xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 3e8bd1ba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 	tcp_check_space(sk);
86 }
87 
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89  * window scaling factor due to loss of precision.
90  * If window has been shrunk, what should we make? It is not clear at all.
91  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93  * invalid. OK, let's make this for now:
94  */
95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 	const struct tcp_sock *tp = tcp_sk(sk);
98 
99 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 	    (tp->rx_opt.wscale_ok &&
101 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tcp_snd_cwnd(tp);
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 	tp->snd_cwnd_stamp = tcp_jiffies32;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_jiffies32;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, enter pingpong mode.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_enter_pingpong_mode(sk);
177 }
178 
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
181 				      u32 rcv_nxt)
182 {
183 	struct tcp_sock *tp = tcp_sk(sk);
184 
185 	if (unlikely(tp->compressed_ack)) {
186 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
187 			      tp->compressed_ack);
188 		tp->compressed_ack = 0;
189 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
190 			__sock_put(sk);
191 	}
192 
193 	if (unlikely(rcv_nxt != tp->rcv_nxt))
194 		return;  /* Special ACK sent by DCTCP to reflect ECN */
195 	tcp_dec_quickack_mode(sk, pkts);
196 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (*window_clamp == 0)
215 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 	space = min(*window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = rounddown(space, mss);
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
234 
235 	if (init_rcv_wnd)
236 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
237 
238 	*rcv_wscale = 0;
239 	if (wscale_ok) {
240 		/* Set window scaling on max possible window */
241 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
242 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
243 		space = min_t(u32, space, *window_clamp);
244 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
245 				      0, TCP_MAX_WSCALE);
246 	}
247 	/* Set the clamp no higher than max representable value */
248 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
249 }
250 EXPORT_SYMBOL(tcp_select_initial_window);
251 
252 /* Chose a new window to advertise, update state in tcp_sock for the
253  * socket, and return result with RFC1323 scaling applied.  The return
254  * value can be stuffed directly into th->window for an outgoing
255  * frame.
256  */
257 static u16 tcp_select_window(struct sock *sk)
258 {
259 	struct tcp_sock *tp = tcp_sk(sk);
260 	struct net *net = sock_net(sk);
261 	u32 old_win = tp->rcv_wnd;
262 	u32 cur_win, new_win;
263 
264 	/* Make the window 0 if we failed to queue the data because we
265 	 * are out of memory. The window is temporary, so we don't store
266 	 * it on the socket.
267 	 */
268 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
269 		return 0;
270 
271 	cur_win = tcp_receive_window(tp);
272 	new_win = __tcp_select_window(sk);
273 	if (new_win < cur_win) {
274 		/* Danger Will Robinson!
275 		 * Don't update rcv_wup/rcv_wnd here or else
276 		 * we will not be able to advertise a zero
277 		 * window in time.  --DaveM
278 		 *
279 		 * Relax Will Robinson.
280 		 */
281 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
282 			/* Never shrink the offered window */
283 			if (new_win == 0)
284 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
285 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
286 		}
287 	}
288 
289 	tp->rcv_wnd = new_win;
290 	tp->rcv_wup = tp->rcv_nxt;
291 
292 	/* Make sure we do not exceed the maximum possible
293 	 * scaled window.
294 	 */
295 	if (!tp->rx_opt.rcv_wscale &&
296 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
297 		new_win = min(new_win, MAX_TCP_WINDOW);
298 	else
299 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
300 
301 	/* RFC1323 scaling applied */
302 	new_win >>= tp->rx_opt.rcv_wscale;
303 
304 	/* If we advertise zero window, disable fast path. */
305 	if (new_win == 0) {
306 		tp->pred_flags = 0;
307 		if (old_win)
308 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
309 	} else if (old_win == 0) {
310 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
311 	}
312 
313 	return new_win;
314 }
315 
316 /* Packet ECN state for a SYN-ACK */
317 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
318 {
319 	const struct tcp_sock *tp = tcp_sk(sk);
320 
321 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
322 	if (!(tp->ecn_flags & TCP_ECN_OK))
323 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
324 	else if (tcp_ca_needs_ecn(sk) ||
325 		 tcp_bpf_ca_needs_ecn(sk))
326 		INET_ECN_xmit(sk);
327 }
328 
329 /* Packet ECN state for a SYN.  */
330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
331 {
332 	struct tcp_sock *tp = tcp_sk(sk);
333 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
334 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
335 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
336 
337 	if (!use_ecn) {
338 		const struct dst_entry *dst = __sk_dst_get(sk);
339 
340 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
341 			use_ecn = true;
342 	}
343 
344 	tp->ecn_flags = 0;
345 
346 	if (use_ecn) {
347 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
348 		tp->ecn_flags = TCP_ECN_OK;
349 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
350 			INET_ECN_xmit(sk);
351 	}
352 }
353 
354 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
355 {
356 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
357 		/* tp->ecn_flags are cleared at a later point in time when
358 		 * SYN ACK is ultimatively being received.
359 		 */
360 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
361 }
362 
363 static void
364 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
365 {
366 	if (inet_rsk(req)->ecn_ok)
367 		th->ece = 1;
368 }
369 
370 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
371  * be sent.
372  */
373 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
374 			 struct tcphdr *th, int tcp_header_len)
375 {
376 	struct tcp_sock *tp = tcp_sk(sk);
377 
378 	if (tp->ecn_flags & TCP_ECN_OK) {
379 		/* Not-retransmitted data segment: set ECT and inject CWR. */
380 		if (skb->len != tcp_header_len &&
381 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
382 			INET_ECN_xmit(sk);
383 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
384 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
385 				th->cwr = 1;
386 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
387 			}
388 		} else if (!tcp_ca_needs_ecn(sk)) {
389 			/* ACK or retransmitted segment: clear ECT|CE */
390 			INET_ECN_dontxmit(sk);
391 		}
392 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
393 			th->ece = 1;
394 	}
395 }
396 
397 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
398  * auto increment end seqno.
399  */
400 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
401 {
402 	skb->ip_summed = CHECKSUM_PARTIAL;
403 
404 	TCP_SKB_CB(skb)->tcp_flags = flags;
405 
406 	tcp_skb_pcount_set(skb, 1);
407 
408 	TCP_SKB_CB(skb)->seq = seq;
409 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
410 		seq++;
411 	TCP_SKB_CB(skb)->end_seq = seq;
412 }
413 
414 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
415 {
416 	return tp->snd_una != tp->snd_up;
417 }
418 
419 #define OPTION_SACK_ADVERTISE	BIT(0)
420 #define OPTION_TS		BIT(1)
421 #define OPTION_MD5		BIT(2)
422 #define OPTION_WSCALE		BIT(3)
423 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
424 #define OPTION_SMC		BIT(9)
425 #define OPTION_MPTCP		BIT(10)
426 
427 static void smc_options_write(__be32 *ptr, u16 *options)
428 {
429 #if IS_ENABLED(CONFIG_SMC)
430 	if (static_branch_unlikely(&tcp_have_smc)) {
431 		if (unlikely(OPTION_SMC & *options)) {
432 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
433 				       (TCPOPT_NOP  << 16) |
434 				       (TCPOPT_EXP <<  8) |
435 				       (TCPOLEN_EXP_SMC_BASE));
436 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
437 		}
438 	}
439 #endif
440 }
441 
442 struct tcp_out_options {
443 	u16 options;		/* bit field of OPTION_* */
444 	u16 mss;		/* 0 to disable */
445 	u8 ws;			/* window scale, 0 to disable */
446 	u8 num_sack_blocks;	/* number of SACK blocks to include */
447 	u8 hash_size;		/* bytes in hash_location */
448 	u8 bpf_opt_len;		/* length of BPF hdr option */
449 	__u8 *hash_location;	/* temporary pointer, overloaded */
450 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
451 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
452 	struct mptcp_out_options mptcp;
453 };
454 
455 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
456 				struct tcp_sock *tp,
457 				struct tcp_out_options *opts)
458 {
459 #if IS_ENABLED(CONFIG_MPTCP)
460 	if (unlikely(OPTION_MPTCP & opts->options))
461 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
462 #endif
463 }
464 
465 #ifdef CONFIG_CGROUP_BPF
466 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
467 					enum tcp_synack_type synack_type)
468 {
469 	if (unlikely(!skb))
470 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
471 
472 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
473 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
474 
475 	return 0;
476 }
477 
478 /* req, syn_skb and synack_type are used when writing synack */
479 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
480 				  struct request_sock *req,
481 				  struct sk_buff *syn_skb,
482 				  enum tcp_synack_type synack_type,
483 				  struct tcp_out_options *opts,
484 				  unsigned int *remaining)
485 {
486 	struct bpf_sock_ops_kern sock_ops;
487 	int err;
488 
489 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
490 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
491 	    !*remaining)
492 		return;
493 
494 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
495 
496 	/* init sock_ops */
497 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
498 
499 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
500 
501 	if (req) {
502 		/* The listen "sk" cannot be passed here because
503 		 * it is not locked.  It would not make too much
504 		 * sense to do bpf_setsockopt(listen_sk) based
505 		 * on individual connection request also.
506 		 *
507 		 * Thus, "req" is passed here and the cgroup-bpf-progs
508 		 * of the listen "sk" will be run.
509 		 *
510 		 * "req" is also used here for fastopen even the "sk" here is
511 		 * a fullsock "child" sk.  It is to keep the behavior
512 		 * consistent between fastopen and non-fastopen on
513 		 * the bpf programming side.
514 		 */
515 		sock_ops.sk = (struct sock *)req;
516 		sock_ops.syn_skb = syn_skb;
517 	} else {
518 		sock_owned_by_me(sk);
519 
520 		sock_ops.is_fullsock = 1;
521 		sock_ops.sk = sk;
522 	}
523 
524 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
525 	sock_ops.remaining_opt_len = *remaining;
526 	/* tcp_current_mss() does not pass a skb */
527 	if (skb)
528 		bpf_skops_init_skb(&sock_ops, skb, 0);
529 
530 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
531 
532 	if (err || sock_ops.remaining_opt_len == *remaining)
533 		return;
534 
535 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
536 	/* round up to 4 bytes */
537 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
538 
539 	*remaining -= opts->bpf_opt_len;
540 }
541 
542 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
543 				    struct request_sock *req,
544 				    struct sk_buff *syn_skb,
545 				    enum tcp_synack_type synack_type,
546 				    struct tcp_out_options *opts)
547 {
548 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
549 	struct bpf_sock_ops_kern sock_ops;
550 	int err;
551 
552 	if (likely(!max_opt_len))
553 		return;
554 
555 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
556 
557 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
558 
559 	if (req) {
560 		sock_ops.sk = (struct sock *)req;
561 		sock_ops.syn_skb = syn_skb;
562 	} else {
563 		sock_owned_by_me(sk);
564 
565 		sock_ops.is_fullsock = 1;
566 		sock_ops.sk = sk;
567 	}
568 
569 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
570 	sock_ops.remaining_opt_len = max_opt_len;
571 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
572 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
573 
574 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
575 
576 	if (err)
577 		nr_written = 0;
578 	else
579 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
580 
581 	if (nr_written < max_opt_len)
582 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
583 		       max_opt_len - nr_written);
584 }
585 #else
586 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
587 				  struct request_sock *req,
588 				  struct sk_buff *syn_skb,
589 				  enum tcp_synack_type synack_type,
590 				  struct tcp_out_options *opts,
591 				  unsigned int *remaining)
592 {
593 }
594 
595 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
596 				    struct request_sock *req,
597 				    struct sk_buff *syn_skb,
598 				    enum tcp_synack_type synack_type,
599 				    struct tcp_out_options *opts)
600 {
601 }
602 #endif
603 
604 /* Write previously computed TCP options to the packet.
605  *
606  * Beware: Something in the Internet is very sensitive to the ordering of
607  * TCP options, we learned this through the hard way, so be careful here.
608  * Luckily we can at least blame others for their non-compliance but from
609  * inter-operability perspective it seems that we're somewhat stuck with
610  * the ordering which we have been using if we want to keep working with
611  * those broken things (not that it currently hurts anybody as there isn't
612  * particular reason why the ordering would need to be changed).
613  *
614  * At least SACK_PERM as the first option is known to lead to a disaster
615  * (but it may well be that other scenarios fail similarly).
616  */
617 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
618 			      struct tcp_out_options *opts)
619 {
620 	__be32 *ptr = (__be32 *)(th + 1);
621 	u16 options = opts->options;	/* mungable copy */
622 
623 	if (unlikely(OPTION_MD5 & options)) {
624 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
625 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
626 		/* overload cookie hash location */
627 		opts->hash_location = (__u8 *)ptr;
628 		ptr += 4;
629 	}
630 
631 	if (unlikely(opts->mss)) {
632 		*ptr++ = htonl((TCPOPT_MSS << 24) |
633 			       (TCPOLEN_MSS << 16) |
634 			       opts->mss);
635 	}
636 
637 	if (likely(OPTION_TS & options)) {
638 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
639 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
640 				       (TCPOLEN_SACK_PERM << 16) |
641 				       (TCPOPT_TIMESTAMP << 8) |
642 				       TCPOLEN_TIMESTAMP);
643 			options &= ~OPTION_SACK_ADVERTISE;
644 		} else {
645 			*ptr++ = htonl((TCPOPT_NOP << 24) |
646 				       (TCPOPT_NOP << 16) |
647 				       (TCPOPT_TIMESTAMP << 8) |
648 				       TCPOLEN_TIMESTAMP);
649 		}
650 		*ptr++ = htonl(opts->tsval);
651 		*ptr++ = htonl(opts->tsecr);
652 	}
653 
654 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
655 		*ptr++ = htonl((TCPOPT_NOP << 24) |
656 			       (TCPOPT_NOP << 16) |
657 			       (TCPOPT_SACK_PERM << 8) |
658 			       TCPOLEN_SACK_PERM);
659 	}
660 
661 	if (unlikely(OPTION_WSCALE & options)) {
662 		*ptr++ = htonl((TCPOPT_NOP << 24) |
663 			       (TCPOPT_WINDOW << 16) |
664 			       (TCPOLEN_WINDOW << 8) |
665 			       opts->ws);
666 	}
667 
668 	if (unlikely(opts->num_sack_blocks)) {
669 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
670 			tp->duplicate_sack : tp->selective_acks;
671 		int this_sack;
672 
673 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
674 			       (TCPOPT_NOP  << 16) |
675 			       (TCPOPT_SACK <<  8) |
676 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
677 						     TCPOLEN_SACK_PERBLOCK)));
678 
679 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
680 		     ++this_sack) {
681 			*ptr++ = htonl(sp[this_sack].start_seq);
682 			*ptr++ = htonl(sp[this_sack].end_seq);
683 		}
684 
685 		tp->rx_opt.dsack = 0;
686 	}
687 
688 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
689 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
690 		u8 *p = (u8 *)ptr;
691 		u32 len; /* Fast Open option length */
692 
693 		if (foc->exp) {
694 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
695 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
696 				     TCPOPT_FASTOPEN_MAGIC);
697 			p += TCPOLEN_EXP_FASTOPEN_BASE;
698 		} else {
699 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
700 			*p++ = TCPOPT_FASTOPEN;
701 			*p++ = len;
702 		}
703 
704 		memcpy(p, foc->val, foc->len);
705 		if ((len & 3) == 2) {
706 			p[foc->len] = TCPOPT_NOP;
707 			p[foc->len + 1] = TCPOPT_NOP;
708 		}
709 		ptr += (len + 3) >> 2;
710 	}
711 
712 	smc_options_write(ptr, &options);
713 
714 	mptcp_options_write(th, ptr, tp, opts);
715 }
716 
717 static void smc_set_option(const struct tcp_sock *tp,
718 			   struct tcp_out_options *opts,
719 			   unsigned int *remaining)
720 {
721 #if IS_ENABLED(CONFIG_SMC)
722 	if (static_branch_unlikely(&tcp_have_smc)) {
723 		if (tp->syn_smc) {
724 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
725 				opts->options |= OPTION_SMC;
726 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
727 			}
728 		}
729 	}
730 #endif
731 }
732 
733 static void smc_set_option_cond(const struct tcp_sock *tp,
734 				const struct inet_request_sock *ireq,
735 				struct tcp_out_options *opts,
736 				unsigned int *remaining)
737 {
738 #if IS_ENABLED(CONFIG_SMC)
739 	if (static_branch_unlikely(&tcp_have_smc)) {
740 		if (tp->syn_smc && ireq->smc_ok) {
741 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
742 				opts->options |= OPTION_SMC;
743 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
744 			}
745 		}
746 	}
747 #endif
748 }
749 
750 static void mptcp_set_option_cond(const struct request_sock *req,
751 				  struct tcp_out_options *opts,
752 				  unsigned int *remaining)
753 {
754 	if (rsk_is_mptcp(req)) {
755 		unsigned int size;
756 
757 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
758 			if (*remaining >= size) {
759 				opts->options |= OPTION_MPTCP;
760 				*remaining -= size;
761 			}
762 		}
763 	}
764 }
765 
766 /* Compute TCP options for SYN packets. This is not the final
767  * network wire format yet.
