xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 			   int push_one, gfp_t gfp);
67 
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 	struct inet_connection_sock *icsk = inet_csk(sk);
72 	struct tcp_sock *tp = tcp_sk(sk);
73 	unsigned int prior_packets = tp->packets_out;
74 
75 	tcp_advance_send_head(sk, skb);
76 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 		tcp_rearm_rto(sk);
81 
82 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 		      tcp_skb_pcount(skb));
84 }
85 
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87  * window scaling factor due to loss of precision.
88  * If window has been shrunk, what should we make? It is not clear at all.
89  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91  * invalid. OK, let's make this for now:
92  */
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 	const struct tcp_sock *tp = tcp_sk(sk);
96 
97 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 	    (tp->rx_opt.wscale_ok &&
99 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 		return tp->snd_nxt;
101 	else
102 		return tcp_wnd_end(tp);
103 }
104 
105 /* Calculate mss to advertise in SYN segment.
106  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107  *
108  * 1. It is independent of path mtu.
109  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111  *    attached devices, because some buggy hosts are confused by
112  *    large MSS.
113  * 4. We do not make 3, we advertise MSS, calculated from first
114  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
115  *    This may be overridden via information stored in routing table.
116  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117  *    probably even Jumbo".
118  */
119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 	struct tcp_sock *tp = tcp_sk(sk);
122 	const struct dst_entry *dst = __sk_dst_get(sk);
123 	int mss = tp->advmss;
124 
125 	if (dst) {
126 		unsigned int metric = dst_metric_advmss(dst);
127 
128 		if (metric < mss) {
129 			mss = metric;
130 			tp->advmss = mss;
131 		}
132 	}
133 
134 	return (__u16)mss;
135 }
136 
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138  * This is the first part of cwnd validation mechanism.
139  */
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 	struct tcp_sock *tp = tcp_sk(sk);
143 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 	u32 cwnd = tp->snd_cwnd;
145 
146 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147 
148 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 	restart_cwnd = min(restart_cwnd, cwnd);
150 
151 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 		cwnd >>= 1;
153 	tp->snd_cwnd = max(cwnd, restart_cwnd);
154 	tp->snd_cwnd_stamp = tcp_time_stamp;
155 	tp->snd_cwnd_used = 0;
156 }
157 
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 				struct sock *sk)
161 {
162 	struct inet_connection_sock *icsk = inet_csk(sk);
163 	const u32 now = tcp_time_stamp;
164 
165 	if (tcp_packets_in_flight(tp) == 0)
166 		tcp_ca_event(sk, CA_EVENT_TX_START);
167 
168 	tp->lsndtime = now;
169 
170 	/* If it is a reply for ato after last received
171 	 * packet, enter pingpong mode.
172 	 */
173 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 		icsk->icsk_ack.pingpong = 1;
175 }
176 
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 	tcp_dec_quickack_mode(sk, pkts);
181 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183 
184 
185 u32 tcp_default_init_rwnd(u32 mss)
186 {
187 	/* Initial receive window should be twice of TCP_INIT_CWND to
188 	 * enable proper sending of new unsent data during fast recovery
189 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
190 	 * limit when mss is larger than 1460.
191 	 */
192 	u32 init_rwnd = TCP_INIT_CWND * 2;
193 
194 	if (mss > 1460)
195 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
196 	return init_rwnd;
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
206 void tcp_select_initial_window(int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (*window_clamp == 0)
215 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 	space = min(*window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = rounddown(space, mss);
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (sysctl_tcp_workaround_signed_windows)
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = space;
234 
235 	(*rcv_wscale) = 0;
236 	if (wscale_ok) {
237 		/* Set window scaling on max possible window */
238 		space = max_t(u32, space, sysctl_tcp_rmem[2]);
239 		space = max_t(u32, space, sysctl_rmem_max);
240 		space = min_t(u32, space, *window_clamp);
241 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
242 			space >>= 1;
243 			(*rcv_wscale)++;
244 		}
245 	}
246 
247 	if (mss > (1 << *rcv_wscale)) {
248 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 			init_rcv_wnd = tcp_default_init_rwnd(mss);
250 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 	}
252 
253 	/* Set the clamp no higher than max representable value */
254 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
255 }
256 EXPORT_SYMBOL(tcp_select_initial_window);
257 
258 /* Chose a new window to advertise, update state in tcp_sock for the
259  * socket, and return result with RFC1323 scaling applied.  The return
260  * value can be stuffed directly into th->window for an outgoing
261  * frame.
262  */
263 static u16 tcp_select_window(struct sock *sk)
264 {
265 	struct tcp_sock *tp = tcp_sk(sk);
266 	u32 old_win = tp->rcv_wnd;
267 	u32 cur_win = tcp_receive_window(tp);
268 	u32 new_win = __tcp_select_window(sk);
269 
270 	/* Never shrink the offered window */
271 	if (new_win < cur_win) {
272 		/* Danger Will Robinson!
273 		 * Don't update rcv_wup/rcv_wnd here or else
274 		 * we will not be able to advertise a zero
275 		 * window in time.  --DaveM
276 		 *
277 		 * Relax Will Robinson.
278 		 */
279 		if (new_win == 0)
280 			NET_INC_STATS(sock_net(sk),
281 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
282 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
283 	}
284 	tp->rcv_wnd = new_win;
285 	tp->rcv_wup = tp->rcv_nxt;
286 
287 	/* Make sure we do not exceed the maximum possible
288 	 * scaled window.
289 	 */
290 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 		new_win = min(new_win, MAX_TCP_WINDOW);
292 	else
293 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
294 
295 	/* RFC1323 scaling applied */
296 	new_win >>= tp->rx_opt.rcv_wscale;
297 
298 	/* If we advertise zero window, disable fast path. */
299 	if (new_win == 0) {
300 		tp->pred_flags = 0;
301 		if (old_win)
302 			NET_INC_STATS(sock_net(sk),
303 				      LINUX_MIB_TCPTOZEROWINDOWADV);
304 	} else if (old_win == 0) {
305 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
306 	}
307 
308 	return new_win;
309 }
310 
311 /* Packet ECN state for a SYN-ACK */
312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
313 {
314 	const struct tcp_sock *tp = tcp_sk(sk);
315 
316 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
317 	if (!(tp->ecn_flags & TCP_ECN_OK))
318 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
319 	else if (tcp_ca_needs_ecn(sk))
320 		INET_ECN_xmit(sk);
321 }
322 
323 /* Packet ECN state for a SYN.  */
324 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
325 {
326 	struct tcp_sock *tp = tcp_sk(sk);
327 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
328 		       tcp_ca_needs_ecn(sk);
329 
330 	if (!use_ecn) {
331 		const struct dst_entry *dst = __sk_dst_get(sk);
332 
333 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
334 			use_ecn = true;
335 	}
336 
337 	tp->ecn_flags = 0;
338 
339 	if (use_ecn) {
340 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 		tp->ecn_flags = TCP_ECN_OK;
342 		if (tcp_ca_needs_ecn(sk))
343 			INET_ECN_xmit(sk);
344 	}
345 }
346 
347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
348 {
349 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
350 		/* tp->ecn_flags are cleared at a later point in time when
351 		 * SYN ACK is ultimatively being received.
352 		 */
353 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
354 }
355 
356 static void
357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
358 {
359 	if (inet_rsk(req)->ecn_ok)
360 		th->ece = 1;
361 }
362 
363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
364  * be sent.
365  */
366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
367 			 struct tcphdr *th, int tcp_header_len)
368 {
369 	struct tcp_sock *tp = tcp_sk(sk);
370 
371 	if (tp->ecn_flags & TCP_ECN_OK) {
372 		/* Not-retransmitted data segment: set ECT and inject CWR. */
373 		if (skb->len != tcp_header_len &&
374 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
375 			INET_ECN_xmit(sk);
376 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
377 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
378 				th->cwr = 1;
379 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
380 			}
381 		} else if (!tcp_ca_needs_ecn(sk)) {
382 			/* ACK or retransmitted segment: clear ECT|CE */
383 			INET_ECN_dontxmit(sk);
384 		}
385 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
386 			th->ece = 1;
387 	}
388 }
389 
390 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
391  * auto increment end seqno.
392  */
393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
394 {
395 	skb->ip_summed = CHECKSUM_PARTIAL;
396 	skb->csum = 0;
397 
398 	TCP_SKB_CB(skb)->tcp_flags = flags;
399 	TCP_SKB_CB(skb)->sacked = 0;
400 
401 	tcp_skb_pcount_set(skb, 1);
402 
403 	TCP_SKB_CB(skb)->seq = seq;
404 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
405 		seq++;
406 	TCP_SKB_CB(skb)->end_seq = seq;
407 }
408 
409 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
410 {
411 	return tp->snd_una != tp->snd_up;
412 }
413 
414 #define OPTION_SACK_ADVERTISE	(1 << 0)
415 #define OPTION_TS		(1 << 1)
416 #define OPTION_MD5		(1 << 2)
417 #define OPTION_WSCALE		(1 << 3)
418 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
419 
420 struct tcp_out_options {
421 	u16 options;		/* bit field of OPTION_* */
422 	u16 mss;		/* 0 to disable */
423 	u8 ws;			/* window scale, 0 to disable */
424 	u8 num_sack_blocks;	/* number of SACK blocks to include */
425 	u8 hash_size;		/* bytes in hash_location */
426 	__u8 *hash_location;	/* temporary pointer, overloaded */
427 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
428 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
429 };
430 
431 /* Write previously computed TCP options to the packet.
432  *
433  * Beware: Something in the Internet is very sensitive to the ordering of
434  * TCP options, we learned this through the hard way, so be careful here.
435  * Luckily we can at least blame others for their non-compliance but from
436  * inter-operability perspective it seems that we're somewhat stuck with
437  * the ordering which we have been using if we want to keep working with
438  * those broken things (not that it currently hurts anybody as there isn't
439  * particular reason why the ordering would need to be changed).
440  *
441  * At least SACK_PERM as the first option is known to lead to a disaster
442  * (but it may well be that other scenarios fail similarly).
443  */
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 			      struct tcp_out_options *opts)
446 {
447 	u16 options = opts->options;	/* mungable copy */
448 
449 	if (unlikely(OPTION_MD5 & options)) {
450 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
451 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
452 		/* overload cookie hash location */
453 		opts->hash_location = (__u8 *)ptr;
454 		ptr += 4;
455 	}
456 
457 	if (unlikely(opts->mss)) {
458 		*ptr++ = htonl((TCPOPT_MSS << 24) |
459 			       (TCPOLEN_MSS << 16) |
460 			       opts->mss);
461 	}
462 
463 	if (likely(OPTION_TS & options)) {
464 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
465 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
466 				       (TCPOLEN_SACK_PERM << 16) |
467 				       (TCPOPT_TIMESTAMP << 8) |
468 				       TCPOLEN_TIMESTAMP);
469 			options &= ~OPTION_SACK_ADVERTISE;
470 		} else {
471 			*ptr++ = htonl((TCPOPT_NOP << 24) |
472 				       (TCPOPT_NOP << 16) |
473 				       (TCPOPT_TIMESTAMP << 8) |
474 				       TCPOLEN_TIMESTAMP);
475 		}
476 		*ptr++ = htonl(opts->tsval);
477 		*ptr++ = htonl(opts->tsecr);
478 	}
479 
480 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
481 		*ptr++ = htonl((TCPOPT_NOP << 24) |
482 			       (TCPOPT_NOP << 16) |
483 			       (TCPOPT_SACK_PERM << 8) |
484 			       TCPOLEN_SACK_PERM);
485 	}
486 
487 	if (unlikely(OPTION_WSCALE & options)) {
488 		*ptr++ = htonl((TCPOPT_NOP << 24) |
489 			       (TCPOPT_WINDOW << 16) |
490 			       (TCPOLEN_WINDOW << 8) |
491 			       opts->ws);
492 	}
493 
494 	if (unlikely(opts->num_sack_blocks)) {
495 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
496 			tp->duplicate_sack : tp->selective_acks;
497 		int this_sack;
498 
499 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
500 			       (TCPOPT_NOP  << 16) |
501 			       (TCPOPT_SACK <<  8) |
502 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
503 						     TCPOLEN_SACK_PERBLOCK)));
504 
505 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
506 		     ++this_sack) {
507 			*ptr++ = htonl(sp[this_sack].start_seq);
508 			*ptr++ = htonl(sp[this_sack].end_seq);
509 		}
510 
511 		tp->rx_opt.dsack = 0;
512 	}
513 
514 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
515 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
516 		u8 *p = (u8 *)ptr;
517 		u32 len; /* Fast Open option length */
518 
519 		if (foc->exp) {
520 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
521 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
522 				     TCPOPT_FASTOPEN_MAGIC);
523 			p += TCPOLEN_EXP_FASTOPEN_BASE;
524 		} else {
525 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
526 			*p++ = TCPOPT_FASTOPEN;
527 			*p++ = len;
528 		}
529 
530 		memcpy(p, foc->val, foc->len);
531 		if ((len & 3) == 2) {
532 			p[foc->len] = TCPOPT_NOP;
533 			p[foc->len + 1] = TCPOPT_NOP;
534 		}
535 		ptr += (len + 3) >> 2;
536 	}
537 }
538 
539 /* Compute TCP options for SYN packets. This is not the final
540  * network wire format yet.
541  */
542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
543 				struct tcp_out_options *opts,
544 				struct tcp_md5sig_key **md5)
545 {
546 	struct tcp_sock *tp = tcp_sk(sk);
547 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
548 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
549 
550 #ifdef CONFIG_TCP_MD5SIG
551 	*md5 = tp->af_specific->md5_lookup(sk, sk);
552 	if (*md5) {
553 		opts->options |= OPTION_MD5;
554 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
555 	}
556 #else
557 	*md5 = NULL;
558 #endif
559 
560 	/* We always get an MSS option.  The option bytes which will be seen in
561 	 * normal data packets should timestamps be used, must be in the MSS
562 	 * advertised.  But we subtract them from tp->mss_cache so that
563 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
564 	 * fact here if necessary.  If we don't do this correctly, as a
565 	 * receiver we won't recognize data packets as being full sized when we
566 	 * should, and thus we won't abide by the delayed ACK rules correctly.
