1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 66 int push_one, gfp_t gfp); 67 68 /* Account for new data that has been sent to the network. */ 69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 70 { 71 struct inet_connection_sock *icsk = inet_csk(sk); 72 struct tcp_sock *tp = tcp_sk(sk); 73 unsigned int prior_packets = tp->packets_out; 74 75 tcp_advance_send_head(sk, skb); 76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 80 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 81 tcp_rearm_rto(sk); 82 } 83 84 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 85 tcp_skb_pcount(skb)); 86 } 87 88 /* SND.NXT, if window was not shrunk. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 99 return tp->snd_nxt; 100 else 101 return tcp_wnd_end(tp); 102 } 103 104 /* Calculate mss to advertise in SYN segment. 105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 106 * 107 * 1. It is independent of path mtu. 108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 110 * attached devices, because some buggy hosts are confused by 111 * large MSS. 112 * 4. We do not make 3, we advertise MSS, calculated from first 113 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 114 * This may be overridden via information stored in routing table. 115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 116 * probably even Jumbo". 117 */ 118 static __u16 tcp_advertise_mss(struct sock *sk) 119 { 120 struct tcp_sock *tp = tcp_sk(sk); 121 const struct dst_entry *dst = __sk_dst_get(sk); 122 int mss = tp->advmss; 123 124 if (dst) { 125 unsigned int metric = dst_metric_advmss(dst); 126 127 if (metric < mss) { 128 mss = metric; 129 tp->advmss = mss; 130 } 131 } 132 133 return (__u16)mss; 134 } 135 136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 137 * This is the first part of cwnd validation mechanism. 138 */ 139 void tcp_cwnd_restart(struct sock *sk, s32 delta) 140 { 141 struct tcp_sock *tp = tcp_sk(sk); 142 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 143 u32 cwnd = tp->snd_cwnd; 144 145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 146 147 tp->snd_ssthresh = tcp_current_ssthresh(sk); 148 restart_cwnd = min(restart_cwnd, cwnd); 149 150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 151 cwnd >>= 1; 152 tp->snd_cwnd = max(cwnd, restart_cwnd); 153 tp->snd_cwnd_stamp = tcp_time_stamp; 154 tp->snd_cwnd_used = 0; 155 } 156 157 /* Congestion state accounting after a packet has been sent. */ 158 static void tcp_event_data_sent(struct tcp_sock *tp, 159 struct sock *sk) 160 { 161 struct inet_connection_sock *icsk = inet_csk(sk); 162 const u32 now = tcp_time_stamp; 163 164 if (tcp_packets_in_flight(tp) == 0) 165 tcp_ca_event(sk, CA_EVENT_TX_START); 166 167 tp->lsndtime = now; 168 169 /* If it is a reply for ato after last received 170 * packet, enter pingpong mode. 171 */ 172 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 173 icsk->icsk_ack.pingpong = 1; 174 } 175 176 /* Account for an ACK we sent. */ 177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 178 { 179 tcp_dec_quickack_mode(sk, pkts); 180 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 181 } 182 183 184 u32 tcp_default_init_rwnd(u32 mss) 185 { 186 /* Initial receive window should be twice of TCP_INIT_CWND to 187 * enable proper sending of new unsent data during fast recovery 188 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 189 * limit when mss is larger than 1460. 190 */ 191 u32 init_rwnd = TCP_INIT_CWND * 2; 192 193 if (mss > 1460) 194 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 195 return init_rwnd; 196 } 197 198 /* Determine a window scaling and initial window to offer. 199 * Based on the assumption that the given amount of space 200 * will be offered. Store the results in the tp structure. 201 * NOTE: for smooth operation initial space offering should 202 * be a multiple of mss if possible. We assume here that mss >= 1. 203 * This MUST be enforced by all callers. 204 */ 205 void tcp_select_initial_window(int __space, __u32 mss, 206 __u32 *rcv_wnd, __u32 *window_clamp, 207 int wscale_ok, __u8 *rcv_wscale, 208 __u32 init_rcv_wnd) 209 { 210 unsigned int space = (__space < 0 ? 0 : __space); 211 212 /* If no clamp set the clamp to the max possible scaled window */ 213 if (*window_clamp == 0) 214 (*window_clamp) = (65535 << 14); 215 space = min(*window_clamp, space); 216 217 /* Quantize space offering to a multiple of mss if possible. */ 218 if (space > mss) 219 space = (space / mss) * mss; 220 221 /* NOTE: offering an initial window larger than 32767 222 * will break some buggy TCP stacks. If the admin tells us 223 * it is likely we could be speaking with such a buggy stack 224 * we will truncate our initial window offering to 32K-1 225 * unless the remote has sent us a window scaling option, 226 * which we interpret as a sign the remote TCP is not 227 * misinterpreting the window field as a signed quantity. 228 */ 229 if (sysctl_tcp_workaround_signed_windows) 230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 231 else 232 (*rcv_wnd) = space; 233 234 (*rcv_wscale) = 0; 235 if (wscale_ok) { 236 /* Set window scaling on max possible window 237 * See RFC1323 for an explanation of the limit to 14 238 */ 239 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 240 space = min_t(u32, space, *window_clamp); 241 while (space > 65535 && (*rcv_wscale) < 14) { 242 space >>= 1; 243 (*rcv_wscale)++; 244 } 245 } 246 247 if (mss > (1 << *rcv_wscale)) { 248 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 249 init_rcv_wnd = tcp_default_init_rwnd(mss); 250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 251 } 252 253 /* Set the clamp no higher than max representable value */ 254 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 255 } 256 EXPORT_SYMBOL(tcp_select_initial_window); 257 258 /* Chose a new window to advertise, update state in tcp_sock for the 259 * socket, and return result with RFC1323 scaling applied. The return 260 * value can be stuffed directly into th->window for an outgoing 261 * frame. 262 */ 263 static u16 tcp_select_window(struct sock *sk) 264 { 265 struct tcp_sock *tp = tcp_sk(sk); 266 u32 old_win = tp->rcv_wnd; 267 u32 cur_win = tcp_receive_window(tp); 268 u32 new_win = __tcp_select_window(sk); 269 270 /* Never shrink the offered window */ 271 if (new_win < cur_win) { 272 /* Danger Will Robinson! 273 * Don't update rcv_wup/rcv_wnd here or else 274 * we will not be able to advertise a zero 275 * window in time. --DaveM 276 * 277 * Relax Will Robinson. 278 */ 279 if (new_win == 0) 280 NET_INC_STATS(sock_net(sk), 281 LINUX_MIB_TCPWANTZEROWINDOWADV); 282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 283 } 284 tp->rcv_wnd = new_win; 285 tp->rcv_wup = tp->rcv_nxt; 286 287 /* Make sure we do not exceed the maximum possible 288 * scaled window. 289 */ 290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 291 new_win = min(new_win, MAX_TCP_WINDOW); 292 else 293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 294 295 /* RFC1323 scaling applied */ 296 new_win >>= tp->rx_opt.rcv_wscale; 297 298 /* If we advertise zero window, disable fast path. */ 299 if (new_win == 0) { 300 tp->pred_flags = 0; 301 if (old_win) 302 NET_INC_STATS(sock_net(sk), 303 LINUX_MIB_TCPTOZEROWINDOWADV); 304 } else if (old_win == 0) { 305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 306 } 307 308 return new_win; 309 } 310 311 /* Packet ECN state for a SYN-ACK */ 312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 313 { 314 const struct tcp_sock *tp = tcp_sk(sk); 315 316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 317 if (!(tp->ecn_flags & TCP_ECN_OK)) 318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 319 else if (tcp_ca_needs_ecn(sk)) 320 INET_ECN_xmit(sk); 321 } 322 323 /* Packet ECN state for a SYN. */ 324 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 325 { 326 struct tcp_sock *tp = tcp_sk(sk); 327 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 328 tcp_ca_needs_ecn(sk); 329 330 if (!use_ecn) { 331 const struct dst_entry *dst = __sk_dst_get(sk); 332 333 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 334 use_ecn = true; 335 } 336 337 tp->ecn_flags = 0; 338 339 if (use_ecn) { 340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 341 tp->ecn_flags = TCP_ECN_OK; 342 if (tcp_ca_needs_ecn(sk)) 343 INET_ECN_xmit(sk); 344 } 345 } 346 347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 348 { 349 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 350 /* tp->ecn_flags are cleared at a later point in time when 351 * SYN ACK is ultimatively being received. 352 */ 353 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 354 } 355 356 static void 357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 358 { 359 if (inet_rsk(req)->ecn_ok) 360 th->ece = 1; 361 } 362 363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 364 * be sent. 365 */ 366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 367 struct tcphdr *th, int tcp_header_len) 368 { 369 struct tcp_sock *tp = tcp_sk(sk); 370 371 if (tp->ecn_flags & TCP_ECN_OK) { 372 /* Not-retransmitted data segment: set ECT and inject CWR. */ 373 if (skb->len != tcp_header_len && 374 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 375 INET_ECN_xmit(sk); 376 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 377 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 378 th->cwr = 1; 379 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 380 } 381 } else if (!tcp_ca_needs_ecn(sk)) { 382 /* ACK or retransmitted segment: clear ECT|CE */ 383 INET_ECN_dontxmit(sk); 384 } 385 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 386 th->ece = 1; 387 } 388 } 389 390 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 391 * auto increment end seqno. 392 */ 393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 394 { 395 skb->ip_summed = CHECKSUM_PARTIAL; 396 skb->csum = 0; 397 398 TCP_SKB_CB(skb)->tcp_flags = flags; 399 TCP_SKB_CB(skb)->sacked = 0; 400 401 tcp_skb_pcount_set(skb, 1); 402 403 TCP_SKB_CB(skb)->seq = seq; 404 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 405 seq++; 406 TCP_SKB_CB(skb)->end_seq = seq; 407 } 408 409 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 410 { 411 return tp->snd_una != tp->snd_up; 412 } 413 414 #define OPTION_SACK_ADVERTISE (1 << 0) 415 #define OPTION_TS (1 << 1) 416 #define OPTION_MD5 (1 << 2) 417 #define OPTION_WSCALE (1 << 3) 418 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 419 420 struct tcp_out_options { 421 u16 options; /* bit field of OPTION_* */ 422 u16 mss; /* 0 to disable */ 423 u8 ws; /* window scale, 0 to disable */ 424 u8 num_sack_blocks; /* number of SACK blocks to include */ 425 u8 hash_size; /* bytes in hash_location */ 426 __u8 *hash_location; /* temporary pointer, overloaded */ 427 __u32 tsval, tsecr; /* need to include OPTION_TS */ 428 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 429 }; 430 431 /* Write previously computed TCP options to the packet. 432 * 433 * Beware: Something in the Internet is very sensitive to the ordering of 434 * TCP options, we learned this through the hard way, so be careful here. 435 * Luckily we can at least blame others for their non-compliance but from 436 * inter-operability perspective it seems that we're somewhat stuck with 437 * the ordering which we have been using if we want to keep working with 438 * those broken things (not that it currently hurts anybody as there isn't 439 * particular reason why the ordering would need to be changed). 440 * 441 * At least SACK_PERM as the first option is known to lead to a disaster 442 * (but it may well be that other scenarios fail similarly). 443 */ 444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 445 struct tcp_out_options *opts) 446 { 447 u16 options = opts->options; /* mungable copy */ 448 449 if (unlikely(OPTION_MD5 & options)) { 450 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 451 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 452 /* overload cookie hash location */ 453 opts->hash_location = (__u8 *)ptr; 454 ptr += 4; 455 } 456 457 if (unlikely(opts->mss)) { 458 *ptr++ = htonl((TCPOPT_MSS << 24) | 459 (TCPOLEN_MSS << 16) | 460 opts->mss); 461 } 462 463 if (likely(OPTION_TS & options)) { 464 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 465 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 466 (TCPOLEN_SACK_PERM << 16) | 467 (TCPOPT_TIMESTAMP << 8) | 468 TCPOLEN_TIMESTAMP); 469 options &= ~OPTION_SACK_ADVERTISE; 470 } else { 471 *ptr++ = htonl((TCPOPT_NOP << 24) | 472 (TCPOPT_NOP << 16) | 473 (TCPOPT_TIMESTAMP << 8) | 474 TCPOLEN_TIMESTAMP); 475 } 476 *ptr++ = htonl(opts->tsval); 477 *ptr++ = htonl(opts->tsecr); 478 } 479 480 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 481 *ptr++ = htonl((TCPOPT_NOP << 24) | 482 (TCPOPT_NOP << 16) | 483 (TCPOPT_SACK_PERM << 8) | 484 TCPOLEN_SACK_PERM); 485 } 486 487 if (unlikely(OPTION_WSCALE & options)) { 488 *ptr++ = htonl((TCPOPT_NOP << 24) | 489 (TCPOPT_WINDOW << 16) | 490 (TCPOLEN_WINDOW << 8) | 491 opts->ws); 492 } 493 494 if (unlikely(opts->num_sack_blocks)) { 495 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 496 tp->duplicate_sack : tp->selective_acks; 497 int this_sack; 498 499 *ptr++ = htonl((TCPOPT_NOP << 24) | 500 (TCPOPT_NOP << 16) | 501 (TCPOPT_SACK << 8) | 502 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 503 TCPOLEN_SACK_PERBLOCK))); 504 505 for (this_sack = 0; this_sack < opts->num_sack_blocks; 506 ++this_sack) { 507 *ptr++ = htonl(sp[this_sack].start_seq); 508 *ptr++ = htonl(sp[this_sack].end_seq); 509 } 510 511 tp->rx_opt.dsack = 0; 512 } 513 514 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 515 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 516 u8 *p = (u8 *)ptr; 517 u32 len; /* Fast Open option length */ 518 519 if (foc->exp) { 520 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 521 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 522 TCPOPT_FASTOPEN_MAGIC); 523 p += TCPOLEN_EXP_FASTOPEN_BASE; 524 } else { 525 len = TCPOLEN_FASTOPEN_BASE + foc->len; 526 *p++ = TCPOPT_FASTOPEN; 527 *p++ = len; 528 } 529 530 memcpy(p, foc->val, foc->len); 531 if ((len & 3) == 2) { 532 p[foc->len] = TCPOPT_NOP; 533 p[foc->len + 1] = TCPOPT_NOP; 534 } 535 ptr += (len + 3) >> 2; 536 } 537 } 538 539 /* Compute TCP options for SYN packets. This is not the final 540 * network wire format yet. 541 */ 542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 543 struct tcp_out_options *opts, 544 struct tcp_md5sig_key **md5) 545 { 546 struct tcp_sock *tp = tcp_sk(sk); 547 unsigned int remaining = MAX_TCP_OPTION_SPACE; 548 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 549 550 #ifdef CONFIG_TCP_MD5SIG 551 *md5 = tp->af_specific->md5_lookup(sk, sk); 552 if (*md5) { 553 opts->options |= OPTION_MD5; 554 remaining -= TCPOLEN_MD5SIG_ALIGNED; 555 } 556 #else 557 *md5 = NULL; 558 #endif 559 560 /* We always get an MSS option. The option bytes which will be seen in 561 * normal data packets should timestamps be used, must be in the MSS 562 * advertised. But we subtract them from tp->mss_cache so that 563 * calculations in tcp_sendmsg are simpler etc. So account for this 564 * fact here if necessary. If we don't do this correctly, as a 565 * receiver we won't recognize data packets as being full sized when we 566 * should, and thus we won't abide by the delayed ACK rules correctly. 