768  */
769 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
770 				struct tcp_out_options *opts,
771 				struct tcp_md5sig_key **md5)
772 {
773 	struct tcp_sock *tp = tcp_sk(sk);
774 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
775 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
776 
777 	*md5 = NULL;
778 #ifdef CONFIG_TCP_MD5SIG
779 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
780 	    rcu_access_pointer(tp->md5sig_info)) {
781 		*md5 = tp->af_specific->md5_lookup(sk, sk);
782 		if (*md5) {
783 			opts->options |= OPTION_MD5;
784 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
785 		}
786 	}
787 #endif
788 
789 	/* We always get an MSS option.  The option bytes which will be seen in
790 	 * normal data packets should timestamps be used, must be in the MSS
791 	 * advertised.  But we subtract them from tp->mss_cache so that
792 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
793 	 * fact here if necessary.  If we don't do this correctly, as a
794 	 * receiver we won't recognize data packets as being full sized when we
795 	 * should, and thus we won't abide by the delayed ACK rules correctly.
796 	 * SACKs don't matter, we never delay an ACK when we have any of those
797 	 * going out.  */
798 	opts->mss = tcp_advertise_mss(sk);
799 	remaining -= TCPOLEN_MSS_ALIGNED;
800 
801 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
802 		opts->options |= OPTION_TS;
803 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
804 		opts->tsecr = tp->rx_opt.ts_recent;
805 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
806 	}
807 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
808 		opts->ws = tp->rx_opt.rcv_wscale;
809 		opts->options |= OPTION_WSCALE;
810 		remaining -= TCPOLEN_WSCALE_ALIGNED;
811 	}
812 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
813 		opts->options |= OPTION_SACK_ADVERTISE;
814 		if (unlikely(!(OPTION_TS & opts->options)))
815 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
816 	}
817 
818 	if (fastopen && fastopen->cookie.len >= 0) {
819 		u32 need = fastopen->cookie.len;
820 
821 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
822 					       TCPOLEN_FASTOPEN_BASE;
823 		need = (need + 3) & ~3U;  /* Align to 32 bits */
824 		if (remaining >= need) {
825 			opts->options |= OPTION_FAST_OPEN_COOKIE;
826 			opts->fastopen_cookie = &fastopen->cookie;
827 			remaining -= need;
828 			tp->syn_fastopen = 1;
829 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
830 		}
831 	}
832 
833 	smc_set_option(tp, opts, &remaining);
834 
835 	if (sk_is_mptcp(sk)) {
836 		unsigned int size;
837 
838 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
839 			opts->options |= OPTION_MPTCP;
840 			remaining -= size;
841 		}
842 	}
843 
844 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
845 
846 	return MAX_TCP_OPTION_SPACE - remaining;
847 }
848 
849 /* Set up TCP options for SYN-ACKs. */
850 static unsigned int tcp_synack_options(const struct sock *sk,
851 				       struct request_sock *req,
852 				       unsigned int mss, struct sk_buff *skb,
853 				       struct tcp_out_options *opts,
854 				       const struct tcp_md5sig_key *md5,
855 				       struct tcp_fastopen_cookie *foc,
856 				       enum tcp_synack_type synack_type,
857 				       struct sk_buff *syn_skb)
858 {
859 	struct inet_request_sock *ireq = inet_rsk(req);
860 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
861 
862 #ifdef CONFIG_TCP_MD5SIG
863 	if (md5) {
864 		opts->options |= OPTION_MD5;
865 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
866 
867 		/* We can't fit any SACK blocks in a packet with MD5 + TS
868 		 * options. There was discussion about disabling SACK
869 		 * rather than TS in order to fit in better with old,
870 		 * buggy kernels, but that was deemed to be unnecessary.
871 		 */
872 		if (synack_type != TCP_SYNACK_COOKIE)
873 			ireq->tstamp_ok &= !ireq->sack_ok;
874 	}
875 #endif
876 
877 	/* We always send an MSS option. */
878 	opts->mss = mss;
879 	remaining -= TCPOLEN_MSS_ALIGNED;
880 
881 	if (likely(ireq->wscale_ok)) {
882 		opts->ws = ireq->rcv_wscale;
883 		opts->options |= OPTION_WSCALE;
884 		remaining -= TCPOLEN_WSCALE_ALIGNED;
885 	}
886 	if (likely(ireq->tstamp_ok)) {
887 		opts->options |= OPTION_TS;
888 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
889 		opts->tsecr = READ_ONCE(req->ts_recent);
890 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
891 	}
892 	if (likely(ireq->sack_ok)) {
893 		opts->options |= OPTION_SACK_ADVERTISE;
894 		if (unlikely(!ireq->tstamp_ok))
895 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
896 	}
897 	if (foc != NULL && foc->len >= 0) {
898 		u32 need = foc->len;
899 
900 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
901 				   TCPOLEN_FASTOPEN_BASE;
902 		need = (need + 3) & ~3U;  /* Align to 32 bits */
903 		if (remaining >= need) {
904 			opts->options |= OPTION_FAST_OPEN_COOKIE;
905 			opts->fastopen_cookie = foc;
906 			remaining -= need;
907 		}
908 	}
909 
910 	mptcp_set_option_cond(req, opts, &remaining);
911 
912 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
913 
914 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
915 			      synack_type, opts, &remaining);
916 
917 	return MAX_TCP_OPTION_SPACE - remaining;
918 }
919 
920 /* Compute TCP options for ESTABLISHED sockets. This is not the
921  * final wire format yet.
922  */
923 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
924 					struct tcp_out_options *opts,
925 					struct tcp_md5sig_key **md5)
926 {
927 	struct tcp_sock *tp = tcp_sk(sk);
928 	unsigned int size = 0;
929 	unsigned int eff_sacks;
930 
931 	opts->options = 0;
932 
933 	*md5 = NULL;
934 #ifdef CONFIG_TCP_MD5SIG
935 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
936 	    rcu_access_pointer(tp->md5sig_info)) {
937 		*md5 = tp->af_specific->md5_lookup(sk, sk);
938 		if (*md5) {
939 			opts->options |= OPTION_MD5;
940 			size += TCPOLEN_MD5SIG_ALIGNED;
941 		}
942 	}
943 #endif
944 
945 	if (likely(tp->rx_opt.tstamp_ok)) {
946 		opts->options |= OPTION_TS;
947 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
948 		opts->tsecr = tp->rx_opt.ts_recent;
949 		size += TCPOLEN_TSTAMP_ALIGNED;
950 	}
951 
952 	/* MPTCP options have precedence over SACK for the limited TCP
953 	 * option space because a MPTCP connection would be forced to
954 	 * fall back to regular TCP if a required multipath option is
955 	 * missing. SACK still gets a chance to use whatever space is
956 	 * left.
957 	 */
958 	if (sk_is_mptcp(sk)) {
959 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
960 		unsigned int opt_size = 0;
961 
962 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
963 					      &opts->mptcp)) {
964 			opts->options |= OPTION_MPTCP;
965 			size += opt_size;
966 		}
967 	}
968 
969 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
970 	if (unlikely(eff_sacks)) {
971 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
972 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
973 					 TCPOLEN_SACK_PERBLOCK))
974 			return size;
975 
976 		opts->num_sack_blocks =
977 			min_t(unsigned int, eff_sacks,
978 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
979 			      TCPOLEN_SACK_PERBLOCK);
980 
981 		size += TCPOLEN_SACK_BASE_ALIGNED +
982 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
983 	}
984 
985 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
986 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
987 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
988 
989 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
990 
991 		size = MAX_TCP_OPTION_SPACE - remaining;
992 	}
993 
994 	return size;
995 }
996 
997 
998 /* TCP SMALL QUEUES (TSQ)
999  *
1000  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1001  * to reduce RTT and bufferbloat.
1002  * We do this using a special skb destructor (tcp_wfree).
1003  *
1004  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1005  * needs to be reallocated in a driver.
1006  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1007  *
1008  * Since transmit from skb destructor is forbidden, we use a tasklet
1009  * to process all sockets that eventually need to send more skbs.
1010  * We use one tasklet per cpu, with its own queue of sockets.
1011  */
1012 struct tsq_tasklet {
1013 	struct tasklet_struct	tasklet;
1014 	struct list_head	head; /* queue of tcp sockets */
1015 };
1016 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1017 
1018 static void tcp_tsq_write(struct sock *sk)
1019 {
1020 	if ((1 << sk->sk_state) &
1021 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1022 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1023 		struct tcp_sock *tp = tcp_sk(sk);
1024 
1025 		if (tp->lost_out > tp->retrans_out &&
1026 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1027 			tcp_mstamp_refresh(tp);
1028 			tcp_xmit_retransmit_queue(sk);
1029 		}
1030 
1031 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1032 			       0, GFP_ATOMIC);
1033 	}
1034 }
1035 
1036 static void tcp_tsq_handler(struct sock *sk)
1037 {
1038 	bh_lock_sock(sk);
1039 	if (!sock_owned_by_user(sk))
1040 		tcp_tsq_write(sk);
1041 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1042 		sock_hold(sk);
1043 	bh_unlock_sock(sk);
1044 }
1045 /*
1046  * One tasklet per cpu tries to send more skbs.
1047  * We run in tasklet context but need to disable irqs when
1048  * transferring tsq->head because tcp_wfree() might
1049  * interrupt us (non NAPI drivers)
1050  */
1051 static void tcp_tasklet_func(struct tasklet_struct *t)
1052 {
1053 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1054 	LIST_HEAD(list);
1055 	unsigned long flags;
1056 	struct list_head *q, *n;
1057 	struct tcp_sock *tp;
1058 	struct sock *sk;
1059 
1060 	local_irq_save(flags);
1061 	list_splice_init(&tsq->head, &list);
1062 	local_irq_restore(flags);
1063 
1064 	list_for_each_safe(q, n, &list) {
1065 		tp = list_entry(q, struct tcp_sock, tsq_node);
1066 		list_del(&tp->tsq_node);
1067 
1068 		sk = (struct sock *)tp;
1069 		smp_mb__before_atomic();
1070 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1071 
1072 		tcp_tsq_handler(sk);
1073 		sk_free(sk);
1074 	}
1075 }
1076 
1077 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1078 			  TCPF_WRITE_TIMER_DEFERRED |	\
1079 			  TCPF_DELACK_TIMER_DEFERRED |	\
1080 			  TCPF_MTU_REDUCED_DEFERRED)
1081 /**
1082  * tcp_release_cb - tcp release_sock() callback
1083  * @sk: socket
1084  *
1085  * called from release_sock() to perform protocol dependent
1086  * actions before socket release.
1087  */
1088 void tcp_release_cb(struct sock *sk)
1089 {
1090 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1091 	unsigned long nflags;
1092 
1093 	/* perform an atomic operation only if at least one flag is set */
1094 	do {
1095 		if (!(flags & TCP_DEFERRED_ALL))
1096 			return;
1097 		nflags = flags & ~TCP_DEFERRED_ALL;
1098 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1099 
1100 	if (flags & TCPF_TSQ_DEFERRED) {
1101 		tcp_tsq_write(sk);
1102 		__sock_put(sk);
1103 	}
1104 	/* Here begins the tricky part :
1105 	 * We are called from release_sock() with :
1106 	 * 1) BH disabled
1107 	 * 2) sk_lock.slock spinlock held
1108 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1109 	 *
1110 	 * But following code is meant to be called from BH handlers,
1111 	 * so we should keep BH disabled, but early release socket ownership
1112 	 */
1113 	sock_release_ownership(sk);
1114 
1115 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1116 		tcp_write_timer_handler(sk);
1117 		__sock_put(sk);
1118 	}
1119 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1120 		tcp_delack_timer_handler(sk);
1121 		__sock_put(sk);
1122 	}
1123 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1124 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1125 		__sock_put(sk);
1126 	}
1127 }
1128 EXPORT_SYMBOL(tcp_release_cb);
1129 
1130 void __init tcp_tasklet_init(void)
1131 {
1132 	int i;
1133 
1134 	for_each_possible_cpu(i) {
1135 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1136 
1137 		INIT_LIST_HEAD(&tsq->head);
1138 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1139 	}
1140 }
1141 
1142 /*
1143  * Write buffer destructor automatically called from kfree_skb.
1144  * We can't xmit new skbs from this context, as we might already
1145  * hold qdisc lock.
1146  */
1147 void tcp_wfree(struct sk_buff *skb)
1148 {
1149 	struct sock *sk = skb->sk;
1150 	struct tcp_sock *tp = tcp_sk(sk);
1151 	unsigned long flags, nval, oval;
1152 	struct tsq_tasklet *tsq;
1153 	bool empty;
1154 
1155 	/* Keep one reference on sk_wmem_alloc.
1156 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1157 	 */
1158 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1159 
1160 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1161 	 * Wait until our queues (qdisc + devices) are drained.
1162 	 * This gives :
1163 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1164 	 * - chance for incoming ACK (processed by another cpu maybe)
1165 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1166 	 */
1167 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1168 		goto out;
1169 
1170 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1171 	do {
1172 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1173 			goto out;
1174 
1175 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1176 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1177 
1178 	/* queue this socket to tasklet queue */
1179 	local_irq_save(flags);
1180 	tsq = this_cpu_ptr(&tsq_tasklet);
1181 	empty = list_empty(&tsq->head);
1182 	list_add(&tp->tsq_node, &tsq->head);
1183 	if (empty)
1184 		tasklet_schedule(&tsq->tasklet);
1185 	local_irq_restore(flags);
1186 	return;
1187 out:
1188 	sk_free(sk);
1189 }
1190 
1191 /* Note: Called under soft irq.
1192  * We can call TCP stack right away, unless socket is owned by user.
1193  */
1194 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1195 {
1196 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1197 	struct sock *sk = (struct sock *)tp;
1198 
1199 	tcp_tsq_handler(sk);
1200 	sock_put(sk);
1201 
1202 	return HRTIMER_NORESTART;
1203 }
1204 
1205 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1206 				      u64 prior_wstamp)
1207 {
1208 	struct tcp_sock *tp = tcp_sk(sk);
1209 
1210 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1211 		unsigned long rate = sk->sk_pacing_rate;
1212 
1213 		/* Original sch_fq does not pace first 10 MSS
1214 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1215 		 * this is a minor annoyance.
1216 		 */
1217 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1218 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1219 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1220 
1221 			/* take into account OS jitter */
1222 			len_ns -= min_t(u64, len_ns / 2, credit);
1223 			tp->tcp_wstamp_ns += len_ns;
1224 		}
1225 	}
1226 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1227 }
1228 
1229 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1230 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1231 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1232 
1233 /* This routine actually transmits TCP packets queued in by
1234  * tcp_do_sendmsg().  This is used by both the initial
1235  * transmission and possible later retransmissions.
