1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 66 int push_one, gfp_t gfp); 67 68 /* Account for new data that has been sent to the network. */ 69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 70 { 71 struct inet_connection_sock *icsk = inet_csk(sk); 72 struct tcp_sock *tp = tcp_sk(sk); 73 unsigned int prior_packets = tp->packets_out; 74 75 tcp_advance_send_head(sk, skb); 76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 80 tcp_rearm_rto(sk); 81 82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 83 tcp_skb_pcount(skb)); 84 } 85 86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 87 * window scaling factor due to loss of precision. 88 * If window has been shrunk, what should we make? It is not clear at all. 89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 91 * invalid. OK, let's make this for now: 92 */ 93 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 94 { 95 const struct tcp_sock *tp = tcp_sk(sk); 96 97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 98 (tp->rx_opt.wscale_ok && 99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 100 return tp->snd_nxt; 101 else 102 return tcp_wnd_end(tp); 103 } 104 105 /* Calculate mss to advertise in SYN segment. 106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 107 * 108 * 1. It is independent of path mtu. 109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 111 * attached devices, because some buggy hosts are confused by 112 * large MSS. 113 * 4. We do not make 3, we advertise MSS, calculated from first 114 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 115 * This may be overridden via information stored in routing table. 116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 117 * probably even Jumbo". 118 */ 119 static __u16 tcp_advertise_mss(struct sock *sk) 120 { 121 struct tcp_sock *tp = tcp_sk(sk); 122 const struct dst_entry *dst = __sk_dst_get(sk); 123 int mss = tp->advmss; 124 125 if (dst) { 126 unsigned int metric = dst_metric_advmss(dst); 127 128 if (metric < mss) { 129 mss = metric; 130 tp->advmss = mss; 131 } 132 } 133 134 return (__u16)mss; 135 } 136 137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 138 * This is the first part of cwnd validation mechanism. 139 */ 140 void tcp_cwnd_restart(struct sock *sk, s32 delta) 141 { 142 struct tcp_sock *tp = tcp_sk(sk); 143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 144 u32 cwnd = tp->snd_cwnd; 145 146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 147 148 tp->snd_ssthresh = tcp_current_ssthresh(sk); 149 restart_cwnd = min(restart_cwnd, cwnd); 150 151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 152 cwnd >>= 1; 153 tp->snd_cwnd = max(cwnd, restart_cwnd); 154 tp->snd_cwnd_stamp = tcp_time_stamp; 155 tp->snd_cwnd_used = 0; 156 } 157 158 /* Congestion state accounting after a packet has been sent. */ 159 static void tcp_event_data_sent(struct tcp_sock *tp, 160 struct sock *sk) 161 { 162 struct inet_connection_sock *icsk = inet_csk(sk); 163 const u32 now = tcp_time_stamp; 164 165 if (tcp_packets_in_flight(tp) == 0) 166 tcp_ca_event(sk, CA_EVENT_TX_START); 167 168 tp->lsndtime = now; 169 170 /* If it is a reply for ato after last received 171 * packet, enter pingpong mode. 172 */ 173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 174 icsk->icsk_ack.pingpong = 1; 175 } 176 177 /* Account for an ACK we sent. */ 178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 179 { 180 tcp_dec_quickack_mode(sk, pkts); 181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 182 } 183 184 185 u32 tcp_default_init_rwnd(u32 mss) 186 { 187 /* Initial receive window should be twice of TCP_INIT_CWND to 188 * enable proper sending of new unsent data during fast recovery 189 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 190 * limit when mss is larger than 1460. 191 */ 192 u32 init_rwnd = TCP_INIT_CWND * 2; 193 194 if (mss > 1460) 195 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 196 return init_rwnd; 197 } 198 199 /* Determine a window scaling and initial window to offer. 200 * Based on the assumption that the given amount of space 201 * will be offered. Store the results in the tp structure. 202 * NOTE: for smooth operation initial space offering should 203 * be a multiple of mss if possible. We assume here that mss >= 1. 204 * This MUST be enforced by all callers. 205 */ 206 void tcp_select_initial_window(int __space, __u32 mss, 207 __u32 *rcv_wnd, __u32 *window_clamp, 208 int wscale_ok, __u8 *rcv_wscale, 209 __u32 init_rcv_wnd) 210 { 211 unsigned int space = (__space < 0 ? 0 : __space); 212 213 /* If no clamp set the clamp to the max possible scaled window */ 214 if (*window_clamp == 0) 215 (*window_clamp) = (65535 << 14); 216 space = min(*window_clamp, space); 217 218 /* Quantize space offering to a multiple of mss if possible. */ 219 if (space > mss) 220 space = (space / mss) * mss; 221 222 /* NOTE: offering an initial window larger than 32767 223 * will break some buggy TCP stacks. If the admin tells us 224 * it is likely we could be speaking with such a buggy stack 225 * we will truncate our initial window offering to 32K-1 226 * unless the remote has sent us a window scaling option, 227 * which we interpret as a sign the remote TCP is not 228 * misinterpreting the window field as a signed quantity. 229 */ 230 if (sysctl_tcp_workaround_signed_windows) 231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 232 else 233 (*rcv_wnd) = space; 234 235 (*rcv_wscale) = 0; 236 if (wscale_ok) { 237 /* Set window scaling on max possible window 238 * See RFC1323 for an explanation of the limit to 14 239 */ 240 space = max_t(u32, space, sysctl_tcp_rmem[2]); 241 space = max_t(u32, space, sysctl_rmem_max); 242 space = min_t(u32, space, *window_clamp); 243 while (space > 65535 && (*rcv_wscale) < 14) { 244 space >>= 1; 245 (*rcv_wscale)++; 246 } 247 } 248 249 if (mss > (1 << *rcv_wscale)) { 250 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 251 init_rcv_wnd = tcp_default_init_rwnd(mss); 252 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 253 } 254 255 /* Set the clamp no higher than max representable value */ 256 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 257 } 258 EXPORT_SYMBOL(tcp_select_initial_window); 259 260 /* Chose a new window to advertise, update state in tcp_sock for the 261 * socket, and return result with RFC1323 scaling applied. The return 262 * value can be stuffed directly into th->window for an outgoing 263 * frame. 264 */ 265 static u16 tcp_select_window(struct sock *sk) 266 { 267 struct tcp_sock *tp = tcp_sk(sk); 268 u32 old_win = tp->rcv_wnd; 269 u32 cur_win = tcp_receive_window(tp); 270 u32 new_win = __tcp_select_window(sk); 271 272 /* Never shrink the offered window */ 273 if (new_win < cur_win) { 274 /* Danger Will Robinson! 275 * Don't update rcv_wup/rcv_wnd here or else 276 * we will not be able to advertise a zero 277 * window in time. --DaveM 278 * 279 * Relax Will Robinson. 280 */ 281 if (new_win == 0) 282 NET_INC_STATS(sock_net(sk), 283 LINUX_MIB_TCPWANTZEROWINDOWADV); 284 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 285 } 286 tp->rcv_wnd = new_win; 287 tp->rcv_wup = tp->rcv_nxt; 288 289 /* Make sure we do not exceed the maximum possible 290 * scaled window. 291 */ 292 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 293 new_win = min(new_win, MAX_TCP_WINDOW); 294 else 295 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 296 297 /* RFC1323 scaling applied */ 298 new_win >>= tp->rx_opt.rcv_wscale; 299 300 /* If we advertise zero window, disable fast path. */ 301 if (new_win == 0) { 302 tp->pred_flags = 0; 303 if (old_win) 304 NET_INC_STATS(sock_net(sk), 305 LINUX_MIB_TCPTOZEROWINDOWADV); 306 } else if (old_win == 0) { 307 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 308 } 309 310 return new_win; 311 } 312 313 /* Packet ECN state for a SYN-ACK */ 314 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 315 { 316 const struct tcp_sock *tp = tcp_sk(sk); 317 318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 319 if (!(tp->ecn_flags & TCP_ECN_OK)) 320 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 321 else if (tcp_ca_needs_ecn(sk)) 322 INET_ECN_xmit(sk); 323 } 324 325 /* Packet ECN state for a SYN. */ 326 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 327 { 328 struct tcp_sock *tp = tcp_sk(sk); 329 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 330 tcp_ca_needs_ecn(sk); 331 332 if (!use_ecn) { 333 const struct dst_entry *dst = __sk_dst_get(sk); 334 335 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 336 use_ecn = true; 337 } 338 339 tp->ecn_flags = 0; 340 341 if (use_ecn) { 342 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 343 tp->ecn_flags = TCP_ECN_OK; 344 if (tcp_ca_needs_ecn(sk)) 345 INET_ECN_xmit(sk); 346 } 347 } 348 349 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 350 { 351 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 352 /* tp->ecn_flags are cleared at a later point in time when 353 * SYN ACK is ultimatively being received. 354 */ 355 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 356 } 357 358 static void 359 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 360 { 361 if (inet_rsk(req)->ecn_ok) 362 th->ece = 1; 363 } 364 365 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 366 * be sent. 367 */ 368 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 369 struct tcphdr *th, int tcp_header_len) 370 { 371 struct tcp_sock *tp = tcp_sk(sk); 372 373 if (tp->ecn_flags & TCP_ECN_OK) { 374 /* Not-retransmitted data segment: set ECT and inject CWR. */ 375 if (skb->len != tcp_header_len && 376 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 377 INET_ECN_xmit(sk); 378 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 379 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 380 th->cwr = 1; 381 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 382 } 383 } else if (!tcp_ca_needs_ecn(sk)) { 384 /* ACK or retransmitted segment: clear ECT|CE */ 385 INET_ECN_dontxmit(sk); 386 } 387 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 388 th->ece = 1; 389 } 390 } 391 392 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 393 * auto increment end seqno. 394 */ 395 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 396 { 397 skb->ip_summed = CHECKSUM_PARTIAL; 398 skb->csum = 0; 399 400 TCP_SKB_CB(skb)->tcp_flags = flags; 401 TCP_SKB_CB(skb)->sacked = 0; 402 403 tcp_skb_pcount_set(skb, 1); 404 405 TCP_SKB_CB(skb)->seq = seq; 406 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 407 seq++; 408 TCP_SKB_CB(skb)->end_seq = seq; 409 } 410 411 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 412 { 413 return tp->snd_una != tp->snd_up; 414 } 415 416 #define OPTION_SACK_ADVERTISE (1 << 0) 417 #define OPTION_TS (1 << 1) 418 #define OPTION_MD5 (1 << 2) 419 #define OPTION_WSCALE (1 << 3) 420 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 421 422 struct tcp_out_options { 423 u16 options; /* bit field of OPTION_* */ 424 u16 mss; /* 0 to disable */ 425 u8 ws; /* window scale, 0 to disable */ 426 u8 num_sack_blocks; /* number of SACK blocks to include */ 427 u8 hash_size; /* bytes in hash_location */ 428 __u8 *hash_location; /* temporary pointer, overloaded */ 429 __u32 tsval, tsecr; /* need to include OPTION_TS */ 430 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 431 }; 432 433 /* Write previously computed TCP options to the packet. 434 * 435 * Beware: Something in the Internet is very sensitive to the ordering of 436 * TCP options, we learned this through the hard way, so be careful here. 437 * Luckily we can at least blame others for their non-compliance but from 438 * inter-operability perspective it seems that we're somewhat stuck with 439 * the ordering which we have been using if we want to keep working with 440 * those broken things (not that it currently hurts anybody as there isn't 441 * particular reason why the ordering would need to be changed). 442 * 443 * At least SACK_PERM as the first option is known to lead to a disaster 444 * (but it may well be that other scenarios fail similarly). 445 */ 446 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 447 struct tcp_out_options *opts) 448 { 449 u16 options = opts->options; /* mungable copy */ 450 451 if (unlikely(OPTION_MD5 & options)) { 452 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 453 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 454 /* overload cookie hash location */ 455 opts->hash_location = (__u8 *)ptr; 456 ptr += 4; 457 } 458 459 if (unlikely(opts->mss)) { 460 *ptr++ = htonl((TCPOPT_MSS << 24) | 461 (TCPOLEN_MSS << 16) | 462 opts->mss); 463 } 464 465 if (likely(OPTION_TS & options)) { 466 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 467 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 468 (TCPOLEN_SACK_PERM << 16) | 469 (TCPOPT_TIMESTAMP << 8) | 470 TCPOLEN_TIMESTAMP); 471 options &= ~OPTION_SACK_ADVERTISE; 472 } else { 473 *ptr++ = htonl((TCPOPT_NOP << 24) | 474 (TCPOPT_NOP << 16) | 475 (TCPOPT_TIMESTAMP << 8) | 476 TCPOLEN_TIMESTAMP); 477 } 478 *ptr++ = htonl(opts->tsval); 479 *ptr++ = htonl(opts->tsecr); 480 } 481 482 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 483 *ptr++ = htonl((TCPOPT_NOP << 24) | 484 (TCPOPT_NOP << 16) | 485 (TCPOPT_SACK_PERM << 8) | 486 TCPOLEN_SACK_PERM); 487 } 488 489 if (unlikely(OPTION_WSCALE & options)) { 490 *ptr++ = htonl((TCPOPT_NOP << 24) | 491 (TCPOPT_WINDOW << 16) | 492 (TCPOLEN_WINDOW << 8) | 493 opts->ws); 494 } 495 496 if (unlikely(opts->num_sack_blocks)) { 497 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 498 tp->duplicate_sack : tp->selective_acks; 499 int this_sack; 500 501 *ptr++ = htonl((TCPOPT_NOP << 24) | 502 (TCPOPT_NOP << 16) | 503 (TCPOPT_SACK << 8) | 504 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 505 TCPOLEN_SACK_PERBLOCK))); 506 507 for (this_sack = 0; this_sack < opts->num_sack_blocks; 508 ++this_sack) { 509 *ptr++ = htonl(sp[this_sack].start_seq); 510 *ptr++ = htonl(sp[this_sack].end_seq); 511 } 512 513 tp->rx_opt.dsack = 0; 514 } 515 516 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 517 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 518 u8 *p = (u8 *)ptr; 519 u32 len; /* Fast Open option length */ 520 521 if (foc->exp) { 522 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 523 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 524 TCPOPT_FASTOPEN_MAGIC); 525 p += TCPOLEN_EXP_FASTOPEN_BASE; 526 } else { 527 len = TCPOLEN_FASTOPEN_BASE + foc->len; 528 *p++ = TCPOPT_FASTOPEN; 529 *p++ = len; 530 } 531 532 memcpy(p, foc->val, foc->len); 533 if ((len & 3) == 2) { 534 p[foc->len] = TCPOPT_NOP; 535 p[foc->len + 1] = TCPOPT_NOP; 536 } 537 ptr += (len + 3) >> 2; 538 } 539 } 540 541 /* Compute TCP options for SYN packets. This is not the final 542 * network wire format yet. 543 */ 544 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 545 struct tcp_out_options *opts, 546 struct tcp_md5sig_key **md5) 547 { 548 struct tcp_sock *tp = tcp_sk(sk); 549 unsigned int remaining = MAX_TCP_OPTION_SPACE; 550 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 551 552 #ifdef CONFIG_TCP_MD5SIG 553 *md5 = tp->af_specific->md5_lookup(sk, sk); 554 if (*md5) { 555 opts->options |= OPTION_MD5; 556 remaining -= TCPOLEN_MD5SIG_ALIGNED; 557 } 558 #else 559 *md5 = NULL; 560 #endif 561 562 /* We always get an MSS option. The option bytes which will be seen in 563 * normal data packets should timestamps be used, must be in the MSS 564 * advertised. But we subtract them from tp->mss_cache so that 565 * calculations in tcp_sendmsg are simpler etc. So account for this 566 * fact here if necessary. If we don't do this correctly, as a 567 * receiver we won't recognize data packets as being full sized when we 568 * should, and thus we won't abide by the delayed ACK rules correctly. 