567 * SACKs don't matter, we never delay an ACK when we have any of those 568 * going out. */ 569 opts->mss = tcp_advertise_mss(sk); 570 remaining -= TCPOLEN_MSS_ALIGNED; 571 572 if (likely(sysctl_tcp_timestamps && !*md5)) { 573 opts->options |= OPTION_TS; 574 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 575 opts->tsecr = tp->rx_opt.ts_recent; 576 remaining -= TCPOLEN_TSTAMP_ALIGNED; 577 } 578 if (likely(sysctl_tcp_window_scaling)) { 579 opts->ws = tp->rx_opt.rcv_wscale; 580 opts->options |= OPTION_WSCALE; 581 remaining -= TCPOLEN_WSCALE_ALIGNED; 582 } 583 if (likely(sysctl_tcp_sack)) { 584 opts->options |= OPTION_SACK_ADVERTISE; 585 if (unlikely(!(OPTION_TS & opts->options))) 586 remaining -= TCPOLEN_SACKPERM_ALIGNED; 587 } 588 589 if (fastopen && fastopen->cookie.len >= 0) { 590 u32 need = fastopen->cookie.len; 591 592 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 593 TCPOLEN_FASTOPEN_BASE; 594 need = (need + 3) & ~3U; /* Align to 32 bits */ 595 if (remaining >= need) { 596 opts->options |= OPTION_FAST_OPEN_COOKIE; 597 opts->fastopen_cookie = &fastopen->cookie; 598 remaining -= need; 599 tp->syn_fastopen = 1; 600 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 601 } 602 } 603 604 return MAX_TCP_OPTION_SPACE - remaining; 605 } 606 607 /* Set up TCP options for SYN-ACKs. */ 608 static unsigned int tcp_synack_options(struct request_sock *req, 609 unsigned int mss, struct sk_buff *skb, 610 struct tcp_out_options *opts, 611 const struct tcp_md5sig_key *md5, 612 struct tcp_fastopen_cookie *foc) 613 { 614 struct inet_request_sock *ireq = inet_rsk(req); 615 unsigned int remaining = MAX_TCP_OPTION_SPACE; 616 617 #ifdef CONFIG_TCP_MD5SIG 618 if (md5) { 619 opts->options |= OPTION_MD5; 620 remaining -= TCPOLEN_MD5SIG_ALIGNED; 621 622 /* We can't fit any SACK blocks in a packet with MD5 + TS 623 * options. There was discussion about disabling SACK 624 * rather than TS in order to fit in better with old, 625 * buggy kernels, but that was deemed to be unnecessary. 626 */ 627 ireq->tstamp_ok &= !ireq->sack_ok; 628 } 629 #endif 630 631 /* We always send an MSS option. */ 632 opts->mss = mss; 633 remaining -= TCPOLEN_MSS_ALIGNED; 634 635 if (likely(ireq->wscale_ok)) { 636 opts->ws = ireq->rcv_wscale; 637 opts->options |= OPTION_WSCALE; 638 remaining -= TCPOLEN_WSCALE_ALIGNED; 639 } 640 if (likely(ireq->tstamp_ok)) { 641 opts->options |= OPTION_TS; 642 opts->tsval = tcp_skb_timestamp(skb); 643 opts->tsecr = req->ts_recent; 644 remaining -= TCPOLEN_TSTAMP_ALIGNED; 645 } 646 if (likely(ireq->sack_ok)) { 647 opts->options |= OPTION_SACK_ADVERTISE; 648 if (unlikely(!ireq->tstamp_ok)) 649 remaining -= TCPOLEN_SACKPERM_ALIGNED; 650 } 651 if (foc != NULL && foc->len >= 0) { 652 u32 need = foc->len; 653 654 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 655 TCPOLEN_FASTOPEN_BASE; 656 need = (need + 3) & ~3U; /* Align to 32 bits */ 657 if (remaining >= need) { 658 opts->options |= OPTION_FAST_OPEN_COOKIE; 659 opts->fastopen_cookie = foc; 660 remaining -= need; 661 } 662 } 663 664 return MAX_TCP_OPTION_SPACE - remaining; 665 } 666 667 /* Compute TCP options for ESTABLISHED sockets. This is not the 668 * final wire format yet. 669 */ 670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 671 struct tcp_out_options *opts, 672 struct tcp_md5sig_key **md5) 673 { 674 struct tcp_sock *tp = tcp_sk(sk); 675 unsigned int size = 0; 676 unsigned int eff_sacks; 677 678 opts->options = 0; 679 680 #ifdef CONFIG_TCP_MD5SIG 681 *md5 = tp->af_specific->md5_lookup(sk, sk); 682 if (unlikely(*md5)) { 683 opts->options |= OPTION_MD5; 684 size += TCPOLEN_MD5SIG_ALIGNED; 685 } 686 #else 687 *md5 = NULL; 688 #endif 689 690 if (likely(tp->rx_opt.tstamp_ok)) { 691 opts->options |= OPTION_TS; 692 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 693 opts->tsecr = tp->rx_opt.ts_recent; 694 size += TCPOLEN_TSTAMP_ALIGNED; 695 } 696 697 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 698 if (unlikely(eff_sacks)) { 699 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 700 opts->num_sack_blocks = 701 min_t(unsigned int, eff_sacks, 702 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 703 TCPOLEN_SACK_PERBLOCK); 704 size += TCPOLEN_SACK_BASE_ALIGNED + 705 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 706 } 707 708 return size; 709 } 710 711 712 /* TCP SMALL QUEUES (TSQ) 713 * 714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 715 * to reduce RTT and bufferbloat. 716 * We do this using a special skb destructor (tcp_wfree). 717 * 718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 719 * needs to be reallocated in a driver. 720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 721 * 722 * Since transmit from skb destructor is forbidden, we use a tasklet 723 * to process all sockets that eventually need to send more skbs. 724 * We use one tasklet per cpu, with its own queue of sockets. 725 */ 726 struct tsq_tasklet { 727 struct tasklet_struct tasklet; 728 struct list_head head; /* queue of tcp sockets */ 729 }; 730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 731 732 static void tcp_tsq_handler(struct sock *sk) 733 { 734 if ((1 << sk->sk_state) & 735 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 736 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 737 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle, 738 0, GFP_ATOMIC); 739 } 740 /* 741 * One tasklet per cpu tries to send more skbs. 742 * We run in tasklet context but need to disable irqs when 743 * transferring tsq->head because tcp_wfree() might 744 * interrupt us (non NAPI drivers) 745 */ 746 static void tcp_tasklet_func(unsigned long data) 747 { 748 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 749 LIST_HEAD(list); 750 unsigned long flags; 751 struct list_head *q, *n; 752 struct tcp_sock *tp; 753 struct sock *sk; 754 755 local_irq_save(flags); 756 list_splice_init(&tsq->head, &list); 757 local_irq_restore(flags); 758 759 list_for_each_safe(q, n, &list) { 760 tp = list_entry(q, struct tcp_sock, tsq_node); 761 list_del(&tp->tsq_node); 762 763 sk = (struct sock *)tp; 764 bh_lock_sock(sk); 765 766 if (!sock_owned_by_user(sk)) { 767 tcp_tsq_handler(sk); 768 } else { 769 /* defer the work to tcp_release_cb() */ 770 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 771 } 772 bh_unlock_sock(sk); 773 774 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 775 sk_free(sk); 776 } 777 } 778 779 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 780 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 781 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 782 (1UL << TCP_MTU_REDUCED_DEFERRED)) 783 /** 784 * tcp_release_cb - tcp release_sock() callback 785 * @sk: socket 786 * 787 * called from release_sock() to perform protocol dependent 788 * actions before socket release. 789 */ 790 void tcp_release_cb(struct sock *sk) 791 { 792 struct tcp_sock *tp = tcp_sk(sk); 793 unsigned long flags, nflags; 794 795 /* perform an atomic operation only if at least one flag is set */ 796 do { 797 flags = tp->tsq_flags; 798 if (!(flags & TCP_DEFERRED_ALL)) 799 return; 800 nflags = flags & ~TCP_DEFERRED_ALL; 801 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 802 803 if (flags & (1UL << TCP_TSQ_DEFERRED)) 804 tcp_tsq_handler(sk); 805 806 /* Here begins the tricky part : 807 * We are called from release_sock() with : 808 * 1) BH disabled 809 * 2) sk_lock.slock spinlock held 810 * 3) socket owned by us (sk->sk_lock.owned == 1) 811 * 812 * But following code is meant to be called from BH handlers, 813 * so we should keep BH disabled, but early release socket ownership 814 */ 815 sock_release_ownership(sk); 816 817 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 818 tcp_write_timer_handler(sk); 819 __sock_put(sk); 820 } 821 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 822 tcp_delack_timer_handler(sk); 823 __sock_put(sk); 824 } 825 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 826 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 827 __sock_put(sk); 828 } 829 } 830 EXPORT_SYMBOL(tcp_release_cb); 831 832 void __init tcp_tasklet_init(void) 833 { 834 int i; 835 836 for_each_possible_cpu(i) { 837 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 838 839 INIT_LIST_HEAD(&tsq->head); 840 tasklet_init(&tsq->tasklet, 841 tcp_tasklet_func, 842 (unsigned long)tsq); 843 } 844 } 845 846 /* 847 * Write buffer destructor automatically called from kfree_skb. 848 * We can't xmit new skbs from this context, as we might already 849 * hold qdisc lock. 850 */ 851 void tcp_wfree(struct sk_buff *skb) 852 { 853 struct sock *sk = skb->sk; 854 struct tcp_sock *tp = tcp_sk(sk); 855 int wmem; 856 857 /* Keep one reference on sk_wmem_alloc. 858 * Will be released by sk_free() from here or tcp_tasklet_func() 859 */ 860 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 861 862 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 863 * Wait until our queues (qdisc + devices) are drained. 864 * This gives : 865 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 866 * - chance for incoming ACK (processed by another cpu maybe) 867 * to migrate this flow (skb->ooo_okay will be eventually set) 868 */ 869 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 870 goto out; 871 872 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 873 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 874 unsigned long flags; 875 struct tsq_tasklet *tsq; 876 877 /* queue this socket to tasklet queue */ 878 local_irq_save(flags); 879 tsq = this_cpu_ptr(&tsq_tasklet); 880 list_add(&tp->tsq_node, &tsq->head); 881 tasklet_schedule(&tsq->tasklet); 882 local_irq_restore(flags); 883 return; 884 } 885 out: 886 sk_free(sk); 887 } 888 889 /* This routine actually transmits TCP packets queued in by 890 * tcp_do_sendmsg(). This is used by both the initial 891 * transmission and possible later retransmissions. 892 * All SKB's seen here are completely headerless. It is our 893 * job to build the TCP header, and pass the packet down to 894 * IP so it can do the same plus pass the packet off to the 895 * device. 896 * 897 * We are working here with either a clone of the original 898 * SKB, or a fresh unique copy made by the retransmit engine. 899 */ 900 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 901 gfp_t gfp_mask) 902 { 903 const struct inet_connection_sock *icsk = inet_csk(sk); 904 struct inet_sock *inet; 905 struct tcp_sock *tp; 906 struct tcp_skb_cb *tcb; 907 struct tcp_out_options opts; 908 unsigned int tcp_options_size, tcp_header_size; 909 struct tcp_md5sig_key *md5; 910 struct tcphdr *th; 911 int err; 912 913 BUG_ON(!skb || !tcp_skb_pcount(skb)); 914 915 if (clone_it) { 916 skb_mstamp_get(&skb->skb_mstamp); 917 918 if (unlikely(skb_cloned(skb))) 919 skb = pskb_copy(skb, gfp_mask); 920 else 921 skb = skb_clone(skb, gfp_mask); 922 if (unlikely(!skb)) 923 return -ENOBUFS; 924 } 925 926 inet = inet_sk(sk); 927 tp = tcp_sk(sk); 928 tcb = TCP_SKB_CB(skb); 929 memset(&opts, 0, sizeof(opts)); 930 931 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 932 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 933 else 934 tcp_options_size = tcp_established_options(sk, skb, &opts, 935 &md5); 936 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 937 938 /* if no packet is in qdisc/device queue, then allow XPS to select 939 * another queue. We can be called from tcp_tsq_handler() 940 * which holds one reference to sk_wmem_alloc. 941 * 942 * TODO: Ideally, in-flight pure ACK packets should not matter here. 943 * One way to get this would be to set skb->truesize = 2 on them. 944 */ 945 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 946 947 skb_push(skb, tcp_header_size); 948 skb_reset_transport_header(skb); 949 950 skb_orphan(skb); 951 skb->sk = sk; 952 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 953 skb_set_hash_from_sk(skb, sk); 954 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 955 956 /* Build TCP header and checksum it. */ 957 th = (struct tcphdr *)skb->data; 958 th->source = inet->inet_sport; 959 th->dest = inet->inet_dport; 960 th->seq = htonl(tcb->seq); 961 th->ack_seq = htonl(tp->rcv_nxt); 962 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 963 tcb->tcp_flags); 964 965 th->check = 0; 966 th->urg_ptr = 0; 967 968 /* The urg_mode check is necessary during a below snd_una win probe */ 969 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 970 if (before(tp->snd_up, tcb->seq + 0x10000)) { 971 th->urg_ptr = htons(tp->snd_up - tcb->seq); 972 th->urg = 1; 973 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 974 th->urg_ptr = htons(0xFFFF); 975 th->urg = 1; 976 } 977 } 978 979 tcp_options_write((__be32 *)(th + 1), tp, &opts); 980 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 981 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 982 th->window = htons(tcp_select_window(sk)); 983 tcp_ecn_send(sk, skb, th, tcp_header_size); 984 } else { 985 /* RFC1323: The window in SYN & SYN/ACK segments 986 * is never scaled. 