1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 } 86 87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 88 * window scaling factor due to loss of precision. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 99 (tp->rx_opt.wscale_ok && 100 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 101 return tp->snd_nxt; 102 else 103 return tcp_wnd_end(tp); 104 } 105 106 /* Calculate mss to advertise in SYN segment. 107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 108 * 109 * 1. It is independent of path mtu. 110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 112 * attached devices, because some buggy hosts are confused by 113 * large MSS. 114 * 4. We do not make 3, we advertise MSS, calculated from first 115 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 116 * This may be overridden via information stored in routing table. 117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 118 * probably even Jumbo". 119 */ 120 static __u16 tcp_advertise_mss(struct sock *sk) 121 { 122 struct tcp_sock *tp = tcp_sk(sk); 123 const struct dst_entry *dst = __sk_dst_get(sk); 124 int mss = tp->advmss; 125 126 if (dst) { 127 unsigned int metric = dst_metric_advmss(dst); 128 129 if (metric < mss) { 130 mss = metric; 131 tp->advmss = mss; 132 } 133 } 134 135 return (__u16)mss; 136 } 137 138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 139 * This is the first part of cwnd validation mechanism. 140 */ 141 void tcp_cwnd_restart(struct sock *sk, s32 delta) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 145 u32 cwnd = tp->snd_cwnd; 146 147 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 148 149 tp->snd_ssthresh = tcp_current_ssthresh(sk); 150 restart_cwnd = min(restart_cwnd, cwnd); 151 152 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 153 cwnd >>= 1; 154 tp->snd_cwnd = max(cwnd, restart_cwnd); 155 tp->snd_cwnd_stamp = tcp_jiffies32; 156 tp->snd_cwnd_used = 0; 157 } 158 159 /* Congestion state accounting after a packet has been sent. */ 160 static void tcp_event_data_sent(struct tcp_sock *tp, 161 struct sock *sk) 162 { 163 struct inet_connection_sock *icsk = inet_csk(sk); 164 const u32 now = tcp_jiffies32; 165 166 if (tcp_packets_in_flight(tp) == 0) 167 tcp_ca_event(sk, CA_EVENT_TX_START); 168 169 /* If this is the first data packet sent in response to the 170 * previous received data, 171 * and it is a reply for ato after last received packet, 172 * increase pingpong count. 173 */ 174 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) && 175 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_inc_pingpong_cnt(sk); 177 178 tp->lsndtime = now; 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 183 u32 rcv_nxt) 184 { 185 struct tcp_sock *tp = tcp_sk(sk); 186 187 if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) { 188 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 189 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 190 tp->compressed_ack = TCP_FASTRETRANS_THRESH; 191 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 192 __sock_put(sk); 193 } 194 195 if (unlikely(rcv_nxt != tp->rcv_nxt)) 196 return; /* Special ACK sent by DCTCP to reflect ECN */ 197 tcp_dec_quickack_mode(sk, pkts); 198 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 199 } 200 201 /* Determine a window scaling and initial window to offer. 202 * Based on the assumption that the given amount of space 203 * will be offered. Store the results in the tp structure. 204 * NOTE: for smooth operation initial space offering should 205 * be a multiple of mss if possible. We assume here that mss >= 1. 206 * This MUST be enforced by all callers. 207 */ 208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 209 __u32 *rcv_wnd, __u32 *window_clamp, 210 int wscale_ok, __u8 *rcv_wscale, 211 __u32 init_rcv_wnd) 212 { 213 unsigned int space = (__space < 0 ? 