1236  * All SKB's seen here are completely headerless.  It is our
1237  * job to build the TCP header, and pass the packet down to
1238  * IP so it can do the same plus pass the packet off to the
1239  * device.
1240  *
1241  * We are working here with either a clone of the original
1242  * SKB, or a fresh unique copy made by the retransmit engine.
1243  */
1244 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1245 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1246 {
1247 	const struct inet_connection_sock *icsk = inet_csk(sk);
1248 	struct inet_sock *inet;
1249 	struct tcp_sock *tp;
1250 	struct tcp_skb_cb *tcb;
1251 	struct tcp_out_options opts;
1252 	unsigned int tcp_options_size, tcp_header_size;
1253 	struct sk_buff *oskb = NULL;
1254 	struct tcp_md5sig_key *md5;
1255 	struct tcphdr *th;
1256 	u64 prior_wstamp;
1257 	int err;
1258 
1259 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1260 	tp = tcp_sk(sk);
1261 	prior_wstamp = tp->tcp_wstamp_ns;
1262 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1263 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1264 	if (clone_it) {
1265 		oskb = skb;
1266 
1267 		tcp_skb_tsorted_save(oskb) {
1268 			if (unlikely(skb_cloned(oskb)))
1269 				skb = pskb_copy(oskb, gfp_mask);
1270 			else
1271 				skb = skb_clone(oskb, gfp_mask);
1272 		} tcp_skb_tsorted_restore(oskb);
1273 
1274 		if (unlikely(!skb))
1275 			return -ENOBUFS;
1276 		/* retransmit skbs might have a non zero value in skb->dev
1277 		 * because skb->dev is aliased with skb->rbnode.rb_left
1278 		 */
1279 		skb->dev = NULL;
1280 	}
1281 
1282 	inet = inet_sk(sk);
1283 	tcb = TCP_SKB_CB(skb);
1284 	memset(&opts, 0, sizeof(opts));
1285 
1286 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1287 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1288 	} else {
1289 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1290 							   &md5);
1291 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1292 		 * at receiver : This slightly improve GRO performance.
1293 		 * Note that we do not force the PSH flag for non GSO packets,
1294 		 * because they might be sent under high congestion events,
1295 		 * and in this case it is better to delay the delivery of 1-MSS
1296 		 * packets and thus the corresponding ACK packet that would
1297 		 * release the following packet.
1298 		 */
1299 		if (tcp_skb_pcount(skb) > 1)
1300 			tcb->tcp_flags |= TCPHDR_PSH;
1301 	}
1302 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1303 
1304 	/* We set skb->ooo_okay to one if this packet can select
1305 	 * a different TX queue than prior packets of this flow,
1306 	 * to avoid self inflicted reorders.
1307 	 * The 'other' queue decision is based on current cpu number
1308 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1309 	 * We can switch to another (and better) queue if:
1310 	 * 1) No packet with payload is in qdisc/device queues.
1311 	 *    Delays in TX completion can defeat the test
1312 	 *    even if packets were already sent.
1313 	 * 2) Or rtx queue is empty.
1314 	 *    This mitigates above case if ACK packets for
1315 	 *    all prior packets were already processed.
1316 	 */
1317 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1318 			tcp_rtx_queue_empty(sk);
1319 
1320 	/* If we had to use memory reserve to allocate this skb,
1321 	 * this might cause drops if packet is looped back :
1322 	 * Other socket might not have SOCK_MEMALLOC.
1323 	 * Packets not looped back do not care about pfmemalloc.
1324 	 */
1325 	skb->pfmemalloc = 0;
1326 
1327 	skb_push(skb, tcp_header_size);
1328 	skb_reset_transport_header(skb);
1329 
1330 	skb_orphan(skb);
1331 	skb->sk = sk;
1332 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1333 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1334 
1335 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1336 
1337 	/* Build TCP header and checksum it. */
1338 	th = (struct tcphdr *)skb->data;
1339 	th->source		= inet->inet_sport;
1340 	th->dest		= inet->inet_dport;
1341 	th->seq			= htonl(tcb->seq);
1342 	th->ack_seq		= htonl(rcv_nxt);
1343 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1344 					tcb->tcp_flags);
1345 
1346 	th->check		= 0;
1347 	th->urg_ptr		= 0;
1348 
1349 	/* The urg_mode check is necessary during a below snd_una win probe */
1350 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1351 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1352 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1353 			th->urg = 1;
1354 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1355 			th->urg_ptr = htons(0xFFFF);
1356 			th->urg = 1;
1357 		}
1358 	}
1359 
1360 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1361 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1362 		th->window      = htons(tcp_select_window(sk));
1363 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1364 	} else {
1365 		/* RFC1323: The window in SYN & SYN/ACK segments
1366 		 * is never scaled.
1367 		 */
1368 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1369 	}
1370 
1371 	tcp_options_write(th, tp, &opts);
1372 
1373 #ifdef CONFIG_TCP_MD5SIG
1374 	/* Calculate the MD5 hash, as we have all we need now */
1375 	if (md5) {
1376 		sk_gso_disable(sk);
1377 		tp->af_specific->calc_md5_hash(opts.hash_location,
1378 					       md5, sk, skb);
1379 	}
1380 #endif
1381 
1382 	/* BPF prog is the last one writing header option */
1383 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1384 
1385 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1386 			   tcp_v6_send_check, tcp_v4_send_check,
1387 			   sk, skb);
1388 
1389 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1390 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1391 
1392 	if (skb->len != tcp_header_size) {
1393 		tcp_event_data_sent(tp, sk);
1394 		tp->data_segs_out += tcp_skb_pcount(skb);
1395 		tp->bytes_sent += skb->len - tcp_header_size;
1396 	}
1397 
1398 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1399 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1400 			      tcp_skb_pcount(skb));
1401 
1402 	tp->segs_out += tcp_skb_pcount(skb);
1403 	skb_set_hash_from_sk(skb, sk);
1404 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1405 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1406 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1407 
1408 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1409 
1410 	/* Cleanup our debris for IP stacks */
1411 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1412 			       sizeof(struct inet6_skb_parm)));
1413 
1414 	tcp_add_tx_delay(skb, tp);
1415 
1416 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1417 				 inet6_csk_xmit, ip_queue_xmit,
1418 				 sk, skb, &inet->cork.fl);
1419 
1420 	if (unlikely(err > 0)) {
1421 		tcp_enter_cwr(sk);
1422 		err = net_xmit_eval(err);
1423 	}
1424 	if (!err && oskb) {
1425 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1426 		tcp_rate_skb_sent(sk, oskb);
1427 	}
1428 	return err;
1429 }
1430 
1431 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1432 			    gfp_t gfp_mask)
1433 {
1434 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1435 				  tcp_sk(sk)->rcv_nxt);
1436 }
1437 
1438 /* This routine just queues the buffer for sending.
1439  *
1440  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1441  * otherwise socket can stall.
1442  */
1443 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1444 {
1445 	struct tcp_sock *tp = tcp_sk(sk);
1446 
1447 	/* Advance write_seq and place onto the write_queue. */
1448 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1449 	__skb_header_release(skb);
1450 	tcp_add_write_queue_tail(sk, skb);
1451 	sk_wmem_queued_add(sk, skb->truesize);
1452 	sk_mem_charge(sk, skb->truesize);
1453 }
1454 
1455 /* Initialize TSO segments for a packet. */
1456 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1457 {
1458 	if (skb->len <= mss_now) {
1459 		/* Avoid the costly divide in the normal
1460 		 * non-TSO case.
1461 		 */
1462 		tcp_skb_pcount_set(skb, 1);
1463 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1464 	} else {
1465 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1466 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1467 	}
1468 }
1469 
1470 /* Pcount in the middle of the write queue got changed, we need to do various
1471  * tweaks to fix counters
1472  */
1473 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1474 {
1475 	struct tcp_sock *tp = tcp_sk(sk);
1476 
1477 	tp->packets_out -= decr;
1478 
1479 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1480 		tp->sacked_out -= decr;
1481 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1482 		tp->retrans_out -= decr;
1483 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1484 		tp->lost_out -= decr;
1485 
1486 	/* Reno case is special. Sigh... */
1487 	if (tcp_is_reno(tp) && decr > 0)
1488 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1489 
1490 	if (tp->lost_skb_hint &&
1491 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1492 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1493 		tp->lost_cnt_hint -= decr;
1494 
1495 	tcp_verify_left_out(tp);
1496 }
1497 
1498 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1499 {
1500 	return TCP_SKB_CB(skb)->txstamp_ack ||
1501 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1502 }
1503 
1504 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1505 {
1506 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1507 
1508 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1509 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1510 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1511 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1512 
1513 		shinfo->tx_flags &= ~tsflags;
1514 		shinfo2->tx_flags |= tsflags;
1515 		swap(shinfo->tskey, shinfo2->tskey);
1516 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1517 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1518 	}
1519 }
1520 
1521 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1522 {
1523 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1524 	TCP_SKB_CB(skb)->eor = 0;
1525 }
1526 
1527 /* Insert buff after skb on the write or rtx queue of sk.  */
1528 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1529 					 struct sk_buff *buff,
1530 					 struct sock *sk,
1531 					 enum tcp_queue tcp_queue)
1532 {
1533 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1534 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1535 	else
1536 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1537 }
1538 
1539 /* Function to create two new TCP segments.  Shrinks the given segment
1540  * to the specified size and appends a new segment with the rest of the
1541  * packet to the list.  This won't be called frequently, I hope.
1542  * Remember, these are still headerless SKBs at this point.
1543  */
1544 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1545 		 struct sk_buff *skb, u32 len,
1546 		 unsigned int mss_now, gfp_t gfp)
1547 {
1548 	struct tcp_sock *tp = tcp_sk(sk);
1549 	struct sk_buff *buff;
1550 	int old_factor;
1551 	long limit;
1552 	int nlen;
1553 	u8 flags;
1554 
1555 	if (WARN_ON(len > skb->len))
1556 		return -EINVAL;
1557 
1558 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1559 
1560 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1561 	 * We need some allowance to not penalize applications setting small
1562 	 * SO_SNDBUF values.
1563 	 * Also allow first and last skb in retransmit queue to be split.
1564 	 */
1565 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1566 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1567 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1568 		     skb != tcp_rtx_queue_head(sk) &&
1569 		     skb != tcp_rtx_queue_tail(sk))) {
1570 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1571 		return -ENOMEM;
1572 	}
1573 
1574 	if (skb_unclone_keeptruesize(skb, gfp))
1575 		return -ENOMEM;
1576 
1577 	/* Get a new skb... force flag on. */
1578 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1579 	if (!buff)
1580 		return -ENOMEM; /* We'll just try again later. */
1581 	skb_copy_decrypted(buff, skb);
1582 	mptcp_skb_ext_copy(buff, skb);
1583 
1584 	sk_wmem_queued_add(sk, buff->truesize);
1585 	sk_mem_charge(sk, buff->truesize);
1586 	nlen = skb->len - len;
1587 	buff->truesize += nlen;
1588 	skb->truesize -= nlen;
1589 
1590 	/* Correct the sequence numbers. */
1591 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1592 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1593 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1594 
1595 	/* PSH and FIN should only be set in the second packet. */
1596 	flags = TCP_SKB_CB(skb)->tcp_flags;
1597 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1598 	TCP_SKB_CB(buff)->tcp_flags = flags;
1599 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1600 	tcp_skb_fragment_eor(skb, buff);
1601 
1602 	skb_split(skb, buff, len);
1603 
1604 	skb_set_delivery_time(buff, skb->tstamp, true);
1605 	tcp_fragment_tstamp(skb, buff);
1606 
1607 	old_factor = tcp_skb_pcount(skb);
1608 
1609 	/* Fix up tso_factor for both original and new SKB.  */
1610 	tcp_set_skb_tso_segs(skb, mss_now);
1611 	tcp_set_skb_tso_segs(buff, mss_now);
1612 
1613 	/* Update delivered info for the new segment */
1614 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1615 
1616 	/* If this packet has been sent out already, we must
1617 	 * adjust the various packet counters.
1618 	 */
1619 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1620 		int diff = old_factor - tcp_skb_pcount(skb) -
1621 			tcp_skb_pcount(buff);
1622 
1623 		if (diff)
1624 			tcp_adjust_pcount(sk, skb, diff);
1625 	}
1626 
1627 	/* Link BUFF into the send queue. */
1628 	__skb_header_release(buff);
1629 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1630 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1631 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1632 
1633 	return 0;
1634 }
1635 
1636 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1637  * data is not copied, but immediately discarded.
1638  */
1639 static int __pskb_trim_head(struct sk_buff *skb, int len)
1640 {
1641 	struct skb_shared_info *shinfo;
1642 	int i, k, eat;
1643 
1644 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1645 	eat = len;
1646 	k = 0;
1647 	shinfo = skb_shinfo(skb);
1648 	for (i = 0; i < shinfo->nr_frags; i++) {
1649 		int size = skb_frag_size(&shinfo->frags[i]);
1650 
1651 		if (size <= eat) {
1652 			skb_frag_unref(skb, i);
1653 			eat -= size;
1654 		} else {
1655 			shinfo->frags[k] = shinfo->frags[i];
1656 			if (eat) {
1657 				skb_frag_off_add(&shinfo->frags[k], eat);
1658 				skb_frag_size_sub(&shinfo->frags[k], eat);
1659 				eat = 0;
1660 			}
1661 			k++;
1662 		}
1663 	}
1664 	shinfo->nr_frags = k;
1665 
1666 	skb->data_len -= len;
1667 	skb->len = skb->data_len;
1668 	return len;
1669 }
1670 
1671 /* Remove acked data from a packet in the transmit queue. */
1672 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1673 {
1674 	u32 delta_truesize;
1675 
1676 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1677 		return -ENOMEM;
1678 
1679 	delta_truesize = __pskb_trim_head(skb, len);
1680 
1681 	TCP_SKB_CB(skb)->seq += len;
1682 
1683 	skb->truesize	   -= delta_truesize;
1684 	sk_wmem_queued_add(sk, -delta_truesize);
1685 	if (!skb_zcopy_pure(skb))
1686 		sk_mem_uncharge(sk, delta_truesize);
1687 
1688 	/* Any change of skb->len requires recalculation of tso factor. */
1689 	if (tcp_skb_pcount(skb) > 1)
1690 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1691 
1692 	return 0;
1693 }
1694 
1695 /* Calculate MSS not accounting any TCP options.  */
1696 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1697 {
1698 	const struct tcp_sock *tp = tcp_sk(sk);
1699 	const struct inet_connection_sock *icsk = inet_csk(sk);
1700 	int mss_now;
1701 
1702 	/* Calculate base mss without TCP options:
1703 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1704 	 */
1705 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1706 
1707 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1708 	if (icsk->icsk_af_ops->net_frag_header_len) {
1709 		const struct dst_entry *dst = __sk_dst_get(sk);
1710 
1711 		if (dst && dst_allfrag(dst))
1712 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1713 	}
1714 
1715 	/* Clamp it (mss_clamp does not include tcp options) */
1716 	if (mss_now > tp->rx_opt.mss_clamp)
1717 		mss_now = tp->rx_opt.mss_clamp;
1718 
1719 	/* Now subtract optional transport overhead */
1720 	mss_now -= icsk->icsk_ext_hdr_len;
1721 
1722 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1723 	mss_now = max(mss_now,
1724 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1725 	return mss_now;
1726 }
1727 
1728 /* Calculate MSS. Not accounting for SACKs here.  */
1729 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1730 {
1731 	/* Subtract TCP options size, not including SACKs */
1732 	return __tcp_mtu_to_mss(sk, pmtu) -
1733 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1734 }
1735 EXPORT_SYMBOL(tcp_mtu_to_mss);
1736 
1737 /* Inverse of above */
1738 int tcp_mss_to_mtu(struct sock *sk, int mss)
1739 {
1740 	const struct tcp_sock *tp = tcp_sk(sk);
1741 	const struct inet_connection_sock *icsk = inet_csk(sk);
1742 	int mtu;
1743 
1744 	mtu = mss +
1745 	      tp->tcp_header_len +
1746 	      icsk->icsk_ext_hdr_len +
1747 	      icsk->icsk_af_ops->net_header_len;
1748 
1749 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1750 	if (icsk->icsk_af_ops->net_frag_header_len) {
1751 		const struct dst_entry *dst = __sk_dst_get(sk);
1752 
1753 		if (dst && dst_allfrag(dst))
1754 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1755 	}
1756 	return mtu;
1757 }
1758 EXPORT_SYMBOL(tcp_mss_to_mtu);
1759 
1760 /* MTU probing init per socket */
1761 void tcp_mtup_init(struct sock *sk)
1762 {
1763 	struct tcp_sock *tp = tcp_sk(sk);
1764 	struct inet_connection_sock *icsk = inet_csk(sk);
1765 	struct net *net = sock_net(sk);
1766 
1767 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1768 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1769 			       icsk->icsk_af_ops->net_header_len;
1770 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1771 	icsk->icsk_mtup.probe_size = 0;
1772 	if (icsk->icsk_mtup.enabled)
1773 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1774 }
1775 EXPORT_SYMBOL(tcp_mtup_init);
1776 
1777 /* This function synchronize snd mss to current pmtu/exthdr set.
