xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 4758ce82)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 			   int push_one, gfp_t gfp);
67 
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 	struct inet_connection_sock *icsk = inet_csk(sk);
72 	struct tcp_sock *tp = tcp_sk(sk);
73 	unsigned int prior_packets = tp->packets_out;
74 
75 	tcp_advance_send_head(sk, skb);
76 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 		tcp_rearm_rto(sk);
81 
82 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 		      tcp_skb_pcount(skb));
84 }
85 
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87  * window scaling factor due to loss of precision.
88  * If window has been shrunk, what should we make? It is not clear at all.
89  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91  * invalid. OK, let's make this for now:
92  */
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 	const struct tcp_sock *tp = tcp_sk(sk);
96 
97 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 	    (tp->rx_opt.wscale_ok &&
99 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 		return tp->snd_nxt;
101 	else
102 		return tcp_wnd_end(tp);
103 }
104 
105 /* Calculate mss to advertise in SYN segment.
106  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107  *
108  * 1. It is independent of path mtu.
109  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111  *    attached devices, because some buggy hosts are confused by
112  *    large MSS.
113  * 4. We do not make 3, we advertise MSS, calculated from first
114  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
115  *    This may be overridden via information stored in routing table.
116  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117  *    probably even Jumbo".
118  */
119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 	struct tcp_sock *tp = tcp_sk(sk);
122 	const struct dst_entry *dst = __sk_dst_get(sk);
123 	int mss = tp->advmss;
124 
125 	if (dst) {
126 		unsigned int metric = dst_metric_advmss(dst);
127 
128 		if (metric < mss) {
129 			mss = metric;
130 			tp->advmss = mss;
131 		}
132 	}
133 
134 	return (__u16)mss;
135 }
136 
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138  * This is the first part of cwnd validation mechanism.
139  */
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 	struct tcp_sock *tp = tcp_sk(sk);
143 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 	u32 cwnd = tp->snd_cwnd;
145 
146 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147 
148 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 	restart_cwnd = min(restart_cwnd, cwnd);
150 
151 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 		cwnd >>= 1;
153 	tp->snd_cwnd = max(cwnd, restart_cwnd);
154 	tp->snd_cwnd_stamp = tcp_jiffies32;
155 	tp->snd_cwnd_used = 0;
156 }
157 
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 				struct sock *sk)
161 {
162 	struct inet_connection_sock *icsk = inet_csk(sk);
163 	const u32 now = tcp_jiffies32;
164 
165 	if (tcp_packets_in_flight(tp) == 0)
166 		tcp_ca_event(sk, CA_EVENT_TX_START);
167 
168 	tp->lsndtime = now;
169 
170 	/* If it is a reply for ato after last received
171 	 * packet, enter pingpong mode.
172 	 */
173 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 		icsk->icsk_ack.pingpong = 1;
175 }
176 
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 	tcp_dec_quickack_mode(sk, pkts);
181 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183 
184 
185 u32 tcp_default_init_rwnd(u32 mss)
186 {
187 	/* Initial receive window should be twice of TCP_INIT_CWND to
188 	 * enable proper sending of new unsent data during fast recovery
189 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
190 	 * limit when mss is larger than 1460.
191 	 */
192 	u32 init_rwnd = TCP_INIT_CWND * 2;
193 
194 	if (mss > 1460)
195 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
196 	return init_rwnd;
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
206 void tcp_select_initial_window(int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (*window_clamp == 0)
215 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 	space = min(*window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = rounddown(space, mss);
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (sysctl_tcp_workaround_signed_windows)
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = space;
234 
235 	(*rcv_wscale) = 0;
236 	if (wscale_ok) {
237 		/* Set window scaling on max possible window */
238 		space = max_t(u32, space, sysctl_tcp_rmem[2]);
239 		space = max_t(u32, space, sysctl_rmem_max);
240 		space = min_t(u32, space, *window_clamp);
241 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
242 			space >>= 1;
243 			(*rcv_wscale)++;
244 		}
245 	}
246 
247 	if (mss > (1 << *rcv_wscale)) {
248 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 			init_rcv_wnd = tcp_default_init_rwnd(mss);
250 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 	}
252 
253 	/* Set the clamp no higher than max representable value */
254 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
255 }
256 EXPORT_SYMBOL(tcp_select_initial_window);
257 
258 /* Chose a new window to advertise, update state in tcp_sock for the
259  * socket, and return result with RFC1323 scaling applied.  The return
260  * value can be stuffed directly into th->window for an outgoing
261  * frame.
262  */
263 static u16 tcp_select_window(struct sock *sk)
264 {
265 	struct tcp_sock *tp = tcp_sk(sk);
266 	u32 old_win = tp->rcv_wnd;
267 	u32 cur_win = tcp_receive_window(tp);
268 	u32 new_win = __tcp_select_window(sk);
269 
270 	/* Never shrink the offered window */
271 	if (new_win < cur_win) {
272 		/* Danger Will Robinson!
273 		 * Don't update rcv_wup/rcv_wnd here or else
274 		 * we will not be able to advertise a zero
275 		 * window in time.  --DaveM
276 		 *
277 		 * Relax Will Robinson.
278 		 */
279 		if (new_win == 0)
280 			NET_INC_STATS(sock_net(sk),
281 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
282 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
283 	}
284 	tp->rcv_wnd = new_win;
285 	tp->rcv_wup = tp->rcv_nxt;
286 
287 	/* Make sure we do not exceed the maximum possible
288 	 * scaled window.
289 	 */
290 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 		new_win = min(new_win, MAX_TCP_WINDOW);
292 	else
293 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
294 
295 	/* RFC1323 scaling applied */
296 	new_win >>= tp->rx_opt.rcv_wscale;
297 
298 	/* If we advertise zero window, disable fast path. */
299 	if (new_win == 0) {
300 		tp->pred_flags = 0;
301 		if (old_win)
302 			NET_INC_STATS(sock_net(sk),
303 				      LINUX_MIB_TCPTOZEROWINDOWADV);
304 	} else if (old_win == 0) {
305 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
306 	}
307 
308 	return new_win;
309 }
310 
311 /* Packet ECN state for a SYN-ACK */
312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
313 {
314 	const struct tcp_sock *tp = tcp_sk(sk);
315 
316 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
317 	if (!(tp->ecn_flags & TCP_ECN_OK))
318 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
319 	else if (tcp_ca_needs_ecn(sk) ||
320 		 tcp_bpf_ca_needs_ecn(sk))
321 		INET_ECN_xmit(sk);
322 }
323 
324 /* Packet ECN state for a SYN.  */
325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
326 {
327 	struct tcp_sock *tp = tcp_sk(sk);
328 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
329 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
330 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
331 
332 	if (!use_ecn) {
333 		const struct dst_entry *dst = __sk_dst_get(sk);
334 
335 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
336 			use_ecn = true;
337 	}
338 
339 	tp->ecn_flags = 0;
340 
341 	if (use_ecn) {
342 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
343 		tp->ecn_flags = TCP_ECN_OK;
344 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
345 			INET_ECN_xmit(sk);
346 	}
347 }
348 
349 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
350 {
351 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
352 		/* tp->ecn_flags are cleared at a later point in time when
353 		 * SYN ACK is ultimatively being received.
354 		 */
355 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
356 }
357 
358 static void
359 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
360 {
361 	if (inet_rsk(req)->ecn_ok)
362 		th->ece = 1;
363 }
364 
365 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
366  * be sent.
367  */
368 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
369 			 struct tcphdr *th, int tcp_header_len)
370 {
371 	struct tcp_sock *tp = tcp_sk(sk);
372 
373 	if (tp->ecn_flags & TCP_ECN_OK) {
374 		/* Not-retransmitted data segment: set ECT and inject CWR. */
375 		if (skb->len != tcp_header_len &&
376 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
377 			INET_ECN_xmit(sk);
378 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
379 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
380 				th->cwr = 1;
381 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
382 			}
383 		} else if (!tcp_ca_needs_ecn(sk)) {
384 			/* ACK or retransmitted segment: clear ECT|CE */
385 			INET_ECN_dontxmit(sk);
386 		}
387 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
388 			th->ece = 1;
389 	}
390 }
391 
392 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
393  * auto increment end seqno.
394  */
395 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
396 {
397 	skb->ip_summed = CHECKSUM_PARTIAL;
398 	skb->csum = 0;
399 
400 	TCP_SKB_CB(skb)->tcp_flags = flags;
401 	TCP_SKB_CB(skb)->sacked = 0;
402 
403 	tcp_skb_pcount_set(skb, 1);
404 
405 	TCP_SKB_CB(skb)->seq = seq;
406 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
407 		seq++;
408 	TCP_SKB_CB(skb)->end_seq = seq;
409 }
410 
411 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
412 {
413 	return tp->snd_una != tp->snd_up;
414 }
415 
416 #define OPTION_SACK_ADVERTISE	(1 << 0)
417 #define OPTION_TS		(1 << 1)
418 #define OPTION_MD5		(1 << 2)
419 #define OPTION_WSCALE		(1 << 3)
420 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
421 
422 struct tcp_out_options {
423 	u16 options;		/* bit field of OPTION_* */
424 	u16 mss;		/* 0 to disable */
425 	u8 ws;			/* window scale, 0 to disable */
426 	u8 num_sack_blocks;	/* number of SACK blocks to include */
427 	u8 hash_size;		/* bytes in hash_location */
428 	__u8 *hash_location;	/* temporary pointer, overloaded */
429 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
430 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
431 };
432 
433 /* Write previously computed TCP options to the packet.
434  *
435  * Beware: Something in the Internet is very sensitive to the ordering of
436  * TCP options, we learned this through the hard way, so be careful here.
437  * Luckily we can at least blame others for their non-compliance but from
438  * inter-operability perspective it seems that we're somewhat stuck with
439  * the ordering which we have been using if we want to keep working with
440  * those broken things (not that it currently hurts anybody as there isn't
441  * particular reason why the ordering would need to be changed).
442  *
443  * At least SACK_PERM as the first option is known to lead to a disaster
444  * (but it may well be that other scenarios fail similarly).
445  */
446 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
447 			      struct tcp_out_options *opts)
448 {
449 	u16 options = opts->options;	/* mungable copy */
450 
451 	if (unlikely(OPTION_MD5 & options)) {
452 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
453 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
454 		/* overload cookie hash location */
455 		opts->hash_location = (__u8 *)ptr;
456 		ptr += 4;
457 	}
458 
459 	if (unlikely(opts->mss)) {
460 		*ptr++ = htonl((TCPOPT_MSS << 24) |
461 			       (TCPOLEN_MSS << 16) |
462 			       opts->mss);
463 	}
464 
465 	if (likely(OPTION_TS & options)) {
466 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
467 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
468 				       (TCPOLEN_SACK_PERM << 16) |
469 				       (TCPOPT_TIMESTAMP << 8) |
470 				       TCPOLEN_TIMESTAMP);
471 			options &= ~OPTION_SACK_ADVERTISE;
472 		} else {
473 			*ptr++ = htonl((TCPOPT_NOP << 24) |
474 				       (TCPOPT_NOP << 16) |
475 				       (TCPOPT_TIMESTAMP << 8) |
476 				       TCPOLEN_TIMESTAMP);
477 		}
478 		*ptr++ = htonl(opts->tsval);
479 		*ptr++ = htonl(opts->tsecr);
480 	}
481 
482 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
483 		*ptr++ = htonl((TCPOPT_NOP << 24) |
484 			       (TCPOPT_NOP << 16) |
485 			       (TCPOPT_SACK_PERM << 8) |
486 			       TCPOLEN_SACK_PERM);
487 	}
488 
489 	if (unlikely(OPTION_WSCALE & options)) {
490 		*ptr++ = htonl((TCPOPT_NOP << 24) |
491 			       (TCPOPT_WINDOW << 16) |
492 			       (TCPOLEN_WINDOW << 8) |
493 			       opts->ws);
494 	}
495 
496 	if (unlikely(opts->num_sack_blocks)) {
497 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
498 			tp->duplicate_sack : tp->selective_acks;
499 		int this_sack;
500 
501 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
502 			       (TCPOPT_NOP  << 16) |
503 			       (TCPOPT_SACK <<  8) |
504 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
505 						     TCPOLEN_SACK_PERBLOCK)));
506 
507 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
508 		     ++this_sack) {
509 			*ptr++ = htonl(sp[this_sack].start_seq);
510 			*ptr++ = htonl(sp[this_sack].end_seq);
511 		}
512 
513 		tp->rx_opt.dsack = 0;
514 	}
515 
516 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
517 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
518 		u8 *p = (u8 *)ptr;
519 		u32 len; /* Fast Open option length */
520 
521 		if (foc->exp) {
522 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
523 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
524 				     TCPOPT_FASTOPEN_MAGIC);
525 			p += TCPOLEN_EXP_FASTOPEN_BASE;
526 		} else {
527 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
528 			*p++ = TCPOPT_FASTOPEN;
529 			*p++ = len;
530 		}
531 
532 		memcpy(p, foc->val, foc->len);
533 		if ((len & 3) == 2) {
534 			p[foc->len] = TCPOPT_NOP;
535 			p[foc->len + 1] = TCPOPT_NOP;
536 		}
537 		ptr += (len + 3) >> 2;
538 	}
539 }
540 
541 /* Compute TCP options for SYN packets. This is not the final
542  * network wire format yet.
543  */
544 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
545 				struct tcp_out_options *opts,
546 				struct tcp_md5sig_key **md5)
547 {
548 	struct tcp_sock *tp = tcp_sk(sk);
549 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
550 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
551 
552 #ifdef CONFIG_TCP_MD5SIG
553 	*md5 = tp->af_specific->md5_lookup(sk, sk);
554 	if (*md5) {
555 		opts->options |= OPTION_MD5;
556 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
557 	}
558 #else
559 	*md5 = NULL;
560 #endif
561 
562 	/* We always get an MSS option.  The option bytes which will be seen in
563 	 * normal data packets should timestamps be used, must be in the MSS
564 	 * advertised.  But we subtract them from tp->mss_cache so that
565 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
566 	 * fact here if necessary.  If we don't do this correctly, as a
567 	 * receiver we won't recognize data packets as being full sized when we
568 	 * should, and thus we won't abide by the delayed ACK rules correctly.