567 	 * SACKs don't matter, we never delay an ACK when we have any of those
568 	 * going out.  */
569 	opts->mss = tcp_advertise_mss(sk);
570 	remaining -= TCPOLEN_MSS_ALIGNED;
571 
572 	if (likely(sysctl_tcp_timestamps && !*md5)) {
573 		opts->options |= OPTION_TS;
574 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
575 		opts->tsecr = tp->rx_opt.ts_recent;
576 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
577 	}
578 	if (likely(sysctl_tcp_window_scaling)) {
579 		opts->ws = tp->rx_opt.rcv_wscale;
580 		opts->options |= OPTION_WSCALE;
581 		remaining -= TCPOLEN_WSCALE_ALIGNED;
582 	}
583 	if (likely(sysctl_tcp_sack)) {
584 		opts->options |= OPTION_SACK_ADVERTISE;
585 		if (unlikely(!(OPTION_TS & opts->options)))
586 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
587 	}
588 
589 	if (fastopen && fastopen->cookie.len >= 0) {
590 		u32 need = fastopen->cookie.len;
591 
592 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
593 					       TCPOLEN_FASTOPEN_BASE;
594 		need = (need + 3) & ~3U;  /* Align to 32 bits */
595 		if (remaining >= need) {
596 			opts->options |= OPTION_FAST_OPEN_COOKIE;
597 			opts->fastopen_cookie = &fastopen->cookie;
598 			remaining -= need;
599 			tp->syn_fastopen = 1;
600 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
601 		}
602 	}
603 
604 	return MAX_TCP_OPTION_SPACE - remaining;
605 }
606 
607 /* Set up TCP options for SYN-ACKs. */
608 static unsigned int tcp_synack_options(struct request_sock *req,
609 				       unsigned int mss, struct sk_buff *skb,
610 				       struct tcp_out_options *opts,
611 				       const struct tcp_md5sig_key *md5,
612 				       struct tcp_fastopen_cookie *foc)
613 {
614 	struct inet_request_sock *ireq = inet_rsk(req);
615 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
616 
617 #ifdef CONFIG_TCP_MD5SIG
618 	if (md5) {
619 		opts->options |= OPTION_MD5;
620 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
621 
622 		/* We can't fit any SACK blocks in a packet with MD5 + TS
623 		 * options. There was discussion about disabling SACK
624 		 * rather than TS in order to fit in better with old,
625 		 * buggy kernels, but that was deemed to be unnecessary.
626 		 */
627 		ireq->tstamp_ok &= !ireq->sack_ok;
628 	}
629 #endif
630 
631 	/* We always send an MSS option. */
632 	opts->mss = mss;
633 	remaining -= TCPOLEN_MSS_ALIGNED;
634 
635 	if (likely(ireq->wscale_ok)) {
636 		opts->ws = ireq->rcv_wscale;
637 		opts->options |= OPTION_WSCALE;
638 		remaining -= TCPOLEN_WSCALE_ALIGNED;
639 	}
640 	if (likely(ireq->tstamp_ok)) {
641 		opts->options |= OPTION_TS;
642 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
643 		opts->tsecr = req->ts_recent;
644 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
645 	}
646 	if (likely(ireq->sack_ok)) {
647 		opts->options |= OPTION_SACK_ADVERTISE;
648 		if (unlikely(!ireq->tstamp_ok))
649 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
650 	}
651 	if (foc != NULL && foc->len >= 0) {
652 		u32 need = foc->len;
653 
654 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
655 				   TCPOLEN_FASTOPEN_BASE;
656 		need = (need + 3) & ~3U;  /* Align to 32 bits */
657 		if (remaining >= need) {
658 			opts->options |= OPTION_FAST_OPEN_COOKIE;
659 			opts->fastopen_cookie = foc;
660 			remaining -= need;
661 		}
662 	}
663 
664 	return MAX_TCP_OPTION_SPACE - remaining;
665 }
666 
667 /* Compute TCP options for ESTABLISHED sockets. This is not the
668  * final wire format yet.
669  */
670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
671 					struct tcp_out_options *opts,
672 					struct tcp_md5sig_key **md5)
673 {
674 	struct tcp_sock *tp = tcp_sk(sk);
675 	unsigned int size = 0;
676 	unsigned int eff_sacks;
677 
678 	opts->options = 0;
679 
680 #ifdef CONFIG_TCP_MD5SIG
681 	*md5 = tp->af_specific->md5_lookup(sk, sk);
682 	if (unlikely(*md5)) {
683 		opts->options |= OPTION_MD5;
684 		size += TCPOLEN_MD5SIG_ALIGNED;
685 	}
686 #else
687 	*md5 = NULL;
688 #endif
689 
690 	if (likely(tp->rx_opt.tstamp_ok)) {
691 		opts->options |= OPTION_TS;
692 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
693 		opts->tsecr = tp->rx_opt.ts_recent;
694 		size += TCPOLEN_TSTAMP_ALIGNED;
695 	}
696 
697 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
698 	if (unlikely(eff_sacks)) {
699 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
700 		opts->num_sack_blocks =
701 			min_t(unsigned int, eff_sacks,
702 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
703 			      TCPOLEN_SACK_PERBLOCK);
704 		size += TCPOLEN_SACK_BASE_ALIGNED +
705 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
706 	}
707 
708 	return size;
709 }
710 
711 
712 /* TCP SMALL QUEUES (TSQ)
713  *
714  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
715  * to reduce RTT and bufferbloat.
716  * We do this using a special skb destructor (tcp_wfree).
717  *
718  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
719  * needs to be reallocated in a driver.
720  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
721  *
722  * Since transmit from skb destructor is forbidden, we use a tasklet
723  * to process all sockets that eventually need to send more skbs.
724  * We use one tasklet per cpu, with its own queue of sockets.
725  */
726 struct tsq_tasklet {
727 	struct tasklet_struct	tasklet;
728 	struct list_head	head; /* queue of tcp sockets */
729 };
730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
731 
732 static void tcp_tsq_handler(struct sock *sk)
733 {
734 	if ((1 << sk->sk_state) &
735 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
736 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
737 		struct tcp_sock *tp = tcp_sk(sk);
738 
739 		if (tp->lost_out > tp->retrans_out &&
740 		    tp->snd_cwnd > tcp_packets_in_flight(tp))
741 			tcp_xmit_retransmit_queue(sk);
742 
743 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
744 			       0, GFP_ATOMIC);
745 	}
746 }
747 /*
748  * One tasklet per cpu tries to send more skbs.
749  * We run in tasklet context but need to disable irqs when
750  * transferring tsq->head because tcp_wfree() might
751  * interrupt us (non NAPI drivers)
752  */
753 static void tcp_tasklet_func(unsigned long data)
754 {
755 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
756 	LIST_HEAD(list);
757 	unsigned long flags;
758 	struct list_head *q, *n;
759 	struct tcp_sock *tp;
760 	struct sock *sk;
761 
762 	local_irq_save(flags);
763 	list_splice_init(&tsq->head, &list);
764 	local_irq_restore(flags);
765 
766 	list_for_each_safe(q, n, &list) {
767 		tp = list_entry(q, struct tcp_sock, tsq_node);
768 		list_del(&tp->tsq_node);
769 
770 		sk = (struct sock *)tp;
771 		smp_mb__before_atomic();
772 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
773 
774 		if (!sk->sk_lock.owned &&
775 		    test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
776 			bh_lock_sock(sk);
777 			if (!sock_owned_by_user(sk)) {
778 				clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
779 				tcp_tsq_handler(sk);
780 			}
781 			bh_unlock_sock(sk);
782 		}
783 
784 		sk_free(sk);
785 	}
786 }
787 
788 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
789 			  TCPF_WRITE_TIMER_DEFERRED |	\
790 			  TCPF_DELACK_TIMER_DEFERRED |	\
791 			  TCPF_MTU_REDUCED_DEFERRED)
792 /**
793  * tcp_release_cb - tcp release_sock() callback
794  * @sk: socket
795  *
796  * called from release_sock() to perform protocol dependent
797  * actions before socket release.
798  */
799 void tcp_release_cb(struct sock *sk)
800 {
801 	unsigned long flags, nflags;
802 
803 	/* perform an atomic operation only if at least one flag is set */
804 	do {
805 		flags = sk->sk_tsq_flags;
806 		if (!(flags & TCP_DEFERRED_ALL))
807 			return;
808 		nflags = flags & ~TCP_DEFERRED_ALL;
809 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
810 
811 	if (flags & TCPF_TSQ_DEFERRED)
812 		tcp_tsq_handler(sk);
813 
814 	/* Here begins the tricky part :
815 	 * We are called from release_sock() with :
816 	 * 1) BH disabled
817 	 * 2) sk_lock.slock spinlock held
818 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
819 	 *
820 	 * But following code is meant to be called from BH handlers,
821 	 * so we should keep BH disabled, but early release socket ownership
822 	 */
823 	sock_release_ownership(sk);
824 
825 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
826 		tcp_write_timer_handler(sk);
827 		__sock_put(sk);
828 	}
829 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
830 		tcp_delack_timer_handler(sk);
831 		__sock_put(sk);
832 	}
833 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
834 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
835 		__sock_put(sk);
836 	}
837 }
838 EXPORT_SYMBOL(tcp_release_cb);
839 
840 void __init tcp_tasklet_init(void)
841 {
842 	int i;
843 
844 	for_each_possible_cpu(i) {
845 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
846 
847 		INIT_LIST_HEAD(&tsq->head);
848 		tasklet_init(&tsq->tasklet,
849 			     tcp_tasklet_func,
850 			     (unsigned long)tsq);
851 	}
852 }
853 
854 /*
855  * Write buffer destructor automatically called from kfree_skb.
856  * We can't xmit new skbs from this context, as we might already
857  * hold qdisc lock.
858  */
859 void tcp_wfree(struct sk_buff *skb)
860 {
861 	struct sock *sk = skb->sk;
862 	struct tcp_sock *tp = tcp_sk(sk);
863 	unsigned long flags, nval, oval;
864 	int wmem;
865 
866 	/* Keep one reference on sk_wmem_alloc.
867 	 * Will be released by sk_free() from here or tcp_tasklet_func()
868 	 */
869 	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
870 
871 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
872 	 * Wait until our queues (qdisc + devices) are drained.
873 	 * This gives :
874 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
875 	 * - chance for incoming ACK (processed by another cpu maybe)
876 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
877 	 */
878 	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
879 		goto out;
880 
881 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
882 		struct tsq_tasklet *tsq;
883 		bool empty;
884 
885 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
886 			goto out;
887 
888 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
889 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
890 		if (nval != oval)
891 			continue;
892 
893 		/* queue this socket to tasklet queue */
894 		local_irq_save(flags);
895 		tsq = this_cpu_ptr(&tsq_tasklet);
896 		empty = list_empty(&tsq->head);
897 		list_add(&tp->tsq_node, &tsq->head);
898 		if (empty)
899 			tasklet_schedule(&tsq->tasklet);
900 		local_irq_restore(flags);
901 		return;
902 	}
903 out:
904 	sk_free(sk);
905 }
906 
907 /* This routine actually transmits TCP packets queued in by
908  * tcp_do_sendmsg().  This is used by both the initial
909  * transmission and possible later retransmissions.
910  * All SKB's seen here are completely headerless.  It is our
911  * job to build the TCP header, and pass the packet down to
912  * IP so it can do the same plus pass the packet off to the
913  * device.
914  *
915  * We are working here with either a clone of the original
916  * SKB, or a fresh unique copy made by the retransmit engine.
917  */
918 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
919 			    gfp_t gfp_mask)
920 {
921 	const struct inet_connection_sock *icsk = inet_csk(sk);
922 	struct inet_sock *inet;
923 	struct tcp_sock *tp;
924 	struct tcp_skb_cb *tcb;
925 	struct tcp_out_options opts;
926 	unsigned int tcp_options_size, tcp_header_size;
927 	struct tcp_md5sig_key *md5;
928 	struct tcphdr *th;
929 	int err;
930 
931 	BUG_ON(!skb || !tcp_skb_pcount(skb));
932 	tp = tcp_sk(sk);
933 
934 	if (clone_it) {
935 		skb_mstamp_get(&skb->skb_mstamp);
936 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
937 			- tp->snd_una;
938 		tcp_rate_skb_sent(sk, skb);
939 
940 		if (unlikely(skb_cloned(skb)))
941 			skb = pskb_copy(skb, gfp_mask);
942 		else
943 			skb = skb_clone(skb, gfp_mask);
944 		if (unlikely(!skb))
945 			return -ENOBUFS;
946 	}
947 
948 	inet = inet_sk(sk);
949 	tcb = TCP_SKB_CB(skb);
950 	memset(&opts, 0, sizeof(opts));
951 
952 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
953 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
954 	else
955 		tcp_options_size = tcp_established_options(sk, skb, &opts,
956 							   &md5);
957 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
958 
959 	/* if no packet is in qdisc/device queue, then allow XPS to select
960 	 * another queue. We can be called from tcp_tsq_handler()
961 	 * which holds one reference to sk_wmem_alloc.
962 	 *
963 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
964 	 * One way to get this would be to set skb->truesize = 2 on them.
965 	 */
966 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
967 
968 	/* If we had to use memory reserve to allocate this skb,
969 	 * this might cause drops if packet is looped back :
970 	 * Other socket might not have SOCK_MEMALLOC.
971 	 * Packets not looped back do not care about pfmemalloc.
