xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 4e1a33b1)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 			   int push_one, gfp_t gfp);
67 
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 	struct inet_connection_sock *icsk = inet_csk(sk);
72 	struct tcp_sock *tp = tcp_sk(sk);
73 	unsigned int prior_packets = tp->packets_out;
74 
75 	tcp_advance_send_head(sk, skb);
76 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 		tcp_rearm_rto(sk);
81 
82 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 		      tcp_skb_pcount(skb));
84 }
85 
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87  * window scaling factor due to loss of precision.
88  * If window has been shrunk, what should we make? It is not clear at all.
89  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91  * invalid. OK, let's make this for now:
92  */
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 	const struct tcp_sock *tp = tcp_sk(sk);
96 
97 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 	    (tp->rx_opt.wscale_ok &&
99 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 		return tp->snd_nxt;
101 	else
102 		return tcp_wnd_end(tp);
103 }
104 
105 /* Calculate mss to advertise in SYN segment.
106  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107  *
108  * 1. It is independent of path mtu.
109  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111  *    attached devices, because some buggy hosts are confused by
112  *    large MSS.
113  * 4. We do not make 3, we advertise MSS, calculated from first
114  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
115  *    This may be overridden via information stored in routing table.
116  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117  *    probably even Jumbo".
118  */
119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 	struct tcp_sock *tp = tcp_sk(sk);
122 	const struct dst_entry *dst = __sk_dst_get(sk);
123 	int mss = tp->advmss;
124 
125 	if (dst) {
126 		unsigned int metric = dst_metric_advmss(dst);
127 
128 		if (metric < mss) {
129 			mss = metric;
130 			tp->advmss = mss;
131 		}
132 	}
133 
134 	return (__u16)mss;
135 }
136 
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138  * This is the first part of cwnd validation mechanism.
139  */
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 	struct tcp_sock *tp = tcp_sk(sk);
143 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 	u32 cwnd = tp->snd_cwnd;
145 
146 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147 
148 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 	restart_cwnd = min(restart_cwnd, cwnd);
150 
151 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 		cwnd >>= 1;
153 	tp->snd_cwnd = max(cwnd, restart_cwnd);
154 	tp->snd_cwnd_stamp = tcp_time_stamp;
155 	tp->snd_cwnd_used = 0;
156 }
157 
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 				struct sock *sk)
161 {
162 	struct inet_connection_sock *icsk = inet_csk(sk);
163 	const u32 now = tcp_time_stamp;
164 
165 	if (tcp_packets_in_flight(tp) == 0)
166 		tcp_ca_event(sk, CA_EVENT_TX_START);
167 
168 	tp->lsndtime = now;
169 
170 	/* If it is a reply for ato after last received
171 	 * packet, enter pingpong mode.
172 	 */
173 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 		icsk->icsk_ack.pingpong = 1;
175 }
176 
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 	tcp_dec_quickack_mode(sk, pkts);
181 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183 
184 
185 u32 tcp_default_init_rwnd(u32 mss)
186 {
187 	/* Initial receive window should be twice of TCP_INIT_CWND to
188 	 * enable proper sending of new unsent data during fast recovery
189 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
190 	 * limit when mss is larger than 1460.
191 	 */
192 	u32 init_rwnd = TCP_INIT_CWND * 2;
193 
194 	if (mss > 1460)
195 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
196 	return init_rwnd;
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
206 void tcp_select_initial_window(int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (*window_clamp == 0)
215 		(*window_clamp) = (65535 << 14);
216 	space = min(*window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = (space / mss) * mss;
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (sysctl_tcp_workaround_signed_windows)
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = space;
234 
235 	(*rcv_wscale) = 0;
236 	if (wscale_ok) {
237 		/* Set window scaling on max possible window
238 		 * See RFC1323 for an explanation of the limit to 14
239 		 */
240 		space = max_t(u32, space, sysctl_tcp_rmem[2]);
241 		space = max_t(u32, space, sysctl_rmem_max);
242 		space = min_t(u32, space, *window_clamp);
243 		while (space > 65535 && (*rcv_wscale) < 14) {
244 			space >>= 1;
245 			(*rcv_wscale)++;
246 		}
247 	}
248 
249 	if (mss > (1 << *rcv_wscale)) {
250 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
251 			init_rcv_wnd = tcp_default_init_rwnd(mss);
252 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
253 	}
254 
255 	/* Set the clamp no higher than max representable value */
256 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
257 }
258 EXPORT_SYMBOL(tcp_select_initial_window);
259 
260 /* Chose a new window to advertise, update state in tcp_sock for the
261  * socket, and return result with RFC1323 scaling applied.  The return
262  * value can be stuffed directly into th->window for an outgoing
263  * frame.
264  */
265 static u16 tcp_select_window(struct sock *sk)
266 {
267 	struct tcp_sock *tp = tcp_sk(sk);
268 	u32 old_win = tp->rcv_wnd;
269 	u32 cur_win = tcp_receive_window(tp);
270 	u32 new_win = __tcp_select_window(sk);
271 
272 	/* Never shrink the offered window */
273 	if (new_win < cur_win) {
274 		/* Danger Will Robinson!
275 		 * Don't update rcv_wup/rcv_wnd here or else
276 		 * we will not be able to advertise a zero
277 		 * window in time.  --DaveM
278 		 *
279 		 * Relax Will Robinson.
280 		 */
281 		if (new_win == 0)
282 			NET_INC_STATS(sock_net(sk),
283 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
284 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
285 	}
286 	tp->rcv_wnd = new_win;
287 	tp->rcv_wup = tp->rcv_nxt;
288 
289 	/* Make sure we do not exceed the maximum possible
290 	 * scaled window.
291 	 */
292 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
293 		new_win = min(new_win, MAX_TCP_WINDOW);
294 	else
295 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
296 
297 	/* RFC1323 scaling applied */
298 	new_win >>= tp->rx_opt.rcv_wscale;
299 
300 	/* If we advertise zero window, disable fast path. */
301 	if (new_win == 0) {
302 		tp->pred_flags = 0;
303 		if (old_win)
304 			NET_INC_STATS(sock_net(sk),
305 				      LINUX_MIB_TCPTOZEROWINDOWADV);
306 	} else if (old_win == 0) {
307 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
308 	}
309 
310 	return new_win;
311 }
312 
313 /* Packet ECN state for a SYN-ACK */
314 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
315 {
316 	const struct tcp_sock *tp = tcp_sk(sk);
317 
318 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
319 	if (!(tp->ecn_flags & TCP_ECN_OK))
320 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
321 	else if (tcp_ca_needs_ecn(sk))
322 		INET_ECN_xmit(sk);
323 }
324 
325 /* Packet ECN state for a SYN.  */
326 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
327 {
328 	struct tcp_sock *tp = tcp_sk(sk);
329 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
330 		       tcp_ca_needs_ecn(sk);
331 
332 	if (!use_ecn) {
333 		const struct dst_entry *dst = __sk_dst_get(sk);
334 
335 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
336 			use_ecn = true;
337 	}
338 
339 	tp->ecn_flags = 0;
340 
341 	if (use_ecn) {
342 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
343 		tp->ecn_flags = TCP_ECN_OK;
344 		if (tcp_ca_needs_ecn(sk))
345 			INET_ECN_xmit(sk);
346 	}
347 }
348 
349 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
350 {
351 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
352 		/* tp->ecn_flags are cleared at a later point in time when
353 		 * SYN ACK is ultimatively being received.
354 		 */
355 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
356 }
357 
358 static void
359 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
360 {
361 	if (inet_rsk(req)->ecn_ok)
362 		th->ece = 1;
363 }
364 
365 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
366  * be sent.
367  */
368 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
369 			 struct tcphdr *th, int tcp_header_len)
370 {
371 	struct tcp_sock *tp = tcp_sk(sk);
372 
373 	if (tp->ecn_flags & TCP_ECN_OK) {
374 		/* Not-retransmitted data segment: set ECT and inject CWR. */
375 		if (skb->len != tcp_header_len &&
376 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
377 			INET_ECN_xmit(sk);
378 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
379 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
380 				th->cwr = 1;
381 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
382 			}
383 		} else if (!tcp_ca_needs_ecn(sk)) {
384 			/* ACK or retransmitted segment: clear ECT|CE */
385 			INET_ECN_dontxmit(sk);
386 		}
387 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
388 			th->ece = 1;
389 	}
390 }
391 
392 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
393  * auto increment end seqno.
394  */
395 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
396 {
397 	skb->ip_summed = CHECKSUM_PARTIAL;
398 	skb->csum = 0;
399 
400 	TCP_SKB_CB(skb)->tcp_flags = flags;
401 	TCP_SKB_CB(skb)->sacked = 0;
402 
403 	tcp_skb_pcount_set(skb, 1);
404 
405 	TCP_SKB_CB(skb)->seq = seq;
406 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
407 		seq++;
408 	TCP_SKB_CB(skb)->end_seq = seq;
409 }
410 
411 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
412 {
413 	return tp->snd_una != tp->snd_up;
414 }
415 
416 #define OPTION_SACK_ADVERTISE	(1 << 0)
417 #define OPTION_TS		(1 << 1)
418 #define OPTION_MD5		(1 << 2)
419 #define OPTION_WSCALE		(1 << 3)
420 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
421 
422 struct tcp_out_options {
423 	u16 options;		/* bit field of OPTION_* */
424 	u16 mss;		/* 0 to disable */
425 	u8 ws;			/* window scale, 0 to disable */
426 	u8 num_sack_blocks;	/* number of SACK blocks to include */
427 	u8 hash_size;		/* bytes in hash_location */
428 	__u8 *hash_location;	/* temporary pointer, overloaded */
429 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
430 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
431 };
432 
433 /* Write previously computed TCP options to the packet.
434  *
435  * Beware: Something in the Internet is very sensitive to the ordering of
436  * TCP options, we learned this through the hard way, so be careful here.
437  * Luckily we can at least blame others for their non-compliance but from
438  * inter-operability perspective it seems that we're somewhat stuck with
439  * the ordering which we have been using if we want to keep working with
440  * those broken things (not that it currently hurts anybody as there isn't
441  * particular reason why the ordering would need to be changed).
442  *
443  * At least SACK_PERM as the first option is known to lead to a disaster
444  * (but it may well be that other scenarios fail similarly).
445  */
446 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
447 			      struct tcp_out_options *opts)
448 {
449 	u16 options = opts->options;	/* mungable copy */
450 
451 	if (unlikely(OPTION_MD5 & options)) {
452 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
453 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
454 		/* overload cookie hash location */
455 		opts->hash_location = (__u8 *)ptr;
456 		ptr += 4;
457 	}
458 
459 	if (unlikely(opts->mss)) {
460 		*ptr++ = htonl((TCPOPT_MSS << 24) |
461 			       (TCPOLEN_MSS << 16) |
462 			       opts->mss);
463 	}
464 
465 	if (likely(OPTION_TS & options)) {
466 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
467 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
468 				       (TCPOLEN_SACK_PERM << 16) |
469 				       (TCPOPT_TIMESTAMP << 8) |
470 				       TCPOLEN_TIMESTAMP);
471 			options &= ~OPTION_SACK_ADVERTISE;
472 		} else {
473 			*ptr++ = htonl((TCPOPT_NOP << 24) |
474 				       (TCPOPT_NOP << 16) |
475 				       (TCPOPT_TIMESTAMP << 8) |
476 				       TCPOLEN_TIMESTAMP);
477 		}
478 		*ptr++ = htonl(opts->tsval);
479 		*ptr++ = htonl(opts->tsecr);
480 	}
481 
482 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
483 		*ptr++ = htonl((TCPOPT_NOP << 24) |
484 			       (TCPOPT_NOP << 16) |
485 			       (TCPOPT_SACK_PERM << 8) |
486 			       TCPOLEN_SACK_PERM);
487 	}
488 
489 	if (unlikely(OPTION_WSCALE & options)) {
490 		*ptr++ = htonl((TCPOPT_NOP << 24) |
491 			       (TCPOPT_WINDOW << 16) |
492 			       (TCPOLEN_WINDOW << 8) |
493 			       opts->ws);
494 	}
495 
496 	if (unlikely(opts->num_sack_blocks)) {
497 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
498 			tp->duplicate_sack : tp->selective_acks;
499 		int this_sack;
500 
501 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
502 			       (TCPOPT_NOP  << 16) |
503 			       (TCPOPT_SACK <<  8) |
504 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
505 						     TCPOLEN_SACK_PERBLOCK)));
506 
507 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
508 		     ++this_sack) {
509 			*ptr++ = htonl(sp[this_sack].start_seq);
510 			*ptr++ = htonl(sp[this_sack].end_seq);
511 		}
512 
513 		tp->rx_opt.dsack = 0;
514 	}
515 
516 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
517 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
518 		u8 *p = (u8 *)ptr;
519 		u32 len; /* Fast Open option length */
520 
521 		if (foc->exp) {
522 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
523 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
524 				     TCPOPT_FASTOPEN_MAGIC);
525 			p += TCPOLEN_EXP_FASTOPEN_BASE;
526 		} else {
527 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
528 			*p++ = TCPOPT_FASTOPEN;
529 			*p++ = len;
530 		}
531 
532 		memcpy(p, foc->val, foc->len);
533 		if ((len & 3) == 2) {
534 			p[foc->len] = TCPOPT_NOP;
535 			p[foc->len + 1] = TCPOPT_NOP;
536 		}
537 		ptr += (len + 3) >> 2;
538 	}
539 }
540 
541 /* Compute TCP options for SYN packets. This is not the final
542  * network wire format yet.
543  */
544 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
545 				struct tcp_out_options *opts,
546 				struct tcp_md5sig_key **md5)
547 {
548 	struct tcp_sock *tp = tcp_sk(sk);
549 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
550 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
551 
552 #ifdef CONFIG_TCP_MD5SIG
553 	*md5 = tp->af_specific->md5_lookup(sk, sk);
554 	if (*md5) {
555 		opts->options |= OPTION_MD5;
556 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
557 	}
558 #else
559 	*md5 = NULL;
560 #endif
561 
562 	/* We always get an MSS option.  The option bytes which will be seen in
563 	 * normal data packets should timestamps be used, must be in the MSS
564 	 * advertised.  But we subtract them from tp->mss_cache so that
565 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
566 	 * fact here if necessary.  If we don't do this correctly, as a
567 	 * receiver we won't recognize data packets as being full sized when we
568 	 * should, and thus we won't abide by the delayed ACK rules correctly.
