1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 #include <linux/static_key.h> 45 46 #include <trace/events/tcp.h> 47 48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 49 int push_one, gfp_t gfp); 50 51 /* Account for new data that has been sent to the network. */ 52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 53 { 54 struct inet_connection_sock *icsk = inet_csk(sk); 55 struct tcp_sock *tp = tcp_sk(sk); 56 unsigned int prior_packets = tp->packets_out; 57 58 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 59 60 __skb_unlink(skb, &sk->sk_write_queue); 61 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 62 63 tp->packets_out += tcp_skb_pcount(skb); 64 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 65 tcp_rearm_rto(sk); 66 67 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 68 tcp_skb_pcount(skb)); 69 } 70 71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 72 * window scaling factor due to loss of precision. 73 * If window has been shrunk, what should we make? It is not clear at all. 74 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 75 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 76 * invalid. OK, let's make this for now: 77 */ 78 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 79 { 80 const struct tcp_sock *tp = tcp_sk(sk); 81 82 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 83 (tp->rx_opt.wscale_ok && 84 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 85 return tp->snd_nxt; 86 else 87 return tcp_wnd_end(tp); 88 } 89 90 /* Calculate mss to advertise in SYN segment. 91 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 92 * 93 * 1. It is independent of path mtu. 94 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 95 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 96 * attached devices, because some buggy hosts are confused by 97 * large MSS. 98 * 4. We do not make 3, we advertise MSS, calculated from first 99 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 100 * This may be overridden via information stored in routing table. 101 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 102 * probably even Jumbo". 103 */ 104 static __u16 tcp_advertise_mss(struct sock *sk) 105 { 106 struct tcp_sock *tp = tcp_sk(sk); 107 const struct dst_entry *dst = __sk_dst_get(sk); 108 int mss = tp->advmss; 109 110 if (dst) { 111 unsigned int metric = dst_metric_advmss(dst); 112 113 if (metric < mss) { 114 mss = metric; 115 tp->advmss = mss; 116 } 117 } 118 119 return (__u16)mss; 120 } 121 122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 123 * This is the first part of cwnd validation mechanism. 124 */ 125 void tcp_cwnd_restart(struct sock *sk, s32 delta) 126 { 127 struct tcp_sock *tp = tcp_sk(sk); 128 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 129 u32 cwnd = tp->snd_cwnd; 130 131 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 132 133 tp->snd_ssthresh = tcp_current_ssthresh(sk); 134 restart_cwnd = min(restart_cwnd, cwnd); 135 136 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 137 cwnd >>= 1; 138 tp->snd_cwnd = max(cwnd, restart_cwnd); 139 tp->snd_cwnd_stamp = tcp_jiffies32; 140 tp->snd_cwnd_used = 0; 141 } 142 143 /* Congestion state accounting after a packet has been sent. */ 144 static void tcp_event_data_sent(struct tcp_sock *tp, 145 struct sock *sk) 146 { 147 struct inet_connection_sock *icsk = inet_csk(sk); 148 const u32 now = tcp_jiffies32; 149 150 if (tcp_packets_in_flight(tp) == 0) 151 tcp_ca_event(sk, CA_EVENT_TX_START); 152 153 tp->lsndtime = now; 154 155 /* If it is a reply for ato after last received 156 * packet, enter pingpong mode. 157 */ 158 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 159 icsk->icsk_ack.pingpong = 1; 160 } 161 162 /* Account for an ACK we sent. */ 163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 164 { 165 tcp_dec_quickack_mode(sk, pkts); 166 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 167 } 168 169 170 u32 tcp_default_init_rwnd(u32 mss) 171 { 172 /* Initial receive window should be twice of TCP_INIT_CWND to 173 * enable proper sending of new unsent data during fast recovery 174 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 175 * limit when mss is larger than 1460. 176 */ 177 u32 init_rwnd = TCP_INIT_CWND * 2; 178 179 if (mss > 1460) 180 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 181 return init_rwnd; 182 } 183 184 /* Determine a window scaling and initial window to offer. 185 * Based on the assumption that the given amount of space 186 * will be offered. Store the results in the tp structure. 187 * NOTE: for smooth operation initial space offering should 188 * be a multiple of mss if possible. We assume here that mss >= 1. 189 * This MUST be enforced by all callers. 190 */ 191 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 192 __u32 *rcv_wnd, __u32 *window_clamp, 193 int wscale_ok, __u8 *rcv_wscale, 194 __u32 init_rcv_wnd) 195 { 196 unsigned int space = (__space < 0 ? 0 : __space); 197 198 /* If no clamp set the clamp to the max possible scaled window */ 199 if (*window_clamp == 0) 200 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 201 space = min(*window_clamp, space); 202 203 /* Quantize space offering to a multiple of mss if possible. */ 204 if (space > mss) 205 space = rounddown(space, mss); 206 207 /* NOTE: offering an initial window larger than 32767 208 * will break some buggy TCP stacks. If the admin tells us 209 * it is likely we could be speaking with such a buggy stack 210 * we will truncate our initial window offering to 32K-1 211 * unless the remote has sent us a window scaling option, 212 * which we interpret as a sign the remote TCP is not 213 * misinterpreting the window field as a signed quantity. 214 */ 215 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 216 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 217 else 218 (*rcv_wnd) = space; 219 220 (*rcv_wscale) = 0; 221 if (wscale_ok) { 222 /* Set window scaling on max possible window */ 223 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 224 space = max_t(u32, space, sysctl_rmem_max); 225 space = min_t(u32, space, *window_clamp); 226 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 227 space >>= 1; 228 (*rcv_wscale)++; 229 } 230 } 231 232 if (mss > (1 << *rcv_wscale)) { 233 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 234 init_rcv_wnd = tcp_default_init_rwnd(mss); 235 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 236 } 237 238 /* Set the clamp no higher than max representable value */ 239 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 240 } 241 EXPORT_SYMBOL(tcp_select_initial_window); 242 243 /* Chose a new window to advertise, update state in tcp_sock for the 244 * socket, and return result with RFC1323 scaling applied. The return 245 * value can be stuffed directly into th->window for an outgoing 246 * frame. 247 */ 248 static u16 tcp_select_window(struct sock *sk) 249 { 250 struct tcp_sock *tp = tcp_sk(sk); 251 u32 old_win = tp->rcv_wnd; 252 u32 cur_win = tcp_receive_window(tp); 253 u32 new_win = __tcp_select_window(sk); 254 255 /* Never shrink the offered window */ 256 if (new_win < cur_win) { 257 /* Danger Will Robinson! 258 * Don't update rcv_wup/rcv_wnd here or else 259 * we will not be able to advertise a zero 260 * window in time. --DaveM 261 * 262 * Relax Will Robinson. 263 */ 264 if (new_win == 0) 265 NET_INC_STATS(sock_net(sk), 266 LINUX_MIB_TCPWANTZEROWINDOWADV); 267 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 268 } 269 tp->rcv_wnd = new_win; 270 tp->rcv_wup = tp->rcv_nxt; 271 272 /* Make sure we do not exceed the maximum possible 273 * scaled window. 274 */ 275 if (!tp->rx_opt.rcv_wscale && 276 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 277 new_win = min(new_win, MAX_TCP_WINDOW); 278 else 279 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 280 281 /* RFC1323 scaling applied */ 282 new_win >>= tp->rx_opt.rcv_wscale; 283 284 /* If we advertise zero window, disable fast path. */ 285 if (new_win == 0) { 286 tp->pred_flags = 0; 287 if (old_win) 288 NET_INC_STATS(sock_net(sk), 289 LINUX_MIB_TCPTOZEROWINDOWADV); 290 } else if (old_win == 0) { 291 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 292 } 293 294 return new_win; 295 } 296 297 /* Packet ECN state for a SYN-ACK */ 298 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 299 { 300 const struct tcp_sock *tp = tcp_sk(sk); 301 302 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 303 if (!(tp->ecn_flags & TCP_ECN_OK)) 304 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 305 else if (tcp_ca_needs_ecn(sk) || 306 tcp_bpf_ca_needs_ecn(sk)) 307 INET_ECN_xmit(sk); 308 } 309 310 /* Packet ECN state for a SYN. */ 311 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 312 { 313 struct tcp_sock *tp = tcp_sk(sk); 314 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 315 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 316 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 317 318 if (!use_ecn) { 319 const struct dst_entry *dst = __sk_dst_get(sk); 320 321 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 322 use_ecn = true; 323 } 324 325 tp->ecn_flags = 0; 326 327 if (use_ecn) { 328 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 329 tp->ecn_flags = TCP_ECN_OK; 330 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 331 INET_ECN_xmit(sk); 332 } 333 } 334 335 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 336 { 337 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 338 /* tp->ecn_flags are cleared at a later point in time when 339 * SYN ACK is ultimatively being received. 340 */ 341 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 342 } 343 344 static void 345 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 346 { 347 if (inet_rsk(req)->ecn_ok) 348 th->ece = 1; 349 } 350 351 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 352 * be sent. 353 */ 354 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 355 struct tcphdr *th, int tcp_header_len) 356 { 357 struct tcp_sock *tp = tcp_sk(sk); 358 359 if (tp->ecn_flags & TCP_ECN_OK) { 360 /* Not-retransmitted data segment: set ECT and inject CWR. */ 361 if (skb->len != tcp_header_len && 362 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 363 INET_ECN_xmit(sk); 364 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 365 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 366 th->cwr = 1; 367 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 368 } 369 } else if (!tcp_ca_needs_ecn(sk)) { 370 /* ACK or retransmitted segment: clear ECT|CE */ 371 INET_ECN_dontxmit(sk); 372 } 373 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 374 th->ece = 1; 375 } 376 } 377 378 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 379 * auto increment end seqno. 380 */ 381 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 382 { 383 skb->ip_summed = CHECKSUM_PARTIAL; 384 385 TCP_SKB_CB(skb)->tcp_flags = flags; 386 TCP_SKB_CB(skb)->sacked = 0; 387 388 tcp_skb_pcount_set(skb, 1); 389 390 TCP_SKB_CB(skb)->seq = seq; 391 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 392 seq++; 393 TCP_SKB_CB(skb)->end_seq = seq; 394 } 395 396 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 397 { 398 return tp->snd_una != tp->snd_up; 399 } 400 401 #define OPTION_SACK_ADVERTISE (1 << 0) 402 #define OPTION_TS (1 << 1) 403 #define OPTION_MD5 (1 << 2) 404 #define OPTION_WSCALE (1 << 3) 405 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 406 #define OPTION_SMC (1 << 9) 407 408 static void smc_options_write(__be32 *ptr, u16 *options) 409 { 410 #if IS_ENABLED(CONFIG_SMC) 411 if (static_branch_unlikely(&tcp_have_smc)) { 412 if (unlikely(OPTION_SMC & *options)) { 413 *ptr++ = htonl((TCPOPT_NOP << 24) | 414 (TCPOPT_NOP << 16) | 415 (TCPOPT_EXP << 8) | 416 (TCPOLEN_EXP_SMC_BASE)); 417 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 418 } 419 } 420 #endif 421 } 422 423 struct tcp_out_options { 424 u16 options; /* bit field of OPTION_* */ 425 u16 mss; /* 0 to disable */ 426 u8 ws; /* window scale, 0 to disable */ 427 u8 num_sack_blocks; /* number of SACK blocks to include */ 428 u8 hash_size; /* bytes in hash_location */ 429 __u8 *hash_location; /* temporary pointer, overloaded */ 430 __u32 tsval, tsecr; /* need to include OPTION_TS */ 431 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 432 }; 433 434 /* Write previously computed TCP options to the packet. 435 * 436 * Beware: Something in the Internet is very sensitive to the ordering of 437 * TCP options, we learned this through the hard way, so be careful here. 438 * Luckily we can at least blame others for their non-compliance but from 439 * inter-operability perspective it seems that we're somewhat stuck with 440 * the ordering which we have been using if we want to keep working with 441 * those broken things (not that it currently hurts anybody as there isn't 442 * particular reason why the ordering would need to be changed). 443 * 444 * At least SACK_PERM as the first option is known to lead to a disaster 445 * (but it may well be that other scenarios fail similarly). 