1778 
1779    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1780    for TCP options, but includes only bare TCP header.
1781 
1782    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1783    It is minimum of user_mss and mss received with SYN.
1784    It also does not include TCP options.
1785 
1786    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1787 
1788    tp->mss_cache is current effective sending mss, including
1789    all tcp options except for SACKs. It is evaluated,
1790    taking into account current pmtu, but never exceeds
1791    tp->rx_opt.mss_clamp.
1792 
1793    NOTE1. rfc1122 clearly states that advertised MSS
1794    DOES NOT include either tcp or ip options.
1795 
1796    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1797    are READ ONLY outside this function.		--ANK (980731)
1798  */
1799 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1800 {
1801 	struct tcp_sock *tp = tcp_sk(sk);
1802 	struct inet_connection_sock *icsk = inet_csk(sk);
1803 	int mss_now;
1804 
1805 	if (icsk->icsk_mtup.search_high > pmtu)
1806 		icsk->icsk_mtup.search_high = pmtu;
1807 
1808 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1809 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1810 
1811 	/* And store cached results */
1812 	icsk->icsk_pmtu_cookie = pmtu;
1813 	if (icsk->icsk_mtup.enabled)
1814 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1815 	tp->mss_cache = mss_now;
1816 
1817 	return mss_now;
1818 }
1819 EXPORT_SYMBOL(tcp_sync_mss);
1820 
1821 /* Compute the current effective MSS, taking SACKs and IP options,
1822  * and even PMTU discovery events into account.
1823  */
1824 unsigned int tcp_current_mss(struct sock *sk)
1825 {
1826 	const struct tcp_sock *tp = tcp_sk(sk);
1827 	const struct dst_entry *dst = __sk_dst_get(sk);
1828 	u32 mss_now;
1829 	unsigned int header_len;
1830 	struct tcp_out_options opts;
1831 	struct tcp_md5sig_key *md5;
1832 
1833 	mss_now = tp->mss_cache;
1834 
1835 	if (dst) {
1836 		u32 mtu = dst_mtu(dst);
1837 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1838 			mss_now = tcp_sync_mss(sk, mtu);
1839 	}
1840 
1841 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1842 		     sizeof(struct tcphdr);
1843 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1844 	 * some common options. If this is an odd packet (because we have SACK
1845 	 * blocks etc) then our calculated header_len will be different, and
1846 	 * we have to adjust mss_now correspondingly */
1847 	if (header_len != tp->tcp_header_len) {
1848 		int delta = (int) header_len - tp->tcp_header_len;
1849 		mss_now -= delta;
1850 	}
1851 
1852 	return mss_now;
1853 }
1854 
1855 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1856  * As additional protections, we do not touch cwnd in retransmission phases,
1857  * and if application hit its sndbuf limit recently.
1858  */
1859 static void tcp_cwnd_application_limited(struct sock *sk)
1860 {
1861 	struct tcp_sock *tp = tcp_sk(sk);
1862 
1863 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1864 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1865 		/* Limited by application or receiver window. */
1866 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1867 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1868 		if (win_used < tcp_snd_cwnd(tp)) {
1869 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1870 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1871 		}
1872 		tp->snd_cwnd_used = 0;
1873 	}
1874 	tp->snd_cwnd_stamp = tcp_jiffies32;
1875 }
1876 
1877 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1878 {
1879 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1880 	struct tcp_sock *tp = tcp_sk(sk);
1881 
1882 	/* Track the strongest available signal of the degree to which the cwnd
1883 	 * is fully utilized. If cwnd-limited then remember that fact for the
1884 	 * current window. If not cwnd-limited then track the maximum number of
1885 	 * outstanding packets in the current window. (If cwnd-limited then we
1886 	 * chose to not update tp->max_packets_out to avoid an extra else
1887 	 * clause with no functional impact.)
1888 	 */
1889 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1890 	    is_cwnd_limited ||
1891 	    (!tp->is_cwnd_limited &&
1892 	     tp->packets_out > tp->max_packets_out)) {
1893 		tp->is_cwnd_limited = is_cwnd_limited;
1894 		tp->max_packets_out = tp->packets_out;
1895 		tp->cwnd_usage_seq = tp->snd_nxt;
1896 	}
1897 
1898 	if (tcp_is_cwnd_limited(sk)) {
1899 		/* Network is feed fully. */
1900 		tp->snd_cwnd_used = 0;
1901 		tp->snd_cwnd_stamp = tcp_jiffies32;
1902 	} else {
1903 		/* Network starves. */
1904 		if (tp->packets_out > tp->snd_cwnd_used)
1905 			tp->snd_cwnd_used = tp->packets_out;
1906 
1907 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1908 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1909 		    !ca_ops->cong_control)
1910 			tcp_cwnd_application_limited(sk);
1911 
1912 		/* The following conditions together indicate the starvation
1913 		 * is caused by insufficient sender buffer:
1914 		 * 1) just sent some data (see tcp_write_xmit)
1915 		 * 2) not cwnd limited (this else condition)
1916 		 * 3) no more data to send (tcp_write_queue_empty())
1917 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1918 		 */
1919 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1920 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1921 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1922 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1923 	}
1924 }
1925 
1926 /* Minshall's variant of the Nagle send check. */
1927 static bool tcp_minshall_check(const struct tcp_sock *tp)
1928 {
1929 	return after(tp->snd_sml, tp->snd_una) &&
1930 		!after(tp->snd_sml, tp->snd_nxt);
1931 }
1932 
1933 /* Update snd_sml if this skb is under mss
1934  * Note that a TSO packet might end with a sub-mss segment
1935  * The test is really :
1936  * if ((skb->len % mss) != 0)
1937  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1938  * But we can avoid doing the divide again given we already have
1939  *  skb_pcount = skb->len / mss_now
1940  */
1941 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1942 				const struct sk_buff *skb)
1943 {
1944 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1945 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1946 }
1947 
1948 /* Return false, if packet can be sent now without violation Nagle's rules:
1949  * 1. It is full sized. (provided by caller in %partial bool)
1950  * 2. Or it contains FIN. (already checked by caller)
1951  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1952  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1953  *    With Minshall's modification: all sent small packets are ACKed.
1954  */
1955 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1956 			    int nonagle)
1957 {
1958 	return partial &&
1959 		((nonagle & TCP_NAGLE_CORK) ||
1960 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1961 }
1962 
1963 /* Return how many segs we'd like on a TSO packet,
1964  * depending on current pacing rate, and how close the peer is.
1965  *
1966  * Rationale is:
1967  * - For close peers, we rather send bigger packets to reduce
1968  *   cpu costs, because occasional losses will be repaired fast.
1969  * - For long distance/rtt flows, we would like to get ACK clocking
1970  *   with 1 ACK per ms.
1971  *
1972  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1973  * in bigger TSO bursts. We we cut the RTT-based allowance in half
1974  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1975  * is below 1500 bytes after 6 * ~500 usec = 3ms.
1976  */
1977 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1978 			    int min_tso_segs)
1979 {
1980 	unsigned long bytes;
1981 	u32 r;
1982 
1983 	bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1984 
1985 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1986 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1987 		bytes += sk->sk_gso_max_size >> r;
1988 
1989 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1990 
1991 	return max_t(u32, bytes / mss_now, min_tso_segs);
1992 }
1993 
1994 /* Return the number of segments we want in the skb we are transmitting.
1995  * See if congestion control module wants to decide; otherwise, autosize.
1996  */
1997 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1998 {
1999 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2000 	u32 min_tso, tso_segs;
2001 
2002 	min_tso = ca_ops->min_tso_segs ?
2003 			ca_ops->min_tso_segs(sk) :
2004 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2005 
2006 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2007 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2008 }
2009 
2010 /* Returns the portion of skb which can be sent right away */
2011 static unsigned int tcp_mss_split_point(const struct sock *sk,
2012 					const struct sk_buff *skb,
2013 					unsigned int mss_now,
2014 					unsigned int max_segs,
2015 					int nonagle)
2016 {
2017 	const struct tcp_sock *tp = tcp_sk(sk);
2018 	u32 partial, needed, window, max_len;
2019 
2020 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2021 	max_len = mss_now * max_segs;
2022 
2023 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2024 		return max_len;
2025 
2026 	needed = min(skb->len, window);
2027 
2028 	if (max_len <= needed)
2029 		return max_len;
2030 
2031 	partial = needed % mss_now;
2032 	/* If last segment is not a full MSS, check if Nagle rules allow us
2033 	 * to include this last segment in this skb.
2034 	 * Otherwise, we'll split the skb at last MSS boundary
2035 	 */
2036 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2037 		return needed - partial;
2038 
2039 	return needed;
2040 }
2041 
2042 /* Can at least one segment of SKB be sent right now, according to the
2043  * congestion window rules?  If so, return how many segments are allowed.
2044  */
2045 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2046 					 const struct sk_buff *skb)
2047 {
2048 	u32 in_flight, cwnd, halfcwnd;
2049 
2050 	/* Don't be strict about the congestion window for the final FIN.  */
2051 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2052 	    tcp_skb_pcount(skb) == 1)
2053 		return 1;
2054 
2055 	in_flight = tcp_packets_in_flight(tp);
2056 	cwnd = tcp_snd_cwnd(tp);
2057 	if (in_flight >= cwnd)
2058 		return 0;
2059 
2060 	/* For better scheduling, ensure we have at least
2061 	 * 2 GSO packets in flight.
2062 	 */
2063 	halfcwnd = max(cwnd >> 1, 1U);
2064 	return min(halfcwnd, cwnd - in_flight);
2065 }
2066 
2067 /* Initialize TSO state of a skb.
2068  * This must be invoked the first time we consider transmitting
2069  * SKB onto the wire.
2070  */
2071 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2072 {
2073 	int tso_segs = tcp_skb_pcount(skb);
2074 
2075 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2076 		tcp_set_skb_tso_segs(skb, mss_now);
2077 		tso_segs = tcp_skb_pcount(skb);
2078 	}
2079 	return tso_segs;
2080 }
2081 
2082 
2083 /* Return true if the Nagle test allows this packet to be
2084  * sent now.
2085  */
2086 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2087 				  unsigned int cur_mss, int nonagle)
2088 {
2089 	/* Nagle rule does not apply to frames, which sit in the middle of the
2090 	 * write_queue (they have no chances to get new data).
2091 	 *
2092 	 * This is implemented in the callers, where they modify the 'nonagle'
2093 	 * argument based upon the location of SKB in the send queue.
2094 	 */
2095 	if (nonagle & TCP_NAGLE_PUSH)
2096 		return true;
2097 
2098 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2099 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2100 		return true;
2101 
2102 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2103 		return true;
2104 
2105 	return false;
2106 }
2107 
2108 /* Does at least the first segment of SKB fit into the send window? */
2109 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2110 			     const struct sk_buff *skb,
2111 			     unsigned int cur_mss)
2112 {
2113 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2114 
2115 	if (skb->len > cur_mss)
2116 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2117 
2118 	return !after(end_seq, tcp_wnd_end(tp));
2119 }
2120 
2121 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2122  * which is put after SKB on the list.  It is very much like
2123  * tcp_fragment() except that it may make several kinds of assumptions
2124  * in order to speed up the splitting operation.  In particular, we
2125  * know that all the data is in scatter-gather pages, and that the
2126  * packet has never been sent out before (and thus is not cloned).
2127  */
2128 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2129 			unsigned int mss_now, gfp_t gfp)
2130 {
2131 	int nlen = skb->len - len;
2132 	struct sk_buff *buff;
2133 	u8 flags;
2134 
2135 	/* All of a TSO frame must be composed of paged data.  */
2136 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2137 
2138 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2139 	if (unlikely(!buff))
2140 		return -ENOMEM;
2141 	skb_copy_decrypted(buff, skb);
2142 	mptcp_skb_ext_copy(buff, skb);
2143 
2144 	sk_wmem_queued_add(sk, buff->truesize);
2145 	sk_mem_charge(sk, buff->truesize);
2146 	buff->truesize += nlen;
2147 	skb->truesize -= nlen;
2148 
2149 	/* Correct the sequence numbers. */
2150 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2151 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2152 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2153 
2154 	/* PSH and FIN should only be set in the second packet. */
2155 	flags = TCP_SKB_CB(skb)->tcp_flags;
2156 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2157 	TCP_SKB_CB(buff)->tcp_flags = flags;
2158 
2159 	tcp_skb_fragment_eor(skb, buff);
2160 
2161 	skb_split(skb, buff, len);
2162 	tcp_fragment_tstamp(skb, buff);
2163 
2164 	/* Fix up tso_factor for both original and new SKB.  */
2165 	tcp_set_skb_tso_segs(skb, mss_now);
2166 	tcp_set_skb_tso_segs(buff, mss_now);
2167 
2168 	/* Link BUFF into the send queue. */
2169 	__skb_header_release(buff);
2170 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2171 
2172 	return 0;
2173 }
2174 
2175 /* Try to defer sending, if possible, in order to minimize the amount
2176  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2177  *
2178  * This algorithm is from John Heffner.
2179  */
2180 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2181 				 bool *is_cwnd_limited,
2182 				 bool *is_rwnd_limited,
2183 				 u32 max_segs)
2184 {
2185 	const struct inet_connection_sock *icsk = inet_csk(sk);
2186 	u32 send_win, cong_win, limit, in_flight;
2187 	struct tcp_sock *tp = tcp_sk(sk);
2188 	struct sk_buff *head;
2189 	int win_divisor;
2190 	s64 delta;
2191 
2192 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2193 		goto send_now;
2194 
2195 	/* Avoid bursty behavior by allowing defer
2196 	 * only if the last write was recent (1 ms).
2197 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2198 	 * packets waiting in a qdisc or device for EDT delivery.
2199 	 */
2200 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2201 	if (delta > 0)
2202 		goto send_now;
2203 
2204 	in_flight = tcp_packets_in_flight(tp);
2205 
2206 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2207 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2208 
2209 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2210 
2211 	/* From in_flight test above, we know that cwnd > in_flight.  */
2212 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2213 
2214 	limit = min(send_win, cong_win);
2215 
2216 	/* If a full-sized TSO skb can be sent, do it. */
2217 	if (limit >= max_segs * tp->mss_cache)
2218 		goto send_now;
2219 
2220 	/* Middle in queue won't get any more data, full sendable already? */
2221 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2222 		goto send_now;
2223 
2224 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2225 	if (win_divisor) {
2226 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2227 
2228 		/* If at least some fraction of a window is available,
2229 		 * just use it.