972 	 */
973 	skb->pfmemalloc = 0;
974 
975 	skb_push(skb, tcp_header_size);
976 	skb_reset_transport_header(skb);
977 
978 	skb_orphan(skb);
979 	skb->sk = sk;
980 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
981 	skb_set_hash_from_sk(skb, sk);
982 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
983 
984 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
985 
986 	/* Build TCP header and checksum it. */
987 	th = (struct tcphdr *)skb->data;
988 	th->source		= inet->inet_sport;
989 	th->dest		= inet->inet_dport;
990 	th->seq			= htonl(tcb->seq);
991 	th->ack_seq		= htonl(tp->rcv_nxt);
992 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
993 					tcb->tcp_flags);
994 
995 	th->check		= 0;
996 	th->urg_ptr		= 0;
997 
998 	/* The urg_mode check is necessary during a below snd_una win probe */
999 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1000 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1001 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1002 			th->urg = 1;
1003 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1004 			th->urg_ptr = htons(0xFFFF);
1005 			th->urg = 1;
1006 		}
1007 	}
1008 
1009 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1010 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1011 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1012 		th->window      = htons(tcp_select_window(sk));
1013 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1014 	} else {
1015 		/* RFC1323: The window in SYN & SYN/ACK segments
1016 		 * is never scaled.
1017 		 */
1018 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1019 	}
1020 #ifdef CONFIG_TCP_MD5SIG
1021 	/* Calculate the MD5 hash, as we have all we need now */
1022 	if (md5) {
1023 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1024 		tp->af_specific->calc_md5_hash(opts.hash_location,
1025 					       md5, sk, skb);
1026 	}
1027 #endif
1028 
1029 	icsk->icsk_af_ops->send_check(sk, skb);
1030 
1031 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1032 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1033 
1034 	if (skb->len != tcp_header_size) {
1035 		tcp_event_data_sent(tp, sk);
1036 		tp->data_segs_out += tcp_skb_pcount(skb);
1037 	}
1038 
1039 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1040 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1041 			      tcp_skb_pcount(skb));
1042 
1043 	tp->segs_out += tcp_skb_pcount(skb);
1044 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1045 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1046 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1047 
1048 	/* Our usage of tstamp should remain private */
1049 	skb->tstamp = 0;
1050 
1051 	/* Cleanup our debris for IP stacks */
1052 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1053 			       sizeof(struct inet6_skb_parm)));
1054 
1055 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1056 
1057 	if (likely(err <= 0))
1058 		return err;
1059 
1060 	tcp_enter_cwr(sk);
1061 
1062 	return net_xmit_eval(err);
1063 }
1064 
1065 /* This routine just queues the buffer for sending.
1066  *
1067  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1068  * otherwise socket can stall.
1069  */
1070 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1071 {
1072 	struct tcp_sock *tp = tcp_sk(sk);
1073 
1074 	/* Advance write_seq and place onto the write_queue. */
1075 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1076 	__skb_header_release(skb);
1077 	tcp_add_write_queue_tail(sk, skb);
1078 	sk->sk_wmem_queued += skb->truesize;
1079 	sk_mem_charge(sk, skb->truesize);
1080 }
1081 
1082 /* Initialize TSO segments for a packet. */
1083 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1084 {
1085 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1086 		/* Avoid the costly divide in the normal
1087 		 * non-TSO case.
1088 		 */
1089 		tcp_skb_pcount_set(skb, 1);
1090 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1091 	} else {
1092 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1093 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1094 	}
1095 }
1096 
1097 /* When a modification to fackets out becomes necessary, we need to check
1098  * skb is counted to fackets_out or not.
1099  */
1100 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1101 				   int decr)
1102 {
1103 	struct tcp_sock *tp = tcp_sk(sk);
1104 
1105 	if (!tp->sacked_out || tcp_is_reno(tp))
1106 		return;
1107 
1108 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1109 		tp->fackets_out -= decr;
1110 }
1111 
1112 /* Pcount in the middle of the write queue got changed, we need to do various
1113  * tweaks to fix counters
1114  */
1115 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1116 {
1117 	struct tcp_sock *tp = tcp_sk(sk);
1118 
1119 	tp->packets_out -= decr;
1120 
1121 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1122 		tp->sacked_out -= decr;
1123 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1124 		tp->retrans_out -= decr;
1125 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1126 		tp->lost_out -= decr;
1127 
1128 	/* Reno case is special. Sigh... */
1129 	if (tcp_is_reno(tp) && decr > 0)
1130 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1131 
1132 	tcp_adjust_fackets_out(sk, skb, decr);
1133 
1134 	if (tp->lost_skb_hint &&
1135 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1136 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1137 		tp->lost_cnt_hint -= decr;
1138 
1139 	tcp_verify_left_out(tp);
1140 }
1141 
1142 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1143 {
1144 	return TCP_SKB_CB(skb)->txstamp_ack ||
1145 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1146 }
1147 
1148 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1149 {
1150 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1151 
1152 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1153 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1154 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1155 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1156 
1157 		shinfo->tx_flags &= ~tsflags;
1158 		shinfo2->tx_flags |= tsflags;
1159 		swap(shinfo->tskey, shinfo2->tskey);
1160 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1161 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1162 	}
1163 }
1164 
1165 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1166 {
1167 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1168 	TCP_SKB_CB(skb)->eor = 0;
1169 }
1170 
1171 /* Function to create two new TCP segments.  Shrinks the given segment
1172  * to the specified size and appends a new segment with the rest of the
1173  * packet to the list.  This won't be called frequently, I hope.
1174  * Remember, these are still headerless SKBs at this point.
1175  */
1176 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1177 		 unsigned int mss_now, gfp_t gfp)
1178 {
1179 	struct tcp_sock *tp = tcp_sk(sk);
1180 	struct sk_buff *buff;
1181 	int nsize, old_factor;
1182 	int nlen;
1183 	u8 flags;
1184 
1185 	if (WARN_ON(len > skb->len))
1186 		return -EINVAL;
1187 
1188 	nsize = skb_headlen(skb) - len;
1189 	if (nsize < 0)
1190 		nsize = 0;
1191 
1192 	if (skb_unclone(skb, gfp))
1193 		return -ENOMEM;
1194 
1195 	/* Get a new skb... force flag on. */
1196 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1197 	if (!buff)
1198 		return -ENOMEM; /* We'll just try again later. */
1199 
1200 	sk->sk_wmem_queued += buff->truesize;
1201 	sk_mem_charge(sk, buff->truesize);
1202 	nlen = skb->len - len - nsize;
1203 	buff->truesize += nlen;
1204 	skb->truesize -= nlen;
1205 
1206 	/* Correct the sequence numbers. */
1207 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1208 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1209 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1210 
1211 	/* PSH and FIN should only be set in the second packet. */
1212 	flags = TCP_SKB_CB(skb)->tcp_flags;
1213 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1214 	TCP_SKB_CB(buff)->tcp_flags = flags;
1215 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1216 	tcp_skb_fragment_eor(skb, buff);
1217 
1218 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1219 		/* Copy and checksum data tail into the new buffer. */
1220 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1221 						       skb_put(buff, nsize),
1222 						       nsize, 0);
1223 
1224 		skb_trim(skb, len);
1225 
1226 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1227 	} else {
1228 		skb->ip_summed = CHECKSUM_PARTIAL;
1229 		skb_split(skb, buff, len);
1230 	}
1231 
1232 	buff->ip_summed = skb->ip_summed;
1233 
1234 	buff->tstamp = skb->tstamp;
1235 	tcp_fragment_tstamp(skb, buff);
1236 
1237 	old_factor = tcp_skb_pcount(skb);
1238 
1239 	/* Fix up tso_factor for both original and new SKB.  */
1240 	tcp_set_skb_tso_segs(skb, mss_now);
1241 	tcp_set_skb_tso_segs(buff, mss_now);
1242 
1243 	/* Update delivered info for the new segment */
1244 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1245 
1246 	/* If this packet has been sent out already, we must
1247 	 * adjust the various packet counters.
1248 	 */
1249 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1250 		int diff = old_factor - tcp_skb_pcount(skb) -
1251 			tcp_skb_pcount(buff);
1252 
1253 		if (diff)
1254 			tcp_adjust_pcount(sk, skb, diff);
1255 	}
1256 
1257 	/* Link BUFF into the send queue. */
1258 	__skb_header_release(buff);
1259 	tcp_insert_write_queue_after(skb, buff, sk);
1260 
1261 	return 0;
1262 }
1263 
1264 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1265  * eventually). The difference is that pulled data not copied, but
1266  * immediately discarded.
1267  */
1268 static void __pskb_trim_head(struct sk_buff *skb, int len)
1269 {
1270 	struct skb_shared_info *shinfo;
1271 	int i, k, eat;
1272 
1273 	eat = min_t(int, len, skb_headlen(skb));
1274 	if (eat) {
1275 		__skb_pull(skb, eat);
1276 		len -= eat;
1277 		if (!len)
1278 			return;
1279 	}
1280 	eat = len;
1281 	k = 0;
1282 	shinfo = skb_shinfo(skb);
1283 	for (i = 0; i < shinfo->nr_frags; i++) {
1284 		int size = skb_frag_size(&shinfo->frags[i]);
1285 
1286 		if (size <= eat) {
1287 			skb_frag_unref(skb, i);
1288 			eat -= size;
1289 		} else {
1290 			shinfo->frags[k] = shinfo->frags[i];
1291 			if (eat) {
1292 				shinfo->frags[k].page_offset += eat;
1293 				skb_frag_size_sub(&shinfo->frags[k], eat);
1294 				eat = 0;
1295 			}
1296 			k++;
1297 		}
1298 	}
1299 	shinfo->nr_frags = k;
1300 
1301 	skb_reset_tail_pointer(skb);
1302 	skb->data_len -= len;
1303 	skb->len = skb->data_len;
1304 }
1305 
1306 /* Remove acked data from a packet in the transmit queue. */
1307 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1308 {
1309 	if (skb_unclone(skb, GFP_ATOMIC))
1310 		return -ENOMEM;
1311 
1312 	__pskb_trim_head(skb, len);
1313 
1314 	TCP_SKB_CB(skb)->seq += len;
1315 	skb->ip_summed = CHECKSUM_PARTIAL;
1316 
1317 	skb->truesize	     -= len;
1318 	sk->sk_wmem_queued   -= len;
1319 	sk_mem_uncharge(sk, len);
1320 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1321 
1322 	/* Any change of skb->len requires recalculation of tso factor. */
1323 	if (tcp_skb_pcount(skb) > 1)
1324 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1325 
1326 	return 0;
1327 }
1328 
1329 /* Calculate MSS not accounting any TCP options.  */
1330 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1331 {
1332 	const struct tcp_sock *tp = tcp_sk(sk);
1333 	const struct inet_connection_sock *icsk = inet_csk(sk);
1334 	int mss_now;
1335 
1336 	/* Calculate base mss without TCP options:
1337 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1338 	 */
1339 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1340 
1341 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1342 	if (icsk->icsk_af_ops->net_frag_header_len) {
1343 		const struct dst_entry *dst = __sk_dst_get(sk);
1344 
1345 		if (dst && dst_allfrag(dst))
1346 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1347 	}
1348 
1349 	/* Clamp it (mss_clamp does not include tcp options) */
1350 	if (mss_now > tp->rx_opt.mss_clamp)
1351 		mss_now = tp->rx_opt.mss_clamp;
1352 
1353 	/* Now subtract optional transport overhead */
1354 	mss_now -= icsk->icsk_ext_hdr_len;
1355 
1356 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1357 	if (mss_now < 48)
1358 		mss_now = 48;
1359 	return mss_now;
1360 }
1361 
1362 /* Calculate MSS. Not accounting for SACKs here.  */
1363 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1364 {
1365 	/* Subtract TCP options size, not including SACKs */
1366 	return __tcp_mtu_to_mss(sk, pmtu) -
1367 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1368 }
1369 
1370 /* Inverse of above */
1371 int tcp_mss_to_mtu(struct sock *sk, int mss)
1372 {
1373 	const struct tcp_sock *tp = tcp_sk(sk);
1374 	const struct inet_connection_sock *icsk = inet_csk(sk);
1375 	int mtu;
1376 
1377 	mtu = mss +
1378 	      tp->tcp_header_len +
1379 	      icsk->icsk_ext_hdr_len +
1380 	      icsk->icsk_af_ops->net_header_len;
1381 
1382 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1383 	if (icsk->icsk_af_ops->net_frag_header_len) {
1384 		const struct dst_entry *dst = __sk_dst_get(sk);
1385 
1386 		if (dst && dst_allfrag(dst))
1387 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1388 	}
1389 	return mtu;
1390 }
1391 EXPORT_SYMBOL(tcp_mss_to_mtu);
1392 
1393 /* MTU probing init per socket */
1394 void tcp_mtup_init(struct sock *sk)
1395 {
1396 	struct tcp_sock *tp = tcp_sk(sk);
1397 	struct inet_connection_sock *icsk = inet_csk(sk);
1398 	struct net *net = sock_net(sk);
1399 
1400 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1401 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1402 			       icsk->icsk_af_ops->net_header_len;
1403 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1404 	icsk->icsk_mtup.probe_size = 0;
1405 	if (icsk->icsk_mtup.enabled)
1406 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1407 }
1408 EXPORT_SYMBOL(tcp_mtup_init);
1409 
1410 /* This function synchronize snd mss to current pmtu/exthdr set.
1411 
1412    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1413    for TCP options, but includes only bare TCP header.
1414 
1415    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1416    It is minimum of user_mss and mss received with SYN.
1417    It also does not include TCP options.
1418 
1419    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1420 
1421    tp->mss_cache is current effective sending mss, including
1422    all tcp options except for SACKs. It is evaluated,
1423    taking into account current pmtu, but never exceeds
1424    tp->rx_opt.mss_clamp.
1425 
1426    NOTE1. rfc1122 clearly states that advertised MSS
1427    DOES NOT include either tcp or ip options.
1428 
1429    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1430    are READ ONLY outside this function.		--ANK (980731)
1431  */
1432 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1433 {
1434 	struct tcp_sock *tp = tcp_sk(sk);
1435 	struct inet_connection_sock *icsk = inet_csk(sk);
1436 	int mss_now;
1437 
1438 	if (icsk->icsk_mtup.search_high > pmtu)
1439 		icsk->icsk_mtup.search_high = pmtu;
1440 
1441 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1442 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1443 
1444 	/* And store cached results */
1445 	icsk->icsk_pmtu_cookie = pmtu;
1446 	if (icsk->icsk_mtup.enabled)
1447 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1448 	tp->mss_cache = mss_now;
1449 
1450 	return mss_now;
1451 }
1452 EXPORT_SYMBOL(tcp_sync_mss);
1453 
1454 /* Compute the current effective MSS, taking SACKs and IP options,
1455  * and even PMTU discovery events into account.