569 	 * SACKs don't matter, we never delay an ACK when we have any of those
570 	 * going out.  */
571 	opts->mss = tcp_advertise_mss(sk);
572 	remaining -= TCPOLEN_MSS_ALIGNED;
573 
574 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
575 		opts->options |= OPTION_TS;
576 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
577 		opts->tsecr = tp->rx_opt.ts_recent;
578 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
579 	}
580 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
581 		opts->ws = tp->rx_opt.rcv_wscale;
582 		opts->options |= OPTION_WSCALE;
583 		remaining -= TCPOLEN_WSCALE_ALIGNED;
584 	}
585 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
586 		opts->options |= OPTION_SACK_ADVERTISE;
587 		if (unlikely(!(OPTION_TS & opts->options)))
588 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
589 	}
590 
591 	if (fastopen && fastopen->cookie.len >= 0) {
592 		u32 need = fastopen->cookie.len;
593 
594 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
595 					       TCPOLEN_FASTOPEN_BASE;
596 		need = (need + 3) & ~3U;  /* Align to 32 bits */
597 		if (remaining >= need) {
598 			opts->options |= OPTION_FAST_OPEN_COOKIE;
599 			opts->fastopen_cookie = &fastopen->cookie;
600 			remaining -= need;
601 			tp->syn_fastopen = 1;
602 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
603 		}
604 	}
605 
606 	return MAX_TCP_OPTION_SPACE - remaining;
607 }
608 
609 /* Set up TCP options for SYN-ACKs. */
610 static unsigned int tcp_synack_options(struct request_sock *req,
611 				       unsigned int mss, struct sk_buff *skb,
612 				       struct tcp_out_options *opts,
613 				       const struct tcp_md5sig_key *md5,
614 				       struct tcp_fastopen_cookie *foc)
615 {
616 	struct inet_request_sock *ireq = inet_rsk(req);
617 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
618 
619 #ifdef CONFIG_TCP_MD5SIG
620 	if (md5) {
621 		opts->options |= OPTION_MD5;
622 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
623 
624 		/* We can't fit any SACK blocks in a packet with MD5 + TS
625 		 * options. There was discussion about disabling SACK
626 		 * rather than TS in order to fit in better with old,
627 		 * buggy kernels, but that was deemed to be unnecessary.
628 		 */
629 		ireq->tstamp_ok &= !ireq->sack_ok;
630 	}
631 #endif
632 
633 	/* We always send an MSS option. */
634 	opts->mss = mss;
635 	remaining -= TCPOLEN_MSS_ALIGNED;
636 
637 	if (likely(ireq->wscale_ok)) {
638 		opts->ws = ireq->rcv_wscale;
639 		opts->options |= OPTION_WSCALE;
640 		remaining -= TCPOLEN_WSCALE_ALIGNED;
641 	}
642 	if (likely(ireq->tstamp_ok)) {
643 		opts->options |= OPTION_TS;
644 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
645 		opts->tsecr = req->ts_recent;
646 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
647 	}
648 	if (likely(ireq->sack_ok)) {
649 		opts->options |= OPTION_SACK_ADVERTISE;
650 		if (unlikely(!ireq->tstamp_ok))
651 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
652 	}
653 	if (foc != NULL && foc->len >= 0) {
654 		u32 need = foc->len;
655 
656 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
657 				   TCPOLEN_FASTOPEN_BASE;
658 		need = (need + 3) & ~3U;  /* Align to 32 bits */
659 		if (remaining >= need) {
660 			opts->options |= OPTION_FAST_OPEN_COOKIE;
661 			opts->fastopen_cookie = foc;
662 			remaining -= need;
663 		}
664 	}
665 
666 	return MAX_TCP_OPTION_SPACE - remaining;
667 }
668 
669 /* Compute TCP options for ESTABLISHED sockets. This is not the
670  * final wire format yet.
671  */
672 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
673 					struct tcp_out_options *opts,
674 					struct tcp_md5sig_key **md5)
675 {
676 	struct tcp_sock *tp = tcp_sk(sk);
677 	unsigned int size = 0;
678 	unsigned int eff_sacks;
679 
680 	opts->options = 0;
681 
682 #ifdef CONFIG_TCP_MD5SIG
683 	*md5 = tp->af_specific->md5_lookup(sk, sk);
684 	if (unlikely(*md5)) {
685 		opts->options |= OPTION_MD5;
686 		size += TCPOLEN_MD5SIG_ALIGNED;
687 	}
688 #else
689 	*md5 = NULL;
690 #endif
691 
692 	if (likely(tp->rx_opt.tstamp_ok)) {
693 		opts->options |= OPTION_TS;
694 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
695 		opts->tsecr = tp->rx_opt.ts_recent;
696 		size += TCPOLEN_TSTAMP_ALIGNED;
697 	}
698 
699 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
700 	if (unlikely(eff_sacks)) {
701 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
702 		opts->num_sack_blocks =
703 			min_t(unsigned int, eff_sacks,
704 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
705 			      TCPOLEN_SACK_PERBLOCK);
706 		size += TCPOLEN_SACK_BASE_ALIGNED +
707 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
708 	}
709 
710 	return size;
711 }
712 
713 
714 /* TCP SMALL QUEUES (TSQ)
715  *
716  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
717  * to reduce RTT and bufferbloat.
718  * We do this using a special skb destructor (tcp_wfree).
719  *
720  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
721  * needs to be reallocated in a driver.
722  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
723  *
724  * Since transmit from skb destructor is forbidden, we use a tasklet
725  * to process all sockets that eventually need to send more skbs.
726  * We use one tasklet per cpu, with its own queue of sockets.
727  */
728 struct tsq_tasklet {
729 	struct tasklet_struct	tasklet;
730 	struct list_head	head; /* queue of tcp sockets */
731 };
732 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
733 
734 static void tcp_tsq_handler(struct sock *sk)
735 {
736 	if ((1 << sk->sk_state) &
737 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
738 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
739 		struct tcp_sock *tp = tcp_sk(sk);
740 
741 		if (tp->lost_out > tp->retrans_out &&
742 		    tp->snd_cwnd > tcp_packets_in_flight(tp))
743 			tcp_xmit_retransmit_queue(sk);
744 
745 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
746 			       0, GFP_ATOMIC);
747 	}
748 }
749 /*
750  * One tasklet per cpu tries to send more skbs.
751  * We run in tasklet context but need to disable irqs when
752  * transferring tsq->head because tcp_wfree() might
753  * interrupt us (non NAPI drivers)
754  */
755 static void tcp_tasklet_func(unsigned long data)
756 {
757 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
758 	LIST_HEAD(list);
759 	unsigned long flags;
760 	struct list_head *q, *n;
761 	struct tcp_sock *tp;
762 	struct sock *sk;
763 
764 	local_irq_save(flags);
765 	list_splice_init(&tsq->head, &list);
766 	local_irq_restore(flags);
767 
768 	list_for_each_safe(q, n, &list) {
769 		tp = list_entry(q, struct tcp_sock, tsq_node);
770 		list_del(&tp->tsq_node);
771 
772 		sk = (struct sock *)tp;
773 		smp_mb__before_atomic();
774 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
775 
776 		if (!sk->sk_lock.owned &&
777 		    test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
778 			bh_lock_sock(sk);
779 			if (!sock_owned_by_user(sk)) {
780 				clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
781 				tcp_tsq_handler(sk);
782 			}
783 			bh_unlock_sock(sk);
784 		}
785 
786 		sk_free(sk);
787 	}
788 }
789 
790 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
791 			  TCPF_WRITE_TIMER_DEFERRED |	\
792 			  TCPF_DELACK_TIMER_DEFERRED |	\
793 			  TCPF_MTU_REDUCED_DEFERRED)
794 /**
795  * tcp_release_cb - tcp release_sock() callback
796  * @sk: socket
797  *
798  * called from release_sock() to perform protocol dependent
799  * actions before socket release.
800  */
801 void tcp_release_cb(struct sock *sk)
802 {
803 	unsigned long flags, nflags;
804 
805 	/* perform an atomic operation only if at least one flag is set */
806 	do {
807 		flags = sk->sk_tsq_flags;
808 		if (!(flags & TCP_DEFERRED_ALL))
809 			return;
810 		nflags = flags & ~TCP_DEFERRED_ALL;
811 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
812 
813 	if (flags & TCPF_TSQ_DEFERRED)
814 		tcp_tsq_handler(sk);
815 
816 	/* Here begins the tricky part :
817 	 * We are called from release_sock() with :
818 	 * 1) BH disabled
819 	 * 2) sk_lock.slock spinlock held
820 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
821 	 *
822 	 * But following code is meant to be called from BH handlers,
823 	 * so we should keep BH disabled, but early release socket ownership
824 	 */
825 	sock_release_ownership(sk);
826 
827 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
828 		tcp_write_timer_handler(sk);
829 		__sock_put(sk);
830 	}
831 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
832 		tcp_delack_timer_handler(sk);
833 		__sock_put(sk);
834 	}
835 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
836 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
837 		__sock_put(sk);
838 	}
839 }
840 EXPORT_SYMBOL(tcp_release_cb);
841 
842 void __init tcp_tasklet_init(void)
843 {
844 	int i;
845 
846 	for_each_possible_cpu(i) {
847 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
848 
849 		INIT_LIST_HEAD(&tsq->head);
850 		tasklet_init(&tsq->tasklet,
851 			     tcp_tasklet_func,
852 			     (unsigned long)tsq);
853 	}
854 }
855 
856 /*
857  * Write buffer destructor automatically called from kfree_skb.
858  * We can't xmit new skbs from this context, as we might already
859  * hold qdisc lock.
860  */
861 void tcp_wfree(struct sk_buff *skb)
862 {
863 	struct sock *sk = skb->sk;
864 	struct tcp_sock *tp = tcp_sk(sk);
865 	unsigned long flags, nval, oval;
866 
867 	/* Keep one reference on sk_wmem_alloc.
868 	 * Will be released by sk_free() from here or tcp_tasklet_func()
869 	 */
870 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
871 
872 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
873 	 * Wait until our queues (qdisc + devices) are drained.
874 	 * This gives :
875 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
876 	 * - chance for incoming ACK (processed by another cpu maybe)
877 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
878 	 */
879 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
880 		goto out;
881 
882 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
883 		struct tsq_tasklet *tsq;
884 		bool empty;
885 
886 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
887 			goto out;
888 
889 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
890 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
891 		if (nval != oval)
892 			continue;
893 
894 		/* queue this socket to tasklet queue */
895 		local_irq_save(flags);
896 		tsq = this_cpu_ptr(&tsq_tasklet);
897 		empty = list_empty(&tsq->head);
898 		list_add(&tp->tsq_node, &tsq->head);
899 		if (empty)
900 			tasklet_schedule(&tsq->tasklet);
901 		local_irq_restore(flags);
902 		return;
903 	}
904 out:
905 	sk_free(sk);
906 }
907 
908 /* Note: Called under hard irq.
909  * We can not call TCP stack right away.
910  */
911 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
912 {
913 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
914 	struct sock *sk = (struct sock *)tp;
915 	unsigned long nval, oval;
916 
917 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
918 		struct tsq_tasklet *tsq;
919 		bool empty;
920 
921 		if (oval & TSQF_QUEUED)
922 			break;
923 
924 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
925 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
926 		if (nval != oval)
927 			continue;
928 
929 		if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
930 			break;
931 		/* queue this socket to tasklet queue */
932 		tsq = this_cpu_ptr(&tsq_tasklet);
933 		empty = list_empty(&tsq->head);
934 		list_add(&tp->tsq_node, &tsq->head);
935 		if (empty)
936 			tasklet_schedule(&tsq->tasklet);
937 		break;
938 	}
939 	return HRTIMER_NORESTART;
940 }
941 
942 /* BBR congestion control needs pacing.
943  * Same remark for SO_MAX_PACING_RATE.
944  * sch_fq packet scheduler is efficiently handling pacing,
945  * but is not always installed/used.
946  * Return true if TCP stack should pace packets itself.
947  */
948 static bool tcp_needs_internal_pacing(const struct sock *sk)
949 {
950 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
951 }
952 
953 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
954 {
955 	u64 len_ns;
956 	u32 rate;
957 
958 	if (!tcp_needs_internal_pacing(sk))
959 		return;
960 	rate = sk->sk_pacing_rate;
961 	if (!rate || rate == ~0U)
962 		return;
963 
964 	/* Should account for header sizes as sch_fq does,
965 	 * but lets make things simple.
966 	 */
967 	len_ns = (u64)skb->len * NSEC_PER_SEC;
968 	do_div(len_ns, rate);
969 	hrtimer_start(&tcp_sk(sk)->pacing_timer,
970 		      ktime_add_ns(ktime_get(), len_ns),
971 		      HRTIMER_MODE_ABS_PINNED);
972 }
973 
974 /* This routine actually transmits TCP packets queued in by
975  * tcp_do_sendmsg().  This is used by both the initial
976  * transmission and possible later retransmissions.
977  * All SKB's seen here are completely headerless.  It is our
978  * job to build the TCP header, and pass the packet down to
979  * IP so it can do the same plus pass the packet off to the
980  * device.
981  *
982  * We are working here with either a clone of the original
983  * SKB, or a fresh unique copy made by the retransmit engine.
984  */
985 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
986 			    gfp_t gfp_mask)
987 {
988 	const struct inet_connection_sock *icsk = inet_csk(sk);
989 	struct inet_sock *inet;
990 	struct tcp_sock *tp;
991 	struct tcp_skb_cb *tcb;
992 	struct tcp_out_options opts;
993 	unsigned int tcp_options_size, tcp_header_size;
994 	struct tcp_md5sig_key *md5;
995 	struct tcphdr *th;
996 	int err;
997 
998 	BUG_ON(!skb || !tcp_skb_pcount(skb));
999 	tp = tcp_sk(sk);
1000 
1001 	skb->skb_mstamp = tp->tcp_mstamp;
1002 	if (clone_it) {
1003 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1004 			- tp->snd_una;
1005 		tcp_rate_skb_sent(sk, skb);
1006 
1007 		if (unlikely(skb_cloned(skb)))
1008 			skb = pskb_copy(skb, gfp_mask);
1009 		else
1010 			skb = skb_clone(skb, gfp_mask);
1011 		if (unlikely(!skb))
1012 			return -ENOBUFS;
1013 	}
1014 
1015 	inet = inet_sk(sk);
1016 	tcb = TCP_SKB_CB(skb);
1017 	memset(&opts, 0, sizeof(opts));
1018 
1019 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1020 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1021 	else
1022 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1023 							   &md5);
1024 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1025 
1026 	/* if no packet is in qdisc/device queue, then allow XPS to select
1027 	 * another queue. We can be called from tcp_tsq_handler()
1028 	 * which holds one reference to sk_wmem_alloc.
