505  */
1506 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1507 					 const struct sk_buff *skb)
1508 {
1509 	u32 in_flight, cwnd;
1510 
1511 	/* Don't be strict about the congestion window for the final FIN.  */
1512 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1513 	    tcp_skb_pcount(skb) == 1)
1514 		return 1;
1515 
1516 	in_flight = tcp_packets_in_flight(tp);
1517 	cwnd = tp->snd_cwnd;
1518 	if (in_flight < cwnd)
1519 		return (cwnd - in_flight);
1520 
1521 	return 0;
1522 }
1523 
1524 /* Initialize TSO state of a skb.
1525  * This must be invoked the first time we consider transmitting
1526  * SKB onto the wire.
1527  */
1528 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1529 			     unsigned int mss_now)
1530 {
1531 	int tso_segs = tcp_skb_pcount(skb);
1532 
1533 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1534 		tcp_set_skb_tso_segs(sk, skb, mss_now);
1535 		tso_segs = tcp_skb_pcount(skb);
1536 	}
1537 	return tso_segs;
1538 }
1539 
1540 
1541 /* Return true if the Nagle test allows this packet to be
1542  * sent now.
1543  */
1544 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1545 				  unsigned int cur_mss, int nonagle)
1546 {
1547 	/* Nagle rule does not apply to frames, which sit in the middle of the
1548 	 * write_queue (they have no chances to get new data).
1549 	 *
1550 	 * This is implemented in the callers, where they modify the 'nonagle'
1551 	 * argument based upon the location of SKB in the send queue.
1552 	 */
1553 	if (nonagle & TCP_NAGLE_PUSH)
1554 		return true;
1555 
1556 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1557 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1558 		return true;
1559 
1560 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1561 		return true;
1562 
1563 	return false;
1564 }
1565 
1566 /* Does at least the first segment of SKB fit into the send window? */
1567 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1568 			     const struct sk_buff *skb,
1569 			     unsigned int cur_mss)
1570 {
1571 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1572 
1573 	if (skb->len > cur_mss)
1574 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1575 
1576 	return !after(end_seq, tcp_wnd_end(tp));
1577 }
1578 
1579 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1580  * should be put on the wire right now.  If so, it returns the number of
1581  * packets allowed by the congestion window.
1582  */
1583 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1584 				 unsigned int cur_mss, int nonagle)
1585 {
1586 	const struct tcp_sock *tp = tcp_sk(sk);
1587 	unsigned int cwnd_quota;
1588 
1589 	tcp_init_tso_segs(sk, skb, cur_mss);
1590 
1591 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1592 		return 0;
1593 
1594 	cwnd_quota = tcp_cwnd_test(tp, skb);
1595 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1596 		cwnd_quota = 0;
1597 
1598 	return cwnd_quota;
1599 }
1600 
1601 /* Test if sending is allowed right now. */
1602 bool tcp_may_send_now(struct sock *sk)
1603 {
1604 	const struct tcp_sock *tp = tcp_sk(sk);
1605 	struct sk_buff *skb = tcp_send_head(sk);
1606 
1607 	return skb &&
1608 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1609 			     (tcp_skb_is_last(sk, skb) ?
1610 			      tp->nonagle : TCP_NAGLE_PUSH));
1611 }
1612 
1613 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1614  * which is put after SKB on the list.  It is very much like
1615  * tcp_fragment() except that it may make several kinds of assumptions
1616  * in order to speed up the splitting operation.  In particular, we
1617  * know that all the data is in scatter-gather pages, and that the
1618  * packet has never been sent out before (and thus is not cloned).
1619  */
1620 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1621 			unsigned int mss_now, gfp_t gfp)
1622 {
1623 	struct sk_buff *buff;
1624 	int nlen = skb->len - len;
1625 	u8 flags;
1626 
1627 	/* All of a TSO frame must be composed of paged data.  */
1628 	if (skb->len != skb->data_len)
1629 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1630 
1631 	buff = sk_stream_alloc_skb(sk, 0, gfp);
1632 	if (unlikely(buff == NULL))
1633 		return -ENOMEM;
1634 
1635 	sk->sk_wmem_queued += buff->truesize;
1636 	sk_mem_charge(sk, buff->truesize);
1637 	buff->truesize += nlen;
1638 	skb->truesize -= nlen;
1639 
1640 	/* Correct the sequence numbers. */
1641 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1642 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1643 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1644 
1645 	/* PSH and FIN should only be set in the second packet. */
1646 	flags = TCP_SKB_CB(skb)->tcp_flags;
1647 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1648 	TCP_SKB_CB(buff)->tcp_flags = flags;
1649 
1650 	/* This packet was never sent out yet, so no SACK bits. */
1651 	TCP_SKB_CB(buff)->sacked = 0;
1652 
1653 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1654 	skb_split(skb, buff, len);
1655 
1656 	/* Fix up tso_factor for both original and new SKB.  */
1657 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1658 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1659 
1660 	/* Link BUFF into the send queue. */
1661 	skb_header_release(buff);
1662 	tcp_insert_write_queue_after(skb, buff, sk);
1663 
1664 	return 0;
1665 }
1666 
1667 /* Try to defer sending, if possible, in order to minimize the amount
1668  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1669  *
1670  * This algorithm is from John Heffner.
1671  */
1672 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1673 				 bool *is_cwnd_limited)
1674 {
1675 	struct tcp_sock *tp = tcp_sk(sk);
1676 	const struct inet_connection_sock *icsk = inet_csk(sk);
1677 	u32 send_win, cong_win, limit, in_flight;
1678 	int win_divisor;
1679 
1680 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1681 		goto send_now;
1682 
1683 	if (icsk->icsk_ca_state != TCP_CA_Open)
1684 		goto send_now;
1685 
1686 	/* Defer for less than two clock ticks. */
1687 	if (tp->tso_deferred &&
1688 	    (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1689 		goto send_now;
1690 
1691 	in_flight = tcp_packets_in_flight(tp);
1692 
1693 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1694 
1695 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1696 
1697 	/* From in_flight test above, we know that cwnd > in_flight.  */
1698 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1699 
1700 	limit = min(send_win, cong_win);
1701 
1702 	/* If a full-sized TSO skb can be sent, do it. */
1703 	if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1704 			   tp->xmit_size_goal_segs * tp->mss_cache))
1705 		goto send_now;
1706 
1707 	/* Middle in queue won't get any more data, full sendable already? */
1708 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1709 		goto send_now;
1710 
1711 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1712 	if (win_divisor) {
1713 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1714 
1715 		/* If at least some fraction of a window is available,
1716 		 * just use it.
1717 		 */
1718 		chunk /= win_divisor;
1719 		if (limit >= chunk)
1720 			goto send_now;
1721 	} else {
1722 		/* Different approach, try not to defer past a single
1723 		 * ACK.  Receiver should ACK every other full sized
1724 		 * frame, so if we have space for more than 3 frames
1725 		 * then send now.
1726 		 */
1727 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1728 			goto send_now;
1729 	}
1730 
1731 	/* Ok, it looks like it is advisable to defer.
1732 	 * Do not rearm the timer if already set to not break TCP ACK clocking.
1733 	 */
1734 	if (!tp->tso_deferred)
1735 		tp->tso_deferred = 1 | (jiffies << 1);
1736 
1737 	if (cong_win < send_win && cong_win < skb->len)
1738 		*is_cwnd_limited = true;
1739 
1740 	return true;
1741 
1742 send_now:
1743 	tp->tso_deferred = 0;
1744 	return false;
1745 }
1746 
1747 /* Create a new MTU probe if we are ready.