0 : __space); 214 215 /* If no clamp set the clamp to the max possible scaled window */ 216 if (*window_clamp == 0) 217 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 218 space = min(*window_clamp, space); 219 220 /* Quantize space offering to a multiple of mss if possible. */ 221 if (space > mss) 222 space = rounddown(space, mss); 223 224 /* NOTE: offering an initial window larger than 32767 225 * will break some buggy TCP stacks. If the admin tells us 226 * it is likely we could be speaking with such a buggy stack 227 * we will truncate our initial window offering to 32K-1 228 * unless the remote has sent us a window scaling option, 229 * which we interpret as a sign the remote TCP is not 230 * misinterpreting the window field as a signed quantity. 231 */ 232 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 234 else 235 (*rcv_wnd) = min_t(u32, space, U16_MAX); 236 237 if (init_rcv_wnd) 238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 239 240 *rcv_wscale = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window */ 243 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 244 space = max_t(u32, space, sysctl_rmem_max); 245 space = min_t(u32, space, *window_clamp); 246 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 247 0, TCP_MAX_WSCALE); 248 } 249 /* Set the clamp no higher than max representable value */ 250 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 251 } 252 EXPORT_SYMBOL(tcp_select_initial_window); 253 254 /* Chose a new window to advertise, update state in tcp_sock for the 255 * socket, and return result with RFC1323 scaling applied. The return 256 * value can be stuffed directly into th->window for an outgoing 257 * frame. 258 */ 259 static u16 tcp_select_window(struct sock *sk) 260 { 261 struct tcp_sock *tp = tcp_sk(sk); 262 u32 old_win = tp->rcv_wnd; 263 u32 cur_win = tcp_receive_window(tp); 264 u32 new_win = __tcp_select_window(sk); 265 266 /* Never shrink the offered window */ 267 if (new_win < cur_win) { 268 /* Danger Will Robinson! 269 * Don't update rcv_wup/rcv_wnd here or else 270 * we will not be able to advertise a zero 271 * window in time. --DaveM 272 * 273 * Relax Will Robinson. 274 */ 275 if (new_win == 0) 276 NET_INC_STATS(sock_net(sk), 277 LINUX_MIB_TCPWANTZEROWINDOWADV); 278 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 279 } 280 tp->rcv_wnd = new_win; 281 tp->rcv_wup = tp->rcv_nxt; 282 283 /* Make sure we do not exceed the maximum possible 284 * scaled window. 285 */ 286 if (!tp->rx_opt.rcv_wscale && 287 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 288 new_win = min(new_win, MAX_TCP_WINDOW); 289 else 290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 291 292 /* RFC1323 scaling applied */ 293 new_win >>= tp->rx_opt.rcv_wscale; 294 295 /* If we advertise zero window, disable fast path. */ 296 if (new_win == 0) { 297 tp->pred_flags = 0; 298 if (old_win) 299 NET_INC_STATS(sock_net(sk), 300 LINUX_MIB_TCPTOZEROWINDOWADV); 301 } else if (old_win == 0) { 302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 303 } 304 305 return new_win; 306 } 307 308 /* Packet ECN state for a SYN-ACK */ 309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 314 if (!(tp->ecn_flags & TCP_ECN_OK)) 315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 316 else if (tcp_ca_needs_ecn(sk) || 317 tcp_bpf_ca_needs_ecn(sk)) 318 INET_ECN_xmit(sk); 319 } 320 321 /* Packet ECN state for a SYN. */ 322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 323 { 324 struct tcp_sock *tp = tcp_sk(sk); 325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 328 329 if (!use_ecn) { 330 const struct dst_entry *dst = __sk_dst_get(sk); 331 332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 333 use_ecn = true; 334 } 335 336 tp->ecn_flags = 0; 337 338 if (use_ecn) { 339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 340 tp->ecn_flags = TCP_ECN_OK; 341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 342 INET_ECN_xmit(sk); 343 } 344 } 345 346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 347 { 348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 349 /* tp->ecn_flags are cleared at a later point in time when 350 * SYN ACK is ultimatively being received. 