1029 	 *
1030 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1031 	 * One way to get this would be to set skb->truesize = 2 on them.
1032 	 */
1033 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1034 
1035 	/* If we had to use memory reserve to allocate this skb,
1036 	 * this might cause drops if packet is looped back :
1037 	 * Other socket might not have SOCK_MEMALLOC.
1038 	 * Packets not looped back do not care about pfmemalloc.
1039 	 */
1040 	skb->pfmemalloc = 0;
1041 
1042 	skb_push(skb, tcp_header_size);
1043 	skb_reset_transport_header(skb);
1044 
1045 	skb_orphan(skb);
1046 	skb->sk = sk;
1047 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1048 	skb_set_hash_from_sk(skb, sk);
1049 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1050 
1051 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1052 
1053 	/* Build TCP header and checksum it. */
1054 	th = (struct tcphdr *)skb->data;
1055 	th->source		= inet->inet_sport;
1056 	th->dest		= inet->inet_dport;
1057 	th->seq			= htonl(tcb->seq);
1058 	th->ack_seq		= htonl(tp->rcv_nxt);
1059 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1060 					tcb->tcp_flags);
1061 
1062 	th->check		= 0;
1063 	th->urg_ptr		= 0;
1064 
1065 	/* The urg_mode check is necessary during a below snd_una win probe */
1066 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1067 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1068 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1069 			th->urg = 1;
1070 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1071 			th->urg_ptr = htons(0xFFFF);
1072 			th->urg = 1;
1073 		}
1074 	}
1075 
1076 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1077 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1078 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1079 		th->window      = htons(tcp_select_window(sk));
1080 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1081 	} else {
1082 		/* RFC1323: The window in SYN & SYN/ACK segments
1083 		 * is never scaled.
1084 		 */
1085 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1086 	}
1087 #ifdef CONFIG_TCP_MD5SIG
1088 	/* Calculate the MD5 hash, as we have all we need now */
1089 	if (md5) {
1090 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1091 		tp->af_specific->calc_md5_hash(opts.hash_location,
1092 					       md5, sk, skb);
1093 	}
1094 #endif
1095 
1096 	icsk->icsk_af_ops->send_check(sk, skb);
1097 
1098 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1099 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1100 
1101 	if (skb->len != tcp_header_size) {
1102 		tcp_event_data_sent(tp, sk);
1103 		tp->data_segs_out += tcp_skb_pcount(skb);
1104 		tcp_internal_pacing(sk, skb);
1105 	}
1106 
1107 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1108 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1109 			      tcp_skb_pcount(skb));
1110 
1111 	tp->segs_out += tcp_skb_pcount(skb);
1112 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1113 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1114 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1115 
1116 	/* Our usage of tstamp should remain private */
1117 	skb->tstamp = 0;
1118 
1119 	/* Cleanup our debris for IP stacks */
1120 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1121 			       sizeof(struct inet6_skb_parm)));
1122 
1123 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1124 
1125 	if (likely(err <= 0))
1126 		return err;
1127 
1128 	tcp_enter_cwr(sk);
1129 
1130 	return net_xmit_eval(err);
1131 }
1132 
1133 /* This routine just queues the buffer for sending.
1134  *
1135  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1136  * otherwise socket can stall.
1137  */
1138 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1139 {
1140 	struct tcp_sock *tp = tcp_sk(sk);
1141 
1142 	/* Advance write_seq and place onto the write_queue. */
1143 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1144 	__skb_header_release(skb);
1145 	tcp_add_write_queue_tail(sk, skb);
1146 	sk->sk_wmem_queued += skb->truesize;
1147 	sk_mem_charge(sk, skb->truesize);
1148 }
1149 
1150 /* Initialize TSO segments for a packet. */
1151 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1152 {
1153 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1154 		/* Avoid the costly divide in the normal
1155 		 * non-TSO case.
1156 		 */
1157 		tcp_skb_pcount_set(skb, 1);
1158 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1159 	} else {
1160 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1161 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1162 	}
1163 }
1164 
1165 /* When a modification to fackets out becomes necessary, we need to check
1166  * skb is counted to fackets_out or not.
1167  */
1168 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1169 				   int decr)
1170 {
1171 	struct tcp_sock *tp = tcp_sk(sk);
1172 
1173 	if (!tp->sacked_out || tcp_is_reno(tp))
1174 		return;
1175 
1176 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1177 		tp->fackets_out -= decr;
1178 }
1179 
1180 /* Pcount in the middle of the write queue got changed, we need to do various
1181  * tweaks to fix counters
1182  */
1183 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1184 {
1185 	struct tcp_sock *tp = tcp_sk(sk);
1186 
1187 	tp->packets_out -= decr;
1188 
1189 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1190 		tp->sacked_out -= decr;
1191 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1192 		tp->retrans_out -= decr;
1193 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1194 		tp->lost_out -= decr;
1195 
1196 	/* Reno case is special. Sigh... */
1197 	if (tcp_is_reno(tp) && decr > 0)
1198 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1199 
1200 	tcp_adjust_fackets_out(sk, skb, decr);
1201 
1202 	if (tp->lost_skb_hint &&
1203 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1204 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1205 		tp->lost_cnt_hint -= decr;
1206 
1207 	tcp_verify_left_out(tp);
1208 }
1209 
1210 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1211 {
1212 	return TCP_SKB_CB(skb)->txstamp_ack ||
1213 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1214 }
1215 
1216 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1217 {
1218 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1219 
1220 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1221 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1222 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1223 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1224 
1225 		shinfo->tx_flags &= ~tsflags;
1226 		shinfo2->tx_flags |= tsflags;
1227 		swap(shinfo->tskey, shinfo2->tskey);
1228 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1229 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1230 	}
1231 }
1232 
1233 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1234 {
1235 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1236 	TCP_SKB_CB(skb)->eor = 0;
1237 }
1238 
1239 /* Function to create two new TCP segments.  Shrinks the given segment
1240  * to the specified size and appends a new segment with the rest of the
1241  * packet to the list.  This won't be called frequently, I hope.
1242  * Remember, these are still headerless SKBs at this point.
1243  */
1244 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1245 		 unsigned int mss_now, gfp_t gfp)
1246 {
1247 	struct tcp_sock *tp = tcp_sk(sk);
1248 	struct sk_buff *buff;
1249 	int nsize, old_factor;
1250 	int nlen;
1251 	u8 flags;
1252 
1253 	if (WARN_ON(len > skb->len))
1254 		return -EINVAL;
1255 
1256 	nsize = skb_headlen(skb) - len;
1257 	if (nsize < 0)
1258 		nsize = 0;
1259 
1260 	if (skb_unclone(skb, gfp))
1261 		return -ENOMEM;
1262 
1263 	/* Get a new skb... force flag on. */
1264 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1265 	if (!buff)
1266 		return -ENOMEM; /* We'll just try again later. */
1267 
1268 	sk->sk_wmem_queued += buff->truesize;
1269 	sk_mem_charge(sk, buff->truesize);
1270 	nlen = skb->len - len - nsize;
1271 	buff->truesize += nlen;
1272 	skb->truesize -= nlen;
1273 
1274 	/* Correct the sequence numbers. */
1275 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1276 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1277 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1278 
1279 	/* PSH and FIN should only be set in the second packet. */
1280 	flags = TCP_SKB_CB(skb)->tcp_flags;
1281 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1282 	TCP_SKB_CB(buff)->tcp_flags = flags;
1283 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1284 	tcp_skb_fragment_eor(skb, buff);
1285 
1286 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1287 		/* Copy and checksum data tail into the new buffer. */
1288 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1289 						       skb_put(buff, nsize),
1290 						       nsize, 0);
1291 
1292 		skb_trim(skb, len);
1293 
1294 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1295 	} else {
1296 		skb->ip_summed = CHECKSUM_PARTIAL;
1297 		skb_split(skb, buff, len);
1298 	}
1299 
1300 	buff->ip_summed = skb->ip_summed;
1301 
1302 	buff->tstamp = skb->tstamp;
1303 	tcp_fragment_tstamp(skb, buff);
1304 
1305 	old_factor = tcp_skb_pcount(skb);
1306 
1307 	/* Fix up tso_factor for both original and new SKB.  */
1308 	tcp_set_skb_tso_segs(skb, mss_now);
1309 	tcp_set_skb_tso_segs(buff, mss_now);
1310 
1311 	/* Update delivered info for the new segment */
1312 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1313 
1314 	/* If this packet has been sent out already, we must
1315 	 * adjust the various packet counters.
1316 	 */
1317 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1318 		int diff = old_factor - tcp_skb_pcount(skb) -
1319 			tcp_skb_pcount(buff);
1320 
1321 		if (diff)
1322 			tcp_adjust_pcount(sk, skb, diff);
1323 	}
1324 
1325 	/* Link BUFF into the send queue. */
1326 	__skb_header_release(buff);
1327 	tcp_insert_write_queue_after(skb, buff, sk);
1328 
1329 	return 0;
1330 }
1331 
1332 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1333  * data is not copied, but immediately discarded.
1334  */
1335 static int __pskb_trim_head(struct sk_buff *skb, int len)
1336 {
1337 	struct skb_shared_info *shinfo;
1338 	int i, k, eat;
1339 
1340 	eat = min_t(int, len, skb_headlen(skb));
1341 	if (eat) {
1342 		__skb_pull(skb, eat);
1343 		len -= eat;
1344 		if (!len)
1345 			return 0;
1346 	}
1347 	eat = len;
1348 	k = 0;
1349 	shinfo = skb_shinfo(skb);
1350 	for (i = 0; i < shinfo->nr_frags; i++) {
1351 		int size = skb_frag_size(&shinfo->frags[i]);
1352 
1353 		if (size <= eat) {
1354 			skb_frag_unref(skb, i);
1355 			eat -= size;
1356 		} else {
1357 			shinfo->frags[k] = shinfo->frags[i];
1358 			if (eat) {
1359 				shinfo->frags[k].page_offset += eat;
1360 				skb_frag_size_sub(&shinfo->frags[k], eat);
1361 				eat = 0;
1362 			}
1363 			k++;
1364 		}
1365 	}
1366 	shinfo->nr_frags = k;
1367 
1368 	skb->data_len -= len;
1369 	skb->len = skb->data_len;
1370 	return len;
1371 }
1372 
1373 /* Remove acked data from a packet in the transmit queue. */
1374 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1375 {
1376 	u32 delta_truesize;
1377 
1378 	if (skb_unclone(skb, GFP_ATOMIC))
1379 		return -ENOMEM;
1380 
1381 	delta_truesize = __pskb_trim_head(skb, len);
1382 
1383 	TCP_SKB_CB(skb)->seq += len;
1384 	skb->ip_summed = CHECKSUM_PARTIAL;
1385 
1386 	if (delta_truesize) {
1387 		skb->truesize	   -= delta_truesize;
1388 		sk->sk_wmem_queued -= delta_truesize;
1389 		sk_mem_uncharge(sk, delta_truesize);
1390 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1391 	}
1392 
1393 	/* Any change of skb->len requires recalculation of tso factor. */
1394 	if (tcp_skb_pcount(skb) > 1)
1395 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1396 
1397 	return 0;
1398 }
1399 
1400 /* Calculate MSS not accounting any TCP options.  */
1401 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1402 {
1403 	const struct tcp_sock *tp = tcp_sk(sk);
1404 	const struct inet_connection_sock *icsk = inet_csk(sk);
1405 	int mss_now;
1406 
1407 	/* Calculate base mss without TCP options:
1408 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1409 	 */
1410 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1411 
1412 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1413 	if (icsk->icsk_af_ops->net_frag_header_len) {
1414 		const struct dst_entry *dst = __sk_dst_get(sk);
1415 
1416 		if (dst && dst_allfrag(dst))
1417 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1418 	}
1419 
1420 	/* Clamp it (mss_clamp does not include tcp options) */
1421 	if (mss_now > tp->rx_opt.mss_clamp)
1422 		mss_now = tp->rx_opt.mss_clamp;
1423 
1424 	/* Now subtract optional transport overhead */
1425 	mss_now -= icsk->icsk_ext_hdr_len;
1426 
1427 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1428 	if (mss_now < 48)
1429 		mss_now = 48;
1430 	return mss_now;
1431 }
1432 
1433 /* Calculate MSS. Not accounting for SACKs here.  */
1434 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1435 {
1436 	/* Subtract TCP options size, not including SACKs */
1437 	return __tcp_mtu_to_mss(sk, pmtu) -
1438 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1439 }
1440 
1441 /* Inverse of above */
1442 int tcp_mss_to_mtu(struct sock *sk, int mss)
1443 {
1444 	const struct tcp_sock *tp = tcp_sk(sk);
1445 	const struct inet_connection_sock *icsk = inet_csk(sk);
1446 	int mtu;
1447 
1448 	mtu = mss +
1449 	      tp->tcp_header_len +
1450 	      icsk->icsk_ext_hdr_len +
1451 	      icsk->icsk_af_ops->net_header_len;
1452 
1453 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1454 	if (icsk->icsk_af_ops->net_frag_header_len) {
1455 		const struct dst_entry *dst = __sk_dst_get(sk);
1456 
1457 		if (dst && dst_allfrag(dst))
1458 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1459 	}
1460 	return mtu;
1461 }
1462 EXPORT_SYMBOL(tcp_mss_to_mtu);
1463 
1464 /* MTU probing init per socket */
1465 void tcp_mtup_init(struct sock *sk)
1466 {
1467 	struct tcp_sock *tp = tcp_sk(sk);
1468 	struct inet_connection_sock *icsk = inet_csk(sk);
1469 	struct net *net = sock_net(sk);
1470 
1471 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1472 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1473 			       icsk->icsk_af_ops->net_header_len;
1474 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1475 	icsk->icsk_mtup.probe_size = 0;
1476 	if (icsk->icsk_mtup.enabled)
1477 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1478 }
1479 EXPORT_SYMBOL(tcp_mtup_init);
1480 
1481 /* This function synchronize snd mss to current pmtu/exthdr set.
1482 
1483    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1484    for TCP options, but includes only bare TCP header.
1485 
1486    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1487    It is minimum of user_mss and mss received with SYN.