569 * SACKs don't matter, we never delay an ACK when we have any of those 570 * going out. */ 571 opts->mss = tcp_advertise_mss(sk); 572 remaining -= TCPOLEN_MSS_ALIGNED; 573 574 if (likely(sysctl_tcp_timestamps && !*md5)) { 575 opts->options |= OPTION_TS; 576 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 577 opts->tsecr = tp->rx_opt.ts_recent; 578 remaining -= TCPOLEN_TSTAMP_ALIGNED; 579 } 580 if (likely(sysctl_tcp_window_scaling)) { 581 opts->ws = tp->rx_opt.rcv_wscale; 582 opts->options |= OPTION_WSCALE; 583 remaining -= TCPOLEN_WSCALE_ALIGNED; 584 } 585 if (likely(sysctl_tcp_sack)) { 586 opts->options |= OPTION_SACK_ADVERTISE; 587 if (unlikely(!(OPTION_TS & opts->options))) 588 remaining -= TCPOLEN_SACKPERM_ALIGNED; 589 } 590 591 if (fastopen && fastopen->cookie.len >= 0) { 592 u32 need = fastopen->cookie.len; 593 594 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 595 TCPOLEN_FASTOPEN_BASE; 596 need = (need + 3) & ~3U; /* Align to 32 bits */ 597 if (remaining >= need) { 598 opts->options |= OPTION_FAST_OPEN_COOKIE; 599 opts->fastopen_cookie = &fastopen->cookie; 600 remaining -= need; 601 tp->syn_fastopen = 1; 602 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 603 } 604 } 605 606 return MAX_TCP_OPTION_SPACE - remaining; 607 } 608 609 /* Set up TCP options for SYN-ACKs. */ 610 static unsigned int tcp_synack_options(struct request_sock *req, 611 unsigned int mss, struct sk_buff *skb, 612 struct tcp_out_options *opts, 613 const struct tcp_md5sig_key *md5, 614 struct tcp_fastopen_cookie *foc) 615 { 616 struct inet_request_sock *ireq = inet_rsk(req); 617 unsigned int remaining = MAX_TCP_OPTION_SPACE; 618 619 #ifdef CONFIG_TCP_MD5SIG 620 if (md5) { 621 opts->options |= OPTION_MD5; 622 remaining -= TCPOLEN_MD5SIG_ALIGNED; 623 624 /* We can't fit any SACK blocks in a packet with MD5 + TS 625 * options. There was discussion about disabling SACK 626 * rather than TS in order to fit in better with old, 627 * buggy kernels, but that was deemed to be unnecessary. 628 */ 629 ireq->tstamp_ok &= !ireq->sack_ok; 630 } 631 #endif 632 633 /* We always send an MSS option. */ 634 opts->mss = mss; 635 remaining -= TCPOLEN_MSS_ALIGNED; 636 637 if (likely(ireq->wscale_ok)) { 638 opts->ws = ireq->rcv_wscale; 639 opts->options |= OPTION_WSCALE; 640 remaining -= TCPOLEN_WSCALE_ALIGNED; 641 } 642 if (likely(ireq->tstamp_ok)) { 643 opts->options |= OPTION_TS; 644 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 645 opts->tsecr = req->ts_recent; 646 remaining -= TCPOLEN_TSTAMP_ALIGNED; 647 } 648 if (likely(ireq->sack_ok)) { 649 opts->options |= OPTION_SACK_ADVERTISE; 650 if (unlikely(!ireq->tstamp_ok)) 651 remaining -= TCPOLEN_SACKPERM_ALIGNED; 652 } 653 if (foc != NULL && foc->len >= 0) { 654 u32 need = foc->len; 655 656 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 657 TCPOLEN_FASTOPEN_BASE; 658 need = (need + 3) & ~3U; /* Align to 32 bits */ 659 if (remaining >= need) { 660 opts->options |= OPTION_FAST_OPEN_COOKIE; 661 opts->fastopen_cookie = foc; 662 remaining -= need; 663 } 664 } 665 666 return MAX_TCP_OPTION_SPACE - remaining; 667 } 668 669 /* Compute TCP options for ESTABLISHED sockets. This is not the 670 * final wire format yet. 671 */ 672 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 673 struct tcp_out_options *opts, 674 struct tcp_md5sig_key **md5) 675 { 676 struct tcp_sock *tp = tcp_sk(sk); 677 unsigned int size = 0; 678 unsigned int eff_sacks; 679 680 opts->options = 0; 681 682 #ifdef CONFIG_TCP_MD5SIG 683 *md5 = tp->af_specific->md5_lookup(sk, sk); 684 if (unlikely(*md5)) { 685 opts->options |= OPTION_MD5; 686 size += TCPOLEN_MD5SIG_ALIGNED; 687 } 688 #else 689 *md5 = NULL; 690 #endif 691 692 if (likely(tp->rx_opt.tstamp_ok)) { 693 opts->options |= OPTION_TS; 694 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 695 opts->tsecr = tp->rx_opt.ts_recent; 696 size += TCPOLEN_TSTAMP_ALIGNED; 697 } 698 699 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 700 if (unlikely(eff_sacks)) { 701 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 702 opts->num_sack_blocks = 703 min_t(unsigned int, eff_sacks, 704 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 705 TCPOLEN_SACK_PERBLOCK); 706 size += TCPOLEN_SACK_BASE_ALIGNED + 707 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 708 } 709 710 return size; 711 } 712 713 714 /* TCP SMALL QUEUES (TSQ) 715 * 716 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 717 * to reduce RTT and bufferbloat. 718 * We do this using a special skb destructor (tcp_wfree). 719 * 720 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 721 * needs to be reallocated in a driver. 722 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 723 * 724 * Since transmit from skb destructor is forbidden, we use a tasklet 725 * to process all sockets that eventually need to send more skbs. 726 * We use one tasklet per cpu, with its own queue of sockets. 727 */ 728 struct tsq_tasklet { 729 struct tasklet_struct tasklet; 730 struct list_head head; /* queue of tcp sockets */ 731 }; 732 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 733 734 static void tcp_tsq_handler(struct sock *sk) 735 { 736 if ((1 << sk->sk_state) & 737 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 738 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 739 struct tcp_sock *tp = tcp_sk(sk); 740 741 if (tp->lost_out > tp->retrans_out && 742 tp->snd_cwnd > tcp_packets_in_flight(tp)) 743 tcp_xmit_retransmit_queue(sk); 744 745 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 746 0, GFP_ATOMIC); 747 } 748 } 749 /* 750 * One tasklet per cpu tries to send more skbs. 751 * We run in tasklet context but need to disable irqs when 752 * transferring tsq->head because tcp_wfree() might 753 * interrupt us (non NAPI drivers) 754 */ 755 static void tcp_tasklet_func(unsigned long data) 756 { 757 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 758 LIST_HEAD(list); 759 unsigned long flags; 760 struct list_head *q, *n; 761 struct tcp_sock *tp; 762 struct sock *sk; 763 764 local_irq_save(flags); 765 list_splice_init(&tsq->head, &list); 766 local_irq_restore(flags); 767 768 list_for_each_safe(q, n, &list) { 769 tp = list_entry(q, struct tcp_sock, tsq_node); 770 list_del(&tp->tsq_node); 771 772 sk = (struct sock *)tp; 773 smp_mb__before_atomic(); 774 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 775 776 if (!sk->sk_lock.owned && 777 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) { 778 bh_lock_sock(sk); 779 if (!sock_owned_by_user(sk)) { 780 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 781 tcp_tsq_handler(sk); 782 } 783 bh_unlock_sock(sk); 784 } 785 786 sk_free(sk); 787 } 788 } 789 790 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 791 TCPF_WRITE_TIMER_DEFERRED | \ 792 TCPF_DELACK_TIMER_DEFERRED | \ 793 TCPF_MTU_REDUCED_DEFERRED) 794 /** 795 * tcp_release_cb - tcp release_sock() callback 796 * @sk: socket 797 * 798 * called from release_sock() to perform protocol dependent 799 * actions before socket release. 800 */ 801 void tcp_release_cb(struct sock *sk) 802 { 803 unsigned long flags, nflags; 804 805 /* perform an atomic operation only if at least one flag is set */ 806 do { 807 flags = sk->sk_tsq_flags; 808 if (!(flags & TCP_DEFERRED_ALL)) 809 return; 810 nflags = flags & ~TCP_DEFERRED_ALL; 811 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 812 813 if (flags & TCPF_TSQ_DEFERRED) 814 tcp_tsq_handler(sk); 815 816 /* Here begins the tricky part : 817 * We are called from release_sock() with : 818 * 1) BH disabled 819 * 2) sk_lock.slock spinlock held 820 * 3) socket owned by us (sk->sk_lock.owned == 1) 821 * 822 * But following code is meant to be called from BH handlers, 823 * so we should keep BH disabled, but early release socket ownership 824 */ 825 sock_release_ownership(sk); 826 827 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 828 tcp_write_timer_handler(sk); 829 __sock_put(sk); 830 } 831 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 832 tcp_delack_timer_handler(sk); 833 __sock_put(sk); 834 } 835 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 836 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 837 __sock_put(sk); 838 } 839 } 840 EXPORT_SYMBOL(tcp_release_cb); 841 842 void __init tcp_tasklet_init(void) 843 { 844 int i; 845 846 for_each_possible_cpu(i) { 847 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 848 849 INIT_LIST_HEAD(&tsq->head); 850 tasklet_init(&tsq->tasklet, 851 tcp_tasklet_func, 852 (unsigned long)tsq); 853 } 854 } 855 856 /* 857 * Write buffer destructor automatically called from kfree_skb. 858 * We can't xmit new skbs from this context, as we might already 859 * hold qdisc lock. 860 */ 861 void tcp_wfree(struct sk_buff *skb) 862 { 863 struct sock *sk = skb->sk; 864 struct tcp_sock *tp = tcp_sk(sk); 865 unsigned long flags, nval, oval; 866 int wmem; 867 868 /* Keep one reference on sk_wmem_alloc. 869 * Will be released by sk_free() from here or tcp_tasklet_func() 870 */ 871 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 872 873 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 874 * Wait until our queues (qdisc + devices) are drained. 875 * This gives : 876 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 877 * - chance for incoming ACK (processed by another cpu maybe) 878 * to migrate this flow (skb->ooo_okay will be eventually set) 879 */ 880 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 881 goto out; 882 883 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 884 struct tsq_tasklet *tsq; 885 bool empty; 886 887 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 888 goto out; 889 890 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 891 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 892 if (nval != oval) 893 continue; 894 895 /* queue this socket to tasklet queue */ 896 local_irq_save(flags); 897 tsq = this_cpu_ptr(&tsq_tasklet); 898 empty = list_empty(&tsq->head); 899 list_add(&tp->tsq_node, &tsq->head); 900 if (empty) 901 tasklet_schedule(&tsq->tasklet); 902 local_irq_restore(flags); 903 return; 904 } 905 out: 906 sk_free(sk); 907 } 908 909 /* This routine actually transmits TCP packets queued in by 910 * tcp_do_sendmsg(). This is used by both the initial 911 * transmission and possible later retransmissions. 912 * All SKB's seen here are completely headerless. It is our 913 * job to build the TCP header, and pass the packet down to 914 * IP so it can do the same plus pass the packet off to the 915 * device. 916 * 917 * We are working here with either a clone of the original 918 * SKB, or a fresh unique copy made by the retransmit engine. 919 */ 920 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 921 gfp_t gfp_mask) 922 { 923 const struct inet_connection_sock *icsk = inet_csk(sk); 924 struct inet_sock *inet; 925 struct tcp_sock *tp; 926 struct tcp_skb_cb *tcb; 927 struct tcp_out_options opts; 928 unsigned int tcp_options_size, tcp_header_size; 929 struct tcp_md5sig_key *md5; 930 struct tcphdr *th; 931 int err; 932 933 BUG_ON(!skb || !tcp_skb_pcount(skb)); 934 tp = tcp_sk(sk); 935 936 if (clone_it) { 937 skb_mstamp_get(&skb->skb_mstamp); 938 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 939 - tp->snd_una; 940 tcp_rate_skb_sent(sk, skb); 941 942 if (unlikely(skb_cloned(skb))) 943 skb = pskb_copy(skb, gfp_mask); 944 else 945 skb = skb_clone(skb, gfp_mask); 946 if (unlikely(!skb)) 947 return -ENOBUFS; 948 } 949 950 inet = inet_sk(sk); 951 tcb = TCP_SKB_CB(skb); 952 memset(&opts, 0, sizeof(opts)); 953 954 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 955 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 956 else 957 tcp_options_size = tcp_established_options(sk, skb, &opts, 958 &md5); 959 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 960 961 /* if no packet is in qdisc/device queue, then allow XPS to select 962 * another queue. We can be called from tcp_tsq_handler() 963 * which holds one reference to sk_wmem_alloc. 964 * 965 * TODO: Ideally, in-flight pure ACK packets should not matter here. 966 * One way to get this would be to set skb->truesize = 2 on them. 967 */ 968 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 969 970 /* If we had to use memory reserve to allocate this skb, 971 * this might cause drops if packet is looped back : 972 * Other socket might not have SOCK_MEMALLOC. 973 * Packets not looped back do not care about pfmemalloc. 