446 */ 447 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 448 struct tcp_out_options *opts) 449 { 450 u16 options = opts->options; /* mungable copy */ 451 452 if (unlikely(OPTION_MD5 & options)) { 453 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 454 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 455 /* overload cookie hash location */ 456 opts->hash_location = (__u8 *)ptr; 457 ptr += 4; 458 } 459 460 if (unlikely(opts->mss)) { 461 *ptr++ = htonl((TCPOPT_MSS << 24) | 462 (TCPOLEN_MSS << 16) | 463 opts->mss); 464 } 465 466 if (likely(OPTION_TS & options)) { 467 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 468 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 469 (TCPOLEN_SACK_PERM << 16) | 470 (TCPOPT_TIMESTAMP << 8) | 471 TCPOLEN_TIMESTAMP); 472 options &= ~OPTION_SACK_ADVERTISE; 473 } else { 474 *ptr++ = htonl((TCPOPT_NOP << 24) | 475 (TCPOPT_NOP << 16) | 476 (TCPOPT_TIMESTAMP << 8) | 477 TCPOLEN_TIMESTAMP); 478 } 479 *ptr++ = htonl(opts->tsval); 480 *ptr++ = htonl(opts->tsecr); 481 } 482 483 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 484 *ptr++ = htonl((TCPOPT_NOP << 24) | 485 (TCPOPT_NOP << 16) | 486 (TCPOPT_SACK_PERM << 8) | 487 TCPOLEN_SACK_PERM); 488 } 489 490 if (unlikely(OPTION_WSCALE & options)) { 491 *ptr++ = htonl((TCPOPT_NOP << 24) | 492 (TCPOPT_WINDOW << 16) | 493 (TCPOLEN_WINDOW << 8) | 494 opts->ws); 495 } 496 497 if (unlikely(opts->num_sack_blocks)) { 498 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 499 tp->duplicate_sack : tp->selective_acks; 500 int this_sack; 501 502 *ptr++ = htonl((TCPOPT_NOP << 24) | 503 (TCPOPT_NOP << 16) | 504 (TCPOPT_SACK << 8) | 505 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 506 TCPOLEN_SACK_PERBLOCK))); 507 508 for (this_sack = 0; this_sack < opts->num_sack_blocks; 509 ++this_sack) { 510 *ptr++ = htonl(sp[this_sack].start_seq); 511 *ptr++ = htonl(sp[this_sack].end_seq); 512 } 513 514 tp->rx_opt.dsack = 0; 515 } 516 517 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 518 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 519 u8 *p = (u8 *)ptr; 520 u32 len; /* Fast Open option length */ 521 522 if (foc->exp) { 523 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 524 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 525 TCPOPT_FASTOPEN_MAGIC); 526 p += TCPOLEN_EXP_FASTOPEN_BASE; 527 } else { 528 len = TCPOLEN_FASTOPEN_BASE + foc->len; 529 *p++ = TCPOPT_FASTOPEN; 530 *p++ = len; 531 } 532 533 memcpy(p, foc->val, foc->len); 534 if ((len & 3) == 2) { 535 p[foc->len] = TCPOPT_NOP; 536 p[foc->len + 1] = TCPOPT_NOP; 537 } 538 ptr += (len + 3) >> 2; 539 } 540 541 smc_options_write(ptr, &options); 542 } 543 544 static void smc_set_option(const struct tcp_sock *tp, 545 struct tcp_out_options *opts, 546 unsigned int *remaining) 547 { 548 #if IS_ENABLED(CONFIG_SMC) 549 if (static_branch_unlikely(&tcp_have_smc)) { 550 if (tp->syn_smc) { 551 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 552 opts->options |= OPTION_SMC; 553 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 554 } 555 } 556 } 557 #endif 558 } 559 560 static void smc_set_option_cond(const struct tcp_sock *tp, 561 const struct inet_request_sock *ireq, 562 struct tcp_out_options *opts, 563 unsigned int *remaining) 564 { 565 #if IS_ENABLED(CONFIG_SMC) 566 if (static_branch_unlikely(&tcp_have_smc)) { 567 if (tp->syn_smc && ireq->smc_ok) { 568 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 569 opts->options |= OPTION_SMC; 570 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 571 } 572 } 573 } 574 #endif 575 } 576 577 /* Compute TCP options for SYN packets. This is not the final 578 * network wire format yet. 579 */ 580 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 581 struct tcp_out_options *opts, 582 struct tcp_md5sig_key **md5) 583 { 584 struct tcp_sock *tp = tcp_sk(sk); 585 unsigned int remaining = MAX_TCP_OPTION_SPACE; 586 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 587 588 #ifdef CONFIG_TCP_MD5SIG 589 *md5 = tp->af_specific->md5_lookup(sk, sk); 590 if (*md5) { 591 opts->options |= OPTION_MD5; 592 remaining -= TCPOLEN_MD5SIG_ALIGNED; 593 } 594 #else 595 *md5 = NULL; 596 #endif 597 598 /* We always get an MSS option. The option bytes which will be seen in 599 * normal data packets should timestamps be used, must be in the MSS 600 * advertised. But we subtract them from tp->mss_cache so that 601 * calculations in tcp_sendmsg are simpler etc. So account for this 602 * fact here if necessary. If we don't do this correctly, as a 603 * receiver we won't recognize data packets as being full sized when we 604 * should, and thus we won't abide by the delayed ACK rules correctly. 605 * SACKs don't matter, we never delay an ACK when we have any of those 606 * going out. */ 607 opts->mss = tcp_advertise_mss(sk); 608 remaining -= TCPOLEN_MSS_ALIGNED; 609 610 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 611 opts->options |= OPTION_TS; 612 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 613 opts->tsecr = tp->rx_opt.ts_recent; 614 remaining -= TCPOLEN_TSTAMP_ALIGNED; 615 } 616 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 617 opts->ws = tp->rx_opt.rcv_wscale; 618 opts->options |= OPTION_WSCALE; 619 remaining -= TCPOLEN_WSCALE_ALIGNED; 620 } 621 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 622 opts->options |= OPTION_SACK_ADVERTISE; 623 if (unlikely(!(OPTION_TS & opts->options))) 624 remaining -= TCPOLEN_SACKPERM_ALIGNED; 625 } 626 627 if (fastopen && fastopen->cookie.len >= 0) { 628 u32 need = fastopen->cookie.len; 629 630 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 631 TCPOLEN_FASTOPEN_BASE; 632 need = (need + 3) & ~3U; /* Align to 32 bits */ 633 if (remaining >= need) { 634 opts->options |= OPTION_FAST_OPEN_COOKIE; 635 opts->fastopen_cookie = &fastopen->cookie; 636 remaining -= need; 637 tp->syn_fastopen = 1; 638 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 639 } 640 } 641 642 smc_set_option(tp, opts, &remaining); 643 644 return MAX_TCP_OPTION_SPACE - remaining; 645 } 646 647 /* Set up TCP options for SYN-ACKs. */ 648 static unsigned int tcp_synack_options(const struct sock *sk, 649 struct request_sock *req, 650 unsigned int mss, struct sk_buff *skb, 651 struct tcp_out_options *opts, 652 const struct tcp_md5sig_key *md5, 653 struct tcp_fastopen_cookie *foc) 654 { 655 struct inet_request_sock *ireq = inet_rsk(req); 656 unsigned int remaining = MAX_TCP_OPTION_SPACE; 657 658 #ifdef CONFIG_TCP_MD5SIG 659 if (md5) { 660 opts->options |= OPTION_MD5; 661 remaining -= TCPOLEN_MD5SIG_ALIGNED; 662 663 /* We can't fit any SACK blocks in a packet with MD5 + TS 664 * options. There was discussion about disabling SACK 665 * rather than TS in order to fit in better with old, 666 * buggy kernels, but that was deemed to be unnecessary. 667 */ 668 ireq->tstamp_ok &= !ireq->sack_ok; 669 } 670 #endif 671 672 /* We always send an MSS option. */ 673 opts->mss = mss; 674 remaining -= TCPOLEN_MSS_ALIGNED; 675 676 if (likely(ireq->wscale_ok)) { 677 opts->ws = ireq->rcv_wscale; 678 opts->options |= OPTION_WSCALE; 679 remaining -= TCPOLEN_WSCALE_ALIGNED; 680 } 681 if (likely(ireq->tstamp_ok)) { 682 opts->options |= OPTION_TS; 683 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 684 opts->tsecr = req->ts_recent; 685 remaining -= TCPOLEN_TSTAMP_ALIGNED; 686 } 687 if (likely(ireq->sack_ok)) { 688 opts->options |= OPTION_SACK_ADVERTISE; 689 if (unlikely(!ireq->tstamp_ok)) 690 remaining -= TCPOLEN_SACKPERM_ALIGNED; 691 } 692 if (foc != NULL && foc->len >= 0) { 693 u32 need = foc->len; 694 695 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 696 TCPOLEN_FASTOPEN_BASE; 697 need = (need + 3) & ~3U; /* Align to 32 bits */ 698 if (remaining >= need) { 699 opts->options |= OPTION_FAST_OPEN_COOKIE; 700 opts->fastopen_cookie = foc; 701 remaining -= need; 702 } 703 } 704 705 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 706 707 return MAX_TCP_OPTION_SPACE - remaining; 708 } 709 710 /* Compute TCP options for ESTABLISHED sockets. This is not the 711 * final wire format yet. 712 */ 713 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 714 struct tcp_out_options *opts, 715 struct tcp_md5sig_key **md5) 716 { 717 struct tcp_sock *tp = tcp_sk(sk); 718 unsigned int size = 0; 719 unsigned int eff_sacks; 720 721 opts->options = 0; 722 723 #ifdef CONFIG_TCP_MD5SIG 724 *md5 = tp->af_specific->md5_lookup(sk, sk); 725 if (unlikely(*md5)) { 726 opts->options |= OPTION_MD5; 727 size += TCPOLEN_MD5SIG_ALIGNED; 728 } 729 #else 730 *md5 = NULL; 731 #endif 732 733 if (likely(tp->rx_opt.tstamp_ok)) { 734 opts->options |= OPTION_TS; 735 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 736 opts->tsecr = tp->rx_opt.ts_recent; 737 size += TCPOLEN_TSTAMP_ALIGNED; 738 } 739 740 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 741 if (unlikely(eff_sacks)) { 742 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 743 opts->num_sack_blocks = 744 min_t(unsigned int, eff_sacks, 745 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 746 TCPOLEN_SACK_PERBLOCK); 747 size += TCPOLEN_SACK_BASE_ALIGNED + 748 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 749 } 750 751 return size; 752 } 753 754 755 /* TCP SMALL QUEUES (TSQ) 756 * 757 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 758 * to reduce RTT and bufferbloat. 759 * We do this using a special skb destructor (tcp_wfree). 760 * 761 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 762 * needs to be reallocated in a driver. 763 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 764 * 765 * Since transmit from skb destructor is forbidden, we use a tasklet 766 * to process all sockets that eventually need to send more skbs. 767 * We use one tasklet per cpu, with its own queue of sockets. 768 */ 769 struct tsq_tasklet { 770 struct tasklet_struct tasklet; 771 struct list_head head; /* queue of tcp sockets */ 772 }; 773 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 774 775 static void tcp_tsq_handler(struct sock *sk) 776 { 777 if ((1 << sk->sk_state) & 778 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 779 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 780 struct tcp_sock *tp = tcp_sk(sk); 781 782 if (tp->lost_out > tp->retrans_out && 783 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 784 tcp_mstamp_refresh(tp); 785 tcp_xmit_retransmit_queue(sk); 786 } 787 788 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 789 0, GFP_ATOMIC); 790 } 791 } 792 /* 793 * One tasklet per cpu tries to send more skbs. 794 * We run in tasklet context but need to disable irqs when 795 * transferring tsq->head because tcp_wfree() might 796 * interrupt us (non NAPI drivers) 797 */ 798 static void tcp_tasklet_func(unsigned long data) 799 { 800 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 801 LIST_HEAD(list); 802 unsigned long flags; 803 struct list_head *q, *n; 804 struct tcp_sock *tp; 805 struct sock *sk; 806 807 local_irq_save(flags); 808 list_splice_init(&tsq->head, &list); 809 local_irq_restore(flags); 810 811 list_for_each_safe(q, n, &list) { 812 tp = list_entry(q, struct tcp_sock, tsq_node); 813 list_del(&tp->tsq_node); 814 815 sk = (struct sock *)tp; 816 smp_mb__before_atomic(); 817 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 818 819 if (!sk->sk_lock.owned && 820 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) { 821 bh_lock_sock(sk); 822 if (!sock_owned_by_user(sk)) { 823 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 824 tcp_tsq_handler(sk); 825 } 826 bh_unlock_sock(sk); 827 } 828 829 sk_free(sk); 830 } 831 } 832 833 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 834 TCPF_WRITE_TIMER_DEFERRED | \ 835 TCPF_DELACK_TIMER_DEFERRED | \ 836 TCPF_MTU_REDUCED_DEFERRED) 837 /** 838 * tcp_release_cb - tcp release_sock() callback 839 * @sk: socket 840 * 841 * called from release_sock() to perform protocol dependent 842 * actions before socket release. 843 */ 844 void tcp_release_cb(struct sock *sk) 845 { 846 unsigned long flags, nflags; 847 848 /* perform an atomic operation only if at least one flag is set */ 849 do { 850 flags = sk->sk_tsq_flags; 851 if (!(flags & TCP_DEFERRED_ALL)) 852 return; 853 nflags = flags & ~TCP_DEFERRED_ALL; 854 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 855 856 if (flags & TCPF_TSQ_DEFERRED) 857 tcp_tsq_handler(sk); 858 859 /* Here begins the tricky part : 860 * We are called from release_sock() with : 861 * 1) BH disabled 862 * 2) sk_lock.slock spinlock held 863 * 3) socket owned by us (sk->sk_lock.owned == 1) 864 * 865 * But following code is meant to be called from BH handlers, 866 * so we should keep BH disabled, but early release socket ownership 867 */ 868 sock_release_ownership(sk); 869 870 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 871 tcp_write_timer_handler(sk); 872 __sock_put(sk); 873 } 874 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 875 tcp_delack_timer_handler(sk); 876 __sock_put(sk); 877 } 878 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 879 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 880 __sock_put(sk); 881 } 882 } 883 EXPORT_SYMBOL(tcp_release_cb); 884 885 void __init tcp_tasklet_init(void) 886 { 887 int i; 888 889 for_each_possible_cpu(i) { 890 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 891 892 INIT_LIST_HEAD(&tsq->head); 893 tasklet_init(&tsq->tasklet, 894 tcp_tasklet_func, 895 (unsigned long)tsq); 896 } 897 } 898 899 /* 900 * Write buffer destructor automatically called from kfree_skb. 901 * We can't xmit new skbs from this context, as we might already 902 * hold qdisc lock. 903 */ 904 void tcp_wfree(struct sk_buff *skb) 905 { 906 struct sock *sk = skb->sk; 907 struct tcp_sock *tp = tcp_sk(sk); 908 unsigned long flags, nval, oval; 909 910 /* Keep one reference on sk_wmem_alloc. 911 * Will be released by sk_free() from here or tcp_tasklet_func() 912 */ 913 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 914 915 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 916 * Wait until our queues (qdisc + devices) are drained. 917 * This gives : 918 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 919 * - chance for incoming ACK (processed by another cpu maybe) 920 * to migrate this flow (skb->ooo_okay will be eventually set) 921 */ 922 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 923 goto out; 924 925 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 926 struct tsq_tasklet *tsq; 927 bool empty; 928 929 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 930 goto out; 931 932 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 933 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 934 if (nval != oval) 935 continue; 936 937 /* queue this socket to tasklet queue */ 938 local_irq_save(flags); 939 tsq = this_cpu_ptr(&tsq_tasklet); 940 empty = list_empty(&tsq->head); 941 list_add(&tp->tsq_node, &tsq->head); 942 if (empty) 943 tasklet_schedule(&tsq->tasklet); 944 local_irq_restore(flags); 945 return; 946 } 947 out: 948 sk_free(sk); 949 } 950 951 /* Note: Called under hard irq. 952 * We can not call TCP stack right away. 953 */ 954 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 955 { 956 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 957 struct sock *sk = (struct sock *)tp; 958 unsigned long nval, oval; 959 960 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 961 struct tsq_tasklet *tsq; 962 bool empty; 963 964 if (oval & TSQF_QUEUED) 965 break; 966 967 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 968 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 969 if (nval != oval) 970 continue; 971 972 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc)) 973 break; 974 /* queue this socket to tasklet queue */ 975 tsq = this_cpu_ptr(&tsq_tasklet); 976 empty = list_empty(&tsq->head); 977 list_add(&tp->tsq_node, &tsq->head); 978 if (empty) 979 tasklet_schedule(&tsq->tasklet); 980 break; 981 } 982 return HRTIMER_NORESTART; 983 } 984 985 /* BBR congestion control needs pacing. 986 * Same remark for SO_MAX_PACING_RATE. 987 * sch_fq packet scheduler is efficiently handling pacing, 988 * but is not always installed/used. 989 * Return true if TCP stack should pace packets itself. 990 */ 991 static bool tcp_needs_internal_pacing(const struct sock *sk) 992 { 993 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 994 } 995 996 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) 997 { 998 u64 len_ns; 999 u32 rate; 1000 1001 if (!tcp_needs_internal_pacing(sk)) 1002 return; 1003 rate = sk->sk_pacing_rate; 1004 if (!rate || rate == ~0U) 1005 return; 1006 1007 /* Should account for header sizes as sch_fq does, 1008 * but lets make things simple. 