987 */ 988 th->window = htons(min(tp->rcv_wnd, 65535U)); 989 } 990 #ifdef CONFIG_TCP_MD5SIG 991 /* Calculate the MD5 hash, as we have all we need now */ 992 if (md5) { 993 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 994 tp->af_specific->calc_md5_hash(opts.hash_location, 995 md5, sk, skb); 996 } 997 #endif 998 999 icsk->icsk_af_ops->send_check(sk, skb); 1000 1001 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1002 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1003 1004 if (skb->len != tcp_header_size) { 1005 tcp_event_data_sent(tp, sk); 1006 tp->data_segs_out += tcp_skb_pcount(skb); 1007 } 1008 1009 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1010 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1011 tcp_skb_pcount(skb)); 1012 1013 tp->segs_out += tcp_skb_pcount(skb); 1014 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1015 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1016 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1017 1018 /* Our usage of tstamp should remain private */ 1019 skb->tstamp.tv64 = 0; 1020 1021 /* Cleanup our debris for IP stacks */ 1022 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1023 sizeof(struct inet6_skb_parm))); 1024 1025 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1026 1027 if (likely(err <= 0)) 1028 return err; 1029 1030 tcp_enter_cwr(sk); 1031 1032 return net_xmit_eval(err); 1033 } 1034 1035 /* This routine just queues the buffer for sending. 1036 * 1037 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1038 * otherwise socket can stall. 1039 */ 1040 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1041 { 1042 struct tcp_sock *tp = tcp_sk(sk); 1043 1044 /* Advance write_seq and place onto the write_queue. */ 1045 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1046 __skb_header_release(skb); 1047 tcp_add_write_queue_tail(sk, skb); 1048 sk->sk_wmem_queued += skb->truesize; 1049 sk_mem_charge(sk, skb->truesize); 1050 } 1051 1052 /* Initialize TSO segments for a packet. */ 1053 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1054 { 1055 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1056 /* Avoid the costly divide in the normal 1057 * non-TSO case. 1058 */ 1059 tcp_skb_pcount_set(skb, 1); 1060 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1061 } else { 1062 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1063 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1064 } 1065 } 1066 1067 /* When a modification to fackets out becomes necessary, we need to check 1068 * skb is counted to fackets_out or not. 1069 */ 1070 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1071 int decr) 1072 { 1073 struct tcp_sock *tp = tcp_sk(sk); 1074 1075 if (!tp->sacked_out || tcp_is_reno(tp)) 1076 return; 1077 1078 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1079 tp->fackets_out -= decr; 1080 } 1081 1082 /* Pcount in the middle of the write queue got changed, we need to do various 1083 * tweaks to fix counters 1084 */ 1085 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1086 { 1087 struct tcp_sock *tp = tcp_sk(sk); 1088 1089 tp->packets_out -= decr; 1090 1091 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1092 tp->sacked_out -= decr; 1093 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1094 tp->retrans_out -= decr; 1095 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1096 tp->lost_out -= decr; 1097 1098 /* Reno case is special. Sigh... */ 1099 if (tcp_is_reno(tp) && decr > 0) 1100 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1101 1102 tcp_adjust_fackets_out(sk, skb, decr); 1103 1104 if (tp->lost_skb_hint && 1105 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1106 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1107 tp->lost_cnt_hint -= decr; 1108 1109 tcp_verify_left_out(tp); 1110 } 1111 1112 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1113 { 1114 return TCP_SKB_CB(skb)->txstamp_ack || 1115 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1116 } 1117 1118 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1119 { 1120 struct skb_shared_info *shinfo = skb_shinfo(skb); 1121 1122 if (unlikely(tcp_has_tx_tstamp(skb)) && 1123 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1124 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1125 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1126 1127 shinfo->tx_flags &= ~tsflags; 1128 shinfo2->tx_flags |= tsflags; 1129 swap(shinfo->tskey, shinfo2->tskey); 1130 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1131 TCP_SKB_CB(skb)->txstamp_ack = 0; 1132 } 1133 } 1134 1135 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1136 { 1137 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1138 TCP_SKB_CB(skb)->eor = 0; 1139 } 1140 1141 /* Function to create two new TCP segments. Shrinks the given segment 1142 * to the specified size and appends a new segment with the rest of the 1143 * packet to the list. This won't be called frequently, I hope. 1144 * Remember, these are still headerless SKBs at this point. 1145 */ 1146 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1147 unsigned int mss_now, gfp_t gfp) 1148 { 1149 struct tcp_sock *tp = tcp_sk(sk); 1150 struct sk_buff *buff; 1151 int nsize, old_factor; 1152 int nlen; 1153 u8 flags; 1154 1155 if (WARN_ON(len > skb->len)) 1156 return -EINVAL; 1157 1158 nsize = skb_headlen(skb) - len; 1159 if (nsize < 0) 1160 nsize = 0; 1161 1162 if (skb_unclone(skb, gfp)) 1163 return -ENOMEM; 1164 1165 /* Get a new skb... force flag on. */ 1166 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1167 if (!buff) 1168 return -ENOMEM; /* We'll just try again later. */ 1169 1170 sk->sk_wmem_queued += buff->truesize; 1171 sk_mem_charge(sk, buff->truesize); 1172 nlen = skb->len - len - nsize; 1173 buff->truesize += nlen; 1174 skb->truesize -= nlen; 1175 1176 /* Correct the sequence numbers. */ 1177 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1178 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1179 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1180 1181 /* PSH and FIN should only be set in the second packet. */ 1182 flags = TCP_SKB_CB(skb)->tcp_flags; 1183 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1184 TCP_SKB_CB(buff)->tcp_flags = flags; 1185 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1186 tcp_skb_fragment_eor(skb, buff); 1187 1188 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1189 /* Copy and checksum data tail into the new buffer. */ 1190 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1191 skb_put(buff, nsize), 1192 nsize, 0); 1193 1194 skb_trim(skb, len); 1195 1196 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1197 } else { 1198 skb->ip_summed = CHECKSUM_PARTIAL; 1199 skb_split(skb, buff, len); 1200 } 1201 1202 buff->ip_summed = skb->ip_summed; 1203 1204 buff->tstamp = skb->tstamp; 1205 tcp_fragment_tstamp(skb, buff); 1206 1207 old_factor = tcp_skb_pcount(skb); 1208 1209 /* Fix up tso_factor for both original and new SKB. */ 1210 tcp_set_skb_tso_segs(skb, mss_now); 1211 tcp_set_skb_tso_segs(buff, mss_now); 1212 1213 /* If this packet has been sent out already, we must 1214 * adjust the various packet counters. 1215 */ 1216 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1217 int diff = old_factor - tcp_skb_pcount(skb) - 1218 tcp_skb_pcount(buff); 1219 1220 if (diff) 1221 tcp_adjust_pcount(sk, skb, diff); 1222 } 1223 1224 /* Link BUFF into the send queue. */ 1225 __skb_header_release(buff); 1226 tcp_insert_write_queue_after(skb, buff, sk); 1227 1228 return 0; 1229 } 1230 1231 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1232 * eventually). The difference is that pulled data not copied, but 1233 * immediately discarded. 1234 */ 1235 static void __pskb_trim_head(struct sk_buff *skb, int len) 1236 { 1237 struct skb_shared_info *shinfo; 1238 int i, k, eat; 1239 1240 eat = min_t(int, len, skb_headlen(skb)); 1241 if (eat) { 1242 __skb_pull(skb, eat); 1243 len -= eat; 1244 if (!len) 1245 return; 1246 } 1247 eat = len; 1248 k = 0; 1249 shinfo = skb_shinfo(skb); 1250 for (i = 0; i < shinfo->nr_frags; i++) { 1251 int size = skb_frag_size(&shinfo->frags[i]); 1252 1253 if (size <= eat) { 1254 skb_frag_unref(skb, i); 1255 eat -= size; 1256 } else { 1257 shinfo->frags[k] = shinfo->frags[i]; 1258 if (eat) { 1259 shinfo->frags[k].page_offset += eat; 1260 skb_frag_size_sub(&shinfo->frags[k], eat); 1261 eat = 0; 1262 } 1263 k++; 1264 } 1265 } 1266 shinfo->nr_frags = k; 1267 1268 skb_reset_tail_pointer(skb); 1269 skb->data_len -= len; 1270 skb->len = skb->data_len; 1271 } 1272 1273 /* Remove acked data from a packet in the transmit queue. */ 1274 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1275 { 1276 if (skb_unclone(skb, GFP_ATOMIC)) 1277 return -ENOMEM; 1278 1279 __pskb_trim_head(skb, len); 1280 1281 TCP_SKB_CB(skb)->seq += len; 1282 skb->ip_summed = CHECKSUM_PARTIAL; 1283 1284 skb->truesize -= len; 1285 sk->sk_wmem_queued -= len; 1286 sk_mem_uncharge(sk, len); 1287 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1288 1289 /* Any change of skb->len requires recalculation of tso factor. */ 1290 if (tcp_skb_pcount(skb) > 1) 1291 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1292 1293 return 0; 1294 } 1295 1296 /* Calculate MSS not accounting any TCP options. */ 1297 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1298 { 1299 const struct tcp_sock *tp = tcp_sk(sk); 1300 const struct inet_connection_sock *icsk = inet_csk(sk); 1301 int mss_now; 1302 1303 /* Calculate base mss without TCP options: 1304 It is MMS_S - sizeof(tcphdr) of rfc1122 1305 */ 1306 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1307 1308 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1309 if (icsk->icsk_af_ops->net_frag_header_len) { 1310 const struct dst_entry *dst = __sk_dst_get(sk); 1311 1312 if (dst && dst_allfrag(dst)) 1313 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1314 } 1315 1316 /* Clamp it (mss_clamp does not include tcp options) */ 1317 if (mss_now > tp->rx_opt.mss_clamp) 1318 mss_now = tp->rx_opt.mss_clamp; 1319 1320 /* Now subtract optional transport overhead */ 1321 mss_now -= icsk->icsk_ext_hdr_len; 1322 1323 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1324 if (mss_now < 48) 1325 mss_now = 48; 1326 return mss_now; 1327 } 1328 1329 /* Calculate MSS. Not accounting for SACKs here. */ 1330 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1331 { 1332 /* Subtract TCP options size, not including SACKs */ 1333 return __tcp_mtu_to_mss(sk, pmtu) - 1334 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1335 } 1336 1337 /* Inverse of above */ 1338 int tcp_mss_to_mtu(struct sock *sk, int mss) 1339 { 1340 const struct tcp_sock *tp = tcp_sk(sk); 1341 const struct inet_connection_sock *icsk = inet_csk(sk); 1342 int mtu; 1343 1344 mtu = mss + 1345 tp->tcp_header_len + 1346 icsk->icsk_ext_hdr_len + 1347 icsk->icsk_af_ops->net_header_len; 1348 1349 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1350 if (icsk->icsk_af_ops->net_frag_header_len) { 1351 const struct dst_entry *dst = __sk_dst_get(sk); 1352 1353 if (dst && dst_allfrag(dst)) 1354 mtu += icsk->icsk_af_ops->net_frag_header_len; 1355 } 1356 return mtu; 1357 } 1358 1359 /* MTU probing init per socket */ 1360 void tcp_mtup_init(struct sock *sk) 1361 { 1362 struct tcp_sock *tp = tcp_sk(sk); 1363 struct inet_connection_sock *icsk = inet_csk(sk); 1364 struct net *net = sock_net(sk); 1365 1366 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1367 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1368 icsk->icsk_af_ops->net_header_len; 1369 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1370 icsk->icsk_mtup.probe_size = 0; 1371 if (icsk->icsk_mtup.enabled) 1372 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1373 } 1374 EXPORT_SYMBOL(tcp_mtup_init); 1375 1376 /* This function synchronize snd mss to current pmtu/exthdr set. 1377 1378 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1379 for TCP options, but includes only bare TCP header. 1380 1381 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1382 It is minimum of user_mss and mss received with SYN. 1383 It also does not include TCP options. 1384 1385 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1386 1387 tp->mss_cache is current effective sending mss, including 1388 all tcp options except for SACKs. It is evaluated, 1389 taking into account current pmtu, but never exceeds 1390 tp->rx_opt.mss_clamp. 1391 1392 NOTE1. rfc1122 clearly states that advertised MSS 1393 DOES NOT include either tcp or ip options. 1394 1395 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1396 are READ ONLY outside this function. --ANK (980731) 1397 */ 1398 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1399 { 1400 struct tcp_sock *tp = tcp_sk(sk); 1401 struct inet_connection_sock *icsk = inet_csk(sk); 1402 int mss_now; 1403 1404 if (icsk->icsk_mtup.search_high > pmtu) 1405 icsk->icsk_mtup.search_high = pmtu; 1406 1407 mss_now = tcp_mtu_to_mss(sk, pmtu); 1408 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1409 1410 /* And store cached results */ 1411 icsk->icsk_pmtu_cookie = pmtu; 1412 if (icsk->icsk_mtup.enabled) 1413 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1414 tp->mss_cache = mss_now; 1415 1416 return mss_now; 1417 } 1418 EXPORT_SYMBOL(tcp_sync_mss); 1419 1420 /* Compute the current effective MSS, taking SACKs and IP options, 1421 * and even PMTU discovery events into account. 