974 */ 975 skb->pfmemalloc = 0; 976 977 skb_push(skb, tcp_header_size); 978 skb_reset_transport_header(skb); 979 980 skb_orphan(skb); 981 skb->sk = sk; 982 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 983 skb_set_hash_from_sk(skb, sk); 984 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 985 986 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 987 988 /* Build TCP header and checksum it. */ 989 th = (struct tcphdr *)skb->data; 990 th->source = inet->inet_sport; 991 th->dest = inet->inet_dport; 992 th->seq = htonl(tcb->seq); 993 th->ack_seq = htonl(tp->rcv_nxt); 994 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 995 tcb->tcp_flags); 996 997 th->check = 0; 998 th->urg_ptr = 0; 999 1000 /* The urg_mode check is necessary during a below snd_una win probe */ 1001 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1002 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1003 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1004 th->urg = 1; 1005 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1006 th->urg_ptr = htons(0xFFFF); 1007 th->urg = 1; 1008 } 1009 } 1010 1011 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1012 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1013 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1014 th->window = htons(tcp_select_window(sk)); 1015 tcp_ecn_send(sk, skb, th, tcp_header_size); 1016 } else { 1017 /* RFC1323: The window in SYN & SYN/ACK segments 1018 * is never scaled. 1019 */ 1020 th->window = htons(min(tp->rcv_wnd, 65535U)); 1021 } 1022 #ifdef CONFIG_TCP_MD5SIG 1023 /* Calculate the MD5 hash, as we have all we need now */ 1024 if (md5) { 1025 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1026 tp->af_specific->calc_md5_hash(opts.hash_location, 1027 md5, sk, skb); 1028 } 1029 #endif 1030 1031 icsk->icsk_af_ops->send_check(sk, skb); 1032 1033 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1034 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1035 1036 if (skb->len != tcp_header_size) { 1037 tcp_event_data_sent(tp, sk); 1038 tp->data_segs_out += tcp_skb_pcount(skb); 1039 } 1040 1041 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1042 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1043 tcp_skb_pcount(skb)); 1044 1045 tp->segs_out += tcp_skb_pcount(skb); 1046 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1047 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1048 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1049 1050 /* Our usage of tstamp should remain private */ 1051 skb->tstamp = 0; 1052 1053 /* Cleanup our debris for IP stacks */ 1054 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1055 sizeof(struct inet6_skb_parm))); 1056 1057 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1058 1059 if (likely(err <= 0)) 1060 return err; 1061 1062 tcp_enter_cwr(sk); 1063 1064 return net_xmit_eval(err); 1065 } 1066 1067 /* This routine just queues the buffer for sending. 1068 * 1069 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1070 * otherwise socket can stall. 1071 */ 1072 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1073 { 1074 struct tcp_sock *tp = tcp_sk(sk); 1075 1076 /* Advance write_seq and place onto the write_queue. */ 1077 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1078 __skb_header_release(skb); 1079 tcp_add_write_queue_tail(sk, skb); 1080 sk->sk_wmem_queued += skb->truesize; 1081 sk_mem_charge(sk, skb->truesize); 1082 } 1083 1084 /* Initialize TSO segments for a packet. */ 1085 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1086 { 1087 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1088 /* Avoid the costly divide in the normal 1089 * non-TSO case. 1090 */ 1091 tcp_skb_pcount_set(skb, 1); 1092 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1093 } else { 1094 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1095 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1096 } 1097 } 1098 1099 /* When a modification to fackets out becomes necessary, we need to check 1100 * skb is counted to fackets_out or not. 1101 */ 1102 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1103 int decr) 1104 { 1105 struct tcp_sock *tp = tcp_sk(sk); 1106 1107 if (!tp->sacked_out || tcp_is_reno(tp)) 1108 return; 1109 1110 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1111 tp->fackets_out -= decr; 1112 } 1113 1114 /* Pcount in the middle of the write queue got changed, we need to do various 1115 * tweaks to fix counters 1116 */ 1117 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1118 { 1119 struct tcp_sock *tp = tcp_sk(sk); 1120 1121 tp->packets_out -= decr; 1122 1123 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1124 tp->sacked_out -= decr; 1125 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1126 tp->retrans_out -= decr; 1127 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1128 tp->lost_out -= decr; 1129 1130 /* Reno case is special. Sigh... */ 1131 if (tcp_is_reno(tp) && decr > 0) 1132 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1133 1134 tcp_adjust_fackets_out(sk, skb, decr); 1135 1136 if (tp->lost_skb_hint && 1137 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1138 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1139 tp->lost_cnt_hint -= decr; 1140 1141 tcp_verify_left_out(tp); 1142 } 1143 1144 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1145 { 1146 return TCP_SKB_CB(skb)->txstamp_ack || 1147 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1148 } 1149 1150 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1151 { 1152 struct skb_shared_info *shinfo = skb_shinfo(skb); 1153 1154 if (unlikely(tcp_has_tx_tstamp(skb)) && 1155 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1156 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1157 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1158 1159 shinfo->tx_flags &= ~tsflags; 1160 shinfo2->tx_flags |= tsflags; 1161 swap(shinfo->tskey, shinfo2->tskey); 1162 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1163 TCP_SKB_CB(skb)->txstamp_ack = 0; 1164 } 1165 } 1166 1167 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1168 { 1169 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1170 TCP_SKB_CB(skb)->eor = 0; 1171 } 1172 1173 /* Function to create two new TCP segments. Shrinks the given segment 1174 * to the specified size and appends a new segment with the rest of the 1175 * packet to the list. This won't be called frequently, I hope. 1176 * Remember, these are still headerless SKBs at this point. 1177 */ 1178 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1179 unsigned int mss_now, gfp_t gfp) 1180 { 1181 struct tcp_sock *tp = tcp_sk(sk); 1182 struct sk_buff *buff; 1183 int nsize, old_factor; 1184 int nlen; 1185 u8 flags; 1186 1187 if (WARN_ON(len > skb->len)) 1188 return -EINVAL; 1189 1190 nsize = skb_headlen(skb) - len; 1191 if (nsize < 0) 1192 nsize = 0; 1193 1194 if (skb_unclone(skb, gfp)) 1195 return -ENOMEM; 1196 1197 /* Get a new skb... force flag on. */ 1198 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1199 if (!buff) 1200 return -ENOMEM; /* We'll just try again later. */ 1201 1202 sk->sk_wmem_queued += buff->truesize; 1203 sk_mem_charge(sk, buff->truesize); 1204 nlen = skb->len - len - nsize; 1205 buff->truesize += nlen; 1206 skb->truesize -= nlen; 1207 1208 /* Correct the sequence numbers. */ 1209 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1210 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1211 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1212 1213 /* PSH and FIN should only be set in the second packet. */ 1214 flags = TCP_SKB_CB(skb)->tcp_flags; 1215 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1216 TCP_SKB_CB(buff)->tcp_flags = flags; 1217 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1218 tcp_skb_fragment_eor(skb, buff); 1219 1220 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1221 /* Copy and checksum data tail into the new buffer. */ 1222 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1223 skb_put(buff, nsize), 1224 nsize, 0); 1225 1226 skb_trim(skb, len); 1227 1228 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1229 } else { 1230 skb->ip_summed = CHECKSUM_PARTIAL; 1231 skb_split(skb, buff, len); 1232 } 1233 1234 buff->ip_summed = skb->ip_summed; 1235 1236 buff->tstamp = skb->tstamp; 1237 tcp_fragment_tstamp(skb, buff); 1238 1239 old_factor = tcp_skb_pcount(skb); 1240 1241 /* Fix up tso_factor for both original and new SKB. */ 1242 tcp_set_skb_tso_segs(skb, mss_now); 1243 tcp_set_skb_tso_segs(buff, mss_now); 1244 1245 /* Update delivered info for the new segment */ 1246 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1247 1248 /* If this packet has been sent out already, we must 1249 * adjust the various packet counters. 1250 */ 1251 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1252 int diff = old_factor - tcp_skb_pcount(skb) - 1253 tcp_skb_pcount(buff); 1254 1255 if (diff) 1256 tcp_adjust_pcount(sk, skb, diff); 1257 } 1258 1259 /* Link BUFF into the send queue. */ 1260 __skb_header_release(buff); 1261 tcp_insert_write_queue_after(skb, buff, sk); 1262 1263 return 0; 1264 } 1265 1266 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1267 * eventually). The difference is that pulled data not copied, but 1268 * immediately discarded. 1269 */ 1270 static void __pskb_trim_head(struct sk_buff *skb, int len) 1271 { 1272 struct skb_shared_info *shinfo; 1273 int i, k, eat; 1274 1275 eat = min_t(int, len, skb_headlen(skb)); 1276 if (eat) { 1277 __skb_pull(skb, eat); 1278 len -= eat; 1279 if (!len) 1280 return; 1281 } 1282 eat = len; 1283 k = 0; 1284 shinfo = skb_shinfo(skb); 1285 for (i = 0; i < shinfo->nr_frags; i++) { 1286 int size = skb_frag_size(&shinfo->frags[i]); 1287 1288 if (size <= eat) { 1289 skb_frag_unref(skb, i); 1290 eat -= size; 1291 } else { 1292 shinfo->frags[k] = shinfo->frags[i]; 1293 if (eat) { 1294 shinfo->frags[k].page_offset += eat; 1295 skb_frag_size_sub(&shinfo->frags[k], eat); 1296 eat = 0; 1297 } 1298 k++; 1299 } 1300 } 1301 shinfo->nr_frags = k; 1302 1303 skb_reset_tail_pointer(skb); 1304 skb->data_len -= len; 1305 skb->len = skb->data_len; 1306 } 1307 1308 /* Remove acked data from a packet in the transmit queue. */ 1309 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1310 { 1311 if (skb_unclone(skb, GFP_ATOMIC)) 1312 return -ENOMEM; 1313 1314 __pskb_trim_head(skb, len); 1315 1316 TCP_SKB_CB(skb)->seq += len; 1317 skb->ip_summed = CHECKSUM_PARTIAL; 1318 1319 skb->truesize -= len; 1320 sk->sk_wmem_queued -= len; 1321 sk_mem_uncharge(sk, len); 1322 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1323 1324 /* Any change of skb->len requires recalculation of tso factor. */ 1325 if (tcp_skb_pcount(skb) > 1) 1326 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1327 1328 return 0; 1329 } 1330 1331 /* Calculate MSS not accounting any TCP options. */ 1332 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1333 { 1334 const struct tcp_sock *tp = tcp_sk(sk); 1335 const struct inet_connection_sock *icsk = inet_csk(sk); 1336 int mss_now; 1337 1338 /* Calculate base mss without TCP options: 1339 It is MMS_S - sizeof(tcphdr) of rfc1122 1340 */ 1341 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1342 1343 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1344 if (icsk->icsk_af_ops->net_frag_header_len) { 1345 const struct dst_entry *dst = __sk_dst_get(sk); 1346 1347 if (dst && dst_allfrag(dst)) 1348 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1349 } 1350 1351 /* Clamp it (mss_clamp does not include tcp options) */ 1352 if (mss_now > tp->rx_opt.mss_clamp) 1353 mss_now = tp->rx_opt.mss_clamp; 1354 1355 /* Now subtract optional transport overhead */ 1356 mss_now -= icsk->icsk_ext_hdr_len; 1357 1358 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1359 if (mss_now < 48) 1360 mss_now = 48; 1361 return mss_now; 1362 } 1363 1364 /* Calculate MSS. Not accounting for SACKs here. */ 1365 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1366 { 1367 /* Subtract TCP options size, not including SACKs */ 1368 return __tcp_mtu_to_mss(sk, pmtu) - 1369 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1370 } 1371 1372 /* Inverse of above */ 1373 int tcp_mss_to_mtu(struct sock *sk, int mss) 1374 { 1375 const struct tcp_sock *tp = tcp_sk(sk); 1376 const struct inet_connection_sock *icsk = inet_csk(sk); 1377 int mtu; 1378 1379 mtu = mss + 1380 tp->tcp_header_len + 1381 icsk->icsk_ext_hdr_len + 1382 icsk->icsk_af_ops->net_header_len; 1383 1384 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1385 if (icsk->icsk_af_ops->net_frag_header_len) { 1386 const struct dst_entry *dst = __sk_dst_get(sk); 1387 1388 if (dst && dst_allfrag(dst)) 1389 mtu += icsk->icsk_af_ops->net_frag_header_len; 1390 } 1391 return mtu; 1392 } 1393 EXPORT_SYMBOL(tcp_mss_to_mtu); 1394 1395 /* MTU probing init per socket */ 1396 void tcp_mtup_init(struct sock *sk) 1397 { 1398 struct tcp_sock *tp = tcp_sk(sk); 1399 struct inet_connection_sock *icsk = inet_csk(sk); 1400 struct net *net = sock_net(sk); 1401 1402 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1403 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1404 icsk->icsk_af_ops->net_header_len; 1405 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1406 icsk->icsk_mtup.probe_size = 0; 1407 if (icsk->icsk_mtup.enabled) 1408 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1409 } 1410 EXPORT_SYMBOL(tcp_mtup_init); 1411 1412 /* This function synchronize snd mss to current pmtu/exthdr set. 1413 1414 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1415 for TCP options, but includes only bare TCP header. 1416 1417 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1418 It is minimum of user_mss and mss received with SYN. 1419 It also does not include TCP options. 1420 1421 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1422 1423 tp->mss_cache is current effective sending mss, including 1424 all tcp options except for SACKs. It is evaluated, 1425 taking into account current pmtu, but never exceeds 1426 tp->rx_opt.mss_clamp. 1427 1428 NOTE1. rfc1122 clearly states that advertised MSS 1429 DOES NOT include either tcp or ip options. 1430 1431 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1432 are READ ONLY outside this function. --ANK (980731) 1433 */ 1434 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1435 { 1436 struct tcp_sock *tp = tcp_sk(sk); 1437 struct inet_connection_sock *icsk = inet_csk(sk); 1438 int mss_now; 1439 1440 if (icsk->icsk_mtup.search_high > pmtu) 1441 icsk->icsk_mtup.search_high = pmtu; 1442 1443 mss_now = tcp_mtu_to_mss(sk, pmtu); 1444 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1445 1446 /* And store cached results */ 1447 icsk->icsk_pmtu_cookie = pmtu; 1448 if (icsk->icsk_mtup.enabled) 1449 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1450 tp->mss_cache = mss_now; 1451 1452 return mss_now; 1453 } 1454 EXPORT_SYMBOL(tcp_sync_mss); 1455 1456 /* Compute the current effective MSS, taking SACKs and IP options, 1457 * and even PMTU discovery events into account. 