1009 */ 1010 len_ns = (u64)skb->len * NSEC_PER_SEC; 1011 do_div(len_ns, rate); 1012 hrtimer_start(&tcp_sk(sk)->pacing_timer, 1013 ktime_add_ns(ktime_get(), len_ns), 1014 HRTIMER_MODE_ABS_PINNED); 1015 } 1016 1017 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb) 1018 { 1019 skb->skb_mstamp = tp->tcp_mstamp; 1020 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1021 } 1022 1023 /* This routine actually transmits TCP packets queued in by 1024 * tcp_do_sendmsg(). This is used by both the initial 1025 * transmission and possible later retransmissions. 1026 * All SKB's seen here are completely headerless. It is our 1027 * job to build the TCP header, and pass the packet down to 1028 * IP so it can do the same plus pass the packet off to the 1029 * device. 1030 * 1031 * We are working here with either a clone of the original 1032 * SKB, or a fresh unique copy made by the retransmit engine. 1033 */ 1034 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1035 gfp_t gfp_mask) 1036 { 1037 const struct inet_connection_sock *icsk = inet_csk(sk); 1038 struct inet_sock *inet; 1039 struct tcp_sock *tp; 1040 struct tcp_skb_cb *tcb; 1041 struct tcp_out_options opts; 1042 unsigned int tcp_options_size, tcp_header_size; 1043 struct sk_buff *oskb = NULL; 1044 struct tcp_md5sig_key *md5; 1045 struct tcphdr *th; 1046 int err; 1047 1048 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1049 tp = tcp_sk(sk); 1050 1051 if (clone_it) { 1052 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1053 - tp->snd_una; 1054 oskb = skb; 1055 1056 tcp_skb_tsorted_save(oskb) { 1057 if (unlikely(skb_cloned(oskb))) 1058 skb = pskb_copy(oskb, gfp_mask); 1059 else 1060 skb = skb_clone(oskb, gfp_mask); 1061 } tcp_skb_tsorted_restore(oskb); 1062 1063 if (unlikely(!skb)) 1064 return -ENOBUFS; 1065 } 1066 skb->skb_mstamp = tp->tcp_mstamp; 1067 1068 inet = inet_sk(sk); 1069 tcb = TCP_SKB_CB(skb); 1070 memset(&opts, 0, sizeof(opts)); 1071 1072 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1073 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1074 else 1075 tcp_options_size = tcp_established_options(sk, skb, &opts, 1076 &md5); 1077 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1078 1079 /* if no packet is in qdisc/device queue, then allow XPS to select 1080 * another queue. We can be called from tcp_tsq_handler() 1081 * which holds one reference to sk_wmem_alloc. 1082 * 1083 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1084 * One way to get this would be to set skb->truesize = 2 on them. 1085 */ 1086 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1087 1088 /* If we had to use memory reserve to allocate this skb, 1089 * this might cause drops if packet is looped back : 1090 * Other socket might not have SOCK_MEMALLOC. 1091 * Packets not looped back do not care about pfmemalloc. 1092 */ 1093 skb->pfmemalloc = 0; 1094 1095 skb_push(skb, tcp_header_size); 1096 skb_reset_transport_header(skb); 1097 1098 skb_orphan(skb); 1099 skb->sk = sk; 1100 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1101 skb_set_hash_from_sk(skb, sk); 1102 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1103 1104 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1105 1106 /* Build TCP header and checksum it. */ 1107 th = (struct tcphdr *)skb->data; 1108 th->source = inet->inet_sport; 1109 th->dest = inet->inet_dport; 1110 th->seq = htonl(tcb->seq); 1111 th->ack_seq = htonl(tp->rcv_nxt); 1112 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1113 tcb->tcp_flags); 1114 1115 th->check = 0; 1116 th->urg_ptr = 0; 1117 1118 /* The urg_mode check is necessary during a below snd_una win probe */ 1119 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1120 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1121 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1122 th->urg = 1; 1123 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1124 th->urg_ptr = htons(0xFFFF); 1125 th->urg = 1; 1126 } 1127 } 1128 1129 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1130 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1131 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1132 th->window = htons(tcp_select_window(sk)); 1133 tcp_ecn_send(sk, skb, th, tcp_header_size); 1134 } else { 1135 /* RFC1323: The window in SYN & SYN/ACK segments 1136 * is never scaled. 1137 */ 1138 th->window = htons(min(tp->rcv_wnd, 65535U)); 1139 } 1140 #ifdef CONFIG_TCP_MD5SIG 1141 /* Calculate the MD5 hash, as we have all we need now */ 1142 if (md5) { 1143 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1144 tp->af_specific->calc_md5_hash(opts.hash_location, 1145 md5, sk, skb); 1146 } 1147 #endif 1148 1149 icsk->icsk_af_ops->send_check(sk, skb); 1150 1151 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1152 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1153 1154 if (skb->len != tcp_header_size) { 1155 tcp_event_data_sent(tp, sk); 1156 tp->data_segs_out += tcp_skb_pcount(skb); 1157 tcp_internal_pacing(sk, skb); 1158 } 1159 1160 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1161 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1162 tcp_skb_pcount(skb)); 1163 1164 tp->segs_out += tcp_skb_pcount(skb); 1165 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1166 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1167 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1168 1169 /* Our usage of tstamp should remain private */ 1170 skb->tstamp = 0; 1171 1172 /* Cleanup our debris for IP stacks */ 1173 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1174 sizeof(struct inet6_skb_parm))); 1175 1176 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1177 1178 if (unlikely(err > 0)) { 1179 tcp_enter_cwr(sk); 1180 err = net_xmit_eval(err); 1181 } 1182 if (!err && oskb) { 1183 tcp_update_skb_after_send(tp, oskb); 1184 tcp_rate_skb_sent(sk, oskb); 1185 } 1186 return err; 1187 } 1188 1189 /* This routine just queues the buffer for sending. 1190 * 1191 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1192 * otherwise socket can stall. 1193 */ 1194 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1195 { 1196 struct tcp_sock *tp = tcp_sk(sk); 1197 1198 /* Advance write_seq and place onto the write_queue. */ 1199 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1200 __skb_header_release(skb); 1201 tcp_add_write_queue_tail(sk, skb); 1202 sk->sk_wmem_queued += skb->truesize; 1203 sk_mem_charge(sk, skb->truesize); 1204 } 1205 1206 /* Initialize TSO segments for a packet. */ 1207 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1208 { 1209 if (skb->len <= mss_now) { 1210 /* Avoid the costly divide in the normal 1211 * non-TSO case. 1212 */ 1213 tcp_skb_pcount_set(skb, 1); 1214 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1215 } else { 1216 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1217 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1218 } 1219 } 1220 1221 /* Pcount in the middle of the write queue got changed, we need to do various 1222 * tweaks to fix counters 1223 */ 1224 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1225 { 1226 struct tcp_sock *tp = tcp_sk(sk); 1227 1228 tp->packets_out -= decr; 1229 1230 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1231 tp->sacked_out -= decr; 1232 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1233 tp->retrans_out -= decr; 1234 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1235 tp->lost_out -= decr; 1236 1237 /* Reno case is special. Sigh... */ 1238 if (tcp_is_reno(tp) && decr > 0) 1239 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1240 1241 if (tp->lost_skb_hint && 1242 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1243 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1244 tp->lost_cnt_hint -= decr; 1245 1246 tcp_verify_left_out(tp); 1247 } 1248 1249 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1250 { 1251 return TCP_SKB_CB(skb)->txstamp_ack || 1252 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1253 } 1254 1255 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1256 { 1257 struct skb_shared_info *shinfo = skb_shinfo(skb); 1258 1259 if (unlikely(tcp_has_tx_tstamp(skb)) && 1260 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1261 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1262 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1263 1264 shinfo->tx_flags &= ~tsflags; 1265 shinfo2->tx_flags |= tsflags; 1266 swap(shinfo->tskey, shinfo2->tskey); 1267 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1268 TCP_SKB_CB(skb)->txstamp_ack = 0; 1269 } 1270 } 1271 1272 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1273 { 1274 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1275 TCP_SKB_CB(skb)->eor = 0; 1276 } 1277 1278 /* Insert buff after skb on the write or rtx queue of sk. */ 1279 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1280 struct sk_buff *buff, 1281 struct sock *sk, 1282 enum tcp_queue tcp_queue) 1283 { 1284 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1285 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1286 else 1287 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1288 } 1289 1290 /* Function to create two new TCP segments. Shrinks the given segment 1291 * to the specified size and appends a new segment with the rest of the 1292 * packet to the list. This won't be called frequently, I hope. 1293 * Remember, these are still headerless SKBs at this point. 1294 */ 1295 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1296 struct sk_buff *skb, u32 len, 1297 unsigned int mss_now, gfp_t gfp) 1298 { 1299 struct tcp_sock *tp = tcp_sk(sk); 1300 struct sk_buff *buff; 1301 int nsize, old_factor; 1302 int nlen; 1303 u8 flags; 1304 1305 if (WARN_ON(len > skb->len)) 1306 return -EINVAL; 1307 1308 nsize = skb_headlen(skb) - len; 1309 if (nsize < 0) 1310 nsize = 0; 1311 1312 if (skb_unclone(skb, gfp)) 1313 return -ENOMEM; 1314 1315 /* Get a new skb... force flag on. */ 1316 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1317 if (!buff) 1318 return -ENOMEM; /* We'll just try again later. */ 1319 1320 sk->sk_wmem_queued += buff->truesize; 1321 sk_mem_charge(sk, buff->truesize); 1322 nlen = skb->len - len - nsize; 1323 buff->truesize += nlen; 1324 skb->truesize -= nlen; 1325 1326 /* Correct the sequence numbers. */ 1327 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1328 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1329 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1330 1331 /* PSH and FIN should only be set in the second packet. */ 1332 flags = TCP_SKB_CB(skb)->tcp_flags; 1333 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1334 TCP_SKB_CB(buff)->tcp_flags = flags; 1335 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1336 tcp_skb_fragment_eor(skb, buff); 1337 1338 skb_split(skb, buff, len); 1339 1340 buff->ip_summed = CHECKSUM_PARTIAL; 1341 1342 buff->tstamp = skb->tstamp; 1343 tcp_fragment_tstamp(skb, buff); 1344 1345 old_factor = tcp_skb_pcount(skb); 1346 1347 /* Fix up tso_factor for both original and new SKB. */ 1348 tcp_set_skb_tso_segs(skb, mss_now); 1349 tcp_set_skb_tso_segs(buff, mss_now); 1350 1351 /* Update delivered info for the new segment */ 1352 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1353 1354 /* If this packet has been sent out already, we must 1355 * adjust the various packet counters. 1356 */ 1357 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1358 int diff = old_factor - tcp_skb_pcount(skb) - 1359 tcp_skb_pcount(buff); 1360 1361 if (diff) 1362 tcp_adjust_pcount(sk, skb, diff); 1363 } 1364 1365 /* Link BUFF into the send queue. */ 1366 __skb_header_release(buff); 1367 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1368 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1369 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1370 1371 return 0; 1372 } 1373 1374 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1375 * data is not copied, but immediately discarded. 1376 */ 1377 static int __pskb_trim_head(struct sk_buff *skb, int len) 1378 { 1379 struct skb_shared_info *shinfo; 1380 int i, k, eat; 1381 1382 eat = min_t(int, len, skb_headlen(skb)); 1383 if (eat) { 1384 __skb_pull(skb, eat); 1385 len -= eat; 1386 if (!len) 1387 return 0; 1388 } 1389 eat = len; 1390 k = 0; 1391 shinfo = skb_shinfo(skb); 1392 for (i = 0; i < shinfo->nr_frags; i++) { 1393 int size = skb_frag_size(&shinfo->frags[i]); 1394 1395 if (size <= eat) { 1396 skb_frag_unref(skb, i); 1397 eat -= size; 1398 } else { 1399 shinfo->frags[k] = shinfo->frags[i]; 1400 if (eat) { 1401 shinfo->frags[k].page_offset += eat; 1402 skb_frag_size_sub(&shinfo->frags[k], eat); 1403 eat = 0; 1404 } 1405 k++; 1406 } 1407 } 1408 shinfo->nr_frags = k; 1409 1410 skb->data_len -= len; 1411 skb->len = skb->data_len; 1412 return len; 1413 } 1414 1415 /* Remove acked data from a packet in the transmit queue. */ 1416 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1417 { 1418 u32 delta_truesize; 1419 1420 if (skb_unclone(skb, GFP_ATOMIC)) 1421 return -ENOMEM; 1422 1423 delta_truesize = __pskb_trim_head(skb, len); 1424 1425 TCP_SKB_CB(skb)->seq += len; 1426 skb->ip_summed = CHECKSUM_PARTIAL; 1427 1428 if (delta_truesize) { 1429 skb->truesize -= delta_truesize; 1430 sk->sk_wmem_queued -= delta_truesize; 1431 sk_mem_uncharge(sk, delta_truesize); 1432 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1433 } 1434 1435 /* Any change of skb->len requires recalculation of tso factor. */ 1436 if (tcp_skb_pcount(skb) > 1) 1437 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1438 1439 return 0; 1440 } 1441 1442 /* Calculate MSS not accounting any TCP options. */ 1443 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1444 { 1445 const struct tcp_sock *tp = tcp_sk(sk); 1446 const struct inet_connection_sock *icsk = inet_csk(sk); 1447 int mss_now; 1448 1449 /* Calculate base mss without TCP options: 1450 It is MMS_S - sizeof(tcphdr) of rfc1122 1451 */ 1452 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1453 1454 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1455 if (icsk->icsk_af_ops->net_frag_header_len) { 1456 const struct dst_entry *dst = __sk_dst_get(sk); 1457 1458 if (dst && dst_allfrag(dst)) 1459 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1460 } 1461 1462 /* Clamp it (mss_clamp does not include tcp options) */ 1463 if (mss_now > tp->rx_opt.mss_clamp) 1464 mss_now = tp->rx_opt.mss_clamp; 1465 1466 /* Now subtract optional transport overhead */ 1467 mss_now -= icsk->icsk_ext_hdr_len; 1468 1469 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1470 if (mss_now < 48) 1471 mss_now = 48; 1472 return mss_now; 1473 } 1474 1475 /* Calculate MSS. Not accounting for SACKs here. */ 1476 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1477 { 1478 /* Subtract TCP options size, not including SACKs */ 1479 return __tcp_mtu_to_mss(sk, pmtu) - 1480 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1481 } 1482 1483 /* Inverse of above */ 1484 int tcp_mss_to_mtu(struct sock *sk, int mss) 1485 { 1486 const struct tcp_sock *tp = tcp_sk(sk); 1487 const struct inet_connection_sock *icsk = inet_csk(sk); 1488 int mtu; 1489 1490 mtu = mss + 1491 tp->tcp_header_len + 1492 icsk->icsk_ext_hdr_len + 1493 icsk->icsk_af_ops->net_header_len; 1494 1495 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1496 if (icsk->icsk_af_ops->net_frag_header_len) { 1497 const struct dst_entry *dst = __sk_dst_get(sk); 1498 1499 if (dst && dst_allfrag(dst)) 1500 mtu += icsk->icsk_af_ops->net_frag_header_len; 1501 } 1502 return mtu; 1503 } 1504 EXPORT_SYMBOL(tcp_mss_to_mtu); 1505 1506 /* MTU probing init per socket */ 1507 void tcp_mtup_init(struct sock *sk) 1508 { 1509 struct tcp_sock *tp = tcp_sk(sk); 1510 struct inet_connection_sock *icsk = inet_csk(sk); 1511 struct net *net = sock_net(sk); 1512 1513 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1514 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1515 icsk->icsk_af_ops->net_header_len; 1516 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1517 icsk->icsk_mtup.probe_size = 0; 1518 if (icsk->icsk_mtup.enabled) 1519 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1520 } 1521 EXPORT_SYMBOL(tcp_mtup_init); 1522 1523 /* This function synchronize snd mss to current pmtu/exthdr set. 1524 1525 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1526 for TCP options, but includes only bare TCP header. 