1422 */ 1423 unsigned int tcp_current_mss(struct sock *sk) 1424 { 1425 const struct tcp_sock *tp = tcp_sk(sk); 1426 const struct dst_entry *dst = __sk_dst_get(sk); 1427 u32 mss_now; 1428 unsigned int header_len; 1429 struct tcp_out_options opts; 1430 struct tcp_md5sig_key *md5; 1431 1432 mss_now = tp->mss_cache; 1433 1434 if (dst) { 1435 u32 mtu = dst_mtu(dst); 1436 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1437 mss_now = tcp_sync_mss(sk, mtu); 1438 } 1439 1440 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1441 sizeof(struct tcphdr); 1442 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1443 * some common options. If this is an odd packet (because we have SACK 1444 * blocks etc) then our calculated header_len will be different, and 1445 * we have to adjust mss_now correspondingly */ 1446 if (header_len != tp->tcp_header_len) { 1447 int delta = (int) header_len - tp->tcp_header_len; 1448 mss_now -= delta; 1449 } 1450 1451 return mss_now; 1452 } 1453 1454 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1455 * As additional protections, we do not touch cwnd in retransmission phases, 1456 * and if application hit its sndbuf limit recently. 1457 */ 1458 static void tcp_cwnd_application_limited(struct sock *sk) 1459 { 1460 struct tcp_sock *tp = tcp_sk(sk); 1461 1462 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1463 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1464 /* Limited by application or receiver window. */ 1465 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1466 u32 win_used = max(tp->snd_cwnd_used, init_win); 1467 if (win_used < tp->snd_cwnd) { 1468 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1469 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1470 } 1471 tp->snd_cwnd_used = 0; 1472 } 1473 tp->snd_cwnd_stamp = tcp_time_stamp; 1474 } 1475 1476 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1477 { 1478 struct tcp_sock *tp = tcp_sk(sk); 1479 1480 /* Track the maximum number of outstanding packets in each 1481 * window, and remember whether we were cwnd-limited then. 1482 */ 1483 if (!before(tp->snd_una, tp->max_packets_seq) || 1484 tp->packets_out > tp->max_packets_out) { 1485 tp->max_packets_out = tp->packets_out; 1486 tp->max_packets_seq = tp->snd_nxt; 1487 tp->is_cwnd_limited = is_cwnd_limited; 1488 } 1489 1490 if (tcp_is_cwnd_limited(sk)) { 1491 /* Network is feed fully. */ 1492 tp->snd_cwnd_used = 0; 1493 tp->snd_cwnd_stamp = tcp_time_stamp; 1494 } else { 1495 /* Network starves. */ 1496 if (tp->packets_out > tp->snd_cwnd_used) 1497 tp->snd_cwnd_used = tp->packets_out; 1498 1499 if (sysctl_tcp_slow_start_after_idle && 1500 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1501 tcp_cwnd_application_limited(sk); 1502 } 1503 } 1504 1505 /* Minshall's variant of the Nagle send check. */ 1506 static bool tcp_minshall_check(const struct tcp_sock *tp) 1507 { 1508 return after(tp->snd_sml, tp->snd_una) && 1509 !after(tp->snd_sml, tp->snd_nxt); 1510 } 1511 1512 /* Update snd_sml if this skb is under mss 1513 * Note that a TSO packet might end with a sub-mss segment 1514 * The test is really : 1515 * if ((skb->len % mss) != 0) 1516 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1517 * But we can avoid doing the divide again given we already have 1518 * skb_pcount = skb->len / mss_now 1519 */ 1520 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1521 const struct sk_buff *skb) 1522 { 1523 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1524 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1525 } 1526 1527 /* Return false, if packet can be sent now without violation Nagle's rules: 1528 * 1. It is full sized. (provided by caller in %partial bool) 1529 * 2. Or it contains FIN. (already checked by caller) 1530 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1531 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1532 * With Minshall's modification: all sent small packets are ACKed. 1533 */ 1534 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1535 int nonagle) 1536 { 1537 return partial && 1538 ((nonagle & TCP_NAGLE_CORK) || 1539 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1540 } 1541 1542 /* Return how many segs we'd like on a TSO packet, 1543 * to send one TSO packet per ms 1544 */ 1545 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now) 1546 { 1547 u32 bytes, segs; 1548 1549 bytes = min(sk->sk_pacing_rate >> 10, 1550 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1551 1552 /* Goal is to send at least one packet per ms, 1553 * not one big TSO packet every 100 ms. 1554 * This preserves ACK clocking and is consistent 1555 * with tcp_tso_should_defer() heuristic. 1556 */ 1557 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs); 1558 1559 return min_t(u32, segs, sk->sk_gso_max_segs); 1560 } 1561 1562 /* Returns the portion of skb which can be sent right away */ 1563 static unsigned int tcp_mss_split_point(const struct sock *sk, 1564 const struct sk_buff *skb, 1565 unsigned int mss_now, 1566 unsigned int max_segs, 1567 int nonagle) 1568 { 1569 const struct tcp_sock *tp = tcp_sk(sk); 1570 u32 partial, needed, window, max_len; 1571 1572 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1573 max_len = mss_now * max_segs; 1574 1575 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1576 return max_len; 1577 1578 needed = min(skb->len, window); 1579 1580 if (max_len <= needed) 1581 return max_len; 1582 1583 partial = needed % mss_now; 1584 /* If last segment is not a full MSS, check if Nagle rules allow us 1585 * to include this last segment in this skb. 1586 * Otherwise, we'll split the skb at last MSS boundary 1587 */ 1588 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1589 return needed - partial; 1590 1591 return needed; 1592 } 1593 1594 /* Can at least one segment of SKB be sent right now, according to the 1595 * congestion window rules? If so, return how many segments are allowed. 1596 */ 1597 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1598 const struct sk_buff *skb) 1599 { 1600 u32 in_flight, cwnd, halfcwnd; 1601 1602 /* Don't be strict about the congestion window for the final FIN. */ 1603 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1604 tcp_skb_pcount(skb) == 1) 1605 return 1; 1606 1607 in_flight = tcp_packets_in_flight(tp); 1608 cwnd = tp->snd_cwnd; 1609 if (in_flight >= cwnd) 1610 return 0; 1611 1612 /* For better scheduling, ensure we have at least 1613 * 2 GSO packets in flight. 1614 */ 1615 halfcwnd = max(cwnd >> 1, 1U); 1616 return min(halfcwnd, cwnd - in_flight); 1617 } 1618 1619 /* Initialize TSO state of a skb. 1620 * This must be invoked the first time we consider transmitting 1621 * SKB onto the wire. 1622 */ 1623 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1624 { 1625 int tso_segs = tcp_skb_pcount(skb); 1626 1627 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1628 tcp_set_skb_tso_segs(skb, mss_now); 1629 tso_segs = tcp_skb_pcount(skb); 1630 } 1631 return tso_segs; 1632 } 1633 1634 1635 /* Return true if the Nagle test allows this packet to be 1636 * sent now. 1637 */ 1638 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1639 unsigned int cur_mss, int nonagle) 1640 { 1641 /* Nagle rule does not apply to frames, which sit in the middle of the 1642 * write_queue (they have no chances to get new data). 1643 * 1644 * This is implemented in the callers, where they modify the 'nonagle' 1645 * argument based upon the location of SKB in the send queue. 1646 */ 1647 if (nonagle & TCP_NAGLE_PUSH) 1648 return true; 1649 1650 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1651 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1652 return true; 1653 1654 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1655 return true; 1656 1657 return false; 1658 } 1659 1660 /* Does at least the first segment of SKB fit into the send window? */ 1661 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1662 const struct sk_buff *skb, 1663 unsigned int cur_mss) 1664 { 1665 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1666 1667 if (skb->len > cur_mss) 1668 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1669 1670 return !after(end_seq, tcp_wnd_end(tp)); 1671 } 1672 1673 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1674 * should be put on the wire right now. If so, it returns the number of 1675 * packets allowed by the congestion window. 1676 */ 1677 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1678 unsigned int cur_mss, int nonagle) 1679 { 1680 const struct tcp_sock *tp = tcp_sk(sk); 1681 unsigned int cwnd_quota; 1682 1683 tcp_init_tso_segs(skb, cur_mss); 1684 1685 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1686 return 0; 1687 1688 cwnd_quota = tcp_cwnd_test(tp, skb); 1689 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1690 cwnd_quota = 0; 1691 1692 return cwnd_quota; 1693 } 1694 1695 /* Test if sending is allowed right now. */ 1696 bool tcp_may_send_now(struct sock *sk) 1697 { 1698 const struct tcp_sock *tp = tcp_sk(sk); 1699 struct sk_buff *skb = tcp_send_head(sk); 1700 1701 return skb && 1702 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1703 (tcp_skb_is_last(sk, skb) ? 1704 tp->nonagle : TCP_NAGLE_PUSH)); 1705 } 1706 1707 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1708 * which is put after SKB on the list. It is very much like 1709 * tcp_fragment() except that it may make several kinds of assumptions 1710 * in order to speed up the splitting operation. In particular, we 1711 * know that all the data is in scatter-gather pages, and that the 1712 * packet has never been sent out before (and thus is not cloned). 1713 */ 1714 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1715 unsigned int mss_now, gfp_t gfp) 1716 { 1717 struct sk_buff *buff; 1718 int nlen = skb->len - len; 1719 u8 flags; 1720 1721 /* All of a TSO frame must be composed of paged data. */ 1722 if (skb->len != skb->data_len) 1723 return tcp_fragment(sk, skb, len, mss_now, gfp); 1724 1725 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1726 if (unlikely(!buff)) 1727 return -ENOMEM; 1728 1729 sk->sk_wmem_queued += buff->truesize; 1730 sk_mem_charge(sk, buff->truesize); 1731 buff->truesize += nlen; 1732 skb->truesize -= nlen; 1733 1734 /* Correct the sequence numbers. */ 1735 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1736 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1737 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1738 1739 /* PSH and FIN should only be set in the second packet. */ 1740 flags = TCP_SKB_CB(skb)->tcp_flags; 1741 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1742 TCP_SKB_CB(buff)->tcp_flags = flags; 1743 1744 /* This packet was never sent out yet, so no SACK bits. */ 1745 TCP_SKB_CB(buff)->sacked = 0; 1746 1747 tcp_skb_fragment_eor(skb, buff); 1748 1749 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1750 skb_split(skb, buff, len); 1751 tcp_fragment_tstamp(skb, buff); 1752 1753 /* Fix up tso_factor for both original and new SKB. */ 1754 tcp_set_skb_tso_segs(skb, mss_now); 1755 tcp_set_skb_tso_segs(buff, mss_now); 1756 1757 /* Link BUFF into the send queue. */ 1758 __skb_header_release(buff); 1759 tcp_insert_write_queue_after(skb, buff, sk); 1760 1761 return 0; 1762 } 1763 1764 /* Try to defer sending, if possible, in order to minimize the amount 1765 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1766 * 1767 * This algorithm is from John Heffner. 1768 */ 1769 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1770 bool *is_cwnd_limited, u32 max_segs) 1771 { 1772 const struct inet_connection_sock *icsk = inet_csk(sk); 1773 u32 age, send_win, cong_win, limit, in_flight; 1774 struct tcp_sock *tp = tcp_sk(sk); 1775 struct skb_mstamp now; 1776 struct sk_buff *head; 1777 int win_divisor; 1778 1779 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1780 goto send_now; 1781 1782 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1783 goto send_now; 1784 1785 /* Avoid bursty behavior by allowing defer 1786 * only if the last write was recent. 1787 */ 1788 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0) 1789 goto send_now; 1790 1791 in_flight = tcp_packets_in_flight(tp); 1792 1793 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1794 1795 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1796 1797 /* From in_flight test above, we know that cwnd > in_flight. */ 1798 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1799 1800 limit = min(send_win, cong_win); 1801 1802 /* If a full-sized TSO skb can be sent, do it. */ 1803 if (limit >= max_segs * tp->mss_cache) 1804 goto send_now; 1805 1806 /* Middle in queue won't get any more data, full sendable already? */ 1807 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1808 goto send_now; 1809 1810 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1811 if (win_divisor) { 1812 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1813 1814 /* If at least some fraction of a window is available, 1815 * just use it. 1816 */ 1817 chunk /= win_divisor; 1818 if (limit >= chunk) 1819 goto send_now; 1820 } else { 1821 /* Different approach, try not to defer past a single 1822 * ACK. Receiver should ACK every other full sized 1823 * frame, so if we have space for more than 3 frames 1824 * then send now. 1825 */ 1826 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1827 goto send_now; 1828 } 1829 1830 head = tcp_write_queue_head(sk); 1831 skb_mstamp_get(&now); 1832 age = skb_mstamp_us_delta(&now, &head->skb_mstamp); 1833 /* If next ACK is likely to come too late (half srtt), do not defer */ 1834 if (age < (tp->srtt_us >> 4)) 1835 goto send_now; 1836 1837 /* Ok, it looks like it is advisable to defer. */ 1838 1839 if (cong_win < send_win && cong_win <= skb->len) 1840 *is_cwnd_limited = true; 1841 1842 return true; 1843 1844 send_now: 1845 return false; 1846 } 1847 1848 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1849 { 1850 struct inet_connection_sock *icsk = inet_csk(sk); 1851 struct tcp_sock *tp = tcp_sk(sk); 1852 struct net *net = sock_net(sk); 1853 u32 interval; 1854 s32 delta; 1855 1856 interval = net->ipv4.sysctl_tcp_probe_interval; 1857 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp; 1858 if (unlikely(delta >= interval * HZ)) { 1859 int mss = tcp_current_mss(sk); 1860 1861 /* Update current search range */ 1862 icsk->icsk_mtup.probe_size = 0; 1863 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1864 sizeof(struct tcphdr) + 1865 icsk->icsk_af_ops->net_header_len; 1866 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1867 1868 /* Update probe time stamp */ 1869 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1870 } 1871 } 1872 1873 /* Create a new MTU probe if we are ready. 