2230 		 */
2231 		chunk /= win_divisor;
2232 		if (limit >= chunk)
2233 			goto send_now;
2234 	} else {
2235 		/* Different approach, try not to defer past a single
2236 		 * ACK.  Receiver should ACK every other full sized
2237 		 * frame, so if we have space for more than 3 frames
2238 		 * then send now.
2239 		 */
2240 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2241 			goto send_now;
2242 	}
2243 
2244 	/* TODO : use tsorted_sent_queue ? */
2245 	head = tcp_rtx_queue_head(sk);
2246 	if (!head)
2247 		goto send_now;
2248 	delta = tp->tcp_clock_cache - head->tstamp;
2249 	/* If next ACK is likely to come too late (half srtt), do not defer */
2250 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2251 		goto send_now;
2252 
2253 	/* Ok, it looks like it is advisable to defer.
2254 	 * Three cases are tracked :
2255 	 * 1) We are cwnd-limited
2256 	 * 2) We are rwnd-limited
2257 	 * 3) We are application limited.
2258 	 */
2259 	if (cong_win < send_win) {
2260 		if (cong_win <= skb->len) {
2261 			*is_cwnd_limited = true;
2262 			return true;
2263 		}
2264 	} else {
2265 		if (send_win <= skb->len) {
2266 			*is_rwnd_limited = true;
2267 			return true;
2268 		}
2269 	}
2270 
2271 	/* If this packet won't get more data, do not wait. */
2272 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2273 	    TCP_SKB_CB(skb)->eor)
2274 		goto send_now;
2275 
2276 	return true;
2277 
2278 send_now:
2279 	return false;
2280 }
2281 
2282 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2283 {
2284 	struct inet_connection_sock *icsk = inet_csk(sk);
2285 	struct tcp_sock *tp = tcp_sk(sk);
2286 	struct net *net = sock_net(sk);
2287 	u32 interval;
2288 	s32 delta;
2289 
2290 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2291 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2292 	if (unlikely(delta >= interval * HZ)) {
2293 		int mss = tcp_current_mss(sk);
2294 
2295 		/* Update current search range */
2296 		icsk->icsk_mtup.probe_size = 0;
2297 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2298 			sizeof(struct tcphdr) +
2299 			icsk->icsk_af_ops->net_header_len;
2300 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2301 
2302 		/* Update probe time stamp */
2303 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2304 	}
2305 }
2306 
2307 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2308 {
2309 	struct sk_buff *skb, *next;
2310 
2311 	skb = tcp_send_head(sk);
2312 	tcp_for_write_queue_from_safe(skb, next, sk) {
2313 		if (len <= skb->len)
2314 			break;
2315 
2316 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2317 		    tcp_has_tx_tstamp(skb) ||
2318 		    !skb_pure_zcopy_same(skb, next))
2319 			return false;
2320 
2321 		len -= skb->len;
2322 	}
2323 
2324 	return true;
2325 }
2326 
2327 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2328 			     int probe_size)
2329 {
2330 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2331 	int i, todo, len = 0, nr_frags = 0;
2332 	const struct sk_buff *skb;
2333 
2334 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2335 		return -ENOMEM;
2336 
2337 	skb_queue_walk(&sk->sk_write_queue, skb) {
2338 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2339 
2340 		if (skb_headlen(skb))
2341 			return -EINVAL;
2342 
2343 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2344 			if (len >= probe_size)
2345 				goto commit;
2346 			todo = min_t(int, skb_frag_size(fragfrom),
2347 				     probe_size - len);
2348 			len += todo;
2349 			if (lastfrag &&
2350 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2351 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2352 						      skb_frag_size(lastfrag)) {
2353 				skb_frag_size_add(lastfrag, todo);
2354 				continue;
2355 			}
2356 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2357 				return -E2BIG;
2358 			skb_frag_page_copy(fragto, fragfrom);
2359 			skb_frag_off_copy(fragto, fragfrom);
2360 			skb_frag_size_set(fragto, todo);
2361 			nr_frags++;
2362 			lastfrag = fragto++;
2363 		}
2364 	}
2365 commit:
2366 	WARN_ON_ONCE(len != probe_size);
2367 	for (i = 0; i < nr_frags; i++)
2368 		skb_frag_ref(to, i);
2369 
2370 	skb_shinfo(to)->nr_frags = nr_frags;
2371 	to->truesize += probe_size;
2372 	to->len += probe_size;
2373 	to->data_len += probe_size;
2374 	__skb_header_release(to);
2375 	return 0;
2376 }
2377 
2378 /* Create a new MTU probe if we are ready.
2379  * MTU probe is regularly attempting to increase the path MTU by
2380  * deliberately sending larger packets.  This discovers routing
2381  * changes resulting in larger path MTUs.
2382  *
2383  * Returns 0 if we should wait to probe (no cwnd available),
2384  *         1 if a probe was sent,
2385  *         -1 otherwise
2386  */
2387 static int tcp_mtu_probe(struct sock *sk)
2388 {
2389 	struct inet_connection_sock *icsk = inet_csk(sk);
2390 	struct tcp_sock *tp = tcp_sk(sk);
2391 	struct sk_buff *skb, *nskb, *next;
2392 	struct net *net = sock_net(sk);
2393 	int probe_size;
2394 	int size_needed;
2395 	int copy, len;
2396 	int mss_now;
2397 	int interval;
2398 
2399 	/* Not currently probing/verifying,
2400 	 * not in recovery,
2401 	 * have enough cwnd, and
2402 	 * not SACKing (the variable headers throw things off)
2403 	 */
2404 	if (likely(!icsk->icsk_mtup.enabled ||
2405 		   icsk->icsk_mtup.probe_size ||
2406 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2407 		   tcp_snd_cwnd(tp) < 11 ||
2408 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2409 		return -1;
2410 
2411 	/* Use binary search for probe_size between tcp_mss_base,
2412 	 * and current mss_clamp. if (search_high - search_low)
2413 	 * smaller than a threshold, backoff from probing.
2414 	 */
2415 	mss_now = tcp_current_mss(sk);
2416 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2417 				    icsk->icsk_mtup.search_low) >> 1);
2418 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2419 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2420 	/* When misfortune happens, we are reprobing actively,
2421 	 * and then reprobe timer has expired. We stick with current
2422 	 * probing process by not resetting search range to its orignal.
2423 	 */
2424 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2425 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2426 		/* Check whether enough time has elaplased for
2427 		 * another round of probing.
2428 		 */
2429 		tcp_mtu_check_reprobe(sk);
2430 		return -1;
2431 	}
2432 
2433 	/* Have enough data in the send queue to probe? */
2434 	if (tp->write_seq - tp->snd_nxt < size_needed)
2435 		return -1;
2436 
2437 	if (tp->snd_wnd < size_needed)
2438 		return -1;
2439 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2440 		return 0;
2441 
2442 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2443 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2444 		if (!tcp_packets_in_flight(tp))
2445 			return -1;
2446 		else
2447 			return 0;
2448 	}
2449 
2450 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2451 		return -1;
2452 
2453 	/* We're allowed to probe.  Build it now. */
2454 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2455 	if (!nskb)
2456 		return -1;
2457 
2458 	/* build the payload, and be prepared to abort if this fails. */
2459 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2460 		consume_skb(nskb);
2461 		return -1;
2462 	}
2463 	sk_wmem_queued_add(sk, nskb->truesize);
2464 	sk_mem_charge(sk, nskb->truesize);
2465 
2466 	skb = tcp_send_head(sk);
2467 	skb_copy_decrypted(nskb, skb);
2468 	mptcp_skb_ext_copy(nskb, skb);
2469 
2470 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2471 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2472 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2473 
2474 	tcp_insert_write_queue_before(nskb, skb, sk);
2475 	tcp_highest_sack_replace(sk, skb, nskb);
2476 
2477 	len = 0;
2478 	tcp_for_write_queue_from_safe(skb, next, sk) {
2479 		copy = min_t(int, skb->len, probe_size - len);
2480 
2481 		if (skb->len <= copy) {
2482 			/* We've eaten all the data from this skb.
2483 			 * Throw it away. */
2484 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2485 			/* If this is the last SKB we copy and eor is set
2486 			 * we need to propagate it to the new skb.
2487 			 */
2488 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2489 			tcp_skb_collapse_tstamp(nskb, skb);
2490 			tcp_unlink_write_queue(skb, sk);
2491 			tcp_wmem_free_skb(sk, skb);
2492 		} else {
2493 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2494 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2495 			__pskb_trim_head(skb, copy);
2496 			tcp_set_skb_tso_segs(skb, mss_now);
2497 			TCP_SKB_CB(skb)->seq += copy;
2498 		}
2499 
2500 		len += copy;
2501 
2502 		if (len >= probe_size)
2503 			break;
2504 	}
2505 	tcp_init_tso_segs(nskb, nskb->len);
2506 
2507 	/* We're ready to send.  If this fails, the probe will
2508 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2509 	 */
2510 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2511 		/* Decrement cwnd here because we are sending
2512 		 * effectively two packets. */
2513 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2514 		tcp_event_new_data_sent(sk, nskb);
2515 
2516 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2517 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2518 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2519 
2520 		return 1;
2521 	}
2522 
2523 	return -1;
2524 }
2525 
2526 static bool tcp_pacing_check(struct sock *sk)
2527 {
2528 	struct tcp_sock *tp = tcp_sk(sk);
2529 
2530 	if (!tcp_needs_internal_pacing(sk))
2531 		return false;
2532 
2533 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2534 		return false;
2535 
2536 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2537 		hrtimer_start(&tp->pacing_timer,
2538 			      ns_to_ktime(tp->tcp_wstamp_ns),
2539 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2540 		sock_hold(sk);
2541 	}
2542 	return true;
2543 }
2544 
2545 /* TCP Small Queues :
2546  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2547  * (These limits are doubled for retransmits)
2548  * This allows for :
2549  *  - better RTT estimation and ACK scheduling
2550  *  - faster recovery
2551  *  - high rates
2552  * Alas, some drivers / subsystems require a fair amount
2553  * of queued bytes to ensure line rate.
2554  * One example is wifi aggregation (802.11 AMPDU)
2555  */
2556 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2557 				  unsigned int factor)
2558 {
2559 	unsigned long limit;
2560 
2561 	limit = max_t(unsigned long,
2562 		      2 * skb->truesize,
2563 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2564 	if (sk->sk_pacing_status == SK_PACING_NONE)
2565 		limit = min_t(unsigned long, limit,
2566 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2567 	limit <<= factor;
2568 
2569 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2570 	    tcp_sk(sk)->tcp_tx_delay) {
2571 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2572 
2573 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2574 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2575 		 * USEC_PER_SEC is approximated by 2^20.
2576 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2577 		 */
2578 		extra_bytes >>= (20 - 1);
2579 		limit += extra_bytes;
2580 	}
2581 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2582 		/* Always send skb if rtx queue is empty.
2583 		 * No need to wait for TX completion to call us back,
2584 		 * after softirq/tasklet schedule.
2585 		 * This helps when TX completions are delayed too much.
2586 		 */
2587 		if (tcp_rtx_queue_empty(sk))
2588 			return false;
2589 
2590 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2591 		/* It is possible TX completion already happened
2592 		 * before we set TSQ_THROTTLED, so we must
2593 		 * test again the condition.
2594 		 */
2595 		smp_mb__after_atomic();
2596 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2597 			return true;
2598 	}
2599 	return false;
2600 }
2601 
2602 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2603 {
2604 	const u32 now = tcp_jiffies32;
2605 	enum tcp_chrono old = tp->chrono_type;
2606 
2607 	if (old > TCP_CHRONO_UNSPEC)
2608 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2609 	tp->chrono_start = now;
2610 	tp->chrono_type = new;
2611 }
2612 
2613 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2614 {
2615 	struct tcp_sock *tp = tcp_sk(sk);
2616 
2617 	/* If there are multiple conditions worthy of tracking in a
2618 	 * chronograph then the highest priority enum takes precedence
2619 	 * over the other conditions. So that if something "more interesting"
2620 	 * starts happening, stop the previous chrono and start a new one.
2621 	 */
2622 	if (type > tp->chrono_type)
2623 		tcp_chrono_set(tp, type);
2624 }
2625 
2626 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2627 {
2628 	struct tcp_sock *tp = tcp_sk(sk);
2629 
2630 
2631 	/* There are multiple conditions worthy of tracking in a
2632 	 * chronograph, so that the highest priority enum takes
2633 	 * precedence over the other conditions (see tcp_chrono_start).
2634 	 * If a condition stops, we only stop chrono tracking if
2635 	 * it's the "most interesting" or current chrono we are
2636 	 * tracking and starts busy chrono if we have pending data.
2637 	 */
2638 	if (tcp_rtx_and_write_queues_empty(sk))
2639 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2640 	else if (type == tp->chrono_type)
2641 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2642 }
2643 
2644 /* This routine writes packets to the network.  It advances the
2645  * send_head.  This happens as incoming acks open up the remote
2646  * window for us.
2647  *
2648  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2649  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2650  * account rare use of URG, this is not a big flaw.
2651  *
2652  * Send at most one packet when push_one > 0. Temporarily ignore
2653  * cwnd limit to force at most one packet out when push_one == 2.
2654 
2655  * Returns true, if no segments are in flight and we have queued segments,
2656  * but cannot send anything now because of SWS or another problem.
2657  */
2658 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2659 			   int push_one, gfp_t gfp)
2660 {
2661 	struct tcp_sock *tp = tcp_sk(sk);
2662 	struct sk_buff *skb;
2663 	unsigned int tso_segs, sent_pkts;
2664 	int cwnd_quota;
2665 	int result;
2666 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2667 	u32 max_segs;
2668 
2669 	sent_pkts = 0;
2670 
2671 	tcp_mstamp_refresh(tp);
2672 	if (!push_one) {
2673 		/* Do MTU probing. */
2674 		result = tcp_mtu_probe(sk);
2675 		if (!result) {
2676 			return false;
2677 		} else if (result > 0) {
2678 			sent_pkts = 1;
2679 		}
2680 	}
2681 
2682 	max_segs = tcp_tso_segs(sk, mss_now);
2683 	while ((skb = tcp_send_head(sk))) {
2684 		unsigned int limit;
2685 
2686 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2687 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2688 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2689 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2690 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2691 			tcp_init_tso_segs(skb, mss_now);
2692 			goto repair; /* Skip network transmission */
2693 		}
2694 
2695 		if (tcp_pacing_check(sk))
2696 			break;
2697 
2698 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2699 		BUG_ON(!tso_segs);
2700 
2701 		cwnd_quota = tcp_cwnd_test(tp, skb);
2702 		if (!cwnd_quota) {
2703 			if (push_one == 2)
2704 				/* Force out a loss probe pkt. */
2705 				cwnd_quota = 1;
2706 			else
2707 				break;
2708 		}
2709 
2710 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2711 			is_rwnd_limited = true;
2712 			break;
2713 		}
2714 
2715 		if (tso_segs == 1) {
2716 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2717 						     (tcp_skb_is_last(sk, skb) ?
2718 						      nonagle : TCP_NAGLE_PUSH))))
2719 				break;
2720 		} else {
2721 			if (!push_one &&
2722 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2723 						 &is_rwnd_limited, max_segs))
2724 				break;
2725 		}
2726 
2727 		limit = mss_now;
2728 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2729 			limit = tcp_mss_split_point(sk, skb, mss_now,
2730 						    min_t(unsigned int,
2731 							  cwnd_quota,
2732 							  max_segs),
2733 						    nonagle);
2734 
2735 		if (skb->len > limit &&
2736 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2737 			break;
2738 
2739 		if (tcp_small_queue_check(sk, skb, 0))
2740 			break;
2741 
2742 		/* Argh, we hit an empty skb(), presumably a thread
2743 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2744 		 * We do not want to send a pure-ack packet and have
2745 		 * a strange looking rtx queue with empty packet(s).