351 */ 352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 353 } 354 355 static void 356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 357 { 358 if (inet_rsk(req)->ecn_ok) 359 th->ece = 1; 360 } 361 362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 363 * be sent. 364 */ 365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 366 struct tcphdr *th, int tcp_header_len) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 370 if (tp->ecn_flags & TCP_ECN_OK) { 371 /* Not-retransmitted data segment: set ECT and inject CWR. */ 372 if (skb->len != tcp_header_len && 373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 374 INET_ECN_xmit(sk); 375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 377 th->cwr = 1; 378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 379 } 380 } else if (!tcp_ca_needs_ecn(sk)) { 381 /* ACK or retransmitted segment: clear ECT|CE */ 382 INET_ECN_dontxmit(sk); 383 } 384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 385 th->ece = 1; 386 } 387 } 388 389 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 390 * auto increment end seqno. 391 */ 392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 393 { 394 skb->ip_summed = CHECKSUM_PARTIAL; 395 396 TCP_SKB_CB(skb)->tcp_flags = flags; 397 TCP_SKB_CB(skb)->sacked = 0; 398 399 tcp_skb_pcount_set(skb, 1); 400 401 TCP_SKB_CB(skb)->seq = seq; 402 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 403 seq++; 404 TCP_SKB_CB(skb)->end_seq = seq; 405 } 406 407 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 408 { 409 return tp->snd_una != tp->snd_up; 410 } 411 412 #define OPTION_SACK_ADVERTISE (1 << 0) 413 #define OPTION_TS (1 << 1) 414 #define OPTION_MD5 (1 << 2) 415 #define OPTION_WSCALE (1 << 3) 416 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 417 #define OPTION_SMC (1 << 9) 418 #define OPTION_MPTCP (1 << 10) 419 420 static void smc_options_write(__be32 *ptr, u16 *options) 421 { 422 #if IS_ENABLED(CONFIG_SMC) 423 if (static_branch_unlikely(&tcp_have_smc)) { 424 if (unlikely(OPTION_SMC & *options)) { 425 *ptr++ = htonl((TCPOPT_NOP << 24) | 426 (TCPOPT_NOP << 16) | 427 (TCPOPT_EXP << 8) | 428 (TCPOLEN_EXP_SMC_BASE)); 429 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 430 } 431 } 432 #endif 433 } 434 435 struct tcp_out_options { 436 u16 options; /* bit field of OPTION_* */ 437 u16 mss; /* 0 to disable */ 438 u8 ws; /* window scale, 0 to disable */ 439 u8 num_sack_blocks; /* number of SACK blocks to include */ 440 u8 hash_size; /* bytes in hash_location */ 441 __u8 *hash_location; /* temporary pointer, overloaded */ 442 __u32 tsval, tsecr; /* need to include OPTION_TS */ 443 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 444 struct mptcp_out_options mptcp; 445 }; 446 447 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts) 448 { 449 #if IS_ENABLED(CONFIG_MPTCP) 450 if (unlikely(OPTION_MPTCP & opts->options)) 451 mptcp_write_options(ptr, &opts->mptcp); 452 #endif 453 } 454 455 /* Write previously computed TCP options to the packet. 456 * 457 * Beware: Something in the Internet is very sensitive to the ordering of 458 * TCP options, we learned this through the hard way, so be careful here. 459 * Luckily we can at least blame others for their non-compliance but from 460 * inter-operability perspective it seems that we're somewhat stuck with 461 * the ordering which we have been using if we want to keep working with 462 * those broken things (not that it currently hurts anybody as there isn't 463 * particular reason why the ordering would need to be changed). 464 * 465 * At least SACK_PERM as the first option is known to lead to a disaster 466 * (but it may well be that other scenarios fail similarly). 467 */ 468 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 469 struct tcp_out_options *opts) 470 { 471 u16 options = opts->options; /* mungable copy */ 472 473 if (unlikely(OPTION_MD5 & options)) { 474 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 475 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 476 /* overload cookie hash location */ 477 opts->hash_location = (__u8 *)ptr; 478 ptr += 4; 479 } 480 481 if (unlikely(opts->mss)) { 482 *ptr++ = htonl((TCPOPT_MSS << 24) | 483 (TCPOLEN_MSS << 16) | 484 opts->mss); 485 } 486 487 if (likely(OPTION_TS & options)) { 488 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 489 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 490 (TCPOLEN_SACK_PERM << 16) | 491 (TCPOPT_TIMESTAMP << 8) | 492 TCPOLEN_TIMESTAMP); 493 options &= ~OPTION_SACK_ADVERTISE; 494 } else { 495 *ptr++ = htonl((TCPOPT_NOP << 24) | 496 (TCPOPT_NOP << 16) | 497 (TCPOPT_TIMESTAMP << 8) | 498 TCPOLEN_TIMESTAMP); 499 } 500 *ptr++ = htonl(opts->tsval); 501 *ptr++ = htonl(opts->tsecr); 502 } 503 504 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 505 *ptr++ = htonl((TCPOPT_NOP << 24) | 506 (TCPOPT_NOP << 16) | 507 (TCPOPT_SACK_PERM << 8) | 508 TCPOLEN_SACK_PERM); 509 } 510 511 if (unlikely(OPTION_WSCALE & options)) { 512 *ptr++ = htonl((TCPOPT_NOP << 24) | 513 (TCPOPT_WINDOW << 16) | 514 (TCPOLEN_WINDOW << 8) | 515 opts->ws); 516 } 517 518 if (unlikely(opts->num_sack_blocks)) { 519 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 520 tp->duplicate_sack : tp->selective_acks; 521 int this_sack; 522 523 *ptr++ = htonl((TCPOPT_NOP << 24) | 524 (TCPOPT_NOP << 16) | 525 (TCPOPT_SACK << 8) | 526 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 527 TCPOLEN_SACK_PERBLOCK))); 528 529 for (this_sack = 0; this_sack < opts->num_sack_blocks; 530 ++this_sack) { 531 *ptr++ = htonl(sp[this_sack].start_seq); 532 *ptr++ = htonl(sp[this_sack].end_seq); 533 } 534 535 tp->rx_opt.dsack = 0; 536 } 537 538 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 539 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 540 u8 *p = (u8 *)ptr; 541 u32 len; /* Fast Open option length */ 542 543 if (foc->exp) { 544 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 545 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 546 TCPOPT_FASTOPEN_MAGIC); 547 p += TCPOLEN_EXP_FASTOPEN_BASE; 548 } else { 549 len = TCPOLEN_FASTOPEN_BASE + foc->len; 550 *p++ = TCPOPT_FASTOPEN; 551 *p++ = len; 552 } 553 554 memcpy(p, foc->val, foc->len); 555 if ((len & 3) == 2) { 556 p[foc->len] = TCPOPT_NOP; 557 p[foc->len + 1] = TCPOPT_NOP; 558 } 559 ptr += (len + 3) >> 2; 560 } 561 562 smc_options_write(ptr, &options); 563 564 mptcp_options_write(ptr, opts); 565 } 566 567 static void smc_set_option(const struct tcp_sock *tp, 568 struct tcp_out_options *opts, 569 unsigned int *remaining) 570 { 571 #if IS_ENABLED(CONFIG_SMC) 572 if (static_branch_unlikely(&tcp_have_smc)) { 573 if (tp->syn_smc) { 574 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 575 opts->options |= OPTION_SMC; 576 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 577 } 578 } 579 } 580 #endif 581 } 582 583 static void smc_set_option_cond(const struct tcp_sock *tp, 584 const struct inet_request_sock *ireq, 585 struct tcp_out_options *opts, 586 unsigned int *remaining) 587 { 588 #if IS_ENABLED(CONFIG_SMC) 589 if (static_branch_unlikely(&tcp_have_smc)) { 590 if (tp->syn_smc && ireq->smc_ok) { 591 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 592 opts->options |= OPTION_SMC; 593 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 594 } 595 } 596 } 597 #endif 598 } 599 600 static void mptcp_set_option_cond(const struct request_sock *req, 601 struct tcp_out_options *opts, 602 unsigned int *remaining) 603 { 604 if (rsk_is_mptcp(req)) { 605 unsigned int size; 606 607 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 608 if (*remaining >= size) { 609 opts->options |= OPTION_MPTCP; 610 *remaining -= size; 611 } 612 } 613 } 614 } 615 616 /* Compute TCP options for SYN packets. This is not the final 617 * network wire format yet. 618 */ 619 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 620 struct tcp_out_options *opts, 621 struct tcp_md5sig_key **md5) 622 { 623 struct tcp_sock *tp = tcp_sk(sk); 624 unsigned int remaining = MAX_TCP_OPTION_SPACE; 625 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 626 627 *md5 = NULL; 628 #ifdef CONFIG_TCP_MD5SIG 629 if (static_branch_unlikely(&tcp_md5_needed) && 630 rcu_access_pointer(tp->md5sig_info)) { 631 *md5 = tp->af_specific->md5_lookup(sk, sk); 632 if (*md5) { 633 opts->options |= OPTION_MD5; 634 remaining -= TCPOLEN_MD5SIG_ALIGNED; 635 } 636 } 637 #endif 638 639 /* We always get an MSS option. The option bytes which will be seen in 640 * normal data packets should timestamps be used, must be in the MSS 641 * advertised. But we subtract them from tp->mss_cache so that 642 * calculations in tcp_sendmsg are simpler etc. So account for this 643 * fact here if necessary. If we don't do this correctly, as a 644 * receiver we won't recognize data packets as being full sized when we 645 * should, and thus we won't abide by the delayed ACK rules correctly. 