1748  * MTU probe is regularly attempting to increase the path MTU by
1749  * deliberately sending larger packets.  This discovers routing
1750  * changes resulting in larger path MTUs.
1751  *
1752  * Returns 0 if we should wait to probe (no cwnd available),
1753  *         1 if a probe was sent,
1754  *         -1 otherwise
1755  */
1756 static int tcp_mtu_probe(struct sock *sk)
1757 {
1758 	struct tcp_sock *tp = tcp_sk(sk);
1759 	struct inet_connection_sock *icsk = inet_csk(sk);
1760 	struct sk_buff *skb, *nskb, *next;
1761 	int len;
1762 	int probe_size;
1763 	int size_needed;
1764 	int copy;
1765 	int mss_now;
1766 
1767 	/* Not currently probing/verifying,
1768 	 * not in recovery,
1769 	 * have enough cwnd, and
1770 	 * not SACKing (the variable headers throw things off) */
1771 	if (!icsk->icsk_mtup.enabled ||
1772 	    icsk->icsk_mtup.probe_size ||
1773 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1774 	    tp->snd_cwnd < 11 ||
1775 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1776 		return -1;
1777 
1778 	/* Very simple search strategy: just double the MSS. */
1779 	mss_now = tcp_current_mss(sk);
1780 	probe_size = 2 * tp->mss_cache;
1781 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1782 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1783 		/* TODO: set timer for probe_converge_event */
1784 		return -1;
1785 	}
1786 
1787 	/* Have enough data in the send queue to probe? */
1788 	if (tp->write_seq - tp->snd_nxt < size_needed)
1789 		return -1;
1790 
1791 	if (tp->snd_wnd < size_needed)
1792 		return -1;
1793 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1794 		return 0;
1795 
1796 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1797 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1798 		if (!tcp_packets_in_flight(tp))
1799 			return -1;
1800 		else
1801 			return 0;
1802 	}
1803 
1804 	/* We're allowed to probe.  Build it now. */
1805 	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1806 		return -1;
1807 	sk->sk_wmem_queued += nskb->truesize;
1808 	sk_mem_charge(sk, nskb->truesize);
1809 
1810 	skb = tcp_send_head(sk);
1811 
1812 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1813 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1814 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1815 	TCP_SKB_CB(nskb)->sacked = 0;
1816 	nskb->csum = 0;
1817 	nskb->ip_summed = skb->ip_summed;
1818 
1819 	tcp_insert_write_queue_before(nskb, skb, sk);
1820 
1821 	len = 0;
1822 	tcp_for_write_queue_from_safe(skb, next, sk) {
1823 		copy = min_t(int, skb->len, probe_size - len);
1824 		if (nskb->ip_summed)
1825 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1826 		else
1827 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1828 							    skb_put(nskb, copy),
1829 							    copy, nskb->csum);
1830 
1831 		if (skb->len <= copy) {
1832 			/* We've eaten all the data from this skb.
1833 			 * Throw it away. */
1834 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1835 			tcp_unlink_write_queue(skb, sk);
1836 			sk_wmem_free_skb(sk, skb);
1837 		} else {
1838 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1839 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1840 			if (!skb_shinfo(skb)->nr_frags) {
1841 				skb_pull(skb, copy);
1842 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1843 					skb->csum = csum_partial(skb->data,
1844 								 skb->len, 0);
1845 			} else {
1846 				__pskb_trim_head(skb, copy);
1847 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1848 			}
1849 			TCP_SKB_CB(skb)->seq += copy;
1850 		}
1851 
1852 		len += copy;
1853 
1854 		if (len >= probe_size)
1855 			break;
1856 	}
1857 	tcp_init_tso_segs(sk, nskb, nskb->len);
1858 
1859 	/* We're ready to send.  If this fails, the probe will
1860 	 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1861 	TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1862 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1863 		/* Decrement cwnd here because we are sending
1864 		 * effectively two packets. */
1865 		tp->snd_cwnd--;
1866 		tcp_event_new_data_sent(sk, nskb);
1867 
1868 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1869 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1870 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1871 
1872 		return 1;
1873 	}
1874 
1875 	return -1;
1876 }
1877 
1878 /* This routine writes packets to the network.  It advances the
1879  * send_head.  This happens as incoming acks open up the remote
1880  * window for us.
1881  *
1882  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1883  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1884  * account rare use of URG, this is not a big flaw.
1885  *
1886  * Send at most one packet when push_one > 0. Temporarily ignore
1887  * cwnd limit to force at most one packet out when push_one == 2.
1888 
1889  * Returns true, if no segments are in flight and we have queued segments,
1890  * but cannot send anything now because of SWS or another problem.
1891  */
1892 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1893 			   int push_one, gfp_t gfp)
1894 {
1895 	struct tcp_sock *tp = tcp_sk(sk);
1896 	struct sk_buff *skb;
1897 	unsigned int tso_segs, sent_pkts;
1898 	int cwnd_quota;
1899 	int result;
1900 	bool is_cwnd_limited = false;
1901 
1902 	sent_pkts = 0;
1903 
1904 	if (!push_one) {
1905 		/* Do MTU probing. */
1906 		result = tcp_mtu_probe(sk);
1907 		if (!result) {
1908 			return false;
1909 		} else if (result > 0) {
1910 			sent_pkts = 1;
1911 		}
1912 	}
1913 
1914 	while ((skb = tcp_send_head(sk))) {
1915 		unsigned int limit;
1916 
1917 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1918 		BUG_ON(!tso_segs);
1919 
1920 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1921 			goto repair; /* Skip network transmission */
1922 
1923 		cwnd_quota = tcp_cwnd_test(tp, skb);
1924 		if (!cwnd_quota) {
1925 			is_cwnd_limited = true;
1926 			if (push_one == 2)
1927 				/* Force out a loss probe pkt. */
1928 				cwnd_quota = 1;
1929 			else
1930 				break;
1931 		}
1932 
1933 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1934 			break;
1935 
1936 		if (tso_segs == 1) {
1937 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1938 						     (tcp_skb_is_last(sk, skb) ?
1939 						      nonagle : TCP_NAGLE_PUSH))))
1940 				break;
1941 		} else {
1942 			if (!push_one &&
1943 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited))
1944 				break;
1945 		}
1946 
1947 		/* TCP Small Queues :
1948 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1949 		 * This allows for :
1950 		 *  - better RTT estimation and ACK scheduling
1951 		 *  - faster recovery
1952 		 *  - high rates
1953 		 * Alas, some drivers / subsystems require a fair amount
1954 		 * of queued bytes to ensure line rate.
1955 		 * One example is wifi aggregation (802.11 AMPDU)
1956 		 */
1957 		limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
1958 			      sk->sk_pacing_rate >> 10);
1959 
1960 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1961 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1962 			/* It is possible TX completion already happened
1963 			 * before we set TSQ_THROTTLED, so we must
1964 			 * test again the condition.