1874 * MTU probe is regularly attempting to increase the path MTU by 1875 * deliberately sending larger packets. This discovers routing 1876 * changes resulting in larger path MTUs. 1877 * 1878 * Returns 0 if we should wait to probe (no cwnd available), 1879 * 1 if a probe was sent, 1880 * -1 otherwise 1881 */ 1882 static int tcp_mtu_probe(struct sock *sk) 1883 { 1884 struct tcp_sock *tp = tcp_sk(sk); 1885 struct inet_connection_sock *icsk = inet_csk(sk); 1886 struct sk_buff *skb, *nskb, *next; 1887 struct net *net = sock_net(sk); 1888 int len; 1889 int probe_size; 1890 int size_needed; 1891 int copy; 1892 int mss_now; 1893 int interval; 1894 1895 /* Not currently probing/verifying, 1896 * not in recovery, 1897 * have enough cwnd, and 1898 * not SACKing (the variable headers throw things off) */ 1899 if (!icsk->icsk_mtup.enabled || 1900 icsk->icsk_mtup.probe_size || 1901 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1902 tp->snd_cwnd < 11 || 1903 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1904 return -1; 1905 1906 /* Use binary search for probe_size between tcp_mss_base, 1907 * and current mss_clamp. if (search_high - search_low) 1908 * smaller than a threshold, backoff from probing. 1909 */ 1910 mss_now = tcp_current_mss(sk); 1911 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 1912 icsk->icsk_mtup.search_low) >> 1); 1913 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1914 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 1915 /* When misfortune happens, we are reprobing actively, 1916 * and then reprobe timer has expired. We stick with current 1917 * probing process by not resetting search range to its orignal. 1918 */ 1919 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 1920 interval < net->ipv4.sysctl_tcp_probe_threshold) { 1921 /* Check whether enough time has elaplased for 1922 * another round of probing. 1923 */ 1924 tcp_mtu_check_reprobe(sk); 1925 return -1; 1926 } 1927 1928 /* Have enough data in the send queue to probe? */ 1929 if (tp->write_seq - tp->snd_nxt < size_needed) 1930 return -1; 1931 1932 if (tp->snd_wnd < size_needed) 1933 return -1; 1934 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1935 return 0; 1936 1937 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1938 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1939 if (!tcp_packets_in_flight(tp)) 1940 return -1; 1941 else 1942 return 0; 1943 } 1944 1945 /* We're allowed to probe. Build it now. */ 1946 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 1947 if (!nskb) 1948 return -1; 1949 sk->sk_wmem_queued += nskb->truesize; 1950 sk_mem_charge(sk, nskb->truesize); 1951 1952 skb = tcp_send_head(sk); 1953 1954 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1955 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1956 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1957 TCP_SKB_CB(nskb)->sacked = 0; 1958 nskb->csum = 0; 1959 nskb->ip_summed = skb->ip_summed; 1960 1961 tcp_insert_write_queue_before(nskb, skb, sk); 1962 1963 len = 0; 1964 tcp_for_write_queue_from_safe(skb, next, sk) { 1965 copy = min_t(int, skb->len, probe_size - len); 1966 if (nskb->ip_summed) 1967 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1968 else 1969 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1970 skb_put(nskb, copy), 1971 copy, nskb->csum); 1972 1973 if (skb->len <= copy) { 1974 /* We've eaten all the data from this skb. 1975 * Throw it away. */ 1976 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1977 tcp_unlink_write_queue(skb, sk); 1978 sk_wmem_free_skb(sk, skb); 1979 } else { 1980 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1981 ~(TCPHDR_FIN|TCPHDR_PSH); 1982 if (!skb_shinfo(skb)->nr_frags) { 1983 skb_pull(skb, copy); 1984 if (skb->ip_summed != CHECKSUM_PARTIAL) 1985 skb->csum = csum_partial(skb->data, 1986 skb->len, 0); 1987 } else { 1988 __pskb_trim_head(skb, copy); 1989 tcp_set_skb_tso_segs(skb, mss_now); 1990 } 1991 TCP_SKB_CB(skb)->seq += copy; 1992 } 1993 1994 len += copy; 1995 1996 if (len >= probe_size) 1997 break; 1998 } 1999 tcp_init_tso_segs(nskb, nskb->len); 2000 2001 /* We're ready to send. If this fails, the probe will 2002 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2003 */ 2004 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2005 /* Decrement cwnd here because we are sending 2006 * effectively two packets. */ 2007 tp->snd_cwnd--; 2008 tcp_event_new_data_sent(sk, nskb); 2009 2010 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2011 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2012 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2013 2014 return 1; 2015 } 2016 2017 return -1; 2018 } 2019 2020 /* This routine writes packets to the network. It advances the 2021 * send_head. This happens as incoming acks open up the remote 2022 * window for us. 2023 * 2024 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2025 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2026 * account rare use of URG, this is not a big flaw. 2027 * 2028 * Send at most one packet when push_one > 0. Temporarily ignore 2029 * cwnd limit to force at most one packet out when push_one == 2. 2030 2031 * Returns true, if no segments are in flight and we have queued segments, 2032 * but cannot send anything now because of SWS or another problem. 2033 */ 2034 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2035 int push_one, gfp_t gfp) 2036 { 2037 struct tcp_sock *tp = tcp_sk(sk); 2038 struct sk_buff *skb; 2039 unsigned int tso_segs, sent_pkts; 2040 int cwnd_quota; 2041 int result; 2042 bool is_cwnd_limited = false; 2043 u32 max_segs; 2044 2045 sent_pkts = 0; 2046 2047 if (!push_one) { 2048 /* Do MTU probing. */ 2049 result = tcp_mtu_probe(sk); 2050 if (!result) { 2051 return false; 2052 } else if (result > 0) { 2053 sent_pkts = 1; 2054 } 2055 } 2056 2057 max_segs = tcp_tso_autosize(sk, mss_now); 2058 while ((skb = tcp_send_head(sk))) { 2059 unsigned int limit; 2060 2061 tso_segs = tcp_init_tso_segs(skb, mss_now); 2062 BUG_ON(!tso_segs); 2063 2064 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2065 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2066 skb_mstamp_get(&skb->skb_mstamp); 2067 goto repair; /* Skip network transmission */ 2068 } 2069 2070 cwnd_quota = tcp_cwnd_test(tp, skb); 2071 if (!cwnd_quota) { 2072 if (push_one == 2) 2073 /* Force out a loss probe pkt. */ 2074 cwnd_quota = 1; 2075 else 2076 break; 2077 } 2078 2079 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 2080 break; 2081 2082 if (tso_segs == 1) { 2083 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2084 (tcp_skb_is_last(sk, skb) ? 2085 nonagle : TCP_NAGLE_PUSH)))) 2086 break; 2087 } else { 2088 if (!push_one && 2089 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2090 max_segs)) 2091 break; 2092 } 2093 2094 limit = mss_now; 2095 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2096 limit = tcp_mss_split_point(sk, skb, mss_now, 2097 min_t(unsigned int, 2098 cwnd_quota, 2099 max_segs), 2100 nonagle); 2101 2102 if (skb->len > limit && 2103 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2104 break; 2105 2106 /* TCP Small Queues : 2107 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2108 * This allows for : 2109 * - better RTT estimation and ACK scheduling 2110 * - faster recovery 2111 * - high rates 2112 * Alas, some drivers / subsystems require a fair amount 2113 * of queued bytes to ensure line rate. 2114 * One example is wifi aggregation (802.11 AMPDU) 2115 */ 2116 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2117 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2118 2119 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2120 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 2121 /* It is possible TX completion already happened 2122 * before we set TSQ_THROTTLED, so we must 2123 * test again the condition. 2124 */ 2125 smp_mb__after_atomic(); 2126 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2127 break; 2128 } 2129 2130 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2131 break; 2132 2133 repair: 2134 /* Advance the send_head. This one is sent out. 2135 * This call will increment packets_out. 2136 */ 2137 tcp_event_new_data_sent(sk, skb); 2138 2139 tcp_minshall_update(tp, mss_now, skb); 2140 sent_pkts += tcp_skb_pcount(skb); 2141 2142 if (push_one) 2143 break; 2144 } 2145 2146 if (likely(sent_pkts)) { 2147 if (tcp_in_cwnd_reduction(sk)) 2148 tp->prr_out += sent_pkts; 2149 2150 /* Send one loss probe per tail loss episode. */ 2151 if (push_one != 2) 2152 tcp_schedule_loss_probe(sk); 2153 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2154 tcp_cwnd_validate(sk, is_cwnd_limited); 2155 return false; 2156 } 2157 return !tp->packets_out && tcp_send_head(sk); 2158 } 2159 2160 bool tcp_schedule_loss_probe(struct sock *sk) 2161 { 2162 struct inet_connection_sock *icsk = inet_csk(sk); 2163 struct tcp_sock *tp = tcp_sk(sk); 2164 u32 timeout, tlp_time_stamp, rto_time_stamp; 2165 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2166 2167 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 2168 return false; 2169 /* No consecutive loss probes. */ 2170 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2171 tcp_rearm_rto(sk); 2172 return false; 2173 } 2174 /* Don't do any loss probe on a Fast Open connection before 3WHS 2175 * finishes. 2176 */ 2177 if (tp->fastopen_rsk) 2178 return false; 2179 2180 /* TLP is only scheduled when next timer event is RTO. */ 2181 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2182 return false; 2183 2184 /* Schedule a loss probe in 2*RTT for SACK capable connections 2185 * in Open state, that are either limited by cwnd or application. 2186 */ 2187 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out || 2188 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2189 return false; 2190 2191 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2192 tcp_send_head(sk)) 2193 return false; 2194 2195 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2196 * for delayed ack when there's one outstanding packet. If no RTT 2197 * sample is available then probe after TCP_TIMEOUT_INIT. 2198 */ 2199 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT; 2200 if (tp->packets_out == 1) 2201 timeout = max_t(u32, timeout, 2202 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2203 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2204 2205 /* If RTO is shorter, just schedule TLP in its place. */ 2206 tlp_time_stamp = tcp_time_stamp + timeout; 2207 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2208 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2209 s32 delta = rto_time_stamp - tcp_time_stamp; 2210 if (delta > 0) 2211 timeout = delta; 2212 } 2213 2214 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2215 TCP_RTO_MAX); 2216 return true; 2217 } 2218 2219 /* Thanks to skb fast clones, we can detect if a prior transmit of 2220 * a packet is still in a qdisc or driver queue. 2221 * In this case, there is very little point doing a retransmit ! 2222 */ 2223 static bool skb_still_in_host_queue(const struct sock *sk, 2224 const struct sk_buff *skb) 2225 { 2226 if (unlikely(skb_fclone_busy(sk, skb))) { 2227 NET_INC_STATS(sock_net(sk), 2228 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2229 return true; 2230 } 2231 return false; 2232 } 2233 2234 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2235 * retransmit the last segment. 2236 */ 2237 void tcp_send_loss_probe(struct sock *sk) 2238 { 2239 struct tcp_sock *tp = tcp_sk(sk); 2240 struct sk_buff *skb; 2241 int pcount; 2242 int mss = tcp_current_mss(sk); 2243 2244 skb = tcp_send_head(sk); 2245 if (skb) { 2246 if (tcp_snd_wnd_test(tp, skb, mss)) { 2247 pcount = tp->packets_out; 2248 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2249 if (tp->packets_out > pcount) 2250 goto probe_sent; 2251 goto rearm_timer; 2252 } 2253 skb = tcp_write_queue_prev(sk, skb); 2254 } else { 2255 skb = tcp_write_queue_tail(sk); 2256 } 2257 2258 /* At most one outstanding TLP retransmission. */ 2259 if (tp->tlp_high_seq) 2260 goto rearm_timer; 2261 2262 /* Retransmit last segment. */ 2263 if (WARN_ON(!skb)) 2264 goto rearm_timer; 2265 2266 if (skb_still_in_host_queue(sk, skb)) 2267 goto rearm_timer; 2268 2269 pcount = tcp_skb_pcount(skb); 2270 if (WARN_ON(!pcount)) 2271 goto rearm_timer; 2272 2273 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2274 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2275 GFP_ATOMIC))) 2276 goto rearm_timer; 2277 skb = tcp_write_queue_next(sk, skb); 2278 } 2279 2280 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2281 goto rearm_timer; 2282 2283 if (__tcp_retransmit_skb(sk, skb, 1)) 2284 goto rearm_timer; 2285 2286 /* Record snd_nxt for loss detection. */ 2287 tp->tlp_high_seq = tp->snd_nxt; 2288 2289 probe_sent: 2290 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2291 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2292 inet_csk(sk)->icsk_pending = 0; 2293 rearm_timer: 2294 tcp_rearm_rto(sk); 2295 } 2296 2297 /* Push out any pending frames which were held back due to 2298 * TCP_CORK or attempt at coalescing tiny packets. 2299 * The socket must be locked by the caller. 