1458 */ 1459 unsigned int tcp_current_mss(struct sock *sk) 1460 { 1461 const struct tcp_sock *tp = tcp_sk(sk); 1462 const struct dst_entry *dst = __sk_dst_get(sk); 1463 u32 mss_now; 1464 unsigned int header_len; 1465 struct tcp_out_options opts; 1466 struct tcp_md5sig_key *md5; 1467 1468 mss_now = tp->mss_cache; 1469 1470 if (dst) { 1471 u32 mtu = dst_mtu(dst); 1472 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1473 mss_now = tcp_sync_mss(sk, mtu); 1474 } 1475 1476 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1477 sizeof(struct tcphdr); 1478 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1479 * some common options. If this is an odd packet (because we have SACK 1480 * blocks etc) then our calculated header_len will be different, and 1481 * we have to adjust mss_now correspondingly */ 1482 if (header_len != tp->tcp_header_len) { 1483 int delta = (int) header_len - tp->tcp_header_len; 1484 mss_now -= delta; 1485 } 1486 1487 return mss_now; 1488 } 1489 1490 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1491 * As additional protections, we do not touch cwnd in retransmission phases, 1492 * and if application hit its sndbuf limit recently. 1493 */ 1494 static void tcp_cwnd_application_limited(struct sock *sk) 1495 { 1496 struct tcp_sock *tp = tcp_sk(sk); 1497 1498 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1499 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1500 /* Limited by application or receiver window. */ 1501 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1502 u32 win_used = max(tp->snd_cwnd_used, init_win); 1503 if (win_used < tp->snd_cwnd) { 1504 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1505 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1506 } 1507 tp->snd_cwnd_used = 0; 1508 } 1509 tp->snd_cwnd_stamp = tcp_time_stamp; 1510 } 1511 1512 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1513 { 1514 struct tcp_sock *tp = tcp_sk(sk); 1515 1516 /* Track the maximum number of outstanding packets in each 1517 * window, and remember whether we were cwnd-limited then. 1518 */ 1519 if (!before(tp->snd_una, tp->max_packets_seq) || 1520 tp->packets_out > tp->max_packets_out) { 1521 tp->max_packets_out = tp->packets_out; 1522 tp->max_packets_seq = tp->snd_nxt; 1523 tp->is_cwnd_limited = is_cwnd_limited; 1524 } 1525 1526 if (tcp_is_cwnd_limited(sk)) { 1527 /* Network is feed fully. */ 1528 tp->snd_cwnd_used = 0; 1529 tp->snd_cwnd_stamp = tcp_time_stamp; 1530 } else { 1531 /* Network starves. */ 1532 if (tp->packets_out > tp->snd_cwnd_used) 1533 tp->snd_cwnd_used = tp->packets_out; 1534 1535 if (sysctl_tcp_slow_start_after_idle && 1536 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1537 tcp_cwnd_application_limited(sk); 1538 1539 /* The following conditions together indicate the starvation 1540 * is caused by insufficient sender buffer: 1541 * 1) just sent some data (see tcp_write_xmit) 1542 * 2) not cwnd limited (this else condition) 1543 * 3) no more data to send (null tcp_send_head ) 1544 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1545 */ 1546 if (!tcp_send_head(sk) && sk->sk_socket && 1547 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1548 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1549 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1550 } 1551 } 1552 1553 /* Minshall's variant of the Nagle send check. */ 1554 static bool tcp_minshall_check(const struct tcp_sock *tp) 1555 { 1556 return after(tp->snd_sml, tp->snd_una) && 1557 !after(tp->snd_sml, tp->snd_nxt); 1558 } 1559 1560 /* Update snd_sml if this skb is under mss 1561 * Note that a TSO packet might end with a sub-mss segment 1562 * The test is really : 1563 * if ((skb->len % mss) != 0) 1564 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1565 * But we can avoid doing the divide again given we already have 1566 * skb_pcount = skb->len / mss_now 1567 */ 1568 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1569 const struct sk_buff *skb) 1570 { 1571 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1572 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1573 } 1574 1575 /* Return false, if packet can be sent now without violation Nagle's rules: 1576 * 1. It is full sized. (provided by caller in %partial bool) 1577 * 2. Or it contains FIN. (already checked by caller) 1578 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1579 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1580 * With Minshall's modification: all sent small packets are ACKed. 1581 */ 1582 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1583 int nonagle) 1584 { 1585 return partial && 1586 ((nonagle & TCP_NAGLE_CORK) || 1587 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1588 } 1589 1590 /* Return how many segs we'd like on a TSO packet, 1591 * to send one TSO packet per ms 1592 */ 1593 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1594 int min_tso_segs) 1595 { 1596 u32 bytes, segs; 1597 1598 bytes = min(sk->sk_pacing_rate >> 10, 1599 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1600 1601 /* Goal is to send at least one packet per ms, 1602 * not one big TSO packet every 100 ms. 1603 * This preserves ACK clocking and is consistent 1604 * with tcp_tso_should_defer() heuristic. 1605 */ 1606 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1607 1608 return min_t(u32, segs, sk->sk_gso_max_segs); 1609 } 1610 EXPORT_SYMBOL(tcp_tso_autosize); 1611 1612 /* Return the number of segments we want in the skb we are transmitting. 1613 * See if congestion control module wants to decide; otherwise, autosize. 1614 */ 1615 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1616 { 1617 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1618 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0; 1619 1620 return tso_segs ? : 1621 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs); 1622 } 1623 1624 /* Returns the portion of skb which can be sent right away */ 1625 static unsigned int tcp_mss_split_point(const struct sock *sk, 1626 const struct sk_buff *skb, 1627 unsigned int mss_now, 1628 unsigned int max_segs, 1629 int nonagle) 1630 { 1631 const struct tcp_sock *tp = tcp_sk(sk); 1632 u32 partial, needed, window, max_len; 1633 1634 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1635 max_len = mss_now * max_segs; 1636 1637 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1638 return max_len; 1639 1640 needed = min(skb->len, window); 1641 1642 if (max_len <= needed) 1643 return max_len; 1644 1645 partial = needed % mss_now; 1646 /* If last segment is not a full MSS, check if Nagle rules allow us 1647 * to include this last segment in this skb. 1648 * Otherwise, we'll split the skb at last MSS boundary 1649 */ 1650 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1651 return needed - partial; 1652 1653 return needed; 1654 } 1655 1656 /* Can at least one segment of SKB be sent right now, according to the 1657 * congestion window rules? If so, return how many segments are allowed. 1658 */ 1659 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1660 const struct sk_buff *skb) 1661 { 1662 u32 in_flight, cwnd, halfcwnd; 1663 1664 /* Don't be strict about the congestion window for the final FIN. */ 1665 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1666 tcp_skb_pcount(skb) == 1) 1667 return 1; 1668 1669 in_flight = tcp_packets_in_flight(tp); 1670 cwnd = tp->snd_cwnd; 1671 if (in_flight >= cwnd) 1672 return 0; 1673 1674 /* For better scheduling, ensure we have at least 1675 * 2 GSO packets in flight. 1676 */ 1677 halfcwnd = max(cwnd >> 1, 1U); 1678 return min(halfcwnd, cwnd - in_flight); 1679 } 1680 1681 /* Initialize TSO state of a skb. 1682 * This must be invoked the first time we consider transmitting 1683 * SKB onto the wire. 1684 */ 1685 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1686 { 1687 int tso_segs = tcp_skb_pcount(skb); 1688 1689 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1690 tcp_set_skb_tso_segs(skb, mss_now); 1691 tso_segs = tcp_skb_pcount(skb); 1692 } 1693 return tso_segs; 1694 } 1695 1696 1697 /* Return true if the Nagle test allows this packet to be 1698 * sent now. 1699 */ 1700 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1701 unsigned int cur_mss, int nonagle) 1702 { 1703 /* Nagle rule does not apply to frames, which sit in the middle of the 1704 * write_queue (they have no chances to get new data). 1705 * 1706 * This is implemented in the callers, where they modify the 'nonagle' 1707 * argument based upon the location of SKB in the send queue. 1708 */ 1709 if (nonagle & TCP_NAGLE_PUSH) 1710 return true; 1711 1712 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1713 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1714 return true; 1715 1716 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1717 return true; 1718 1719 return false; 1720 } 1721 1722 /* Does at least the first segment of SKB fit into the send window? */ 1723 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1724 const struct sk_buff *skb, 1725 unsigned int cur_mss) 1726 { 1727 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1728 1729 if (skb->len > cur_mss) 1730 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1731 1732 return !after(end_seq, tcp_wnd_end(tp)); 1733 } 1734 1735 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1736 * should be put on the wire right now. If so, it returns the number of 1737 * packets allowed by the congestion window. 1738 */ 1739 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1740 unsigned int cur_mss, int nonagle) 1741 { 1742 const struct tcp_sock *tp = tcp_sk(sk); 1743 unsigned int cwnd_quota; 1744 1745 tcp_init_tso_segs(skb, cur_mss); 1746 1747 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1748 return 0; 1749 1750 cwnd_quota = tcp_cwnd_test(tp, skb); 1751 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1752 cwnd_quota = 0; 1753 1754 return cwnd_quota; 1755 } 1756 1757 /* Test if sending is allowed right now. */ 1758 bool tcp_may_send_now(struct sock *sk) 1759 { 1760 const struct tcp_sock *tp = tcp_sk(sk); 1761 struct sk_buff *skb = tcp_send_head(sk); 1762 1763 return skb && 1764 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1765 (tcp_skb_is_last(sk, skb) ? 1766 tp->nonagle : TCP_NAGLE_PUSH)); 1767 } 1768 1769 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1770 * which is put after SKB on the list. It is very much like 1771 * tcp_fragment() except that it may make several kinds of assumptions 1772 * in order to speed up the splitting operation. In particular, we 1773 * know that all the data is in scatter-gather pages, and that the 1774 * packet has never been sent out before (and thus is not cloned). 1775 */ 1776 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1777 unsigned int mss_now, gfp_t gfp) 1778 { 1779 struct sk_buff *buff; 1780 int nlen = skb->len - len; 1781 u8 flags; 1782 1783 /* All of a TSO frame must be composed of paged data. */ 1784 if (skb->len != skb->data_len) 1785 return tcp_fragment(sk, skb, len, mss_now, gfp); 1786 1787 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1788 if (unlikely(!buff)) 1789 return -ENOMEM; 1790 1791 sk->sk_wmem_queued += buff->truesize; 1792 sk_mem_charge(sk, buff->truesize); 1793 buff->truesize += nlen; 1794 skb->truesize -= nlen; 1795 1796 /* Correct the sequence numbers. */ 1797 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1798 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1799 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1800 1801 /* PSH and FIN should only be set in the second packet. */ 1802 flags = TCP_SKB_CB(skb)->tcp_flags; 1803 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1804 TCP_SKB_CB(buff)->tcp_flags = flags; 1805 1806 /* This packet was never sent out yet, so no SACK bits. */ 1807 TCP_SKB_CB(buff)->sacked = 0; 1808 1809 tcp_skb_fragment_eor(skb, buff); 1810 1811 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1812 skb_split(skb, buff, len); 1813 tcp_fragment_tstamp(skb, buff); 1814 1815 /* Fix up tso_factor for both original and new SKB. */ 1816 tcp_set_skb_tso_segs(skb, mss_now); 1817 tcp_set_skb_tso_segs(buff, mss_now); 1818 1819 /* Link BUFF into the send queue. */ 1820 __skb_header_release(buff); 1821 tcp_insert_write_queue_after(skb, buff, sk); 1822 1823 return 0; 1824 } 1825 1826 /* Try to defer sending, if possible, in order to minimize the amount 1827 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1828 * 1829 * This algorithm is from John Heffner. 1830 */ 1831 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1832 bool *is_cwnd_limited, u32 max_segs) 1833 { 1834 const struct inet_connection_sock *icsk = inet_csk(sk); 1835 u32 age, send_win, cong_win, limit, in_flight; 1836 struct tcp_sock *tp = tcp_sk(sk); 1837 struct skb_mstamp now; 1838 struct sk_buff *head; 1839 int win_divisor; 1840 1841 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1842 goto send_now; 1843 1844 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1845 goto send_now; 1846 1847 /* Avoid bursty behavior by allowing defer 1848 * only if the last write was recent. 