1965 			 */
1966 			smp_mb__after_atomic();
1967 			if (atomic_read(&sk->sk_wmem_alloc) > limit)
1968 				break;
1969 		}
1970 
1971 		limit = mss_now;
1972 		if (tso_segs > 1 && !tcp_urg_mode(tp))
1973 			limit = tcp_mss_split_point(sk, skb, mss_now,
1974 						    min_t(unsigned int,
1975 							  cwnd_quota,
1976 							  sk->sk_gso_max_segs),
1977 						    nonagle);
1978 
1979 		if (skb->len > limit &&
1980 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1981 			break;
1982 
1983 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1984 
1985 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1986 			break;
1987 
1988 repair:
1989 		/* Advance the send_head.  This one is sent out.
1990 		 * This call will increment packets_out.
1991 		 */
1992 		tcp_event_new_data_sent(sk, skb);
1993 
1994 		tcp_minshall_update(tp, mss_now, skb);
1995 		sent_pkts += tcp_skb_pcount(skb);
1996 
1997 		if (push_one)
1998 			break;
1999 	}
2000 
2001 	if (likely(sent_pkts)) {
2002 		if (tcp_in_cwnd_reduction(sk))
2003 			tp->prr_out += sent_pkts;
2004 
2005 		/* Send one loss probe per tail loss episode. */
2006 		if (push_one != 2)
2007 			tcp_schedule_loss_probe(sk);
2008 		tcp_cwnd_validate(sk, is_cwnd_limited);
2009 		return false;
2010 	}
2011 	return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2012 }
2013 
2014 bool tcp_schedule_loss_probe(struct sock *sk)
2015 {
2016 	struct inet_connection_sock *icsk = inet_csk(sk);
2017 	struct tcp_sock *tp = tcp_sk(sk);
2018 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2019 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2020 
2021 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2022 		return false;
2023 	/* No consecutive loss probes. */
2024 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2025 		tcp_rearm_rto(sk);
2026 		return false;
2027 	}
2028 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2029 	 * finishes.
2030 	 */
2031 	if (sk->sk_state == TCP_SYN_RECV)
2032 		return false;
2033 
2034 	/* TLP is only scheduled when next timer event is RTO. */
2035 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2036 		return false;
2037 
2038 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2039 	 * in Open state, that are either limited by cwnd or application.
2040 	 */
2041 	if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2042 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2043 		return false;
2044 
2045 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2046 	     tcp_send_head(sk))
2047 		return false;
2048 
2049 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2050 	 * for delayed ack when there's one outstanding packet.
2051 	 */
2052 	timeout = rtt << 1;
2053 	if (tp->packets_out == 1)
2054 		timeout = max_t(u32, timeout,
2055 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2056 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2057 
2058 	/* If RTO is shorter, just schedule TLP in its place. */
2059 	tlp_time_stamp = tcp_time_stamp + timeout;
2060 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2061 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2062 		s32 delta = rto_time_stamp - tcp_time_stamp;
2063 		if (delta > 0)
2064 			timeout = delta;
2065 	}
2066 
2067 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2068 				  TCP_RTO_MAX);
2069 	return true;
2070 }
2071 
2072 /* Thanks to skb fast clones, we can detect if a prior transmit of
2073  * a packet is still in a qdisc or driver queue.
2074  * In this case, there is very little point doing a retransmit !
2075  * Note: This is called from BH context only.
2076  */
2077 static bool skb_still_in_host_queue(const struct sock *sk,
2078 				    const struct sk_buff *skb)
2079 {
2080 	const struct sk_buff *fclone = skb + 1;
2081 
2082 	if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
2083 		     fclone->fclone == SKB_FCLONE_CLONE)) {
2084 		NET_INC_STATS_BH(sock_net(sk),
2085 				 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2086 		return true;
2087 	}
2088 	return false;
2089 }
2090 
2091 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2092  * retransmit the last segment.
2093  */
2094 void tcp_send_loss_probe(struct sock *sk)
2095 {
2096 	struct tcp_sock *tp = tcp_sk(sk);
2097 	struct sk_buff *skb;
2098 	int pcount;
2099 	int mss = tcp_current_mss(sk);
2100 	int err = -1;
2101 
2102 	if (tcp_send_head(sk) != NULL) {
2103 		err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2104 		goto rearm_timer;
2105 	}
2106 
2107 	/* At most one outstanding TLP retransmission. */
2108 	if (tp->tlp_high_seq)
2109 		goto rearm_timer;
2110 
2111 	/* Retransmit last segment. */
2112 	skb = tcp_write_queue_tail(sk);
2113 	if (WARN_ON(!skb))
2114 		goto rearm_timer;
2115 
2116 	if (skb_still_in_host_queue(sk, skb))
2117 		goto rearm_timer;
2118 
2119 	pcount = tcp_skb_pcount(skb);
2120 	if (WARN_ON(!pcount))
2121 		goto rearm_timer;
2122 
2123 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2124 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2125 					  GFP_ATOMIC)))
2126 			goto rearm_timer;
2127 		skb = tcp_write_queue_tail(sk);
2128 	}
2129 
2130 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2131 		goto rearm_timer;
2132 
2133 	err = __tcp_retransmit_skb(sk, skb);
2134 
2135 	/* Record snd_nxt for loss detection. */
2136 	if (likely(!err))
2137 		tp->tlp_high_seq = tp->snd_nxt;
2138 
2139 rearm_timer:
2140 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2141 				  inet_csk(sk)->icsk_rto,
2142 				  TCP_RTO_MAX);
2143 
2144 	if (likely(!err))
2145 		NET_INC_STATS_BH(sock_net(sk),
2146 				 LINUX_MIB_TCPLOSSPROBES);
2147 }
2148 
2149 /* Push out any pending frames which were held back due to
2150  * TCP_CORK or attempt at coalescing tiny packets.
2151  * The socket must be locked by the caller.
2152  */
2153 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2154 			       int nonagle)
2155 {
2156 	/* If we are closed, the bytes will have to remain here.
2157 	 * In time closedown will finish, we empty the write queue and
2158 	 * all will be happy.
2159 	 */
2160 	if (unlikely(sk->sk_state == TCP_CLOSE))
2161 		return;
2162 
2163 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2164 			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2165 		tcp_check_probe_timer(sk);
2166 }
2167 
2168 /* Send _single_ skb sitting at the send head. This function requires
2169  * true push pending frames to setup probe timer etc.
2170  */
2171 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2172 {
2173 	struct sk_buff *skb = tcp_send_head(sk);
2174 
2175 	BUG_ON(!skb || skb->len < mss_now);
2176 
2177 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2178 }
2179 
2180 /* This function returns the amount that we can raise the
2181  * usable window based on the following constraints
2182  *
2183  * 1. The window can never be shrunk once it is offered (RFC 793)
2184  * 2. We limit memory per socket
2185  *
2186  * RFC 1122:
2187  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2188  *  RECV.NEXT + RCV.WIN fixed until:
2189  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2190  *
2191  * i.e. don't raise the right edge of the window until you can raise
2192  * it at least MSS bytes.
2193  *
2194  * Unfortunately, the recommended algorithm breaks header prediction,
2195  * since header prediction assumes th->window stays fixed.
2196  *
2197  * Strictly speaking, keeping th->window fixed violates the receiver
2198  * side SWS prevention criteria. The problem is that under this rule
2199  * a stream of single byte packets will cause the right side of the
2200  * window to always advance by a single byte.
2201  *
2202  * Of course, if the sender implements sender side SWS prevention
2203  * then this will not be a problem.
2204  *
2205  * BSD seems to make the following compromise:
2206  *
2207  *	If the free space is less than the 1/4 of the maximum
2208  *	space available and the free space is less than 1/2 mss,
2209  *	then set the window to 0.