2300 */ 2301 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2302 int nonagle) 2303 { 2304 /* If we are closed, the bytes will have to remain here. 2305 * In time closedown will finish, we empty the write queue and 2306 * all will be happy. 2307 */ 2308 if (unlikely(sk->sk_state == TCP_CLOSE)) 2309 return; 2310 2311 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2312 sk_gfp_mask(sk, GFP_ATOMIC))) 2313 tcp_check_probe_timer(sk); 2314 } 2315 2316 /* Send _single_ skb sitting at the send head. This function requires 2317 * true push pending frames to setup probe timer etc. 2318 */ 2319 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2320 { 2321 struct sk_buff *skb = tcp_send_head(sk); 2322 2323 BUG_ON(!skb || skb->len < mss_now); 2324 2325 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2326 } 2327 2328 /* This function returns the amount that we can raise the 2329 * usable window based on the following constraints 2330 * 2331 * 1. The window can never be shrunk once it is offered (RFC 793) 2332 * 2. We limit memory per socket 2333 * 2334 * RFC 1122: 2335 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2336 * RECV.NEXT + RCV.WIN fixed until: 2337 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2338 * 2339 * i.e. don't raise the right edge of the window until you can raise 2340 * it at least MSS bytes. 2341 * 2342 * Unfortunately, the recommended algorithm breaks header prediction, 2343 * since header prediction assumes th->window stays fixed. 2344 * 2345 * Strictly speaking, keeping th->window fixed violates the receiver 2346 * side SWS prevention criteria. The problem is that under this rule 2347 * a stream of single byte packets will cause the right side of the 2348 * window to always advance by a single byte. 2349 * 2350 * Of course, if the sender implements sender side SWS prevention 2351 * then this will not be a problem. 2352 * 2353 * BSD seems to make the following compromise: 2354 * 2355 * If the free space is less than the 1/4 of the maximum 2356 * space available and the free space is less than 1/2 mss, 2357 * then set the window to 0. 2358 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2359 * Otherwise, just prevent the window from shrinking 2360 * and from being larger than the largest representable value. 2361 * 2362 * This prevents incremental opening of the window in the regime 2363 * where TCP is limited by the speed of the reader side taking 2364 * data out of the TCP receive queue. It does nothing about 2365 * those cases where the window is constrained on the sender side 2366 * because the pipeline is full. 2367 * 2368 * BSD also seems to "accidentally" limit itself to windows that are a 2369 * multiple of MSS, at least until the free space gets quite small. 2370 * This would appear to be a side effect of the mbuf implementation. 2371 * Combining these two algorithms results in the observed behavior 2372 * of having a fixed window size at almost all times. 2373 * 2374 * Below we obtain similar behavior by forcing the offered window to 2375 * a multiple of the mss when it is feasible to do so. 2376 * 2377 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2378 * Regular options like TIMESTAMP are taken into account. 2379 */ 2380 u32 __tcp_select_window(struct sock *sk) 2381 { 2382 struct inet_connection_sock *icsk = inet_csk(sk); 2383 struct tcp_sock *tp = tcp_sk(sk); 2384 /* MSS for the peer's data. Previous versions used mss_clamp 2385 * here. I don't know if the value based on our guesses 2386 * of peer's MSS is better for the performance. It's more correct 2387 * but may be worse for the performance because of rcv_mss 2388 * fluctuations. --SAW 1998/11/1 2389 */ 2390 int mss = icsk->icsk_ack.rcv_mss; 2391 int free_space = tcp_space(sk); 2392 int allowed_space = tcp_full_space(sk); 2393 int full_space = min_t(int, tp->window_clamp, allowed_space); 2394 int window; 2395 2396 if (mss > full_space) 2397 mss = full_space; 2398 2399 if (free_space < (full_space >> 1)) { 2400 icsk->icsk_ack.quick = 0; 2401 2402 if (tcp_under_memory_pressure(sk)) 2403 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2404 4U * tp->advmss); 2405 2406 /* free_space might become our new window, make sure we don't 2407 * increase it due to wscale. 2408 */ 2409 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2410 2411 /* if free space is less than mss estimate, or is below 1/16th 2412 * of the maximum allowed, try to move to zero-window, else 2413 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2414 * new incoming data is dropped due to memory limits. 2415 * With large window, mss test triggers way too late in order 2416 * to announce zero window in time before rmem limit kicks in. 2417 */ 2418 if (free_space < (allowed_space >> 4) || free_space < mss) 2419 return 0; 2420 } 2421 2422 if (free_space > tp->rcv_ssthresh) 2423 free_space = tp->rcv_ssthresh; 2424 2425 /* Don't do rounding if we are using window scaling, since the 2426 * scaled window will not line up with the MSS boundary anyway. 2427 */ 2428 window = tp->rcv_wnd; 2429 if (tp->rx_opt.rcv_wscale) { 2430 window = free_space; 2431 2432 /* Advertise enough space so that it won't get scaled away. 2433 * Import case: prevent zero window announcement if 2434 * 1<<rcv_wscale > mss. 2435 */ 2436 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2437 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2438 << tp->rx_opt.rcv_wscale); 2439 } else { 2440 /* Get the largest window that is a nice multiple of mss. 2441 * Window clamp already applied above. 2442 * If our current window offering is within 1 mss of the 2443 * free space we just keep it. This prevents the divide 2444 * and multiply from happening most of the time. 2445 * We also don't do any window rounding when the free space 2446 * is too small. 2447 */ 2448 if (window <= free_space - mss || window > free_space) 2449 window = (free_space / mss) * mss; 2450 else if (mss == full_space && 2451 free_space > window + (full_space >> 1)) 2452 window = free_space; 2453 } 2454 2455 return window; 2456 } 2457 2458 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2459 const struct sk_buff *next_skb) 2460 { 2461 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2462 const struct skb_shared_info *next_shinfo = 2463 skb_shinfo(next_skb); 2464 struct skb_shared_info *shinfo = skb_shinfo(skb); 2465 2466 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2467 shinfo->tskey = next_shinfo->tskey; 2468 TCP_SKB_CB(skb)->txstamp_ack |= 2469 TCP_SKB_CB(next_skb)->txstamp_ack; 2470 } 2471 } 2472 2473 /* Collapses two adjacent SKB's during retransmission. */ 2474 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2475 { 2476 struct tcp_sock *tp = tcp_sk(sk); 2477 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2478 int skb_size, next_skb_size; 2479 2480 skb_size = skb->len; 2481 next_skb_size = next_skb->len; 2482 2483 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2484 2485 tcp_highest_sack_combine(sk, next_skb, skb); 2486 2487 tcp_unlink_write_queue(next_skb, sk); 2488 2489 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2490 next_skb_size); 2491 2492 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2493 skb->ip_summed = CHECKSUM_PARTIAL; 2494 2495 if (skb->ip_summed != CHECKSUM_PARTIAL) 2496 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2497 2498 /* Update sequence range on original skb. */ 2499 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2500 2501 /* Merge over control information. This moves PSH/FIN etc. over */ 2502 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2503 2504 /* All done, get rid of second SKB and account for it so 2505 * packet counting does not break. 2506 */ 2507 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2508 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2509 2510 /* changed transmit queue under us so clear hints */ 2511 tcp_clear_retrans_hints_partial(tp); 2512 if (next_skb == tp->retransmit_skb_hint) 2513 tp->retransmit_skb_hint = skb; 2514 2515 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2516 2517 tcp_skb_collapse_tstamp(skb, next_skb); 2518 2519 sk_wmem_free_skb(sk, next_skb); 2520 } 2521 2522 /* Check if coalescing SKBs is legal. */ 2523 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2524 { 2525 if (tcp_skb_pcount(skb) > 1) 2526 return false; 2527 /* TODO: SACK collapsing could be used to remove this condition */ 2528 if (skb_shinfo(skb)->nr_frags != 0) 2529 return false; 2530 if (skb_cloned(skb)) 2531 return false; 2532 if (skb == tcp_send_head(sk)) 2533 return false; 2534 /* Some heurestics for collapsing over SACK'd could be invented */ 2535 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2536 return false; 2537 2538 return true; 2539 } 2540 2541 /* Collapse packets in the retransmit queue to make to create 2542 * less packets on the wire. This is only done on retransmission. 2543 */ 2544 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2545 int space) 2546 { 2547 struct tcp_sock *tp = tcp_sk(sk); 2548 struct sk_buff *skb = to, *tmp; 2549 bool first = true; 2550 2551 if (!sysctl_tcp_retrans_collapse) 2552 return; 2553 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2554 return; 2555 2556 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2557 if (!tcp_can_collapse(sk, skb)) 2558 break; 2559 2560 if (!tcp_skb_can_collapse_to(to)) 2561 break; 2562 2563 space -= skb->len; 2564 2565 if (first) { 2566 first = false; 2567 continue; 2568 } 2569 2570 if (space < 0) 2571 break; 2572 /* Punt if not enough space exists in the first SKB for 2573 * the data in the second 2574 */ 2575 if (skb->len > skb_availroom(to)) 2576 break; 2577 2578 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2579 break; 2580 2581 tcp_collapse_retrans(sk, to); 2582 } 2583 } 2584 2585 /* This retransmits one SKB. Policy decisions and retransmit queue 2586 * state updates are done by the caller. Returns non-zero if an 2587 * error occurred which prevented the send. 2588 */ 2589 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2590 { 2591 struct inet_connection_sock *icsk = inet_csk(sk); 2592 struct tcp_sock *tp = tcp_sk(sk); 2593 unsigned int cur_mss; 2594 int diff, len, err; 2595 2596 2597 /* Inconclusive MTU probe */ 2598 if (icsk->icsk_mtup.probe_size) 2599 icsk->icsk_mtup.probe_size = 0; 2600 2601 /* Do not sent more than we queued. 1/4 is reserved for possible 2602 * copying overhead: fragmentation, tunneling, mangling etc. 2603 */ 2604 if (atomic_read(&sk->sk_wmem_alloc) > 2605 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2606 return -EAGAIN; 2607 2608 if (skb_still_in_host_queue(sk, skb)) 2609 return -EBUSY; 2610 2611 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2612 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2613 BUG(); 2614 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2615 return -ENOMEM; 2616 } 2617 2618 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2619 return -EHOSTUNREACH; /* Routing failure or similar. */ 2620 2621 cur_mss = tcp_current_mss(sk); 2622 2623 /* If receiver has shrunk his window, and skb is out of 2624 * new window, do not retransmit it. The exception is the 2625 * case, when window is shrunk to zero. In this case 2626 * our retransmit serves as a zero window probe. 2627 */ 2628 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2629 TCP_SKB_CB(skb)->seq != tp->snd_una) 2630 return -EAGAIN; 2631 2632 len = cur_mss * segs; 2633 if (skb->len > len) { 2634 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC)) 2635 return -ENOMEM; /* We'll try again later. */ 2636 } else { 2637 if (skb_unclone(skb, GFP_ATOMIC)) 2638 return -ENOMEM; 2639 2640 diff = tcp_skb_pcount(skb); 2641 tcp_set_skb_tso_segs(skb, cur_mss); 2642 diff -= tcp_skb_pcount(skb); 2643 if (diff) 2644 tcp_adjust_pcount(sk, skb, diff); 2645 if (skb->len < cur_mss) 2646 tcp_retrans_try_collapse(sk, skb, cur_mss); 2647 } 2648 2649 /* RFC3168, section 6.1.1.1. ECN fallback */ 2650 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2651 tcp_ecn_clear_syn(sk, skb); 2652 2653 /* make sure skb->data is aligned on arches that require it 2654 * and check if ack-trimming & collapsing extended the headroom 2655 * beyond what csum_start can cover. 2656 */ 2657 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2658 skb_headroom(skb) >= 0xFFFF)) { 2659 struct sk_buff *nskb; 2660 2661 skb_mstamp_get(&skb->skb_mstamp); 2662 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2663 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2664 -ENOBUFS; 2665 } else { 2666 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2667 } 2668 2669 if (likely(!err)) { 2670 segs = tcp_skb_pcount(skb); 2671 2672 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2673 /* Update global TCP statistics. */ 2674 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2675 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2676 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2677 tp->total_retrans += segs; 2678 } 2679 return err; 2680 } 2681 2682 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2683 { 2684 struct tcp_sock *tp = tcp_sk(sk); 2685 int err = __tcp_retransmit_skb(sk, skb, segs); 2686 2687 if (err == 0) { 2688 #if FASTRETRANS_DEBUG > 0 2689 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2690 net_dbg_ratelimited("retrans_out leaked\n"); 2691 } 2692 #endif 2693 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2694 tp->retrans_out += tcp_skb_pcount(skb); 2695 2696 /* Save stamp of the first retransmit. */ 2697 if (!tp->retrans_stamp) 2698 tp->retrans_stamp = tcp_skb_timestamp(skb); 2699 2700 } else if (err != -EBUSY) { 2701 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2702 } 2703 2704 if (tp->undo_retrans < 0) 2705 tp->undo_retrans = 0; 2706 tp->undo_retrans += tcp_skb_pcount(skb); 2707 return err; 2708 } 2709 2710 /* Check if we forward retransmits are possible in the current 2711 * window/congestion state. 