1849 */ 1850 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0) 1851 goto send_now; 1852 1853 in_flight = tcp_packets_in_flight(tp); 1854 1855 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1856 1857 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1858 1859 /* From in_flight test above, we know that cwnd > in_flight. */ 1860 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1861 1862 limit = min(send_win, cong_win); 1863 1864 /* If a full-sized TSO skb can be sent, do it. */ 1865 if (limit >= max_segs * tp->mss_cache) 1866 goto send_now; 1867 1868 /* Middle in queue won't get any more data, full sendable already? */ 1869 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1870 goto send_now; 1871 1872 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1873 if (win_divisor) { 1874 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1875 1876 /* If at least some fraction of a window is available, 1877 * just use it. 1878 */ 1879 chunk /= win_divisor; 1880 if (limit >= chunk) 1881 goto send_now; 1882 } else { 1883 /* Different approach, try not to defer past a single 1884 * ACK. Receiver should ACK every other full sized 1885 * frame, so if we have space for more than 3 frames 1886 * then send now. 1887 */ 1888 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1889 goto send_now; 1890 } 1891 1892 head = tcp_write_queue_head(sk); 1893 skb_mstamp_get(&now); 1894 age = skb_mstamp_us_delta(&now, &head->skb_mstamp); 1895 /* If next ACK is likely to come too late (half srtt), do not defer */ 1896 if (age < (tp->srtt_us >> 4)) 1897 goto send_now; 1898 1899 /* Ok, it looks like it is advisable to defer. */ 1900 1901 if (cong_win < send_win && cong_win <= skb->len) 1902 *is_cwnd_limited = true; 1903 1904 return true; 1905 1906 send_now: 1907 return false; 1908 } 1909 1910 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1911 { 1912 struct inet_connection_sock *icsk = inet_csk(sk); 1913 struct tcp_sock *tp = tcp_sk(sk); 1914 struct net *net = sock_net(sk); 1915 u32 interval; 1916 s32 delta; 1917 1918 interval = net->ipv4.sysctl_tcp_probe_interval; 1919 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp; 1920 if (unlikely(delta >= interval * HZ)) { 1921 int mss = tcp_current_mss(sk); 1922 1923 /* Update current search range */ 1924 icsk->icsk_mtup.probe_size = 0; 1925 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1926 sizeof(struct tcphdr) + 1927 icsk->icsk_af_ops->net_header_len; 1928 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1929 1930 /* Update probe time stamp */ 1931 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1932 } 1933 } 1934 1935 /* Create a new MTU probe if we are ready. 1936 * MTU probe is regularly attempting to increase the path MTU by 1937 * deliberately sending larger packets. This discovers routing 1938 * changes resulting in larger path MTUs. 1939 * 1940 * Returns 0 if we should wait to probe (no cwnd available), 1941 * 1 if a probe was sent, 1942 * -1 otherwise 1943 */ 1944 static int tcp_mtu_probe(struct sock *sk) 1945 { 1946 struct inet_connection_sock *icsk = inet_csk(sk); 1947 struct tcp_sock *tp = tcp_sk(sk); 1948 struct sk_buff *skb, *nskb, *next; 1949 struct net *net = sock_net(sk); 1950 int probe_size; 1951 int size_needed; 1952 int copy, len; 1953 int mss_now; 1954 int interval; 1955 1956 /* Not currently probing/verifying, 1957 * not in recovery, 1958 * have enough cwnd, and 1959 * not SACKing (the variable headers throw things off) 1960 */ 1961 if (likely(!icsk->icsk_mtup.enabled || 1962 icsk->icsk_mtup.probe_size || 1963 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1964 tp->snd_cwnd < 11 || 1965 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 1966 return -1; 1967 1968 /* Use binary search for probe_size between tcp_mss_base, 1969 * and current mss_clamp. if (search_high - search_low) 1970 * smaller than a threshold, backoff from probing. 1971 */ 1972 mss_now = tcp_current_mss(sk); 1973 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 1974 icsk->icsk_mtup.search_low) >> 1); 1975 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1976 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 1977 /* When misfortune happens, we are reprobing actively, 1978 * and then reprobe timer has expired. We stick with current 1979 * probing process by not resetting search range to its orignal. 1980 */ 1981 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 1982 interval < net->ipv4.sysctl_tcp_probe_threshold) { 1983 /* Check whether enough time has elaplased for 1984 * another round of probing. 1985 */ 1986 tcp_mtu_check_reprobe(sk); 1987 return -1; 1988 } 1989 1990 /* Have enough data in the send queue to probe? */ 1991 if (tp->write_seq - tp->snd_nxt < size_needed) 1992 return -1; 1993 1994 if (tp->snd_wnd < size_needed) 1995 return -1; 1996 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1997 return 0; 1998 1999 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2000 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2001 if (!tcp_packets_in_flight(tp)) 2002 return -1; 2003 else 2004 return 0; 2005 } 2006 2007 /* We're allowed to probe. Build it now. */ 2008 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2009 if (!nskb) 2010 return -1; 2011 sk->sk_wmem_queued += nskb->truesize; 2012 sk_mem_charge(sk, nskb->truesize); 2013 2014 skb = tcp_send_head(sk); 2015 2016 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2017 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2018 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2019 TCP_SKB_CB(nskb)->sacked = 0; 2020 nskb->csum = 0; 2021 nskb->ip_summed = skb->ip_summed; 2022 2023 tcp_insert_write_queue_before(nskb, skb, sk); 2024 2025 len = 0; 2026 tcp_for_write_queue_from_safe(skb, next, sk) { 2027 copy = min_t(int, skb->len, probe_size - len); 2028 if (nskb->ip_summed) { 2029 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2030 } else { 2031 __wsum csum = skb_copy_and_csum_bits(skb, 0, 2032 skb_put(nskb, copy), 2033 copy, 0); 2034 nskb->csum = csum_block_add(nskb->csum, csum, len); 2035 } 2036 2037 if (skb->len <= copy) { 2038 /* We've eaten all the data from this skb. 2039 * Throw it away. */ 2040 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2041 tcp_unlink_write_queue(skb, sk); 2042 sk_wmem_free_skb(sk, skb); 2043 } else { 2044 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2045 ~(TCPHDR_FIN|TCPHDR_PSH); 2046 if (!skb_shinfo(skb)->nr_frags) { 2047 skb_pull(skb, copy); 2048 if (skb->ip_summed != CHECKSUM_PARTIAL) 2049 skb->csum = csum_partial(skb->data, 2050 skb->len, 0); 2051 } else { 2052 __pskb_trim_head(skb, copy); 2053 tcp_set_skb_tso_segs(skb, mss_now); 2054 } 2055 TCP_SKB_CB(skb)->seq += copy; 2056 } 2057 2058 len += copy; 2059 2060 if (len >= probe_size) 2061 break; 2062 } 2063 tcp_init_tso_segs(nskb, nskb->len); 2064 2065 /* We're ready to send. If this fails, the probe will 2066 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2067 */ 2068 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2069 /* Decrement cwnd here because we are sending 2070 * effectively two packets. */ 2071 tp->snd_cwnd--; 2072 tcp_event_new_data_sent(sk, nskb); 2073 2074 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2075 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2076 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2077 2078 return 1; 2079 } 2080 2081 return -1; 2082 } 2083 2084 /* TCP Small Queues : 2085 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2086 * (These limits are doubled for retransmits) 2087 * This allows for : 2088 * - better RTT estimation and ACK scheduling 2089 * - faster recovery 2090 * - high rates 2091 * Alas, some drivers / subsystems require a fair amount 2092 * of queued bytes to ensure line rate. 2093 * One example is wifi aggregation (802.11 AMPDU) 2094 */ 2095 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2096 unsigned int factor) 2097 { 2098 unsigned int limit; 2099 2100 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2101 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2102 limit <<= factor; 2103 2104 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2105 /* Always send the 1st or 2nd skb in write queue. 2106 * No need to wait for TX completion to call us back, 2107 * after softirq/tasklet schedule. 2108 * This helps when TX completions are delayed too much. 2109 */ 2110 if (skb == sk->sk_write_queue.next || 2111 skb->prev == sk->sk_write_queue.next) 2112 return false; 2113 2114 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2115 /* It is possible TX completion already happened 2116 * before we set TSQ_THROTTLED, so we must 2117 * test again the condition. 2118 */ 2119 smp_mb__after_atomic(); 2120 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2121 return true; 2122 } 2123 return false; 2124 } 2125 2126 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2127 { 2128 const u32 now = tcp_time_stamp; 2129 2130 if (tp->chrono_type > TCP_CHRONO_UNSPEC) 2131 tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start; 2132 tp->chrono_start = now; 2133 tp->chrono_type = new; 2134 } 2135 2136 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2137 { 2138 struct tcp_sock *tp = tcp_sk(sk); 2139 2140 /* If there are multiple conditions worthy of tracking in a 2141 * chronograph then the highest priority enum takes precedence 2142 * over the other conditions. So that if something "more interesting" 2143 * starts happening, stop the previous chrono and start a new one. 2144 */ 2145 if (type > tp->chrono_type) 2146 tcp_chrono_set(tp, type); 2147 } 2148 2149 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2150 { 2151 struct tcp_sock *tp = tcp_sk(sk); 2152 2153 2154 /* There are multiple conditions worthy of tracking in a 2155 * chronograph, so that the highest priority enum takes 2156 * precedence over the other conditions (see tcp_chrono_start). 2157 * If a condition stops, we only stop chrono tracking if 2158 * it's the "most interesting" or current chrono we are 2159 * tracking and starts busy chrono if we have pending data. 2160 */ 2161 if (tcp_write_queue_empty(sk)) 2162 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2163 else if (type == tp->chrono_type) 2164 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2165 } 2166 2167 /* This routine writes packets to the network. It advances the 2168 * send_head. This happens as incoming acks open up the remote 2169 * window for us. 2170 * 2171 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2172 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2173 * account rare use of URG, this is not a big flaw. 2174 * 2175 * Send at most one packet when push_one > 0. Temporarily ignore 2176 * cwnd limit to force at most one packet out when push_one == 2. 2177 2178 * Returns true, if no segments are in flight and we have queued segments, 2179 * but cannot send anything now because of SWS or another problem. 2180 */ 2181 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2182 int push_one, gfp_t gfp) 2183 { 2184 struct tcp_sock *tp = tcp_sk(sk); 2185 struct sk_buff *skb; 2186 unsigned int tso_segs, sent_pkts; 2187 int cwnd_quota; 2188 int result; 2189 bool is_cwnd_limited = false, is_rwnd_limited = false; 2190 u32 max_segs; 2191 2192 sent_pkts = 0; 2193 2194 if (!push_one) { 2195 /* Do MTU probing. */ 2196 result = tcp_mtu_probe(sk); 2197 if (!result) { 2198 return false; 2199 } else if (result > 0) { 2200 sent_pkts = 1; 2201 } 2202 } 2203 2204 max_segs = tcp_tso_segs(sk, mss_now); 2205 while ((skb = tcp_send_head(sk))) { 2206 unsigned int limit; 2207 2208 tso_segs = tcp_init_tso_segs(skb, mss_now); 2209 BUG_ON(!tso_segs); 2210 2211 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2212 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2213 skb_mstamp_get(&skb->skb_mstamp); 2214 goto repair; /* Skip network transmission */ 2215 } 2216 2217 cwnd_quota = tcp_cwnd_test(tp, skb); 2218 if (!cwnd_quota) { 2219 if (push_one == 2) 2220 /* Force out a loss probe pkt. */ 2221 cwnd_quota = 1; 2222 else 2223 break; 2224 } 2225 2226 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2227 is_rwnd_limited = true; 2228 break; 2229 } 2230 2231 if (tso_segs == 1) { 2232 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2233 (tcp_skb_is_last(sk, skb) ? 2234 nonagle : TCP_NAGLE_PUSH)))) 2235 break; 2236 } else { 2237 if (!push_one && 2238 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2239 max_segs)) 2240 break; 2241 } 2242 2243 limit = mss_now; 2244 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2245 limit = tcp_mss_split_point(sk, skb, mss_now, 2246 min_t(unsigned int, 2247 cwnd_quota, 2248 max_segs), 2249 nonagle); 2250 2251 if (skb->len > limit && 2252 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2253 break; 2254 2255 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 2256 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 2257 if (tcp_small_queue_check(sk, skb, 0)) 2258 break; 2259 2260 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2261 break; 2262 2263 repair: 2264 /* Advance the send_head. This one is sent out. 2265 * This call will increment packets_out. 2266 */ 2267 tcp_event_new_data_sent(sk, skb); 2268 2269 tcp_minshall_update(tp, mss_now, skb); 2270 sent_pkts += tcp_skb_pcount(skb); 2271 2272 if (push_one) 2273 break; 2274 } 2275 2276 if (is_rwnd_limited) 2277 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2278 else 2279 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2280 2281 if (likely(sent_pkts)) { 2282 if (tcp_in_cwnd_reduction(sk)) 2283 tp->prr_out += sent_pkts; 2284 2285 /* Send one loss probe per tail loss episode. */ 2286 if (push_one != 2) 2287 tcp_schedule_loss_probe(sk); 2288 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2289 tcp_cwnd_validate(sk, is_cwnd_limited); 2290 return false; 2291 } 2292 return !tp->packets_out && tcp_send_head(sk); 2293 } 2294 2295 bool tcp_schedule_loss_probe(struct sock *sk) 2296 { 2297 struct inet_connection_sock *icsk = inet_csk(sk); 2298 struct tcp_sock *tp = tcp_sk(sk); 2299 u32 timeout, tlp_time_stamp, rto_time_stamp; 2300 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2301 2302 /* No consecutive loss probes. */ 2303 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2304 tcp_rearm_rto(sk); 2305 return false; 2306 } 2307 /* Don't do any loss probe on a Fast Open connection before 3WHS 2308 * finishes. 2309 */ 2310 if (tp->fastopen_rsk) 2311 return false; 2312 2313 /* TLP is only scheduled when next timer event is RTO. */ 2314 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2315 return false; 2316 2317 /* Schedule a loss probe in 2*RTT for SACK capable connections 2318 * in Open state, that are either limited by cwnd or application. 