569 	 * SACKs don't matter, we never delay an ACK when we have any of those
570 	 * going out.  */
571 	opts->mss = tcp_advertise_mss(sk);
572 	remaining -= TCPOLEN_MSS_ALIGNED;
573 
574 	if (likely(sysctl_tcp_timestamps && !*md5)) {
575 		opts->options |= OPTION_TS;
576 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
577 		opts->tsecr = tp->rx_opt.ts_recent;
578 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
579 	}
580 	if (likely(sysctl_tcp_window_scaling)) {
581 		opts->ws = tp->rx_opt.rcv_wscale;
582 		opts->options |= OPTION_WSCALE;
583 		remaining -= TCPOLEN_WSCALE_ALIGNED;
584 	}
585 	if (likely(sysctl_tcp_sack)) {
586 		opts->options |= OPTION_SACK_ADVERTISE;
587 		if (unlikely(!(OPTION_TS & opts->options)))
588 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
589 	}
590 
591 	if (fastopen && fastopen->cookie.len >= 0) {
592 		u32 need = fastopen->cookie.len;
593 
594 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
595 					       TCPOLEN_FASTOPEN_BASE;
596 		need = (need + 3) & ~3U;  /* Align to 32 bits */
597 		if (remaining >= need) {
598 			opts->options |= OPTION_FAST_OPEN_COOKIE;
599 			opts->fastopen_cookie = &fastopen->cookie;
600 			remaining -= need;
601 			tp->syn_fastopen = 1;
602 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
603 		}
604 	}
605 
606 	return MAX_TCP_OPTION_SPACE - remaining;
607 }
608 
609 /* Set up TCP options for SYN-ACKs. */
610 static unsigned int tcp_synack_options(struct request_sock *req,
611 				       unsigned int mss, struct sk_buff *skb,
612 				       struct tcp_out_options *opts,
613 				       const struct tcp_md5sig_key *md5,
614 				       struct tcp_fastopen_cookie *foc)
615 {
616 	struct inet_request_sock *ireq = inet_rsk(req);
617 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
618 
619 #ifdef CONFIG_TCP_MD5SIG
620 	if (md5) {
621 		opts->options |= OPTION_MD5;
622 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
623 
624 		/* We can't fit any SACK blocks in a packet with MD5 + TS
625 		 * options. There was discussion about disabling SACK
626 		 * rather than TS in order to fit in better with old,
627 		 * buggy kernels, but that was deemed to be unnecessary.
628 		 */
629 		ireq->tstamp_ok &= !ireq->sack_ok;
630 	}
631 #endif
632 
633 	/* We always send an MSS option. */
634 	opts->mss = mss;
635 	remaining -= TCPOLEN_MSS_ALIGNED;
636 
637 	if (likely(ireq->wscale_ok)) {
638 		opts->ws = ireq->rcv_wscale;
639 		opts->options |= OPTION_WSCALE;
640 		remaining -= TCPOLEN_WSCALE_ALIGNED;
641 	}
642 	if (likely(ireq->tstamp_ok)) {
643 		opts->options |= OPTION_TS;
644 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
645 		opts->tsecr = req->ts_recent;
646 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
647 	}
648 	if (likely(ireq->sack_ok)) {
649 		opts->options |= OPTION_SACK_ADVERTISE;
650 		if (unlikely(!ireq->tstamp_ok))
651 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
652 	}
653 	if (foc != NULL && foc->len >= 0) {
654 		u32 need = foc->len;
655 
656 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
657 				   TCPOLEN_FASTOPEN_BASE;
658 		need = (need + 3) & ~3U;  /* Align to 32 bits */
659 		if (remaining >= need) {
660 			opts->options |= OPTION_FAST_OPEN_COOKIE;
661 			opts->fastopen_cookie = foc;
662 			remaining -= need;
663 		}
664 	}
665 
666 	return MAX_TCP_OPTION_SPACE - remaining;
667 }
668 
669 /* Compute TCP options for ESTABLISHED sockets. This is not the
670  * final wire format yet.
671  */
672 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
673 					struct tcp_out_options *opts,
674 					struct tcp_md5sig_key **md5)
675 {
676 	struct tcp_sock *tp = tcp_sk(sk);
677 	unsigned int size = 0;
678 	unsigned int eff_sacks;
679 
680 	opts->options = 0;
681 
682 #ifdef CONFIG_TCP_MD5SIG
683 	*md5 = tp->af_specific->md5_lookup(sk, sk);
684 	if (unlikely(*md5)) {
685 		opts->options |= OPTION_MD5;
686 		size += TCPOLEN_MD5SIG_ALIGNED;
687 	}
688 #else
689 	*md5 = NULL;
690 #endif
691 
692 	if (likely(tp->rx_opt.tstamp_ok)) {
693 		opts->options |= OPTION_TS;
694 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
695 		opts->tsecr = tp->rx_opt.ts_recent;
696 		size += TCPOLEN_TSTAMP_ALIGNED;
697 	}
698 
699 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
700 	if (unlikely(eff_sacks)) {
701 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
702 		opts->num_sack_blocks =
703 			min_t(unsigned int, eff_sacks,
704 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
705 			      TCPOLEN_SACK_PERBLOCK);
706 		size += TCPOLEN_SACK_BASE_ALIGNED +
707 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
708 	}
709 
710 	return size;
711 }
712 
713 
714 /* TCP SMALL QUEUES (TSQ)
715  *
716  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
717  * to reduce RTT and bufferbloat.
718  * We do this using a special skb destructor (tcp_wfree).
719  *
720  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
721  * needs to be reallocated in a driver.
722  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
723  *
724  * Since transmit from skb destructor is forbidden, we use a tasklet
725  * to process all sockets that eventually need to send more skbs.
726  * We use one tasklet per cpu, with its own queue of sockets.
727  */
728 struct tsq_tasklet {
729 	struct tasklet_struct	tasklet;
730 	struct list_head	head; /* queue of tcp sockets */
731 };
732 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
733 
734 static void tcp_tsq_handler(struct sock *sk)
735 {
736 	if ((1 << sk->sk_state) &
737 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
738 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
739 		struct tcp_sock *tp = tcp_sk(sk);
740 
741 		if (tp->lost_out > tp->retrans_out &&
742 		    tp->snd_cwnd > tcp_packets_in_flight(tp))
743 			tcp_xmit_retransmit_queue(sk);
744 
745 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
746 			       0, GFP_ATOMIC);
747 	}
748 }
749 /*
750  * One tasklet per cpu tries to send more skbs.
751  * We run in tasklet context but need to disable irqs when
752  * transferring tsq->head because tcp_wfree() might
753  * interrupt us (non NAPI drivers)
754  */
755 static void tcp_tasklet_func(unsigned long data)
756 {
757 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
758 	LIST_HEAD(list);
759 	unsigned long flags;
760 	struct list_head *q, *n;
761 	struct tcp_sock *tp;
762 	struct sock *sk;
763 
764 	local_irq_save(flags);
765 	list_splice_init(&tsq->head, &list);
766 	local_irq_restore(flags);
767 
768 	list_for_each_safe(q, n, &list) {
769 		tp = list_entry(q, struct tcp_sock, tsq_node);
770 		list_del(&tp->tsq_node);
771 
772 		sk = (struct sock *)tp;
773 		smp_mb__before_atomic();
774 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
775 
776 		if (!sk->sk_lock.owned &&
777 		    test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
778 			bh_lock_sock(sk);
779 			if (!sock_owned_by_user(sk)) {
780 				clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
781 				tcp_tsq_handler(sk);
782 			}
783 			bh_unlock_sock(sk);
784 		}
785 
786 		sk_free(sk);
787 	}
788 }
789 
790 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
791 			  TCPF_WRITE_TIMER_DEFERRED |	\
792 			  TCPF_DELACK_TIMER_DEFERRED |	\
793 			  TCPF_MTU_REDUCED_DEFERRED)
794 /**
795  * tcp_release_cb - tcp release_sock() callback
796  * @sk: socket
797  *
798  * called from release_sock() to perform protocol dependent
799  * actions before socket release.
800  */
801 void tcp_release_cb(struct sock *sk)
802 {
803 	unsigned long flags, nflags;
804 
805 	/* perform an atomic operation only if at least one flag is set */
806 	do {
807 		flags = sk->sk_tsq_flags;
808 		if (!(flags & TCP_DEFERRED_ALL))
809 			return;
810 		nflags = flags & ~TCP_DEFERRED_ALL;
811 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
812 
813 	if (flags & TCPF_TSQ_DEFERRED)
814 		tcp_tsq_handler(sk);
815 
816 	/* Here begins the tricky part :
817 	 * We are called from release_sock() with :
818 	 * 1) BH disabled
819 	 * 2) sk_lock.slock spinlock held
820 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
821 	 *
822 	 * But following code is meant to be called from BH handlers,
823 	 * so we should keep BH disabled, but early release socket ownership
824 	 */
825 	sock_release_ownership(sk);
826 
827 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
828 		tcp_write_timer_handler(sk);
829 		__sock_put(sk);
830 	}
831 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
832 		tcp_delack_timer_handler(sk);
833 		__sock_put(sk);
834 	}
835 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
836 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
837 		__sock_put(sk);
838 	}
839 }
840 EXPORT_SYMBOL(tcp_release_cb);
841 
842 void __init tcp_tasklet_init(void)
843 {
844 	int i;
845 
846 	for_each_possible_cpu(i) {
847 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
848 
849 		INIT_LIST_HEAD(&tsq->head);
850 		tasklet_init(&tsq->tasklet,
851 			     tcp_tasklet_func,
852 			     (unsigned long)tsq);
853 	}
854 }
855 
856 /*
857  * Write buffer destructor automatically called from kfree_skb.
858  * We can't xmit new skbs from this context, as we might already
859  * hold qdisc lock.
860  */
861 void tcp_wfree(struct sk_buff *skb)
862 {
863 	struct sock *sk = skb->sk;
864 	struct tcp_sock *tp = tcp_sk(sk);
865 	unsigned long flags, nval, oval;
866 	int wmem;
867 
868 	/* Keep one reference on sk_wmem_alloc.
869 	 * Will be released by sk_free() from here or tcp_tasklet_func()
870 	 */
871 	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
872 
873 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
874 	 * Wait until our queues (qdisc + devices) are drained.
875 	 * This gives :
876 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
877 	 * - chance for incoming ACK (processed by another cpu maybe)
878 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
879 	 */
880 	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
881 		goto out;
882 
883 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
884 		struct tsq_tasklet *tsq;
885 		bool empty;
886 
887 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
888 			goto out;
889 
890 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
891 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
892 		if (nval != oval)
893 			continue;
894 
895 		/* queue this socket to tasklet queue */
896 		local_irq_save(flags);
897 		tsq = this_cpu_ptr(&tsq_tasklet);
898 		empty = list_empty(&tsq->head);
899 		list_add(&tp->tsq_node, &tsq->head);
900 		if (empty)
901 			tasklet_schedule(&tsq->tasklet);
902 		local_irq_restore(flags);
903 		return;
904 	}
905 out:
906 	sk_free(sk);
907 }
908 
909 /* This routine actually transmits TCP packets queued in by
910  * tcp_do_sendmsg().  This is used by both the initial
911  * transmission and possible later retransmissions.
912  * All SKB's seen here are completely headerless.  It is our
913  * job to build the TCP header, and pass the packet down to
914  * IP so it can do the same plus pass the packet off to the
915  * device.
916  *
917  * We are working here with either a clone of the original
918  * SKB, or a fresh unique copy made by the retransmit engine.
919  */
920 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
921 			    gfp_t gfp_mask)
922 {
923 	const struct inet_connection_sock *icsk = inet_csk(sk);
924 	struct inet_sock *inet;
925 	struct tcp_sock *tp;
926 	struct tcp_skb_cb *tcb;
927 	struct tcp_out_options opts;
928 	unsigned int tcp_options_size, tcp_header_size;
929 	struct tcp_md5sig_key *md5;
930 	struct tcphdr *th;
931 	int err;
932 
933 	BUG_ON(!skb || !tcp_skb_pcount(skb));
934 	tp = tcp_sk(sk);
935 
936 	if (clone_it) {
937 		skb_mstamp_get(&skb->skb_mstamp);
938 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
939 			- tp->snd_una;
940 		tcp_rate_skb_sent(sk, skb);
941 
942 		if (unlikely(skb_cloned(skb)))
943 			skb = pskb_copy(skb, gfp_mask);
944 		else
945 			skb = skb_clone(skb, gfp_mask);
946 		if (unlikely(!skb))
947 			return -ENOBUFS;
948 	}
949 
950 	inet = inet_sk(sk);
951 	tcb = TCP_SKB_CB(skb);
952 	memset(&opts, 0, sizeof(opts));
953 
954 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
955 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
956 	else
957 		tcp_options_size = tcp_established_options(sk, skb, &opts,
958 							   &md5);
959 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
960 
961 	/* if no packet is in qdisc/device queue, then allow XPS to select
962 	 * another queue. We can be called from tcp_tsq_handler()
963 	 * which holds one reference to sk_wmem_alloc.
964 	 *
965 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
966 	 * One way to get this would be to set skb->truesize = 2 on them.
967 	 */
968 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
969 
970 	/* If we had to use memory reserve to allocate this skb,
971 	 * this might cause drops if packet is looped back :
972 	 * Other socket might not have SOCK_MEMALLOC.
973 	 * Packets not looped back do not care about pfmemalloc.