2712 */ 2713 static bool tcp_can_forward_retransmit(struct sock *sk) 2714 { 2715 const struct inet_connection_sock *icsk = inet_csk(sk); 2716 const struct tcp_sock *tp = tcp_sk(sk); 2717 2718 /* Forward retransmissions are possible only during Recovery. */ 2719 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2720 return false; 2721 2722 /* No forward retransmissions in Reno are possible. */ 2723 if (tcp_is_reno(tp)) 2724 return false; 2725 2726 /* Yeah, we have to make difficult choice between forward transmission 2727 * and retransmission... Both ways have their merits... 2728 * 2729 * For now we do not retransmit anything, while we have some new 2730 * segments to send. In the other cases, follow rule 3 for 2731 * NextSeg() specified in RFC3517. 2732 */ 2733 2734 if (tcp_may_send_now(sk)) 2735 return false; 2736 2737 return true; 2738 } 2739 2740 /* This gets called after a retransmit timeout, and the initially 2741 * retransmitted data is acknowledged. It tries to continue 2742 * resending the rest of the retransmit queue, until either 2743 * we've sent it all or the congestion window limit is reached. 2744 * If doing SACK, the first ACK which comes back for a timeout 2745 * based retransmit packet might feed us FACK information again. 2746 * If so, we use it to avoid unnecessarily retransmissions. 2747 */ 2748 void tcp_xmit_retransmit_queue(struct sock *sk) 2749 { 2750 const struct inet_connection_sock *icsk = inet_csk(sk); 2751 struct tcp_sock *tp = tcp_sk(sk); 2752 struct sk_buff *skb; 2753 struct sk_buff *hole = NULL; 2754 u32 max_segs, last_lost; 2755 int mib_idx; 2756 int fwd_rexmitting = 0; 2757 2758 if (!tp->packets_out) 2759 return; 2760 2761 if (!tp->lost_out) 2762 tp->retransmit_high = tp->snd_una; 2763 2764 if (tp->retransmit_skb_hint) { 2765 skb = tp->retransmit_skb_hint; 2766 last_lost = TCP_SKB_CB(skb)->end_seq; 2767 if (after(last_lost, tp->retransmit_high)) 2768 last_lost = tp->retransmit_high; 2769 } else { 2770 skb = tcp_write_queue_head(sk); 2771 last_lost = tp->snd_una; 2772 } 2773 2774 max_segs = tcp_tso_autosize(sk, tcp_current_mss(sk)); 2775 tcp_for_write_queue_from(skb, sk) { 2776 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2777 int segs; 2778 2779 if (skb == tcp_send_head(sk)) 2780 break; 2781 /* we could do better than to assign each time */ 2782 if (!hole) 2783 tp->retransmit_skb_hint = skb; 2784 2785 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2786 if (segs <= 0) 2787 return; 2788 /* In case tcp_shift_skb_data() have aggregated large skbs, 2789 * we need to make sure not sending too bigs TSO packets 2790 */ 2791 segs = min_t(int, segs, max_segs); 2792 2793 if (fwd_rexmitting) { 2794 begin_fwd: 2795 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2796 break; 2797 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2798 2799 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2800 tp->retransmit_high = last_lost; 2801 if (!tcp_can_forward_retransmit(sk)) 2802 break; 2803 /* Backtrack if necessary to non-L'ed skb */ 2804 if (hole) { 2805 skb = hole; 2806 hole = NULL; 2807 } 2808 fwd_rexmitting = 1; 2809 goto begin_fwd; 2810 2811 } else if (!(sacked & TCPCB_LOST)) { 2812 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2813 hole = skb; 2814 continue; 2815 2816 } else { 2817 last_lost = TCP_SKB_CB(skb)->end_seq; 2818 if (icsk->icsk_ca_state != TCP_CA_Loss) 2819 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2820 else 2821 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2822 } 2823 2824 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2825 continue; 2826 2827 if (tcp_retransmit_skb(sk, skb, segs)) 2828 return; 2829 2830 NET_INC_STATS(sock_net(sk), mib_idx); 2831 2832 if (tcp_in_cwnd_reduction(sk)) 2833 tp->prr_out += tcp_skb_pcount(skb); 2834 2835 if (skb == tcp_write_queue_head(sk)) 2836 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2837 inet_csk(sk)->icsk_rto, 2838 TCP_RTO_MAX); 2839 } 2840 } 2841 2842 /* We allow to exceed memory limits for FIN packets to expedite 2843 * connection tear down and (memory) recovery. 2844 * Otherwise tcp_send_fin() could be tempted to either delay FIN 2845 * or even be forced to close flow without any FIN. 2846 * In general, we want to allow one skb per socket to avoid hangs 2847 * with edge trigger epoll() 2848 */ 2849 void sk_forced_mem_schedule(struct sock *sk, int size) 2850 { 2851 int amt; 2852 2853 if (size <= sk->sk_forward_alloc) 2854 return; 2855 amt = sk_mem_pages(size); 2856 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2857 sk_memory_allocated_add(sk, amt); 2858 2859 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2860 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 2861 } 2862 2863 /* Send a FIN. The caller locks the socket for us. 2864 * We should try to send a FIN packet really hard, but eventually give up. 2865 */ 2866 void tcp_send_fin(struct sock *sk) 2867 { 2868 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 2869 struct tcp_sock *tp = tcp_sk(sk); 2870 2871 /* Optimization, tack on the FIN if we have one skb in write queue and 2872 * this skb was not yet sent, or we are under memory pressure. 2873 * Note: in the latter case, FIN packet will be sent after a timeout, 2874 * as TCP stack thinks it has already been transmitted. 2875 */ 2876 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) { 2877 coalesce: 2878 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 2879 TCP_SKB_CB(tskb)->end_seq++; 2880 tp->write_seq++; 2881 if (!tcp_send_head(sk)) { 2882 /* This means tskb was already sent. 2883 * Pretend we included the FIN on previous transmit. 2884 * We need to set tp->snd_nxt to the value it would have 2885 * if FIN had been sent. This is because retransmit path 2886 * does not change tp->snd_nxt. 2887 */ 2888 tp->snd_nxt++; 2889 return; 2890 } 2891 } else { 2892 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 2893 if (unlikely(!skb)) { 2894 if (tskb) 2895 goto coalesce; 2896 return; 2897 } 2898 skb_reserve(skb, MAX_TCP_HEADER); 2899 sk_forced_mem_schedule(sk, skb->truesize); 2900 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2901 tcp_init_nondata_skb(skb, tp->write_seq, 2902 TCPHDR_ACK | TCPHDR_FIN); 2903 tcp_queue_skb(sk, skb); 2904 } 2905 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 2906 } 2907 2908 /* We get here when a process closes a file descriptor (either due to 2909 * an explicit close() or as a byproduct of exit()'ing) and there 2910 * was unread data in the receive queue. This behavior is recommended 2911 * by RFC 2525, section 2.17. -DaveM 2912 */ 2913 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2914 { 2915 struct sk_buff *skb; 2916 2917 /* NOTE: No TCP options attached and we never retransmit this. */ 2918 skb = alloc_skb(MAX_TCP_HEADER, priority); 2919 if (!skb) { 2920 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2921 return; 2922 } 2923 2924 /* Reserve space for headers and prepare control bits. */ 2925 skb_reserve(skb, MAX_TCP_HEADER); 2926 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2927 TCPHDR_ACK | TCPHDR_RST); 2928 skb_mstamp_get(&skb->skb_mstamp); 2929 /* Send it off. */ 2930 if (tcp_transmit_skb(sk, skb, 0, priority)) 2931 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2932 2933 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2934 } 2935 2936 /* Send a crossed SYN-ACK during socket establishment. 2937 * WARNING: This routine must only be called when we have already sent 2938 * a SYN packet that crossed the incoming SYN that caused this routine 2939 * to get called. If this assumption fails then the initial rcv_wnd 2940 * and rcv_wscale values will not be correct. 2941 */ 2942 int tcp_send_synack(struct sock *sk) 2943 { 2944 struct sk_buff *skb; 2945 2946 skb = tcp_write_queue_head(sk); 2947 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2948 pr_debug("%s: wrong queue state\n", __func__); 2949 return -EFAULT; 2950 } 2951 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2952 if (skb_cloned(skb)) { 2953 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2954 if (!nskb) 2955 return -ENOMEM; 2956 tcp_unlink_write_queue(skb, sk); 2957 __skb_header_release(nskb); 2958 __tcp_add_write_queue_head(sk, nskb); 2959 sk_wmem_free_skb(sk, skb); 2960 sk->sk_wmem_queued += nskb->truesize; 2961 sk_mem_charge(sk, nskb->truesize); 2962 skb = nskb; 2963 } 2964 2965 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2966 tcp_ecn_send_synack(sk, skb); 2967 } 2968 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2969 } 2970 2971 /** 2972 * tcp_make_synack - Prepare a SYN-ACK. 2973 * sk: listener socket 2974 * dst: dst entry attached to the SYNACK 2975 * req: request_sock pointer 2976 * 2977 * Allocate one skb and build a SYNACK packet. 2978 * @dst is consumed : Caller should not use it again. 2979 */ 2980 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 2981 struct request_sock *req, 2982 struct tcp_fastopen_cookie *foc, 2983 enum tcp_synack_type synack_type) 2984 { 2985 struct inet_request_sock *ireq = inet_rsk(req); 2986 const struct tcp_sock *tp = tcp_sk(sk); 2987 struct tcp_md5sig_key *md5 = NULL; 2988 struct tcp_out_options opts; 2989 struct sk_buff *skb; 2990 int tcp_header_size; 2991 struct tcphdr *th; 2992 u16 user_mss; 2993 int mss; 2994 2995 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2996 if (unlikely(!skb)) { 2997 dst_release(dst); 2998 return NULL; 2999 } 3000 /* Reserve space for headers. */ 3001 skb_reserve(skb, MAX_TCP_HEADER); 3002 3003 switch (synack_type) { 3004 case TCP_SYNACK_NORMAL: 3005 skb_set_owner_w(skb, req_to_sk(req)); 3006 break; 3007 case TCP_SYNACK_COOKIE: 3008 /* Under synflood, we do not attach skb to a socket, 3009 * to avoid false sharing. 3010 */ 3011 break; 3012 case TCP_SYNACK_FASTOPEN: 3013 /* sk is a const pointer, because we want to express multiple 3014 * cpu might call us concurrently. 3015 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3016 */ 3017 skb_set_owner_w(skb, (struct sock *)sk); 3018 break; 3019 } 3020 skb_dst_set(skb, dst); 3021 3022 mss = dst_metric_advmss(dst); 3023 user_mss = READ_ONCE(tp->rx_opt.user_mss); 3024 if (user_mss && user_mss < mss) 3025 mss = user_mss; 3026 3027 memset(&opts, 0, sizeof(opts)); 3028 #ifdef CONFIG_SYN_COOKIES 3029 if (unlikely(req->cookie_ts)) 3030 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 3031 else 3032 #endif 3033 skb_mstamp_get(&skb->skb_mstamp); 3034 3035 #ifdef CONFIG_TCP_MD5SIG 3036 rcu_read_lock(); 3037 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3038 #endif 3039 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3040 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) + 3041 sizeof(*th); 3042 3043 skb_push(skb, tcp_header_size); 3044 skb_reset_transport_header(skb); 3045 3046 th = (struct tcphdr *)skb->data; 3047 memset(th, 0, sizeof(struct tcphdr)); 3048 th->syn = 1; 3049 th->ack = 1; 3050 tcp_ecn_make_synack(req, th); 3051 th->source = htons(ireq->ir_num); 3052 th->dest = ireq->ir_rmt_port; 3053 /* Setting of flags are superfluous here for callers (and ECE is 3054 * not even correctly set) 3055 */ 3056 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3057 TCPHDR_SYN | TCPHDR_ACK); 3058 3059 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3060 /* XXX data is queued and acked as is. No buffer/window check */ 3061 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3062 3063 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3064 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3065 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3066 th->doff = (tcp_header_size >> 2); 3067 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3068 3069 #ifdef CONFIG_TCP_MD5SIG 3070 /* Okay, we have all we need - do the md5 hash if needed */ 3071 if (md5) 3072 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3073 md5, req_to_sk(req), skb); 3074 rcu_read_unlock(); 3075 #endif 3076 3077 /* Do not fool tcpdump (if any), clean our debris */ 3078 skb->tstamp.tv64 = 0; 3079 return skb; 3080 } 3081 EXPORT_SYMBOL(tcp_make_synack); 3082 3083 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3084 { 3085 struct inet_connection_sock *icsk = inet_csk(sk); 3086 const struct tcp_congestion_ops *ca; 3087 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3088 3089 if (ca_key == TCP_CA_UNSPEC) 3090 return; 3091 3092 rcu_read_lock(); 3093 ca = tcp_ca_find_key(ca_key); 3094 if (likely(ca && try_module_get(ca->owner))) { 3095 module_put(icsk->icsk_ca_ops->owner); 3096 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3097 icsk->icsk_ca_ops = ca; 3098 } 3099 rcu_read_unlock(); 3100 } 3101 3102 /* Do all connect socket setups that can be done AF independent. */ 3103 static void tcp_connect_init(struct sock *sk) 3104 { 3105 const struct dst_entry *dst = __sk_dst_get(sk); 3106 struct tcp_sock *tp = tcp_sk(sk); 3107 __u8 rcv_wscale; 3108 3109 /* We'll fix this up when we get a response from the other end. 3110 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3111 */ 3112 tp->tcp_header_len = sizeof(struct tcphdr) + 3113 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 3114 3115 #ifdef CONFIG_TCP_MD5SIG 3116 if (tp->af_specific->md5_lookup(sk, sk)) 3117 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3118 #endif 3119 3120 /* If user gave his TCP_MAXSEG, record it to clamp */ 3121 if (tp->rx_opt.user_mss) 3122 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3123 tp->max_window = 0; 3124 tcp_mtup_init(sk); 3125 tcp_sync_mss(sk, dst_mtu(dst)); 3126 3127 tcp_ca_dst_init(sk, dst); 3128 3129 if (!tp->window_clamp) 3130 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3131 tp->advmss = dst_metric_advmss(dst); 3132 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 3133 tp->advmss = tp->rx_opt.user_mss; 3134 3135 tcp_initialize_rcv_mss(sk); 3136 3137 /* limit the window selection if the user enforce a smaller rx buffer */ 3138 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3139 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3140 tp->window_clamp = tcp_full_space(sk); 3141 3142 tcp_select_initial_window(tcp_full_space(sk), 3143 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3144 &tp->rcv_wnd, 3145 &tp->window_clamp, 3146 sysctl_tcp_window_scaling, 3147 &rcv_wscale, 3148 dst_metric(dst, RTAX_INITRWND)); 3149 3150 tp->rx_opt.rcv_wscale = rcv_wscale; 3151 tp->rcv_ssthresh = tp->rcv_wnd; 3152 3153 sk->sk_err = 0; 3154 sock_reset_flag(sk, SOCK_DONE); 3155 tp->snd_wnd = 0; 3156 tcp_init_wl(tp, 0); 3157 tp->snd_una = tp->write_seq; 3158 tp->snd_sml = tp->write_seq; 3159 tp->snd_up = tp->write_seq; 3160 tp->snd_nxt = tp->write_seq; 3161 3162 if (likely(!tp->repair)) 3163 tp->rcv_nxt = 0; 3164 else 3165 tp->rcv_tstamp = tcp_time_stamp; 3166 tp->rcv_wup = tp->rcv_nxt; 3167 tp->copied_seq = tp->rcv_nxt; 3168 3169 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3170 inet_csk(sk)->icsk_retransmits = 0; 3171 tcp_clear_retrans(tp); 3172 } 3173 3174 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3175 { 3176 struct tcp_sock *tp = tcp_sk(sk); 3177 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3178 3179 tcb->end_seq += skb->len; 3180 __skb_header_release(skb); 3181 __tcp_add_write_queue_tail(sk, skb); 3182 sk->sk_wmem_queued += skb->truesize; 3183 sk_mem_charge(sk, skb->truesize); 3184 tp->write_seq = tcb->end_seq; 3185 tp->packets_out += tcp_skb_pcount(skb); 3186 } 3187 3188 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3189 * queue a data-only packet after the regular SYN, such that regular SYNs 3190 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3191 * only the SYN sequence, the data are retransmitted in the first ACK. 3192 * If cookie is not cached or other error occurs, falls back to send a 3193 * regular SYN with Fast Open cookie request option. 