1456  */
1457 unsigned int tcp_current_mss(struct sock *sk)
1458 {
1459 	const struct tcp_sock *tp = tcp_sk(sk);
1460 	const struct dst_entry *dst = __sk_dst_get(sk);
1461 	u32 mss_now;
1462 	unsigned int header_len;
1463 	struct tcp_out_options opts;
1464 	struct tcp_md5sig_key *md5;
1465 
1466 	mss_now = tp->mss_cache;
1467 
1468 	if (dst) {
1469 		u32 mtu = dst_mtu(dst);
1470 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1471 			mss_now = tcp_sync_mss(sk, mtu);
1472 	}
1473 
1474 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1475 		     sizeof(struct tcphdr);
1476 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1477 	 * some common options. If this is an odd packet (because we have SACK
1478 	 * blocks etc) then our calculated header_len will be different, and
1479 	 * we have to adjust mss_now correspondingly */
1480 	if (header_len != tp->tcp_header_len) {
1481 		int delta = (int) header_len - tp->tcp_header_len;
1482 		mss_now -= delta;
1483 	}
1484 
1485 	return mss_now;
1486 }
1487 
1488 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1489  * As additional protections, we do not touch cwnd in retransmission phases,
1490  * and if application hit its sndbuf limit recently.
1491  */
1492 static void tcp_cwnd_application_limited(struct sock *sk)
1493 {
1494 	struct tcp_sock *tp = tcp_sk(sk);
1495 
1496 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1497 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1498 		/* Limited by application or receiver window. */
1499 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1500 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1501 		if (win_used < tp->snd_cwnd) {
1502 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1503 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1504 		}
1505 		tp->snd_cwnd_used = 0;
1506 	}
1507 	tp->snd_cwnd_stamp = tcp_time_stamp;
1508 }
1509 
1510 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1511 {
1512 	struct tcp_sock *tp = tcp_sk(sk);
1513 
1514 	/* Track the maximum number of outstanding packets in each
1515 	 * window, and remember whether we were cwnd-limited then.
1516 	 */
1517 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1518 	    tp->packets_out > tp->max_packets_out) {
1519 		tp->max_packets_out = tp->packets_out;
1520 		tp->max_packets_seq = tp->snd_nxt;
1521 		tp->is_cwnd_limited = is_cwnd_limited;
1522 	}
1523 
1524 	if (tcp_is_cwnd_limited(sk)) {
1525 		/* Network is feed fully. */
1526 		tp->snd_cwnd_used = 0;
1527 		tp->snd_cwnd_stamp = tcp_time_stamp;
1528 	} else {
1529 		/* Network starves. */
1530 		if (tp->packets_out > tp->snd_cwnd_used)
1531 			tp->snd_cwnd_used = tp->packets_out;
1532 
1533 		if (sysctl_tcp_slow_start_after_idle &&
1534 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1535 			tcp_cwnd_application_limited(sk);
1536 
1537 		/* The following conditions together indicate the starvation
1538 		 * is caused by insufficient sender buffer:
1539 		 * 1) just sent some data (see tcp_write_xmit)
1540 		 * 2) not cwnd limited (this else condition)
1541 		 * 3) no more data to send (null tcp_send_head )
1542 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1543 		 */
1544 		if (!tcp_send_head(sk) && sk->sk_socket &&
1545 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1546 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1547 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1548 	}
1549 }
1550 
1551 /* Minshall's variant of the Nagle send check. */
1552 static bool tcp_minshall_check(const struct tcp_sock *tp)
1553 {
1554 	return after(tp->snd_sml, tp->snd_una) &&
1555 		!after(tp->snd_sml, tp->snd_nxt);
1556 }
1557 
1558 /* Update snd_sml if this skb is under mss
1559  * Note that a TSO packet might end with a sub-mss segment
1560  * The test is really :
1561  * if ((skb->len % mss) != 0)
1562  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1563  * But we can avoid doing the divide again given we already have
1564  *  skb_pcount = skb->len / mss_now
1565  */
1566 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1567 				const struct sk_buff *skb)
1568 {
1569 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1570 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1571 }
1572 
1573 /* Return false, if packet can be sent now without violation Nagle's rules:
1574  * 1. It is full sized. (provided by caller in %partial bool)
1575  * 2. Or it contains FIN. (already checked by caller)
1576  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1577  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1578  *    With Minshall's modification: all sent small packets are ACKed.
1579  */
1580 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1581 			    int nonagle)
1582 {
1583 	return partial &&
1584 		((nonagle & TCP_NAGLE_CORK) ||
1585 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1586 }
1587 
1588 /* Return how many segs we'd like on a TSO packet,
1589  * to send one TSO packet per ms
1590  */
1591 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1592 		     int min_tso_segs)
1593 {
1594 	u32 bytes, segs;
1595 
1596 	bytes = min(sk->sk_pacing_rate >> 10,
1597 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1598 
1599 	/* Goal is to send at least one packet per ms,
1600 	 * not one big TSO packet every 100 ms.
1601 	 * This preserves ACK clocking and is consistent
1602 	 * with tcp_tso_should_defer() heuristic.
1603 	 */
1604 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1605 
1606 	return min_t(u32, segs, sk->sk_gso_max_segs);
1607 }
1608 EXPORT_SYMBOL(tcp_tso_autosize);
1609 
1610 /* Return the number of segments we want in the skb we are transmitting.
1611  * See if congestion control module wants to decide; otherwise, autosize.
1612  */
1613 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1614 {
1615 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1616 	u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1617 
1618 	return tso_segs ? :
1619 		tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1620 }
1621 
1622 /* Returns the portion of skb which can be sent right away */
1623 static unsigned int tcp_mss_split_point(const struct sock *sk,
1624 					const struct sk_buff *skb,
1625 					unsigned int mss_now,
1626 					unsigned int max_segs,
1627 					int nonagle)
1628 {
1629 	const struct tcp_sock *tp = tcp_sk(sk);
1630 	u32 partial, needed, window, max_len;
1631 
1632 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1633 	max_len = mss_now * max_segs;
1634 
1635 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1636 		return max_len;
1637 
1638 	needed = min(skb->len, window);
1639 
1640 	if (max_len <= needed)
1641 		return max_len;
1642 
1643 	partial = needed % mss_now;
1644 	/* If last segment is not a full MSS, check if Nagle rules allow us
1645 	 * to include this last segment in this skb.
1646 	 * Otherwise, we'll split the skb at last MSS boundary
1647 	 */
1648 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1649 		return needed - partial;
1650 
1651 	return needed;
1652 }
1653 
1654 /* Can at least one segment of SKB be sent right now, according to the
1655  * congestion window rules?  If so, return how many segments are allowed.
1656  */
1657 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1658 					 const struct sk_buff *skb)
1659 {
1660 	u32 in_flight, cwnd, halfcwnd;
1661 
1662 	/* Don't be strict about the congestion window for the final FIN.  */
1663 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1664 	    tcp_skb_pcount(skb) == 1)
1665 		return 1;
1666 
1667 	in_flight = tcp_packets_in_flight(tp);
1668 	cwnd = tp->snd_cwnd;
1669 	if (in_flight >= cwnd)
1670 		return 0;
1671 
1672 	/* For better scheduling, ensure we have at least
1673 	 * 2 GSO packets in flight.
1674 	 */
1675 	halfcwnd = max(cwnd >> 1, 1U);
1676 	return min(halfcwnd, cwnd - in_flight);
1677 }
1678 
1679 /* Initialize TSO state of a skb.
1680  * This must be invoked the first time we consider transmitting
1681  * SKB onto the wire.
1682  */
1683 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1684 {
1685 	int tso_segs = tcp_skb_pcount(skb);
1686 
1687 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1688 		tcp_set_skb_tso_segs(skb, mss_now);
1689 		tso_segs = tcp_skb_pcount(skb);
1690 	}
1691 	return tso_segs;
1692 }
1693 
1694 
1695 /* Return true if the Nagle test allows this packet to be
1696  * sent now.
1697  */
1698 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1699 				  unsigned int cur_mss, int nonagle)
1700 {
1701 	/* Nagle rule does not apply to frames, which sit in the middle of the
1702 	 * write_queue (they have no chances to get new data).
1703 	 *
1704 	 * This is implemented in the callers, where they modify the 'nonagle'
1705 	 * argument based upon the location of SKB in the send queue.
1706 	 */
1707 	if (nonagle & TCP_NAGLE_PUSH)
1708 		return true;
1709 
1710 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1711 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1712 		return true;
1713 
1714 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1715 		return true;
1716 
1717 	return false;
1718 }
1719 
1720 /* Does at least the first segment of SKB fit into the send window? */
1721 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1722 			     const struct sk_buff *skb,
1723 			     unsigned int cur_mss)
1724 {
1725 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1726 
1727 	if (skb->len > cur_mss)
1728 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1729 
1730 	return !after(end_seq, tcp_wnd_end(tp));
1731 }
1732 
1733 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1734  * should be put on the wire right now.  If so, it returns the number of
1735  * packets allowed by the congestion window.
1736  */
1737 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1738 				 unsigned int cur_mss, int nonagle)
1739 {
1740 	const struct tcp_sock *tp = tcp_sk(sk);
1741 	unsigned int cwnd_quota;
1742 
1743 	tcp_init_tso_segs(skb, cur_mss);
1744 
1745 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1746 		return 0;
1747 
1748 	cwnd_quota = tcp_cwnd_test(tp, skb);
1749 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1750 		cwnd_quota = 0;
1751 
1752 	return cwnd_quota;
1753 }
1754 
1755 /* Test if sending is allowed right now. */
1756 bool tcp_may_send_now(struct sock *sk)
1757 {
1758 	const struct tcp_sock *tp = tcp_sk(sk);
1759 	struct sk_buff *skb = tcp_send_head(sk);
1760 
1761 	return skb &&
1762 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1763 			     (tcp_skb_is_last(sk, skb) ?
1764 			      tp->nonagle : TCP_NAGLE_PUSH));
1765 }
1766 
1767 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1768  * which is put after SKB on the list.  It is very much like
1769  * tcp_fragment() except that it may make several kinds of assumptions
1770  * in order to speed up the splitting operation.  In particular, we
1771  * know that all the data is in scatter-gather pages, and that the
1772  * packet has never been sent out before (and thus is not cloned).
1773  */
1774 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1775 			unsigned int mss_now, gfp_t gfp)
1776 {
1777 	struct sk_buff *buff;
1778 	int nlen = skb->len - len;
1779 	u8 flags;
1780 
1781 	/* All of a TSO frame must be composed of paged data.  */
1782 	if (skb->len != skb->data_len)
1783 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1784 
1785 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1786 	if (unlikely(!buff))
1787 		return -ENOMEM;
1788 
1789 	sk->sk_wmem_queued += buff->truesize;
1790 	sk_mem_charge(sk, buff->truesize);
1791 	buff->truesize += nlen;
1792 	skb->truesize -= nlen;
1793 
1794 	/* Correct the sequence numbers. */
1795 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1796 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1797 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1798 
1799 	/* PSH and FIN should only be set in the second packet. */
1800 	flags = TCP_SKB_CB(skb)->tcp_flags;
1801 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1802 	TCP_SKB_CB(buff)->tcp_flags = flags;
1803 
1804 	/* This packet was never sent out yet, so no SACK bits. */
1805 	TCP_SKB_CB(buff)->sacked = 0;
1806 
1807 	tcp_skb_fragment_eor(skb, buff);
1808 
1809 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1810 	skb_split(skb, buff, len);
1811 	tcp_fragment_tstamp(skb, buff);
1812 
1813 	/* Fix up tso_factor for both original and new SKB.  */
1814 	tcp_set_skb_tso_segs(skb, mss_now);
1815 	tcp_set_skb_tso_segs(buff, mss_now);
1816 
1817 	/* Link BUFF into the send queue. */
1818 	__skb_header_release(buff);
1819 	tcp_insert_write_queue_after(skb, buff, sk);
1820 
1821 	return 0;
1822 }
1823 
1824 /* Try to defer sending, if possible, in order to minimize the amount
1825  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1826  *
1827  * This algorithm is from John Heffner.
1828  */
1829 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1830 				 bool *is_cwnd_limited, u32 max_segs)
1831 {
1832 	const struct inet_connection_sock *icsk = inet_csk(sk);
1833 	u32 age, send_win, cong_win, limit, in_flight;
1834 	struct tcp_sock *tp = tcp_sk(sk);
1835 	struct skb_mstamp now;
1836 	struct sk_buff *head;
1837 	int win_divisor;
1838 
1839 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1840 		goto send_now;
1841 
1842 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1843 		goto send_now;
1844 
1845 	/* Avoid bursty behavior by allowing defer
1846 	 * only if the last write was recent.
1847 	 */
1848 	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1849 		goto send_now;
1850 
1851 	in_flight = tcp_packets_in_flight(tp);
1852 
1853 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1854 
1855 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1856 
1857 	/* From in_flight test above, we know that cwnd > in_flight.  */
1858 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1859 
1860 	limit = min(send_win, cong_win);
1861 
1862 	/* If a full-sized TSO skb can be sent, do it. */
1863 	if (limit >= max_segs * tp->mss_cache)
1864 		goto send_now;
1865 
1866 	/* Middle in queue won't get any more data, full sendable already? */
1867 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1868 		goto send_now;
1869 
1870 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1871 	if (win_divisor) {
1872 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1873 
1874 		/* If at least some fraction of a window is available,
1875 		 * just use it.
1876 		 */
1877 		chunk /= win_divisor;
1878 		if (limit >= chunk)
1879 			goto send_now;
1880 	} else {
1881 		/* Different approach, try not to defer past a single
1882 		 * ACK.  Receiver should ACK every other full sized
1883 		 * frame, so if we have space for more than 3 frames
1884 		 * then send now.