1488    It also does not include TCP options.
1489 
1490    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1491 
1492    tp->mss_cache is current effective sending mss, including
1493    all tcp options except for SACKs. It is evaluated,
1494    taking into account current pmtu, but never exceeds
1495    tp->rx_opt.mss_clamp.
1496 
1497    NOTE1. rfc1122 clearly states that advertised MSS
1498    DOES NOT include either tcp or ip options.
1499 
1500    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1501    are READ ONLY outside this function.		--ANK (980731)
1502  */
1503 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1504 {
1505 	struct tcp_sock *tp = tcp_sk(sk);
1506 	struct inet_connection_sock *icsk = inet_csk(sk);
1507 	int mss_now;
1508 
1509 	if (icsk->icsk_mtup.search_high > pmtu)
1510 		icsk->icsk_mtup.search_high = pmtu;
1511 
1512 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1513 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1514 
1515 	/* And store cached results */
1516 	icsk->icsk_pmtu_cookie = pmtu;
1517 	if (icsk->icsk_mtup.enabled)
1518 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1519 	tp->mss_cache = mss_now;
1520 
1521 	return mss_now;
1522 }
1523 EXPORT_SYMBOL(tcp_sync_mss);
1524 
1525 /* Compute the current effective MSS, taking SACKs and IP options,
1526  * and even PMTU discovery events into account.
1527  */
1528 unsigned int tcp_current_mss(struct sock *sk)
1529 {
1530 	const struct tcp_sock *tp = tcp_sk(sk);
1531 	const struct dst_entry *dst = __sk_dst_get(sk);
1532 	u32 mss_now;
1533 	unsigned int header_len;
1534 	struct tcp_out_options opts;
1535 	struct tcp_md5sig_key *md5;
1536 
1537 	mss_now = tp->mss_cache;
1538 
1539 	if (dst) {
1540 		u32 mtu = dst_mtu(dst);
1541 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1542 			mss_now = tcp_sync_mss(sk, mtu);
1543 	}
1544 
1545 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1546 		     sizeof(struct tcphdr);
1547 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1548 	 * some common options. If this is an odd packet (because we have SACK
1549 	 * blocks etc) then our calculated header_len will be different, and
1550 	 * we have to adjust mss_now correspondingly */
1551 	if (header_len != tp->tcp_header_len) {
1552 		int delta = (int) header_len - tp->tcp_header_len;
1553 		mss_now -= delta;
1554 	}
1555 
1556 	return mss_now;
1557 }
1558 
1559 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1560  * As additional protections, we do not touch cwnd in retransmission phases,
1561  * and if application hit its sndbuf limit recently.
1562  */
1563 static void tcp_cwnd_application_limited(struct sock *sk)
1564 {
1565 	struct tcp_sock *tp = tcp_sk(sk);
1566 
1567 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1568 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1569 		/* Limited by application or receiver window. */
1570 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1571 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1572 		if (win_used < tp->snd_cwnd) {
1573 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1574 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1575 		}
1576 		tp->snd_cwnd_used = 0;
1577 	}
1578 	tp->snd_cwnd_stamp = tcp_jiffies32;
1579 }
1580 
1581 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1582 {
1583 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1584 	struct tcp_sock *tp = tcp_sk(sk);
1585 
1586 	/* Track the maximum number of outstanding packets in each
1587 	 * window, and remember whether we were cwnd-limited then.
1588 	 */
1589 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1590 	    tp->packets_out > tp->max_packets_out) {
1591 		tp->max_packets_out = tp->packets_out;
1592 		tp->max_packets_seq = tp->snd_nxt;
1593 		tp->is_cwnd_limited = is_cwnd_limited;
1594 	}
1595 
1596 	if (tcp_is_cwnd_limited(sk)) {
1597 		/* Network is feed fully. */
1598 		tp->snd_cwnd_used = 0;
1599 		tp->snd_cwnd_stamp = tcp_jiffies32;
1600 	} else {
1601 		/* Network starves. */
1602 		if (tp->packets_out > tp->snd_cwnd_used)
1603 			tp->snd_cwnd_used = tp->packets_out;
1604 
1605 		if (sysctl_tcp_slow_start_after_idle &&
1606 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1607 		    !ca_ops->cong_control)
1608 			tcp_cwnd_application_limited(sk);
1609 
1610 		/* The following conditions together indicate the starvation
1611 		 * is caused by insufficient sender buffer:
1612 		 * 1) just sent some data (see tcp_write_xmit)
1613 		 * 2) not cwnd limited (this else condition)
1614 		 * 3) no more data to send (null tcp_send_head )
1615 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1616 		 */
1617 		if (!tcp_send_head(sk) && sk->sk_socket &&
1618 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1619 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1620 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1621 	}
1622 }
1623 
1624 /* Minshall's variant of the Nagle send check. */
1625 static bool tcp_minshall_check(const struct tcp_sock *tp)
1626 {
1627 	return after(tp->snd_sml, tp->snd_una) &&
1628 		!after(tp->snd_sml, tp->snd_nxt);
1629 }
1630 
1631 /* Update snd_sml if this skb is under mss
1632  * Note that a TSO packet might end with a sub-mss segment
1633  * The test is really :
1634  * if ((skb->len % mss) != 0)
1635  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1636  * But we can avoid doing the divide again given we already have
1637  *  skb_pcount = skb->len / mss_now
1638  */
1639 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1640 				const struct sk_buff *skb)
1641 {
1642 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1643 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1644 }
1645 
1646 /* Return false, if packet can be sent now without violation Nagle's rules:
1647  * 1. It is full sized. (provided by caller in %partial bool)
1648  * 2. Or it contains FIN. (already checked by caller)
1649  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1650  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1651  *    With Minshall's modification: all sent small packets are ACKed.
1652  */
1653 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1654 			    int nonagle)
1655 {
1656 	return partial &&
1657 		((nonagle & TCP_NAGLE_CORK) ||
1658 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1659 }
1660 
1661 /* Return how many segs we'd like on a TSO packet,
1662  * to send one TSO packet per ms
1663  */
1664 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1665 		     int min_tso_segs)
1666 {
1667 	u32 bytes, segs;
1668 
1669 	bytes = min(sk->sk_pacing_rate >> 10,
1670 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1671 
1672 	/* Goal is to send at least one packet per ms,
1673 	 * not one big TSO packet every 100 ms.
1674 	 * This preserves ACK clocking and is consistent
1675 	 * with tcp_tso_should_defer() heuristic.
1676 	 */
1677 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1678 
1679 	return min_t(u32, segs, sk->sk_gso_max_segs);
1680 }
1681 EXPORT_SYMBOL(tcp_tso_autosize);
1682 
1683 /* Return the number of segments we want in the skb we are transmitting.
1684  * See if congestion control module wants to decide; otherwise, autosize.
1685  */
1686 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1687 {
1688 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1689 	u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1690 
1691 	return tso_segs ? :
1692 		tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1693 }
1694 
1695 /* Returns the portion of skb which can be sent right away */
1696 static unsigned int tcp_mss_split_point(const struct sock *sk,
1697 					const struct sk_buff *skb,
1698 					unsigned int mss_now,
1699 					unsigned int max_segs,
1700 					int nonagle)
1701 {
1702 	const struct tcp_sock *tp = tcp_sk(sk);
1703 	u32 partial, needed, window, max_len;
1704 
1705 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1706 	max_len = mss_now * max_segs;
1707 
1708 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1709 		return max_len;
1710 
1711 	needed = min(skb->len, window);
1712 
1713 	if (max_len <= needed)
1714 		return max_len;
1715 
1716 	partial = needed % mss_now;
1717 	/* If last segment is not a full MSS, check if Nagle rules allow us
1718 	 * to include this last segment in this skb.
1719 	 * Otherwise, we'll split the skb at last MSS boundary
1720 	 */
1721 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1722 		return needed - partial;
1723 
1724 	return needed;
1725 }
1726 
1727 /* Can at least one segment of SKB be sent right now, according to the
1728  * congestion window rules?  If so, return how many segments are allowed.
1729  */
1730 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1731 					 const struct sk_buff *skb)
1732 {
1733 	u32 in_flight, cwnd, halfcwnd;
1734 
1735 	/* Don't be strict about the congestion window for the final FIN.  */
1736 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1737 	    tcp_skb_pcount(skb) == 1)
1738 		return 1;
1739 
1740 	in_flight = tcp_packets_in_flight(tp);
1741 	cwnd = tp->snd_cwnd;
1742 	if (in_flight >= cwnd)
1743 		return 0;
1744 
1745 	/* For better scheduling, ensure we have at least
1746 	 * 2 GSO packets in flight.
1747 	 */
1748 	halfcwnd = max(cwnd >> 1, 1U);
1749 	return min(halfcwnd, cwnd - in_flight);
1750 }
1751 
1752 /* Initialize TSO state of a skb.
1753  * This must be invoked the first time we consider transmitting
1754  * SKB onto the wire.
1755  */
1756 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1757 {
1758 	int tso_segs = tcp_skb_pcount(skb);
1759 
1760 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1761 		tcp_set_skb_tso_segs(skb, mss_now);
1762 		tso_segs = tcp_skb_pcount(skb);
1763 	}
1764 	return tso_segs;
1765 }
1766 
1767 
1768 /* Return true if the Nagle test allows this packet to be
1769  * sent now.
1770  */
1771 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1772 				  unsigned int cur_mss, int nonagle)
1773 {
1774 	/* Nagle rule does not apply to frames, which sit in the middle of the
1775 	 * write_queue (they have no chances to get new data).
1776 	 *
1777 	 * This is implemented in the callers, where they modify the 'nonagle'
1778 	 * argument based upon the location of SKB in the send queue.
1779 	 */
1780 	if (nonagle & TCP_NAGLE_PUSH)
1781 		return true;
1782 
1783 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1784 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1785 		return true;
1786 
1787 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1788 		return true;
1789 
1790 	return false;
1791 }
1792 
1793 /* Does at least the first segment of SKB fit into the send window? */
1794 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1795 			     const struct sk_buff *skb,
1796 			     unsigned int cur_mss)
1797 {
1798 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1799 
1800 	if (skb->len > cur_mss)
1801 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1802 
1803 	return !after(end_seq, tcp_wnd_end(tp));
1804 }
1805 
1806 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1807  * should be put on the wire right now.  If so, it returns the number of
1808  * packets allowed by the congestion window.
1809  */
1810 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1811 				 unsigned int cur_mss, int nonagle)
1812 {
1813 	const struct tcp_sock *tp = tcp_sk(sk);
1814 	unsigned int cwnd_quota;
1815 
1816 	tcp_init_tso_segs(skb, cur_mss);
1817 
1818 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1819 		return 0;
1820 
1821 	cwnd_quota = tcp_cwnd_test(tp, skb);
1822 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1823 		cwnd_quota = 0;
1824 
1825 	return cwnd_quota;
1826 }
1827 
1828 /* Test if sending is allowed right now. */
1829 bool tcp_may_send_now(struct sock *sk)
1830 {
1831 	const struct tcp_sock *tp = tcp_sk(sk);
1832 	struct sk_buff *skb = tcp_send_head(sk);
1833 
1834 	return skb &&
1835 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1836 			     (tcp_skb_is_last(sk, skb) ?
1837 			      tp->nonagle : TCP_NAGLE_PUSH));
1838 }
1839 
1840 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1841  * which is put after SKB on the list.  It is very much like
1842  * tcp_fragment() except that it may make several kinds of assumptions
1843  * in order to speed up the splitting operation.  In particular, we
1844  * know that all the data is in scatter-gather pages, and that the
1845  * packet has never been sent out before (and thus is not cloned).
1846  */
1847 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1848 			unsigned int mss_now, gfp_t gfp)
1849 {
1850 	struct sk_buff *buff;
1851 	int nlen = skb->len - len;
1852 	u8 flags;
1853 
1854 	/* All of a TSO frame must be composed of paged data.  */
1855 	if (skb->len != skb->data_len)
1856 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1857 
1858 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1859 	if (unlikely(!buff))
1860 		return -ENOMEM;
1861 
1862 	sk->sk_wmem_queued += buff->truesize;
1863 	sk_mem_charge(sk, buff->truesize);
1864 	buff->truesize += nlen;
1865 	skb->truesize -= nlen;
1866 
1867 	/* Correct the sequence numbers. */
1868 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1869 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1870 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1871 
1872 	/* PSH and FIN should only be set in the second packet. */
1873 	flags = TCP_SKB_CB(skb)->tcp_flags;
1874 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1875 	TCP_SKB_CB(buff)->tcp_flags = flags;
1876 
1877 	/* This packet was never sent out yet, so no SACK bits. */
1878 	TCP_SKB_CB(buff)->sacked = 0;
1879 
1880 	tcp_skb_fragment_eor(skb, buff);
1881 
1882 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1883 	skb_split(skb, buff, len);
1884 	tcp_fragment_tstamp(skb, buff);
1885 
1886 	/* Fix up tso_factor for both original and new SKB.  */
1887 	tcp_set_skb_tso_segs(skb, mss_now);
1888 	tcp_set_skb_tso_segs(buff, mss_now);
1889 
1890 	/* Link BUFF into the send queue. */
1891 	__skb_header_release(buff);
1892 	tcp_insert_write_queue_after(skb, buff, sk);
1893 
1894 	return 0;
1895 }
1896 
1897 /* Try to defer sending, if possible, in order to minimize the amount
1898  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1899  *
1900  * This algorithm is from John Heffner.
1901  */
1902 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1903 				 bool *is_cwnd_limited, u32 max_segs)
1904 {
1905 	const struct inet_connection_sock *icsk = inet_csk(sk);
1906 	u32 age, send_win, cong_win, limit, in_flight;
1907 	struct tcp_sock *tp = tcp_sk(sk);
1908 	struct sk_buff *head;
1909 	int win_divisor;
1910 
1911 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1912 		goto send_now;
1913 
1914 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1915 		goto send_now;
1916 
1917 	/* Avoid bursty behavior by allowing defer
1918 	 * only if the last write was recent.
1919 	 */
1920 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1921 		goto send_now;
1922 
1923 	in_flight = tcp_packets_in_flight(tp);
1924 
1925 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1926 
1927 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1928 
1929 	/* From in_flight test above, we know that cwnd > in_flight.  */
1930 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1931 
1932 	limit = min(send_win, cong_win);
1933 
1934 	/* If a full-sized TSO skb can be sent, do it. */
1935 	if (limit >= max_segs * tp->mss_cache)
1936 		goto send_now;
1937 
1938 	/* Middle in queue won't get any more data, full sendable already? */
1939 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1940 		goto send_now;
1941 
1942 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1943 	if (win_divisor) {
1944 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1945 
1946 		/* If at least some fraction of a window is available,
1947 		 * just use it.