2319 */ 2320 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) || 2321 !tp->packets_out || !tcp_is_sack(tp) || 2322 icsk->icsk_ca_state != TCP_CA_Open) 2323 return false; 2324 2325 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2326 tcp_send_head(sk)) 2327 return false; 2328 2329 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2330 * for delayed ack when there's one outstanding packet. If no RTT 2331 * sample is available then probe after TCP_TIMEOUT_INIT. 2332 */ 2333 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT; 2334 if (tp->packets_out == 1) 2335 timeout = max_t(u32, timeout, 2336 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2337 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2338 2339 /* If RTO is shorter, just schedule TLP in its place. */ 2340 tlp_time_stamp = tcp_time_stamp + timeout; 2341 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2342 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2343 s32 delta = rto_time_stamp - tcp_time_stamp; 2344 if (delta > 0) 2345 timeout = delta; 2346 } 2347 2348 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2349 TCP_RTO_MAX); 2350 return true; 2351 } 2352 2353 /* Thanks to skb fast clones, we can detect if a prior transmit of 2354 * a packet is still in a qdisc or driver queue. 2355 * In this case, there is very little point doing a retransmit ! 2356 */ 2357 static bool skb_still_in_host_queue(const struct sock *sk, 2358 const struct sk_buff *skb) 2359 { 2360 if (unlikely(skb_fclone_busy(sk, skb))) { 2361 NET_INC_STATS(sock_net(sk), 2362 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2363 return true; 2364 } 2365 return false; 2366 } 2367 2368 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2369 * retransmit the last segment. 2370 */ 2371 void tcp_send_loss_probe(struct sock *sk) 2372 { 2373 struct tcp_sock *tp = tcp_sk(sk); 2374 struct sk_buff *skb; 2375 int pcount; 2376 int mss = tcp_current_mss(sk); 2377 2378 skb = tcp_send_head(sk); 2379 if (skb) { 2380 if (tcp_snd_wnd_test(tp, skb, mss)) { 2381 pcount = tp->packets_out; 2382 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2383 if (tp->packets_out > pcount) 2384 goto probe_sent; 2385 goto rearm_timer; 2386 } 2387 skb = tcp_write_queue_prev(sk, skb); 2388 } else { 2389 skb = tcp_write_queue_tail(sk); 2390 } 2391 2392 /* At most one outstanding TLP retransmission. */ 2393 if (tp->tlp_high_seq) 2394 goto rearm_timer; 2395 2396 /* Retransmit last segment. */ 2397 if (WARN_ON(!skb)) 2398 goto rearm_timer; 2399 2400 if (skb_still_in_host_queue(sk, skb)) 2401 goto rearm_timer; 2402 2403 pcount = tcp_skb_pcount(skb); 2404 if (WARN_ON(!pcount)) 2405 goto rearm_timer; 2406 2407 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2408 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2409 GFP_ATOMIC))) 2410 goto rearm_timer; 2411 skb = tcp_write_queue_next(sk, skb); 2412 } 2413 2414 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2415 goto rearm_timer; 2416 2417 if (__tcp_retransmit_skb(sk, skb, 1)) 2418 goto rearm_timer; 2419 2420 /* Record snd_nxt for loss detection. */ 2421 tp->tlp_high_seq = tp->snd_nxt; 2422 2423 probe_sent: 2424 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2425 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2426 inet_csk(sk)->icsk_pending = 0; 2427 rearm_timer: 2428 tcp_rearm_rto(sk); 2429 } 2430 2431 /* Push out any pending frames which were held back due to 2432 * TCP_CORK or attempt at coalescing tiny packets. 2433 * The socket must be locked by the caller. 2434 */ 2435 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2436 int nonagle) 2437 { 2438 /* If we are closed, the bytes will have to remain here. 2439 * In time closedown will finish, we empty the write queue and 2440 * all will be happy. 2441 */ 2442 if (unlikely(sk->sk_state == TCP_CLOSE)) 2443 return; 2444 2445 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2446 sk_gfp_mask(sk, GFP_ATOMIC))) 2447 tcp_check_probe_timer(sk); 2448 } 2449 2450 /* Send _single_ skb sitting at the send head. This function requires 2451 * true push pending frames to setup probe timer etc. 2452 */ 2453 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2454 { 2455 struct sk_buff *skb = tcp_send_head(sk); 2456 2457 BUG_ON(!skb || skb->len < mss_now); 2458 2459 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2460 } 2461 2462 /* This function returns the amount that we can raise the 2463 * usable window based on the following constraints 2464 * 2465 * 1. The window can never be shrunk once it is offered (RFC 793) 2466 * 2. We limit memory per socket 2467 * 2468 * RFC 1122: 2469 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2470 * RECV.NEXT + RCV.WIN fixed until: 2471 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2472 * 2473 * i.e. don't raise the right edge of the window until you can raise 2474 * it at least MSS bytes. 2475 * 2476 * Unfortunately, the recommended algorithm breaks header prediction, 2477 * since header prediction assumes th->window stays fixed. 2478 * 2479 * Strictly speaking, keeping th->window fixed violates the receiver 2480 * side SWS prevention criteria. The problem is that under this rule 2481 * a stream of single byte packets will cause the right side of the 2482 * window to always advance by a single byte. 2483 * 2484 * Of course, if the sender implements sender side SWS prevention 2485 * then this will not be a problem. 2486 * 2487 * BSD seems to make the following compromise: 2488 * 2489 * If the free space is less than the 1/4 of the maximum 2490 * space available and the free space is less than 1/2 mss, 2491 * then set the window to 0. 2492 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2493 * Otherwise, just prevent the window from shrinking 2494 * and from being larger than the largest representable value. 2495 * 2496 * This prevents incremental opening of the window in the regime 2497 * where TCP is limited by the speed of the reader side taking 2498 * data out of the TCP receive queue. It does nothing about 2499 * those cases where the window is constrained on the sender side 2500 * because the pipeline is full. 2501 * 2502 * BSD also seems to "accidentally" limit itself to windows that are a 2503 * multiple of MSS, at least until the free space gets quite small. 2504 * This would appear to be a side effect of the mbuf implementation. 2505 * Combining these two algorithms results in the observed behavior 2506 * of having a fixed window size at almost all times. 2507 * 2508 * Below we obtain similar behavior by forcing the offered window to 2509 * a multiple of the mss when it is feasible to do so. 2510 * 2511 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2512 * Regular options like TIMESTAMP are taken into account. 2513 */ 2514 u32 __tcp_select_window(struct sock *sk) 2515 { 2516 struct inet_connection_sock *icsk = inet_csk(sk); 2517 struct tcp_sock *tp = tcp_sk(sk); 2518 /* MSS for the peer's data. Previous versions used mss_clamp 2519 * here. I don't know if the value based on our guesses 2520 * of peer's MSS is better for the performance. It's more correct 2521 * but may be worse for the performance because of rcv_mss 2522 * fluctuations. --SAW 1998/11/1 2523 */ 2524 int mss = icsk->icsk_ack.rcv_mss; 2525 int free_space = tcp_space(sk); 2526 int allowed_space = tcp_full_space(sk); 2527 int full_space = min_t(int, tp->window_clamp, allowed_space); 2528 int window; 2529 2530 if (unlikely(mss > full_space)) { 2531 mss = full_space; 2532 if (mss <= 0) 2533 return 0; 2534 } 2535 if (free_space < (full_space >> 1)) { 2536 icsk->icsk_ack.quick = 0; 2537 2538 if (tcp_under_memory_pressure(sk)) 2539 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2540 4U * tp->advmss); 2541 2542 /* free_space might become our new window, make sure we don't 2543 * increase it due to wscale. 2544 */ 2545 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2546 2547 /* if free space is less than mss estimate, or is below 1/16th 2548 * of the maximum allowed, try to move to zero-window, else 2549 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2550 * new incoming data is dropped due to memory limits. 2551 * With large window, mss test triggers way too late in order 2552 * to announce zero window in time before rmem limit kicks in. 2553 */ 2554 if (free_space < (allowed_space >> 4) || free_space < mss) 2555 return 0; 2556 } 2557 2558 if (free_space > tp->rcv_ssthresh) 2559 free_space = tp->rcv_ssthresh; 2560 2561 /* Don't do rounding if we are using window scaling, since the 2562 * scaled window will not line up with the MSS boundary anyway. 2563 */ 2564 window = tp->rcv_wnd; 2565 if (tp->rx_opt.rcv_wscale) { 2566 window = free_space; 2567 2568 /* Advertise enough space so that it won't get scaled away. 2569 * Import case: prevent zero window announcement if 2570 * 1<<rcv_wscale > mss. 2571 */ 2572 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2573 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2574 << tp->rx_opt.rcv_wscale); 2575 } else { 2576 /* Get the largest window that is a nice multiple of mss. 2577 * Window clamp already applied above. 2578 * If our current window offering is within 1 mss of the 2579 * free space we just keep it. This prevents the divide 2580 * and multiply from happening most of the time. 2581 * We also don't do any window rounding when the free space 2582 * is too small. 2583 */ 2584 if (window <= free_space - mss || window > free_space) 2585 window = (free_space / mss) * mss; 2586 else if (mss == full_space && 2587 free_space > window + (full_space >> 1)) 2588 window = free_space; 2589 } 2590 2591 return window; 2592 } 2593 2594 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2595 const struct sk_buff *next_skb) 2596 { 2597 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2598 const struct skb_shared_info *next_shinfo = 2599 skb_shinfo(next_skb); 2600 struct skb_shared_info *shinfo = skb_shinfo(skb); 2601 2602 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2603 shinfo->tskey = next_shinfo->tskey; 2604 TCP_SKB_CB(skb)->txstamp_ack |= 2605 TCP_SKB_CB(next_skb)->txstamp_ack; 2606 } 2607 } 2608 2609 /* Collapses two adjacent SKB's during retransmission. */ 2610 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2611 { 2612 struct tcp_sock *tp = tcp_sk(sk); 2613 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2614 int skb_size, next_skb_size; 2615 2616 skb_size = skb->len; 2617 next_skb_size = next_skb->len; 2618 2619 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2620 2621 if (next_skb_size) { 2622 if (next_skb_size <= skb_availroom(skb)) 2623 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2624 next_skb_size); 2625 else if (!skb_shift(skb, next_skb, next_skb_size)) 2626 return false; 2627 } 2628 tcp_highest_sack_combine(sk, next_skb, skb); 2629 2630 tcp_unlink_write_queue(next_skb, sk); 2631 2632 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2633 skb->ip_summed = CHECKSUM_PARTIAL; 2634 2635 if (skb->ip_summed != CHECKSUM_PARTIAL) 2636 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2637 2638 /* Update sequence range on original skb. */ 2639 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2640 2641 /* Merge over control information. This moves PSH/FIN etc. over */ 2642 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2643 2644 /* All done, get rid of second SKB and account for it so 2645 * packet counting does not break. 2646 */ 2647 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2648 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2649 2650 /* changed transmit queue under us so clear hints */ 2651 tcp_clear_retrans_hints_partial(tp); 2652 if (next_skb == tp->retransmit_skb_hint) 2653 tp->retransmit_skb_hint = skb; 2654 2655 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2656 2657 tcp_skb_collapse_tstamp(skb, next_skb); 2658 2659 sk_wmem_free_skb(sk, next_skb); 2660 return true; 2661 } 2662 2663 /* Check if coalescing SKBs is legal. */ 2664 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2665 { 2666 if (tcp_skb_pcount(skb) > 1) 2667 return false; 2668 if (skb_cloned(skb)) 2669 return false; 2670 if (skb == tcp_send_head(sk)) 2671 return false; 2672 /* Some heuristics for collapsing over SACK'd could be invented */ 2673 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2674 return false; 2675 2676 return true; 2677 } 2678 2679 /* Collapse packets in the retransmit queue to make to create 2680 * less packets on the wire. This is only done on retransmission. 2681 */ 2682 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2683 int space) 2684 { 2685 struct tcp_sock *tp = tcp_sk(sk); 2686 struct sk_buff *skb = to, *tmp; 2687 bool first = true; 2688 2689 if (!sysctl_tcp_retrans_collapse) 2690 return; 2691 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2692 return; 2693 2694 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2695 if (!tcp_can_collapse(sk, skb)) 2696 break; 2697 2698 if (!tcp_skb_can_collapse_to(to)) 2699 break; 2700 2701 space -= skb->len; 2702 2703 if (first) { 2704 first = false; 2705 continue; 2706 } 2707 2708 if (space < 0) 2709 break; 2710 2711 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2712 break; 2713 2714 if (!tcp_collapse_retrans(sk, to)) 2715 break; 2716 } 2717 } 2718 2719 /* This retransmits one SKB. Policy decisions and retransmit queue 2720 * state updates are done by the caller. Returns non-zero if an 2721 * error occurred which prevented the send. 2722 */ 2723 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2724 { 2725 struct inet_connection_sock *icsk = inet_csk(sk); 2726 struct tcp_sock *tp = tcp_sk(sk); 2727 unsigned int cur_mss; 2728 int diff, len, err; 2729 2730 2731 /* Inconclusive MTU probe */ 2732 if (icsk->icsk_mtup.probe_size) 2733 icsk->icsk_mtup.probe_size = 0; 2734 2735 /* Do not sent more than we queued. 1/4 is reserved for possible 2736 * copying overhead: fragmentation, tunneling, mangling etc. 2737 */ 2738 if (atomic_read(&sk->sk_wmem_alloc) > 2739 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2740 sk->sk_sndbuf)) 2741 return -EAGAIN; 2742 2743 if (skb_still_in_host_queue(sk, skb)) 2744 return -EBUSY; 2745 2746 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2747 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2748 BUG(); 2749 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2750 return -ENOMEM; 2751 } 2752 2753 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2754 return -EHOSTUNREACH; /* Routing failure or similar. */ 2755 2756 cur_mss = tcp_current_mss(sk); 2757 2758 /* If receiver has shrunk his window, and skb is out of 2759 * new window, do not retransmit it. The exception is the 2760 * case, when window is shrunk to zero. In this case 2761 * our retransmit serves as a zero window probe. 