1885 		 */
1886 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1887 			goto send_now;
1888 	}
1889 
1890 	head = tcp_write_queue_head(sk);
1891 	skb_mstamp_get(&now);
1892 	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1893 	/* If next ACK is likely to come too late (half srtt), do not defer */
1894 	if (age < (tp->srtt_us >> 4))
1895 		goto send_now;
1896 
1897 	/* Ok, it looks like it is advisable to defer. */
1898 
1899 	if (cong_win < send_win && cong_win <= skb->len)
1900 		*is_cwnd_limited = true;
1901 
1902 	return true;
1903 
1904 send_now:
1905 	return false;
1906 }
1907 
1908 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1909 {
1910 	struct inet_connection_sock *icsk = inet_csk(sk);
1911 	struct tcp_sock *tp = tcp_sk(sk);
1912 	struct net *net = sock_net(sk);
1913 	u32 interval;
1914 	s32 delta;
1915 
1916 	interval = net->ipv4.sysctl_tcp_probe_interval;
1917 	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1918 	if (unlikely(delta >= interval * HZ)) {
1919 		int mss = tcp_current_mss(sk);
1920 
1921 		/* Update current search range */
1922 		icsk->icsk_mtup.probe_size = 0;
1923 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1924 			sizeof(struct tcphdr) +
1925 			icsk->icsk_af_ops->net_header_len;
1926 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1927 
1928 		/* Update probe time stamp */
1929 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1930 	}
1931 }
1932 
1933 /* Create a new MTU probe if we are ready.
1934  * MTU probe is regularly attempting to increase the path MTU by
1935  * deliberately sending larger packets.  This discovers routing
1936  * changes resulting in larger path MTUs.
1937  *
1938  * Returns 0 if we should wait to probe (no cwnd available),
1939  *         1 if a probe was sent,
1940  *         -1 otherwise
1941  */
1942 static int tcp_mtu_probe(struct sock *sk)
1943 {
1944 	struct inet_connection_sock *icsk = inet_csk(sk);
1945 	struct tcp_sock *tp = tcp_sk(sk);
1946 	struct sk_buff *skb, *nskb, *next;
1947 	struct net *net = sock_net(sk);
1948 	int probe_size;
1949 	int size_needed;
1950 	int copy, len;
1951 	int mss_now;
1952 	int interval;
1953 
1954 	/* Not currently probing/verifying,
1955 	 * not in recovery,
1956 	 * have enough cwnd, and
1957 	 * not SACKing (the variable headers throw things off)
1958 	 */
1959 	if (likely(!icsk->icsk_mtup.enabled ||
1960 		   icsk->icsk_mtup.probe_size ||
1961 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1962 		   tp->snd_cwnd < 11 ||
1963 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
1964 		return -1;
1965 
1966 	/* Use binary search for probe_size between tcp_mss_base,
1967 	 * and current mss_clamp. if (search_high - search_low)
1968 	 * smaller than a threshold, backoff from probing.
1969 	 */
1970 	mss_now = tcp_current_mss(sk);
1971 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1972 				    icsk->icsk_mtup.search_low) >> 1);
1973 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1974 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1975 	/* When misfortune happens, we are reprobing actively,
1976 	 * and then reprobe timer has expired. We stick with current
1977 	 * probing process by not resetting search range to its orignal.
1978 	 */
1979 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1980 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1981 		/* Check whether enough time has elaplased for
1982 		 * another round of probing.
1983 		 */
1984 		tcp_mtu_check_reprobe(sk);
1985 		return -1;
1986 	}
1987 
1988 	/* Have enough data in the send queue to probe? */
1989 	if (tp->write_seq - tp->snd_nxt < size_needed)
1990 		return -1;
1991 
1992 	if (tp->snd_wnd < size_needed)
1993 		return -1;
1994 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1995 		return 0;
1996 
1997 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1998 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1999 		if (!tcp_packets_in_flight(tp))
2000 			return -1;
2001 		else
2002 			return 0;
2003 	}
2004 
2005 	/* We're allowed to probe.  Build it now. */
2006 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2007 	if (!nskb)
2008 		return -1;
2009 	sk->sk_wmem_queued += nskb->truesize;
2010 	sk_mem_charge(sk, nskb->truesize);
2011 
2012 	skb = tcp_send_head(sk);
2013 
2014 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2015 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2016 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2017 	TCP_SKB_CB(nskb)->sacked = 0;
2018 	nskb->csum = 0;
2019 	nskb->ip_summed = skb->ip_summed;
2020 
2021 	tcp_insert_write_queue_before(nskb, skb, sk);
2022 
2023 	len = 0;
2024 	tcp_for_write_queue_from_safe(skb, next, sk) {
2025 		copy = min_t(int, skb->len, probe_size - len);
2026 		if (nskb->ip_summed) {
2027 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2028 		} else {
2029 			__wsum csum = skb_copy_and_csum_bits(skb, 0,
2030 							     skb_put(nskb, copy),
2031 							     copy, 0);
2032 			nskb->csum = csum_block_add(nskb->csum, csum, len);
2033 		}
2034 
2035 		if (skb->len <= copy) {
2036 			/* We've eaten all the data from this skb.
2037 			 * Throw it away. */
2038 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2039 			tcp_unlink_write_queue(skb, sk);
2040 			sk_wmem_free_skb(sk, skb);
2041 		} else {
2042 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2043 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2044 			if (!skb_shinfo(skb)->nr_frags) {
2045 				skb_pull(skb, copy);
2046 				if (skb->ip_summed != CHECKSUM_PARTIAL)
2047 					skb->csum = csum_partial(skb->data,
2048 								 skb->len, 0);
2049 			} else {
2050 				__pskb_trim_head(skb, copy);
2051 				tcp_set_skb_tso_segs(skb, mss_now);
2052 			}
2053 			TCP_SKB_CB(skb)->seq += copy;
2054 		}
2055 
2056 		len += copy;
2057 
2058 		if (len >= probe_size)
2059 			break;
2060 	}
2061 	tcp_init_tso_segs(nskb, nskb->len);
2062 
2063 	/* We're ready to send.  If this fails, the probe will
2064 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2065 	 */
2066 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2067 		/* Decrement cwnd here because we are sending
2068 		 * effectively two packets. */
2069 		tp->snd_cwnd--;
2070 		tcp_event_new_data_sent(sk, nskb);
2071 
2072 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2073 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2074 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2075 
2076 		return 1;
2077 	}
2078 
2079 	return -1;
2080 }
2081 
2082 /* TCP Small Queues :
2083  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2084  * (These limits are doubled for retransmits)
2085  * This allows for :
2086  *  - better RTT estimation and ACK scheduling
2087  *  - faster recovery
2088  *  - high rates
2089  * Alas, some drivers / subsystems require a fair amount
2090  * of queued bytes to ensure line rate.
2091  * One example is wifi aggregation (802.11 AMPDU)
2092  */
2093 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2094 				  unsigned int factor)
2095 {
2096 	unsigned int limit;
2097 
2098 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2099 	limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2100 	limit <<= factor;
2101 
2102 	if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2103 		/* Always send the 1st or 2nd skb in write queue.
2104 		 * No need to wait for TX completion to call us back,
2105 		 * after softirq/tasklet schedule.
2106 		 * This helps when TX completions are delayed too much.
2107 		 */
2108 		if (skb == sk->sk_write_queue.next ||
2109 		    skb->prev == sk->sk_write_queue.next)
2110 			return false;
2111 
2112 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2113 		/* It is possible TX completion already happened
2114 		 * before we set TSQ_THROTTLED, so we must
2115 		 * test again the condition.
2116 		 */
2117 		smp_mb__after_atomic();
2118 		if (atomic_read(&sk->sk_wmem_alloc) > limit)
2119 			return true;
2120 	}
2121 	return false;
2122 }
2123 
2124 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2125 {
2126 	const u32 now = tcp_time_stamp;
2127 
2128 	if (tp->chrono_type > TCP_CHRONO_UNSPEC)
2129 		tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
2130 	tp->chrono_start = now;
2131 	tp->chrono_type = new;
2132 }
2133 
2134 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2135 {
2136 	struct tcp_sock *tp = tcp_sk(sk);
2137 
2138 	/* If there are multiple conditions worthy of tracking in a
2139 	 * chronograph then the highest priority enum takes precedence
2140 	 * over the other conditions. So that if something "more interesting"
2141 	 * starts happening, stop the previous chrono and start a new one.
2142 	 */
2143 	if (type > tp->chrono_type)
2144 		tcp_chrono_set(tp, type);
2145 }
2146 
2147 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2148 {
2149 	struct tcp_sock *tp = tcp_sk(sk);
2150 
2151 
2152 	/* There are multiple conditions worthy of tracking in a
2153 	 * chronograph, so that the highest priority enum takes
2154 	 * precedence over the other conditions (see tcp_chrono_start).
2155 	 * If a condition stops, we only stop chrono tracking if
2156 	 * it's the "most interesting" or current chrono we are
2157 	 * tracking and starts busy chrono if we have pending data.
2158 	 */
2159 	if (tcp_write_queue_empty(sk))
2160 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2161 	else if (type == tp->chrono_type)
2162 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2163 }
2164 
2165 /* This routine writes packets to the network.  It advances the
2166  * send_head.  This happens as incoming acks open up the remote
2167  * window for us.
2168  *
2169  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2170  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2171  * account rare use of URG, this is not a big flaw.
2172  *
2173  * Send at most one packet when push_one > 0. Temporarily ignore
2174  * cwnd limit to force at most one packet out when push_one == 2.
2175 
2176  * Returns true, if no segments are in flight and we have queued segments,
2177  * but cannot send anything now because of SWS or another problem.
2178  */
2179 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2180 			   int push_one, gfp_t gfp)
2181 {
2182 	struct tcp_sock *tp = tcp_sk(sk);
2183 	struct sk_buff *skb;
2184 	unsigned int tso_segs, sent_pkts;
2185 	int cwnd_quota;
2186 	int result;
2187 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2188 	u32 max_segs;
2189 
2190 	sent_pkts = 0;
2191 
2192 	if (!push_one) {
2193 		/* Do MTU probing. */
2194 		result = tcp_mtu_probe(sk);
2195 		if (!result) {
2196 			return false;
2197 		} else if (result > 0) {
2198 			sent_pkts = 1;
2199 		}
2200 	}
2201 
2202 	max_segs = tcp_tso_segs(sk, mss_now);
2203 	while ((skb = tcp_send_head(sk))) {
2204 		unsigned int limit;
2205 
2206 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2207 		BUG_ON(!tso_segs);
2208 
2209 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2210 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2211 			skb_mstamp_get(&skb->skb_mstamp);
2212 			goto repair; /* Skip network transmission */
2213 		}
2214 
2215 		cwnd_quota = tcp_cwnd_test(tp, skb);
2216 		if (!cwnd_quota) {
2217 			if (push_one == 2)
2218 				/* Force out a loss probe pkt. */
2219 				cwnd_quota = 1;
2220 			else
2221 				break;
2222 		}
2223 
2224 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2225 			is_rwnd_limited = true;
2226 			break;
2227 		}
2228 
2229 		if (tso_segs == 1) {
2230 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2231 						     (tcp_skb_is_last(sk, skb) ?
2232 						      nonagle : TCP_NAGLE_PUSH))))
2233 				break;
2234 		} else {
2235 			if (!push_one &&
2236 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2237 						 max_segs))
2238 				break;
2239 		}
2240 
2241 		limit = mss_now;
2242 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2243 			limit = tcp_mss_split_point(sk, skb, mss_now,
2244 						    min_t(unsigned int,
2245 							  cwnd_quota,
2246 							  max_segs),
2247 						    nonagle);
2248 
2249 		if (skb->len > limit &&
2250 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2251 			break;
2252 
2253 		if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2254 			clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2255 		if (tcp_small_queue_check(sk, skb, 0))
2256 			break;
2257 
2258 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2259 			break;
2260 
2261 repair:
2262 		/* Advance the send_head.  This one is sent out.
2263 		 * This call will increment packets_out.
2264 		 */
2265 		tcp_event_new_data_sent(sk, skb);
2266 
2267 		tcp_minshall_update(tp, mss_now, skb);
2268 		sent_pkts += tcp_skb_pcount(skb);
2269 
2270 		if (push_one)
2271 			break;
2272 	}
2273 
2274 	if (is_rwnd_limited)
2275 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2276 	else
2277 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2278 
2279 	if (likely(sent_pkts)) {
2280 		if (tcp_in_cwnd_reduction(sk))
2281 			tp->prr_out += sent_pkts;
2282 
2283 		/* Send one loss probe per tail loss episode. */
2284 		if (push_one != 2)
2285 			tcp_schedule_loss_probe(sk);
2286 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2287 		tcp_cwnd_validate(sk, is_cwnd_limited);
2288 		return false;
2289 	}
2290 	return !tp->packets_out && tcp_send_head(sk);
2291 }
2292 
2293 bool tcp_schedule_loss_probe(struct sock *sk)
2294 {
2295 	struct inet_connection_sock *icsk = inet_csk(sk);
2296 	struct tcp_sock *tp = tcp_sk(sk);
2297 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2298 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2299 
2300 	/* No consecutive loss probes. */
2301 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2302 		tcp_rearm_rto(sk);
2303 		return false;
2304 	}
2305 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2306 	 * finishes.
2307 	 */
2308 	if (tp->fastopen_rsk)
2309 		return false;
2310 
2311 	/* TLP is only scheduled when next timer event is RTO. */
2312 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2313 		return false;
2314 
2315 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2316 	 * in Open state, that are either limited by cwnd or application.
2317 	 */
2318 	if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2319 	    !tp->packets_out || !tcp_is_sack(tp) ||
2320 	    icsk->icsk_ca_state != TCP_CA_Open)
2321 		return false;
2322 
2323 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2324 	     tcp_send_head(sk))
2325 		return false;
2326 
2327 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2328 	 * for delayed ack when there's one outstanding packet. If no RTT
2329 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2330 	 */
2331 	timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2332 	if (tp->packets_out == 1)
2333 		timeout = max_t(u32, timeout,
2334 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2335 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2336 
2337 	/* If RTO is shorter, just schedule TLP in its place. */
2338 	tlp_time_stamp = tcp_time_stamp + timeout;
2339 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2340 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2341 		s32 delta = rto_time_stamp - tcp_time_stamp;
2342 		if (delta > 0)
2343 			timeout = delta;
2344 	}
2345 
2346 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2347 				  TCP_RTO_MAX);
2348 	return true;
2349 }
2350 
2351 /* Thanks to skb fast clones, we can detect if a prior transmit of
2352  * a packet is still in a qdisc or driver queue.