974 	 */
975 	skb->pfmemalloc = 0;
976 
977 	skb_push(skb, tcp_header_size);
978 	skb_reset_transport_header(skb);
979 
980 	skb_orphan(skb);
981 	skb->sk = sk;
982 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
983 	skb_set_hash_from_sk(skb, sk);
984 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
985 
986 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
987 
988 	/* Build TCP header and checksum it. */
989 	th = (struct tcphdr *)skb->data;
990 	th->source		= inet->inet_sport;
991 	th->dest		= inet->inet_dport;
992 	th->seq			= htonl(tcb->seq);
993 	th->ack_seq		= htonl(tp->rcv_nxt);
994 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
995 					tcb->tcp_flags);
996 
997 	th->check		= 0;
998 	th->urg_ptr		= 0;
999 
1000 	/* The urg_mode check is necessary during a below snd_una win probe */
1001 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1002 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1003 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1004 			th->urg = 1;
1005 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1006 			th->urg_ptr = htons(0xFFFF);
1007 			th->urg = 1;
1008 		}
1009 	}
1010 
1011 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1012 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1013 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1014 		th->window      = htons(tcp_select_window(sk));
1015 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1016 	} else {
1017 		/* RFC1323: The window in SYN & SYN/ACK segments
1018 		 * is never scaled.
1019 		 */
1020 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1021 	}
1022 #ifdef CONFIG_TCP_MD5SIG
1023 	/* Calculate the MD5 hash, as we have all we need now */
1024 	if (md5) {
1025 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1026 		tp->af_specific->calc_md5_hash(opts.hash_location,
1027 					       md5, sk, skb);
1028 	}
1029 #endif
1030 
1031 	icsk->icsk_af_ops->send_check(sk, skb);
1032 
1033 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1034 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1035 
1036 	if (skb->len != tcp_header_size) {
1037 		tcp_event_data_sent(tp, sk);
1038 		tp->data_segs_out += tcp_skb_pcount(skb);
1039 	}
1040 
1041 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1042 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1043 			      tcp_skb_pcount(skb));
1044 
1045 	tp->segs_out += tcp_skb_pcount(skb);
1046 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1047 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1048 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1049 
1050 	/* Our usage of tstamp should remain private */
1051 	skb->tstamp = 0;
1052 
1053 	/* Cleanup our debris for IP stacks */
1054 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1055 			       sizeof(struct inet6_skb_parm)));
1056 
1057 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1058 
1059 	if (likely(err <= 0))
1060 		return err;
1061 
1062 	tcp_enter_cwr(sk);
1063 
1064 	return net_xmit_eval(err);
1065 }
1066 
1067 /* This routine just queues the buffer for sending.
1068  *
1069  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1070  * otherwise socket can stall.
1071  */
1072 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1073 {
1074 	struct tcp_sock *tp = tcp_sk(sk);
1075 
1076 	/* Advance write_seq and place onto the write_queue. */
1077 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1078 	__skb_header_release(skb);
1079 	tcp_add_write_queue_tail(sk, skb);
1080 	sk->sk_wmem_queued += skb->truesize;
1081 	sk_mem_charge(sk, skb->truesize);
1082 }
1083 
1084 /* Initialize TSO segments for a packet. */
1085 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1086 {
1087 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1088 		/* Avoid the costly divide in the normal
1089 		 * non-TSO case.
1090 		 */
1091 		tcp_skb_pcount_set(skb, 1);
1092 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1093 	} else {
1094 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1095 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1096 	}
1097 }
1098 
1099 /* When a modification to fackets out becomes necessary, we need to check
1100  * skb is counted to fackets_out or not.
1101  */
1102 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1103 				   int decr)
1104 {
1105 	struct tcp_sock *tp = tcp_sk(sk);
1106 
1107 	if (!tp->sacked_out || tcp_is_reno(tp))
1108 		return;
1109 
1110 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1111 		tp->fackets_out -= decr;
1112 }
1113 
1114 /* Pcount in the middle of the write queue got changed, we need to do various
1115  * tweaks to fix counters
1116  */
1117 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1118 {
1119 	struct tcp_sock *tp = tcp_sk(sk);
1120 
1121 	tp->packets_out -= decr;
1122 
1123 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1124 		tp->sacked_out -= decr;
1125 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1126 		tp->retrans_out -= decr;
1127 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1128 		tp->lost_out -= decr;
1129 
1130 	/* Reno case is special. Sigh... */
1131 	if (tcp_is_reno(tp) && decr > 0)
1132 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1133 
1134 	tcp_adjust_fackets_out(sk, skb, decr);
1135 
1136 	if (tp->lost_skb_hint &&
1137 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1138 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1139 		tp->lost_cnt_hint -= decr;
1140 
1141 	tcp_verify_left_out(tp);
1142 }
1143 
1144 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1145 {
1146 	return TCP_SKB_CB(skb)->txstamp_ack ||
1147 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1148 }
1149 
1150 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1151 {
1152 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1153 
1154 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1155 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1156 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1157 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1158 
1159 		shinfo->tx_flags &= ~tsflags;
1160 		shinfo2->tx_flags |= tsflags;
1161 		swap(shinfo->tskey, shinfo2->tskey);
1162 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1163 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1164 	}
1165 }
1166 
1167 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1168 {
1169 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1170 	TCP_SKB_CB(skb)->eor = 0;
1171 }
1172 
1173 /* Function to create two new TCP segments.  Shrinks the given segment
1174  * to the specified size and appends a new segment with the rest of the
1175  * packet to the list.  This won't be called frequently, I hope.
1176  * Remember, these are still headerless SKBs at this point.
1177  */
1178 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1179 		 unsigned int mss_now, gfp_t gfp)
1180 {
1181 	struct tcp_sock *tp = tcp_sk(sk);
1182 	struct sk_buff *buff;
1183 	int nsize, old_factor;
1184 	int nlen;
1185 	u8 flags;
1186 
1187 	if (WARN_ON(len > skb->len))
1188 		return -EINVAL;
1189 
1190 	nsize = skb_headlen(skb) - len;
1191 	if (nsize < 0)
1192 		nsize = 0;
1193 
1194 	if (skb_unclone(skb, gfp))
1195 		return -ENOMEM;
1196 
1197 	/* Get a new skb... force flag on. */
1198 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1199 	if (!buff)
1200 		return -ENOMEM; /* We'll just try again later. */
1201 
1202 	sk->sk_wmem_queued += buff->truesize;
1203 	sk_mem_charge(sk, buff->truesize);
1204 	nlen = skb->len - len - nsize;
1205 	buff->truesize += nlen;
1206 	skb->truesize -= nlen;
1207 
1208 	/* Correct the sequence numbers. */
1209 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1210 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1211 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1212 
1213 	/* PSH and FIN should only be set in the second packet. */
1214 	flags = TCP_SKB_CB(skb)->tcp_flags;
1215 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1216 	TCP_SKB_CB(buff)->tcp_flags = flags;
1217 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1218 	tcp_skb_fragment_eor(skb, buff);
1219 
1220 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1221 		/* Copy and checksum data tail into the new buffer. */
1222 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1223 						       skb_put(buff, nsize),
1224 						       nsize, 0);
1225 
1226 		skb_trim(skb, len);
1227 
1228 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1229 	} else {
1230 		skb->ip_summed = CHECKSUM_PARTIAL;
1231 		skb_split(skb, buff, len);
1232 	}
1233 
1234 	buff->ip_summed = skb->ip_summed;
1235 
1236 	buff->tstamp = skb->tstamp;
1237 	tcp_fragment_tstamp(skb, buff);
1238 
1239 	old_factor = tcp_skb_pcount(skb);
1240 
1241 	/* Fix up tso_factor for both original and new SKB.  */
1242 	tcp_set_skb_tso_segs(skb, mss_now);
1243 	tcp_set_skb_tso_segs(buff, mss_now);
1244 
1245 	/* Update delivered info for the new segment */
1246 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1247 
1248 	/* If this packet has been sent out already, we must
1249 	 * adjust the various packet counters.
1250 	 */
1251 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1252 		int diff = old_factor - tcp_skb_pcount(skb) -
1253 			tcp_skb_pcount(buff);
1254 
1255 		if (diff)
1256 			tcp_adjust_pcount(sk, skb, diff);
1257 	}
1258 
1259 	/* Link BUFF into the send queue. */
1260 	__skb_header_release(buff);
1261 	tcp_insert_write_queue_after(skb, buff, sk);
1262 
1263 	return 0;
1264 }
1265 
1266 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1267  * eventually). The difference is that pulled data not copied, but
1268  * immediately discarded.
1269  */
1270 static void __pskb_trim_head(struct sk_buff *skb, int len)
1271 {
1272 	struct skb_shared_info *shinfo;
1273 	int i, k, eat;
1274 
1275 	eat = min_t(int, len, skb_headlen(skb));
1276 	if (eat) {
1277 		__skb_pull(skb, eat);
1278 		len -= eat;
1279 		if (!len)
1280 			return;
1281 	}
1282 	eat = len;
1283 	k = 0;
1284 	shinfo = skb_shinfo(skb);
1285 	for (i = 0; i < shinfo->nr_frags; i++) {
1286 		int size = skb_frag_size(&shinfo->frags[i]);
1287 
1288 		if (size <= eat) {
1289 			skb_frag_unref(skb, i);
1290 			eat -= size;
1291 		} else {
1292 			shinfo->frags[k] = shinfo->frags[i];
1293 			if (eat) {
1294 				shinfo->frags[k].page_offset += eat;
1295 				skb_frag_size_sub(&shinfo->frags[k], eat);
1296 				eat = 0;
1297 			}
1298 			k++;
1299 		}
1300 	}
1301 	shinfo->nr_frags = k;
1302 
1303 	skb_reset_tail_pointer(skb);
1304 	skb->data_len -= len;
1305 	skb->len = skb->data_len;
1306 }
1307 
1308 /* Remove acked data from a packet in the transmit queue. */
1309 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1310 {
1311 	if (skb_unclone(skb, GFP_ATOMIC))
1312 		return -ENOMEM;
1313 
1314 	__pskb_trim_head(skb, len);
1315 
1316 	TCP_SKB_CB(skb)->seq += len;
1317 	skb->ip_summed = CHECKSUM_PARTIAL;
1318 
1319 	skb->truesize	     -= len;
1320 	sk->sk_wmem_queued   -= len;
1321 	sk_mem_uncharge(sk, len);
1322 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1323 
1324 	/* Any change of skb->len requires recalculation of tso factor. */
1325 	if (tcp_skb_pcount(skb) > 1)
1326 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1327 
1328 	return 0;
1329 }
1330 
1331 /* Calculate MSS not accounting any TCP options.  */
1332 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1333 {
1334 	const struct tcp_sock *tp = tcp_sk(sk);
1335 	const struct inet_connection_sock *icsk = inet_csk(sk);
1336 	int mss_now;
1337 
1338 	/* Calculate base mss without TCP options:
1339 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1340 	 */
1341 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1342 
1343 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1344 	if (icsk->icsk_af_ops->net_frag_header_len) {
1345 		const struct dst_entry *dst = __sk_dst_get(sk);
1346 
1347 		if (dst && dst_allfrag(dst))
1348 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1349 	}
1350 
1351 	/* Clamp it (mss_clamp does not include tcp options) */
1352 	if (mss_now > tp->rx_opt.mss_clamp)
1353 		mss_now = tp->rx_opt.mss_clamp;
1354 
1355 	/* Now subtract optional transport overhead */
1356 	mss_now -= icsk->icsk_ext_hdr_len;
1357 
1358 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1359 	if (mss_now < 48)
1360 		mss_now = 48;
1361 	return mss_now;
1362 }
1363 
1364 /* Calculate MSS. Not accounting for SACKs here.  */
1365 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1366 {
1367 	/* Subtract TCP options size, not including SACKs */
1368 	return __tcp_mtu_to_mss(sk, pmtu) -
1369 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1370 }
1371 
1372 /* Inverse of above */
1373 int tcp_mss_to_mtu(struct sock *sk, int mss)
1374 {
1375 	const struct tcp_sock *tp = tcp_sk(sk);
1376 	const struct inet_connection_sock *icsk = inet_csk(sk);
1377 	int mtu;
1378 
1379 	mtu = mss +
1380 	      tp->tcp_header_len +
1381 	      icsk->icsk_ext_hdr_len +
1382 	      icsk->icsk_af_ops->net_header_len;
1383 
1384 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1385 	if (icsk->icsk_af_ops->net_frag_header_len) {
1386 		const struct dst_entry *dst = __sk_dst_get(sk);
1387 
1388 		if (dst && dst_allfrag(dst))
1389 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1390 	}
1391 	return mtu;
1392 }
1393 EXPORT_SYMBOL(tcp_mss_to_mtu);
1394 
1395 /* MTU probing init per socket */
1396 void tcp_mtup_init(struct sock *sk)
1397 {
1398 	struct tcp_sock *tp = tcp_sk(sk);
1399 	struct inet_connection_sock *icsk = inet_csk(sk);
1400 	struct net *net = sock_net(sk);
1401 
1402 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1403 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1404 			       icsk->icsk_af_ops->net_header_len;
1405 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1406 	icsk->icsk_mtup.probe_size = 0;
1407 	if (icsk->icsk_mtup.enabled)
1408 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1409 }
1410 EXPORT_SYMBOL(tcp_mtup_init);
1411 
1412 /* This function synchronize snd mss to current pmtu/exthdr set.
1413 
1414    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1415    for TCP options, but includes only bare TCP header.
1416 
1417    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1418    It is minimum of user_mss and mss received with SYN.
1419    It also does not include TCP options.
1420 
1421    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1422 
1423    tp->mss_cache is current effective sending mss, including
1424    all tcp options except for SACKs. It is evaluated,
1425    taking into account current pmtu, but never exceeds
1426    tp->rx_opt.mss_clamp.
1427 
1428    NOTE1. rfc1122 clearly states that advertised MSS
1429    DOES NOT include either tcp or ip options.
1430 
1431    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1432    are READ ONLY outside this function.		--ANK (980731)
1433  */
1434 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1435 {
1436 	struct tcp_sock *tp = tcp_sk(sk);
1437 	struct inet_connection_sock *icsk = inet_csk(sk);
1438 	int mss_now;
1439 
1440 	if (icsk->icsk_mtup.search_high > pmtu)
1441 		icsk->icsk_mtup.search_high = pmtu;
1442 
1443 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1444 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1445 
1446 	/* And store cached results */
1447 	icsk->icsk_pmtu_cookie = pmtu;
1448 	if (icsk->icsk_mtup.enabled)
1449 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1450 	tp->mss_cache = mss_now;
1451 
1452 	return mss_now;
1453 }
1454 EXPORT_SYMBOL(tcp_sync_mss);
1455 
1456 /* Compute the current effective MSS, taking SACKs and IP options,
1457  * and even PMTU discovery events into account.