1948 		 */
1949 		chunk /= win_divisor;
1950 		if (limit >= chunk)
1951 			goto send_now;
1952 	} else {
1953 		/* Different approach, try not to defer past a single
1954 		 * ACK.  Receiver should ACK every other full sized
1955 		 * frame, so if we have space for more than 3 frames
1956 		 * then send now.
1957 		 */
1958 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1959 			goto send_now;
1960 	}
1961 
1962 	head = tcp_write_queue_head(sk);
1963 
1964 	age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1965 	/* If next ACK is likely to come too late (half srtt), do not defer */
1966 	if (age < (tp->srtt_us >> 4))
1967 		goto send_now;
1968 
1969 	/* Ok, it looks like it is advisable to defer. */
1970 
1971 	if (cong_win < send_win && cong_win <= skb->len)
1972 		*is_cwnd_limited = true;
1973 
1974 	return true;
1975 
1976 send_now:
1977 	return false;
1978 }
1979 
1980 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1981 {
1982 	struct inet_connection_sock *icsk = inet_csk(sk);
1983 	struct tcp_sock *tp = tcp_sk(sk);
1984 	struct net *net = sock_net(sk);
1985 	u32 interval;
1986 	s32 delta;
1987 
1988 	interval = net->ipv4.sysctl_tcp_probe_interval;
1989 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
1990 	if (unlikely(delta >= interval * HZ)) {
1991 		int mss = tcp_current_mss(sk);
1992 
1993 		/* Update current search range */
1994 		icsk->icsk_mtup.probe_size = 0;
1995 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1996 			sizeof(struct tcphdr) +
1997 			icsk->icsk_af_ops->net_header_len;
1998 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1999 
2000 		/* Update probe time stamp */
2001 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2002 	}
2003 }
2004 
2005 /* Create a new MTU probe if we are ready.
2006  * MTU probe is regularly attempting to increase the path MTU by
2007  * deliberately sending larger packets.  This discovers routing
2008  * changes resulting in larger path MTUs.
2009  *
2010  * Returns 0 if we should wait to probe (no cwnd available),
2011  *         1 if a probe was sent,
2012  *         -1 otherwise
2013  */
2014 static int tcp_mtu_probe(struct sock *sk)
2015 {
2016 	struct inet_connection_sock *icsk = inet_csk(sk);
2017 	struct tcp_sock *tp = tcp_sk(sk);
2018 	struct sk_buff *skb, *nskb, *next;
2019 	struct net *net = sock_net(sk);
2020 	int probe_size;
2021 	int size_needed;
2022 	int copy, len;
2023 	int mss_now;
2024 	int interval;
2025 
2026 	/* Not currently probing/verifying,
2027 	 * not in recovery,
2028 	 * have enough cwnd, and
2029 	 * not SACKing (the variable headers throw things off)
2030 	 */
2031 	if (likely(!icsk->icsk_mtup.enabled ||
2032 		   icsk->icsk_mtup.probe_size ||
2033 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2034 		   tp->snd_cwnd < 11 ||
2035 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2036 		return -1;
2037 
2038 	/* Use binary search for probe_size between tcp_mss_base,
2039 	 * and current mss_clamp. if (search_high - search_low)
2040 	 * smaller than a threshold, backoff from probing.
2041 	 */
2042 	mss_now = tcp_current_mss(sk);
2043 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2044 				    icsk->icsk_mtup.search_low) >> 1);
2045 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2046 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2047 	/* When misfortune happens, we are reprobing actively,
2048 	 * and then reprobe timer has expired. We stick with current
2049 	 * probing process by not resetting search range to its orignal.
2050 	 */
2051 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2052 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2053 		/* Check whether enough time has elaplased for
2054 		 * another round of probing.
2055 		 */
2056 		tcp_mtu_check_reprobe(sk);
2057 		return -1;
2058 	}
2059 
2060 	/* Have enough data in the send queue to probe? */
2061 	if (tp->write_seq - tp->snd_nxt < size_needed)
2062 		return -1;
2063 
2064 	if (tp->snd_wnd < size_needed)
2065 		return -1;
2066 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2067 		return 0;
2068 
2069 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2070 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2071 		if (!tcp_packets_in_flight(tp))
2072 			return -1;
2073 		else
2074 			return 0;
2075 	}
2076 
2077 	/* We're allowed to probe.  Build it now. */
2078 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2079 	if (!nskb)
2080 		return -1;
2081 	sk->sk_wmem_queued += nskb->truesize;
2082 	sk_mem_charge(sk, nskb->truesize);
2083 
2084 	skb = tcp_send_head(sk);
2085 
2086 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2087 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2088 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2089 	TCP_SKB_CB(nskb)->sacked = 0;
2090 	nskb->csum = 0;
2091 	nskb->ip_summed = skb->ip_summed;
2092 
2093 	tcp_insert_write_queue_before(nskb, skb, sk);
2094 
2095 	len = 0;
2096 	tcp_for_write_queue_from_safe(skb, next, sk) {
2097 		copy = min_t(int, skb->len, probe_size - len);
2098 		if (nskb->ip_summed) {
2099 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2100 		} else {
2101 			__wsum csum = skb_copy_and_csum_bits(skb, 0,
2102 							     skb_put(nskb, copy),
2103 							     copy, 0);
2104 			nskb->csum = csum_block_add(nskb->csum, csum, len);
2105 		}
2106 
2107 		if (skb->len <= copy) {
2108 			/* We've eaten all the data from this skb.
2109 			 * Throw it away. */
2110 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2111 			tcp_unlink_write_queue(skb, sk);
2112 			sk_wmem_free_skb(sk, skb);
2113 		} else {
2114 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2115 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2116 			if (!skb_shinfo(skb)->nr_frags) {
2117 				skb_pull(skb, copy);
2118 				if (skb->ip_summed != CHECKSUM_PARTIAL)
2119 					skb->csum = csum_partial(skb->data,
2120 								 skb->len, 0);
2121 			} else {
2122 				__pskb_trim_head(skb, copy);
2123 				tcp_set_skb_tso_segs(skb, mss_now);
2124 			}
2125 			TCP_SKB_CB(skb)->seq += copy;
2126 		}
2127 
2128 		len += copy;
2129 
2130 		if (len >= probe_size)
2131 			break;
2132 	}
2133 	tcp_init_tso_segs(nskb, nskb->len);
2134 
2135 	/* We're ready to send.  If this fails, the probe will
2136 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2137 	 */
2138 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2139 		/* Decrement cwnd here because we are sending
2140 		 * effectively two packets. */
2141 		tp->snd_cwnd--;
2142 		tcp_event_new_data_sent(sk, nskb);
2143 
2144 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2145 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2146 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2147 
2148 		return 1;
2149 	}
2150 
2151 	return -1;
2152 }
2153 
2154 static bool tcp_pacing_check(const struct sock *sk)
2155 {
2156 	return tcp_needs_internal_pacing(sk) &&
2157 	       hrtimer_active(&tcp_sk(sk)->pacing_timer);
2158 }
2159 
2160 /* TCP Small Queues :
2161  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2162  * (These limits are doubled for retransmits)
2163  * This allows for :
2164  *  - better RTT estimation and ACK scheduling
2165  *  - faster recovery
2166  *  - high rates
2167  * Alas, some drivers / subsystems require a fair amount
2168  * of queued bytes to ensure line rate.
2169  * One example is wifi aggregation (802.11 AMPDU)
2170  */
2171 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2172 				  unsigned int factor)
2173 {
2174 	unsigned int limit;
2175 
2176 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2177 	limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2178 	limit <<= factor;
2179 
2180 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2181 		/* Always send the 1st or 2nd skb in write queue.
2182 		 * No need to wait for TX completion to call us back,
2183 		 * after softirq/tasklet schedule.
2184 		 * This helps when TX completions are delayed too much.
2185 		 */
2186 		if (skb == sk->sk_write_queue.next ||
2187 		    skb->prev == sk->sk_write_queue.next)
2188 			return false;
2189 
2190 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2191 		/* It is possible TX completion already happened
2192 		 * before we set TSQ_THROTTLED, so we must
2193 		 * test again the condition.
2194 		 */
2195 		smp_mb__after_atomic();
2196 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2197 			return true;
2198 	}
2199 	return false;
2200 }
2201 
2202 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2203 {
2204 	const u32 now = tcp_jiffies32;
2205 	enum tcp_chrono old = tp->chrono_type;
2206 
2207 	if (old > TCP_CHRONO_UNSPEC)
2208 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2209 	tp->chrono_start = now;
2210 	tp->chrono_type = new;
2211 }
2212 
2213 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2214 {
2215 	struct tcp_sock *tp = tcp_sk(sk);
2216 
2217 	/* If there are multiple conditions worthy of tracking in a
2218 	 * chronograph then the highest priority enum takes precedence
2219 	 * over the other conditions. So that if something "more interesting"
2220 	 * starts happening, stop the previous chrono and start a new one.
2221 	 */
2222 	if (type > tp->chrono_type)
2223 		tcp_chrono_set(tp, type);
2224 }
2225 
2226 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2227 {
2228 	struct tcp_sock *tp = tcp_sk(sk);
2229 
2230 
2231 	/* There are multiple conditions worthy of tracking in a
2232 	 * chronograph, so that the highest priority enum takes
2233 	 * precedence over the other conditions (see tcp_chrono_start).
2234 	 * If a condition stops, we only stop chrono tracking if
2235 	 * it's the "most interesting" or current chrono we are
2236 	 * tracking and starts busy chrono if we have pending data.
2237 	 */
2238 	if (tcp_write_queue_empty(sk))
2239 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2240 	else if (type == tp->chrono_type)
2241 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2242 }
2243 
2244 /* This routine writes packets to the network.  It advances the
2245  * send_head.  This happens as incoming acks open up the remote
2246  * window for us.
2247  *
2248  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2249  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2250  * account rare use of URG, this is not a big flaw.
2251  *
2252  * Send at most one packet when push_one > 0. Temporarily ignore
2253  * cwnd limit to force at most one packet out when push_one == 2.
2254 
2255  * Returns true, if no segments are in flight and we have queued segments,
2256  * but cannot send anything now because of SWS or another problem.
2257  */
2258 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2259 			   int push_one, gfp_t gfp)
2260 {
2261 	struct tcp_sock *tp = tcp_sk(sk);
2262 	struct sk_buff *skb;
2263 	unsigned int tso_segs, sent_pkts;
2264 	int cwnd_quota;
2265 	int result;
2266 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2267 	u32 max_segs;
2268 
2269 	sent_pkts = 0;
2270 
2271 	if (!push_one) {
2272 		/* Do MTU probing. */
2273 		result = tcp_mtu_probe(sk);
2274 		if (!result) {
2275 			return false;
2276 		} else if (result > 0) {
2277 			sent_pkts = 1;
2278 		}
2279 	}
2280 
2281 	max_segs = tcp_tso_segs(sk, mss_now);
2282 	tcp_mstamp_refresh(tp);
2283 	while ((skb = tcp_send_head(sk))) {
2284 		unsigned int limit;
2285 
2286 		if (tcp_pacing_check(sk))
2287 			break;
2288 
2289 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2290 		BUG_ON(!tso_segs);
2291 
2292 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2293 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2294 			skb->skb_mstamp = tp->tcp_mstamp;
2295 			goto repair; /* Skip network transmission */
2296 		}
2297 
2298 		cwnd_quota = tcp_cwnd_test(tp, skb);
2299 		if (!cwnd_quota) {
2300 			if (push_one == 2)
2301 				/* Force out a loss probe pkt. */
2302 				cwnd_quota = 1;
2303 			else
2304 				break;
2305 		}
2306 
2307 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2308 			is_rwnd_limited = true;
2309 			break;
2310 		}
2311 
2312 		if (tso_segs == 1) {
2313 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2314 						     (tcp_skb_is_last(sk, skb) ?
2315 						      nonagle : TCP_NAGLE_PUSH))))
2316 				break;
2317 		} else {
2318 			if (!push_one &&
2319 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2320 						 max_segs))
2321 				break;
2322 		}
2323 
2324 		limit = mss_now;
2325 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2326 			limit = tcp_mss_split_point(sk, skb, mss_now,
2327 						    min_t(unsigned int,
2328 							  cwnd_quota,
2329 							  max_segs),
2330 						    nonagle);
2331 
2332 		if (skb->len > limit &&
2333 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2334 			break;
2335 
2336 		if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2337 			clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2338 		if (tcp_small_queue_check(sk, skb, 0))
2339 			break;
2340 
2341 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2342 			break;
2343 
2344 repair:
2345 		/* Advance the send_head.  This one is sent out.
2346 		 * This call will increment packets_out.
2347 		 */
2348 		tcp_event_new_data_sent(sk, skb);
2349 
2350 		tcp_minshall_update(tp, mss_now, skb);
2351 		sent_pkts += tcp_skb_pcount(skb);
2352 
2353 		if (push_one)
2354 			break;
2355 	}
2356 
2357 	if (is_rwnd_limited)
2358 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2359 	else
2360 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2361 
2362 	if (likely(sent_pkts)) {
2363 		if (tcp_in_cwnd_reduction(sk))
2364 			tp->prr_out += sent_pkts;
2365 
2366 		/* Send one loss probe per tail loss episode. */
2367 		if (push_one != 2)
2368 			tcp_schedule_loss_probe(sk);
2369 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2370 		tcp_cwnd_validate(sk, is_cwnd_limited);
2371 		return false;
2372 	}
2373 	return !tp->packets_out && tcp_send_head(sk);
2374 }
2375 
2376 bool tcp_schedule_loss_probe(struct sock *sk)
2377 {
2378 	struct inet_connection_sock *icsk = inet_csk(sk);
2379 	struct tcp_sock *tp = tcp_sk(sk);
2380 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2381 	u32 timeout, rto_delta_us;
2382 
2383 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2384 	 * finishes.
2385 	 */
2386 	if (tp->fastopen_rsk)
2387 		return false;
2388 
2389 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2390 	 * in Open state, that are either limited by cwnd or application.