2353  * In this case, there is very little point doing a retransmit !
2354  */
2355 static bool skb_still_in_host_queue(const struct sock *sk,
2356 				    const struct sk_buff *skb)
2357 {
2358 	if (unlikely(skb_fclone_busy(sk, skb))) {
2359 		NET_INC_STATS(sock_net(sk),
2360 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2361 		return true;
2362 	}
2363 	return false;
2364 }
2365 
2366 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2367  * retransmit the last segment.
2368  */
2369 void tcp_send_loss_probe(struct sock *sk)
2370 {
2371 	struct tcp_sock *tp = tcp_sk(sk);
2372 	struct sk_buff *skb;
2373 	int pcount;
2374 	int mss = tcp_current_mss(sk);
2375 
2376 	skb = tcp_send_head(sk);
2377 	if (skb) {
2378 		if (tcp_snd_wnd_test(tp, skb, mss)) {
2379 			pcount = tp->packets_out;
2380 			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2381 			if (tp->packets_out > pcount)
2382 				goto probe_sent;
2383 			goto rearm_timer;
2384 		}
2385 		skb = tcp_write_queue_prev(sk, skb);
2386 	} else {
2387 		skb = tcp_write_queue_tail(sk);
2388 	}
2389 
2390 	/* At most one outstanding TLP retransmission. */
2391 	if (tp->tlp_high_seq)
2392 		goto rearm_timer;
2393 
2394 	/* Retransmit last segment. */
2395 	if (WARN_ON(!skb))
2396 		goto rearm_timer;
2397 
2398 	if (skb_still_in_host_queue(sk, skb))
2399 		goto rearm_timer;
2400 
2401 	pcount = tcp_skb_pcount(skb);
2402 	if (WARN_ON(!pcount))
2403 		goto rearm_timer;
2404 
2405 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2406 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2407 					  GFP_ATOMIC)))
2408 			goto rearm_timer;
2409 		skb = tcp_write_queue_next(sk, skb);
2410 	}
2411 
2412 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2413 		goto rearm_timer;
2414 
2415 	if (__tcp_retransmit_skb(sk, skb, 1))
2416 		goto rearm_timer;
2417 
2418 	/* Record snd_nxt for loss detection. */
2419 	tp->tlp_high_seq = tp->snd_nxt;
2420 
2421 probe_sent:
2422 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2423 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2424 	inet_csk(sk)->icsk_pending = 0;
2425 rearm_timer:
2426 	tcp_rearm_rto(sk);
2427 }
2428 
2429 /* Push out any pending frames which were held back due to
2430  * TCP_CORK or attempt at coalescing tiny packets.
2431  * The socket must be locked by the caller.
2432  */
2433 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2434 			       int nonagle)
2435 {
2436 	/* If we are closed, the bytes will have to remain here.
2437 	 * In time closedown will finish, we empty the write queue and
2438 	 * all will be happy.
2439 	 */
2440 	if (unlikely(sk->sk_state == TCP_CLOSE))
2441 		return;
2442 
2443 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2444 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2445 		tcp_check_probe_timer(sk);
2446 }
2447 
2448 /* Send _single_ skb sitting at the send head. This function requires
2449  * true push pending frames to setup probe timer etc.
2450  */
2451 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2452 {
2453 	struct sk_buff *skb = tcp_send_head(sk);
2454 
2455 	BUG_ON(!skb || skb->len < mss_now);
2456 
2457 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2458 }
2459 
2460 /* This function returns the amount that we can raise the
2461  * usable window based on the following constraints
2462  *
2463  * 1. The window can never be shrunk once it is offered (RFC 793)
2464  * 2. We limit memory per socket
2465  *
2466  * RFC 1122:
2467  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2468  *  RECV.NEXT + RCV.WIN fixed until:
2469  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2470  *
2471  * i.e. don't raise the right edge of the window until you can raise
2472  * it at least MSS bytes.
2473  *
2474  * Unfortunately, the recommended algorithm breaks header prediction,
2475  * since header prediction assumes th->window stays fixed.
2476  *
2477  * Strictly speaking, keeping th->window fixed violates the receiver
2478  * side SWS prevention criteria. The problem is that under this rule
2479  * a stream of single byte packets will cause the right side of the
2480  * window to always advance by a single byte.
2481  *
2482  * Of course, if the sender implements sender side SWS prevention
2483  * then this will not be a problem.
2484  *
2485  * BSD seems to make the following compromise:
2486  *
2487  *	If the free space is less than the 1/4 of the maximum
2488  *	space available and the free space is less than 1/2 mss,
2489  *	then set the window to 0.
2490  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2491  *	Otherwise, just prevent the window from shrinking
2492  *	and from being larger than the largest representable value.
2493  *
2494  * This prevents incremental opening of the window in the regime
2495  * where TCP is limited by the speed of the reader side taking
2496  * data out of the TCP receive queue. It does nothing about
2497  * those cases where the window is constrained on the sender side
2498  * because the pipeline is full.
2499  *
2500  * BSD also seems to "accidentally" limit itself to windows that are a
2501  * multiple of MSS, at least until the free space gets quite small.
2502  * This would appear to be a side effect of the mbuf implementation.
2503  * Combining these two algorithms results in the observed behavior
2504  * of having a fixed window size at almost all times.
2505  *
2506  * Below we obtain similar behavior by forcing the offered window to
2507  * a multiple of the mss when it is feasible to do so.
2508  *
2509  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2510  * Regular options like TIMESTAMP are taken into account.
2511  */
2512 u32 __tcp_select_window(struct sock *sk)
2513 {
2514 	struct inet_connection_sock *icsk = inet_csk(sk);
2515 	struct tcp_sock *tp = tcp_sk(sk);
2516 	/* MSS for the peer's data.  Previous versions used mss_clamp
2517 	 * here.  I don't know if the value based on our guesses
2518 	 * of peer's MSS is better for the performance.  It's more correct
2519 	 * but may be worse for the performance because of rcv_mss
2520 	 * fluctuations.  --SAW  1998/11/1
2521 	 */
2522 	int mss = icsk->icsk_ack.rcv_mss;
2523 	int free_space = tcp_space(sk);
2524 	int allowed_space = tcp_full_space(sk);
2525 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2526 	int window;
2527 
2528 	if (unlikely(mss > full_space)) {
2529 		mss = full_space;
2530 		if (mss <= 0)
2531 			return 0;
2532 	}
2533 	if (free_space < (full_space >> 1)) {
2534 		icsk->icsk_ack.quick = 0;
2535 
2536 		if (tcp_under_memory_pressure(sk))
2537 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2538 					       4U * tp->advmss);
2539 
2540 		/* free_space might become our new window, make sure we don't
2541 		 * increase it due to wscale.
2542 		 */
2543 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2544 
2545 		/* if free space is less than mss estimate, or is below 1/16th
2546 		 * of the maximum allowed, try to move to zero-window, else
2547 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2548 		 * new incoming data is dropped due to memory limits.
2549 		 * With large window, mss test triggers way too late in order
2550 		 * to announce zero window in time before rmem limit kicks in.
2551 		 */
2552 		if (free_space < (allowed_space >> 4) || free_space < mss)
2553 			return 0;
2554 	}
2555 
2556 	if (free_space > tp->rcv_ssthresh)
2557 		free_space = tp->rcv_ssthresh;
2558 
2559 	/* Don't do rounding if we are using window scaling, since the
2560 	 * scaled window will not line up with the MSS boundary anyway.
2561 	 */
2562 	if (tp->rx_opt.rcv_wscale) {
2563 		window = free_space;
2564 
2565 		/* Advertise enough space so that it won't get scaled away.
2566 		 * Import case: prevent zero window announcement if
2567 		 * 1<<rcv_wscale > mss.
2568 		 */
2569 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2570 	} else {
2571 		window = tp->rcv_wnd;
2572 		/* Get the largest window that is a nice multiple of mss.
2573 		 * Window clamp already applied above.
2574 		 * If our current window offering is within 1 mss of the
2575 		 * free space we just keep it. This prevents the divide
2576 		 * and multiply from happening most of the time.
2577 		 * We also don't do any window rounding when the free space
2578 		 * is too small.
2579 		 */
2580 		if (window <= free_space - mss || window > free_space)
2581 			window = rounddown(free_space, mss);
2582 		else if (mss == full_space &&
2583 			 free_space > window + (full_space >> 1))
2584 			window = free_space;
2585 	}
2586 
2587 	return window;
2588 }
2589 
2590 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2591 			     const struct sk_buff *next_skb)
2592 {
2593 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2594 		const struct skb_shared_info *next_shinfo =
2595 			skb_shinfo(next_skb);
2596 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2597 
2598 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2599 		shinfo->tskey = next_shinfo->tskey;
2600 		TCP_SKB_CB(skb)->txstamp_ack |=
2601 			TCP_SKB_CB(next_skb)->txstamp_ack;
2602 	}
2603 }
2604 
2605 /* Collapses two adjacent SKB's during retransmission. */
2606 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2607 {
2608 	struct tcp_sock *tp = tcp_sk(sk);
2609 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2610 	int skb_size, next_skb_size;
2611 
2612 	skb_size = skb->len;
2613 	next_skb_size = next_skb->len;
2614 
2615 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2616 
2617 	if (next_skb_size) {
2618 		if (next_skb_size <= skb_availroom(skb))
2619 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2620 				      next_skb_size);
2621 		else if (!skb_shift(skb, next_skb, next_skb_size))
2622 			return false;
2623 	}
2624 	tcp_highest_sack_combine(sk, next_skb, skb);
2625 
2626 	tcp_unlink_write_queue(next_skb, sk);
2627 
2628 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2629 		skb->ip_summed = CHECKSUM_PARTIAL;
2630 
2631 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2632 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2633 
2634 	/* Update sequence range on original skb. */
2635 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2636 
2637 	/* Merge over control information. This moves PSH/FIN etc. over */
2638 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2639 
2640 	/* All done, get rid of second SKB and account for it so
2641 	 * packet counting does not break.
2642 	 */
2643 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2644 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2645 
2646 	/* changed transmit queue under us so clear hints */
2647 	tcp_clear_retrans_hints_partial(tp);
2648 	if (next_skb == tp->retransmit_skb_hint)
2649 		tp->retransmit_skb_hint = skb;
2650 
2651 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2652 
2653 	tcp_skb_collapse_tstamp(skb, next_skb);
2654 
2655 	sk_wmem_free_skb(sk, next_skb);
2656 	return true;
2657 }
2658 
2659 /* Check if coalescing SKBs is legal. */
2660 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2661 {
2662 	if (tcp_skb_pcount(skb) > 1)
2663 		return false;
2664 	if (skb_cloned(skb))
2665 		return false;
2666 	if (skb == tcp_send_head(sk))
2667 		return false;
2668 	/* Some heuristics for collapsing over SACK'd could be invented */
2669 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2670 		return false;
2671 
2672 	return true;
2673 }
2674 
2675 /* Collapse packets in the retransmit queue to make to create
2676  * less packets on the wire. This is only done on retransmission.
2677  */
2678 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2679 				     int space)
2680 {
2681 	struct tcp_sock *tp = tcp_sk(sk);
2682 	struct sk_buff *skb = to, *tmp;
2683 	bool first = true;
2684 
2685 	if (!sysctl_tcp_retrans_collapse)
2686 		return;
2687 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2688 		return;
2689 
2690 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2691 		if (!tcp_can_collapse(sk, skb))
2692 			break;
2693 
2694 		if (!tcp_skb_can_collapse_to(to))
2695 			break;
2696 
2697 		space -= skb->len;
2698 
2699 		if (first) {
2700 			first = false;
2701 			continue;
2702 		}
2703 
2704 		if (space < 0)
2705 			break;
2706 
2707 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2708 			break;
2709 
2710 		if (!tcp_collapse_retrans(sk, to))
2711 			break;
2712 	}
2713 }
2714 
2715 /* This retransmits one SKB.  Policy decisions and retransmit queue
2716  * state updates are done by the caller.  Returns non-zero if an
2717  * error occurred which prevented the send.
2718  */
2719 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2720 {
2721 	struct inet_connection_sock *icsk = inet_csk(sk);
2722 	struct tcp_sock *tp = tcp_sk(sk);
2723 	unsigned int cur_mss;
2724 	int diff, len, err;
2725 
2726 
2727 	/* Inconclusive MTU probe */
2728 	if (icsk->icsk_mtup.probe_size)
2729 		icsk->icsk_mtup.probe_size = 0;
2730 
2731 	/* Do not sent more than we queued. 1/4 is reserved for possible
2732 	 * copying overhead: fragmentation, tunneling, mangling etc.
2733 	 */
2734 	if (atomic_read(&sk->sk_wmem_alloc) >
2735 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2736 		  sk->sk_sndbuf))
2737 		return -EAGAIN;
2738 
2739 	if (skb_still_in_host_queue(sk, skb))
2740 		return -EBUSY;
2741 
2742 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2743 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2744 			BUG();
2745 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2746 			return -ENOMEM;
2747 	}
2748 
2749 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2750 		return -EHOSTUNREACH; /* Routing failure or similar. */
2751 
2752 	cur_mss = tcp_current_mss(sk);
2753 
2754 	/* If receiver has shrunk his window, and skb is out of
2755 	 * new window, do not retransmit it. The exception is the
2756 	 * case, when window is shrunk to zero. In this case
2757 	 * our retransmit serves as a zero window probe.