1527 1528 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1529 It is minimum of user_mss and mss received with SYN. 1530 It also does not include TCP options. 1531 1532 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1533 1534 tp->mss_cache is current effective sending mss, including 1535 all tcp options except for SACKs. It is evaluated, 1536 taking into account current pmtu, but never exceeds 1537 tp->rx_opt.mss_clamp. 1538 1539 NOTE1. rfc1122 clearly states that advertised MSS 1540 DOES NOT include either tcp or ip options. 1541 1542 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1543 are READ ONLY outside this function. --ANK (980731) 1544 */ 1545 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1546 { 1547 struct tcp_sock *tp = tcp_sk(sk); 1548 struct inet_connection_sock *icsk = inet_csk(sk); 1549 int mss_now; 1550 1551 if (icsk->icsk_mtup.search_high > pmtu) 1552 icsk->icsk_mtup.search_high = pmtu; 1553 1554 mss_now = tcp_mtu_to_mss(sk, pmtu); 1555 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1556 1557 /* And store cached results */ 1558 icsk->icsk_pmtu_cookie = pmtu; 1559 if (icsk->icsk_mtup.enabled) 1560 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1561 tp->mss_cache = mss_now; 1562 1563 return mss_now; 1564 } 1565 EXPORT_SYMBOL(tcp_sync_mss); 1566 1567 /* Compute the current effective MSS, taking SACKs and IP options, 1568 * and even PMTU discovery events into account. 1569 */ 1570 unsigned int tcp_current_mss(struct sock *sk) 1571 { 1572 const struct tcp_sock *tp = tcp_sk(sk); 1573 const struct dst_entry *dst = __sk_dst_get(sk); 1574 u32 mss_now; 1575 unsigned int header_len; 1576 struct tcp_out_options opts; 1577 struct tcp_md5sig_key *md5; 1578 1579 mss_now = tp->mss_cache; 1580 1581 if (dst) { 1582 u32 mtu = dst_mtu(dst); 1583 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1584 mss_now = tcp_sync_mss(sk, mtu); 1585 } 1586 1587 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1588 sizeof(struct tcphdr); 1589 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1590 * some common options. If this is an odd packet (because we have SACK 1591 * blocks etc) then our calculated header_len will be different, and 1592 * we have to adjust mss_now correspondingly */ 1593 if (header_len != tp->tcp_header_len) { 1594 int delta = (int) header_len - tp->tcp_header_len; 1595 mss_now -= delta; 1596 } 1597 1598 return mss_now; 1599 } 1600 1601 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1602 * As additional protections, we do not touch cwnd in retransmission phases, 1603 * and if application hit its sndbuf limit recently. 1604 */ 1605 static void tcp_cwnd_application_limited(struct sock *sk) 1606 { 1607 struct tcp_sock *tp = tcp_sk(sk); 1608 1609 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1610 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1611 /* Limited by application or receiver window. */ 1612 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1613 u32 win_used = max(tp->snd_cwnd_used, init_win); 1614 if (win_used < tp->snd_cwnd) { 1615 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1616 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1617 } 1618 tp->snd_cwnd_used = 0; 1619 } 1620 tp->snd_cwnd_stamp = tcp_jiffies32; 1621 } 1622 1623 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1624 { 1625 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1626 struct tcp_sock *tp = tcp_sk(sk); 1627 1628 /* Track the maximum number of outstanding packets in each 1629 * window, and remember whether we were cwnd-limited then. 1630 */ 1631 if (!before(tp->snd_una, tp->max_packets_seq) || 1632 tp->packets_out > tp->max_packets_out) { 1633 tp->max_packets_out = tp->packets_out; 1634 tp->max_packets_seq = tp->snd_nxt; 1635 tp->is_cwnd_limited = is_cwnd_limited; 1636 } 1637 1638 if (tcp_is_cwnd_limited(sk)) { 1639 /* Network is feed fully. */ 1640 tp->snd_cwnd_used = 0; 1641 tp->snd_cwnd_stamp = tcp_jiffies32; 1642 } else { 1643 /* Network starves. */ 1644 if (tp->packets_out > tp->snd_cwnd_used) 1645 tp->snd_cwnd_used = tp->packets_out; 1646 1647 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1648 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1649 !ca_ops->cong_control) 1650 tcp_cwnd_application_limited(sk); 1651 1652 /* The following conditions together indicate the starvation 1653 * is caused by insufficient sender buffer: 1654 * 1) just sent some data (see tcp_write_xmit) 1655 * 2) not cwnd limited (this else condition) 1656 * 3) no more data to send (tcp_write_queue_empty()) 1657 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1658 */ 1659 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1660 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1661 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1662 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1663 } 1664 } 1665 1666 /* Minshall's variant of the Nagle send check. */ 1667 static bool tcp_minshall_check(const struct tcp_sock *tp) 1668 { 1669 return after(tp->snd_sml, tp->snd_una) && 1670 !after(tp->snd_sml, tp->snd_nxt); 1671 } 1672 1673 /* Update snd_sml if this skb is under mss 1674 * Note that a TSO packet might end with a sub-mss segment 1675 * The test is really : 1676 * if ((skb->len % mss) != 0) 1677 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1678 * But we can avoid doing the divide again given we already have 1679 * skb_pcount = skb->len / mss_now 1680 */ 1681 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1682 const struct sk_buff *skb) 1683 { 1684 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1685 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1686 } 1687 1688 /* Return false, if packet can be sent now without violation Nagle's rules: 1689 * 1. It is full sized. (provided by caller in %partial bool) 1690 * 2. Or it contains FIN. (already checked by caller) 1691 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1692 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1693 * With Minshall's modification: all sent small packets are ACKed. 1694 */ 1695 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1696 int nonagle) 1697 { 1698 return partial && 1699 ((nonagle & TCP_NAGLE_CORK) || 1700 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1701 } 1702 1703 /* Return how many segs we'd like on a TSO packet, 1704 * to send one TSO packet per ms 1705 */ 1706 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1707 int min_tso_segs) 1708 { 1709 u32 bytes, segs; 1710 1711 bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift, 1712 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1713 1714 /* Goal is to send at least one packet per ms, 1715 * not one big TSO packet every 100 ms. 1716 * This preserves ACK clocking and is consistent 1717 * with tcp_tso_should_defer() heuristic. 1718 */ 1719 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1720 1721 return segs; 1722 } 1723 1724 /* Return the number of segments we want in the skb we are transmitting. 1725 * See if congestion control module wants to decide; otherwise, autosize. 1726 */ 1727 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1728 { 1729 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1730 u32 min_tso, tso_segs; 1731 1732 min_tso = ca_ops->min_tso_segs ? 1733 ca_ops->min_tso_segs(sk) : 1734 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1735 1736 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1737 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1738 } 1739 1740 /* Returns the portion of skb which can be sent right away */ 1741 static unsigned int tcp_mss_split_point(const struct sock *sk, 1742 const struct sk_buff *skb, 1743 unsigned int mss_now, 1744 unsigned int max_segs, 1745 int nonagle) 1746 { 1747 const struct tcp_sock *tp = tcp_sk(sk); 1748 u32 partial, needed, window, max_len; 1749 1750 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1751 max_len = mss_now * max_segs; 1752 1753 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1754 return max_len; 1755 1756 needed = min(skb->len, window); 1757 1758 if (max_len <= needed) 1759 return max_len; 1760 1761 partial = needed % mss_now; 1762 /* If last segment is not a full MSS, check if Nagle rules allow us 1763 * to include this last segment in this skb. 1764 * Otherwise, we'll split the skb at last MSS boundary 1765 */ 1766 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1767 return needed - partial; 1768 1769 return needed; 1770 } 1771 1772 /* Can at least one segment of SKB be sent right now, according to the 1773 * congestion window rules? If so, return how many segments are allowed. 1774 */ 1775 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1776 const struct sk_buff *skb) 1777 { 1778 u32 in_flight, cwnd, halfcwnd; 1779 1780 /* Don't be strict about the congestion window for the final FIN. */ 1781 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1782 tcp_skb_pcount(skb) == 1) 1783 return 1; 1784 1785 in_flight = tcp_packets_in_flight(tp); 1786 cwnd = tp->snd_cwnd; 1787 if (in_flight >= cwnd) 1788 return 0; 1789 1790 /* For better scheduling, ensure we have at least 1791 * 2 GSO packets in flight. 1792 */ 1793 halfcwnd = max(cwnd >> 1, 1U); 1794 return min(halfcwnd, cwnd - in_flight); 1795 } 1796 1797 /* Initialize TSO state of a skb. 1798 * This must be invoked the first time we consider transmitting 1799 * SKB onto the wire. 1800 */ 1801 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1802 { 1803 int tso_segs = tcp_skb_pcount(skb); 1804 1805 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1806 tcp_set_skb_tso_segs(skb, mss_now); 1807 tso_segs = tcp_skb_pcount(skb); 1808 } 1809 return tso_segs; 1810 } 1811 1812 1813 /* Return true if the Nagle test allows this packet to be 1814 * sent now. 1815 */ 1816 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1817 unsigned int cur_mss, int nonagle) 1818 { 1819 /* Nagle rule does not apply to frames, which sit in the middle of the 1820 * write_queue (they have no chances to get new data). 1821 * 1822 * This is implemented in the callers, where they modify the 'nonagle' 1823 * argument based upon the location of SKB in the send queue. 1824 */ 1825 if (nonagle & TCP_NAGLE_PUSH) 1826 return true; 1827 1828 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1829 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1830 return true; 1831 1832 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1833 return true; 1834 1835 return false; 1836 } 1837 1838 /* Does at least the first segment of SKB fit into the send window? */ 1839 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1840 const struct sk_buff *skb, 1841 unsigned int cur_mss) 1842 { 1843 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1844 1845 if (skb->len > cur_mss) 1846 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1847 1848 return !after(end_seq, tcp_wnd_end(tp)); 1849 } 1850 1851 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1852 * which is put after SKB on the list. It is very much like 1853 * tcp_fragment() except that it may make several kinds of assumptions 1854 * in order to speed up the splitting operation. In particular, we 1855 * know that all the data is in scatter-gather pages, and that the 1856 * packet has never been sent out before (and thus is not cloned). 1857 */ 1858 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1859 struct sk_buff *skb, unsigned int len, 1860 unsigned int mss_now, gfp_t gfp) 1861 { 1862 struct sk_buff *buff; 1863 int nlen = skb->len - len; 1864 u8 flags; 1865 1866 /* All of a TSO frame must be composed of paged data. */ 1867 if (skb->len != skb->data_len) 1868 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp); 1869 1870 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1871 if (unlikely(!buff)) 1872 return -ENOMEM; 1873 1874 sk->sk_wmem_queued += buff->truesize; 1875 sk_mem_charge(sk, buff->truesize); 1876 buff->truesize += nlen; 1877 skb->truesize -= nlen; 1878 1879 /* Correct the sequence numbers. */ 1880 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1881 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1882 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1883 1884 /* PSH and FIN should only be set in the second packet. */ 1885 flags = TCP_SKB_CB(skb)->tcp_flags; 1886 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1887 TCP_SKB_CB(buff)->tcp_flags = flags; 1888 1889 /* This packet was never sent out yet, so no SACK bits. */ 1890 TCP_SKB_CB(buff)->sacked = 0; 1891 1892 tcp_skb_fragment_eor(skb, buff); 1893 1894 buff->ip_summed = CHECKSUM_PARTIAL; 1895 skb_split(skb, buff, len); 1896 tcp_fragment_tstamp(skb, buff); 1897 1898 /* Fix up tso_factor for both original and new SKB. */ 1899 tcp_set_skb_tso_segs(skb, mss_now); 1900 tcp_set_skb_tso_segs(buff, mss_now); 1901 1902 /* Link BUFF into the send queue. */ 1903 __skb_header_release(buff); 1904 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1905 1906 return 0; 1907 } 1908 1909 /* Try to defer sending, if possible, in order to minimize the amount 1910 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1911 * 1912 * This algorithm is from John Heffner. 