2391 	 */
2392 	if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2393 	    !tp->packets_out || !tcp_is_sack(tp) ||
2394 	    icsk->icsk_ca_state != TCP_CA_Open)
2395 		return false;
2396 
2397 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2398 	     tcp_send_head(sk))
2399 		return false;
2400 
2401 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2402 	 * for delayed ack when there's one outstanding packet. If no RTT
2403 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2404 	 */
2405 	timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2406 	if (tp->packets_out == 1)
2407 		timeout = max_t(u32, timeout,
2408 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2409 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2410 
2411 	/* If the RTO formula yields an earlier time, then use that time. */
2412 	rto_delta_us = tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2413 	if (rto_delta_us > 0)
2414 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2415 
2416 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2417 				  TCP_RTO_MAX);
2418 	return true;
2419 }
2420 
2421 /* Thanks to skb fast clones, we can detect if a prior transmit of
2422  * a packet is still in a qdisc or driver queue.
2423  * In this case, there is very little point doing a retransmit !
2424  */
2425 static bool skb_still_in_host_queue(const struct sock *sk,
2426 				    const struct sk_buff *skb)
2427 {
2428 	if (unlikely(skb_fclone_busy(sk, skb))) {
2429 		NET_INC_STATS(sock_net(sk),
2430 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2431 		return true;
2432 	}
2433 	return false;
2434 }
2435 
2436 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2437  * retransmit the last segment.
2438  */
2439 void tcp_send_loss_probe(struct sock *sk)
2440 {
2441 	struct tcp_sock *tp = tcp_sk(sk);
2442 	struct sk_buff *skb;
2443 	int pcount;
2444 	int mss = tcp_current_mss(sk);
2445 
2446 	skb = tcp_send_head(sk);
2447 	if (skb) {
2448 		if (tcp_snd_wnd_test(tp, skb, mss)) {
2449 			pcount = tp->packets_out;
2450 			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2451 			if (tp->packets_out > pcount)
2452 				goto probe_sent;
2453 			goto rearm_timer;
2454 		}
2455 		skb = tcp_write_queue_prev(sk, skb);
2456 	} else {
2457 		skb = tcp_write_queue_tail(sk);
2458 	}
2459 
2460 	/* At most one outstanding TLP retransmission. */
2461 	if (tp->tlp_high_seq)
2462 		goto rearm_timer;
2463 
2464 	/* Retransmit last segment. */
2465 	if (WARN_ON(!skb))
2466 		goto rearm_timer;
2467 
2468 	if (skb_still_in_host_queue(sk, skb))
2469 		goto rearm_timer;
2470 
2471 	pcount = tcp_skb_pcount(skb);
2472 	if (WARN_ON(!pcount))
2473 		goto rearm_timer;
2474 
2475 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2476 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2477 					  GFP_ATOMIC)))
2478 			goto rearm_timer;
2479 		skb = tcp_write_queue_next(sk, skb);
2480 	}
2481 
2482 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2483 		goto rearm_timer;
2484 
2485 	if (__tcp_retransmit_skb(sk, skb, 1))
2486 		goto rearm_timer;
2487 
2488 	/* Record snd_nxt for loss detection. */
2489 	tp->tlp_high_seq = tp->snd_nxt;
2490 
2491 probe_sent:
2492 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2493 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2494 	inet_csk(sk)->icsk_pending = 0;
2495 rearm_timer:
2496 	tcp_rearm_rto(sk);
2497 }
2498 
2499 /* Push out any pending frames which were held back due to
2500  * TCP_CORK or attempt at coalescing tiny packets.
2501  * The socket must be locked by the caller.
2502  */
2503 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2504 			       int nonagle)
2505 {
2506 	/* If we are closed, the bytes will have to remain here.
2507 	 * In time closedown will finish, we empty the write queue and
2508 	 * all will be happy.
2509 	 */
2510 	if (unlikely(sk->sk_state == TCP_CLOSE))
2511 		return;
2512 
2513 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2514 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2515 		tcp_check_probe_timer(sk);
2516 }
2517 
2518 /* Send _single_ skb sitting at the send head. This function requires
2519  * true push pending frames to setup probe timer etc.
2520  */
2521 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2522 {
2523 	struct sk_buff *skb = tcp_send_head(sk);
2524 
2525 	BUG_ON(!skb || skb->len < mss_now);
2526 
2527 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2528 }
2529 
2530 /* This function returns the amount that we can raise the
2531  * usable window based on the following constraints
2532  *
2533  * 1. The window can never be shrunk once it is offered (RFC 793)
2534  * 2. We limit memory per socket
2535  *
2536  * RFC 1122:
2537  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2538  *  RECV.NEXT + RCV.WIN fixed until:
2539  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2540  *
2541  * i.e. don't raise the right edge of the window until you can raise
2542  * it at least MSS bytes.
2543  *
2544  * Unfortunately, the recommended algorithm breaks header prediction,
2545  * since header prediction assumes th->window stays fixed.
2546  *
2547  * Strictly speaking, keeping th->window fixed violates the receiver
2548  * side SWS prevention criteria. The problem is that under this rule
2549  * a stream of single byte packets will cause the right side of the
2550  * window to always advance by a single byte.
2551  *
2552  * Of course, if the sender implements sender side SWS prevention
2553  * then this will not be a problem.
2554  *
2555  * BSD seems to make the following compromise:
2556  *
2557  *	If the free space is less than the 1/4 of the maximum
2558  *	space available and the free space is less than 1/2 mss,
2559  *	then set the window to 0.
2560  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2561  *	Otherwise, just prevent the window from shrinking
2562  *	and from being larger than the largest representable value.
2563  *
2564  * This prevents incremental opening of the window in the regime
2565  * where TCP is limited by the speed of the reader side taking
2566  * data out of the TCP receive queue. It does nothing about
2567  * those cases where the window is constrained on the sender side
2568  * because the pipeline is full.
2569  *
2570  * BSD also seems to "accidentally" limit itself to windows that are a
2571  * multiple of MSS, at least until the free space gets quite small.
2572  * This would appear to be a side effect of the mbuf implementation.
2573  * Combining these two algorithms results in the observed behavior
2574  * of having a fixed window size at almost all times.
2575  *
2576  * Below we obtain similar behavior by forcing the offered window to
2577  * a multiple of the mss when it is feasible to do so.
2578  *
2579  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2580  * Regular options like TIMESTAMP are taken into account.
2581  */
2582 u32 __tcp_select_window(struct sock *sk)
2583 {
2584 	struct inet_connection_sock *icsk = inet_csk(sk);
2585 	struct tcp_sock *tp = tcp_sk(sk);
2586 	/* MSS for the peer's data.  Previous versions used mss_clamp
2587 	 * here.  I don't know if the value based on our guesses
2588 	 * of peer's MSS is better for the performance.  It's more correct
2589 	 * but may be worse for the performance because of rcv_mss
2590 	 * fluctuations.  --SAW  1998/11/1
2591 	 */
2592 	int mss = icsk->icsk_ack.rcv_mss;
2593 	int free_space = tcp_space(sk);
2594 	int allowed_space = tcp_full_space(sk);
2595 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2596 	int window;
2597 
2598 	if (unlikely(mss > full_space)) {
2599 		mss = full_space;
2600 		if (mss <= 0)
2601 			return 0;
2602 	}
2603 	if (free_space < (full_space >> 1)) {
2604 		icsk->icsk_ack.quick = 0;
2605 
2606 		if (tcp_under_memory_pressure(sk))
2607 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2608 					       4U * tp->advmss);
2609 
2610 		/* free_space might become our new window, make sure we don't
2611 		 * increase it due to wscale.
2612 		 */
2613 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2614 
2615 		/* if free space is less than mss estimate, or is below 1/16th
2616 		 * of the maximum allowed, try to move to zero-window, else
2617 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2618 		 * new incoming data is dropped due to memory limits.
2619 		 * With large window, mss test triggers way too late in order
2620 		 * to announce zero window in time before rmem limit kicks in.
2621 		 */
2622 		if (free_space < (allowed_space >> 4) || free_space < mss)
2623 			return 0;
2624 	}
2625 
2626 	if (free_space > tp->rcv_ssthresh)
2627 		free_space = tp->rcv_ssthresh;
2628 
2629 	/* Don't do rounding if we are using window scaling, since the
2630 	 * scaled window will not line up with the MSS boundary anyway.
2631 	 */
2632 	if (tp->rx_opt.rcv_wscale) {
2633 		window = free_space;
2634 
2635 		/* Advertise enough space so that it won't get scaled away.
2636 		 * Import case: prevent zero window announcement if
2637 		 * 1<<rcv_wscale > mss.
2638 		 */
2639 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2640 	} else {
2641 		window = tp->rcv_wnd;
2642 		/* Get the largest window that is a nice multiple of mss.
2643 		 * Window clamp already applied above.
2644 		 * If our current window offering is within 1 mss of the
2645 		 * free space we just keep it. This prevents the divide
2646 		 * and multiply from happening most of the time.
2647 		 * We also don't do any window rounding when the free space
2648 		 * is too small.
2649 		 */
2650 		if (window <= free_space - mss || window > free_space)
2651 			window = rounddown(free_space, mss);
2652 		else if (mss == full_space &&
2653 			 free_space > window + (full_space >> 1))
2654 			window = free_space;
2655 	}
2656 
2657 	return window;
2658 }
2659 
2660 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2661 			     const struct sk_buff *next_skb)
2662 {
2663 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2664 		const struct skb_shared_info *next_shinfo =
2665 			skb_shinfo(next_skb);
2666 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2667 
2668 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2669 		shinfo->tskey = next_shinfo->tskey;
2670 		TCP_SKB_CB(skb)->txstamp_ack |=
2671 			TCP_SKB_CB(next_skb)->txstamp_ack;
2672 	}
2673 }
2674 
2675 /* Collapses two adjacent SKB's during retransmission. */
2676 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2677 {
2678 	struct tcp_sock *tp = tcp_sk(sk);
2679 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2680 	int skb_size, next_skb_size;
2681 
2682 	skb_size = skb->len;
2683 	next_skb_size = next_skb->len;
2684 
2685 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2686 
2687 	if (next_skb_size) {
2688 		if (next_skb_size <= skb_availroom(skb))
2689 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2690 				      next_skb_size);
2691 		else if (!skb_shift(skb, next_skb, next_skb_size))
2692 			return false;
2693 	}
2694 	tcp_highest_sack_combine(sk, next_skb, skb);
2695 
2696 	tcp_unlink_write_queue(next_skb, sk);
2697 
2698 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2699 		skb->ip_summed = CHECKSUM_PARTIAL;
2700 
2701 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2702 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2703 
2704 	/* Update sequence range on original skb. */
2705 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2706 
2707 	/* Merge over control information. This moves PSH/FIN etc. over */
2708 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2709 
2710 	/* All done, get rid of second SKB and account for it so
2711 	 * packet counting does not break.
2712 	 */
2713 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2714 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2715 
2716 	/* changed transmit queue under us so clear hints */
2717 	tcp_clear_retrans_hints_partial(tp);
2718 	if (next_skb == tp->retransmit_skb_hint)
2719 		tp->retransmit_skb_hint = skb;
2720 
2721 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2722 
2723 	tcp_skb_collapse_tstamp(skb, next_skb);
2724 
2725 	sk_wmem_free_skb(sk, next_skb);
2726 	return true;
2727 }
2728 
2729 /* Check if coalescing SKBs is legal. */
2730 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2731 {
2732 	if (tcp_skb_pcount(skb) > 1)
2733 		return false;
2734 	if (skb_cloned(skb))
2735 		return false;
2736 	if (skb == tcp_send_head(sk))
2737 		return false;
2738 	/* Some heuristics for collapsing over SACK'd could be invented */
2739 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2740 		return false;
2741 
2742 	return true;
2743 }
2744 
2745 /* Collapse packets in the retransmit queue to make to create
2746  * less packets on the wire. This is only done on retransmission.
2747  */
2748 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2749 				     int space)
2750 {
2751 	struct tcp_sock *tp = tcp_sk(sk);
2752 	struct sk_buff *skb = to, *tmp;
2753 	bool first = true;
2754 
2755 	if (!sysctl_tcp_retrans_collapse)
2756 		return;
2757 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2758 		return;
2759 
2760 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2761 		if (!tcp_can_collapse(sk, skb))
2762 			break;
2763 
2764 		if (!tcp_skb_can_collapse_to(to))
2765 			break;
2766 
2767 		space -= skb->len;
2768 
2769 		if (first) {
2770 			first = false;
2771 			continue;
2772 		}
2773 
2774 		if (space < 0)
2775 			break;
2776 
2777 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2778 			break;
2779 
2780 		if (!tcp_collapse_retrans(sk, to))
2781 			break;
2782 	}
2783 }
2784 
2785 /* This retransmits one SKB.  Policy decisions and retransmit queue
2786  * state updates are done by the caller.  Returns non-zero if an
2787  * error occurred which prevented the send.
2788  */
2789 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2790 {
2791 	struct inet_connection_sock *icsk = inet_csk(sk);
2792 	struct tcp_sock *tp = tcp_sk(sk);
2793 	unsigned int cur_mss;
2794 	int diff, len, err;
2795 
2796 
2797 	/* Inconclusive MTU probe */
2798 	if (icsk->icsk_mtup.probe_size)
2799 		icsk->icsk_mtup.probe_size = 0;
2800 
2801 	/* Do not sent more than we queued. 1/4 is reserved for possible
2802 	 * copying overhead: fragmentation, tunneling, mangling etc.
2803 	 */
2804 	if (refcount_read(&sk->sk_wmem_alloc) >
2805 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2806 		  sk->sk_sndbuf))
2807 		return -EAGAIN;
2808 
2809 	if (skb_still_in_host_queue(sk, skb))
2810 		return -EBUSY;
2811 
2812 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2813 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2814 			BUG();
2815 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2816 			return -ENOMEM;
2817 	}
2818 
2819 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2820 		return -EHOSTUNREACH; /* Routing failure or similar. */
2821 
2822 	cur_mss = tcp_current_mss(sk);
2823 
2824 	/* If receiver has shrunk his window, and skb is out of
2825 	 * new window, do not retransmit it. The exception is the
2826 	 * case, when window is shrunk to zero. In this case
2827 	 * our retransmit serves as a zero window probe.