2746 		 */
2747 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2748 			break;
2749 
2750 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2751 			break;
2752 
2753 repair:
2754 		/* Advance the send_head.  This one is sent out.
2755 		 * This call will increment packets_out.
2756 		 */
2757 		tcp_event_new_data_sent(sk, skb);
2758 
2759 		tcp_minshall_update(tp, mss_now, skb);
2760 		sent_pkts += tcp_skb_pcount(skb);
2761 
2762 		if (push_one)
2763 			break;
2764 	}
2765 
2766 	if (is_rwnd_limited)
2767 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2768 	else
2769 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2770 
2771 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2772 	if (likely(sent_pkts || is_cwnd_limited))
2773 		tcp_cwnd_validate(sk, is_cwnd_limited);
2774 
2775 	if (likely(sent_pkts)) {
2776 		if (tcp_in_cwnd_reduction(sk))
2777 			tp->prr_out += sent_pkts;
2778 
2779 		/* Send one loss probe per tail loss episode. */
2780 		if (push_one != 2)
2781 			tcp_schedule_loss_probe(sk, false);
2782 		return false;
2783 	}
2784 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2785 }
2786 
2787 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2788 {
2789 	struct inet_connection_sock *icsk = inet_csk(sk);
2790 	struct tcp_sock *tp = tcp_sk(sk);
2791 	u32 timeout, rto_delta_us;
2792 	int early_retrans;
2793 
2794 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2795 	 * finishes.
2796 	 */
2797 	if (rcu_access_pointer(tp->fastopen_rsk))
2798 		return false;
2799 
2800 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2801 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2802 	 * not in loss recovery, that are either limited by cwnd or application.
2803 	 */
2804 	if ((early_retrans != 3 && early_retrans != 4) ||
2805 	    !tp->packets_out || !tcp_is_sack(tp) ||
2806 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2807 	     icsk->icsk_ca_state != TCP_CA_CWR))
2808 		return false;
2809 
2810 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2811 	 * for delayed ack when there's one outstanding packet. If no RTT
2812 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2813 	 */
2814 	if (tp->srtt_us) {
2815 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2816 		if (tp->packets_out == 1)
2817 			timeout += TCP_RTO_MIN;
2818 		else
2819 			timeout += TCP_TIMEOUT_MIN;
2820 	} else {
2821 		timeout = TCP_TIMEOUT_INIT;
2822 	}
2823 
2824 	/* If the RTO formula yields an earlier time, then use that time. */
2825 	rto_delta_us = advancing_rto ?
2826 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2827 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2828 	if (rto_delta_us > 0)
2829 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2830 
2831 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2832 	return true;
2833 }
2834 
2835 /* Thanks to skb fast clones, we can detect if a prior transmit of
2836  * a packet is still in a qdisc or driver queue.
2837  * In this case, there is very little point doing a retransmit !
2838  */
2839 static bool skb_still_in_host_queue(struct sock *sk,
2840 				    const struct sk_buff *skb)
2841 {
2842 	if (unlikely(skb_fclone_busy(sk, skb))) {
2843 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2844 		smp_mb__after_atomic();
2845 		if (skb_fclone_busy(sk, skb)) {
2846 			NET_INC_STATS(sock_net(sk),
2847 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2848 			return true;
2849 		}
2850 	}
2851 	return false;
2852 }
2853 
2854 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2855  * retransmit the last segment.
2856  */
2857 void tcp_send_loss_probe(struct sock *sk)
2858 {
2859 	struct tcp_sock *tp = tcp_sk(sk);
2860 	struct sk_buff *skb;
2861 	int pcount;
2862 	int mss = tcp_current_mss(sk);
2863 
2864 	/* At most one outstanding TLP */
2865 	if (tp->tlp_high_seq)
2866 		goto rearm_timer;
2867 
2868 	tp->tlp_retrans = 0;
2869 	skb = tcp_send_head(sk);
2870 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2871 		pcount = tp->packets_out;
2872 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2873 		if (tp->packets_out > pcount)
2874 			goto probe_sent;
2875 		goto rearm_timer;
2876 	}
2877 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2878 	if (unlikely(!skb)) {
2879 		WARN_ONCE(tp->packets_out,
2880 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2881 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2882 		inet_csk(sk)->icsk_pending = 0;
2883 		return;
2884 	}
2885 
2886 	if (skb_still_in_host_queue(sk, skb))
2887 		goto rearm_timer;
2888 
2889 	pcount = tcp_skb_pcount(skb);
2890 	if (WARN_ON(!pcount))
2891 		goto rearm_timer;
2892 
2893 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2894 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2895 					  (pcount - 1) * mss, mss,
2896 					  GFP_ATOMIC)))
2897 			goto rearm_timer;
2898 		skb = skb_rb_next(skb);
2899 	}
2900 
2901 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2902 		goto rearm_timer;
2903 
2904 	if (__tcp_retransmit_skb(sk, skb, 1))
2905 		goto rearm_timer;
2906 
2907 	tp->tlp_retrans = 1;
2908 
2909 probe_sent:
2910 	/* Record snd_nxt for loss detection. */
2911 	tp->tlp_high_seq = tp->snd_nxt;
2912 
2913 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2914 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2915 	inet_csk(sk)->icsk_pending = 0;
2916 rearm_timer:
2917 	tcp_rearm_rto(sk);
2918 }
2919 
2920 /* Push out any pending frames which were held back due to
2921  * TCP_CORK or attempt at coalescing tiny packets.
2922  * The socket must be locked by the caller.
2923  */
2924 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2925 			       int nonagle)
2926 {
2927 	/* If we are closed, the bytes will have to remain here.
2928 	 * In time closedown will finish, we empty the write queue and
2929 	 * all will be happy.
2930 	 */
2931 	if (unlikely(sk->sk_state == TCP_CLOSE))
2932 		return;
2933 
2934 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2935 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2936 		tcp_check_probe_timer(sk);
2937 }
2938 
2939 /* Send _single_ skb sitting at the send head. This function requires
2940  * true push pending frames to setup probe timer etc.
2941  */
2942 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2943 {
2944 	struct sk_buff *skb = tcp_send_head(sk);
2945 
2946 	BUG_ON(!skb || skb->len < mss_now);
2947 
2948 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2949 }
2950 
2951 /* This function returns the amount that we can raise the
2952  * usable window based on the following constraints
2953  *
2954  * 1. The window can never be shrunk once it is offered (RFC 793)
2955  * 2. We limit memory per socket
2956  *
2957  * RFC 1122:
2958  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2959  *  RECV.NEXT + RCV.WIN fixed until:
2960  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2961  *
2962  * i.e. don't raise the right edge of the window until you can raise
2963  * it at least MSS bytes.
2964  *
2965  * Unfortunately, the recommended algorithm breaks header prediction,
2966  * since header prediction assumes th->window stays fixed.
2967  *
2968  * Strictly speaking, keeping th->window fixed violates the receiver
2969  * side SWS prevention criteria. The problem is that under this rule
2970  * a stream of single byte packets will cause the right side of the
2971  * window to always advance by a single byte.
2972  *
2973  * Of course, if the sender implements sender side SWS prevention
2974  * then this will not be a problem.
2975  *
2976  * BSD seems to make the following compromise:
2977  *
2978  *	If the free space is less than the 1/4 of the maximum
2979  *	space available and the free space is less than 1/2 mss,
2980  *	then set the window to 0.
2981  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2982  *	Otherwise, just prevent the window from shrinking
2983  *	and from being larger than the largest representable value.
2984  *
2985  * This prevents incremental opening of the window in the regime
2986  * where TCP is limited by the speed of the reader side taking
2987  * data out of the TCP receive queue. It does nothing about
2988  * those cases where the window is constrained on the sender side
2989  * because the pipeline is full.
2990  *
2991  * BSD also seems to "accidentally" limit itself to windows that are a
2992  * multiple of MSS, at least until the free space gets quite small.
2993  * This would appear to be a side effect of the mbuf implementation.
2994  * Combining these two algorithms results in the observed behavior
2995  * of having a fixed window size at almost all times.
2996  *
2997  * Below we obtain similar behavior by forcing the offered window to
2998  * a multiple of the mss when it is feasible to do so.
2999  *
3000  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3001  * Regular options like TIMESTAMP are taken into account.
3002  */
3003 u32 __tcp_select_window(struct sock *sk)
3004 {
3005 	struct inet_connection_sock *icsk = inet_csk(sk);
3006 	struct tcp_sock *tp = tcp_sk(sk);
3007 	struct net *net = sock_net(sk);
3008 	/* MSS for the peer's data.  Previous versions used mss_clamp
3009 	 * here.  I don't know if the value based on our guesses
3010 	 * of peer's MSS is better for the performance.  It's more correct
3011 	 * but may be worse for the performance because of rcv_mss
3012 	 * fluctuations.  --SAW  1998/11/1
3013 	 */
3014 	int mss = icsk->icsk_ack.rcv_mss;
3015 	int free_space = tcp_space(sk);
3016 	int allowed_space = tcp_full_space(sk);
3017 	int full_space, window;
3018 
3019 	if (sk_is_mptcp(sk))
3020 		mptcp_space(sk, &free_space, &allowed_space);
3021 
3022 	full_space = min_t(int, tp->window_clamp, allowed_space);
3023 
3024 	if (unlikely(mss > full_space)) {
3025 		mss = full_space;
3026 		if (mss <= 0)
3027 			return 0;
3028 	}
3029 
3030 	/* Only allow window shrink if the sysctl is enabled and we have
3031 	 * a non-zero scaling factor in effect.
3032 	 */
3033 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3034 		goto shrink_window_allowed;
3035 
3036 	/* do not allow window to shrink */
3037 
3038 	if (free_space < (full_space >> 1)) {
3039 		icsk->icsk_ack.quick = 0;
3040 
3041 		if (tcp_under_memory_pressure(sk))
3042 			tcp_adjust_rcv_ssthresh(sk);
3043 
3044 		/* free_space might become our new window, make sure we don't
3045 		 * increase it due to wscale.
3046 		 */
3047 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3048 
3049 		/* if free space is less than mss estimate, or is below 1/16th
3050 		 * of the maximum allowed, try to move to zero-window, else
3051 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3052 		 * new incoming data is dropped due to memory limits.
3053 		 * With large window, mss test triggers way too late in order
3054 		 * to announce zero window in time before rmem limit kicks in.
3055 		 */
3056 		if (free_space < (allowed_space >> 4) || free_space < mss)
3057 			return 0;
3058 	}
3059 
3060 	if (free_space > tp->rcv_ssthresh)
3061 		free_space = tp->rcv_ssthresh;
3062 
3063 	/* Don't do rounding if we are using window scaling, since the
3064 	 * scaled window will not line up with the MSS boundary anyway.
3065 	 */
3066 	if (tp->rx_opt.rcv_wscale) {
3067 		window = free_space;
3068 
3069 		/* Advertise enough space so that it won't get scaled away.
3070 		 * Import case: prevent zero window announcement if
3071 		 * 1<<rcv_wscale > mss.
3072 		 */
3073 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3074 	} else {
3075 		window = tp->rcv_wnd;
3076 		/* Get the largest window that is a nice multiple of mss.
3077 		 * Window clamp already applied above.
3078 		 * If our current window offering is within 1 mss of the
3079 		 * free space we just keep it. This prevents the divide
3080 		 * and multiply from happening most of the time.
3081 		 * We also don't do any window rounding when the free space
3082 		 * is too small.
3083 		 */
3084 		if (window <= free_space - mss || window > free_space)
3085 			window = rounddown(free_space, mss);
3086 		else if (mss == full_space &&
3087 			 free_space > window + (full_space >> 1))
3088 			window = free_space;
3089 	}
3090 
3091 	return window;
3092 
3093 shrink_window_allowed:
3094 	/* new window should always be an exact multiple of scaling factor */
3095 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3096 
3097 	if (free_space < (full_space >> 1)) {
3098 		icsk->icsk_ack.quick = 0;
3099 
3100 		if (tcp_under_memory_pressure(sk))
3101 			tcp_adjust_rcv_ssthresh(sk);
3102 
3103 		/* if free space is too low, return a zero window */
3104 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3105 			free_space < (1 << tp->rx_opt.rcv_wscale))
3106 			return 0;
3107 	}
3108 
3109 	if (free_space > tp->rcv_ssthresh) {
3110 		free_space = tp->rcv_ssthresh;
3111 		/* new window should always be an exact multiple of scaling factor
3112 		 *
3113 		 * For this case, we ALIGN "up" (increase free_space) because
3114 		 * we know free_space is not zero here, it has been reduced from
3115 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3116 		 * (unlike sk_rcvbuf).
3117 		 */
3118 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3119 	}
3120 
3121 	return free_space;
3122 }
3123 
3124 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3125 			     const struct sk_buff *next_skb)
3126 {
3127 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3128 		const struct skb_shared_info *next_shinfo =
3129 			skb_shinfo(next_skb);
3130 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3131 
3132 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3133 		shinfo->tskey = next_shinfo->tskey;
3134 		TCP_SKB_CB(skb)->txstamp_ack |=
3135 			TCP_SKB_CB(next_skb)->txstamp_ack;
3136 	}
3137 }
3138 
3139 /* Collapses two adjacent SKB's during retransmission. */
3140 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3141 {
3142 	struct tcp_sock *tp = tcp_sk(sk);
3143 	struct sk_buff *next_skb = skb_rb_next(skb);
3144 	int next_skb_size;
3145 
3146 	next_skb_size = next_skb->len;
3147 
3148 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3149 
3150 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3151 		return false;
3152 
3153 	tcp_highest_sack_replace(sk, next_skb, skb);
3154 
3155 	/* Update sequence range on original skb. */
3156 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3157 
3158 	/* Merge over control information. This moves PSH/FIN etc. over */
3159 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3160 
3161 	/* All done, get rid of second SKB and account for it so
3162 	 * packet counting does not break.
3163 	 */
3164 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3165 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3166 
3167 	/* changed transmit queue under us so clear hints */
3168 	tcp_clear_retrans_hints_partial(tp);
3169 	if (next_skb == tp->retransmit_skb_hint)
3170 		tp->retransmit_skb_hint = skb;
3171 
3172 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3173 
3174 	tcp_skb_collapse_tstamp(skb, next_skb);
3175 
3176 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3177 	return true;
3178 }
3179 
3180 /* Check if coalescing SKBs is legal. */
3181 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3182 {
3183 	if (tcp_skb_pcount(skb) > 1)
3184 		return false;
3185 	if (skb_cloned(skb))
3186 		return false;
3187 	/* Some heuristics for collapsing over SACK'd could be invented */
3188 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3189 		return false;
3190 
3191 	return true;
3192 }
3193 
3194 /* Collapse packets in the retransmit queue to make to create
3195  * less packets on the wire. This is only done on retransmission.
3196  */
3197 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3198 				     int space)
3199 {
3200 	struct tcp_sock *tp = tcp_sk(sk);
3201 	struct sk_buff *skb = to, *tmp;
3202 	bool first = true;
3203 
3204 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3205 		return;
3206 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3207 		return;
3208 
3209 	skb_rbtree_walk_from_safe(skb, tmp) {
3210 		if (!tcp_can_collapse(sk, skb))
3211 			break;
3212 
3213 		if (!tcp_skb_can_collapse(to, skb))
3214 			break;
3215 
3216 		space -= skb->len;
3217 
3218 		if (first) {
3219 			first = false;
3220 			continue;
3221 		}
3222 
3223 		if (space < 0)
3224 			break;
3225 
3226 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3227 			break;
3228 
3229 		if (!tcp_collapse_retrans(sk, to))
3230 			break;
3231 	}
3232 }
3233 
3234 /* This retransmits one SKB.  Policy decisions and retransmit queue
3235  * state updates are done by the caller.  Returns non-zero if an
3236  * error occurred which prevented the send.