1458  */
1459 unsigned int tcp_current_mss(struct sock *sk)
1460 {
1461 	const struct tcp_sock *tp = tcp_sk(sk);
1462 	const struct dst_entry *dst = __sk_dst_get(sk);
1463 	u32 mss_now;
1464 	unsigned int header_len;
1465 	struct tcp_out_options opts;
1466 	struct tcp_md5sig_key *md5;
1467 
1468 	mss_now = tp->mss_cache;
1469 
1470 	if (dst) {
1471 		u32 mtu = dst_mtu(dst);
1472 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1473 			mss_now = tcp_sync_mss(sk, mtu);
1474 	}
1475 
1476 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1477 		     sizeof(struct tcphdr);
1478 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1479 	 * some common options. If this is an odd packet (because we have SACK
1480 	 * blocks etc) then our calculated header_len will be different, and
1481 	 * we have to adjust mss_now correspondingly */
1482 	if (header_len != tp->tcp_header_len) {
1483 		int delta = (int) header_len - tp->tcp_header_len;
1484 		mss_now -= delta;
1485 	}
1486 
1487 	return mss_now;
1488 }
1489 
1490 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1491  * As additional protections, we do not touch cwnd in retransmission phases,
1492  * and if application hit its sndbuf limit recently.
1493  */
1494 static void tcp_cwnd_application_limited(struct sock *sk)
1495 {
1496 	struct tcp_sock *tp = tcp_sk(sk);
1497 
1498 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1499 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1500 		/* Limited by application or receiver window. */
1501 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1502 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1503 		if (win_used < tp->snd_cwnd) {
1504 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1505 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1506 		}
1507 		tp->snd_cwnd_used = 0;
1508 	}
1509 	tp->snd_cwnd_stamp = tcp_time_stamp;
1510 }
1511 
1512 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1513 {
1514 	struct tcp_sock *tp = tcp_sk(sk);
1515 
1516 	/* Track the maximum number of outstanding packets in each
1517 	 * window, and remember whether we were cwnd-limited then.
1518 	 */
1519 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1520 	    tp->packets_out > tp->max_packets_out) {
1521 		tp->max_packets_out = tp->packets_out;
1522 		tp->max_packets_seq = tp->snd_nxt;
1523 		tp->is_cwnd_limited = is_cwnd_limited;
1524 	}
1525 
1526 	if (tcp_is_cwnd_limited(sk)) {
1527 		/* Network is feed fully. */
1528 		tp->snd_cwnd_used = 0;
1529 		tp->snd_cwnd_stamp = tcp_time_stamp;
1530 	} else {
1531 		/* Network starves. */
1532 		if (tp->packets_out > tp->snd_cwnd_used)
1533 			tp->snd_cwnd_used = tp->packets_out;
1534 
1535 		if (sysctl_tcp_slow_start_after_idle &&
1536 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1537 			tcp_cwnd_application_limited(sk);
1538 
1539 		/* The following conditions together indicate the starvation
1540 		 * is caused by insufficient sender buffer:
1541 		 * 1) just sent some data (see tcp_write_xmit)
1542 		 * 2) not cwnd limited (this else condition)
1543 		 * 3) no more data to send (null tcp_send_head )
1544 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1545 		 */
1546 		if (!tcp_send_head(sk) && sk->sk_socket &&
1547 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1548 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1549 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1550 	}
1551 }
1552 
1553 /* Minshall's variant of the Nagle send check. */
1554 static bool tcp_minshall_check(const struct tcp_sock *tp)
1555 {
1556 	return after(tp->snd_sml, tp->snd_una) &&
1557 		!after(tp->snd_sml, tp->snd_nxt);
1558 }
1559 
1560 /* Update snd_sml if this skb is under mss
1561  * Note that a TSO packet might end with a sub-mss segment
1562  * The test is really :
1563  * if ((skb->len % mss) != 0)
1564  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1565  * But we can avoid doing the divide again given we already have
1566  *  skb_pcount = skb->len / mss_now
1567  */
1568 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1569 				const struct sk_buff *skb)
1570 {
1571 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1572 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1573 }
1574 
1575 /* Return false, if packet can be sent now without violation Nagle's rules:
1576  * 1. It is full sized. (provided by caller in %partial bool)
1577  * 2. Or it contains FIN. (already checked by caller)
1578  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1579  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1580  *    With Minshall's modification: all sent small packets are ACKed.
1581  */
1582 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1583 			    int nonagle)
1584 {
1585 	return partial &&
1586 		((nonagle & TCP_NAGLE_CORK) ||
1587 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1588 }
1589 
1590 /* Return how many segs we'd like on a TSO packet,
1591  * to send one TSO packet per ms
1592  */
1593 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1594 		     int min_tso_segs)
1595 {
1596 	u32 bytes, segs;
1597 
1598 	bytes = min(sk->sk_pacing_rate >> 10,
1599 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1600 
1601 	/* Goal is to send at least one packet per ms,
1602 	 * not one big TSO packet every 100 ms.
1603 	 * This preserves ACK clocking and is consistent
1604 	 * with tcp_tso_should_defer() heuristic.
1605 	 */
1606 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1607 
1608 	return min_t(u32, segs, sk->sk_gso_max_segs);
1609 }
1610 EXPORT_SYMBOL(tcp_tso_autosize);
1611 
1612 /* Return the number of segments we want in the skb we are transmitting.
1613  * See if congestion control module wants to decide; otherwise, autosize.
1614  */
1615 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1616 {
1617 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1618 	u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1619 
1620 	return tso_segs ? :
1621 		tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1622 }
1623 
1624 /* Returns the portion of skb which can be sent right away */
1625 static unsigned int tcp_mss_split_point(const struct sock *sk,
1626 					const struct sk_buff *skb,
1627 					unsigned int mss_now,
1628 					unsigned int max_segs,
1629 					int nonagle)
1630 {
1631 	const struct tcp_sock *tp = tcp_sk(sk);
1632 	u32 partial, needed, window, max_len;
1633 
1634 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1635 	max_len = mss_now * max_segs;
1636 
1637 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1638 		return max_len;
1639 
1640 	needed = min(skb->len, window);
1641 
1642 	if (max_len <= needed)
1643 		return max_len;
1644 
1645 	partial = needed % mss_now;
1646 	/* If last segment is not a full MSS, check if Nagle rules allow us
1647 	 * to include this last segment in this skb.
1648 	 * Otherwise, we'll split the skb at last MSS boundary
1649 	 */
1650 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1651 		return needed - partial;
1652 
1653 	return needed;
1654 }
1655 
1656 /* Can at least one segment of SKB be sent right now, according to the
1657  * congestion window rules?  If so, return how many segments are allowed.
1658  */
1659 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1660 					 const struct sk_buff *skb)
1661 {
1662 	u32 in_flight, cwnd, halfcwnd;
1663 
1664 	/* Don't be strict about the congestion window for the final FIN.  */
1665 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1666 	    tcp_skb_pcount(skb) == 1)
1667 		return 1;
1668 
1669 	in_flight = tcp_packets_in_flight(tp);
1670 	cwnd = tp->snd_cwnd;
1671 	if (in_flight >= cwnd)
1672 		return 0;
1673 
1674 	/* For better scheduling, ensure we have at least
1675 	 * 2 GSO packets in flight.
1676 	 */
1677 	halfcwnd = max(cwnd >> 1, 1U);
1678 	return min(halfcwnd, cwnd - in_flight);
1679 }
1680 
1681 /* Initialize TSO state of a skb.
1682  * This must be invoked the first time we consider transmitting
1683  * SKB onto the wire.
1684  */
1685 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1686 {
1687 	int tso_segs = tcp_skb_pcount(skb);
1688 
1689 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1690 		tcp_set_skb_tso_segs(skb, mss_now);
1691 		tso_segs = tcp_skb_pcount(skb);
1692 	}
1693 	return tso_segs;
1694 }
1695 
1696 
1697 /* Return true if the Nagle test allows this packet to be
1698  * sent now.
1699  */
1700 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1701 				  unsigned int cur_mss, int nonagle)
1702 {
1703 	/* Nagle rule does not apply to frames, which sit in the middle of the
1704 	 * write_queue (they have no chances to get new data).
1705 	 *
1706 	 * This is implemented in the callers, where they modify the 'nonagle'
1707 	 * argument based upon the location of SKB in the send queue.
1708 	 */
1709 	if (nonagle & TCP_NAGLE_PUSH)
1710 		return true;
1711 
1712 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1713 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1714 		return true;
1715 
1716 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1717 		return true;
1718 
1719 	return false;
1720 }
1721 
1722 /* Does at least the first segment of SKB fit into the send window? */
1723 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1724 			     const struct sk_buff *skb,
1725 			     unsigned int cur_mss)
1726 {
1727 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1728 
1729 	if (skb->len > cur_mss)
1730 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1731 
1732 	return !after(end_seq, tcp_wnd_end(tp));
1733 }
1734 
1735 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1736  * should be put on the wire right now.  If so, it returns the number of
1737  * packets allowed by the congestion window.
1738  */
1739 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1740 				 unsigned int cur_mss, int nonagle)
1741 {
1742 	const struct tcp_sock *tp = tcp_sk(sk);
1743 	unsigned int cwnd_quota;
1744 
1745 	tcp_init_tso_segs(skb, cur_mss);
1746 
1747 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1748 		return 0;
1749 
1750 	cwnd_quota = tcp_cwnd_test(tp, skb);
1751 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1752 		cwnd_quota = 0;
1753 
1754 	return cwnd_quota;
1755 }
1756 
1757 /* Test if sending is allowed right now. */
1758 bool tcp_may_send_now(struct sock *sk)
1759 {
1760 	const struct tcp_sock *tp = tcp_sk(sk);
1761 	struct sk_buff *skb = tcp_send_head(sk);
1762 
1763 	return skb &&
1764 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1765 			     (tcp_skb_is_last(sk, skb) ?
1766 			      tp->nonagle : TCP_NAGLE_PUSH));
1767 }
1768 
1769 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1770  * which is put after SKB on the list.  It is very much like
1771  * tcp_fragment() except that it may make several kinds of assumptions
1772  * in order to speed up the splitting operation.  In particular, we
1773  * know that all the data is in scatter-gather pages, and that the
1774  * packet has never been sent out before (and thus is not cloned).
1775  */
1776 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1777 			unsigned int mss_now, gfp_t gfp)
1778 {
1779 	struct sk_buff *buff;
1780 	int nlen = skb->len - len;
1781 	u8 flags;
1782 
1783 	/* All of a TSO frame must be composed of paged data.  */
1784 	if (skb->len != skb->data_len)
1785 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1786 
1787 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1788 	if (unlikely(!buff))
1789 		return -ENOMEM;
1790 
1791 	sk->sk_wmem_queued += buff->truesize;
1792 	sk_mem_charge(sk, buff->truesize);
1793 	buff->truesize += nlen;
1794 	skb->truesize -= nlen;
1795 
1796 	/* Correct the sequence numbers. */
1797 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1798 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1799 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1800 
1801 	/* PSH and FIN should only be set in the second packet. */
1802 	flags = TCP_SKB_CB(skb)->tcp_flags;
1803 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1804 	TCP_SKB_CB(buff)->tcp_flags = flags;
1805 
1806 	/* This packet was never sent out yet, so no SACK bits. */
1807 	TCP_SKB_CB(buff)->sacked = 0;
1808 
1809 	tcp_skb_fragment_eor(skb, buff);
1810 
1811 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1812 	skb_split(skb, buff, len);
1813 	tcp_fragment_tstamp(skb, buff);
1814 
1815 	/* Fix up tso_factor for both original and new SKB.  */
1816 	tcp_set_skb_tso_segs(skb, mss_now);
1817 	tcp_set_skb_tso_segs(buff, mss_now);
1818 
1819 	/* Link BUFF into the send queue. */
1820 	__skb_header_release(buff);
1821 	tcp_insert_write_queue_after(skb, buff, sk);
1822 
1823 	return 0;
1824 }
1825 
1826 /* Try to defer sending, if possible, in order to minimize the amount
1827  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1828  *
1829  * This algorithm is from John Heffner.
1830  */
1831 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1832 				 bool *is_cwnd_limited, u32 max_segs)
1833 {
1834 	const struct inet_connection_sock *icsk = inet_csk(sk);
1835 	u32 age, send_win, cong_win, limit, in_flight;
1836 	struct tcp_sock *tp = tcp_sk(sk);
1837 	struct skb_mstamp now;
1838 	struct sk_buff *head;
1839 	int win_divisor;
1840 
1841 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1842 		goto send_now;
1843 
1844 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1845 		goto send_now;
1846 
1847 	/* Avoid bursty behavior by allowing defer
1848 	 * only if the last write was recent.
1849 	 */
1850 	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1851 		goto send_now;
1852 
1853 	in_flight = tcp_packets_in_flight(tp);
1854 
1855 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1856 
1857 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1858 
1859 	/* From in_flight test above, we know that cwnd > in_flight.  */
1860 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1861 
1862 	limit = min(send_win, cong_win);
1863 
1864 	/* If a full-sized TSO skb can be sent, do it. */
1865 	if (limit >= max_segs * tp->mss_cache)
1866 		goto send_now;
1867 
1868 	/* Middle in queue won't get any more data, full sendable already? */
1869 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1870 		goto send_now;
1871 
1872 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1873 	if (win_divisor) {
1874 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1875 
1876 		/* If at least some fraction of a window is available,
1877 		 * just use it.
1878 		 */
1879 		chunk /= win_divisor;
1880 		if (limit >= chunk)
1881 			goto send_now;
1882 	} else {
1883 		/* Different approach, try not to defer past a single
1884 		 * ACK.  Receiver should ACK every other full sized
1885 		 * frame, so if we have space for more than 3 frames
1886 		 * then send now.