2210  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2211  *	Otherwise, just prevent the window from shrinking
2212  *	and from being larger than the largest representable value.
2213  *
2214  * This prevents incremental opening of the window in the regime
2215  * where TCP is limited by the speed of the reader side taking
2216  * data out of the TCP receive queue. It does nothing about
2217  * those cases where the window is constrained on the sender side
2218  * because the pipeline is full.
2219  *
2220  * BSD also seems to "accidentally" limit itself to windows that are a
2221  * multiple of MSS, at least until the free space gets quite small.
2222  * This would appear to be a side effect of the mbuf implementation.
2223  * Combining these two algorithms results in the observed behavior
2224  * of having a fixed window size at almost all times.
2225  *
2226  * Below we obtain similar behavior by forcing the offered window to
2227  * a multiple of the mss when it is feasible to do so.
2228  *
2229  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2230  * Regular options like TIMESTAMP are taken into account.
2231  */
2232 u32 __tcp_select_window(struct sock *sk)
2233 {
2234 	struct inet_connection_sock *icsk = inet_csk(sk);
2235 	struct tcp_sock *tp = tcp_sk(sk);
2236 	/* MSS for the peer's data.  Previous versions used mss_clamp
2237 	 * here.  I don't know if the value based on our guesses
2238 	 * of peer's MSS is better for the performance.  It's more correct
2239 	 * but may be worse for the performance because of rcv_mss
2240 	 * fluctuations.  --SAW  1998/11/1
2241 	 */
2242 	int mss = icsk->icsk_ack.rcv_mss;
2243 	int free_space = tcp_space(sk);
2244 	int allowed_space = tcp_full_space(sk);
2245 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2246 	int window;
2247 
2248 	if (mss > full_space)
2249 		mss = full_space;
2250 
2251 	if (free_space < (full_space >> 1)) {
2252 		icsk->icsk_ack.quick = 0;
2253 
2254 		if (sk_under_memory_pressure(sk))
2255 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2256 					       4U * tp->advmss);
2257 
2258 		/* free_space might become our new window, make sure we don't
2259 		 * increase it due to wscale.
2260 		 */
2261 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2262 
2263 		/* if free space is less than mss estimate, or is below 1/16th
2264 		 * of the maximum allowed, try to move to zero-window, else
2265 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2266 		 * new incoming data is dropped due to memory limits.
2267 		 * With large window, mss test triggers way too late in order
2268 		 * to announce zero window in time before rmem limit kicks in.
2269 		 */
2270 		if (free_space < (allowed_space >> 4) || free_space < mss)
2271 			return 0;
2272 	}
2273 
2274 	if (free_space > tp->rcv_ssthresh)
2275 		free_space = tp->rcv_ssthresh;
2276 
2277 	/* Don't do rounding if we are using window scaling, since the
2278 	 * scaled window will not line up with the MSS boundary anyway.
2279 	 */
2280 	window = tp->rcv_wnd;
2281 	if (tp->rx_opt.rcv_wscale) {
2282 		window = free_space;
2283 
2284 		/* Advertise enough space so that it won't get scaled away.
2285 		 * Import case: prevent zero window announcement if
2286 		 * 1<<rcv_wscale > mss.
2287 		 */
2288 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2289 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2290 				  << tp->rx_opt.rcv_wscale);
2291 	} else {
2292 		/* Get the largest window that is a nice multiple of mss.
2293 		 * Window clamp already applied above.
2294 		 * If our current window offering is within 1 mss of the
2295 		 * free space we just keep it. This prevents the divide
2296 		 * and multiply from happening most of the time.
2297 		 * We also don't do any window rounding when the free space
2298 		 * is too small.
2299 		 */
2300 		if (window <= free_space - mss || window > free_space)
2301 			window = (free_space / mss) * mss;
2302 		else if (mss == full_space &&
2303 			 free_space > window + (full_space >> 1))
2304 			window = free_space;
2305 	}
2306 
2307 	return window;
2308 }
2309 
2310 /* Collapses two adjacent SKB's during retransmission. */
2311 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2312 {
2313 	struct tcp_sock *tp = tcp_sk(sk);
2314 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2315 	int skb_size, next_skb_size;
2316 
2317 	skb_size = skb->len;
2318 	next_skb_size = next_skb->len;
2319 
2320 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2321 
2322 	tcp_highest_sack_combine(sk, next_skb, skb);
2323 
2324 	tcp_unlink_write_queue(next_skb, sk);
2325 
2326 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2327 				  next_skb_size);
2328 
2329 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2330 		skb->ip_summed = CHECKSUM_PARTIAL;
2331 
2332 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2333 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2334 
2335 	/* Update sequence range on original skb. */
2336 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2337 
2338 	/* Merge over control information. This moves PSH/FIN etc. over */
2339 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2340 
2341 	/* All done, get rid of second SKB and account for it so
2342 	 * packet counting does not break.
2343 	 */
2344 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2345 
2346 	/* changed transmit queue under us so clear hints */
2347 	tcp_clear_retrans_hints_partial(tp);
2348 	if (next_skb == tp->retransmit_skb_hint)
2349 		tp->retransmit_skb_hint = skb;
2350 
2351 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2352 
2353 	sk_wmem_free_skb(sk, next_skb);
2354 }
2355 
2356 /* Check if coalescing SKBs is legal. */
2357 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2358 {
2359 	if (tcp_skb_pcount(skb) > 1)
2360 		return false;
2361 	/* TODO: SACK collapsing could be used to remove this condition */
2362 	if (skb_shinfo(skb)->nr_frags != 0)
2363 		return false;
2364 	if (skb_cloned(skb))
2365 		return false;
2366 	if (skb == tcp_send_head(sk))
2367 		return false;
2368 	/* Some heurestics for collapsing over SACK'd could be invented */
2369 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2370 		return false;
2371 
2372 	return true;
2373 }
2374 
2375 /* Collapse packets in the retransmit queue to make to create
2376  * less packets on the wire. This is only done on retransmission.
2377  */
2378 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2379 				     int space)
2380 {
2381 	struct tcp_sock *tp = tcp_sk(sk);
2382 	struct sk_buff *skb = to, *tmp;
2383 	bool first = true;
2384 
2385 	if (!sysctl_tcp_retrans_collapse)
2386 		return;
2387 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2388 		return;
2389 
2390 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2391 		if (!tcp_can_collapse(sk, skb))
2392 			break;
2393 
2394 		space -= skb->len;
2395 
2396 		if (first) {
2397 			first = false;
2398 			continue;
2399 		}
2400 
2401 		if (space < 0)
2402 			break;
2403 		/* Punt if not enough space exists in the first SKB for
2404 		 * the data in the second
2405 		 */
2406 		if (skb->len > skb_availroom(to))
2407 			break;
2408 
2409 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2410 			break;
2411 
2412 		tcp_collapse_retrans(sk, to);
2413 	}
2414 }
2415 
2416 /* This retransmits one SKB.  Policy decisions and retransmit queue
2417  * state updates are done by the caller.  Returns non-zero if an
2418  * error occurred which prevented the send.
2419  */
2420 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2421 {
2422 	struct tcp_sock *tp = tcp_sk(sk);
2423 	struct inet_connection_sock *icsk = inet_csk(sk);
2424 	unsigned int cur_mss;
2425 	int err;
2426 
2427 	/* Inconslusive MTU probe */
2428 	if (icsk->icsk_mtup.probe_size) {
2429 		icsk->icsk_mtup.probe_size = 0;
2430 	}
2431 
2432 	/* Do not sent more than we queued. 1/4 is reserved for possible
2433 	 * copying overhead: fragmentation, tunneling, mangling etc.