3237  */
3238 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3239 {
3240 	struct inet_connection_sock *icsk = inet_csk(sk);
3241 	struct tcp_sock *tp = tcp_sk(sk);
3242 	unsigned int cur_mss;
3243 	int diff, len, err;
3244 	int avail_wnd;
3245 
3246 	/* Inconclusive MTU probe */
3247 	if (icsk->icsk_mtup.probe_size)
3248 		icsk->icsk_mtup.probe_size = 0;
3249 
3250 	if (skb_still_in_host_queue(sk, skb))
3251 		return -EBUSY;
3252 
3253 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3254 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3255 			WARN_ON_ONCE(1);
3256 			return -EINVAL;
3257 		}
3258 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3259 			return -ENOMEM;
3260 	}
3261 
3262 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3263 		return -EHOSTUNREACH; /* Routing failure or similar. */
3264 
3265 	cur_mss = tcp_current_mss(sk);
3266 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3267 
3268 	/* If receiver has shrunk his window, and skb is out of
3269 	 * new window, do not retransmit it. The exception is the
3270 	 * case, when window is shrunk to zero. In this case
3271 	 * our retransmit of one segment serves as a zero window probe.
3272 	 */
3273 	if (avail_wnd <= 0) {
3274 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3275 			return -EAGAIN;
3276 		avail_wnd = cur_mss;
3277 	}
3278 
3279 	len = cur_mss * segs;
3280 	if (len > avail_wnd) {
3281 		len = rounddown(avail_wnd, cur_mss);
3282 		if (!len)
3283 			len = avail_wnd;
3284 	}
3285 	if (skb->len > len) {
3286 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3287 				 cur_mss, GFP_ATOMIC))
3288 			return -ENOMEM; /* We'll try again later. */
3289 	} else {
3290 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3291 			return -ENOMEM;
3292 
3293 		diff = tcp_skb_pcount(skb);
3294 		tcp_set_skb_tso_segs(skb, cur_mss);
3295 		diff -= tcp_skb_pcount(skb);
3296 		if (diff)
3297 			tcp_adjust_pcount(sk, skb, diff);
3298 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3299 		if (skb->len < avail_wnd)
3300 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3301 	}
3302 
3303 	/* RFC3168, section 6.1.1.1. ECN fallback */
3304 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3305 		tcp_ecn_clear_syn(sk, skb);
3306 
3307 	/* Update global and local TCP statistics. */
3308 	segs = tcp_skb_pcount(skb);
3309 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3310 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3311 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3312 	tp->total_retrans += segs;
3313 	tp->bytes_retrans += skb->len;
3314 
3315 	/* make sure skb->data is aligned on arches that require it
3316 	 * and check if ack-trimming & collapsing extended the headroom
3317 	 * beyond what csum_start can cover.
3318 	 */
3319 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3320 		     skb_headroom(skb) >= 0xFFFF)) {
3321 		struct sk_buff *nskb;
3322 
3323 		tcp_skb_tsorted_save(skb) {
3324 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3325 			if (nskb) {
3326 				nskb->dev = NULL;
3327 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3328 			} else {
3329 				err = -ENOBUFS;
3330 			}
3331 		} tcp_skb_tsorted_restore(skb);
3332 
3333 		if (!err) {
3334 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3335 			tcp_rate_skb_sent(sk, skb);
3336 		}
3337 	} else {
3338 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3339 	}
3340 
3341 	/* To avoid taking spuriously low RTT samples based on a timestamp
3342 	 * for a transmit that never happened, always mark EVER_RETRANS
3343 	 */
3344 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3345 
3346 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3347 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3348 				  TCP_SKB_CB(skb)->seq, segs, err);
3349 
3350 	if (likely(!err)) {
3351 		trace_tcp_retransmit_skb(sk, skb);
3352 	} else if (err != -EBUSY) {
3353 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3354 	}
3355 	return err;
3356 }
3357 
3358 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3359 {
3360 	struct tcp_sock *tp = tcp_sk(sk);
3361 	int err = __tcp_retransmit_skb(sk, skb, segs);
3362 
3363 	if (err == 0) {
3364 #if FASTRETRANS_DEBUG > 0
3365 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3366 			net_dbg_ratelimited("retrans_out leaked\n");
3367 		}
3368 #endif
3369 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3370 		tp->retrans_out += tcp_skb_pcount(skb);
3371 	}
3372 
3373 	/* Save stamp of the first (attempted) retransmit. */
3374 	if (!tp->retrans_stamp)
3375 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3376 
3377 	if (tp->undo_retrans < 0)
3378 		tp->undo_retrans = 0;
3379 	tp->undo_retrans += tcp_skb_pcount(skb);
3380 	return err;
3381 }
3382 
3383 /* This gets called after a retransmit timeout, and the initially
3384  * retransmitted data is acknowledged.  It tries to continue
3385  * resending the rest of the retransmit queue, until either
3386  * we've sent it all or the congestion window limit is reached.
3387  */
3388 void tcp_xmit_retransmit_queue(struct sock *sk)
3389 {
3390 	const struct inet_connection_sock *icsk = inet_csk(sk);
3391 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3392 	struct tcp_sock *tp = tcp_sk(sk);
3393 	bool rearm_timer = false;
3394 	u32 max_segs;
3395 	int mib_idx;
3396 
3397 	if (!tp->packets_out)
3398 		return;
3399 
3400 	rtx_head = tcp_rtx_queue_head(sk);
3401 	skb = tp->retransmit_skb_hint ?: rtx_head;
3402 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3403 	skb_rbtree_walk_from(skb) {
3404 		__u8 sacked;
3405 		int segs;
3406 
3407 		if (tcp_pacing_check(sk))
3408 			break;
3409 
3410 		/* we could do better than to assign each time */
3411 		if (!hole)
3412 			tp->retransmit_skb_hint = skb;
3413 
3414 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3415 		if (segs <= 0)
3416 			break;
3417 		sacked = TCP_SKB_CB(skb)->sacked;
3418 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3419 		 * we need to make sure not sending too bigs TSO packets
3420 		 */
3421 		segs = min_t(int, segs, max_segs);
3422 
3423 		if (tp->retrans_out >= tp->lost_out) {
3424 			break;
3425 		} else if (!(sacked & TCPCB_LOST)) {
3426 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3427 				hole = skb;
3428 			continue;
3429 
3430 		} else {
3431 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3432 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3433 			else
3434 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3435 		}
3436 
3437 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3438 			continue;
3439 
3440 		if (tcp_small_queue_check(sk, skb, 1))
3441 			break;
3442 
3443 		if (tcp_retransmit_skb(sk, skb, segs))
3444 			break;
3445 
3446 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3447 
3448 		if (tcp_in_cwnd_reduction(sk))
3449 			tp->prr_out += tcp_skb_pcount(skb);
3450 
3451 		if (skb == rtx_head &&
3452 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3453 			rearm_timer = true;
3454 
3455 	}
3456 	if (rearm_timer)
3457 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3458 				     inet_csk(sk)->icsk_rto,
3459 				     TCP_RTO_MAX);
3460 }
3461 
3462 /* We allow to exceed memory limits for FIN packets to expedite
3463  * connection tear down and (memory) recovery.
3464  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3465  * or even be forced to close flow without any FIN.
3466  * In general, we want to allow one skb per socket to avoid hangs
3467  * with edge trigger epoll()
3468  */
3469 void sk_forced_mem_schedule(struct sock *sk, int size)
3470 {
3471 	int delta, amt;
3472 
3473 	delta = size - sk->sk_forward_alloc;
3474 	if (delta <= 0)
3475 		return;
3476 	amt = sk_mem_pages(delta);
3477 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3478 	sk_memory_allocated_add(sk, amt);
3479 
3480 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3481 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3482 					gfp_memcg_charge() | __GFP_NOFAIL);
3483 }
3484 
3485 /* Send a FIN. The caller locks the socket for us.
3486  * We should try to send a FIN packet really hard, but eventually give up.
3487  */
3488 void tcp_send_fin(struct sock *sk)
3489 {
3490 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3491 	struct tcp_sock *tp = tcp_sk(sk);
3492 
3493 	/* Optimization, tack on the FIN if we have one skb in write queue and
3494 	 * this skb was not yet sent, or we are under memory pressure.
3495 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3496 	 * as TCP stack thinks it has already been transmitted.
3497 	 */
3498 	tskb = tail;
3499 	if (!tskb && tcp_under_memory_pressure(sk))
3500 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3501 
3502 	if (tskb) {
3503 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3504 		TCP_SKB_CB(tskb)->end_seq++;
3505 		tp->write_seq++;
3506 		if (!tail) {
3507 			/* This means tskb was already sent.
3508 			 * Pretend we included the FIN on previous transmit.
3509 			 * We need to set tp->snd_nxt to the value it would have
3510 			 * if FIN had been sent. This is because retransmit path
3511 			 * does not change tp->snd_nxt.
3512 			 */
3513 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3514 			return;
3515 		}
3516 	} else {
3517 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3518 		if (unlikely(!skb))
3519 			return;
3520 
3521 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3522 		skb_reserve(skb, MAX_TCP_HEADER);
3523 		sk_forced_mem_schedule(sk, skb->truesize);
3524 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3525 		tcp_init_nondata_skb(skb, tp->write_seq,
3526 				     TCPHDR_ACK | TCPHDR_FIN);
3527 		tcp_queue_skb(sk, skb);
3528 	}
3529 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3530 }
3531 
3532 /* We get here when a process closes a file descriptor (either due to
3533  * an explicit close() or as a byproduct of exit()'ing) and there
3534  * was unread data in the receive queue.  This behavior is recommended
3535  * by RFC 2525, section 2.17.  -DaveM
3536  */
3537 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3538 {
3539 	struct sk_buff *skb;
3540 
3541 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3542 
3543 	/* NOTE: No TCP options attached and we never retransmit this. */
3544 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3545 	if (!skb) {
3546 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3547 		return;
3548 	}
3549 
3550 	/* Reserve space for headers and prepare control bits. */
3551 	skb_reserve(skb, MAX_TCP_HEADER);
3552 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3553 			     TCPHDR_ACK | TCPHDR_RST);
3554 	tcp_mstamp_refresh(tcp_sk(sk));
3555 	/* Send it off. */
3556 	if (tcp_transmit_skb(sk, skb, 0, priority))
3557 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3558 
3559 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3560 	 * skb here is different to the troublesome skb, so use NULL
3561 	 */
3562 	trace_tcp_send_reset(sk, NULL);
3563 }
3564 
3565 /* Send a crossed SYN-ACK during socket establishment.
3566  * WARNING: This routine must only be called when we have already sent
3567  * a SYN packet that crossed the incoming SYN that caused this routine
3568  * to get called. If this assumption fails then the initial rcv_wnd
3569  * and rcv_wscale values will not be correct.
3570  */
3571 int tcp_send_synack(struct sock *sk)
3572 {
3573 	struct sk_buff *skb;
3574 
3575 	skb = tcp_rtx_queue_head(sk);
3576 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3577 		pr_err("%s: wrong queue state\n", __func__);
3578 		return -EFAULT;
3579 	}
3580 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3581 		if (skb_cloned(skb)) {
3582 			struct sk_buff *nskb;
3583 
3584 			tcp_skb_tsorted_save(skb) {
3585 				nskb = skb_copy(skb, GFP_ATOMIC);
3586 			} tcp_skb_tsorted_restore(skb);
3587 			if (!nskb)
3588 				return -ENOMEM;
3589 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3590 			tcp_highest_sack_replace(sk, skb, nskb);
3591 			tcp_rtx_queue_unlink_and_free(skb, sk);
3592 			__skb_header_release(nskb);
3593 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3594 			sk_wmem_queued_add(sk, nskb->truesize);
3595 			sk_mem_charge(sk, nskb->truesize);
3596 			skb = nskb;
3597 		}
3598 
3599 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3600 		tcp_ecn_send_synack(sk, skb);
3601 	}
3602 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3603 }
3604 
3605 /**
3606  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3607  * @sk: listener socket
3608  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3609  *       should not use it again.
3610  * @req: request_sock pointer
3611  * @foc: cookie for tcp fast open
3612  * @synack_type: Type of synack to prepare
3613  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3614  */
3615 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3616 				struct request_sock *req,
3617 				struct tcp_fastopen_cookie *foc,
3618 				enum tcp_synack_type synack_type,
3619 				struct sk_buff *syn_skb)
3620 {
3621 	struct inet_request_sock *ireq = inet_rsk(req);
3622 	const struct tcp_sock *tp = tcp_sk(sk);
3623 	struct tcp_md5sig_key *md5 = NULL;
3624 	struct tcp_out_options opts;
3625 	struct sk_buff *skb;
3626 	int tcp_header_size;
3627 	struct tcphdr *th;
3628 	int mss;
3629 	u64 now;
3630 
3631 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3632 	if (unlikely(!skb)) {
3633 		dst_release(dst);
3634 		return NULL;
3635 	}
3636 	/* Reserve space for headers. */
3637 	skb_reserve(skb, MAX_TCP_HEADER);
3638 
3639 	switch (synack_type) {
3640 	case TCP_SYNACK_NORMAL:
3641 		skb_set_owner_w(skb, req_to_sk(req));
3642 		break;
3643 	case TCP_SYNACK_COOKIE:
3644 		/* Under synflood, we do not attach skb to a socket,
3645 		 * to avoid false sharing.
3646 		 */
3647 		break;
3648 	case TCP_SYNACK_FASTOPEN:
3649 		/* sk is a const pointer, because we want to express multiple
3650 		 * cpu might call us concurrently.
3651 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3652 		 */
3653 		skb_set_owner_w(skb, (struct sock *)sk);
3654 		break;
3655 	}
3656 	skb_dst_set(skb, dst);
3657 
3658 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3659 
3660 	memset(&opts, 0, sizeof(opts));
3661 	now = tcp_clock_ns();
3662 #ifdef CONFIG_SYN_COOKIES
3663 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3664 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3665 				      true);
3666 	else
3667 #endif
3668 	{
3669 		skb_set_delivery_time(skb, now, true);
3670 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3671 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3672 	}
3673 
3674 #ifdef CONFIG_TCP_MD5SIG
3675 	rcu_read_lock();
3676 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3677 #endif
3678 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3679 	/* bpf program will be interested in the tcp_flags */
3680 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3681 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3682 					     foc, synack_type,
3683 					     syn_skb) + sizeof(*th);
3684 
3685 	skb_push(skb, tcp_header_size);
3686 	skb_reset_transport_header(skb);
3687 
3688 	th = (struct tcphdr *)skb->data;
3689 	memset(th, 0, sizeof(struct tcphdr));
3690 	th->syn = 1;
3691 	th->ack = 1;
3692 	tcp_ecn_make_synack(req, th);
3693 	th->source = htons(ireq->ir_num);
3694 	th->dest = ireq->ir_rmt_port;
3695 	skb->mark = ireq->ir_mark;
3696 	skb->ip_summed = CHECKSUM_PARTIAL;
3697 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3698 	/* XXX data is queued and acked as is. No buffer/window check */
3699 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3700 
3701 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3702 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3703 	tcp_options_write(th, NULL, &opts);
3704 	th->doff = (tcp_header_size >> 2);
3705 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3706 
3707 #ifdef CONFIG_TCP_MD5SIG
3708 	/* Okay, we have all we need - do the md5 hash if needed */
3709 	if (md5)
3710 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3711 					       md5, req_to_sk(req), skb);
3712 	rcu_read_unlock();
3713 #endif
3714 
3715 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3716 				synack_type, &opts);
3717 
3718 	skb_set_delivery_time(skb, now, true);
3719 	tcp_add_tx_delay(skb, tp);
3720 
3721 	return skb;
3722 }
3723 EXPORT_SYMBOL(tcp_make_synack);
3724 
3725 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3726 {
3727 	struct inet_connection_sock *icsk = inet_csk(sk);
3728 	const struct tcp_congestion_ops *ca;
3729 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3730 
3731 	if (ca_key == TCP_CA_UNSPEC)
3732 		return;
3733 
3734 	rcu_read_lock();
3735 	ca = tcp_ca_find_key(ca_key);
3736 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3737 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3738 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3739 		icsk->icsk_ca_ops = ca;
3740 	}
3741 	rcu_read_unlock();
3742 }
3743 
3744 /* Do all connect socket setups that can be done AF independent. */
3745 static void tcp_connect_init(struct sock *sk)
3746 {
3747 	const struct dst_entry *dst = __sk_dst_get(sk);
3748 	struct tcp_sock *tp = tcp_sk(sk);
3749 	__u8 rcv_wscale;
3750 	u32 rcv_wnd;
3751 
3752 	/* We'll fix this up when we get a response from the other end.