646 * SACKs don't matter, we never delay an ACK when we have any of those 647 * going out. */ 648 opts->mss = tcp_advertise_mss(sk); 649 remaining -= TCPOLEN_MSS_ALIGNED; 650 651 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 652 opts->options |= OPTION_TS; 653 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 654 opts->tsecr = tp->rx_opt.ts_recent; 655 remaining -= TCPOLEN_TSTAMP_ALIGNED; 656 } 657 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 658 opts->ws = tp->rx_opt.rcv_wscale; 659 opts->options |= OPTION_WSCALE; 660 remaining -= TCPOLEN_WSCALE_ALIGNED; 661 } 662 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 663 opts->options |= OPTION_SACK_ADVERTISE; 664 if (unlikely(!(OPTION_TS & opts->options))) 665 remaining -= TCPOLEN_SACKPERM_ALIGNED; 666 } 667 668 if (fastopen && fastopen->cookie.len >= 0) { 669 u32 need = fastopen->cookie.len; 670 671 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 672 TCPOLEN_FASTOPEN_BASE; 673 need = (need + 3) & ~3U; /* Align to 32 bits */ 674 if (remaining >= need) { 675 opts->options |= OPTION_FAST_OPEN_COOKIE; 676 opts->fastopen_cookie = &fastopen->cookie; 677 remaining -= need; 678 tp->syn_fastopen = 1; 679 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 680 } 681 } 682 683 smc_set_option(tp, opts, &remaining); 684 685 if (sk_is_mptcp(sk)) { 686 unsigned int size; 687 688 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 689 opts->options |= OPTION_MPTCP; 690 remaining -= size; 691 } 692 } 693 694 return MAX_TCP_OPTION_SPACE - remaining; 695 } 696 697 /* Set up TCP options for SYN-ACKs. */ 698 static unsigned int tcp_synack_options(const struct sock *sk, 699 struct request_sock *req, 700 unsigned int mss, struct sk_buff *skb, 701 struct tcp_out_options *opts, 702 const struct tcp_md5sig_key *md5, 703 struct tcp_fastopen_cookie *foc) 704 { 705 struct inet_request_sock *ireq = inet_rsk(req); 706 unsigned int remaining = MAX_TCP_OPTION_SPACE; 707 708 #ifdef CONFIG_TCP_MD5SIG 709 if (md5) { 710 opts->options |= OPTION_MD5; 711 remaining -= TCPOLEN_MD5SIG_ALIGNED; 712 713 /* We can't fit any SACK blocks in a packet with MD5 + TS 714 * options. There was discussion about disabling SACK 715 * rather than TS in order to fit in better with old, 716 * buggy kernels, but that was deemed to be unnecessary. 717 */ 718 ireq->tstamp_ok &= !ireq->sack_ok; 719 } 720 #endif 721 722 /* We always send an MSS option. */ 723 opts->mss = mss; 724 remaining -= TCPOLEN_MSS_ALIGNED; 725 726 if (likely(ireq->wscale_ok)) { 727 opts->ws = ireq->rcv_wscale; 728 opts->options |= OPTION_WSCALE; 729 remaining -= TCPOLEN_WSCALE_ALIGNED; 730 } 731 if (likely(ireq->tstamp_ok)) { 732 opts->options |= OPTION_TS; 733 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 734 opts->tsecr = req->ts_recent; 735 remaining -= TCPOLEN_TSTAMP_ALIGNED; 736 } 737 if (likely(ireq->sack_ok)) { 738 opts->options |= OPTION_SACK_ADVERTISE; 739 if (unlikely(!ireq->tstamp_ok)) 740 remaining -= TCPOLEN_SACKPERM_ALIGNED; 741 } 742 if (foc != NULL && foc->len >= 0) { 743 u32 need = foc->len; 744 745 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 746 TCPOLEN_FASTOPEN_BASE; 747 need = (need + 3) & ~3U; /* Align to 32 bits */ 748 if (remaining >= need) { 749 opts->options |= OPTION_FAST_OPEN_COOKIE; 750 opts->fastopen_cookie = foc; 751 remaining -= need; 752 } 753 } 754 755 mptcp_set_option_cond(req, opts, &remaining); 756 757 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 758 759 return MAX_TCP_OPTION_SPACE - remaining; 760 } 761 762 /* Compute TCP options for ESTABLISHED sockets. This is not the 763 * final wire format yet. 764 */ 765 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 766 struct tcp_out_options *opts, 767 struct tcp_md5sig_key **md5) 768 { 769 struct tcp_sock *tp = tcp_sk(sk); 770 unsigned int size = 0; 771 unsigned int eff_sacks; 772 773 opts->options = 0; 774 775 *md5 = NULL; 776 #ifdef CONFIG_TCP_MD5SIG 777 if (static_branch_unlikely(&tcp_md5_needed) && 778 rcu_access_pointer(tp->md5sig_info)) { 779 *md5 = tp->af_specific->md5_lookup(sk, sk); 780 if (*md5) { 781 