2758 	 */
2759 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2760 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2761 		return -EAGAIN;
2762 
2763 	len = cur_mss * segs;
2764 	if (skb->len > len) {
2765 		if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2766 			return -ENOMEM; /* We'll try again later. */
2767 	} else {
2768 		if (skb_unclone(skb, GFP_ATOMIC))
2769 			return -ENOMEM;
2770 
2771 		diff = tcp_skb_pcount(skb);
2772 		tcp_set_skb_tso_segs(skb, cur_mss);
2773 		diff -= tcp_skb_pcount(skb);
2774 		if (diff)
2775 			tcp_adjust_pcount(sk, skb, diff);
2776 		if (skb->len < cur_mss)
2777 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2778 	}
2779 
2780 	/* RFC3168, section 6.1.1.1. ECN fallback */
2781 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2782 		tcp_ecn_clear_syn(sk, skb);
2783 
2784 	/* Update global and local TCP statistics. */
2785 	segs = tcp_skb_pcount(skb);
2786 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2787 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2788 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2789 	tp->total_retrans += segs;
2790 
2791 	/* make sure skb->data is aligned on arches that require it
2792 	 * and check if ack-trimming & collapsing extended the headroom
2793 	 * beyond what csum_start can cover.
2794 	 */
2795 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2796 		     skb_headroom(skb) >= 0xFFFF)) {
2797 		struct sk_buff *nskb;
2798 
2799 		skb_mstamp_get(&skb->skb_mstamp);
2800 		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2801 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2802 			     -ENOBUFS;
2803 	} else {
2804 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2805 	}
2806 
2807 	if (likely(!err)) {
2808 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2809 	} else if (err != -EBUSY) {
2810 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2811 	}
2812 	return err;
2813 }
2814 
2815 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2816 {
2817 	struct tcp_sock *tp = tcp_sk(sk);
2818 	int err = __tcp_retransmit_skb(sk, skb, segs);
2819 
2820 	if (err == 0) {
2821 #if FASTRETRANS_DEBUG > 0
2822 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2823 			net_dbg_ratelimited("retrans_out leaked\n");
2824 		}
2825 #endif
2826 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2827 		tp->retrans_out += tcp_skb_pcount(skb);
2828 
2829 		/* Save stamp of the first retransmit. */
2830 		if (!tp->retrans_stamp)
2831 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2832 
2833 	}
2834 
2835 	if (tp->undo_retrans < 0)
2836 		tp->undo_retrans = 0;
2837 	tp->undo_retrans += tcp_skb_pcount(skb);
2838 	return err;
2839 }
2840 
2841 /* This gets called after a retransmit timeout, and the initially
2842  * retransmitted data is acknowledged.  It tries to continue
2843  * resending the rest of the retransmit queue, until either
2844  * we've sent it all or the congestion window limit is reached.
2845  * If doing SACK, the first ACK which comes back for a timeout
2846  * based retransmit packet might feed us FACK information again.
2847  * If so, we use it to avoid unnecessarily retransmissions.
2848  */
2849 void tcp_xmit_retransmit_queue(struct sock *sk)
2850 {
2851 	const struct inet_connection_sock *icsk = inet_csk(sk);
2852 	struct tcp_sock *tp = tcp_sk(sk);
2853 	struct sk_buff *skb;
2854 	struct sk_buff *hole = NULL;
2855 	u32 max_segs;
2856 	int mib_idx;
2857 
2858 	if (!tp->packets_out)
2859 		return;
2860 
2861 	if (tp->retransmit_skb_hint) {
2862 		skb = tp->retransmit_skb_hint;
2863 	} else {
2864 		skb = tcp_write_queue_head(sk);
2865 	}
2866 
2867 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2868 	tcp_for_write_queue_from(skb, sk) {
2869 		__u8 sacked;
2870 		int segs;
2871 
2872 		if (skb == tcp_send_head(sk))
2873 			break;
2874 		/* we could do better than to assign each time */
2875 		if (!hole)
2876 			tp->retransmit_skb_hint = skb;
2877 
2878 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2879 		if (segs <= 0)
2880 			return;
2881 		sacked = TCP_SKB_CB(skb)->sacked;
2882 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2883 		 * we need to make sure not sending too bigs TSO packets
2884 		 */
2885 		segs = min_t(int, segs, max_segs);
2886 
2887 		if (tp->retrans_out >= tp->lost_out) {
2888 			break;
2889 		} else if (!(sacked & TCPCB_LOST)) {
2890 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2891 				hole = skb;
2892 			continue;
2893 
2894 		} else {
2895 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2896 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2897 			else
2898 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2899 		}
2900 
2901 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2902 			continue;
2903 
2904 		if (tcp_small_queue_check(sk, skb, 1))
2905 			return;
2906 
2907 		if (tcp_retransmit_skb(sk, skb, segs))
2908 			return;
2909 
2910 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2911 
2912 		if (tcp_in_cwnd_reduction(sk))
2913 			tp->prr_out += tcp_skb_pcount(skb);
2914 
2915 		if (skb == tcp_write_queue_head(sk) &&
2916 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
2917 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2918 						  inet_csk(sk)->icsk_rto,
2919 						  TCP_RTO_MAX);
2920 	}
2921 }
2922 
2923 /* We allow to exceed memory limits for FIN packets to expedite
2924  * connection tear down and (memory) recovery.
2925  * Otherwise tcp_send_fin() could be tempted to either delay FIN
2926  * or even be forced to close flow without any FIN.
2927  * In general, we want to allow one skb per socket to avoid hangs
2928  * with edge trigger epoll()
2929  */
2930 void sk_forced_mem_schedule(struct sock *sk, int size)
2931 {
2932 	int amt;
2933 
2934 	if (size <= sk->sk_forward_alloc)
2935 		return;
2936 	amt = sk_mem_pages(size);
2937 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2938 	sk_memory_allocated_add(sk, amt);
2939 
2940 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2941 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2942 }
2943 
2944 /* Send a FIN. The caller locks the socket for us.
2945  * We should try to send a FIN packet really hard, but eventually give up.
2946  */
2947 void tcp_send_fin(struct sock *sk)
2948 {
2949 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2950 	struct tcp_sock *tp = tcp_sk(sk);
2951 
2952 	/* Optimization, tack on the FIN if we have one skb in write queue and
2953 	 * this skb was not yet sent, or we are under memory pressure.
2954 	 * Note: in the latter case, FIN packet will be sent after a timeout,
2955 	 * as TCP stack thinks it has already been transmitted.
2956 	 */
2957 	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2958 coalesce:
2959 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2960 		TCP_SKB_CB(tskb)->end_seq++;
2961 		tp->write_seq++;
2962 		if (!tcp_send_head(sk)) {
2963 			/* This means tskb was already sent.
2964 			 * Pretend we included the FIN on previous transmit.
2965 			 * We need to set tp->snd_nxt to the value it would have
2966 			 * if FIN had been sent. This is because retransmit path
2967 			 * does not change tp->snd_nxt.
2968 			 */
2969 			tp->snd_nxt++;
2970 			return;
2971 		}
2972 	} else {
2973 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2974 		if (unlikely(!skb)) {
2975 			if (tskb)
2976 				goto coalesce;
2977 			return;
2978 		}
2979 		skb_reserve(skb, MAX_TCP_HEADER);
2980 		sk_forced_mem_schedule(sk, skb->truesize);
2981 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2982 		tcp_init_nondata_skb(skb, tp->write_seq,
2983 				     TCPHDR_ACK | TCPHDR_FIN);
2984 		tcp_queue_skb(sk, skb);
2985 	}
2986 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2987 }
2988 
2989 /* We get here when a process closes a file descriptor (either due to
2990  * an explicit close() or as a byproduct of exit()'ing) and there
2991  * was unread data in the receive queue.  This behavior is recommended
2992  * by RFC 2525, section 2.17.  -DaveM
2993  */
2994 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2995 {
2996 	struct sk_buff *skb;
2997 
2998 	/* NOTE: No TCP options attached and we never retransmit this. */
2999 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3000 	if (!skb) {
3001 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3002 		return;
3003 	}
3004 
3005 	/* Reserve space for headers and prepare control bits. */
3006 	skb_reserve(skb, MAX_TCP_HEADER);
3007 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3008 			     TCPHDR_ACK | TCPHDR_RST);
3009 	skb_mstamp_get(&skb->skb_mstamp);
3010 	/* Send it off. */
3011 	if (tcp_transmit_skb(sk, skb, 0, priority))
3012 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3013 
3014 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3015 }
3016 
3017 /* Send a crossed SYN-ACK during socket establishment.
3018  * WARNING: This routine must only be called when we have already sent
3019  * a SYN packet that crossed the incoming SYN that caused this routine
3020  * to get called. If this assumption fails then the initial rcv_wnd
3021  * and rcv_wscale values will not be correct.
3022  */
3023 int tcp_send_synack(struct sock *sk)
3024 {
3025 	struct sk_buff *skb;
3026 
3027 	skb = tcp_write_queue_head(sk);
3028 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3029 		pr_debug("%s: wrong queue state\n", __func__);
3030 		return -EFAULT;
3031 	}
3032 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3033 		if (skb_cloned(skb)) {
3034 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3035 			if (!nskb)
3036 				return -ENOMEM;
3037 			tcp_unlink_write_queue(skb, sk);
3038 			__skb_header_release(nskb);
3039 			__tcp_add_write_queue_head(sk, nskb);
3040 			sk_wmem_free_skb(sk, skb);
3041 			sk->sk_wmem_queued += nskb->truesize;
3042 			sk_mem_charge(sk, nskb->truesize);
3043 			skb = nskb;
3044 		}
3045 
3046 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3047 		tcp_ecn_send_synack(sk, skb);
3048 	}
3049 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3050 }
3051 
3052 /**
3053  * tcp_make_synack - Prepare a SYN-ACK.
3054  * sk: listener socket
3055  * dst: dst entry attached to the SYNACK
3056  * req: request_sock pointer
3057  *
3058  * Allocate one skb and build a SYNACK packet.
3059  * @dst is consumed : Caller should not use it again.
3060  */
3061 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3062 				struct request_sock *req,
3063 				struct tcp_fastopen_cookie *foc,
3064 				enum tcp_synack_type synack_type)
3065 {
3066 	struct inet_request_sock *ireq = inet_rsk(req);
3067 	const struct tcp_sock *tp = tcp_sk(sk);
3068 	struct tcp_md5sig_key *md5 = NULL;
3069 	struct tcp_out_options opts;
3070 	struct sk_buff *skb;
3071 	int tcp_header_size;
3072 	struct tcphdr *th;
3073 	int mss;
3074 
3075 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3076 	if (unlikely(!skb)) {
3077 		dst_release(dst);
3078 		return NULL;
3079 	}
3080 	/* Reserve space for headers. */
3081 	skb_reserve(skb, MAX_TCP_HEADER);
3082 
3083 	switch (synack_type) {
3084 	case TCP_SYNACK_NORMAL:
3085 		skb_set_owner_w(skb, req_to_sk(req));
3086 		break;
3087 	case TCP_SYNACK_COOKIE:
3088 		/* Under synflood, we do not attach skb to a socket,
3089 		 * to avoid false sharing.
3090 		 */
3091 		break;
3092 	case TCP_SYNACK_FASTOPEN:
3093 		/* sk is a const pointer, because we want to express multiple
3094 		 * cpu might call us concurrently.
3095 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3096 		 */
3097 		skb_set_owner_w(skb, (struct sock *)sk);
3098 		break;
3099 	}
3100 	skb_dst_set(skb, dst);
3101 
3102 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3103 
3104 	memset(&opts, 0, sizeof(opts));
3105 #ifdef CONFIG_SYN_COOKIES
3106 	if (unlikely(req->cookie_ts))
3107 		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3108 	else
3109 #endif
3110 	skb_mstamp_get(&skb->skb_mstamp);
3111 
3112 #ifdef CONFIG_TCP_MD5SIG
3113 	rcu_read_lock();
3114 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3115 #endif
3116 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3117 	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3118 			  sizeof(*th);
3119 
3120 	skb_push(skb, tcp_header_size);
3121 	skb_reset_transport_header(skb);
3122 
3123 	th = (struct tcphdr *)skb->data;
3124 	memset(th, 0, sizeof(struct tcphdr));
3125 	th->syn = 1;
3126 	th->ack = 1;
3127 	tcp_ecn_make_synack(req, th);
3128 	th->source = htons(ireq->ir_num);
3129 	th->dest = ireq->ir_rmt_port;
3130 	/* Setting of flags are superfluous here for callers (and ECE is
3131 	 * not even correctly set)
3132 	 */
3133 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3134 			     TCPHDR_SYN | TCPHDR_ACK);
3135 
3136 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3137 	/* XXX data is queued and acked as is. No buffer/window check */
3138 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3139 
3140 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3141 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3142 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3143 	th->doff = (tcp_header_size >> 2);
3144 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3145 
3146 #ifdef CONFIG_TCP_MD5SIG
3147 	/* Okay, we have all we need - do the md5 hash if needed */
3148 	if (md5)
3149 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3150 					       md5, req_to_sk(req), skb);
3151 	rcu_read_unlock();
3152 #endif
3153 
3154 	/* Do not fool tcpdump (if any), clean our debris */
3155 	skb->tstamp = 0;
3156 	return skb;
3157 }
3158 EXPORT_SYMBOL(tcp_make_synack);
3159 
3160 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3161 {
3162 	struct inet_connection_sock *icsk = inet_csk(sk);
3163 	const struct tcp_congestion_ops *ca;
3164 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3165 
3166 	if (ca_key == TCP_CA_UNSPEC)
3167 		return;
3168 
3169 	rcu_read_lock();
3170 	ca = tcp_ca_find_key(ca_key);
3171 	if (likely(ca && try_module_get(ca->owner))) {
3172 		module_put(icsk->icsk_ca_ops->owner);
3173 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3174 		icsk->icsk_ca_ops = ca;
3175 	}
3176 	rcu_read_unlock();
3177 }
3178 
3179 /* Do all connect socket setups that can be done AF independent. */
3180 static void tcp_connect_init(struct sock *sk)
3181 {
3182 	const struct dst_entry *dst = __sk_dst_get(sk);
3183 	struct tcp_sock *tp = tcp_sk(sk);
3184 	__u8 rcv_wscale;
3185 
3186 	/* We'll fix this up when we get a response from the other end.