3753 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3754 	 */
3755 	tp->tcp_header_len = sizeof(struct tcphdr);
3756 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3757 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3758 
3759 	/* If user gave his TCP_MAXSEG, record it to clamp */
3760 	if (tp->rx_opt.user_mss)
3761 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3762 	tp->max_window = 0;
3763 	tcp_mtup_init(sk);
3764 	tcp_sync_mss(sk, dst_mtu(dst));
3765 
3766 	tcp_ca_dst_init(sk, dst);
3767 
3768 	if (!tp->window_clamp)
3769 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3770 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3771 
3772 	tcp_initialize_rcv_mss(sk);
3773 
3774 	/* limit the window selection if the user enforce a smaller rx buffer */
3775 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3776 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3777 		tp->window_clamp = tcp_full_space(sk);
3778 
3779 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3780 	if (rcv_wnd == 0)
3781 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3782 
3783 	tcp_select_initial_window(sk, tcp_full_space(sk),
3784 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3785 				  &tp->rcv_wnd,
3786 				  &tp->window_clamp,
3787 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3788 				  &rcv_wscale,
3789 				  rcv_wnd);
3790 
3791 	tp->rx_opt.rcv_wscale = rcv_wscale;
3792 	tp->rcv_ssthresh = tp->rcv_wnd;
3793 
3794 	WRITE_ONCE(sk->sk_err, 0);
3795 	sock_reset_flag(sk, SOCK_DONE);
3796 	tp->snd_wnd = 0;
3797 	tcp_init_wl(tp, 0);
3798 	tcp_write_queue_purge(sk);
3799 	tp->snd_una = tp->write_seq;
3800 	tp->snd_sml = tp->write_seq;
3801 	tp->snd_up = tp->write_seq;
3802 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3803 
3804 	if (likely(!tp->repair))
3805 		tp->rcv_nxt = 0;
3806 	else
3807 		tp->rcv_tstamp = tcp_jiffies32;
3808 	tp->rcv_wup = tp->rcv_nxt;
3809 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3810 
3811 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3812 	inet_csk(sk)->icsk_retransmits = 0;
3813 	tcp_clear_retrans(tp);
3814 }
3815 
3816 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3817 {
3818 	struct tcp_sock *tp = tcp_sk(sk);
3819 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3820 
3821 	tcb->end_seq += skb->len;
3822 	__skb_header_release(skb);
3823 	sk_wmem_queued_add(sk, skb->truesize);
3824 	sk_mem_charge(sk, skb->truesize);
3825 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3826 	tp->packets_out += tcp_skb_pcount(skb);
3827 }
3828 
3829 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3830  * queue a data-only packet after the regular SYN, such that regular SYNs
3831  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3832  * only the SYN sequence, the data are retransmitted in the first ACK.
3833  * If cookie is not cached or other error occurs, falls back to send a
3834  * regular SYN with Fast Open cookie request option.
3835  */
3836 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3837 {
3838 	struct inet_connection_sock *icsk = inet_csk(sk);
3839 	struct tcp_sock *tp = tcp_sk(sk);
3840 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3841 	struct page_frag *pfrag = sk_page_frag(sk);
3842 	struct sk_buff *syn_data;
3843 	int space, err = 0;
3844 
3845 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3846 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3847 		goto fallback;
3848 
3849 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3850 	 * user-MSS. Reserve maximum option space for middleboxes that add
3851 	 * private TCP options. The cost is reduced data space in SYN :(
3852 	 */
3853 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3854 	/* Sync mss_cache after updating the mss_clamp */
3855 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3856 
3857 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3858 		MAX_TCP_OPTION_SPACE;
3859 
3860 	space = min_t(size_t, space, fo->size);
3861 
3862 	if (space &&
3863 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3864 				  pfrag, sk->sk_allocation))
3865 		goto fallback;
3866 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3867 	if (!syn_data)
3868 		goto fallback;
3869 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3870 	if (space) {
3871 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3872 		space = tcp_wmem_schedule(sk, space);
3873 	}
3874 	if (space) {
3875 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3876 					    space, &fo->data->msg_iter);
3877 		if (unlikely(!space)) {
3878 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3879 			kfree_skb(syn_data);
3880 			goto fallback;
3881 		}
3882 		skb_fill_page_desc(syn_data, 0, pfrag->page,
3883 				   pfrag->offset, space);
3884 		page_ref_inc(pfrag->page);
3885 		pfrag->offset += space;
3886 		skb_len_add(syn_data, space);
3887 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3888 	}
3889 	/* No more data pending in inet_wait_for_connect() */
3890 	if (space == fo->size)
3891 		fo->data = NULL;
3892 	fo->copied = space;
3893 
3894 	tcp_connect_queue_skb(sk, syn_data);
3895 	if (syn_data->len)
3896 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3897 
3898 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3899 
3900 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3901 
3902 	/* Now full SYN+DATA was cloned and sent (or not),
3903 	 * remove the SYN from the original skb (syn_data)
3904 	 * we keep in write queue in case of a retransmit, as we
3905 	 * also have the SYN packet (with no data) in the same queue.
3906 	 */
3907 	TCP_SKB_CB(syn_data)->seq++;
3908 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3909 	if (!err) {
3910 		tp->syn_data = (fo->copied > 0);
3911 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3912 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3913 		goto done;
3914 	}
3915 
3916 	/* data was not sent, put it in write_queue */
3917 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3918 	tp->packets_out -= tcp_skb_pcount(syn_data);
3919 
3920 fallback:
3921 	/* Send a regular SYN with Fast Open cookie request option */
3922 	if (fo->cookie.len > 0)
3923 		fo->cookie.len = 0;
3924 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3925 	if (err)
3926 		tp->syn_fastopen = 0;
3927 done:
3928 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3929 	return err;
3930 }
3931 
3932 /* Build a SYN and send it off. */
3933 int tcp_connect(struct sock *sk)
3934 {
3935 	struct tcp_sock *tp = tcp_sk(sk);
3936 	struct sk_buff *buff;
3937 	int err;
3938 
3939 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3940 
3941 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3942 		return -EHOSTUNREACH; /* Routing failure or similar. */
3943 
3944 	tcp_connect_init(sk);
3945 
3946 	if (unlikely(tp->repair)) {
3947 		tcp_finish_connect(sk, NULL);
3948 		return 0;
3949 	}
3950 
3951 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
3952 	if (unlikely(!buff))
3953 		return -ENOBUFS;
3954 
3955 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3956 	tcp_mstamp_refresh(tp);
3957 	tp->retrans_stamp = tcp_time_stamp(tp);
3958 	tcp_connect_queue_skb(sk, buff);
3959 	tcp_ecn_send_syn(sk, buff);
3960 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3961 
3962 	/* Send off SYN; include data in Fast Open. */
3963 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3964 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3965 	if (err == -ECONNREFUSED)
3966 		return err;
3967 
3968 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3969 	 * in order to make this packet get counted in tcpOutSegs.
3970 	 */
3971 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3972 	tp->pushed_seq = tp->write_seq;
3973 	buff = tcp_send_head(sk);
3974 	if (unlikely(buff)) {
3975 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3976 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3977 	}
3978 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3979 
3980 	/* Timer for repeating the SYN until an answer. */
3981 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3982 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3983 	return 0;
3984 }
3985 EXPORT_SYMBOL(tcp_connect);
3986 
3987 /* Send out a delayed ack, the caller does the policy checking
3988  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3989  * for details.
3990  */
3991 void tcp_send_delayed_ack(struct sock *sk)
3992 {
3993 	struct inet_connection_sock *icsk = inet_csk(sk);
3994 	int ato = icsk->icsk_ack.ato;
3995 	unsigned long timeout;
3996 
3997 	if (ato > TCP_DELACK_MIN) {
3998 		const struct tcp_sock *tp = tcp_sk(sk);
3999 		int max_ato = HZ / 2;
4000 
4001 		if (inet_csk_in_pingpong_mode(sk) ||
4002 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4003 			max_ato = TCP_DELACK_MAX;
4004 
4005 		/* Slow path, intersegment interval is "high". */
4006 
4007 		/* If some rtt estimate is known, use it to bound delayed ack.
4008 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4009 		 * directly.
4010 		 */
4011 		if (tp->srtt_us) {
4012 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4013 					TCP_DELACK_MIN);
4014 
4015 			if (rtt < max_ato)
4016 				max_ato = rtt;
4017 		}
4018 
4019 		ato = min(ato, max_ato);
4020 	}
4021 
4022 	ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
4023 
4024 	/* Stay within the limit we were given */
4025 	timeout = jiffies + ato;
4026 
4027 	/* Use new timeout only if there wasn't a older one earlier. */
4028 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4029 		/* If delack timer is about to expire, send ACK now. */
4030 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4031 			tcp_send_ack(sk);
4032 			return;
4033 		}
4034 
4035 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4036 			timeout = icsk->icsk_ack.timeout;
4037 	}
4038 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4039 	icsk->icsk_ack.timeout = timeout;
4040 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4041 }
4042 
4043 /* This routine sends an ack and also updates the window. */
4044 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4045 {
4046 	struct sk_buff *buff;
4047 
4048 	/* If we have been reset, we may not send again. */
4049 	if (sk->sk_state == TCP_CLOSE)
4050 		return;
4051 
4052 	/* We are not putting this on the write queue, so
4053 	 * tcp_transmit_skb() will set the ownership to this
4054 	 * sock.
4055 	 */
4056 	buff = alloc_skb(MAX_TCP_HEADER,
4057 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4058 	if (unlikely(!buff)) {
4059 		struct inet_connection_sock *icsk = inet_csk(sk);
4060 		unsigned long delay;
4061 
4062 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4063 		if (delay < TCP_RTO_MAX)
4064 			icsk->icsk_ack.retry++;
4065 		inet_csk_schedule_ack(sk);
4066 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4067 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4068 		return;
4069 	}
4070 
4071 	/* Reserve space for headers and prepare control bits. */
4072 	skb_reserve(buff, MAX_TCP_HEADER);
4073 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4074 
4075 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4076 	 * too much.
4077 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4078 	 */
4079 	skb_set_tcp_pure_ack(buff);
4080 
4081 	/* Send it off, this clears delayed acks for us. */
4082 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4083 }
4084 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4085 
4086 void tcp_send_ack(struct sock *sk)
4087 {
4088 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4089 }
4090 
4091 /* This routine sends a packet with an out of date sequence
4092  * number. It assumes the other end will try to ack it.
4093  *
4094  * Question: what should we make while urgent mode?
4095  * 4.4BSD forces sending single byte of data. We cannot send
4096  * out of window data, because we have SND.NXT==SND.MAX...
4097  *
4098  * Current solution: to send TWO zero-length segments in urgent mode:
4099  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4100  * out-of-date with SND.UNA-1 to probe window.
4101  */
4102 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4103 {
4104 	struct tcp_sock *tp = tcp_sk(sk);
4105 	struct sk_buff *skb;
4106 
4107 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4108 	skb = alloc_skb(MAX_TCP_HEADER,
4109 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4110 	if (!skb)
4111 		return -1;
4112 
4113 	/* Reserve space for headers and set control bits. */
4114 	skb_reserve(skb, MAX_TCP_HEADER);
4115 	/* Use a previous sequence.  This should cause the other
4116 	 * end to send an ack.  Don't queue or clone SKB, just
4117 	 * send it.
4118 	 */
4119 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4120 	NET_INC_STATS(sock_net(sk), mib);
4121 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4122 }
4123 
4124 /* Called from setsockopt( ... TCP_REPAIR ) */
4125 void tcp_send_window_probe(struct sock *sk)
4126 {
4127 	if (sk->sk_state == TCP_ESTABLISHED) {
4128 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4129 		tcp_mstamp_refresh(tcp_sk(sk));
4130 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4131 	}
4132 }
4133 
4134 /* Initiate keepalive or window probe from timer. */
4135 int tcp_write_wakeup(struct sock *sk, int mib)
4136 {
4137 	struct tcp_sock *tp = tcp_sk(sk);
4138 	struct sk_buff *skb;
4139 
4140 	if (sk->sk_state == TCP_CLOSE)
4141 		return -1;
4142 
4143 	skb = tcp_send_head(sk);
4144 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4145 		int err;
4146 		unsigned int mss = tcp_current_mss(sk);
4147 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4148 
4149 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4150 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4151 
4152 		/* We are probing the opening of a window
4153 		 * but the window size is != 0
4154 		 * must have been a result SWS avoidance ( sender )
4155 		 */
4156 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4157 		    skb->len > mss) {
4158 			seg_size = min(seg_size, mss);
4159 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4160 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4161 					 skb, seg_size, mss, GFP_ATOMIC))
4162 				return -1;
4163 		} else if (!tcp_skb_pcount(skb))
4164 			tcp_set_skb_tso_segs(skb, mss);
4165 
4166 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4167 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4168 		if (!err)
4169 			tcp_event_new_data_sent(sk, skb);
4170 		return err;
4171 	} else {
4172 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4173 			tcp_xmit_probe_skb(sk, 1, mib);
4174 		return tcp_xmit_probe_skb(sk, 0, mib);
4175 	}
4176 }
4177 
4178 /* A window probe timeout has occurred.  If window is not closed send
4179  * a partial packet else a zero probe.
4180  */
4181 void tcp_send_probe0(struct sock *sk)
4182 {
4183 	struct inet_connection_sock *icsk = inet_csk(sk);
4184 	struct tcp_sock *tp = tcp_sk(sk);
4185 	struct net *net = sock_net(sk);
4186 	unsigned long timeout;
4187 	int err;
4188 
4189 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4190 
4191 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4192 		/* Cancel probe timer, if it is not required. */
4193 		icsk->icsk_probes_out = 0;
4194 		icsk->icsk_backoff = 0;
4195 		icsk->icsk_probes_tstamp = 0;
4196 		return;
4197 	}
4198 
4199 	icsk->icsk_probes_out++;
4200 	if (err <= 0) {
4201 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4202 			icsk->icsk_backoff++;
4203 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4204 	} else {
4205 		/* If packet was not sent due to local congestion,
4206 		 * Let senders fight for local resources conservatively.
4207 		 */
4208 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4209 	}
4210 
4211 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4212 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4213 }
4214 
4215 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4216 {
4217 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4218 	struct flowi fl;
4219 	int res;
4220 
4221 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4222 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4223 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4224 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4225 				  NULL);
4226 	if (!res) {
4227 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4228 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4229 		if (unlikely(tcp_passive_fastopen(sk))) {
4230 			/* sk has const attribute because listeners are lockless.
4231 			 * However in this case, we are dealing with a passive fastopen
4232 			 * socket thus we can change total_retrans value.
4233 			 */
4234 			tcp_sk_rw(sk)->total_retrans++;
4235 		}
4236 		trace_tcp_retransmit_synack(sk, req);
4237 	}
4238 	return res;
4239 }
4240 EXPORT_SYMBOL(tcp_rtx_synack);
4241