opts->options |= OPTION_MD5; 782 size += TCPOLEN_MD5SIG_ALIGNED; 783 } 784 } 785 #endif 786 787 if (likely(tp->rx_opt.tstamp_ok)) { 788 opts->options |= OPTION_TS; 789 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 790 opts->tsecr = tp->rx_opt.ts_recent; 791 size += TCPOLEN_TSTAMP_ALIGNED; 792 } 793 794 /* MPTCP options have precedence over SACK for the limited TCP 795 * option space because a MPTCP connection would be forced to 796 * fall back to regular TCP if a required multipath option is 797 * missing. SACK still gets a chance to use whatever space is 798 * left. 799 */ 800 if (sk_is_mptcp(sk)) { 801 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 802 unsigned int opt_size = 0; 803 804 if (mptcp_established_options(sk, skb, &opt_size, remaining, 805 &opts->mptcp)) { 806 opts->options |= OPTION_MPTCP; 807 size += opt_size; 808 } 809 } 810 811 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 812 if (unlikely(eff_sacks)) { 813 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 814 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 815 TCPOLEN_SACK_PERBLOCK)) 816 return size; 817 818 opts->num_sack_blocks = 819 min_t(unsigned int, eff_sacks, 820 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 821 TCPOLEN_SACK_PERBLOCK); 822 823 size += TCPOLEN_SACK_BASE_ALIGNED + 824 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 825 } 826 827 return size; 828 } 829 830 831 /* TCP SMALL QUEUES (TSQ) 832 * 833 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 834 * to reduce RTT and bufferbloat. 835 * We do this using a special skb destructor (tcp_wfree). 836 * 837 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 838 * needs to be reallocated in a driver. 839 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 840 * 841 * Since transmit from skb destructor is forbidden, we use a tasklet 842 * to process all sockets that eventually need to send more skbs. 843 * We use one tasklet per cpu, with its own queue of sockets. 844 */ 845 struct tsq_tasklet { 846 struct tasklet_struct tasklet; 847 struct list_head head; /* queue of tcp sockets */ 848 }; 849 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 850 851 static void tcp_tsq_write(struct sock *sk) 852 { 853 if ((1 << sk->sk_state) & 854 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 855 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 856 struct tcp_sock *tp = tcp_sk(sk); 857 858 if (tp->lost_out > tp->retrans_out && 859 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 860 tcp_mstamp_refresh(tp); 861 tcp_xmit_retransmit_queue(sk); 862 } 863 864 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 865 0, GFP_ATOMIC); 866 } 867 } 868 869 static void tcp_tsq_handler(struct sock *sk) 870 { 871 bh_lock_sock(sk); 872 if (!sock_owned_by_user(sk)) 873 tcp_tsq_write(sk); 874 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 875 sock_hold(sk); 876 bh_unlock_sock(sk); 877 } 878 /* 879 * One tasklet per cpu tries to send more skbs. 880 * We run in tasklet context but need to disable irqs when 881 * transferring tsq->head because tcp_wfree() might 882 * interrupt us (non NAPI drivers) 883 */ 884 static void tcp_tasklet_func(unsigned long data) 885 { 886 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 887 LIST_HEAD(list); 888 unsigned long flags; 889 struct list_head *q, *n; 890 struct tcp_sock *tp; 891 struct sock *sk; 892 893 local_irq_save(flags); 894 list_splice_init(&tsq->head, &list); 895 local_irq_restore(flags); 896 897 list_for_each_safe(q, n, &list) { 898 tp = list_entry(q, struct tcp_sock, tsq_node); 899 list_del(&tp->tsq_node); 900 901 sk = (struct sock *)tp; 902 smp_mb__before_atomic(); 903 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 904 905 tcp_tsq_handler(sk); 906 sk_free(sk); 907 } 908 } 909 910 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 911 TCPF_WRITE_TIMER_DEFERRED | \ 912 TCPF_DELACK_TIMER_DEFERRED | \ 913 TCPF_MTU_REDUCED_DEFERRED) 914 /** 915 * tcp_release_cb - tcp release_sock() callback 916 * @sk: socket 917 * 918 * called from release_sock() to perform protocol dependent 919 * actions before socket release. 