1887 		 */
1888 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1889 			goto send_now;
1890 	}
1891 
1892 	head = tcp_write_queue_head(sk);
1893 	skb_mstamp_get(&now);
1894 	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1895 	/* If next ACK is likely to come too late (half srtt), do not defer */
1896 	if (age < (tp->srtt_us >> 4))
1897 		goto send_now;
1898 
1899 	/* Ok, it looks like it is advisable to defer. */
1900 
1901 	if (cong_win < send_win && cong_win <= skb->len)
1902 		*is_cwnd_limited = true;
1903 
1904 	return true;
1905 
1906 send_now:
1907 	return false;
1908 }
1909 
1910 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1911 {
1912 	struct inet_connection_sock *icsk = inet_csk(sk);
1913 	struct tcp_sock *tp = tcp_sk(sk);
1914 	struct net *net = sock_net(sk);
1915 	u32 interval;
1916 	s32 delta;
1917 
1918 	interval = net->ipv4.sysctl_tcp_probe_interval;
1919 	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1920 	if (unlikely(delta >= interval * HZ)) {
1921 		int mss = tcp_current_mss(sk);
1922 
1923 		/* Update current search range */
1924 		icsk->icsk_mtup.probe_size = 0;
1925 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1926 			sizeof(struct tcphdr) +
1927 			icsk->icsk_af_ops->net_header_len;
1928 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1929 
1930 		/* Update probe time stamp */
1931 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1932 	}
1933 }
1934 
1935 /* Create a new MTU probe if we are ready.
1936  * MTU probe is regularly attempting to increase the path MTU by
1937  * deliberately sending larger packets.  This discovers routing
1938  * changes resulting in larger path MTUs.
1939  *
1940  * Returns 0 if we should wait to probe (no cwnd available),
1941  *         1 if a probe was sent,
1942  *         -1 otherwise
1943  */
1944 static int tcp_mtu_probe(struct sock *sk)
1945 {
1946 	struct inet_connection_sock *icsk = inet_csk(sk);
1947 	struct tcp_sock *tp = tcp_sk(sk);
1948 	struct sk_buff *skb, *nskb, *next;
1949 	struct net *net = sock_net(sk);
1950 	int probe_size;
1951 	int size_needed;
1952 	int copy, len;
1953 	int mss_now;
1954 	int interval;
1955 
1956 	/* Not currently probing/verifying,
1957 	 * not in recovery,
1958 	 * have enough cwnd, and
1959 	 * not SACKing (the variable headers throw things off)
1960 	 */
1961 	if (likely(!icsk->icsk_mtup.enabled ||
1962 		   icsk->icsk_mtup.probe_size ||
1963 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1964 		   tp->snd_cwnd < 11 ||
1965 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
1966 		return -1;
1967 
1968 	/* Use binary search for probe_size between tcp_mss_base,
1969 	 * and current mss_clamp. if (search_high - search_low)
1970 	 * smaller than a threshold, backoff from probing.
1971 	 */
1972 	mss_now = tcp_current_mss(sk);
1973 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1974 				    icsk->icsk_mtup.search_low) >> 1);
1975 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1976 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1977 	/* When misfortune happens, we are reprobing actively,
1978 	 * and then reprobe timer has expired. We stick with current
1979 	 * probing process by not resetting search range to its orignal.
1980 	 */
1981 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1982 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1983 		/* Check whether enough time has elaplased for
1984 		 * another round of probing.
1985 		 */
1986 		tcp_mtu_check_reprobe(sk);
1987 		return -1;
1988 	}
1989 
1990 	/* Have enough data in the send queue to probe? */
1991 	if (tp->write_seq - tp->snd_nxt < size_needed)
1992 		return -1;
1993 
1994 	if (tp->snd_wnd < size_needed)
1995 		return -1;
1996 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1997 		return 0;
1998 
1999 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2000 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2001 		if (!tcp_packets_in_flight(tp))
2002 			return -1;
2003 		else
2004 			return 0;
2005 	}
2006 
2007 	/* We're allowed to probe.  Build it now. */
2008 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2009 	if (!nskb)
2010 		return -1;
2011 	sk->sk_wmem_queued += nskb->truesize;
2012 	sk_mem_charge(sk, nskb->truesize);
2013 
2014 	skb = tcp_send_head(sk);
2015 
2016 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2017 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2018 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2019 	TCP_SKB_CB(nskb)->sacked = 0;
2020 	nskb->csum = 0;
2021 	nskb->ip_summed = skb->ip_summed;
2022 
2023 	tcp_insert_write_queue_before(nskb, skb, sk);
2024 
2025 	len = 0;
2026 	tcp_for_write_queue_from_safe(skb, next, sk) {
2027 		copy = min_t(int, skb->len, probe_size - len);
2028 		if (nskb->ip_summed) {
2029 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2030 		} else {
2031 			__wsum csum = skb_copy_and_csum_bits(skb, 0,
2032 							     skb_put(nskb, copy),
2033 							     copy, 0);
2034 			nskb->csum = csum_block_add(nskb->csum, csum, len);
2035 		}
2036 
2037 		if (skb->len <= copy) {
2038 			/* We've eaten all the data from this skb.
2039 			 * Throw it away. */
2040 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2041 			tcp_unlink_write_queue(skb, sk);
2042 			sk_wmem_free_skb(sk, skb);
2043 		} else {
2044 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2045 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2046 			if (!skb_shinfo(skb)->nr_frags) {
2047 				skb_pull(skb, copy);
2048 				if (skb->ip_summed != CHECKSUM_PARTIAL)
2049 					skb->csum = csum_partial(skb->data,
2050 								 skb->len, 0);
2051 			} else {
2052 				__pskb_trim_head(skb, copy);
2053 				tcp_set_skb_tso_segs(skb, mss_now);
2054 			}
2055 			TCP_SKB_CB(skb)->seq += copy;
2056 		}
2057 
2058 		len += copy;
2059 
2060 		if (len >= probe_size)
2061 			break;
2062 	}
2063 	tcp_init_tso_segs(nskb, nskb->len);
2064 
2065 	/* We're ready to send.  If this fails, the probe will
2066 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2067 	 */
2068 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2069 		/* Decrement cwnd here because we are sending
2070 		 * effectively two packets. */
2071 		tp->snd_cwnd--;
2072 		tcp_event_new_data_sent(sk, nskb);
2073 
2074 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2075 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2076 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2077 
2078 		return 1;
2079 	}
2080 
2081 	return -1;
2082 }
2083 
2084 /* TCP Small Queues :
2085  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2086  * (These limits are doubled for retransmits)
2087  * This allows for :
2088  *  - better RTT estimation and ACK scheduling
2089  *  - faster recovery
2090  *  - high rates
2091  * Alas, some drivers / subsystems require a fair amount
2092  * of queued bytes to ensure line rate.
2093  * One example is wifi aggregation (802.11 AMPDU)
2094  */
2095 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2096 				  unsigned int factor)
2097 {
2098 	unsigned int limit;
2099 
2100 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2101 	limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2102 	limit <<= factor;
2103 
2104 	if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2105 		/* Always send the 1st or 2nd skb in write queue.
2106 		 * No need to wait for TX completion to call us back,
2107 		 * after softirq/tasklet schedule.
2108 		 * This helps when TX completions are delayed too much.
2109 		 */
2110 		if (skb == sk->sk_write_queue.next ||
2111 		    skb->prev == sk->sk_write_queue.next)
2112 			return false;
2113 
2114 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2115 		/* It is possible TX completion already happened
2116 		 * before we set TSQ_THROTTLED, so we must
2117 		 * test again the condition.
2118 		 */
2119 		smp_mb__after_atomic();
2120 		if (atomic_read(&sk->sk_wmem_alloc) > limit)
2121 			return true;
2122 	}
2123 	return false;
2124 }
2125 
2126 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2127 {
2128 	const u32 now = tcp_time_stamp;
2129 
2130 	if (tp->chrono_type > TCP_CHRONO_UNSPEC)
2131 		tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
2132 	tp->chrono_start = now;
2133 	tp->chrono_type = new;
2134 }
2135 
2136 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2137 {
2138 	struct tcp_sock *tp = tcp_sk(sk);
2139 
2140 	/* If there are multiple conditions worthy of tracking in a
2141 	 * chronograph then the highest priority enum takes precedence
2142 	 * over the other conditions. So that if something "more interesting"
2143 	 * starts happening, stop the previous chrono and start a new one.
2144 	 */
2145 	if (type > tp->chrono_type)
2146 		tcp_chrono_set(tp, type);
2147 }
2148 
2149 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2150 {
2151 	struct tcp_sock *tp = tcp_sk(sk);
2152 
2153 
2154 	/* There are multiple conditions worthy of tracking in a
2155 	 * chronograph, so that the highest priority enum takes
2156 	 * precedence over the other conditions (see tcp_chrono_start).
2157 	 * If a condition stops, we only stop chrono tracking if
2158 	 * it's the "most interesting" or current chrono we are
2159 	 * tracking and starts busy chrono if we have pending data.
2160 	 */
2161 	if (tcp_write_queue_empty(sk))
2162 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2163 	else if (type == tp->chrono_type)
2164 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2165 }
2166 
2167 /* This routine writes packets to the network.  It advances the
2168  * send_head.  This happens as incoming acks open up the remote
2169  * window for us.
2170  *
2171  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2172  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2173  * account rare use of URG, this is not a big flaw.
2174  *
2175  * Send at most one packet when push_one > 0. Temporarily ignore
2176  * cwnd limit to force at most one packet out when push_one == 2.
2177 
2178  * Returns true, if no segments are in flight and we have queued segments,
2179  * but cannot send anything now because of SWS or another problem.
2180  */
2181 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2182 			   int push_one, gfp_t gfp)
2183 {
2184 	struct tcp_sock *tp = tcp_sk(sk);
2185 	struct sk_buff *skb;
2186 	unsigned int tso_segs, sent_pkts;
2187 	int cwnd_quota;
2188 	int result;
2189 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2190 	u32 max_segs;
2191 
2192 	sent_pkts = 0;
2193 
2194 	if (!push_one) {
2195 		/* Do MTU probing. */
2196 		result = tcp_mtu_probe(sk);
2197 		if (!result) {
2198 			return false;
2199 		} else if (result > 0) {
2200 			sent_pkts = 1;
2201 		}
2202 	}
2203 
2204 	max_segs = tcp_tso_segs(sk, mss_now);
2205 	while ((skb = tcp_send_head(sk))) {
2206 		unsigned int limit;
2207 
2208 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2209 		BUG_ON(!tso_segs);
2210 
2211 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2212 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2213 			skb_mstamp_get(&skb->skb_mstamp);
2214 			goto repair; /* Skip network transmission */
2215 		}
2216 
2217 		cwnd_quota = tcp_cwnd_test(tp, skb);
2218 		if (!cwnd_quota) {
2219 			if (push_one == 2)
2220 				/* Force out a loss probe pkt. */
2221 				cwnd_quota = 1;
2222 			else
2223 				break;
2224 		}
2225 
2226 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2227 			is_rwnd_limited = true;
2228 			break;
2229 		}
2230 
2231 		if (tso_segs == 1) {
2232 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2233 						     (tcp_skb_is_last(sk, skb) ?
2234 						      nonagle : TCP_NAGLE_PUSH))))
2235 				break;
2236 		} else {
2237 			if (!push_one &&
2238 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2239 						 max_segs))
2240 				break;
2241 		}
2242 
2243 		limit = mss_now;
2244 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2245 			limit = tcp_mss_split_point(sk, skb, mss_now,
2246 						    min_t(unsigned int,
2247 							  cwnd_quota,
2248 							  max_segs),
2249 						    nonagle);
2250 
2251 		if (skb->len > limit &&
2252 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2253 			break;
2254 
2255 		if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2256 			clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2257 		if (tcp_small_queue_check(sk, skb, 0))
2258 			break;
2259 
2260 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2261 			break;
2262 
2263 repair:
2264 		/* Advance the send_head.  This one is sent out.
2265 		 * This call will increment packets_out.
2266 		 */
2267 		tcp_event_new_data_sent(sk, skb);
2268 
2269 		tcp_minshall_update(tp, mss_now, skb);
2270 		sent_pkts += tcp_skb_pcount(skb);
2271 
2272 		if (push_one)
2273 			break;
2274 	}
2275 
2276 	if (is_rwnd_limited)
2277 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2278 	else
2279 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2280 
2281 	if (likely(sent_pkts)) {
2282 		if (tcp_in_cwnd_reduction(sk))
2283 			tp->prr_out += sent_pkts;
2284 
2285 		/* Send one loss probe per tail loss episode. */
2286 		if (push_one != 2)
2287 			tcp_schedule_loss_probe(sk);
2288 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2289 		tcp_cwnd_validate(sk, is_cwnd_limited);
2290 		return false;
2291 	}
2292 	return !tp->packets_out && tcp_send_head(sk);
2293 }
2294 
2295 bool tcp_schedule_loss_probe(struct sock *sk)
2296 {
2297 	struct inet_connection_sock *icsk = inet_csk(sk);
2298 	struct tcp_sock *tp = tcp_sk(sk);
2299 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2300 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2301 
2302 	/* No consecutive loss probes. */
2303 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2304 		tcp_rearm_rto(sk);
2305 		return false;
2306 	}
2307 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2308 	 * finishes.
2309 	 */
2310 	if (tp->fastopen_rsk)
2311 		return false;
2312 
2313 	/* TLP is only scheduled when next timer event is RTO. */
2314 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2315 		return false;
2316 
2317 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2318 	 * in Open state, that are either limited by cwnd or application.
2319 	 */
2320 	if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2321 	    !tp->packets_out || !tcp_is_sack(tp) ||
2322 	    icsk->icsk_ca_state != TCP_CA_Open)
2323 		return false;
2324 
2325 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2326 	     tcp_send_head(sk))
2327 		return false;
2328 
2329 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2330 	 * for delayed ack when there's one outstanding packet. If no RTT
2331 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2332 	 */
2333 	timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2334 	if (tp->packets_out == 1)
2335 		timeout = max_t(u32, timeout,
2336 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2337 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2338 
2339 	/* If RTO is shorter, just schedule TLP in its place. */
2340 	tlp_time_stamp = tcp_time_stamp + timeout;
2341 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2342 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2343 		s32 delta = rto_time_stamp - tcp_time_stamp;
2344 		if (delta > 0)
2345 			timeout = delta;
2346 	}
2347 
2348 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2349 				  TCP_RTO_MAX);
2350 	return true;
2351 }
2352 
2353 /* Thanks to skb fast clones, we can detect if a prior transmit of
2354  * a packet is still in a qdisc or driver queue.