3194 */ 3195 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3196 { 3197 struct tcp_sock *tp = tcp_sk(sk); 3198 struct tcp_fastopen_request *fo = tp->fastopen_req; 3199 int syn_loss = 0, space, err = 0; 3200 unsigned long last_syn_loss = 0; 3201 struct sk_buff *syn_data; 3202 3203 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3204 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 3205 &syn_loss, &last_syn_loss); 3206 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 3207 if (syn_loss > 1 && 3208 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 3209 fo->cookie.len = -1; 3210 goto fallback; 3211 } 3212 3213 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 3214 fo->cookie.len = -1; 3215 else if (fo->cookie.len <= 0) 3216 goto fallback; 3217 3218 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3219 * user-MSS. Reserve maximum option space for middleboxes that add 3220 * private TCP options. The cost is reduced data space in SYN :( 3221 */ 3222 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 3223 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3224 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3225 MAX_TCP_OPTION_SPACE; 3226 3227 space = min_t(size_t, space, fo->size); 3228 3229 /* limit to order-0 allocations */ 3230 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3231 3232 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3233 if (!syn_data) 3234 goto fallback; 3235 syn_data->ip_summed = CHECKSUM_PARTIAL; 3236 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3237 if (space) { 3238 int copied = copy_from_iter(skb_put(syn_data, space), space, 3239 &fo->data->msg_iter); 3240 if (unlikely(!copied)) { 3241 kfree_skb(syn_data); 3242 goto fallback; 3243 } 3244 if (copied != space) { 3245 skb_trim(syn_data, copied); 3246 space = copied; 3247 } 3248 } 3249 /* No more data pending in inet_wait_for_connect() */ 3250 if (space == fo->size) 3251 fo->data = NULL; 3252 fo->copied = space; 3253 3254 tcp_connect_queue_skb(sk, syn_data); 3255 3256 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3257 3258 syn->skb_mstamp = syn_data->skb_mstamp; 3259 3260 /* Now full SYN+DATA was cloned and sent (or not), 3261 * remove the SYN from the original skb (syn_data) 3262 * we keep in write queue in case of a retransmit, as we 3263 * also have the SYN packet (with no data) in the same queue. 3264 */ 3265 TCP_SKB_CB(syn_data)->seq++; 3266 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3267 if (!err) { 3268 tp->syn_data = (fo->copied > 0); 3269 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3270 goto done; 3271 } 3272 3273 fallback: 3274 /* Send a regular SYN with Fast Open cookie request option */ 3275 if (fo->cookie.len > 0) 3276 fo->cookie.len = 0; 3277 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3278 if (err) 3279 tp->syn_fastopen = 0; 3280 done: 3281 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3282 return err; 3283 } 3284 3285 /* Build a SYN and send it off. */ 3286 int tcp_connect(struct sock *sk) 3287 { 3288 struct tcp_sock *tp = tcp_sk(sk); 3289 struct sk_buff *buff; 3290 int err; 3291 3292 tcp_connect_init(sk); 3293 3294 if (unlikely(tp->repair)) { 3295 tcp_finish_connect(sk, NULL); 3296 return 0; 3297 } 3298 3299 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3300 if (unlikely(!buff)) 3301 return -ENOBUFS; 3302 3303 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3304 tp->retrans_stamp = tcp_time_stamp; 3305 tcp_connect_queue_skb(sk, buff); 3306 tcp_ecn_send_syn(sk, buff); 3307 3308 /* Send off SYN; include data in Fast Open. */ 3309 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3310 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3311 if (err == -ECONNREFUSED) 3312 return err; 3313 3314 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3315 * in order to make this packet get counted in tcpOutSegs. 3316 */ 3317 tp->snd_nxt = tp->write_seq; 3318 tp->pushed_seq = tp->write_seq; 3319 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3320 3321 /* Timer for repeating the SYN until an answer. */ 3322 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3323 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3324 return 0; 3325 } 3326 EXPORT_SYMBOL(tcp_connect); 3327 3328 /* Send out a delayed ack, the caller does the policy checking 3329 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3330 * for details. 3331 */ 3332 void tcp_send_delayed_ack(struct sock *sk) 3333 { 3334 struct inet_connection_sock *icsk = inet_csk(sk); 3335 int ato = icsk->icsk_ack.ato; 3336 unsigned long timeout; 3337 3338 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3339 3340 if (ato > TCP_DELACK_MIN) { 3341 const struct tcp_sock *tp = tcp_sk(sk); 3342 int max_ato = HZ / 2; 3343 3344 if (icsk->icsk_ack.pingpong || 3345 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3346 max_ato = TCP_DELACK_MAX; 3347 3348 /* Slow path, intersegment interval is "high". */ 3349 3350 /* If some rtt estimate is known, use it to bound delayed ack. 3351 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3352 * directly. 3353 */ 3354 if (tp->srtt_us) { 3355 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3356 TCP_DELACK_MIN); 3357 3358 if (rtt < max_ato) 3359 max_ato = rtt; 3360 } 3361 3362 ato = min(ato, max_ato); 3363 } 3364 3365 /* Stay within the limit we were given */ 3366 timeout = jiffies + ato; 3367 3368 /* Use new timeout only if there wasn't a older one earlier. */ 3369 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3370 /* If delack timer was blocked or is about to expire, 3371 * send ACK now. 3372 */ 3373 if (icsk->icsk_ack.blocked || 3374 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3375 tcp_send_ack(sk); 3376 return; 3377 } 3378 3379 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3380 timeout = icsk->icsk_ack.timeout; 3381 } 3382 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3383 icsk->icsk_ack.timeout = timeout; 3384 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3385 } 3386 3387 /* This routine sends an ack and also updates the window. */ 3388 void tcp_send_ack(struct sock *sk) 3389 { 3390 struct sk_buff *buff; 3391 3392 /* If we have been reset, we may not send again. */ 3393 if (sk->sk_state == TCP_CLOSE) 3394 return; 3395 3396 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3397 3398 /* We are not putting this on the write queue, so 3399 * tcp_transmit_skb() will set the ownership to this 3400 * sock. 3401 */ 3402 buff = alloc_skb(MAX_TCP_HEADER, 3403 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3404 if (unlikely(!buff)) { 3405 inet_csk_schedule_ack(sk); 3406 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3407 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3408 TCP_DELACK_MAX, TCP_RTO_MAX); 3409 return; 3410 } 3411 3412 /* Reserve space for headers and prepare control bits. */ 3413 skb_reserve(buff, MAX_TCP_HEADER); 3414 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3415 3416 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3417 * too much. 3418 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3419 * We also avoid tcp_wfree() overhead (cache line miss accessing 3420 * tp->tsq_flags) by using regular sock_wfree() 3421 */ 3422 skb_set_tcp_pure_ack(buff); 3423 3424 /* Send it off, this clears delayed acks for us. */ 3425 skb_mstamp_get(&buff->skb_mstamp); 3426 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3427 } 3428 EXPORT_SYMBOL_GPL(tcp_send_ack); 3429 3430 /* This routine sends a packet with an out of date sequence 3431 * number. It assumes the other end will try to ack it. 3432 * 3433 * Question: what should we make while urgent mode? 3434 * 4.4BSD forces sending single byte of data. We cannot send 3435 * out of window data, because we have SND.NXT==SND.MAX... 3436 * 3437 * Current solution: to send TWO zero-length segments in urgent mode: 3438 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3439 * out-of-date with SND.UNA-1 to probe window. 3440 */ 3441 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3442 { 3443 struct tcp_sock *tp = tcp_sk(sk); 3444 struct sk_buff *skb; 3445 3446 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3447 skb = alloc_skb(MAX_TCP_HEADER, 3448 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3449 if (!skb) 3450 return -1; 3451 3452 /* Reserve space for headers and set control bits. */ 3453 skb_reserve(skb, MAX_TCP_HEADER); 3454 /* Use a previous sequence. This should cause the other 3455 * end to send an ack. Don't queue or clone SKB, just 3456 * send it. 3457 */ 3458 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3459 skb_mstamp_get(&skb->skb_mstamp); 3460 NET_INC_STATS(sock_net(sk), mib); 3461 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3462 } 3463 3464 void tcp_send_window_probe(struct sock *sk) 3465 { 3466 if (sk->sk_state == TCP_ESTABLISHED) { 3467 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3468 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3469 } 3470 } 3471 3472 /* Initiate keepalive or window probe from timer. */ 3473 int tcp_write_wakeup(struct sock *sk, int mib) 3474 { 3475 struct tcp_sock *tp = tcp_sk(sk); 3476 struct sk_buff *skb; 3477 3478 if (sk->sk_state == TCP_CLOSE) 3479 return -1; 3480 3481 skb = tcp_send_head(sk); 3482 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3483 int err; 3484 unsigned int mss = tcp_current_mss(sk); 3485 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3486 3487 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3488 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3489 3490 /* We are probing the opening of a window 3491 * but the window size is != 0 3492 * must have been a result SWS avoidance ( sender ) 3493 */ 3494 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3495 skb->len > mss) { 3496 seg_size = min(seg_size, mss); 3497 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3498 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3499 return -1; 3500 } else if (!tcp_skb_pcount(skb)) 3501 tcp_set_skb_tso_segs(skb, mss); 3502 3503 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3504 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3505 if (!err) 3506 tcp_event_new_data_sent(sk, skb); 3507 return err; 3508 } else { 3509 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3510 tcp_xmit_probe_skb(sk, 1, mib); 3511 return tcp_xmit_probe_skb(sk, 0, mib); 3512 } 3513 } 3514 3515 /* A window probe timeout has occurred. If window is not closed send 3516 * a partial packet else a zero probe. 3517 */ 3518 void tcp_send_probe0(struct sock *sk) 3519 { 3520 struct inet_connection_sock *icsk = inet_csk(sk); 3521 struct tcp_sock *tp = tcp_sk(sk); 3522 struct net *net = sock_net(sk); 3523 unsigned long probe_max; 3524 int err; 3525 3526 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3527 3528 if (tp->packets_out || !tcp_send_head(sk)) { 3529 /* Cancel probe timer, if it is not required. */ 3530 icsk->icsk_probes_out = 0; 3531 icsk->icsk_backoff = 0; 3532 return; 3533 } 3534 3535 if (err <= 0) { 3536 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3537 icsk->icsk_backoff++; 3538 icsk->icsk_probes_out++; 3539 probe_max = TCP_RTO_MAX; 3540 } else { 3541 /* If packet was not sent due to local congestion, 3542 * do not backoff and do not remember icsk_probes_out. 3543 * Let local senders to fight for local resources. 3544 * 3545 * Use accumulated backoff yet. 3546 */ 3547 if (!icsk->icsk_probes_out) 3548 icsk->icsk_probes_out = 1; 3549 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3550 } 3551 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3552 tcp_probe0_when(sk, probe_max), 3553 TCP_RTO_MAX); 3554 } 3555 3556 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3557 { 3558 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3559 struct flowi fl; 3560 int res; 3561 3562 tcp_rsk(req)->txhash = net_tx_rndhash(); 3563 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3564 if (!res) { 3565 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3566 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3567 } 3568 return res; 3569 } 3570 EXPORT_SYMBOL(tcp_rtx_synack); 3571