1913 */ 1914 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1915 bool *is_cwnd_limited, u32 max_segs) 1916 { 1917 const struct inet_connection_sock *icsk = inet_csk(sk); 1918 u32 age, send_win, cong_win, limit, in_flight; 1919 struct tcp_sock *tp = tcp_sk(sk); 1920 struct sk_buff *head; 1921 int win_divisor; 1922 1923 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1924 goto send_now; 1925 1926 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1927 goto send_now; 1928 1929 /* Avoid bursty behavior by allowing defer 1930 * only if the last write was recent. 1931 */ 1932 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1933 goto send_now; 1934 1935 in_flight = tcp_packets_in_flight(tp); 1936 1937 BUG_ON(tcp_skb_pcount(skb) <= 1); 1938 BUG_ON(tp->snd_cwnd <= in_flight); 1939 1940 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1941 1942 /* From in_flight test above, we know that cwnd > in_flight. */ 1943 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1944 1945 limit = min(send_win, cong_win); 1946 1947 /* If a full-sized TSO skb can be sent, do it. */ 1948 if (limit >= max_segs * tp->mss_cache) 1949 goto send_now; 1950 1951 /* Middle in queue won't get any more data, full sendable already? */ 1952 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1953 goto send_now; 1954 1955 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1956 if (win_divisor) { 1957 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1958 1959 /* If at least some fraction of a window is available, 1960 * just use it. 1961 */ 1962 chunk /= win_divisor; 1963 if (limit >= chunk) 1964 goto send_now; 1965 } else { 1966 /* Different approach, try not to defer past a single 1967 * ACK. Receiver should ACK every other full sized 1968 * frame, so if we have space for more than 3 frames 1969 * then send now. 1970 */ 1971 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1972 goto send_now; 1973 } 1974 1975 /* TODO : use tsorted_sent_queue ? */ 1976 head = tcp_rtx_queue_head(sk); 1977 if (!head) 1978 goto send_now; 1979 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); 1980 /* If next ACK is likely to come too late (half srtt), do not defer */ 1981 if (age < (tp->srtt_us >> 4)) 1982 goto send_now; 1983 1984 /* Ok, it looks like it is advisable to defer. */ 1985 1986 if (cong_win < send_win && cong_win <= skb->len) 1987 *is_cwnd_limited = true; 1988 1989 return true; 1990 1991 send_now: 1992 return false; 1993 } 1994 1995 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1996 { 1997 struct inet_connection_sock *icsk = inet_csk(sk); 1998 struct tcp_sock *tp = tcp_sk(sk); 1999 struct net *net = sock_net(sk); 2000 u32 interval; 2001 s32 delta; 2002 2003 interval = net->ipv4.sysctl_tcp_probe_interval; 2004 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2005 if (unlikely(delta >= interval * HZ)) { 2006 int mss = tcp_current_mss(sk); 2007 2008 /* Update current search range */ 2009 icsk->icsk_mtup.probe_size = 0; 2010 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2011 sizeof(struct tcphdr) + 2012 icsk->icsk_af_ops->net_header_len; 2013 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2014 2015 /* Update probe time stamp */ 2016 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2017 } 2018 } 2019 2020 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2021 { 2022 struct sk_buff *skb, *next; 2023 2024 skb = tcp_send_head(sk); 2025 tcp_for_write_queue_from_safe(skb, next, sk) { 2026 if (len <= skb->len) 2027 break; 2028 2029 if (unlikely(TCP_SKB_CB(skb)->eor)) 2030 return false; 2031 2032 len -= skb->len; 2033 } 2034 2035 return true; 2036 } 2037 2038 /* Create a new MTU probe if we are ready. 2039 * MTU probe is regularly attempting to increase the path MTU by 2040 * deliberately sending larger packets. This discovers routing 2041 * changes resulting in larger path MTUs. 2042 * 2043 * Returns 0 if we should wait to probe (no cwnd available), 2044 * 1 if a probe was sent, 2045 * -1 otherwise 2046 */ 2047 static int tcp_mtu_probe(struct sock *sk) 2048 { 2049 struct inet_connection_sock *icsk = inet_csk(sk); 2050 struct tcp_sock *tp = tcp_sk(sk); 2051 struct sk_buff *skb, *nskb, *next; 2052 struct net *net = sock_net(sk); 2053 int probe_size; 2054 int size_needed; 2055 int copy, len; 2056 int mss_now; 2057 int interval; 2058 2059 /* Not currently probing/verifying, 2060 * not in recovery, 2061 * have enough cwnd, and 2062 * not SACKing (the variable headers throw things off) 2063 */ 2064 if (likely(!icsk->icsk_mtup.enabled || 2065 icsk->icsk_mtup.probe_size || 2066 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2067 tp->snd_cwnd < 11 || 2068 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2069 return -1; 2070 2071 /* Use binary search for probe_size between tcp_mss_base, 2072 * and current mss_clamp. if (search_high - search_low) 2073 * smaller than a threshold, backoff from probing. 2074 */ 2075 mss_now = tcp_current_mss(sk); 2076 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2077 icsk->icsk_mtup.search_low) >> 1); 2078 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2079 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2080 /* When misfortune happens, we are reprobing actively, 2081 * and then reprobe timer has expired. We stick with current 2082 * probing process by not resetting search range to its orignal. 2083 */ 2084 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2085 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2086 /* Check whether enough time has elaplased for 2087 * another round of probing. 2088 */ 2089 tcp_mtu_check_reprobe(sk); 2090 return -1; 2091 } 2092 2093 /* Have enough data in the send queue to probe? */ 2094 if (tp->write_seq - tp->snd_nxt < size_needed) 2095 return -1; 2096 2097 if (tp->snd_wnd < size_needed) 2098 return -1; 2099 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2100 return 0; 2101 2102 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2103 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2104 if (!tcp_packets_in_flight(tp)) 2105 return -1; 2106 else 2107 return 0; 2108 } 2109 2110 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2111 return -1; 2112 2113 /* We're allowed to probe. Build it now. */ 2114 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2115 if (!nskb) 2116 return -1; 2117 sk->sk_wmem_queued += nskb->truesize; 2118 sk_mem_charge(sk, nskb->truesize); 2119 2120 skb = tcp_send_head(sk); 2121 2122 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2123 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2124 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2125 TCP_SKB_CB(nskb)->sacked = 0; 2126 nskb->csum = 0; 2127 nskb->ip_summed = CHECKSUM_PARTIAL; 2128 2129 tcp_insert_write_queue_before(nskb, skb, sk); 2130 tcp_highest_sack_replace(sk, skb, nskb); 2131 2132 len = 0; 2133 tcp_for_write_queue_from_safe(skb, next, sk) { 2134 copy = min_t(int, skb->len, probe_size - len); 2135 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2136 2137 if (skb->len <= copy) { 2138 /* We've eaten all the data from this skb. 2139 * Throw it away. */ 2140 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2141 /* If this is the last SKB we copy and eor is set 2142 * we need to propagate it to the new skb. 2143 */ 2144 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2145 tcp_unlink_write_queue(skb, sk); 2146 sk_wmem_free_skb(sk, skb); 2147 } else { 2148 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2149 ~(TCPHDR_FIN|TCPHDR_PSH); 2150 if (!skb_shinfo(skb)->nr_frags) { 2151 skb_pull(skb, copy); 2152 } else { 2153 __pskb_trim_head(skb, copy); 2154 tcp_set_skb_tso_segs(skb, mss_now); 2155 } 2156 TCP_SKB_CB(skb)->seq += copy; 2157 } 2158 2159 len += copy; 2160 2161 if (len >= probe_size) 2162 break; 2163 } 2164 tcp_init_tso_segs(nskb, nskb->len); 2165 2166 /* We're ready to send. If this fails, the probe will 2167 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2168 */ 2169 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2170 /* Decrement cwnd here because we are sending 2171 * effectively two packets. */ 2172 tp->snd_cwnd--; 2173 tcp_event_new_data_sent(sk, nskb); 2174 2175 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2176 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2177 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2178 2179 return 1; 2180 } 2181 2182 return -1; 2183 } 2184 2185 static bool tcp_pacing_check(const struct sock *sk) 2186 { 2187 return tcp_needs_internal_pacing(sk) && 2188 hrtimer_active(&tcp_sk(sk)->pacing_timer); 2189 } 2190 2191 /* TCP Small Queues : 2192 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2193 * (These limits are doubled for retransmits) 2194 * This allows for : 2195 * - better RTT estimation and ACK scheduling 2196 * - faster recovery 2197 * - high rates 2198 * Alas, some drivers / subsystems require a fair amount 2199 * of queued bytes to ensure line rate. 2200 * One example is wifi aggregation (802.11 AMPDU) 2201 */ 2202 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2203 unsigned int factor) 2204 { 2205 unsigned int limit; 2206 2207 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift); 2208 limit = min_t(u32, limit, 2209 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2210 limit <<= factor; 2211 2212 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2213 /* Always send skb if rtx queue is empty. 2214 * No need to wait for TX completion to call us back, 2215 * after softirq/tasklet schedule. 2216 * This helps when TX completions are delayed too much. 2217 */ 2218 if (tcp_rtx_queue_empty(sk)) 2219 return false; 2220 2221 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2222 /* It is possible TX completion already happened 2223 * before we set TSQ_THROTTLED, so we must 2224 * test again the condition. 2225 */ 2226 smp_mb__after_atomic(); 2227 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2228 return true; 2229 } 2230 return false; 2231 } 2232 2233 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2234 { 2235 const u32 now = tcp_jiffies32; 2236 enum tcp_chrono old = tp->chrono_type; 2237 2238 if (old > TCP_CHRONO_UNSPEC) 2239 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2240 tp->chrono_start = now; 2241 tp->chrono_type = new; 2242 } 2243 2244 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2245 { 2246 struct tcp_sock *tp = tcp_sk(sk); 2247 2248 /* If there are multiple conditions worthy of tracking in a 2249 * chronograph then the highest priority enum takes precedence 2250 * over the other conditions. So that if something "more interesting" 2251 * starts happening, stop the previous chrono and start a new one. 2252 */ 2253 if (type > tp->chrono_type) 2254 tcp_chrono_set(tp, type); 2255 } 2256 2257 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2258 { 2259 struct tcp_sock *tp = tcp_sk(sk); 2260 2261 2262 /* There are multiple conditions worthy of tracking in a 2263 * chronograph, so that the highest priority enum takes 2264 * precedence over the other conditions (see tcp_chrono_start). 2265 * If a condition stops, we only stop chrono tracking if 2266 * it's the "most interesting" or current chrono we are 2267 * tracking and starts busy chrono if we have pending data. 2268 */ 2269 if (tcp_rtx_and_write_queues_empty(sk)) 2270 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2271 else if (type == tp->chrono_type) 2272 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2273 } 2274 2275 /* This routine writes packets to the network. It advances the 2276 * send_head. This happens as incoming acks open up the remote 2277 * window for us. 2278 * 2279 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2280 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2281 * account rare use of URG, this is not a big flaw. 2282 * 2283 * Send at most one packet when push_one > 0. Temporarily ignore 2284 * cwnd limit to force at most one packet out when push_one == 2. 2285 2286 * Returns true, if no segments are in flight and we have queued segments, 2287 * but cannot send anything now because of SWS or another problem. 2288 */ 2289 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2290 int push_one, gfp_t gfp) 2291 { 2292 struct tcp_sock *tp = tcp_sk(sk); 2293 struct sk_buff *skb; 2294 unsigned int tso_segs, sent_pkts; 2295 int cwnd_quota; 2296 int result; 2297 bool is_cwnd_limited = false, is_rwnd_limited = false; 2298 u32 max_segs; 2299 2300 sent_pkts = 0; 2301 2302 tcp_mstamp_refresh(tp); 2303 if (!push_one) { 2304 /* Do MTU probing. */ 2305 result = tcp_mtu_probe(sk); 2306 if (!result) { 2307 return false; 2308 } else if (result > 0) { 2309 sent_pkts = 1; 2310 } 2311 } 2312 2313 max_segs = tcp_tso_segs(sk, mss_now); 2314 while ((skb = tcp_send_head(sk))) { 2315 unsigned int limit; 2316 2317 if (tcp_pacing_check(sk)) 2318 break; 2319 2320 tso_segs = tcp_init_tso_segs(skb, mss_now); 2321 BUG_ON(!tso_segs); 2322 2323 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2324 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2325 tcp_update_skb_after_send(tp, skb); 2326 goto repair; /* Skip network transmission */ 2327 } 2328 2329 cwnd_quota = tcp_cwnd_test(tp, skb); 2330 if (!cwnd_quota) { 2331 if (push_one == 2) 2332 /* Force out a loss probe pkt. */ 2333 cwnd_quota = 1; 2334 else 2335 break; 2336 } 2337 2338 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2339 is_rwnd_limited = true; 2340 break; 2341 } 2342 2343 if (tso_segs == 1) { 2344 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2345 (tcp_skb_is_last(sk, skb) ? 2346 nonagle : TCP_NAGLE_PUSH)))) 2347 break; 2348 } else { 2349 if (!push_one && 2350 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2351 max_segs)) 2352 break; 2353 } 2354 2355 limit = mss_now; 2356 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2357 limit = tcp_mss_split_point(sk, skb, mss_now, 2358 min_t(unsigned int, 2359 cwnd_quota, 2360 max_segs), 2361 nonagle); 2362 2363 if (skb->len > limit && 2364 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2365 skb, limit, mss_now, gfp))) 2366 break; 2367 2368 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 2369 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 2370 if (tcp_small_queue_check(sk, skb, 0)) 2371 break; 2372 2373 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2374 break; 2375 2376 repair: 2377 /* Advance the send_head. This one is sent out. 2378 * This call will increment packets_out. 2379 */ 2380 tcp_event_new_data_sent(sk, skb); 2381 2382 tcp_minshall_update(tp, mss_now, skb); 2383 sent_pkts += tcp_skb_pcount(skb); 2384 2385 if (push_one) 2386 break; 2387 } 2388 2389 if (is_rwnd_limited) 2390 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2391 else 2392 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2393 2394 if (likely(sent_pkts)) { 2395 if (tcp_in_cwnd_reduction(sk)) 2396 tp->prr_out += sent_pkts; 2397 2398 /* Send one loss probe per tail loss episode. */ 2399 if (push_one != 2) 2400 tcp_schedule_loss_probe(sk, false); 2401 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2402 tcp_cwnd_validate(sk, is_cwnd_limited); 2403 return false; 2404 } 2405 return !tp->packets_out && !tcp_write_queue_empty(sk); 2406 } 2407 2408 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2409 { 2410 struct inet_connection_sock *icsk = inet_csk(sk); 2411 struct tcp_sock *tp = tcp_sk(sk); 2412 u32 timeout, rto_delta_us; 2413 int early_retrans; 2414 2415 /* Don't do any loss probe on a Fast Open connection before 3WHS 2416 * finishes. 