2355  * In this case, there is very little point doing a retransmit !
2356  */
2357 static bool skb_still_in_host_queue(const struct sock *sk,
2358 				    const struct sk_buff *skb)
2359 {
2360 	if (unlikely(skb_fclone_busy(sk, skb))) {
2361 		NET_INC_STATS(sock_net(sk),
2362 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2363 		return true;
2364 	}
2365 	return false;
2366 }
2367 
2368 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2369  * retransmit the last segment.
2370  */
2371 void tcp_send_loss_probe(struct sock *sk)
2372 {
2373 	struct tcp_sock *tp = tcp_sk(sk);
2374 	struct sk_buff *skb;
2375 	int pcount;
2376 	int mss = tcp_current_mss(sk);
2377 
2378 	skb = tcp_send_head(sk);
2379 	if (skb) {
2380 		if (tcp_snd_wnd_test(tp, skb, mss)) {
2381 			pcount = tp->packets_out;
2382 			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2383 			if (tp->packets_out > pcount)
2384 				goto probe_sent;
2385 			goto rearm_timer;
2386 		}
2387 		skb = tcp_write_queue_prev(sk, skb);
2388 	} else {
2389 		skb = tcp_write_queue_tail(sk);
2390 	}
2391 
2392 	/* At most one outstanding TLP retransmission. */
2393 	if (tp->tlp_high_seq)
2394 		goto rearm_timer;
2395 
2396 	/* Retransmit last segment. */
2397 	if (WARN_ON(!skb))
2398 		goto rearm_timer;
2399 
2400 	if (skb_still_in_host_queue(sk, skb))
2401 		goto rearm_timer;
2402 
2403 	pcount = tcp_skb_pcount(skb);
2404 	if (WARN_ON(!pcount))
2405 		goto rearm_timer;
2406 
2407 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2408 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2409 					  GFP_ATOMIC)))
2410 			goto rearm_timer;
2411 		skb = tcp_write_queue_next(sk, skb);
2412 	}
2413 
2414 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2415 		goto rearm_timer;
2416 
2417 	if (__tcp_retransmit_skb(sk, skb, 1))
2418 		goto rearm_timer;
2419 
2420 	/* Record snd_nxt for loss detection. */
2421 	tp->tlp_high_seq = tp->snd_nxt;
2422 
2423 probe_sent:
2424 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2425 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2426 	inet_csk(sk)->icsk_pending = 0;
2427 rearm_timer:
2428 	tcp_rearm_rto(sk);
2429 }
2430 
2431 /* Push out any pending frames which were held back due to
2432  * TCP_CORK or attempt at coalescing tiny packets.
2433  * The socket must be locked by the caller.
2434  */
2435 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2436 			       int nonagle)
2437 {
2438 	/* If we are closed, the bytes will have to remain here.
2439 	 * In time closedown will finish, we empty the write queue and
2440 	 * all will be happy.
2441 	 */
2442 	if (unlikely(sk->sk_state == TCP_CLOSE))
2443 		return;
2444 
2445 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2446 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2447 		tcp_check_probe_timer(sk);
2448 }
2449 
2450 /* Send _single_ skb sitting at the send head. This function requires
2451  * true push pending frames to setup probe timer etc.
2452  */
2453 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2454 {
2455 	struct sk_buff *skb = tcp_send_head(sk);
2456 
2457 	BUG_ON(!skb || skb->len < mss_now);
2458 
2459 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2460 }
2461 
2462 /* This function returns the amount that we can raise the
2463  * usable window based on the following constraints
2464  *
2465  * 1. The window can never be shrunk once it is offered (RFC 793)
2466  * 2. We limit memory per socket
2467  *
2468  * RFC 1122:
2469  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2470  *  RECV.NEXT + RCV.WIN fixed until:
2471  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2472  *
2473  * i.e. don't raise the right edge of the window until you can raise
2474  * it at least MSS bytes.
2475  *
2476  * Unfortunately, the recommended algorithm breaks header prediction,
2477  * since header prediction assumes th->window stays fixed.
2478  *
2479  * Strictly speaking, keeping th->window fixed violates the receiver
2480  * side SWS prevention criteria. The problem is that under this rule
2481  * a stream of single byte packets will cause the right side of the
2482  * window to always advance by a single byte.
2483  *
2484  * Of course, if the sender implements sender side SWS prevention
2485  * then this will not be a problem.
2486  *
2487  * BSD seems to make the following compromise:
2488  *
2489  *	If the free space is less than the 1/4 of the maximum
2490  *	space available and the free space is less than 1/2 mss,
2491  *	then set the window to 0.
2492  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2493  *	Otherwise, just prevent the window from shrinking
2494  *	and from being larger than the largest representable value.
2495  *
2496  * This prevents incremental opening of the window in the regime
2497  * where TCP is limited by the speed of the reader side taking
2498  * data out of the TCP receive queue. It does nothing about
2499  * those cases where the window is constrained on the sender side
2500  * because the pipeline is full.
2501  *
2502  * BSD also seems to "accidentally" limit itself to windows that are a
2503  * multiple of MSS, at least until the free space gets quite small.
2504  * This would appear to be a side effect of the mbuf implementation.
2505  * Combining these two algorithms results in the observed behavior
2506  * of having a fixed window size at almost all times.
2507  *
2508  * Below we obtain similar behavior by forcing the offered window to
2509  * a multiple of the mss when it is feasible to do so.
2510  *
2511  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2512  * Regular options like TIMESTAMP are taken into account.
2513  */
2514 u32 __tcp_select_window(struct sock *sk)
2515 {
2516 	struct inet_connection_sock *icsk = inet_csk(sk);
2517 	struct tcp_sock *tp = tcp_sk(sk);
2518 	/* MSS for the peer's data.  Previous versions used mss_clamp
2519 	 * here.  I don't know if the value based on our guesses
2520 	 * of peer's MSS is better for the performance.  It's more correct
2521 	 * but may be worse for the performance because of rcv_mss
2522 	 * fluctuations.  --SAW  1998/11/1
2523 	 */
2524 	int mss = icsk->icsk_ack.rcv_mss;
2525 	int free_space = tcp_space(sk);
2526 	int allowed_space = tcp_full_space(sk);
2527 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2528 	int window;
2529 
2530 	if (unlikely(mss > full_space)) {
2531 		mss = full_space;
2532 		if (mss <= 0)
2533 			return 0;
2534 	}
2535 	if (free_space < (full_space >> 1)) {
2536 		icsk->icsk_ack.quick = 0;
2537 
2538 		if (tcp_under_memory_pressure(sk))
2539 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2540 					       4U * tp->advmss);
2541 
2542 		/* free_space might become our new window, make sure we don't
2543 		 * increase it due to wscale.
2544 		 */
2545 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2546 
2547 		/* if free space is less than mss estimate, or is below 1/16th
2548 		 * of the maximum allowed, try to move to zero-window, else
2549 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2550 		 * new incoming data is dropped due to memory limits.
2551 		 * With large window, mss test triggers way too late in order
2552 		 * to announce zero window in time before rmem limit kicks in.
2553 		 */
2554 		if (free_space < (allowed_space >> 4) || free_space < mss)
2555 			return 0;
2556 	}
2557 
2558 	if (free_space > tp->rcv_ssthresh)
2559 		free_space = tp->rcv_ssthresh;
2560 
2561 	/* Don't do rounding if we are using window scaling, since the
2562 	 * scaled window will not line up with the MSS boundary anyway.
2563 	 */
2564 	window = tp->rcv_wnd;
2565 	if (tp->rx_opt.rcv_wscale) {
2566 		window = free_space;
2567 
2568 		/* Advertise enough space so that it won't get scaled away.
2569 		 * Import case: prevent zero window announcement if
2570 		 * 1<<rcv_wscale > mss.
2571 		 */
2572 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2573 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2574 				  << tp->rx_opt.rcv_wscale);
2575 	} else {
2576 		/* Get the largest window that is a nice multiple of mss.
2577 		 * Window clamp already applied above.
2578 		 * If our current window offering is within 1 mss of the
2579 		 * free space we just keep it. This prevents the divide
2580 		 * and multiply from happening most of the time.
2581 		 * We also don't do any window rounding when the free space
2582 		 * is too small.
2583 		 */
2584 		if (window <= free_space - mss || window > free_space)
2585 			window = (free_space / mss) * mss;
2586 		else if (mss == full_space &&
2587 			 free_space > window + (full_space >> 1))
2588 			window = free_space;
2589 	}
2590 
2591 	return window;
2592 }
2593 
2594 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2595 			     const struct sk_buff *next_skb)
2596 {
2597 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2598 		const struct skb_shared_info *next_shinfo =
2599 			skb_shinfo(next_skb);
2600 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2601 
2602 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2603 		shinfo->tskey = next_shinfo->tskey;
2604 		TCP_SKB_CB(skb)->txstamp_ack |=
2605 			TCP_SKB_CB(next_skb)->txstamp_ack;
2606 	}
2607 }
2608 
2609 /* Collapses two adjacent SKB's during retransmission. */
2610 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2611 {
2612 	struct tcp_sock *tp = tcp_sk(sk);
2613 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2614 	int skb_size, next_skb_size;
2615 
2616 	skb_size = skb->len;
2617 	next_skb_size = next_skb->len;
2618 
2619 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2620 
2621 	if (next_skb_size) {
2622 		if (next_skb_size <= skb_availroom(skb))
2623 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2624 				      next_skb_size);
2625 		else if (!skb_shift(skb, next_skb, next_skb_size))
2626 			return false;
2627 	}
2628 	tcp_highest_sack_combine(sk, next_skb, skb);
2629 
2630 	tcp_unlink_write_queue(next_skb, sk);
2631 
2632 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2633 		skb->ip_summed = CHECKSUM_PARTIAL;
2634 
2635 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2636 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2637 
2638 	/* Update sequence range on original skb. */
2639 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2640 
2641 	/* Merge over control information. This moves PSH/FIN etc. over */
2642 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2643 
2644 	/* All done, get rid of second SKB and account for it so
2645 	 * packet counting does not break.
2646 	 */
2647 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2648 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2649 
2650 	/* changed transmit queue under us so clear hints */
2651 	tcp_clear_retrans_hints_partial(tp);
2652 	if (next_skb == tp->retransmit_skb_hint)
2653 		tp->retransmit_skb_hint = skb;
2654 
2655 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2656 
2657 	tcp_skb_collapse_tstamp(skb, next_skb);
2658 
2659 	sk_wmem_free_skb(sk, next_skb);
2660 	return true;
2661 }
2662 
2663 /* Check if coalescing SKBs is legal. */
2664 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2665 {
2666 	if (tcp_skb_pcount(skb) > 1)
2667 		return false;
2668 	if (skb_cloned(skb))
2669 		return false;
2670 	if (skb == tcp_send_head(sk))
2671 		return false;
2672 	/* Some heuristics for collapsing over SACK'd could be invented */
2673 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2674 		return false;
2675 
2676 	return true;
2677 }
2678 
2679 /* Collapse packets in the retransmit queue to make to create
2680  * less packets on the wire. This is only done on retransmission.
2681  */
2682 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2683 				     int space)
2684 {
2685 	struct tcp_sock *tp = tcp_sk(sk);
2686 	struct sk_buff *skb = to, *tmp;
2687 	bool first = true;
2688 
2689 	if (!sysctl_tcp_retrans_collapse)
2690 		return;
2691 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2692 		return;
2693 
2694 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2695 		if (!tcp_can_collapse(sk, skb))
2696 			break;
2697 
2698 		if (!tcp_skb_can_collapse_to(to))
2699 			break;
2700 
2701 		space -= skb->len;
2702 
2703 		if (first) {
2704 			first = false;
2705 			continue;
2706 		}
2707 
2708 		if (space < 0)
2709 			break;
2710 
2711 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2712 			break;
2713 
2714 		if (!tcp_collapse_retrans(sk, to))
2715 			break;
2716 	}
2717 }
2718 
2719 /* This retransmits one SKB.  Policy decisions and retransmit queue
2720  * state updates are done by the caller.  Returns non-zero if an
2721  * error occurred which prevented the send.
2722  */
2723 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2724 {
2725 	struct inet_connection_sock *icsk = inet_csk(sk);
2726 	struct tcp_sock *tp = tcp_sk(sk);
2727 	unsigned int cur_mss;
2728 	int diff, len, err;
2729 
2730 
2731 	/* Inconclusive MTU probe */
2732 	if (icsk->icsk_mtup.probe_size)
2733 		icsk->icsk_mtup.probe_size = 0;
2734 
2735 	/* Do not sent more than we queued. 1/4 is reserved for possible
2736 	 * copying overhead: fragmentation, tunneling, mangling etc.
2737 	 */
2738 	if (atomic_read(&sk->sk_wmem_alloc) >
2739 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2740 		  sk->sk_sndbuf))
2741 		return -EAGAIN;
2742 
2743 	if (skb_still_in_host_queue(sk, skb))
2744 		return -EBUSY;
2745 
2746 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2747 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2748 			BUG();
2749 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2750 			return -ENOMEM;
2751 	}
2752 
2753 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2754 		return -EHOSTUNREACH; /* Routing failure or similar. */
2755 
2756 	cur_mss = tcp_current_mss(sk);
2757 
2758 	/* If receiver has shrunk his window, and skb is out of
2759 	 * new window, do not retransmit it. The exception is the
2760 	 * case, when window is shrunk to zero. In this case
2761 	 * our retransmit serves as a zero window probe.