2434 	 */
2435 	if (atomic_read(&sk->sk_wmem_alloc) >
2436 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2437 		return -EAGAIN;
2438 
2439 	if (skb_still_in_host_queue(sk, skb))
2440 		return -EBUSY;
2441 
2442 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2443 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2444 			BUG();
2445 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2446 			return -ENOMEM;
2447 	}
2448 
2449 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2450 		return -EHOSTUNREACH; /* Routing failure or similar. */
2451 
2452 	cur_mss = tcp_current_mss(sk);
2453 
2454 	/* If receiver has shrunk his window, and skb is out of
2455 	 * new window, do not retransmit it. The exception is the
2456 	 * case, when window is shrunk to zero. In this case
2457 	 * our retransmit serves as a zero window probe.
2458 	 */
2459 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2460 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2461 		return -EAGAIN;
2462 
2463 	if (skb->len > cur_mss) {
2464 		if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2465 			return -ENOMEM; /* We'll try again later. */
2466 	} else {
2467 		int oldpcount = tcp_skb_pcount(skb);
2468 
2469 		if (unlikely(oldpcount > 1)) {
2470 			if (skb_unclone(skb, GFP_ATOMIC))
2471 				return -ENOMEM;
2472 			tcp_init_tso_segs(sk, skb, cur_mss);
2473 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2474 		}
2475 	}
2476 
2477 	tcp_retrans_try_collapse(sk, skb, cur_mss);
2478 
2479 	/* Make a copy, if the first transmission SKB clone we made
2480 	 * is still in somebody's hands, else make a clone.
2481 	 */
2482 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2483 
2484 	/* make sure skb->data is aligned on arches that require it
2485 	 * and check if ack-trimming & collapsing extended the headroom
2486 	 * beyond what csum_start can cover.
2487 	 */
2488 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2489 		     skb_headroom(skb) >= 0xFFFF)) {
2490 		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2491 						   GFP_ATOMIC);
2492 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2493 			     -ENOBUFS;
2494 	} else {
2495 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2496 	}
2497 
2498 	if (likely(!err)) {
2499 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2500 		/* Update global TCP statistics. */
2501 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2502 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2503 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2504 		tp->total_retrans++;
2505 	}
2506 	return err;
2507 }
2508 
2509 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2510 {
2511 	struct tcp_sock *tp = tcp_sk(sk);
2512 	int err = __tcp_retransmit_skb(sk, skb);
2513 
2514 	if (err == 0) {
2515 #if FASTRETRANS_DEBUG > 0
2516 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2517 			net_dbg_ratelimited("retrans_out leaked\n");
2518 		}
2519 #endif
2520 		if (!tp->retrans_out)
2521 			tp->lost_retrans_low = tp->snd_nxt;
2522 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2523 		tp->retrans_out += tcp_skb_pcount(skb);
2524 
2525 		/* Save stamp of the first retransmit. */
2526 		if (!tp->retrans_stamp)
2527 			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2528 
2529 		/* snd_nxt is stored to detect loss of retransmitted segment,
2530 		 * see tcp_input.c tcp_sacktag_write_queue().
2531 		 */
2532 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2533 	} else if (err != -EBUSY) {
2534 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2535 	}
2536 
2537 	if (tp->undo_retrans < 0)
2538 		tp->undo_retrans = 0;
2539 	tp->undo_retrans += tcp_skb_pcount(skb);
2540 	return err;
2541 }
2542 
2543 /* Check if we forward retransmits are possible in the current
2544  * window/congestion state.
2545  */
2546 static bool tcp_can_forward_retransmit(struct sock *sk)
2547 {
2548 	const struct inet_connection_sock *icsk = inet_csk(sk);
2549 	const struct tcp_sock *tp = tcp_sk(sk);
2550 
2551 	/* Forward retransmissions are possible only during Recovery. */
2552 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2553 		return false;
2554 
2555 	/* No forward retransmissions in Reno are possible. */
2556 	if (tcp_is_reno(tp))
2557 		return false;
2558 
2559 	/* Yeah, we have to make difficult choice between forward transmission
2560 	 * and retransmission... Both ways have their merits...
2561 	 *
2562 	 * For now we do not retransmit anything, while we have some new
2563 	 * segments to send. In the other cases, follow rule 3 for
2564 	 * NextSeg() specified in RFC3517.
2565 	 */
2566 
2567 	if (tcp_may_send_now(sk))
2568 		return false;
2569 
2570 	return true;
2571 }
2572 
2573 /* This gets called after a retransmit timeout, and the initially
2574  * retransmitted data is acknowledged.  It tries to continue
2575  * resending the rest of the retransmit queue, until either
2576  * we've sent it all or the congestion window limit is reached.
2577  * If doing SACK, the first ACK which comes back for a timeout
2578  * based retransmit packet might feed us FACK information again.
2579  * If so, we use it to avoid unnecessarily retransmissions.
2580  */
2581 void tcp_xmit_retransmit_queue(struct sock *sk)
2582 {
2583 	const struct inet_connection_sock *icsk = inet_csk(sk);
2584 	struct tcp_sock *tp = tcp_sk(sk);
2585 	struct sk_buff *skb;
2586 	struct sk_buff *hole = NULL;
2587 	u32 last_lost;
2588 	int mib_idx;
2589 	int fwd_rexmitting = 0;
2590 
2591 	if (!tp->packets_out)
2592 		return;
2593 
2594 	if (!tp->lost_out)
2595 		tp->retransmit_high = tp->snd_una;
2596 
2597 	if (tp->retransmit_skb_hint) {
2598 		skb = tp->retransmit_skb_hint;
2599 		last_lost = TCP_SKB_CB(skb)->end_seq;
2600 		if (after(last_lost, tp->retransmit_high))
2601 			last_lost = tp->retransmit_high;
2602 	} else {
2603 		skb = tcp_write_queue_head(sk);
2604 		last_lost = tp->snd_una;
2605 	}
2606 
2607 	tcp_for_write_queue_from(skb, sk) {
2608 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2609 
2610 		if (skb == tcp_send_head(sk))
2611 			break;
2612 		/* we could do better than to assign each time */
2613 		if (hole == NULL)
2614 			tp->retransmit_skb_hint = skb;
2615 
2616 		/* Assume this retransmit will generate
2617 		 * only one packet for congestion window
2618 		 * calculation purposes.  This works because
2619 		 * tcp_retransmit_skb() will chop up the
2620 		 * packet to be MSS sized and all the
2621 		 * packet counting works out.