3187 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3188 	 */
3189 	tp->tcp_header_len = sizeof(struct tcphdr) +
3190 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3191 
3192 #ifdef CONFIG_TCP_MD5SIG
3193 	if (tp->af_specific->md5_lookup(sk, sk))
3194 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3195 #endif
3196 
3197 	/* If user gave his TCP_MAXSEG, record it to clamp */
3198 	if (tp->rx_opt.user_mss)
3199 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3200 	tp->max_window = 0;
3201 	tcp_mtup_init(sk);
3202 	tcp_sync_mss(sk, dst_mtu(dst));
3203 
3204 	tcp_ca_dst_init(sk, dst);
3205 
3206 	if (!tp->window_clamp)
3207 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3208 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3209 
3210 	tcp_initialize_rcv_mss(sk);
3211 
3212 	/* limit the window selection if the user enforce a smaller rx buffer */
3213 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3214 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3215 		tp->window_clamp = tcp_full_space(sk);
3216 
3217 	tcp_select_initial_window(tcp_full_space(sk),
3218 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3219 				  &tp->rcv_wnd,
3220 				  &tp->window_clamp,
3221 				  sysctl_tcp_window_scaling,
3222 				  &rcv_wscale,
3223 				  dst_metric(dst, RTAX_INITRWND));
3224 
3225 	tp->rx_opt.rcv_wscale = rcv_wscale;
3226 	tp->rcv_ssthresh = tp->rcv_wnd;
3227 
3228 	sk->sk_err = 0;
3229 	sock_reset_flag(sk, SOCK_DONE);
3230 	tp->snd_wnd = 0;
3231 	tcp_init_wl(tp, 0);
3232 	tp->snd_una = tp->write_seq;
3233 	tp->snd_sml = tp->write_seq;
3234 	tp->snd_up = tp->write_seq;
3235 	tp->snd_nxt = tp->write_seq;
3236 
3237 	if (likely(!tp->repair))
3238 		tp->rcv_nxt = 0;
3239 	else
3240 		tp->rcv_tstamp = tcp_time_stamp;
3241 	tp->rcv_wup = tp->rcv_nxt;
3242 	tp->copied_seq = tp->rcv_nxt;
3243 
3244 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3245 	inet_csk(sk)->icsk_retransmits = 0;
3246 	tcp_clear_retrans(tp);
3247 }
3248 
3249 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3250 {
3251 	struct tcp_sock *tp = tcp_sk(sk);
3252 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3253 
3254 	tcb->end_seq += skb->len;
3255 	__skb_header_release(skb);
3256 	__tcp_add_write_queue_tail(sk, skb);
3257 	sk->sk_wmem_queued += skb->truesize;
3258 	sk_mem_charge(sk, skb->truesize);
3259 	tp->write_seq = tcb->end_seq;
3260 	tp->packets_out += tcp_skb_pcount(skb);
3261 }
3262 
3263 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3264  * queue a data-only packet after the regular SYN, such that regular SYNs
3265  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3266  * only the SYN sequence, the data are retransmitted in the first ACK.
3267  * If cookie is not cached or other error occurs, falls back to send a
3268  * regular SYN with Fast Open cookie request option.
3269  */
3270 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3271 {
3272 	struct tcp_sock *tp = tcp_sk(sk);
3273 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3274 	int space, err = 0;
3275 	struct sk_buff *syn_data;
3276 
3277 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3278 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3279 		goto fallback;
3280 
3281 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3282 	 * user-MSS. Reserve maximum option space for middleboxes that add
3283 	 * private TCP options. The cost is reduced data space in SYN :(
3284 	 */
3285 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3286 
3287 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3288 		MAX_TCP_OPTION_SPACE;
3289 
3290 	space = min_t(size_t, space, fo->size);
3291 
3292 	/* limit to order-0 allocations */
3293 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3294 
3295 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3296 	if (!syn_data)
3297 		goto fallback;
3298 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3299 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3300 	if (space) {
3301 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3302 					    &fo->data->msg_iter);
3303 		if (unlikely(!copied)) {
3304 			kfree_skb(syn_data);
3305 			goto fallback;
3306 		}
3307 		if (copied != space) {
3308 			skb_trim(syn_data, copied);
3309 			space = copied;
3310 		}
3311 	}
3312 	/* No more data pending in inet_wait_for_connect() */
3313 	if (space == fo->size)
3314 		fo->data = NULL;
3315 	fo->copied = space;
3316 
3317 	tcp_connect_queue_skb(sk, syn_data);
3318 	if (syn_data->len)
3319 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3320 
3321 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3322 
3323 	syn->skb_mstamp = syn_data->skb_mstamp;
3324 
3325 	/* Now full SYN+DATA was cloned and sent (or not),
3326 	 * remove the SYN from the original skb (syn_data)
3327 	 * we keep in write queue in case of a retransmit, as we
3328 	 * also have the SYN packet (with no data) in the same queue.
3329 	 */
3330 	TCP_SKB_CB(syn_data)->seq++;
3331 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3332 	if (!err) {
3333 		tp->syn_data = (fo->copied > 0);
3334 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3335 		goto done;
3336 	}
3337 
3338 fallback:
3339 	/* Send a regular SYN with Fast Open cookie request option */
3340 	if (fo->cookie.len > 0)
3341 		fo->cookie.len = 0;
3342 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3343 	if (err)
3344 		tp->syn_fastopen = 0;
3345 done:
3346 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3347 	return err;
3348 }
3349 
3350 /* Build a SYN and send it off. */
3351 int tcp_connect(struct sock *sk)
3352 {
3353 	struct tcp_sock *tp = tcp_sk(sk);
3354 	struct sk_buff *buff;
3355 	int err;
3356 
3357 	tcp_connect_init(sk);
3358 
3359 	if (unlikely(tp->repair)) {
3360 		tcp_finish_connect(sk, NULL);
3361 		return 0;
3362 	}
3363 
3364 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3365 	if (unlikely(!buff))
3366 		return -ENOBUFS;
3367 
3368 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3369 	tp->retrans_stamp = tcp_time_stamp;
3370 	tcp_connect_queue_skb(sk, buff);
3371 	tcp_ecn_send_syn(sk, buff);
3372 
3373 	/* Send off SYN; include data in Fast Open. */
3374 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3375 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3376 	if (err == -ECONNREFUSED)
3377 		return err;
3378 
3379 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3380 	 * in order to make this packet get counted in tcpOutSegs.
3381 	 */
3382 	tp->snd_nxt = tp->write_seq;
3383 	tp->pushed_seq = tp->write_seq;
3384 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3385 
3386 	/* Timer for repeating the SYN until an answer. */
3387 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3388 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3389 	return 0;
3390 }
3391 EXPORT_SYMBOL(tcp_connect);
3392 
3393 /* Send out a delayed ack, the caller does the policy checking
3394  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3395  * for details.
3396  */
3397 void tcp_send_delayed_ack(struct sock *sk)
3398 {
3399 	struct inet_connection_sock *icsk = inet_csk(sk);
3400 	int ato = icsk->icsk_ack.ato;
3401 	unsigned long timeout;
3402 
3403 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3404 
3405 	if (ato > TCP_DELACK_MIN) {
3406 		const struct tcp_sock *tp = tcp_sk(sk);
3407 		int max_ato = HZ / 2;
3408 
3409 		if (icsk->icsk_ack.pingpong ||
3410 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3411 			max_ato = TCP_DELACK_MAX;
3412 
3413 		/* Slow path, intersegment interval is "high". */
3414 
3415 		/* If some rtt estimate is known, use it to bound delayed ack.
3416 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3417 		 * directly.
3418 		 */
3419 		if (tp->srtt_us) {
3420 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3421 					TCP_DELACK_MIN);
3422 
3423 			if (rtt < max_ato)
3424 				max_ato = rtt;
3425 		}
3426 
3427 		ato = min(ato, max_ato);
3428 	}
3429 
3430 	/* Stay within the limit we were given */
3431 	timeout = jiffies + ato;
3432 
3433 	/* Use new timeout only if there wasn't a older one earlier. */
3434 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3435 		/* If delack timer was blocked or is about to expire,
3436 		 * send ACK now.
3437 		 */
3438 		if (icsk->icsk_ack.blocked ||
3439 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3440 			tcp_send_ack(sk);
3441 			return;
3442 		}
3443 
3444 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3445 			timeout = icsk->icsk_ack.timeout;
3446 	}
3447 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3448 	icsk->icsk_ack.timeout = timeout;
3449 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3450 }
3451 
3452 /* This routine sends an ack and also updates the window. */
3453 void tcp_send_ack(struct sock *sk)
3454 {
3455 	struct sk_buff *buff;
3456 
3457 	/* If we have been reset, we may not send again. */
3458 	if (sk->sk_state == TCP_CLOSE)
3459 		return;
3460 
3461 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3462 
3463 	/* We are not putting this on the write queue, so
3464 	 * tcp_transmit_skb() will set the ownership to this
3465 	 * sock.
3466 	 */
3467 	buff = alloc_skb(MAX_TCP_HEADER,
3468 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3469 	if (unlikely(!buff)) {
3470 		inet_csk_schedule_ack(sk);
3471 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3472 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3473 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3474 		return;
3475 	}
3476 
3477 	/* Reserve space for headers and prepare control bits. */
3478 	skb_reserve(buff, MAX_TCP_HEADER);
3479 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3480 
3481 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3482 	 * too much.
3483 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3484 	 */
3485 	skb_set_tcp_pure_ack(buff);
3486 
3487 	/* Send it off, this clears delayed acks for us. */
3488 	skb_mstamp_get(&buff->skb_mstamp);
3489 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3490 }
3491 EXPORT_SYMBOL_GPL(tcp_send_ack);
3492 
3493 /* This routine sends a packet with an out of date sequence
3494  * number. It assumes the other end will try to ack it.
3495  *
3496  * Question: what should we make while urgent mode?
3497  * 4.4BSD forces sending single byte of data. We cannot send
3498  * out of window data, because we have SND.NXT==SND.MAX...
3499  *
3500  * Current solution: to send TWO zero-length segments in urgent mode:
3501  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3502  * out-of-date with SND.UNA-1 to probe window.
3503  */
3504 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3505 {
3506 	struct tcp_sock *tp = tcp_sk(sk);
3507 	struct sk_buff *skb;
3508 
3509 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3510 	skb = alloc_skb(MAX_TCP_HEADER,
3511 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3512 	if (!skb)
3513 		return -1;
3514 
3515 	/* Reserve space for headers and set control bits. */
3516 	skb_reserve(skb, MAX_TCP_HEADER);
3517 	/* Use a previous sequence.  This should cause the other
3518 	 * end to send an ack.  Don't queue or clone SKB, just
3519 	 * send it.
3520 	 */
3521 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3522 	skb_mstamp_get(&skb->skb_mstamp);
3523 	NET_INC_STATS(sock_net(sk), mib);
3524 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3525 }
3526 
3527 void tcp_send_window_probe(struct sock *sk)
3528 {
3529 	if (sk->sk_state == TCP_ESTABLISHED) {
3530 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3531 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3532 	}
3533 }
3534 
3535 /* Initiate keepalive or window probe from timer. */
3536 int tcp_write_wakeup(struct sock *sk, int mib)
3537 {
3538 	struct tcp_sock *tp = tcp_sk(sk);
3539 	struct sk_buff *skb;
3540 
3541 	if (sk->sk_state == TCP_CLOSE)
3542 		return -1;
3543 
3544 	skb = tcp_send_head(sk);
3545 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3546 		int err;
3547 		unsigned int mss = tcp_current_mss(sk);
3548 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3549 
3550 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3551 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3552 
3553 		/* We are probing the opening of a window
3554 		 * but the window size is != 0
3555 		 * must have been a result SWS avoidance ( sender )
3556 		 */
3557 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3558 		    skb->len > mss) {
3559 			seg_size = min(seg_size, mss);
3560 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3561 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3562 				return -1;
3563 		} else if (!tcp_skb_pcount(skb))
3564 			tcp_set_skb_tso_segs(skb, mss);
3565 
3566 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3567 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3568 		if (!err)
3569 			tcp_event_new_data_sent(sk, skb);
3570 		return err;
3571 	} else {
3572 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3573 			tcp_xmit_probe_skb(sk, 1, mib);
3574 		return tcp_xmit_probe_skb(sk, 0, mib);
3575 	}
3576 }
3577 
3578 /* A window probe timeout has occurred.  If window is not closed send
3579  * a partial packet else a zero probe.
3580  */
3581 void tcp_send_probe0(struct sock *sk)
3582 {
3583 	struct inet_connection_sock *icsk = inet_csk(sk);
3584 	struct tcp_sock *tp = tcp_sk(sk);
3585 	struct net *net = sock_net(sk);
3586 	unsigned long probe_max;
3587 	int err;
3588 
3589 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3590 
3591 	if (tp->packets_out || !tcp_send_head(sk)) {
3592 		/* Cancel probe timer, if it is not required. */
3593 		icsk->icsk_probes_out = 0;
3594 		icsk->icsk_backoff = 0;
3595 		return;
3596 	}
3597 
3598 	if (err <= 0) {
3599 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3600 			icsk->icsk_backoff++;
3601 		icsk->icsk_probes_out++;
3602 		probe_max = TCP_RTO_MAX;
3603 	} else {
3604 		/* If packet was not sent due to local congestion,
3605 		 * do not backoff and do not remember icsk_probes_out.
3606 		 * Let local senders to fight for local resources.
3607 		 *
3608 		 * Use accumulated backoff yet.
3609 		 */
3610 		if (!icsk->icsk_probes_out)
3611 			icsk->icsk_probes_out = 1;
3612 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3613 	}
3614 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3615 				  tcp_probe0_when(sk, probe_max),
3616 				  TCP_RTO_MAX);
3617 }
3618 
3619 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3620 {
3621 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3622 	struct flowi fl;
3623 	int res;
3624 
3625 	tcp_rsk(req)->txhash = net_tx_rndhash();
3626 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3627 	if (!res) {
3628 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3629 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3630 		if (unlikely(tcp_passive_fastopen(sk)))
3631 			tcp_sk(sk)->total_retrans++;
3632 	}
3633 	return res;
3634 }
3635 EXPORT_SYMBOL(tcp_rtx_synack);
3636