2762 	 */
2763 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2764 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2765 		return -EAGAIN;
2766 
2767 	len = cur_mss * segs;
2768 	if (skb->len > len) {
2769 		if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2770 			return -ENOMEM; /* We'll try again later. */
2771 	} else {
2772 		if (skb_unclone(skb, GFP_ATOMIC))
2773 			return -ENOMEM;
2774 
2775 		diff = tcp_skb_pcount(skb);
2776 		tcp_set_skb_tso_segs(skb, cur_mss);
2777 		diff -= tcp_skb_pcount(skb);
2778 		if (diff)
2779 			tcp_adjust_pcount(sk, skb, diff);
2780 		if (skb->len < cur_mss)
2781 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2782 	}
2783 
2784 	/* RFC3168, section 6.1.1.1. ECN fallback */
2785 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2786 		tcp_ecn_clear_syn(sk, skb);
2787 
2788 	/* Update global and local TCP statistics. */
2789 	segs = tcp_skb_pcount(skb);
2790 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2791 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2792 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2793 	tp->total_retrans += segs;
2794 
2795 	/* make sure skb->data is aligned on arches that require it
2796 	 * and check if ack-trimming & collapsing extended the headroom
2797 	 * beyond what csum_start can cover.
2798 	 */
2799 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2800 		     skb_headroom(skb) >= 0xFFFF)) {
2801 		struct sk_buff *nskb;
2802 
2803 		skb_mstamp_get(&skb->skb_mstamp);
2804 		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2805 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2806 			     -ENOBUFS;
2807 	} else {
2808 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2809 	}
2810 
2811 	if (likely(!err)) {
2812 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2813 	} else if (err != -EBUSY) {
2814 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2815 	}
2816 	return err;
2817 }
2818 
2819 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2820 {
2821 	struct tcp_sock *tp = tcp_sk(sk);
2822 	int err = __tcp_retransmit_skb(sk, skb, segs);
2823 
2824 	if (err == 0) {
2825 #if FASTRETRANS_DEBUG > 0
2826 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2827 			net_dbg_ratelimited("retrans_out leaked\n");
2828 		}
2829 #endif
2830 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2831 		tp->retrans_out += tcp_skb_pcount(skb);
2832 
2833 		/* Save stamp of the first retransmit. */
2834 		if (!tp->retrans_stamp)
2835 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2836 
2837 	}
2838 
2839 	if (tp->undo_retrans < 0)
2840 		tp->undo_retrans = 0;
2841 	tp->undo_retrans += tcp_skb_pcount(skb);
2842 	return err;
2843 }
2844 
2845 /* This gets called after a retransmit timeout, and the initially
2846  * retransmitted data is acknowledged.  It tries to continue
2847  * resending the rest of the retransmit queue, until either
2848  * we've sent it all or the congestion window limit is reached.
2849  * If doing SACK, the first ACK which comes back for a timeout
2850  * based retransmit packet might feed us FACK information again.
2851  * If so, we use it to avoid unnecessarily retransmissions.
2852  */
2853 void tcp_xmit_retransmit_queue(struct sock *sk)
2854 {
2855 	const struct inet_connection_sock *icsk = inet_csk(sk);
2856 	struct tcp_sock *tp = tcp_sk(sk);
2857 	struct sk_buff *skb;
2858 	struct sk_buff *hole = NULL;
2859 	u32 max_segs;
2860 	int mib_idx;
2861 
2862 	if (!tp->packets_out)
2863 		return;
2864 
2865 	if (tp->retransmit_skb_hint) {
2866 		skb = tp->retransmit_skb_hint;
2867 	} else {
2868 		skb = tcp_write_queue_head(sk);
2869 	}
2870 
2871 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2872 	tcp_for_write_queue_from(skb, sk) {
2873 		__u8 sacked;
2874 		int segs;
2875 
2876 		if (skb == tcp_send_head(sk))
2877 			break;
2878 		/* we could do better than to assign each time */
2879 		if (!hole)
2880 			tp->retransmit_skb_hint = skb;
2881 
2882 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2883 		if (segs <= 0)
2884 			return;
2885 		sacked = TCP_SKB_CB(skb)->sacked;
2886 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2887 		 * we need to make sure not sending too bigs TSO packets
2888 		 */
2889 		segs = min_t(int, segs, max_segs);
2890 
2891 		if (tp->retrans_out >= tp->lost_out) {
2892 			break;
2893 		} else if (!(sacked & TCPCB_LOST)) {
2894 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2895 				hole = skb;
2896 			continue;
2897 
2898 		} else {
2899 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2900 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2901 			else
2902 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2903 		}
2904 
2905 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2906 			continue;
2907 
2908 		if (tcp_small_queue_check(sk, skb, 1))
2909 			return;
2910 
2911 		if (tcp_retransmit_skb(sk, skb, segs))
2912 			return;
2913 
2914 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2915 
2916 		if (tcp_in_cwnd_reduction(sk))
2917 			tp->prr_out += tcp_skb_pcount(skb);
2918 
2919 		if (skb == tcp_write_queue_head(sk) &&
2920 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
2921 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2922 						  inet_csk(sk)->icsk_rto,
2923 						  TCP_RTO_MAX);
2924 	}
2925 }
2926 
2927 /* We allow to exceed memory limits for FIN packets to expedite
2928  * connection tear down and (memory) recovery.
2929  * Otherwise tcp_send_fin() could be tempted to either delay FIN
2930  * or even be forced to close flow without any FIN.
2931  * In general, we want to allow one skb per socket to avoid hangs
2932  * with edge trigger epoll()
2933  */
2934 void sk_forced_mem_schedule(struct sock *sk, int size)
2935 {
2936 	int amt;
2937 
2938 	if (size <= sk->sk_forward_alloc)
2939 		return;
2940 	amt = sk_mem_pages(size);
2941 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2942 	sk_memory_allocated_add(sk, amt);
2943 
2944 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2945 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2946 }
2947 
2948 /* Send a FIN. The caller locks the socket for us.
2949  * We should try to send a FIN packet really hard, but eventually give up.
2950  */
2951 void tcp_send_fin(struct sock *sk)
2952 {
2953 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2954 	struct tcp_sock *tp = tcp_sk(sk);
2955 
2956 	/* Optimization, tack on the FIN if we have one skb in write queue and
2957 	 * this skb was not yet sent, or we are under memory pressure.
2958 	 * Note: in the latter case, FIN packet will be sent after a timeout,
2959 	 * as TCP stack thinks it has already been transmitted.
2960 	 */
2961 	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2962 coalesce:
2963 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2964 		TCP_SKB_CB(tskb)->end_seq++;
2965 		tp->write_seq++;
2966 		if (!tcp_send_head(sk)) {
2967 			/* This means tskb was already sent.
2968 			 * Pretend we included the FIN on previous transmit.
2969 			 * We need to set tp->snd_nxt to the value it would have
2970 			 * if FIN had been sent. This is because retransmit path
2971 			 * does not change tp->snd_nxt.
2972 			 */
2973 			tp->snd_nxt++;
2974 			return;
2975 		}
2976 	} else {
2977 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2978 		if (unlikely(!skb)) {
2979 			if (tskb)
2980 				goto coalesce;
2981 			return;
2982 		}
2983 		skb_reserve(skb, MAX_TCP_HEADER);
2984 		sk_forced_mem_schedule(sk, skb->truesize);
2985 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2986 		tcp_init_nondata_skb(skb, tp->write_seq,
2987 				     TCPHDR_ACK | TCPHDR_FIN);
2988 		tcp_queue_skb(sk, skb);
2989 	}
2990 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2991 }
2992 
2993 /* We get here when a process closes a file descriptor (either due to
2994  * an explicit close() or as a byproduct of exit()'ing) and there
2995  * was unread data in the receive queue.  This behavior is recommended
2996  * by RFC 2525, section 2.17.  -DaveM
2997  */
2998 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2999 {
3000 	struct sk_buff *skb;
3001 
3002 	/* NOTE: No TCP options attached and we never retransmit this. */
3003 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3004 	if (!skb) {
3005 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3006 		return;
3007 	}
3008 
3009 	/* Reserve space for headers and prepare control bits. */
3010 	skb_reserve(skb, MAX_TCP_HEADER);
3011 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3012 			     TCPHDR_ACK | TCPHDR_RST);
3013 	skb_mstamp_get(&skb->skb_mstamp);
3014 	/* Send it off. */
3015 	if (tcp_transmit_skb(sk, skb, 0, priority))
3016 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3017 
3018 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3019 }
3020 
3021 /* Send a crossed SYN-ACK during socket establishment.
3022  * WARNING: This routine must only be called when we have already sent
3023  * a SYN packet that crossed the incoming SYN that caused this routine
3024  * to get called. If this assumption fails then the initial rcv_wnd
3025  * and rcv_wscale values will not be correct.
3026  */
3027 int tcp_send_synack(struct sock *sk)
3028 {
3029 	struct sk_buff *skb;
3030 
3031 	skb = tcp_write_queue_head(sk);
3032 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3033 		pr_debug("%s: wrong queue state\n", __func__);
3034 		return -EFAULT;
3035 	}
3036 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3037 		if (skb_cloned(skb)) {
3038 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3039 			if (!nskb)
3040 				return -ENOMEM;
3041 			tcp_unlink_write_queue(skb, sk);
3042 			__skb_header_release(nskb);
3043 			__tcp_add_write_queue_head(sk, nskb);
3044 			sk_wmem_free_skb(sk, skb);
3045 			sk->sk_wmem_queued += nskb->truesize;
3046 			sk_mem_charge(sk, nskb->truesize);
3047 			skb = nskb;
3048 		}
3049 
3050 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3051 		tcp_ecn_send_synack(sk, skb);
3052 	}
3053 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3054 }
3055 
3056 /**
3057  * tcp_make_synack - Prepare a SYN-ACK.
3058  * sk: listener socket
3059  * dst: dst entry attached to the SYNACK
3060  * req: request_sock pointer
3061  *
3062  * Allocate one skb and build a SYNACK packet.
3063  * @dst is consumed : Caller should not use it again.
3064  */
3065 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3066 				struct request_sock *req,
3067 				struct tcp_fastopen_cookie *foc,
3068 				enum tcp_synack_type synack_type)
3069 {
3070 	struct inet_request_sock *ireq = inet_rsk(req);
3071 	const struct tcp_sock *tp = tcp_sk(sk);
3072 	struct tcp_md5sig_key *md5 = NULL;
3073 	struct tcp_out_options opts;
3074 	struct sk_buff *skb;
3075 	int tcp_header_size;
3076 	struct tcphdr *th;
3077 	int mss;
3078 
3079 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3080 	if (unlikely(!skb)) {
3081 		dst_release(dst);
3082 		return NULL;
3083 	}
3084 	/* Reserve space for headers. */
3085 	skb_reserve(skb, MAX_TCP_HEADER);
3086 
3087 	switch (synack_type) {
3088 	case TCP_SYNACK_NORMAL:
3089 		skb_set_owner_w(skb, req_to_sk(req));
3090 		break;
3091 	case TCP_SYNACK_COOKIE:
3092 		/* Under synflood, we do not attach skb to a socket,
3093 		 * to avoid false sharing.
3094 		 */
3095 		break;
3096 	case TCP_SYNACK_FASTOPEN:
3097 		/* sk is a const pointer, because we want to express multiple
3098 		 * cpu might call us concurrently.
3099 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3100 		 */
3101 		skb_set_owner_w(skb, (struct sock *)sk);
3102 		break;
3103 	}
3104 	skb_dst_set(skb, dst);
3105 
3106 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3107 
3108 	memset(&opts, 0, sizeof(opts));
3109 #ifdef CONFIG_SYN_COOKIES
3110 	if (unlikely(req->cookie_ts))
3111 		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3112 	else
3113 #endif
3114 	skb_mstamp_get(&skb->skb_mstamp);
3115 
3116 #ifdef CONFIG_TCP_MD5SIG
3117 	rcu_read_lock();
3118 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3119 #endif
3120 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3121 	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3122 			  sizeof(*th);
3123 
3124 	skb_push(skb, tcp_header_size);
3125 	skb_reset_transport_header(skb);
3126 
3127 	th = (struct tcphdr *)skb->data;
3128 	memset(th, 0, sizeof(struct tcphdr));
3129 	th->syn = 1;
3130 	th->ack = 1;
3131 	tcp_ecn_make_synack(req, th);
3132 	th->source = htons(ireq->ir_num);
3133 	th->dest = ireq->ir_rmt_port;
3134 	/* Setting of flags are superfluous here for callers (and ECE is
3135 	 * not even correctly set)
3136 	 */
3137 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3138 			     TCPHDR_SYN | TCPHDR_ACK);
3139 
3140 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3141 	/* XXX data is queued and acked as is. No buffer/window check */
3142 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3143 
3144 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3145 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3146 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3147 	th->doff = (tcp_header_size >> 2);
3148 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3149 
3150 #ifdef CONFIG_TCP_MD5SIG
3151 	/* Okay, we have all we need - do the md5 hash if needed */
3152 	if (md5)
3153 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3154 					       md5, req_to_sk(req), skb);
3155 	rcu_read_unlock();
3156 #endif
3157 
3158 	/* Do not fool tcpdump (if any), clean our debris */
3159 	skb->tstamp = 0;
3160 	return skb;
3161 }
3162 EXPORT_SYMBOL(tcp_make_synack);
3163 
3164 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3165 {
3166 	struct inet_connection_sock *icsk = inet_csk(sk);
3167 	const struct tcp_congestion_ops *ca;
3168 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3169 
3170 	if (ca_key == TCP_CA_UNSPEC)
3171 		return;
3172 
3173 	rcu_read_lock();
3174 	ca = tcp_ca_find_key(ca_key);
3175 	if (likely(ca && try_module_get(ca->owner))) {
3176 		module_put(icsk->icsk_ca_ops->owner);
3177 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3178 		icsk->icsk_ca_ops = ca;
3179 	}
3180 	rcu_read_unlock();
3181 }
3182 
3183 /* Do all connect socket setups that can be done AF independent. */
3184 static void tcp_connect_init(struct sock *sk)
3185 {
3186 	const struct dst_entry *dst = __sk_dst_get(sk);
3187 	struct tcp_sock *tp = tcp_sk(sk);
3188 	__u8 rcv_wscale;
3189 
3190 	/* We'll fix this up when we get a response from the other end.