2622 		 */
2623 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2624 			return;
2625 
2626 		if (fwd_rexmitting) {
2627 begin_fwd:
2628 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2629 				break;
2630 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2631 
2632 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2633 			tp->retransmit_high = last_lost;
2634 			if (!tcp_can_forward_retransmit(sk))
2635 				break;
2636 			/* Backtrack if necessary to non-L'ed skb */
2637 			if (hole != NULL) {
2638 				skb = hole;
2639 				hole = NULL;
2640 			}
2641 			fwd_rexmitting = 1;
2642 			goto begin_fwd;
2643 
2644 		} else if (!(sacked & TCPCB_LOST)) {
2645 			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2646 				hole = skb;
2647 			continue;
2648 
2649 		} else {
2650 			last_lost = TCP_SKB_CB(skb)->end_seq;
2651 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2652 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2653 			else
2654 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2655 		}
2656 
2657 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2658 			continue;
2659 
2660 		if (tcp_retransmit_skb(sk, skb))
2661 			return;
2662 
2663 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2664 
2665 		if (tcp_in_cwnd_reduction(sk))
2666 			tp->prr_out += tcp_skb_pcount(skb);
2667 
2668 		if (skb == tcp_write_queue_head(sk))
2669 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2670 						  inet_csk(sk)->icsk_rto,
2671 						  TCP_RTO_MAX);
2672 	}
2673 }
2674 
2675 /* Send a fin.  The caller locks the socket for us.  This cannot be
2676  * allowed to fail queueing a FIN frame under any circumstances.
2677  */
2678 void tcp_send_fin(struct sock *sk)
2679 {
2680 	struct tcp_sock *tp = tcp_sk(sk);
2681 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2682 	int mss_now;
2683 
2684 	/* Optimization, tack on the FIN if we have a queue of
2685 	 * unsent frames.  But be careful about outgoing SACKS
2686 	 * and IP options.
2687 	 */
2688 	mss_now = tcp_current_mss(sk);
2689 
2690 	if (tcp_send_head(sk) != NULL) {
2691 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2692 		TCP_SKB_CB(skb)->end_seq++;
2693 		tp->write_seq++;
2694 	} else {
2695 		/* Socket is locked, keep trying until memory is available. */
2696 		for (;;) {
2697 			skb = alloc_skb_fclone(MAX_TCP_HEADER,
2698 					       sk->sk_allocation);
2699 			if (skb)
2700 				break;
2701 			yield();
2702 		}
2703 
2704 		/* Reserve space for headers and prepare control bits. */
2705 		skb_reserve(skb, MAX_TCP_HEADER);
2706 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2707 		tcp_init_nondata_skb(skb, tp->write_seq,
2708 				     TCPHDR_ACK | TCPHDR_FIN);
2709 		tcp_queue_skb(sk, skb);
2710 	}
2711 	__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2712 }
2713 
2714 /* We get here when a process closes a file descriptor (either due to
2715  * an explicit close() or as a byproduct of exit()'ing) and there
2716  * was unread data in the receive queue.  This behavior is recommended
2717  * by RFC 2525, section 2.17.  -DaveM
2718  */
2719 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2720 {
2721 	struct sk_buff *skb;
2722 
2723 	/* NOTE: No TCP options attached and we never retransmit this. */
2724 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2725 	if (!skb) {
2726 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2727 		return;
2728 	}
2729 
2730 	/* Reserve space for headers and prepare control bits. */
2731 	skb_reserve(skb, MAX_TCP_HEADER);
2732 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2733 			     TCPHDR_ACK | TCPHDR_RST);
2734 	/* Send it off. */
2735 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2736 	if (tcp_transmit_skb(sk, skb, 0, priority))
2737 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2738 
2739 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2740 }
2741 
2742 /* Send a crossed SYN-ACK during socket establishment.
2743  * WARNING: This routine must only be called when we have already sent
2744  * a SYN packet that crossed the incoming SYN that caused this routine
2745  * to get called. If this assumption fails then the initial rcv_wnd
2746  * and rcv_wscale values will not be correct.
2747  */
2748 int tcp_send_synack(struct sock *sk)
2749 {
2750 	struct sk_buff *skb;
2751 
2752 	skb = tcp_write_queue_head(sk);
2753 	if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2754 		pr_debug("%s: wrong queue state\n", __func__);
2755 		return -EFAULT;
2756 	}
2757 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2758 		if (skb_cloned(skb)) {
2759 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2760 			if (nskb == NULL)
2761 				return -ENOMEM;
2762 			tcp_unlink_write_queue(skb, sk);
2763 			skb_header_release(nskb);
2764 			__tcp_add_write_queue_head(sk, nskb);
2765 			sk_wmem_free_skb(sk, skb);
2766 			sk->sk_wmem_queued += nskb->truesize;
2767 			sk_mem_charge(sk, nskb->truesize);
2768 			skb = nskb;
2769 		}
2770 
2771 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2772 		TCP_ECN_send_synack(tcp_sk(sk), skb);
2773 	}
2774 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2775 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2776 }
2777 
2778 /**
2779  * tcp_make_synack - Prepare a SYN-ACK.
2780  * sk: listener socket
2781  * dst: dst entry attached to the SYNACK
2782  * req: request_sock pointer
2783  *
2784  * Allocate one skb and build a SYNACK packet.
2785  * @dst is consumed : Caller should not use it again.
2786  */
2787 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2788 				struct request_sock *req,
2789 				struct tcp_fastopen_cookie *foc)
2790 {
2791 	struct tcp_out_options opts;
2792 	struct inet_request_sock *ireq = inet_rsk(req);
2793 	struct tcp_sock *tp = tcp_sk(sk);
2794 	struct tcphdr *th;
2795 	struct sk_buff *skb;
2796 	struct tcp_md5sig_key *md5;
2797 	int tcp_header_size;
2798 	int mss;
2799 
2800 	skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2801 	if (unlikely(!skb)) {
2802 		dst_release(dst);
2803 		return NULL;
2804 	}
2805 	/* Reserve space for headers. */
2806 	skb_reserve(skb, MAX_TCP_HEADER);
2807 
2808 	skb_dst_set(skb, dst);
2809 	security_skb_owned_by(skb, sk);
2810 
2811 	mss = dst_metric_advmss(dst);
2812 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2813 		mss = tp->rx_opt.user_mss;
2814 
2815 	memset(&opts, 0, sizeof(opts));
2816 #ifdef CONFIG_SYN_COOKIES
2817 	if (unlikely(req->cookie_ts))
2818 		TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2819 	else
2820 #endif
2821 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2822 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2823 					     foc) + sizeof(*th);
2824 
2825 	skb_push(skb, tcp_header_size);
2826 	skb_reset_transport_header(skb);
2827 
2828 	th = tcp_hdr(skb);
2829 	memset(th, 0, sizeof(struct tcphdr));
2830 	th->syn = 1;
2831 	th->ack = 1;
2832 	TCP_ECN_make_synack(req, th);
2833 	th->source = htons(ireq->ir_num);
2834 	th->dest = ireq->ir_rmt_port;
2835 	/* Setting of flags are superfluous here for callers (and ECE is
2836 	 * not even correctly set)
2837 	 */
2838 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2839 			     TCPHDR_SYN | TCPHDR_ACK);
2840 
2841 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2842 	/* XXX data is queued and acked as is. No buffer/window check */
2843 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2844 
2845 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2846 	th->window = htons(min(req->rcv_wnd, 65535U));
2847 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
2848 	th->doff = (tcp_header_size >> 2);
2849 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2850 
2851 #ifdef CONFIG_TCP_MD5SIG
2852 	/* Okay, we have all we need - do the md5 hash if needed */
2853 	if (md5) {
2854 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2855 					       md5, NULL, req, skb);
2856 	}
2857 #endif
2858 
2859 	return skb;
2860 }
2861 EXPORT_SYMBOL(tcp_make_synack);
2862 
2863 /* Do all connect socket setups that can be done AF independent. */
2864 static void tcp_connect_init(struct sock *sk)
2865 {
2866 	const struct dst_entry *dst = __sk_dst_get(sk);
2867 	struct tcp_sock *tp = tcp_sk(sk);
2868 	__u8 rcv_wscale;
2869 
2870 	/* We'll fix this up when we get a response from the other end.