2417 */ 2418 if (tp->fastopen_rsk) 2419 return false; 2420 2421 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2422 /* Schedule a loss probe in 2*RTT for SACK capable connections 2423 * not in loss recovery, that are either limited by cwnd or application. 2424 */ 2425 if ((early_retrans != 3 && early_retrans != 4) || 2426 !tp->packets_out || !tcp_is_sack(tp) || 2427 (icsk->icsk_ca_state != TCP_CA_Open && 2428 icsk->icsk_ca_state != TCP_CA_CWR)) 2429 return false; 2430 2431 /* Probe timeout is 2*rtt. Add minimum RTO to account 2432 * for delayed ack when there's one outstanding packet. If no RTT 2433 * sample is available then probe after TCP_TIMEOUT_INIT. 2434 */ 2435 if (tp->srtt_us) { 2436 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2437 if (tp->packets_out == 1) 2438 timeout += TCP_RTO_MIN; 2439 else 2440 timeout += TCP_TIMEOUT_MIN; 2441 } else { 2442 timeout = TCP_TIMEOUT_INIT; 2443 } 2444 2445 /* If the RTO formula yields an earlier time, then use that time. */ 2446 rto_delta_us = advancing_rto ? 2447 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2448 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2449 if (rto_delta_us > 0) 2450 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2451 2452 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2453 TCP_RTO_MAX); 2454 return true; 2455 } 2456 2457 /* Thanks to skb fast clones, we can detect if a prior transmit of 2458 * a packet is still in a qdisc or driver queue. 2459 * In this case, there is very little point doing a retransmit ! 2460 */ 2461 static bool skb_still_in_host_queue(const struct sock *sk, 2462 const struct sk_buff *skb) 2463 { 2464 if (unlikely(skb_fclone_busy(sk, skb))) { 2465 NET_INC_STATS(sock_net(sk), 2466 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2467 return true; 2468 } 2469 return false; 2470 } 2471 2472 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2473 * retransmit the last segment. 2474 */ 2475 void tcp_send_loss_probe(struct sock *sk) 2476 { 2477 struct tcp_sock *tp = tcp_sk(sk); 2478 struct sk_buff *skb; 2479 int pcount; 2480 int mss = tcp_current_mss(sk); 2481 2482 skb = tcp_send_head(sk); 2483 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2484 pcount = tp->packets_out; 2485 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2486 if (tp->packets_out > pcount) 2487 goto probe_sent; 2488 goto rearm_timer; 2489 } 2490 skb = skb_rb_last(&sk->tcp_rtx_queue); 2491 2492 /* At most one outstanding TLP retransmission. */ 2493 if (tp->tlp_high_seq) 2494 goto rearm_timer; 2495 2496 /* Retransmit last segment. */ 2497 if (WARN_ON(!skb)) 2498 goto rearm_timer; 2499 2500 if (skb_still_in_host_queue(sk, skb)) 2501 goto rearm_timer; 2502 2503 pcount = tcp_skb_pcount(skb); 2504 if (WARN_ON(!pcount)) 2505 goto rearm_timer; 2506 2507 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2508 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2509 (pcount - 1) * mss, mss, 2510 GFP_ATOMIC))) 2511 goto rearm_timer; 2512 skb = skb_rb_next(skb); 2513 } 2514 2515 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2516 goto rearm_timer; 2517 2518 if (__tcp_retransmit_skb(sk, skb, 1)) 2519 goto rearm_timer; 2520 2521 /* Record snd_nxt for loss detection. */ 2522 tp->tlp_high_seq = tp->snd_nxt; 2523 2524 probe_sent: 2525 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2526 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2527 inet_csk(sk)->icsk_pending = 0; 2528 rearm_timer: 2529 tcp_rearm_rto(sk); 2530 } 2531 2532 /* Push out any pending frames which were held back due to 2533 * TCP_CORK or attempt at coalescing tiny packets. 2534 * The socket must be locked by the caller. 2535 */ 2536 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2537 int nonagle) 2538 { 2539 /* If we are closed, the bytes will have to remain here. 2540 * In time closedown will finish, we empty the write queue and 2541 * all will be happy. 2542 */ 2543 if (unlikely(sk->sk_state == TCP_CLOSE)) 2544 return; 2545 2546 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2547 sk_gfp_mask(sk, GFP_ATOMIC))) 2548 tcp_check_probe_timer(sk); 2549 } 2550 2551 /* Send _single_ skb sitting at the send head. This function requires 2552 * true push pending frames to setup probe timer etc. 2553 */ 2554 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2555 { 2556 struct sk_buff *skb = tcp_send_head(sk); 2557 2558 BUG_ON(!skb || skb->len < mss_now); 2559 2560 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2561 } 2562 2563 /* This function returns the amount that we can raise the 2564 * usable window based on the following constraints 2565 * 2566 * 1. The window can never be shrunk once it is offered (RFC 793) 2567 * 2. We limit memory per socket 2568 * 2569 * RFC 1122: 2570 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2571 * RECV.NEXT + RCV.WIN fixed until: 2572 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2573 * 2574 * i.e. don't raise the right edge of the window until you can raise 2575 * it at least MSS bytes. 2576 * 2577 * Unfortunately, the recommended algorithm breaks header prediction, 2578 * since header prediction assumes th->window stays fixed. 2579 * 2580 * Strictly speaking, keeping th->window fixed violates the receiver 2581 * side SWS prevention criteria. The problem is that under this rule 2582 * a stream of single byte packets will cause the right side of the 2583 * window to always advance by a single byte. 2584 * 2585 * Of course, if the sender implements sender side SWS prevention 2586 * then this will not be a problem. 2587 * 2588 * BSD seems to make the following compromise: 2589 * 2590 * If the free space is less than the 1/4 of the maximum 2591 * space available and the free space is less than 1/2 mss, 2592 * then set the window to 0. 2593 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2594 * Otherwise, just prevent the window from shrinking 2595 * and from being larger than the largest representable value. 2596 * 2597 * This prevents incremental opening of the window in the regime 2598 * where TCP is limited by the speed of the reader side taking 2599 * data out of the TCP receive queue. It does nothing about 2600 * those cases where the window is constrained on the sender side 2601 * because the pipeline is full. 2602 * 2603 * BSD also seems to "accidentally" limit itself to windows that are a 2604 * multiple of MSS, at least until the free space gets quite small. 2605 * This would appear to be a side effect of the mbuf implementation. 2606 * Combining these two algorithms results in the observed behavior 2607 * of having a fixed window size at almost all times. 2608 * 2609 * Below we obtain similar behavior by forcing the offered window to 2610 * a multiple of the mss when it is feasible to do so. 2611 * 2612 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2613 * Regular options like TIMESTAMP are taken into account. 2614 */ 2615 u32 __tcp_select_window(struct sock *sk) 2616 { 2617 struct inet_connection_sock *icsk = inet_csk(sk); 2618 struct tcp_sock *tp = tcp_sk(sk); 2619 /* MSS for the peer's data. Previous versions used mss_clamp 2620 * here. I don't know if the value based on our guesses 2621 * of peer's MSS is better for the performance. It's more correct 2622 * but may be worse for the performance because of rcv_mss 2623 * fluctuations. --SAW 1998/11/1 2624 */ 2625 int mss = icsk->icsk_ack.rcv_mss; 2626 int free_space = tcp_space(sk); 2627 int allowed_space = tcp_full_space(sk); 2628 int full_space = min_t(int, tp->window_clamp, allowed_space); 2629 int window; 2630 2631 if (unlikely(mss > full_space)) { 2632 mss = full_space; 2633 if (mss <= 0) 2634 return 0; 2635 } 2636 if (free_space < (full_space >> 1)) { 2637 icsk->icsk_ack.quick = 0; 2638 2639 if (tcp_under_memory_pressure(sk)) 2640 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2641 4U * tp->advmss); 2642 2643 /* free_space might become our new window, make sure we don't 2644 * increase it due to wscale. 2645 */ 2646 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2647 2648 /* if free space is less than mss estimate, or is below 1/16th 2649 * of the maximum allowed, try to move to zero-window, else 2650 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2651 * new incoming data is dropped due to memory limits. 2652 * With large window, mss test triggers way too late in order 2653 * to announce zero window in time before rmem limit kicks in. 2654 */ 2655 if (free_space < (allowed_space >> 4) || free_space < mss) 2656 return 0; 2657 } 2658 2659 if (free_space > tp->rcv_ssthresh) 2660 free_space = tp->rcv_ssthresh; 2661 2662 /* Don't do rounding if we are using window scaling, since the 2663 * scaled window will not line up with the MSS boundary anyway. 2664 */ 2665 if (tp->rx_opt.rcv_wscale) { 2666 window = free_space; 2667 2668 /* Advertise enough space so that it won't get scaled away. 2669 * Import case: prevent zero window announcement if 2670 * 1<<rcv_wscale > mss. 2671 */ 2672 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2673 } else { 2674 window = tp->rcv_wnd; 2675 /* Get the largest window that is a nice multiple of mss. 2676 * Window clamp already applied above. 2677 * If our current window offering is within 1 mss of the 2678 * free space we just keep it. This prevents the divide 2679 * and multiply from happening most of the time. 2680 * We also don't do any window rounding when the free space 2681 * is too small. 2682 */ 2683 if (window <= free_space - mss || window > free_space) 2684 window = rounddown(free_space, mss); 2685 else if (mss == full_space && 2686 free_space > window + (full_space >> 1)) 2687 window = free_space; 2688 } 2689 2690 return window; 2691 } 2692 2693 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2694 const struct sk_buff *next_skb) 2695 { 2696 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2697 const struct skb_shared_info *next_shinfo = 2698 skb_shinfo(next_skb); 2699 struct skb_shared_info *shinfo = skb_shinfo(skb); 2700 2701 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2702 shinfo->tskey = next_shinfo->tskey; 2703 TCP_SKB_CB(skb)->txstamp_ack |= 2704 TCP_SKB_CB(next_skb)->txstamp_ack; 2705 } 2706 } 2707 2708 /* Collapses two adjacent SKB's during retransmission. */ 2709 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2710 { 2711 struct tcp_sock *tp = tcp_sk(sk); 2712 struct sk_buff *next_skb = skb_rb_next(skb); 2713 int skb_size, next_skb_size; 2714 2715 skb_size = skb->len; 2716 next_skb_size = next_skb->len; 2717 2718 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2719 2720 if (next_skb_size) { 2721 if (next_skb_size <= skb_availroom(skb)) 2722 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2723 next_skb_size); 2724 else if (!skb_shift(skb, next_skb, next_skb_size)) 2725 return false; 2726 } 2727 tcp_highest_sack_replace(sk, next_skb, skb); 2728 2729 /* Update sequence range on original skb. */ 2730 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2731 2732 /* Merge over control information. This moves PSH/FIN etc. over */ 2733 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2734 2735 /* All done, get rid of second SKB and account for it so 2736 * packet counting does not break. 2737 */ 2738 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2739 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2740 2741 /* changed transmit queue under us so clear hints */ 2742 tcp_clear_retrans_hints_partial(tp); 2743 if (next_skb == tp->retransmit_skb_hint) 2744 tp->retransmit_skb_hint = skb; 2745 2746 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2747 2748 tcp_skb_collapse_tstamp(skb, next_skb); 2749 2750 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2751 return true; 2752 } 2753 2754 /* Check if coalescing SKBs is legal. */ 2755 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2756 { 2757 if (tcp_skb_pcount(skb) > 1) 2758 return false; 2759 if (skb_cloned(skb)) 2760 return false; 2761 /* Some heuristics for collapsing over SACK'd could be invented */ 2762 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2763 return false; 2764 2765 return true; 2766 } 2767 2768 /* Collapse packets in the retransmit queue to make to create 2769 * less packets on the wire. This is only done on retransmission. 2770 */ 2771 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2772 int space) 2773 { 2774 struct tcp_sock *tp = tcp_sk(sk); 2775 struct sk_buff *skb = to, *tmp; 2776 bool first = true; 2777 2778 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2779 return; 2780 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2781 return; 2782 2783 skb_rbtree_walk_from_safe(skb, tmp) { 2784 if (!tcp_can_collapse(sk, skb)) 2785 break; 2786 2787 if (!tcp_skb_can_collapse_to(to)) 2788 break; 2789 2790 space -= skb->len; 2791 2792 if (first) { 2793 first = false; 2794 continue; 2795 } 2796 2797 if (space < 0) 2798 break; 2799 2800 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2801 break; 2802 2803 if (!tcp_collapse_retrans(sk, to)) 2804 break; 2805 } 2806 } 2807 2808 /* This retransmits one SKB. Policy decisions and retransmit queue 2809 * state updates are done by the caller. Returns non-zero if an 2810 * error occurred which prevented the send. 2811 */ 2812 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2813 { 2814 struct inet_connection_sock *icsk = inet_csk(sk); 2815 struct tcp_sock *tp = tcp_sk(sk); 2816 unsigned int cur_mss; 2817 int diff, len, err; 2818 2819 2820 /* Inconclusive MTU probe */ 2821 if (icsk->icsk_mtup.probe_size) 2822 icsk->icsk_mtup.probe_size = 0; 2823 2824 /* Do not sent more than we queued. 1/4 is reserved for possible 2825 * copying overhead: fragmentation, tunneling, mangling etc. 2826 */ 2827 if (refcount_read(&sk->sk_wmem_alloc) > 2828 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2829 sk->sk_sndbuf)) 2830 return -EAGAIN; 2831 2832 if (skb_still_in_host_queue(sk, skb)) 2833 return -EBUSY; 2834 2835 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2836 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2837 BUG(); 2838 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2839 return -ENOMEM; 2840 } 2841 2842 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2843 return -EHOSTUNREACH; /* Routing failure or similar. */ 2844 2845 cur_mss = tcp_current_mss(sk); 2846 2847 /* If receiver has shrunk his window, and skb is out of 2848 * new window, do not retransmit it. The exception is the 2849 * case, when window is shrunk to zero. In this case 2850 * our retransmit serves as a zero window probe. 