2828 	 */
2829 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2830 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2831 		return -EAGAIN;
2832 
2833 	len = cur_mss * segs;
2834 	if (skb->len > len) {
2835 		if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2836 			return -ENOMEM; /* We'll try again later. */
2837 	} else {
2838 		if (skb_unclone(skb, GFP_ATOMIC))
2839 			return -ENOMEM;
2840 
2841 		diff = tcp_skb_pcount(skb);
2842 		tcp_set_skb_tso_segs(skb, cur_mss);
2843 		diff -= tcp_skb_pcount(skb);
2844 		if (diff)
2845 			tcp_adjust_pcount(sk, skb, diff);
2846 		if (skb->len < cur_mss)
2847 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2848 	}
2849 
2850 	/* RFC3168, section 6.1.1.1. ECN fallback */
2851 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2852 		tcp_ecn_clear_syn(sk, skb);
2853 
2854 	/* Update global and local TCP statistics. */
2855 	segs = tcp_skb_pcount(skb);
2856 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2857 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2858 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2859 	tp->total_retrans += segs;
2860 
2861 	/* make sure skb->data is aligned on arches that require it
2862 	 * and check if ack-trimming & collapsing extended the headroom
2863 	 * beyond what csum_start can cover.
2864 	 */
2865 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2866 		     skb_headroom(skb) >= 0xFFFF)) {
2867 		struct sk_buff *nskb;
2868 
2869 		skb->skb_mstamp = tp->tcp_mstamp;
2870 		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2871 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2872 			     -ENOBUFS;
2873 	} else {
2874 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2875 	}
2876 
2877 	if (likely(!err)) {
2878 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2879 	} else if (err != -EBUSY) {
2880 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2881 	}
2882 	return err;
2883 }
2884 
2885 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2886 {
2887 	struct tcp_sock *tp = tcp_sk(sk);
2888 	int err = __tcp_retransmit_skb(sk, skb, segs);
2889 
2890 	if (err == 0) {
2891 #if FASTRETRANS_DEBUG > 0
2892 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2893 			net_dbg_ratelimited("retrans_out leaked\n");
2894 		}
2895 #endif
2896 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2897 		tp->retrans_out += tcp_skb_pcount(skb);
2898 
2899 		/* Save stamp of the first retransmit. */
2900 		if (!tp->retrans_stamp)
2901 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2902 
2903 	}
2904 
2905 	if (tp->undo_retrans < 0)
2906 		tp->undo_retrans = 0;
2907 	tp->undo_retrans += tcp_skb_pcount(skb);
2908 	return err;
2909 }
2910 
2911 /* This gets called after a retransmit timeout, and the initially
2912  * retransmitted data is acknowledged.  It tries to continue
2913  * resending the rest of the retransmit queue, until either
2914  * we've sent it all or the congestion window limit is reached.
2915  * If doing SACK, the first ACK which comes back for a timeout
2916  * based retransmit packet might feed us FACK information again.
2917  * If so, we use it to avoid unnecessarily retransmissions.
2918  */
2919 void tcp_xmit_retransmit_queue(struct sock *sk)
2920 {
2921 	const struct inet_connection_sock *icsk = inet_csk(sk);
2922 	struct tcp_sock *tp = tcp_sk(sk);
2923 	struct sk_buff *skb;
2924 	struct sk_buff *hole = NULL;
2925 	u32 max_segs;
2926 	int mib_idx;
2927 
2928 	if (!tp->packets_out)
2929 		return;
2930 
2931 	if (tp->retransmit_skb_hint) {
2932 		skb = tp->retransmit_skb_hint;
2933 	} else {
2934 		skb = tcp_write_queue_head(sk);
2935 	}
2936 
2937 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2938 	tcp_for_write_queue_from(skb, sk) {
2939 		__u8 sacked;
2940 		int segs;
2941 
2942 		if (skb == tcp_send_head(sk))
2943 			break;
2944 
2945 		if (tcp_pacing_check(sk))
2946 			break;
2947 
2948 		/* we could do better than to assign each time */
2949 		if (!hole)
2950 			tp->retransmit_skb_hint = skb;
2951 
2952 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2953 		if (segs <= 0)
2954 			return;
2955 		sacked = TCP_SKB_CB(skb)->sacked;
2956 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2957 		 * we need to make sure not sending too bigs TSO packets
2958 		 */
2959 		segs = min_t(int, segs, max_segs);
2960 
2961 		if (tp->retrans_out >= tp->lost_out) {
2962 			break;
2963 		} else if (!(sacked & TCPCB_LOST)) {
2964 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2965 				hole = skb;
2966 			continue;
2967 
2968 		} else {
2969 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2970 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2971 			else
2972 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2973 		}
2974 
2975 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2976 			continue;
2977 
2978 		if (tcp_small_queue_check(sk, skb, 1))
2979 			return;
2980 
2981 		if (tcp_retransmit_skb(sk, skb, segs))
2982 			return;
2983 
2984 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2985 
2986 		if (tcp_in_cwnd_reduction(sk))
2987 			tp->prr_out += tcp_skb_pcount(skb);
2988 
2989 		if (skb == tcp_write_queue_head(sk) &&
2990 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
2991 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2992 						  inet_csk(sk)->icsk_rto,
2993 						  TCP_RTO_MAX);
2994 	}
2995 }
2996 
2997 /* We allow to exceed memory limits for FIN packets to expedite
2998  * connection tear down and (memory) recovery.
2999  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3000  * or even be forced to close flow without any FIN.
3001  * In general, we want to allow one skb per socket to avoid hangs
3002  * with edge trigger epoll()
3003  */
3004 void sk_forced_mem_schedule(struct sock *sk, int size)
3005 {
3006 	int amt;
3007 
3008 	if (size <= sk->sk_forward_alloc)
3009 		return;
3010 	amt = sk_mem_pages(size);
3011 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3012 	sk_memory_allocated_add(sk, amt);
3013 
3014 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3015 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3016 }
3017 
3018 /* Send a FIN. The caller locks the socket for us.
3019  * We should try to send a FIN packet really hard, but eventually give up.
3020  */
3021 void tcp_send_fin(struct sock *sk)
3022 {
3023 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3024 	struct tcp_sock *tp = tcp_sk(sk);
3025 
3026 	/* Optimization, tack on the FIN if we have one skb in write queue and
3027 	 * this skb was not yet sent, or we are under memory pressure.
3028 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3029 	 * as TCP stack thinks it has already been transmitted.
3030 	 */
3031 	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
3032 coalesce:
3033 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3034 		TCP_SKB_CB(tskb)->end_seq++;
3035 		tp->write_seq++;
3036 		if (!tcp_send_head(sk)) {
3037 			/* This means tskb was already sent.
3038 			 * Pretend we included the FIN on previous transmit.
3039 			 * We need to set tp->snd_nxt to the value it would have
3040 			 * if FIN had been sent. This is because retransmit path
3041 			 * does not change tp->snd_nxt.
3042 			 */
3043 			tp->snd_nxt++;
3044 			return;
3045 		}
3046 	} else {
3047 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3048 		if (unlikely(!skb)) {
3049 			if (tskb)
3050 				goto coalesce;
3051 			return;
3052 		}
3053 		skb_reserve(skb, MAX_TCP_HEADER);
3054 		sk_forced_mem_schedule(sk, skb->truesize);
3055 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3056 		tcp_init_nondata_skb(skb, tp->write_seq,
3057 				     TCPHDR_ACK | TCPHDR_FIN);
3058 		tcp_queue_skb(sk, skb);
3059 	}
3060 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3061 }
3062 
3063 /* We get here when a process closes a file descriptor (either due to
3064  * an explicit close() or as a byproduct of exit()'ing) and there
3065  * was unread data in the receive queue.  This behavior is recommended
3066  * by RFC 2525, section 2.17.  -DaveM
3067  */
3068 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3069 {
3070 	struct sk_buff *skb;
3071 
3072 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3073 
3074 	/* NOTE: No TCP options attached and we never retransmit this. */
3075 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3076 	if (!skb) {
3077 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3078 		return;
3079 	}
3080 
3081 	/* Reserve space for headers and prepare control bits. */
3082 	skb_reserve(skb, MAX_TCP_HEADER);
3083 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3084 			     TCPHDR_ACK | TCPHDR_RST);
3085 	tcp_mstamp_refresh(tcp_sk(sk));
3086 	/* Send it off. */
3087 	if (tcp_transmit_skb(sk, skb, 0, priority))
3088 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3089 }
3090 
3091 /* Send a crossed SYN-ACK during socket establishment.
3092  * WARNING: This routine must only be called when we have already sent
3093  * a SYN packet that crossed the incoming SYN that caused this routine
3094  * to get called. If this assumption fails then the initial rcv_wnd
3095  * and rcv_wscale values will not be correct.
3096  */
3097 int tcp_send_synack(struct sock *sk)
3098 {
3099 	struct sk_buff *skb;
3100 
3101 	skb = tcp_write_queue_head(sk);
3102 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3103 		pr_debug("%s: wrong queue state\n", __func__);
3104 		return -EFAULT;
3105 	}
3106 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3107 		if (skb_cloned(skb)) {
3108 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3109 			if (!nskb)
3110 				return -ENOMEM;
3111 			tcp_unlink_write_queue(skb, sk);
3112 			__skb_header_release(nskb);
3113 			__tcp_add_write_queue_head(sk, nskb);
3114 			sk_wmem_free_skb(sk, skb);
3115 			sk->sk_wmem_queued += nskb->truesize;
3116 			sk_mem_charge(sk, nskb->truesize);
3117 			skb = nskb;
3118 		}
3119 
3120 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3121 		tcp_ecn_send_synack(sk, skb);
3122 	}
3123 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3124 }
3125 
3126 /**
3127  * tcp_make_synack - Prepare a SYN-ACK.
3128  * sk: listener socket
3129  * dst: dst entry attached to the SYNACK
3130  * req: request_sock pointer
3131  *
3132  * Allocate one skb and build a SYNACK packet.
3133  * @dst is consumed : Caller should not use it again.
3134  */
3135 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3136 				struct request_sock *req,
3137 				struct tcp_fastopen_cookie *foc,
3138 				enum tcp_synack_type synack_type)
3139 {
3140 	struct inet_request_sock *ireq = inet_rsk(req);
3141 	const struct tcp_sock *tp = tcp_sk(sk);
3142 	struct tcp_md5sig_key *md5 = NULL;
3143 	struct tcp_out_options opts;
3144 	struct sk_buff *skb;
3145 	int tcp_header_size;
3146 	struct tcphdr *th;
3147 	int mss;
3148 
3149 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3150 	if (unlikely(!skb)) {
3151 		dst_release(dst);
3152 		return NULL;
3153 	}
3154 	/* Reserve space for headers. */
3155 	skb_reserve(skb, MAX_TCP_HEADER);
3156 
3157 	switch (synack_type) {
3158 	case TCP_SYNACK_NORMAL:
3159 		skb_set_owner_w(skb, req_to_sk(req));
3160 		break;
3161 	case TCP_SYNACK_COOKIE:
3162 		/* Under synflood, we do not attach skb to a socket,
3163 		 * to avoid false sharing.
3164 		 */
3165 		break;
3166 	case TCP_SYNACK_FASTOPEN:
3167 		/* sk is a const pointer, because we want to express multiple
3168 		 * cpu might call us concurrently.
3169 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3170 		 */
3171 		skb_set_owner_w(skb, (struct sock *)sk);
3172 		break;
3173 	}
3174 	skb_dst_set(skb, dst);
3175 
3176 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3177 
3178 	memset(&opts, 0, sizeof(opts));
3179 #ifdef CONFIG_SYN_COOKIES
3180 	if (unlikely(req->cookie_ts))
3181 		skb->skb_mstamp = cookie_init_timestamp(req);
3182 	else
3183 #endif
3184 		skb->skb_mstamp = tcp_clock_us();
3185 
3186 #ifdef CONFIG_TCP_MD5SIG
3187 	rcu_read_lock();
3188 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3189 #endif
3190 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3191 	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3192 			  sizeof(*th);
3193 
3194 	skb_push(skb, tcp_header_size);
3195 	skb_reset_transport_header(skb);
3196 
3197 	th = (struct tcphdr *)skb->data;
3198 	memset(th, 0, sizeof(struct tcphdr));
3199 	th->syn = 1;
3200 	th->ack = 1;
3201 	tcp_ecn_make_synack(req, th);
3202 	th->source = htons(ireq->ir_num);
3203 	th->dest = ireq->ir_rmt_port;
3204 	skb->mark = ireq->ir_mark;
3205 	/* Setting of flags are superfluous here for callers (and ECE is
3206 	 * not even correctly set)
3207 	 */
3208 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3209 			     TCPHDR_SYN | TCPHDR_ACK);
3210 
3211 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3212 	/* XXX data is queued and acked as is. No buffer/window check */
3213 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3214 
3215 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3216 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3217 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3218 	th->doff = (tcp_header_size >> 2);
3219 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3220 
3221 #ifdef CONFIG_TCP_MD5SIG
3222 	/* Okay, we have all we need - do the md5 hash if needed */
3223 	if (md5)
3224 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3225 					       md5, req_to_sk(req), skb);
3226 	rcu_read_unlock();
3227 #endif
3228 
3229 	/* Do not fool tcpdump (if any), clean our debris */
3230 	skb->tstamp = 0;
3231 	return skb;
3232 }
3233 EXPORT_SYMBOL(tcp_make_synack);
3234 
3235 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3236 {
3237 	struct inet_connection_sock *icsk = inet_csk(sk);
3238 	const struct tcp_congestion_ops *ca;
3239 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3240 
3241 	if (ca_key == TCP_CA_UNSPEC)
3242 		return;
3243 
3244 	rcu_read_lock();
3245 	ca = tcp_ca_find_key(ca_key);
3246 	if (likely(ca && try_module_get(ca->owner))) {
3247 		module_put(icsk->icsk_ca_ops->owner);
3248 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3249 		icsk->icsk_ca_ops = ca;
3250 	}
3251 	rcu_read_unlock();
3252 }
3253 
3254 /* Do all connect socket setups that can be done AF independent. */
3255 static void tcp_connect_init(struct sock *sk)
3256 {
3257 	const struct dst_entry *dst = __sk_dst_get(sk);
3258 	struct tcp_sock *tp = tcp_sk(sk);
3259 	__u8 rcv_wscale;
3260 	u32 rcv_wnd;
3261 
3262 	/* We'll fix this up when we get a response from the other end.