2871 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2872 	 */
2873 	tp->tcp_header_len = sizeof(struct tcphdr) +
2874 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2875 
2876 #ifdef CONFIG_TCP_MD5SIG
2877 	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2878 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2879 #endif
2880 
2881 	/* If user gave his TCP_MAXSEG, record it to clamp */
2882 	if (tp->rx_opt.user_mss)
2883 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2884 	tp->max_window = 0;
2885 	tcp_mtup_init(sk);
2886 	tcp_sync_mss(sk, dst_mtu(dst));
2887 
2888 	if (!tp->window_clamp)
2889 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2890 	tp->advmss = dst_metric_advmss(dst);
2891 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2892 		tp->advmss = tp->rx_opt.user_mss;
2893 
2894 	tcp_initialize_rcv_mss(sk);
2895 
2896 	/* limit the window selection if the user enforce a smaller rx buffer */
2897 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2898 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2899 		tp->window_clamp = tcp_full_space(sk);
2900 
2901 	tcp_select_initial_window(tcp_full_space(sk),
2902 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2903 				  &tp->rcv_wnd,
2904 				  &tp->window_clamp,
2905 				  sysctl_tcp_window_scaling,
2906 				  &rcv_wscale,
2907 				  dst_metric(dst, RTAX_INITRWND));
2908 
2909 	tp->rx_opt.rcv_wscale = rcv_wscale;
2910 	tp->rcv_ssthresh = tp->rcv_wnd;
2911 
2912 	sk->sk_err = 0;
2913 	sock_reset_flag(sk, SOCK_DONE);
2914 	tp->snd_wnd = 0;
2915 	tcp_init_wl(tp, 0);
2916 	tp->snd_una = tp->write_seq;
2917 	tp->snd_sml = tp->write_seq;
2918 	tp->snd_up = tp->write_seq;
2919 	tp->snd_nxt = tp->write_seq;
2920 
2921 	if (likely(!tp->repair))
2922 		tp->rcv_nxt = 0;
2923 	else
2924 		tp->rcv_tstamp = tcp_time_stamp;
2925 	tp->rcv_wup = tp->rcv_nxt;
2926 	tp->copied_seq = tp->rcv_nxt;
2927 
2928 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2929 	inet_csk(sk)->icsk_retransmits = 0;
2930 	tcp_clear_retrans(tp);
2931 }
2932 
2933 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2934 {
2935 	struct tcp_sock *tp = tcp_sk(sk);
2936 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2937 
2938 	tcb->end_seq += skb->len;
2939 	skb_header_release(skb);
2940 	__tcp_add_write_queue_tail(sk, skb);
2941 	sk->sk_wmem_queued += skb->truesize;
2942 	sk_mem_charge(sk, skb->truesize);
2943 	tp->write_seq = tcb->end_seq;
2944 	tp->packets_out += tcp_skb_pcount(skb);
2945 }
2946 
2947 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2948  * queue a data-only packet after the regular SYN, such that regular SYNs
2949  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2950  * only the SYN sequence, the data are retransmitted in the first ACK.
2951  * If cookie is not cached or other error occurs, falls back to send a
2952  * regular SYN with Fast Open cookie request option.
2953  */
2954 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2955 {
2956 	struct tcp_sock *tp = tcp_sk(sk);
2957 	struct tcp_fastopen_request *fo = tp->fastopen_req;
2958 	int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2959 	struct sk_buff *syn_data = NULL, *data;
2960 	unsigned long last_syn_loss = 0;
2961 
2962 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
2963 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2964 			       &syn_loss, &last_syn_loss);
2965 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
2966 	if (syn_loss > 1 &&
2967 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2968 		fo->cookie.len = -1;
2969 		goto fallback;
2970 	}
2971 
2972 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2973 		fo->cookie.len = -1;
2974 	else if (fo->cookie.len <= 0)
2975 		goto fallback;
2976 
2977 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2978 	 * user-MSS. Reserve maximum option space for middleboxes that add
2979 	 * private TCP options. The cost is reduced data space in SYN :(
2980 	 */
2981 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2982 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2983 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2984 		MAX_TCP_OPTION_SPACE;
2985 
2986 	space = min_t(size_t, space, fo->size);
2987 
2988 	/* limit to order-0 allocations */
2989 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
2990 
2991 	syn_data = skb_copy_expand(syn, MAX_TCP_HEADER, space,
2992 				   sk->sk_allocation);
2993 	if (syn_data == NULL)
2994 		goto fallback;
2995 
2996 	for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2997 		struct iovec *iov = &fo->data->msg_iov[i];
2998 		unsigned char __user *from = iov->iov_base;
2999 		int len = iov->iov_len;
3000 
3001 		if (syn_data->len + len > space)
3002 			len = space - syn_data->len;
3003 		else if (i + 1 == iovlen)
3004 			/* No more data pending in inet_wait_for_connect() */
3005 			fo->data = NULL;
3006 
3007 		if (skb_add_data(syn_data, from, len))
3008 			goto fallback;
3009 	}
3010 
3011 	/* Queue a data-only packet after the regular SYN for retransmission */
3012 	data = pskb_copy(syn_data, sk->sk_allocation);
3013 	if (data == NULL)
3014 		goto fallback;
3015 	TCP_SKB_CB(data)->seq++;
3016 	TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
3017 	TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
3018 	tcp_connect_queue_skb(sk, data);
3019 	fo->copied = data->len;
3020 
3021 	/* syn_data is about to be sent, we need to take current time stamps
3022 	 * for the packets that are in write queue : SYN packet and DATA
3023 	 */
3024 	skb_mstamp_get(&syn->skb_mstamp);
3025 	data->skb_mstamp = syn->skb_mstamp;
3026 
3027 	if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
3028 		tp->syn_data = (fo->copied > 0);
3029 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3030 		goto done;
3031 	}
3032 	syn_data = NULL;
3033 
3034 fallback:
3035 	/* Send a regular SYN with Fast Open cookie request option */
3036 	if (fo->cookie.len > 0)
3037 		fo->cookie.len = 0;
3038 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3039 	if (err)
3040 		tp->syn_fastopen = 0;
3041 	kfree_skb(syn_data);
3042 done:
3043 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3044 	return err;
3045 }
3046 
3047 /* Build a SYN and send it off. */
3048 int tcp_connect(struct sock *sk)
3049 {
3050 	struct tcp_sock *tp = tcp_sk(sk);
3051 	struct sk_buff *buff;
3052 	int err;
3053 
3054 	tcp_connect_init(sk);
3055 
3056 	if (unlikely(tp->repair)) {
3057 		tcp_finish_connect(sk, NULL);
3058 		return 0;
3059 	}
3060 
3061 	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
3062 	if (unlikely(buff == NULL))
3063 		return -ENOBUFS;
3064 
3065 	/* Reserve space for headers. */
3066 	skb_reserve(buff, MAX_TCP_HEADER);
3067 
3068 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3069 	tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
3070 	tcp_connect_queue_skb(sk, buff);
3071 	TCP_ECN_send_syn(sk, buff);
3072 
3073 	/* Send off SYN; include data in Fast Open. */
3074 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3075 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3076 	if (err == -ECONNREFUSED)
3077 		return err;
3078 
3079 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3080 	 * in order to make this packet get counted in tcpOutSegs.