2762 */ 2763 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2764 TCP_SKB_CB(skb)->seq != tp->snd_una) 2765 return -EAGAIN; 2766 2767 len = cur_mss * segs; 2768 if (skb->len > len) { 2769 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC)) 2770 return -ENOMEM; /* We'll try again later. */ 2771 } else { 2772 if (skb_unclone(skb, GFP_ATOMIC)) 2773 return -ENOMEM; 2774 2775 diff = tcp_skb_pcount(skb); 2776 tcp_set_skb_tso_segs(skb, cur_mss); 2777 diff -= tcp_skb_pcount(skb); 2778 if (diff) 2779 tcp_adjust_pcount(sk, skb, diff); 2780 if (skb->len < cur_mss) 2781 tcp_retrans_try_collapse(sk, skb, cur_mss); 2782 } 2783 2784 /* RFC3168, section 6.1.1.1. ECN fallback */ 2785 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2786 tcp_ecn_clear_syn(sk, skb); 2787 2788 /* Update global and local TCP statistics. */ 2789 segs = tcp_skb_pcount(skb); 2790 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2791 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2792 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2793 tp->total_retrans += segs; 2794 2795 /* make sure skb->data is aligned on arches that require it 2796 * and check if ack-trimming & collapsing extended the headroom 2797 * beyond what csum_start can cover. 2798 */ 2799 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2800 skb_headroom(skb) >= 0xFFFF)) { 2801 struct sk_buff *nskb; 2802 2803 skb_mstamp_get(&skb->skb_mstamp); 2804 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2805 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2806 -ENOBUFS; 2807 } else { 2808 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2809 } 2810 2811 if (likely(!err)) { 2812 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2813 } else if (err != -EBUSY) { 2814 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2815 } 2816 return err; 2817 } 2818 2819 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2820 { 2821 struct tcp_sock *tp = tcp_sk(sk); 2822 int err = __tcp_retransmit_skb(sk, skb, segs); 2823 2824 if (err == 0) { 2825 #if FASTRETRANS_DEBUG > 0 2826 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2827 net_dbg_ratelimited("retrans_out leaked\n"); 2828 } 2829 #endif 2830 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2831 tp->retrans_out += tcp_skb_pcount(skb); 2832 2833 /* Save stamp of the first retransmit. */ 2834 if (!tp->retrans_stamp) 2835 tp->retrans_stamp = tcp_skb_timestamp(skb); 2836 2837 } 2838 2839 if (tp->undo_retrans < 0) 2840 tp->undo_retrans = 0; 2841 tp->undo_retrans += tcp_skb_pcount(skb); 2842 return err; 2843 } 2844 2845 /* This gets called after a retransmit timeout, and the initially 2846 * retransmitted data is acknowledged. It tries to continue 2847 * resending the rest of the retransmit queue, until either 2848 * we've sent it all or the congestion window limit is reached. 2849 * If doing SACK, the first ACK which comes back for a timeout 2850 * based retransmit packet might feed us FACK information again. 2851 * If so, we use it to avoid unnecessarily retransmissions. 2852 */ 2853 void tcp_xmit_retransmit_queue(struct sock *sk) 2854 { 2855 const struct inet_connection_sock *icsk = inet_csk(sk); 2856 struct tcp_sock *tp = tcp_sk(sk); 2857 struct sk_buff *skb; 2858 struct sk_buff *hole = NULL; 2859 u32 max_segs; 2860 int mib_idx; 2861 2862 if (!tp->packets_out) 2863 return; 2864 2865 if (tp->retransmit_skb_hint) { 2866 skb = tp->retransmit_skb_hint; 2867 } else { 2868 skb = tcp_write_queue_head(sk); 2869 } 2870 2871 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2872 tcp_for_write_queue_from(skb, sk) { 2873 __u8 sacked; 2874 int segs; 2875 2876 if (skb == tcp_send_head(sk)) 2877 break; 2878 /* we could do better than to assign each time */ 2879 if (!hole) 2880 tp->retransmit_skb_hint = skb; 2881 2882 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2883 if (segs <= 0) 2884 return; 2885 sacked = TCP_SKB_CB(skb)->sacked; 2886 /* In case tcp_shift_skb_data() have aggregated large skbs, 2887 * we need to make sure not sending too bigs TSO packets 2888 */ 2889 segs = min_t(int, segs, max_segs); 2890 2891 if (tp->retrans_out >= tp->lost_out) { 2892 break; 2893 } else if (!(sacked & TCPCB_LOST)) { 2894 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2895 hole = skb; 2896 continue; 2897 2898 } else { 2899 if (icsk->icsk_ca_state != TCP_CA_Loss) 2900 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2901 else 2902 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2903 } 2904 2905 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2906 continue; 2907 2908 if (tcp_small_queue_check(sk, skb, 1)) 2909 return; 2910 2911 if (tcp_retransmit_skb(sk, skb, segs)) 2912 return; 2913 2914 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 2915 2916 if (tcp_in_cwnd_reduction(sk)) 2917 tp->prr_out += tcp_skb_pcount(skb); 2918 2919 if (skb == tcp_write_queue_head(sk) && 2920 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 2921 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2922 inet_csk(sk)->icsk_rto, 2923 TCP_RTO_MAX); 2924 } 2925 } 2926 2927 /* We allow to exceed memory limits for FIN packets to expedite 2928 * connection tear down and (memory) recovery. 2929 * Otherwise tcp_send_fin() could be tempted to either delay FIN 2930 * or even be forced to close flow without any FIN. 2931 * In general, we want to allow one skb per socket to avoid hangs 2932 * with edge trigger epoll() 2933 */ 2934 void sk_forced_mem_schedule(struct sock *sk, int size) 2935 { 2936 int amt; 2937 2938 if (size <= sk->sk_forward_alloc) 2939 return; 2940 amt = sk_mem_pages(size); 2941 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2942 sk_memory_allocated_add(sk, amt); 2943 2944 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2945 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 2946 } 2947 2948 /* Send a FIN. The caller locks the socket for us. 2949 * We should try to send a FIN packet really hard, but eventually give up. 2950 */ 2951 void tcp_send_fin(struct sock *sk) 2952 { 2953 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 2954 struct tcp_sock *tp = tcp_sk(sk); 2955 2956 /* Optimization, tack on the FIN if we have one skb in write queue and 2957 * this skb was not yet sent, or we are under memory pressure. 2958 * Note: in the latter case, FIN packet will be sent after a timeout, 2959 * as TCP stack thinks it has already been transmitted. 2960 */ 2961 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) { 2962 coalesce: 2963 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 2964 TCP_SKB_CB(tskb)->end_seq++; 2965 tp->write_seq++; 2966 if (!tcp_send_head(sk)) { 2967 /* This means tskb was already sent. 2968 * Pretend we included the FIN on previous transmit. 2969 * We need to set tp->snd_nxt to the value it would have 2970 * if FIN had been sent. This is because retransmit path 2971 * does not change tp->snd_nxt. 2972 */ 2973 tp->snd_nxt++; 2974 return; 2975 } 2976 } else { 2977 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 2978 if (unlikely(!skb)) { 2979 if (tskb) 2980 goto coalesce; 2981 return; 2982 } 2983 skb_reserve(skb, MAX_TCP_HEADER); 2984 sk_forced_mem_schedule(sk, skb->truesize); 2985 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2986 tcp_init_nondata_skb(skb, tp->write_seq, 2987 TCPHDR_ACK | TCPHDR_FIN); 2988 tcp_queue_skb(sk, skb); 2989 } 2990 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 2991 } 2992 2993 /* We get here when a process closes a file descriptor (either due to 2994 * an explicit close() or as a byproduct of exit()'ing) and there 2995 * was unread data in the receive queue. This behavior is recommended 2996 * by RFC 2525, section 2.17. -DaveM 2997 */ 2998 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2999 { 3000 struct sk_buff *skb; 3001 3002 /* NOTE: No TCP options attached and we never retransmit this. */ 3003 skb = alloc_skb(MAX_TCP_HEADER, priority); 3004 if (!skb) { 3005 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3006 return; 3007 } 3008 3009 /* Reserve space for headers and prepare control bits. */ 3010 skb_reserve(skb, MAX_TCP_HEADER); 3011 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3012 TCPHDR_ACK | TCPHDR_RST); 3013 skb_mstamp_get(&skb->skb_mstamp); 3014 /* Send it off. */ 3015 if (tcp_transmit_skb(sk, skb, 0, priority)) 3016 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3017 3018 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3019 } 3020 3021 /* Send a crossed SYN-ACK during socket establishment. 3022 * WARNING: This routine must only be called when we have already sent 3023 * a SYN packet that crossed the incoming SYN that caused this routine 3024 * to get called. If this assumption fails then the initial rcv_wnd 3025 * and rcv_wscale values will not be correct. 3026 */ 3027 int tcp_send_synack(struct sock *sk) 3028 { 3029 struct sk_buff *skb; 3030 3031 skb = tcp_write_queue_head(sk); 3032 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3033 pr_debug("%s: wrong queue state\n", __func__); 3034 return -EFAULT; 3035 } 3036 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3037 if (skb_cloned(skb)) { 3038 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 3039 if (!nskb) 3040 return -ENOMEM; 3041 tcp_unlink_write_queue(skb, sk); 3042 __skb_header_release(nskb); 3043 __tcp_add_write_queue_head(sk, nskb); 3044 sk_wmem_free_skb(sk, skb); 3045 sk->sk_wmem_queued += nskb->truesize; 3046 sk_mem_charge(sk, nskb->truesize); 3047 skb = nskb; 3048 } 3049 3050 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3051 tcp_ecn_send_synack(sk, skb); 3052 } 3053 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3054 } 3055 3056 /** 3057 * tcp_make_synack - Prepare a SYN-ACK. 3058 * sk: listener socket 3059 * dst: dst entry attached to the SYNACK 3060 * req: request_sock pointer 3061 * 3062 * Allocate one skb and build a SYNACK packet. 3063 * @dst is consumed : Caller should not use it again. 3064 */ 3065 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3066 struct request_sock *req, 3067 struct tcp_fastopen_cookie *foc, 3068 enum tcp_synack_type synack_type) 3069 { 3070 struct inet_request_sock *ireq = inet_rsk(req); 3071 const struct tcp_sock *tp = tcp_sk(sk); 3072 struct tcp_md5sig_key *md5 = NULL; 3073 struct tcp_out_options opts; 3074 struct sk_buff *skb; 3075 int tcp_header_size; 3076 struct tcphdr *th; 3077 int mss; 3078 3079 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3080 if (unlikely(!skb)) { 3081 dst_release(dst); 3082 return NULL; 3083 } 3084 /* Reserve space for headers. */ 3085 skb_reserve(skb, MAX_TCP_HEADER); 3086 3087 switch (synack_type) { 3088 case TCP_SYNACK_NORMAL: 3089 skb_set_owner_w(skb, req_to_sk(req)); 3090 break; 3091 case TCP_SYNACK_COOKIE: 3092 /* Under synflood, we do not attach skb to a socket, 3093 * to avoid false sharing. 3094 */ 3095 break; 3096 case TCP_SYNACK_FASTOPEN: 3097 /* sk is a const pointer, because we want to express multiple 3098 * cpu might call us concurrently. 3099 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3100 */ 3101 skb_set_owner_w(skb, (struct sock *)sk); 3102 break; 3103 } 3104 skb_dst_set(skb, dst); 3105 3106 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3107 3108 memset(&opts, 0, sizeof(opts)); 3109 #ifdef CONFIG_SYN_COOKIES 3110 if (unlikely(req->cookie_ts)) 3111 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 3112 else 3113 #endif 3114 skb_mstamp_get(&skb->skb_mstamp); 3115 3116 #ifdef CONFIG_TCP_MD5SIG 3117 rcu_read_lock(); 3118 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3119 #endif 3120 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3121 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) + 3122 sizeof(*th); 3123 3124 skb_push(skb, tcp_header_size); 3125 skb_reset_transport_header(skb); 3126 3127 th = (struct tcphdr *)skb->data; 3128 memset(th, 0, sizeof(struct tcphdr)); 3129 th->syn = 1; 3130 th->ack = 1; 3131 tcp_ecn_make_synack(req, th); 3132 th->source = htons(ireq->ir_num); 3133 th->dest = ireq->ir_rmt_port; 3134 /* Setting of flags are superfluous here for callers (and ECE is 3135 * not even correctly set) 3136 */ 3137 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3138 TCPHDR_SYN | TCPHDR_ACK); 3139 3140 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3141 /* XXX data is queued and acked as is. No buffer/window check */ 3142 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3143 3144 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3145 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3146 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3147 th->doff = (tcp_header_size >> 2); 3148 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3149 3150 #ifdef CONFIG_TCP_MD5SIG 3151 /* Okay, we have all we need - do the md5 hash if needed */ 3152 if (md5) 3153 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3154 md5, req_to_sk(req), skb); 3155 rcu_read_unlock(); 3156 #endif 3157 3158 /* Do not fool tcpdump (if any), clean our debris */ 3159 skb->tstamp = 0; 3160 return skb; 3161 } 3162 EXPORT_SYMBOL(tcp_make_synack); 3163 3164 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3165 { 3166 struct inet_connection_sock *icsk = inet_csk(sk); 3167 const struct tcp_congestion_ops *ca; 3168 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3169 3170 if (ca_key == TCP_CA_UNSPEC) 3171 return; 3172 3173 rcu_read_lock(); 3174 ca = tcp_ca_find_key(ca_key); 3175 if (likely(ca && try_module_get(ca->owner))) { 3176 module_put(icsk->icsk_ca_ops->owner); 3177 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3178 icsk->icsk_ca_ops = ca; 3179 } 3180 rcu_read_unlock(); 3181 } 3182 3183 /* Do all connect socket setups that can be done AF independent. */ 3184 static void tcp_connect_init(struct sock *sk) 3185 { 3186 const struct dst_entry *dst = __sk_dst_get(sk); 3187 struct tcp_sock *tp = tcp_sk(sk); 3188 __u8 rcv_wscale; 3189 3190 /* We'll fix this up when we get a response from the other end. 3191 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3192 */ 3193 tp->tcp_header_len = sizeof(struct tcphdr) + 3194 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 3195 3196 #ifdef