3191 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3192 	 */
3193 	tp->tcp_header_len = sizeof(struct tcphdr) +
3194 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3195 
3196 #ifdef CONFIG_TCP_MD5SIG
3197 	if (tp->af_specific->md5_lookup(sk, sk))
3198 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3199 #endif
3200 
3201 	/* If user gave his TCP_MAXSEG, record it to clamp */
3202 	if (tp->rx_opt.user_mss)
3203 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3204 	tp->max_window = 0;
3205 	tcp_mtup_init(sk);
3206 	tcp_sync_mss(sk, dst_mtu(dst));
3207 
3208 	tcp_ca_dst_init(sk, dst);
3209 
3210 	if (!tp->window_clamp)
3211 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3212 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3213 
3214 	tcp_initialize_rcv_mss(sk);
3215 
3216 	/* limit the window selection if the user enforce a smaller rx buffer */
3217 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3218 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3219 		tp->window_clamp = tcp_full_space(sk);
3220 
3221 	tcp_select_initial_window(tcp_full_space(sk),
3222 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3223 				  &tp->rcv_wnd,
3224 				  &tp->window_clamp,
3225 				  sysctl_tcp_window_scaling,
3226 				  &rcv_wscale,
3227 				  dst_metric(dst, RTAX_INITRWND));
3228 
3229 	tp->rx_opt.rcv_wscale = rcv_wscale;
3230 	tp->rcv_ssthresh = tp->rcv_wnd;
3231 
3232 	sk->sk_err = 0;
3233 	sock_reset_flag(sk, SOCK_DONE);
3234 	tp->snd_wnd = 0;
3235 	tcp_init_wl(tp, 0);
3236 	tp->snd_una = tp->write_seq;
3237 	tp->snd_sml = tp->write_seq;
3238 	tp->snd_up = tp->write_seq;
3239 	tp->snd_nxt = tp->write_seq;
3240 
3241 	if (likely(!tp->repair))
3242 		tp->rcv_nxt = 0;
3243 	else
3244 		tp->rcv_tstamp = tcp_time_stamp;
3245 	tp->rcv_wup = tp->rcv_nxt;
3246 	tp->copied_seq = tp->rcv_nxt;
3247 
3248 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3249 	inet_csk(sk)->icsk_retransmits = 0;
3250 	tcp_clear_retrans(tp);
3251 }
3252 
3253 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3254 {
3255 	struct tcp_sock *tp = tcp_sk(sk);
3256 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3257 
3258 	tcb->end_seq += skb->len;
3259 	__skb_header_release(skb);
3260 	__tcp_add_write_queue_tail(sk, skb);
3261 	sk->sk_wmem_queued += skb->truesize;
3262 	sk_mem_charge(sk, skb->truesize);
3263 	tp->write_seq = tcb->end_seq;
3264 	tp->packets_out += tcp_skb_pcount(skb);
3265 }
3266 
3267 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3268  * queue a data-only packet after the regular SYN, such that regular SYNs
3269  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3270  * only the SYN sequence, the data are retransmitted in the first ACK.
3271  * If cookie is not cached or other error occurs, falls back to send a
3272  * regular SYN with Fast Open cookie request option.
3273  */
3274 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3275 {
3276 	struct tcp_sock *tp = tcp_sk(sk);
3277 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3278 	int space, err = 0;
3279 	struct sk_buff *syn_data;
3280 
3281 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3282 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3283 		goto fallback;
3284 
3285 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3286 	 * user-MSS. Reserve maximum option space for middleboxes that add
3287 	 * private TCP options. The cost is reduced data space in SYN :(
3288 	 */
3289 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3290 
3291 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3292 		MAX_TCP_OPTION_SPACE;
3293 
3294 	space = min_t(size_t, space, fo->size);
3295 
3296 	/* limit to order-0 allocations */
3297 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3298 
3299 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3300 	if (!syn_data)
3301 		goto fallback;
3302 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3303 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3304 	if (space) {
3305 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3306 					    &fo->data->msg_iter);
3307 		if (unlikely(!copied)) {
3308 			kfree_skb(syn_data);
3309 			goto fallback;
3310 		}
3311 		if (copied != space) {
3312 			skb_trim(syn_data, copied);
3313 			space = copied;
3314 		}
3315 	}
3316 	/* No more data pending in inet_wait_for_connect() */
3317 	if (space == fo->size)
3318 		fo->data = NULL;
3319 	fo->copied = space;
3320 
3321 	tcp_connect_queue_skb(sk, syn_data);
3322 	if (syn_data->len)
3323 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3324 
3325 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3326 
3327 	syn->skb_mstamp = syn_data->skb_mstamp;
3328 
3329 	/* Now full SYN+DATA was cloned and sent (or not),
3330 	 * remove the SYN from the original skb (syn_data)
3331 	 * we keep in write queue in case of a retransmit, as we
3332 	 * also have the SYN packet (with no data) in the same queue.
3333 	 */
3334 	TCP_SKB_CB(syn_data)->seq++;
3335 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3336 	if (!err) {
3337 		tp->syn_data = (fo->copied > 0);
3338 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3339 		goto done;
3340 	}
3341 
3342 fallback:
3343 	/* Send a regular SYN with Fast Open cookie request option */
3344 	if (fo->cookie.len > 0)
3345 		fo->cookie.len = 0;
3346 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3347 	if (err)
3348 		tp->syn_fastopen = 0;
3349 done:
3350 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3351 	return err;
3352 }
3353 
3354 /* Build a SYN and send it off. */
3355 int tcp_connect(struct sock *sk)
3356 {
3357 	struct tcp_sock *tp = tcp_sk(sk);
3358 	struct sk_buff *buff;
3359 	int err;
3360 
3361 	tcp_connect_init(sk);
3362 
3363 	if (unlikely(tp->repair)) {
3364 		tcp_finish_connect(sk, NULL);
3365 		return 0;
3366 	}
3367 
3368 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3369 	if (unlikely(!buff))
3370 		return -ENOBUFS;
3371 
3372 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3373 	tp->retrans_stamp = tcp_time_stamp;
3374 	tcp_connect_queue_skb(sk, buff);
3375 	tcp_ecn_send_syn(sk, buff);
3376 
3377 	/* Send off SYN; include data in Fast Open. */
3378 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3379 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3380 	if (err == -ECONNREFUSED)
3381 		return err;
3382 
3383 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3384 	 * in order to make this packet get counted in tcpOutSegs.
3385 	 */
3386 	tp->snd_nxt = tp->write_seq;
3387 	tp->pushed_seq = tp->write_seq;
3388 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3389 
3390 	/* Timer for repeating the SYN until an answer. */
3391 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3392 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3393 	return 0;
3394 }
3395 EXPORT_SYMBOL(tcp_connect);
3396 
3397 /* Send out a delayed ack, the caller does the policy checking
3398  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3399  * for details.
3400  */
3401 void tcp_send_delayed_ack(struct sock *sk)
3402 {
3403 	struct inet_connection_sock *icsk = inet_csk(sk);
3404 	int ato = icsk->icsk_ack.ato;
3405 	unsigned long timeout;
3406 
3407 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3408 
3409 	if (ato > TCP_DELACK_MIN) {
3410 		const struct tcp_sock *tp = tcp_sk(sk);
3411 		int max_ato = HZ / 2;
3412 
3413 		if (icsk->icsk_ack.pingpong ||
3414 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3415 			max_ato = TCP_DELACK_MAX;
3416 
3417 		/* Slow path, intersegment interval is "high". */
3418 
3419 		/* If some rtt estimate is known, use it to bound delayed ack.
3420 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3421 		 * directly.
3422 		 */
3423 		if (tp->srtt_us) {
3424 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3425 					TCP_DELACK_MIN);
3426 
3427 			if (rtt < max_ato)
3428 				max_ato = rtt;
3429 		}
3430 
3431 		ato = min(ato, max_ato);
3432 	}
3433 
3434 	/* Stay within the limit we were given */
3435 	timeout = jiffies + ato;
3436 
3437 	/* Use new timeout only if there wasn't a older one earlier. */
3438 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3439 		/* If delack timer was blocked or is about to expire,
3440 		 * send ACK now.
3441 		 */
3442 		if (icsk->icsk_ack.blocked ||
3443 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3444 			tcp_send_ack(sk);
3445 			return;
3446 		}
3447 
3448 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3449 			timeout = icsk->icsk_ack.timeout;
3450 	}
3451 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3452 	icsk->icsk_ack.timeout = timeout;
3453 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3454 }
3455 
3456 /* This routine sends an ack and also updates the window. */
3457 void tcp_send_ack(struct sock *sk)
3458 {
3459 	struct sk_buff *buff;
3460 
3461 	/* If we have been reset, we may not send again. */
3462 	if (sk->sk_state == TCP_CLOSE)
3463 		return;
3464 
3465 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3466 
3467 	/* We are not putting this on the write queue, so
3468 	 * tcp_transmit_skb() will set the ownership to this
3469 	 * sock.
3470 	 */
3471 	buff = alloc_skb(MAX_TCP_HEADER,
3472 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3473 	if (unlikely(!buff)) {
3474 		inet_csk_schedule_ack(sk);
3475 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3476 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3477 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3478 		return;
3479 	}
3480 
3481 	/* Reserve space for headers and prepare control bits. */
3482 	skb_reserve(buff, MAX_TCP_HEADER);
3483 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3484 
3485 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3486 	 * too much.
3487 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3488 	 */
3489 	skb_set_tcp_pure_ack(buff);
3490 
3491 	/* Send it off, this clears delayed acks for us. */
3492 	skb_mstamp_get(&buff->skb_mstamp);
3493 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3494 }
3495 EXPORT_SYMBOL_GPL(tcp_send_ack);
3496 
3497 /* This routine sends a packet with an out of date sequence
3498  * number. It assumes the other end will try to ack it.
3499  *
3500  * Question: what should we make while urgent mode?
3501  * 4.4BSD forces sending single byte of data. We cannot send
3502  * out of window data, because we have SND.NXT==SND.MAX...
3503  *
3504  * Current solution: to send TWO zero-length segments in urgent mode:
3505  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3506  * out-of-date with SND.UNA-1 to probe window.
3507  */
3508 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3509 {
3510 	struct tcp_sock *tp = tcp_sk(sk);
3511 	struct sk_buff *skb;
3512 
3513 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3514 	skb = alloc_skb(MAX_TCP_HEADER,
3515 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3516 	if (!skb)
3517 		return -1;
3518 
3519 	/* Reserve space for headers and set control bits. */
3520 	skb_reserve(skb, MAX_TCP_HEADER);
3521 	/* Use a previous sequence.  This should cause the other
3522 	 * end to send an ack.  Don't queue or clone SKB, just
3523 	 * send it.
3524 	 */
3525 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3526 	skb_mstamp_get(&skb->skb_mstamp);
3527 	NET_INC_STATS(sock_net(sk), mib);
3528 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3529 }
3530 
3531 void tcp_send_window_probe(struct sock *sk)
3532 {
3533 	if (sk->sk_state == TCP_ESTABLISHED) {
3534 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3535 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3536 	}
3537 }
3538 
3539 /* Initiate keepalive or window probe from timer. */
3540 int tcp_write_wakeup(struct sock *sk, int mib)
3541 {
3542 	struct tcp_sock *tp = tcp_sk(sk);
3543 	struct sk_buff *skb;
3544 
3545 	if (sk->sk_state == TCP_CLOSE)
3546 		return -1;
3547 
3548 	skb = tcp_send_head(sk);
3549 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3550 		int err;
3551 		unsigned int mss = tcp_current_mss(sk);
3552 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3553 
3554 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3555 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3556 
3557 		/* We are probing the opening of a window
3558 		 * but the window size is != 0
3559 		 * must have been a result SWS avoidance ( sender )
3560 		 */
3561 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3562 		    skb->len > mss) {
3563 			seg_size = min(seg_size, mss);
3564 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3565 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3566 				return -1;
3567 		} else if (!tcp_skb_pcount(skb))
3568 			tcp_set_skb_tso_segs(skb, mss);
3569 
3570 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3571 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3572 		if (!err)
3573 			tcp_event_new_data_sent(sk, skb);
3574 		return err;
3575 	} else {
3576 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3577 			tcp_xmit_probe_skb(sk, 1, mib);
3578 		return tcp_xmit_probe_skb(sk, 0, mib);
3579 	}
3580 }
3581 
3582 /* A window probe timeout has occurred.  If window is not closed send
3583  * a partial packet else a zero probe.
3584  */
3585 void tcp_send_probe0(struct sock *sk)
3586 {
3587 	struct inet_connection_sock *icsk = inet_csk(sk);
3588 	struct tcp_sock *tp = tcp_sk(sk);
3589 	struct net *net = sock_net(sk);
3590 	unsigned long probe_max;
3591 	int err;
3592 
3593 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3594 
3595 	if (tp->packets_out || !tcp_send_head(sk)) {
3596 		/* Cancel probe timer, if it is not required. */
3597 		icsk->icsk_probes_out = 0;
3598 		icsk->icsk_backoff = 0;
3599 		return;
3600 	}
3601 
3602 	if (err <= 0) {
3603 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3604 			icsk->icsk_backoff++;
3605 		icsk->icsk_probes_out++;
3606 		probe_max = TCP_RTO_MAX;
3607 	} else {
3608 		/* If packet was not sent due to local congestion,
3609 		 * do not backoff and do not remember icsk_probes_out.
3610 		 * Let local senders to fight for local resources.
3611 		 *
3612 		 * Use accumulated backoff yet.
3613 		 */
3614 		if (!icsk->icsk_probes_out)
3615 			icsk->icsk_probes_out = 1;
3616 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3617 	}
3618 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3619 				  tcp_probe0_when(sk, probe_max),
3620 				  TCP_RTO_MAX);
3621 }
3622 
3623 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3624 {
3625 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3626 	struct flowi fl;
3627 	int res;
3628 
3629 	tcp_rsk(req)->txhash = net_tx_rndhash();
3630 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3631 	if (!res) {
3632 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3633 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3634 		if (unlikely(tcp_passive_fastopen(sk)))
3635 			tcp_sk(sk)->total_retrans++;
3636 	}
3637 	return res;
3638 }
3639 EXPORT_SYMBOL(tcp_rtx_synack);
3640