3081 	 */
3082 	tp->snd_nxt = tp->write_seq;
3083 	tp->pushed_seq = tp->write_seq;
3084 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3085 
3086 	/* Timer for repeating the SYN until an answer. */
3087 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3088 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3089 	return 0;
3090 }
3091 EXPORT_SYMBOL(tcp_connect);
3092 
3093 /* Send out a delayed ack, the caller does the policy checking
3094  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3095  * for details.
3096  */
3097 void tcp_send_delayed_ack(struct sock *sk)
3098 {
3099 	struct inet_connection_sock *icsk = inet_csk(sk);
3100 	int ato = icsk->icsk_ack.ato;
3101 	unsigned long timeout;
3102 
3103 	if (ato > TCP_DELACK_MIN) {
3104 		const struct tcp_sock *tp = tcp_sk(sk);
3105 		int max_ato = HZ / 2;
3106 
3107 		if (icsk->icsk_ack.pingpong ||
3108 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3109 			max_ato = TCP_DELACK_MAX;
3110 
3111 		/* Slow path, intersegment interval is "high". */
3112 
3113 		/* If some rtt estimate is known, use it to bound delayed ack.
3114 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3115 		 * directly.
3116 		 */
3117 		if (tp->srtt_us) {
3118 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3119 					TCP_DELACK_MIN);
3120 
3121 			if (rtt < max_ato)
3122 				max_ato = rtt;
3123 		}
3124 
3125 		ato = min(ato, max_ato);
3126 	}
3127 
3128 	/* Stay within the limit we were given */
3129 	timeout = jiffies + ato;
3130 
3131 	/* Use new timeout only if there wasn't a older one earlier. */
3132 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3133 		/* If delack timer was blocked or is about to expire,
3134 		 * send ACK now.
3135 		 */
3136 		if (icsk->icsk_ack.blocked ||
3137 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3138 			tcp_send_ack(sk);
3139 			return;
3140 		}
3141 
3142 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3143 			timeout = icsk->icsk_ack.timeout;
3144 	}
3145 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3146 	icsk->icsk_ack.timeout = timeout;
3147 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3148 }
3149 
3150 /* This routine sends an ack and also updates the window. */
3151 void tcp_send_ack(struct sock *sk)
3152 {
3153 	struct sk_buff *buff;
3154 
3155 	/* If we have been reset, we may not send again. */
3156 	if (sk->sk_state == TCP_CLOSE)
3157 		return;
3158 
3159 	/* We are not putting this on the write queue, so
3160 	 * tcp_transmit_skb() will set the ownership to this
3161 	 * sock.
3162 	 */
3163 	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3164 	if (buff == NULL) {
3165 		inet_csk_schedule_ack(sk);
3166 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3167 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3168 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3169 		return;
3170 	}
3171 
3172 	/* Reserve space for headers and prepare control bits. */
3173 	skb_reserve(buff, MAX_TCP_HEADER);
3174 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3175 
3176 	/* Send it off, this clears delayed acks for us. */
3177 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
3178 	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3179 }
3180 
3181 /* This routine sends a packet with an out of date sequence
3182  * number. It assumes the other end will try to ack it.
3183  *
3184  * Question: what should we make while urgent mode?
3185  * 4.4BSD forces sending single byte of data. We cannot send
3186  * out of window data, because we have SND.NXT==SND.MAX...
3187  *
3188  * Current solution: to send TWO zero-length segments in urgent mode:
3189  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3190  * out-of-date with SND.UNA-1 to probe window.
3191  */
3192 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3193 {
3194 	struct tcp_sock *tp = tcp_sk(sk);
3195 	struct sk_buff *skb;
3196 
3197 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3198 	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3199 	if (skb == NULL)
3200 		return -1;
3201 
3202 	/* Reserve space for headers and set control bits. */
3203 	skb_reserve(skb, MAX_TCP_HEADER);
3204 	/* Use a previous sequence.  This should cause the other
3205 	 * end to send an ack.  Don't queue or clone SKB, just
3206 	 * send it.
3207 	 */
3208 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3209 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
3210 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3211 }
3212 
3213 void tcp_send_window_probe(struct sock *sk)
3214 {
3215 	if (sk->sk_state == TCP_ESTABLISHED) {
3216 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3217 		tcp_xmit_probe_skb(sk, 0);
3218 	}
3219 }
3220 
3221 /* Initiate keepalive or window probe from timer. */
3222 int tcp_write_wakeup(struct sock *sk)
3223 {
3224 	struct tcp_sock *tp = tcp_sk(sk);
3225 	struct sk_buff *skb;
3226 
3227 	if (sk->sk_state == TCP_CLOSE)
3228 		return -1;
3229 
3230 	if ((skb = tcp_send_head(sk)) != NULL &&
3231 	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3232 		int err;
3233 		unsigned int mss = tcp_current_mss(sk);
3234 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3235 
3236 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3237 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3238 
3239 		/* We are probing the opening of a window
3240 		 * but the window size is != 0
3241 		 * must have been a result SWS avoidance ( sender )
3242 		 */
3243 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3244 		    skb->len > mss) {
3245 			seg_size = min(seg_size, mss);
3246 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3247 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3248 				return -1;
3249 		} else if (!tcp_skb_pcount(skb))
3250 			tcp_set_skb_tso_segs(sk, skb, mss);
3251 
3252 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3253 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
3254 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3255 		if (!err)
3256 			tcp_event_new_data_sent(sk, skb);
3257 		return err;
3258 	} else {
3259 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3260 			tcp_xmit_probe_skb(sk, 1);
3261 		return tcp_xmit_probe_skb(sk, 0);
3262 	}
3263 }
3264 
3265 /* A window probe timeout has occurred.  If window is not closed send
3266  * a partial packet else a zero probe.
3267  */
3268 void tcp_send_probe0(struct sock *sk)
3269 {
3270 	struct inet_connection_sock *icsk = inet_csk(sk);
3271 	struct tcp_sock *tp = tcp_sk(sk);
3272 	int err;
3273 
3274 	err = tcp_write_wakeup(sk);
3275 
3276 	if (tp->packets_out || !tcp_send_head(sk)) {
3277 		/* Cancel probe timer, if it is not required. */
3278 		icsk->icsk_probes_out = 0;
3279 		icsk->icsk_backoff = 0;
3280 		return;
3281 	}
3282 
3283 	if (err <= 0) {
3284 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3285 			icsk->icsk_backoff++;
3286 		icsk->icsk_probes_out++;
3287 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3288 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3289 					  TCP_RTO_MAX);
3290 	} else {
3291 		/* If packet was not sent due to local congestion,
3292 		 * do not backoff and do not remember icsk_probes_out.
3293 		 * Let local senders to fight for local resources.
3294 		 *
3295 		 * Use accumulated backoff yet.
3296 		 */
3297 		if (!icsk->icsk_probes_out)
3298 			icsk->icsk_probes_out = 1;
3299 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3300 					  min(icsk->icsk_rto << icsk->icsk_backoff,
3301 					      TCP_RESOURCE_PROBE_INTERVAL),
3302 					  TCP_RTO_MAX);
3303 	}
3304 }
3305 
3306 int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3307 {
3308 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3309 	struct flowi fl;
3310 	int res;
3311 
3312 	res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3313 	if (!res) {
3314 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3315 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3316 	}
3317 	return res;
3318 }
3319 EXPORT_SYMBOL(tcp_rtx_synack);
3320