CONFIG_TCP_MD5SIG 3197 if (tp->af_specific->md5_lookup(sk, sk)) 3198 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3199 #endif 3200 3201 /* If user gave his TCP_MAXSEG, record it to clamp */ 3202 if (tp->rx_opt.user_mss) 3203 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3204 tp->max_window = 0; 3205 tcp_mtup_init(sk); 3206 tcp_sync_mss(sk, dst_mtu(dst)); 3207 3208 tcp_ca_dst_init(sk, dst); 3209 3210 if (!tp->window_clamp) 3211 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3212 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3213 3214 tcp_initialize_rcv_mss(sk); 3215 3216 /* limit the window selection if the user enforce a smaller rx buffer */ 3217 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3218 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3219 tp->window_clamp = tcp_full_space(sk); 3220 3221 tcp_select_initial_window(tcp_full_space(sk), 3222 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3223 &tp->rcv_wnd, 3224 &tp->window_clamp, 3225 sysctl_tcp_window_scaling, 3226 &rcv_wscale, 3227 dst_metric(dst, RTAX_INITRWND)); 3228 3229 tp->rx_opt.rcv_wscale = rcv_wscale; 3230 tp->rcv_ssthresh = tp->rcv_wnd; 3231 3232 sk->sk_err = 0; 3233 sock_reset_flag(sk, SOCK_DONE); 3234 tp->snd_wnd = 0; 3235 tcp_init_wl(tp, 0); 3236 tp->snd_una = tp->write_seq; 3237 tp->snd_sml = tp->write_seq; 3238 tp->snd_up = tp->write_seq; 3239 tp->snd_nxt = tp->write_seq; 3240 3241 if (likely(!tp->repair)) 3242 tp->rcv_nxt = 0; 3243 else 3244 tp->rcv_tstamp = tcp_time_stamp; 3245 tp->rcv_wup = tp->rcv_nxt; 3246 tp->copied_seq = tp->rcv_nxt; 3247 3248 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3249 inet_csk(sk)->icsk_retransmits = 0; 3250 tcp_clear_retrans(tp); 3251 } 3252 3253 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3254 { 3255 struct tcp_sock *tp = tcp_sk(sk); 3256 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3257 3258 tcb->end_seq += skb->len; 3259 __skb_header_release(skb); 3260 __tcp_add_write_queue_tail(sk, skb); 3261 sk->sk_wmem_queued += skb->truesize; 3262 sk_mem_charge(sk, skb->truesize); 3263 tp->write_seq = tcb->end_seq; 3264 tp->packets_out += tcp_skb_pcount(skb); 3265 } 3266 3267 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3268 * queue a data-only packet after the regular SYN, such that regular SYNs 3269 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3270 * only the SYN sequence, the data are retransmitted in the first ACK. 3271 * If cookie is not cached or other error occurs, falls back to send a 3272 * regular SYN with Fast Open cookie request option. 3273 */ 3274 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3275 { 3276 struct tcp_sock *tp = tcp_sk(sk); 3277 struct tcp_fastopen_request *fo = tp->fastopen_req; 3278 int space, err = 0; 3279 struct sk_buff *syn_data; 3280 3281 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3282 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3283 goto fallback; 3284 3285 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3286 * user-MSS. Reserve maximum option space for middleboxes that add 3287 * private TCP options. The cost is reduced data space in SYN :( 3288 */ 3289 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3290 3291 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3292 MAX_TCP_OPTION_SPACE; 3293 3294 space = min_t(size_t, space, fo->size); 3295 3296 /* limit to order-0 allocations */ 3297 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3298 3299 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3300 if (!syn_data) 3301 goto fallback; 3302 syn_data->ip_summed = CHECKSUM_PARTIAL; 3303 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3304 if (space) { 3305 int copied = copy_from_iter(skb_put(syn_data, space), space, 3306 &fo->data->msg_iter); 3307 if (unlikely(!copied)) { 3308 kfree_skb(syn_data); 3309 goto fallback; 3310 } 3311 if (copied != space) { 3312 skb_trim(syn_data, copied); 3313 space = copied; 3314 } 3315 } 3316 /* No more data pending in inet_wait_for_connect() */ 3317 if (space == fo->size) 3318 fo->data = NULL; 3319 fo->copied = space; 3320 3321 tcp_connect_queue_skb(sk, syn_data); 3322 if (syn_data->len) 3323 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3324 3325 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3326 3327 syn->skb_mstamp = syn_data->skb_mstamp; 3328 3329 /* Now full SYN+DATA was cloned and sent (or not), 3330 * remove the SYN from the original skb (syn_data) 3331 * we keep in write queue in case of a retransmit, as we 3332 * also have the SYN packet (with no data) in the same queue. 3333 */ 3334 TCP_SKB_CB(syn_data)->seq++; 3335 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3336 if (!err) { 3337 tp->syn_data = (fo->copied > 0); 3338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3339 goto done; 3340 } 3341 3342 fallback: 3343 /* Send a regular SYN with Fast Open cookie request option */ 3344 if (fo->cookie.len > 0) 3345 fo->cookie.len = 0; 3346 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3347 if (err) 3348 tp->syn_fastopen = 0; 3349 done: 3350 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3351 return err; 3352 } 3353 3354 /* Build a SYN and send it off. */ 3355 int tcp_connect(struct sock *sk) 3356 { 3357 struct tcp_sock *tp = tcp_sk(sk); 3358 struct sk_buff *buff; 3359 int err; 3360 3361 tcp_connect_init(sk); 3362 3363 if (unlikely(tp->repair)) { 3364 tcp_finish_connect(sk, NULL); 3365 return 0; 3366 } 3367 3368 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3369 if (unlikely(!buff)) 3370 return -ENOBUFS; 3371 3372 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3373 tp->retrans_stamp = tcp_time_stamp; 3374 tcp_connect_queue_skb(sk, buff); 3375 tcp_ecn_send_syn(sk, buff); 3376 3377 /* Send off SYN; include data in Fast Open. */ 3378 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3379 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3380 if (err == -ECONNREFUSED) 3381 return err; 3382 3383 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3384 * in order to make this packet get counted in tcpOutSegs. 3385 */ 3386 tp->snd_nxt = tp->write_seq; 3387 tp->pushed_seq = tp->write_seq; 3388 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3389 3390 /* Timer for repeating the SYN until an answer. */ 3391 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3392 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3393 return 0; 3394 } 3395 EXPORT_SYMBOL(tcp_connect); 3396 3397 /* Send out a delayed ack, the caller does the policy checking 3398 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3399 * for details. 3400 */ 3401 void tcp_send_delayed_ack(struct sock *sk) 3402 { 3403 struct inet_connection_sock *icsk = inet_csk(sk); 3404 int ato = icsk->icsk_ack.ato; 3405 unsigned long timeout; 3406 3407 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3408 3409 if (ato > TCP_DELACK_MIN) { 3410 const struct tcp_sock *tp = tcp_sk(sk); 3411 int max_ato = HZ / 2; 3412 3413 if (icsk->icsk_ack.pingpong || 3414 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3415 max_ato = TCP_DELACK_MAX; 3416 3417 /* Slow path, intersegment interval is "high". */ 3418 3419 /* If some rtt estimate is known, use it to bound delayed ack. 3420 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3421 * directly. 3422 */ 3423 if (tp->srtt_us) { 3424 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3425 TCP_DELACK_MIN); 3426 3427 if (rtt < max_ato) 3428 max_ato = rtt; 3429 } 3430 3431 ato = min(ato, max_ato); 3432 } 3433 3434 /* Stay within the limit we were given */ 3435 timeout = jiffies + ato; 3436 3437 /* Use new timeout only if there wasn't a older one earlier. */ 3438 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3439 /* If delack timer was blocked or is about to expire, 3440 * send ACK now. 3441 */ 3442 if (icsk->icsk_ack.blocked || 3443 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3444 tcp_send_ack(sk); 3445 return; 3446 } 3447 3448 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3449 timeout = icsk->icsk_ack.timeout; 3450 } 3451 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3452 icsk->icsk_ack.timeout = timeout; 3453 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3454 } 3455 3456 /* This routine sends an ack and also updates the window. */ 3457 void tcp_send_ack(struct sock *sk) 3458 { 3459 struct sk_buff *buff; 3460 3461 /* If we have been reset, we may not send again. */ 3462 if (sk->sk_state == TCP_CLOSE) 3463 return; 3464 3465 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3466 3467 /* We are not putting this on the write queue, so 3468 * tcp_transmit_skb() will set the ownership to this 3469 * sock. 3470 */ 3471 buff = alloc_skb(MAX_TCP_HEADER, 3472 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3473 if (unlikely(!buff)) { 3474 inet_csk_schedule_ack(sk); 3475 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3476 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3477 TCP_DELACK_MAX, TCP_RTO_MAX); 3478 return; 3479 } 3480 3481 /* Reserve space for headers and prepare control bits. */ 3482 skb_reserve(buff, MAX_TCP_HEADER); 3483 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3484 3485 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3486 * too much. 3487 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3488 */ 3489 skb_set_tcp_pure_ack(buff); 3490 3491 /* Send it off, this clears delayed acks for us. */ 3492 skb_mstamp_get(&buff->skb_mstamp); 3493 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3494 } 3495 EXPORT_SYMBOL_GPL(tcp_send_ack); 3496 3497 /* This routine sends a packet with an out of date sequence 3498 * number. It assumes the other end will try to ack it. 3499 * 3500 * Question: what should we make while urgent mode? 3501 * 4.4BSD forces sending single byte of data. We cannot send 3502 * out of window data, because we have SND.NXT==SND.MAX... 3503 * 3504 * Current solution: to send TWO zero-length segments in urgent mode: 3505 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3506 * out-of-date with SND.UNA-1 to probe window. 3507 */ 3508 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3509 { 3510 struct tcp_sock *tp = tcp_sk(sk); 3511 struct sk_buff *skb; 3512 3513 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3514 skb = alloc_skb(MAX_TCP_HEADER, 3515 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3516 if (!skb) 3517 return -1; 3518 3519 /* Reserve space for headers and set control bits. */ 3520 skb_reserve(skb, MAX_TCP_HEADER); 3521 /* Use a previous sequence. This should cause the other 3522 * end to send an ack. Don't queue or clone SKB, just 3523 * send it. 3524 */ 3525 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3526 skb_mstamp_get(&skb->skb_mstamp); 3527 NET_INC_STATS(sock_net(sk), mib); 3528 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3529 } 3530 3531 void tcp_send_window_probe(struct sock *sk) 3532 { 3533 if (sk->sk_state == TCP_ESTABLISHED) { 3534 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3535 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3536 } 3537 } 3538 3539 /* Initiate keepalive or window probe from timer. */ 3540 int tcp_write_wakeup(struct sock *sk, int mib) 3541 { 3542 struct tcp_sock *tp = tcp_sk(sk); 3543 struct sk_buff *skb; 3544 3545 if (sk->sk_state == TCP_CLOSE) 3546 return -1; 3547 3548 skb = tcp_send_head(sk); 3549 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3550 int err; 3551 unsigned int mss = tcp_current_mss(sk); 3552 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3553 3554 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3555 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3556 3557 /* We are probing the opening of a window 3558 * but the window size is != 0 3559 * must have been a result SWS avoidance ( sender ) 3560 */ 3561 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3562 skb->len > mss) { 3563 seg_size = min(seg_size, mss); 3564 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3565 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3566 return -1; 3567 } else if (!tcp_skb_pcount(skb)) 3568 tcp_set_skb_tso_segs(skb, mss); 3569 3570 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3571 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3572 if (!err) 3573 tcp_event_new_data_sent(sk, skb); 3574 return err; 3575 } else { 3576 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3577 tcp_xmit_probe_skb(sk, 1, mib); 3578 return tcp_xmit_probe_skb(sk, 0, mib); 3579 } 3580 } 3581 3582 /* A window probe timeout has occurred. If window is not closed send 3583 * a partial packet else a zero probe. 3584 */ 3585 void tcp_send_probe0(struct sock *sk) 3586 { 3587 struct inet_connection_sock *icsk = inet_csk(sk); 3588 struct tcp_sock *tp = tcp_sk(sk); 3589 struct net *net = sock_net(sk); 3590 unsigned long probe_max; 3591 int err; 3592 3593 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3594 3595 if (tp->packets_out || !tcp_send_head(sk)) { 3596 /* Cancel probe timer, if it is not required. */ 3597 icsk->icsk_probes_out = 0; 3598 icsk->icsk_backoff = 0; 3599 return; 3600 } 3601 3602 if (err <= 0) { 3603 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3604 icsk->icsk_backoff++; 3605 icsk->icsk_probes_out++; 3606 probe_max = TCP_RTO_MAX; 3607 } else { 3608 /* If packet was not sent due to local congestion, 3609 * do not backoff and do not remember icsk_probes_out. 3610 * Let local senders to fight for local resources. 3611 * 3612 * Use accumulated backoff yet. 3613 */ 3614 if (!icsk->icsk_probes_out) 3615 icsk->icsk_probes_out = 1; 3616 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3617 } 3618 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3619 tcp_probe0_when(sk, probe_max), 3620 TCP_RTO_MAX); 3621 } 3622 3623 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3624 { 3625 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3626 struct flowi fl; 3627 int res; 3628 3629 tcp_rsk(req)->txhash = net_tx_rndhash(); 3630 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3631 if (!res) { 3632 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3633 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3634 if (unlikely(tcp_passive_fastopen(sk))) 3635 tcp_sk(sk)->total_retrans++; 3636 } 3637 return res; 3638 } 3639 EXPORT_SYMBOL(tcp_rtx_synack); 3640