2851 */ 2852 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2853 TCP_SKB_CB(skb)->seq != tp->snd_una) 2854 return -EAGAIN; 2855 2856 len = cur_mss * segs; 2857 if (skb->len > len) { 2858 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2859 cur_mss, GFP_ATOMIC)) 2860 return -ENOMEM; /* We'll try again later. */ 2861 } else { 2862 if (skb_unclone(skb, GFP_ATOMIC)) 2863 return -ENOMEM; 2864 2865 diff = tcp_skb_pcount(skb); 2866 tcp_set_skb_tso_segs(skb, cur_mss); 2867 diff -= tcp_skb_pcount(skb); 2868 if (diff) 2869 tcp_adjust_pcount(sk, skb, diff); 2870 if (skb->len < cur_mss) 2871 tcp_retrans_try_collapse(sk, skb, cur_mss); 2872 } 2873 2874 /* RFC3168, section 6.1.1.1. ECN fallback */ 2875 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2876 tcp_ecn_clear_syn(sk, skb); 2877 2878 /* Update global and local TCP statistics. */ 2879 segs = tcp_skb_pcount(skb); 2880 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2881 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2882 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2883 tp->total_retrans += segs; 2884 2885 /* make sure skb->data is aligned on arches that require it 2886 * and check if ack-trimming & collapsing extended the headroom 2887 * beyond what csum_start can cover. 2888 */ 2889 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2890 skb_headroom(skb) >= 0xFFFF)) { 2891 struct sk_buff *nskb; 2892 2893 tcp_skb_tsorted_save(skb) { 2894 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2895 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2896 -ENOBUFS; 2897 } tcp_skb_tsorted_restore(skb); 2898 2899 if (!err) { 2900 tcp_update_skb_after_send(tp, skb); 2901 tcp_rate_skb_sent(sk, skb); 2902 } 2903 } else { 2904 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2905 } 2906 2907 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2908 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2909 TCP_SKB_CB(skb)->seq, segs, err); 2910 2911 if (likely(!err)) { 2912 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2913 trace_tcp_retransmit_skb(sk, skb); 2914 } else if (err != -EBUSY) { 2915 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2916 } 2917 return err; 2918 } 2919 2920 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2921 { 2922 struct tcp_sock *tp = tcp_sk(sk); 2923 int err = __tcp_retransmit_skb(sk, skb, segs); 2924 2925 if (err == 0) { 2926 #if FASTRETRANS_DEBUG > 0 2927 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2928 net_dbg_ratelimited("retrans_out leaked\n"); 2929 } 2930 #endif 2931 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2932 tp->retrans_out += tcp_skb_pcount(skb); 2933 2934 /* Save stamp of the first retransmit. */ 2935 if (!tp->retrans_stamp) 2936 tp->retrans_stamp = tcp_skb_timestamp(skb); 2937 2938 } 2939 2940 if (tp->undo_retrans < 0) 2941 tp->undo_retrans = 0; 2942 tp->undo_retrans += tcp_skb_pcount(skb); 2943 return err; 2944 } 2945 2946 /* This gets called after a retransmit timeout, and the initially 2947 * retransmitted data is acknowledged. It tries to continue 2948 * resending the rest of the retransmit queue, until either 2949 * we've sent it all or the congestion window limit is reached. 2950 */ 2951 void tcp_xmit_retransmit_queue(struct sock *sk) 2952 { 2953 const struct inet_connection_sock *icsk = inet_csk(sk); 2954 struct sk_buff *skb, *rtx_head, *hole = NULL; 2955 struct tcp_sock *tp = tcp_sk(sk); 2956 u32 max_segs; 2957 int mib_idx; 2958 2959 if (!tp->packets_out) 2960 return; 2961 2962 rtx_head = tcp_rtx_queue_head(sk); 2963 skb = tp->retransmit_skb_hint ?: rtx_head; 2964 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2965 skb_rbtree_walk_from(skb) { 2966 __u8 sacked; 2967 int segs; 2968 2969 if (tcp_pacing_check(sk)) 2970 break; 2971 2972 /* we could do better than to assign each time */ 2973 if (!hole) 2974 tp->retransmit_skb_hint = skb; 2975 2976 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2977 if (segs <= 0) 2978 return; 2979 sacked = TCP_SKB_CB(skb)->sacked; 2980 /* In case tcp_shift_skb_data() have aggregated large skbs, 2981 * we need to make sure not sending too bigs TSO packets 2982 */ 2983 segs = min_t(int, segs, max_segs); 2984 2985 if (tp->retrans_out >= tp->lost_out) { 2986 break; 2987 } else if (!(sacked & TCPCB_LOST)) { 2988 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2989 hole = skb; 2990 continue; 2991 2992 } else { 2993 if (icsk->icsk_ca_state != TCP_CA_Loss) 2994 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2995 else 2996 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2997 } 2998 2999 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3000 continue; 3001 3002 if (tcp_small_queue_check(sk, skb, 1)) 3003 return; 3004 3005 if (tcp_retransmit_skb(sk, skb, segs)) 3006 return; 3007 3008 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3009 3010 if (tcp_in_cwnd_reduction(sk)) 3011 tp->prr_out += tcp_skb_pcount(skb); 3012 3013 if (skb == rtx_head && 3014 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3015 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3016 inet_csk(sk)->icsk_rto, 3017 TCP_RTO_MAX); 3018 } 3019 } 3020 3021 /* We allow to exceed memory limits for FIN packets to expedite 3022 * connection tear down and (memory) recovery. 3023 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3024 * or even be forced to close flow without any FIN. 3025 * In general, we want to allow one skb per socket to avoid hangs 3026 * with edge trigger epoll() 3027 */ 3028 void sk_forced_mem_schedule(struct sock *sk, int size) 3029 { 3030 int amt; 3031 3032 if (size <= sk->sk_forward_alloc) 3033 return; 3034 amt = sk_mem_pages(size); 3035 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3036 sk_memory_allocated_add(sk, amt); 3037 3038 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3039 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3040 } 3041 3042 /* Send a FIN. The caller locks the socket for us. 3043 * We should try to send a FIN packet really hard, but eventually give up. 3044 */ 3045 void tcp_send_fin(struct sock *sk) 3046 { 3047 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3048 struct tcp_sock *tp = tcp_sk(sk); 3049 3050 /* Optimization, tack on the FIN if we have one skb in write queue and 3051 * this skb was not yet sent, or we are under memory pressure. 3052 * Note: in the latter case, FIN packet will be sent after a timeout, 3053 * as TCP stack thinks it has already been transmitted. 3054 */ 3055 if (!tskb && tcp_under_memory_pressure(sk)) 3056 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3057 3058 if (tskb) { 3059 coalesce: 3060 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3061 TCP_SKB_CB(tskb)->end_seq++; 3062 tp->write_seq++; 3063 if (tcp_write_queue_empty(sk)) { 3064 /* This means tskb was already sent. 3065 * Pretend we included the FIN on previous transmit. 3066 * We need to set tp->snd_nxt to the value it would have 3067 * if FIN had been sent. This is because retransmit path 3068 * does not change tp->snd_nxt. 3069 */ 3070 tp->snd_nxt++; 3071 return; 3072 } 3073 } else { 3074 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3075 if (unlikely(!skb)) { 3076 if (tskb) 3077 goto coalesce; 3078 return; 3079 } 3080 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3081 skb_reserve(skb, MAX_TCP_HEADER); 3082 sk_forced_mem_schedule(sk, skb->truesize); 3083 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3084 tcp_init_nondata_skb(skb, tp->write_seq, 3085 TCPHDR_ACK | TCPHDR_FIN); 3086 tcp_queue_skb(sk, skb); 3087 } 3088 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3089 } 3090 3091 /* We get here when a process closes a file descriptor (either due to 3092 * an explicit close() or as a byproduct of exit()'ing) and there 3093 * was unread data in the receive queue. This behavior is recommended 3094 * by RFC 2525, section 2.17. -DaveM 3095 */ 3096 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3097 { 3098 struct sk_buff *skb; 3099 3100 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3101 3102 /* NOTE: No TCP options attached and we never retransmit this. */ 3103 skb = alloc_skb(MAX_TCP_HEADER, priority); 3104 if (!skb) { 3105 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3106 return; 3107 } 3108 3109 /* Reserve space for headers and prepare control bits. */ 3110 skb_reserve(skb, MAX_TCP_HEADER); 3111 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3112 TCPHDR_ACK | TCPHDR_RST); 3113 tcp_mstamp_refresh(tcp_sk(sk)); 3114 /* Send it off. */ 3115 if (tcp_transmit_skb(sk, skb, 0, priority)) 3116 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3117 3118 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3119 * skb here is different to the troublesome skb, so use NULL 3120 */ 3121 trace_tcp_send_reset(sk, NULL); 3122 } 3123 3124 /* Send a crossed SYN-ACK during socket establishment. 3125 * WARNING: This routine must only be called when we have already sent 3126 * a SYN packet that crossed the incoming SYN that caused this routine 3127 * to get called. If this assumption fails then the initial rcv_wnd 3128 * and rcv_wscale values will not be correct. 3129 */ 3130 int tcp_send_synack(struct sock *sk) 3131 { 3132 struct sk_buff *skb; 3133 3134 skb = tcp_rtx_queue_head(sk); 3135 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3136 pr_err("%s: wrong queue state\n", __func__); 3137 return -EFAULT; 3138 } 3139 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3140 if (skb_cloned(skb)) { 3141 struct sk_buff *nskb; 3142 3143 tcp_skb_tsorted_save(skb) { 3144 nskb = skb_copy(skb, GFP_ATOMIC); 3145 } tcp_skb_tsorted_restore(skb); 3146 if (!nskb) 3147 return -ENOMEM; 3148 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3149 tcp_rtx_queue_unlink_and_free(skb, sk); 3150 __skb_header_release(nskb); 3151 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3152 sk->sk_wmem_queued += nskb->truesize; 3153 sk_mem_charge(sk, nskb->truesize); 3154 skb = nskb; 3155 } 3156 3157 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3158 tcp_ecn_send_synack(sk, skb); 3159 } 3160 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3161 } 3162 3163 /** 3164 * tcp_make_synack - Prepare a SYN-ACK. 3165 * sk: listener socket 3166 * dst: dst entry attached to the SYNACK 3167 * req: request_sock pointer 3168 * 3169 * Allocate one skb and build a SYNACK packet. 3170 * @dst is consumed : Caller should not use it again. 3171 */ 3172 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3173 struct request_sock *req, 3174 struct tcp_fastopen_cookie *foc, 3175 enum tcp_synack_type synack_type) 3176 { 3177 struct inet_request_sock *ireq = inet_rsk(req); 3178 const struct tcp_sock *tp = tcp_sk(sk); 3179 struct tcp_md5sig_key *md5 = NULL; 3180 struct tcp_out_options opts; 3181 struct sk_buff *skb; 3182 int tcp_header_size; 3183 struct tcphdr *th; 3184 int mss; 3185 3186 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3187 if (unlikely(!skb)) { 3188 dst_release(dst); 3189 return NULL; 3190 } 3191 /* Reserve space for headers. */ 3192 skb_reserve(skb, MAX_TCP_HEADER); 3193 3194 switch (synack_type) { 3195 case TCP_SYNACK_NORMAL: 3196 skb_set_owner_w(skb, req_to_sk(req)); 3197 break; 3198 case TCP_SYNACK_COOKIE: 3199 /* Under synflood, we do not attach skb to a socket, 3200 * to avoid false sharing. 3201 */ 3202 break; 3203 case TCP_SYNACK_FASTOPEN: 3204 /* sk is a const pointer, because we want to express multiple 3205 * cpu might call us concurrently. 3206 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3207 */ 3208 skb_set_owner_w(skb, (struct sock *)sk); 3209 break; 3210 } 3211 skb_dst_set(skb, dst); 3212 3213 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3214 3215 memset(&opts, 0, sizeof(opts)); 3216 #ifdef CONFIG_SYN_COOKIES 3217 if (unlikely(req->cookie_ts)) 3218 skb->skb_mstamp = cookie_init_timestamp(req); 3219 else 3220 #endif 3221 skb->skb_mstamp = tcp_clock_us(); 3222 3223 #ifdef CONFIG_TCP_MD5SIG 3224 rcu_read_lock(); 3225 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3226 #endif 3227 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3228 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3229 foc) + sizeof(*th); 3230 3231 skb_push(skb, tcp_header_size); 3232 skb_reset_transport_header(skb); 3233 3234 th = (struct tcphdr *)skb->data; 3235 memset(th, 0, sizeof(struct tcphdr)); 3236 th->syn = 1; 3237 th->ack = 1; 3238 tcp_ecn_make_synack(req, th); 3239 th->source = htons(ireq->ir_num); 3240 th->dest = ireq->ir_rmt_port; 3241 skb->mark = ireq->ir_mark; 3242 skb->ip_summed = CHECKSUM_PARTIAL; 3243 th->seq = htonl(tcp_rsk(req)->snt_isn); 3244 /* XXX data is queued and acked as is. No buffer/window check */ 3245 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3246 3247 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3248 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3249 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3250 th->doff = (tcp_header_size >> 2); 3251 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3252 3253 #ifdef CONFIG_TCP_MD5SIG 3254 /* Okay, we have all we need - do the md5 hash if needed */ 3255 if (md5) 3256 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3257 md5, req_to_sk(req), skb); 3258 rcu_read_unlock(); 3259 #endif 3260 3261 /* Do not fool tcpdump (if any), clean our debris */ 3262 skb->tstamp = 0; 3263 return skb; 3264 } 3265 EXPORT_SYMBOL(tcp_make_synack); 3266 3267 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3268 { 3269 struct inet_connection_sock *icsk = inet_csk(sk); 3270 const struct tcp_congestion_ops *ca; 3271 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3272 3273 if (ca_key == TCP_CA_UNSPEC) 3274 return; 3275 3276 rcu_read_lock(); 3277 ca = tcp_ca_find_key(ca_key); 3278 if (likely(ca && try_module_get(ca->owner))) { 3279 module_put(icsk->icsk_ca_ops->owner); 3280 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3281 icsk->icsk_ca_ops = ca; 3282 } 3283 rcu_read_unlock(); 3284 } 3285 3286 /* Do all connect socket setups that can be done AF independent. */ 3287 static void tcp_connect_init(struct sock *sk) 3288 { 3289 const struct dst_entry *dst = __sk_dst_get(sk); 3290 struct tcp_sock *tp = tcp_sk(sk); 3291 __u8 rcv_wscale; 3292 u32 rcv_wnd; 3293 3294 /* We'll fix this up when we get a response from the other end. 3295 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3296 */ 3297 tp->tcp_header_len = sizeof(struct tcphdr); 3298 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3299 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3300 3301 #ifdef CONFIG_TCP_MD5SIG 3302 if (tp->af_specific->md5_lookup(sk, sk)) 3303 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3304 #endif 3305 3306 /* If user gave his TCP_MAXSEG, record it to clamp */ 3307 if (tp->rx_opt.user_mss) 3308 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3309 tp->max_window = 0; 3310 tcp_mtup_init(sk); 