3263 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3264 	 */
3265 	tp->tcp_header_len = sizeof(struct tcphdr);
3266 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3267 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3268 
3269 #ifdef CONFIG_TCP_MD5SIG
3270 	if (tp->af_specific->md5_lookup(sk, sk))
3271 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3272 #endif
3273 
3274 	/* If user gave his TCP_MAXSEG, record it to clamp */
3275 	if (tp->rx_opt.user_mss)
3276 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3277 	tp->max_window = 0;
3278 	tcp_mtup_init(sk);
3279 	tcp_sync_mss(sk, dst_mtu(dst));
3280 
3281 	tcp_ca_dst_init(sk, dst);
3282 
3283 	if (!tp->window_clamp)
3284 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3285 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3286 
3287 	tcp_initialize_rcv_mss(sk);
3288 
3289 	/* limit the window selection if the user enforce a smaller rx buffer */
3290 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3291 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3292 		tp->window_clamp = tcp_full_space(sk);
3293 
3294 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3295 	if (rcv_wnd == 0)
3296 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3297 
3298 	tcp_select_initial_window(tcp_full_space(sk),
3299 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3300 				  &tp->rcv_wnd,
3301 				  &tp->window_clamp,
3302 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3303 				  &rcv_wscale,
3304 				  rcv_wnd);
3305 
3306 	tp->rx_opt.rcv_wscale = rcv_wscale;
3307 	tp->rcv_ssthresh = tp->rcv_wnd;
3308 
3309 	sk->sk_err = 0;
3310 	sock_reset_flag(sk, SOCK_DONE);
3311 	tp->snd_wnd = 0;
3312 	tcp_init_wl(tp, 0);
3313 	tp->snd_una = tp->write_seq;
3314 	tp->snd_sml = tp->write_seq;
3315 	tp->snd_up = tp->write_seq;
3316 	tp->snd_nxt = tp->write_seq;
3317 
3318 	if (likely(!tp->repair))
3319 		tp->rcv_nxt = 0;
3320 	else
3321 		tp->rcv_tstamp = tcp_jiffies32;
3322 	tp->rcv_wup = tp->rcv_nxt;
3323 	tp->copied_seq = tp->rcv_nxt;
3324 
3325 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3326 	inet_csk(sk)->icsk_retransmits = 0;
3327 	tcp_clear_retrans(tp);
3328 }
3329 
3330 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3331 {
3332 	struct tcp_sock *tp = tcp_sk(sk);
3333 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3334 
3335 	tcb->end_seq += skb->len;
3336 	__skb_header_release(skb);
3337 	__tcp_add_write_queue_tail(sk, skb);
3338 	sk->sk_wmem_queued += skb->truesize;
3339 	sk_mem_charge(sk, skb->truesize);
3340 	tp->write_seq = tcb->end_seq;
3341 	tp->packets_out += tcp_skb_pcount(skb);
3342 }
3343 
3344 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3345  * queue a data-only packet after the regular SYN, such that regular SYNs
3346  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3347  * only the SYN sequence, the data are retransmitted in the first ACK.
3348  * If cookie is not cached or other error occurs, falls back to send a
3349  * regular SYN with Fast Open cookie request option.
3350  */
3351 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3352 {
3353 	struct tcp_sock *tp = tcp_sk(sk);
3354 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3355 	int space, err = 0;
3356 	struct sk_buff *syn_data;
3357 
3358 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3359 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3360 		goto fallback;
3361 
3362 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3363 	 * user-MSS. Reserve maximum option space for middleboxes that add
3364 	 * private TCP options. The cost is reduced data space in SYN :(
3365 	 */
3366 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3367 
3368 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3369 		MAX_TCP_OPTION_SPACE;
3370 
3371 	space = min_t(size_t, space, fo->size);
3372 
3373 	/* limit to order-0 allocations */
3374 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3375 
3376 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3377 	if (!syn_data)
3378 		goto fallback;
3379 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3380 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3381 	if (space) {
3382 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3383 					    &fo->data->msg_iter);
3384 		if (unlikely(!copied)) {
3385 			kfree_skb(syn_data);
3386 			goto fallback;
3387 		}
3388 		if (copied != space) {
3389 			skb_trim(syn_data, copied);
3390 			space = copied;
3391 		}
3392 	}
3393 	/* No more data pending in inet_wait_for_connect() */
3394 	if (space == fo->size)
3395 		fo->data = NULL;
3396 	fo->copied = space;
3397 
3398 	tcp_connect_queue_skb(sk, syn_data);
3399 	if (syn_data->len)
3400 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3401 
3402 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3403 
3404 	syn->skb_mstamp = syn_data->skb_mstamp;
3405 
3406 	/* Now full SYN+DATA was cloned and sent (or not),
3407 	 * remove the SYN from the original skb (syn_data)
3408 	 * we keep in write queue in case of a retransmit, as we
3409 	 * also have the SYN packet (with no data) in the same queue.
3410 	 */
3411 	TCP_SKB_CB(syn_data)->seq++;
3412 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3413 	if (!err) {
3414 		tp->syn_data = (fo->copied > 0);
3415 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3416 		goto done;
3417 	}
3418 
3419 fallback:
3420 	/* Send a regular SYN with Fast Open cookie request option */
3421 	if (fo->cookie.len > 0)
3422 		fo->cookie.len = 0;
3423 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3424 	if (err)
3425 		tp->syn_fastopen = 0;
3426 done:
3427 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3428 	return err;
3429 }
3430 
3431 /* Build a SYN and send it off. */
3432 int tcp_connect(struct sock *sk)
3433 {
3434 	struct tcp_sock *tp = tcp_sk(sk);
3435 	struct sk_buff *buff;
3436 	int err;
3437 
3438 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
3439 
3440 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3441 		return -EHOSTUNREACH; /* Routing failure or similar. */
3442 
3443 	tcp_connect_init(sk);
3444 
3445 	if (unlikely(tp->repair)) {
3446 		tcp_finish_connect(sk, NULL);
3447 		return 0;
3448 	}
3449 
3450 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3451 	if (unlikely(!buff))
3452 		return -ENOBUFS;
3453 
3454 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3455 	tcp_mstamp_refresh(tp);
3456 	tp->retrans_stamp = tcp_time_stamp(tp);
3457 	tcp_connect_queue_skb(sk, buff);
3458 	tcp_ecn_send_syn(sk, buff);
3459 
3460 	/* Send off SYN; include data in Fast Open. */
3461 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3462 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3463 	if (err == -ECONNREFUSED)
3464 		return err;
3465 
3466 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3467 	 * in order to make this packet get counted in tcpOutSegs.
3468 	 */
3469 	tp->snd_nxt = tp->write_seq;
3470 	tp->pushed_seq = tp->write_seq;
3471 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3472 
3473 	/* Timer for repeating the SYN until an answer. */
3474 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3475 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3476 	return 0;
3477 }
3478 EXPORT_SYMBOL(tcp_connect);
3479 
3480 /* Send out a delayed ack, the caller does the policy checking
3481  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3482  * for details.
3483  */
3484 void tcp_send_delayed_ack(struct sock *sk)
3485 {
3486 	struct inet_connection_sock *icsk = inet_csk(sk);
3487 	int ato = icsk->icsk_ack.ato;
3488 	unsigned long timeout;
3489 
3490 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3491 
3492 	if (ato > TCP_DELACK_MIN) {
3493 		const struct tcp_sock *tp = tcp_sk(sk);
3494 		int max_ato = HZ / 2;
3495 
3496 		if (icsk->icsk_ack.pingpong ||
3497 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3498 			max_ato = TCP_DELACK_MAX;
3499 
3500 		/* Slow path, intersegment interval is "high". */
3501 
3502 		/* If some rtt estimate is known, use it to bound delayed ack.
3503 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3504 		 * directly.
3505 		 */
3506 		if (tp->srtt_us) {
3507 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3508 					TCP_DELACK_MIN);
3509 
3510 			if (rtt < max_ato)
3511 				max_ato = rtt;
3512 		}
3513 
3514 		ato = min(ato, max_ato);
3515 	}
3516 
3517 	/* Stay within the limit we were given */
3518 	timeout = jiffies + ato;
3519 
3520 	/* Use new timeout only if there wasn't a older one earlier. */
3521 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3522 		/* If delack timer was blocked or is about to expire,
3523 		 * send ACK now.
3524 		 */
3525 		if (icsk->icsk_ack.blocked ||
3526 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3527 			tcp_send_ack(sk);
3528 			return;
3529 		}
3530 
3531 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3532 			timeout = icsk->icsk_ack.timeout;
3533 	}
3534 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3535 	icsk->icsk_ack.timeout = timeout;
3536 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3537 }
3538 
3539 /* This routine sends an ack and also updates the window. */
3540 void tcp_send_ack(struct sock *sk)
3541 {
3542 	struct sk_buff *buff;
3543 
3544 	/* If we have been reset, we may not send again. */
3545 	if (sk->sk_state == TCP_CLOSE)
3546 		return;
3547 
3548 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3549 
3550 	/* We are not putting this on the write queue, so
3551 	 * tcp_transmit_skb() will set the ownership to this
3552 	 * sock.
3553 	 */
3554 	buff = alloc_skb(MAX_TCP_HEADER,
3555 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3556 	if (unlikely(!buff)) {
3557 		inet_csk_schedule_ack(sk);
3558 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3559 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3560 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3561 		return;
3562 	}
3563 
3564 	/* Reserve space for headers and prepare control bits. */
3565 	skb_reserve(buff, MAX_TCP_HEADER);
3566 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3567 
3568 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3569 	 * too much.
3570 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3571 	 */
3572 	skb_set_tcp_pure_ack(buff);
3573 
3574 	/* Send it off, this clears delayed acks for us. */
3575 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3576 }
3577 EXPORT_SYMBOL_GPL(tcp_send_ack);
3578 
3579 /* This routine sends a packet with an out of date sequence
3580  * number. It assumes the other end will try to ack it.
3581  *
3582  * Question: what should we make while urgent mode?
3583  * 4.4BSD forces sending single byte of data. We cannot send
3584  * out of window data, because we have SND.NXT==SND.MAX...
3585  *
3586  * Current solution: to send TWO zero-length segments in urgent mode:
3587  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3588  * out-of-date with SND.UNA-1 to probe window.
3589  */
3590 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3591 {
3592 	struct tcp_sock *tp = tcp_sk(sk);
3593 	struct sk_buff *skb;
3594 
3595 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3596 	skb = alloc_skb(MAX_TCP_HEADER,
3597 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3598 	if (!skb)
3599 		return -1;
3600 
3601 	/* Reserve space for headers and set control bits. */
3602 	skb_reserve(skb, MAX_TCP_HEADER);
3603 	/* Use a previous sequence.  This should cause the other
3604 	 * end to send an ack.  Don't queue or clone SKB, just
3605 	 * send it.
3606 	 */
3607 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3608 	NET_INC_STATS(sock_net(sk), mib);
3609 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3610 }
3611 
3612 /* Called from setsockopt( ... TCP_REPAIR ) */
3613 void tcp_send_window_probe(struct sock *sk)
3614 {
3615 	if (sk->sk_state == TCP_ESTABLISHED) {
3616 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3617 		tcp_mstamp_refresh(tcp_sk(sk));
3618 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3619 	}
3620 }
3621 
3622 /* Initiate keepalive or window probe from timer. */
3623 int tcp_write_wakeup(struct sock *sk, int mib)
3624 {
3625 	struct tcp_sock *tp = tcp_sk(sk);
3626 	struct sk_buff *skb;
3627 
3628 	if (sk->sk_state == TCP_CLOSE)
3629 		return -1;
3630 
3631 	skb = tcp_send_head(sk);
3632 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3633 		int err;
3634 		unsigned int mss = tcp_current_mss(sk);
3635 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3636 
3637 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3638 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3639 
3640 		/* We are probing the opening of a window
3641 		 * but the window size is != 0
3642 		 * must have been a result SWS avoidance ( sender )
3643 		 */
3644 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3645 		    skb->len > mss) {
3646 			seg_size = min(seg_size, mss);
3647 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3648 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3649 				return -1;
3650 		} else if (!tcp_skb_pcount(skb))
3651 			tcp_set_skb_tso_segs(skb, mss);
3652 
3653 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3654 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3655 		if (!err)
3656 			tcp_event_new_data_sent(sk, skb);
3657 		return err;
3658 	} else {
3659 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3660 			tcp_xmit_probe_skb(sk, 1, mib);
3661 		return tcp_xmit_probe_skb(sk, 0, mib);
3662 	}
3663 }
3664 
3665 /* A window probe timeout has occurred.  If window is not closed send
3666  * a partial packet else a zero probe.
3667  */
3668 void tcp_send_probe0(struct sock *sk)
3669 {
3670 	struct inet_connection_sock *icsk = inet_csk(sk);
3671 	struct tcp_sock *tp = tcp_sk(sk);
3672 	struct net *net = sock_net(sk);
3673 	unsigned long probe_max;
3674 	int err;
3675 
3676 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3677 
3678 	if (tp->packets_out || !tcp_send_head(sk)) {
3679 		/* Cancel probe timer, if it is not required. */
3680 		icsk->icsk_probes_out = 0;
3681 		icsk->icsk_backoff = 0;
3682 		return;
3683 	}
3684 
3685 	if (err <= 0) {
3686 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3687 			icsk->icsk_backoff++;
3688 		icsk->icsk_probes_out++;
3689 		probe_max = TCP_RTO_MAX;
3690 	} else {
3691 		/* If packet was not sent due to local congestion,
3692 		 * do not backoff and do not remember icsk_probes_out.
3693 		 * Let local senders to fight for local resources.
3694 		 *
3695 		 * Use accumulated backoff yet.
3696 		 */
3697 		if (!icsk->icsk_probes_out)
3698 			icsk->icsk_probes_out = 1;
3699 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3700 	}
3701 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3702 				  tcp_probe0_when(sk, probe_max),
3703 				  TCP_RTO_MAX);
3704 }
3705 
3706 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3707 {
3708 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3709 	struct flowi fl;
3710 	int res;
3711 
3712 	tcp_rsk(req)->txhash = net_tx_rndhash();
3713 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3714 	if (!res) {
3715 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3716 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3717 		if (unlikely(tcp_passive_fastopen(sk)))
3718 			tcp_sk(sk)->total_retrans++;
3719 	}
3720 	return res;
3721 }
3722 EXPORT_SYMBOL(tcp_rtx_synack);
3723