3311 tcp_sync_mss(sk, dst_mtu(dst)); 3312 3313 tcp_ca_dst_init(sk, dst); 3314 3315 if (!tp->window_clamp) 3316 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3317 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3318 3319 tcp_initialize_rcv_mss(sk); 3320 3321 /* limit the window selection if the user enforce a smaller rx buffer */ 3322 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3323 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3324 tp->window_clamp = tcp_full_space(sk); 3325 3326 rcv_wnd = tcp_rwnd_init_bpf(sk); 3327 if (rcv_wnd == 0) 3328 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3329 3330 tcp_select_initial_window(sk, tcp_full_space(sk), 3331 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3332 &tp->rcv_wnd, 3333 &tp->window_clamp, 3334 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3335 &rcv_wscale, 3336 rcv_wnd); 3337 3338 tp->rx_opt.rcv_wscale = rcv_wscale; 3339 tp->rcv_ssthresh = tp->rcv_wnd; 3340 3341 sk->sk_err = 0; 3342 sock_reset_flag(sk, SOCK_DONE); 3343 tp->snd_wnd = 0; 3344 tcp_init_wl(tp, 0); 3345 tp->snd_una = tp->write_seq; 3346 tp->snd_sml = tp->write_seq; 3347 tp->snd_up = tp->write_seq; 3348 tp->snd_nxt = tp->write_seq; 3349 3350 if (likely(!tp->repair)) 3351 tp->rcv_nxt = 0; 3352 else 3353 tp->rcv_tstamp = tcp_jiffies32; 3354 tp->rcv_wup = tp->rcv_nxt; 3355 tp->copied_seq = tp->rcv_nxt; 3356 3357 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3358 inet_csk(sk)->icsk_retransmits = 0; 3359 tcp_clear_retrans(tp); 3360 } 3361 3362 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3363 { 3364 struct tcp_sock *tp = tcp_sk(sk); 3365 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3366 3367 tcb->end_seq += skb->len; 3368 __skb_header_release(skb); 3369 sk->sk_wmem_queued += skb->truesize; 3370 sk_mem_charge(sk, skb->truesize); 3371 tp->write_seq = tcb->end_seq; 3372 tp->packets_out += tcp_skb_pcount(skb); 3373 } 3374 3375 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3376 * queue a data-only packet after the regular SYN, such that regular SYNs 3377 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3378 * only the SYN sequence, the data are retransmitted in the first ACK. 3379 * If cookie is not cached or other error occurs, falls back to send a 3380 * regular SYN with Fast Open cookie request option. 3381 */ 3382 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3383 { 3384 struct tcp_sock *tp = tcp_sk(sk); 3385 struct tcp_fastopen_request *fo = tp->fastopen_req; 3386 int space, err = 0; 3387 struct sk_buff *syn_data; 3388 3389 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3390 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3391 goto fallback; 3392 3393 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3394 * user-MSS. Reserve maximum option space for middleboxes that add 3395 * private TCP options. The cost is reduced data space in SYN :( 3396 */ 3397 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3398 3399 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3400 MAX_TCP_OPTION_SPACE; 3401 3402 space = min_t(size_t, space, fo->size); 3403 3404 /* limit to order-0 allocations */ 3405 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3406 3407 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3408 if (!syn_data) 3409 goto fallback; 3410 syn_data->ip_summed = CHECKSUM_PARTIAL; 3411 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3412 if (space) { 3413 int copied = copy_from_iter(skb_put(syn_data, space), space, 3414 &fo->data->msg_iter); 3415 if (unlikely(!copied)) { 3416 tcp_skb_tsorted_anchor_cleanup(syn_data); 3417 kfree_skb(syn_data); 3418 goto fallback; 3419 } 3420 if (copied != space) { 3421 skb_trim(syn_data, copied); 3422 space = copied; 3423 } 3424 } 3425 /* No more data pending in inet_wait_for_connect() */ 3426 if (space == fo->size) 3427 fo->data = NULL; 3428 fo->copied = space; 3429 3430 tcp_connect_queue_skb(sk, syn_data); 3431 if (syn_data->len) 3432 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3433 3434 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3435 3436 syn->skb_mstamp = syn_data->skb_mstamp; 3437 3438 /* Now full SYN+DATA was cloned and sent (or not), 3439 * remove the SYN from the original skb (syn_data) 3440 * we keep in write queue in case of a retransmit, as we 3441 * also have the SYN packet (with no data) in the same queue. 3442 */ 3443 TCP_SKB_CB(syn_data)->seq++; 3444 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3445 if (!err) { 3446 tp->syn_data = (fo->copied > 0); 3447 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3448 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3449 goto done; 3450 } 3451 3452 /* data was not sent, put it in write_queue */ 3453 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3454 tp->packets_out -= tcp_skb_pcount(syn_data); 3455 3456 fallback: 3457 /* Send a regular SYN with Fast Open cookie request option */ 3458 if (fo->cookie.len > 0) 3459 fo->cookie.len = 0; 3460 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3461 if (err) 3462 tp->syn_fastopen = 0; 3463 done: 3464 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3465 return err; 3466 } 3467 3468 /* Build a SYN and send it off. */ 3469 int tcp_connect(struct sock *sk) 3470 { 3471 struct tcp_sock *tp = tcp_sk(sk); 3472 struct sk_buff *buff; 3473 int err; 3474 3475 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3476 3477 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3478 return -EHOSTUNREACH; /* Routing failure or similar. */ 3479 3480 tcp_connect_init(sk); 3481 3482 if (unlikely(tp->repair)) { 3483 tcp_finish_connect(sk, NULL); 3484 return 0; 3485 } 3486 3487 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3488 if (unlikely(!buff)) 3489 return -ENOBUFS; 3490 3491 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3492 tcp_mstamp_refresh(tp); 3493 tp->retrans_stamp = tcp_time_stamp(tp); 3494 tcp_connect_queue_skb(sk, buff); 3495 tcp_ecn_send_syn(sk, buff); 3496 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3497 3498 /* Send off SYN; include data in Fast Open. */ 3499 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3500 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3501 if (err == -ECONNREFUSED) 3502 return err; 3503 3504 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3505 * in order to make this packet get counted in tcpOutSegs. 3506 */ 3507 tp->snd_nxt = tp->write_seq; 3508 tp->pushed_seq = tp->write_seq; 3509 buff = tcp_send_head(sk); 3510 if (unlikely(buff)) { 3511 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3512 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3513 } 3514 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3515 3516 /* Timer for repeating the SYN until an answer. */ 3517 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3518 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3519 return 0; 3520 } 3521 EXPORT_SYMBOL(tcp_connect); 3522 3523 /* Send out a delayed ack, the caller does the policy checking 3524 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3525 * for details. 3526 */ 3527 void tcp_send_delayed_ack(struct sock *sk) 3528 { 3529 struct inet_connection_sock *icsk = inet_csk(sk); 3530 int ato = icsk->icsk_ack.ato; 3531 unsigned long timeout; 3532 3533 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3534 3535 if (ato > TCP_DELACK_MIN) { 3536 const struct tcp_sock *tp = tcp_sk(sk); 3537 int max_ato = HZ / 2; 3538 3539 if (icsk->icsk_ack.pingpong || 3540 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3541 max_ato = TCP_DELACK_MAX; 3542 3543 /* Slow path, intersegment interval is "high". */ 3544 3545 /* If some rtt estimate is known, use it to bound delayed ack. 3546 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3547 * directly. 3548 */ 3549 if (tp->srtt_us) { 3550 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3551 TCP_DELACK_MIN); 3552 3553 if (rtt < max_ato) 3554 max_ato = rtt; 3555 } 3556 3557 ato = min(ato, max_ato); 3558 } 3559 3560 /* Stay within the limit we were given */ 3561 timeout = jiffies + ato; 3562 3563 /* Use new timeout only if there wasn't a older one earlier. */ 3564 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3565 /* If delack timer was blocked or is about to expire, 3566 * send ACK now. 3567 */ 3568 if (icsk->icsk_ack.blocked || 3569 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3570 tcp_send_ack(sk); 3571 return; 3572 } 3573 3574 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3575 timeout = icsk->icsk_ack.timeout; 3576 } 3577 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3578 icsk->icsk_ack.timeout = timeout; 3579 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3580 } 3581 3582 /* This routine sends an ack and also updates the window. */ 3583 void tcp_send_ack(struct sock *sk) 3584 { 3585 struct sk_buff *buff; 3586 3587 /* If we have been reset, we may not send again. */ 3588 if (sk->sk_state == TCP_CLOSE) 3589 return; 3590 3591 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3592 3593 /* We are not putting this on the write queue, so 3594 * tcp_transmit_skb() will set the ownership to this 3595 * sock. 3596 */ 3597 buff = alloc_skb(MAX_TCP_HEADER, 3598 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3599 if (unlikely(!buff)) { 3600 inet_csk_schedule_ack(sk); 3601 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3602 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3603 TCP_DELACK_MAX, TCP_RTO_MAX); 3604 return; 3605 } 3606 3607 /* Reserve space for headers and prepare control bits. */ 3608 skb_reserve(buff, MAX_TCP_HEADER); 3609 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3610 3611 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3612 * too much. 3613 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3614 */ 3615 skb_set_tcp_pure_ack(buff); 3616 3617 /* Send it off, this clears delayed acks for us. */ 3618 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3619 } 3620 EXPORT_SYMBOL_GPL(tcp_send_ack); 3621 3622 /* This routine sends a packet with an out of date sequence 3623 * number. It assumes the other end will try to ack it. 3624 * 3625 * Question: what should we make while urgent mode? 3626 * 4.4BSD forces sending single byte of data. We cannot send 3627 * out of window data, because we have SND.NXT==SND.MAX... 3628 * 3629 * Current solution: to send TWO zero-length segments in urgent mode: 3630 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3631 * out-of-date with SND.UNA-1 to probe window. 3632 */ 3633 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3634 { 3635 struct tcp_sock *tp = tcp_sk(sk); 3636 struct sk_buff *skb; 3637 3638 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3639 skb = alloc_skb(MAX_TCP_HEADER, 3640 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3641 if (!skb) 3642 return -1; 3643 3644 /* Reserve space for headers and set control bits. */ 3645 skb_reserve(skb, MAX_TCP_HEADER); 3646 /* Use a previous sequence. This should cause the other 3647 * end to send an ack. Don't queue or clone SKB, just 3648 * send it. 3649 */ 3650 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3651 NET_INC_STATS(sock_net(sk), mib); 3652 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3653 } 3654 3655 /* Called from setsockopt( ... TCP_REPAIR ) */ 3656 void tcp_send_window_probe(struct sock *sk) 3657 { 3658 if (sk->sk_state == TCP_ESTABLISHED) { 3659 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3660 tcp_mstamp_refresh(tcp_sk(sk)); 3661 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3662 } 3663 } 3664 3665 /* Initiate keepalive or window probe from timer. */ 3666 int tcp_write_wakeup(struct sock *sk, int mib) 3667 { 3668 struct tcp_sock *tp = tcp_sk(sk); 3669 struct sk_buff *skb; 3670 3671 if (sk->sk_state == TCP_CLOSE) 3672 return -1; 3673 3674 skb = tcp_send_head(sk); 3675 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3676 int err; 3677 unsigned int mss = tcp_current_mss(sk); 3678 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3679 3680 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3681 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3682 3683 /* We are probing the opening of a window 3684 * but the window size is != 0 3685 * must have been a result SWS avoidance ( sender ) 3686 */ 3687 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3688 skb->len > mss) { 3689 seg_size = min(seg_size, mss); 3690 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3691 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3692 skb, seg_size, mss, GFP_ATOMIC)) 3693 return -1; 3694 } else if (!tcp_skb_pcount(skb)) 3695 tcp_set_skb_tso_segs(skb, mss); 3696 3697 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3698 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3699 if (!err) 3700 tcp_event_new_data_sent(sk, skb); 3701 return err; 3702 } else { 3703 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3704 tcp_xmit_probe_skb(sk, 1, mib); 3705 return tcp_xmit_probe_skb(sk, 0, mib); 3706 } 3707 } 3708 3709 /* A window probe timeout has occurred. If window is not closed send 3710 * a partial packet else a zero probe. 3711 */ 3712 void tcp_send_probe0(struct sock *sk) 3713 { 3714 struct inet_connection_sock *icsk = inet_csk(sk); 3715 struct tcp_sock *tp = tcp_sk(sk); 3716 struct net *net = sock_net(sk); 3717 unsigned long probe_max; 3718 int err; 3719 3720 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3721 3722 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3723 /* Cancel probe timer, if it is not required. */ 3724 icsk->icsk_probes_out = 0; 3725 icsk->icsk_backoff = 0; 3726 return; 3727 } 3728 3729 if (err <= 0) { 3730 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3731 icsk->icsk_backoff++; 3732 icsk->icsk_probes_out++; 3733 probe_max = TCP_RTO_MAX; 3734 } else { 3735 /* If packet was not sent due to local congestion, 3736 * do not backoff and do not remember icsk_probes_out. 3737 * Let local senders to fight for local resources. 3738 * 3739 * Use accumulated backoff yet. 3740 */ 3741 if (!icsk->icsk_probes_out) 3742 icsk->icsk_probes_out = 1; 3743 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3744 } 3745 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3746 tcp_probe0_when(sk, probe_max), 3747 TCP_RTO_MAX); 3748 } 3749 3750 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3751 { 3752 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3753 struct flowi fl; 3754 int res; 3755 3756 tcp_rsk(req)->txhash = net_tx_rndhash(); 3757 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3758 if (!res) { 3759 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3760 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3761 if (unlikely(tcp_passive_fastopen(sk))) 3762 tcp_sk(sk)->total_retrans++; 3763 trace_tcp_retransmit_synack(sk, req); 3764 } 3765 return res; 3766 } 3767 EXPORT_SYMBOL(tcp_rtx_synack); 3768