920 */ 921 void tcp_release_cb(struct sock *sk) 922 { 923 unsigned long flags, nflags; 924 925 /* perform an atomic operation only if at least one flag is set */ 926 do { 927 flags = sk->sk_tsq_flags; 928 if (!(flags & TCP_DEFERRED_ALL)) 929 return; 930 nflags = flags & ~TCP_DEFERRED_ALL; 931 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 932 933 if (flags & TCPF_TSQ_DEFERRED) { 934 tcp_tsq_write(sk); 935 __sock_put(sk); 936 } 937 /* Here begins the tricky part : 938 * We are called from release_sock() with : 939 * 1) BH disabled 940 * 2) sk_lock.slock spinlock held 941 * 3) socket owned by us (sk->sk_lock.owned == 1) 942 * 943 * But following code is meant to be called from BH handlers, 944 * so we should keep BH disabled, but early release socket ownership 945 */ 946 sock_release_ownership(sk); 947 948 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 949 tcp_write_timer_handler(sk); 950 __sock_put(sk); 951 } 952 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 953 tcp_delack_timer_handler(sk); 954 __sock_put(sk); 955 } 956 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 957 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 958 __sock_put(sk); 959 } 960 } 961 EXPORT_SYMBOL(tcp_release_cb); 962 963 void __init tcp_tasklet_init(void) 964 { 965 int i; 966 967 for_each_possible_cpu(i) { 968 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 969 970 INIT_LIST_HEAD(&tsq->head); 971 tasklet_init(&tsq->tasklet, 972 tcp_tasklet_func, 973 (unsigned long)tsq); 974 } 975 } 976 977 /* 978 * Write buffer destructor automatically called from kfree_skb. 979 * We can't xmit new skbs from this context, as we might already 980 * hold qdisc lock. 981 */ 982 void tcp_wfree(struct sk_buff *skb) 983 { 984 struct sock *sk = skb->sk; 985 struct tcp_sock *tp = tcp_sk(sk); 986 unsigned long flags, nval, oval; 987 988 /* Keep one reference on sk_wmem_alloc. 989 * Will be released by sk_free() from here or tcp_tasklet_func() 990 */ 991 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 992 993 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 994 * Wait until our queues (qdisc + devices) are drained. 995 * This gives : 996 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 997 * - chance for incoming ACK (processed by another cpu maybe) 998 * to migrate this flow (skb->ooo_okay will be eventually set) 999 */ 1000 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1001 goto out; 1002 1003 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 1004 struct tsq_tasklet *tsq; 1005 bool empty; 1006 1007 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1008 goto out; 1009 1010 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1011 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 1012 if (nval != oval) 1013 continue; 1014 1015 /* queue this socket to tasklet queue */ 1016 local_irq_save(flags); 1017 tsq = this_cpu_ptr(&tsq_tasklet); 1018 empty = list_empty(&tsq->head); 1019 list_add(&tp->tsq_node, &tsq->head); 1020 if (empty) 1021 tasklet_schedule(&tsq->tasklet); 1022 local_irq_restore(flags); 1023 return; 1024 } 1025 out: 1026 sk_free(sk); 1027 } 1028 1029 /* Note: Called under soft irq. 1030 * We can call TCP stack right away, unless socket is owned by user. 1031 */ 1032 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1033 { 1034 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1035 struct sock *sk = (struct sock *)tp; 1036 1037 tcp_tsq_handler(sk); 1038 sock_put(sk); 1039 1040 return HRTIMER_NORESTART; 1041 } 1042 1043 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1044 u64 prior_wstamp) 1045 { 1046 struct tcp_sock *tp = tcp_sk(sk); 1047 1048 if (sk->sk_pacing_status != SK_PACING_NONE) { 1049 unsigned long rate = sk->sk_pacing_rate; 1050 1051 /* Original sch_fq does not pace first 10 MSS 1052 * Note that tp->data_segs_out overflows after 2^32 packets, 1053 * this is a minor annoyance. 1054 */ 1055 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1056 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1057 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1058 1059 /* take into account OS jitter */ 1060 len_ns -= min_t(u64, len_ns / 2, credit); 1061 tp->tcp_wstamp_ns += len_ns; 1062 } 1063 } 1064 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1065 } 1066 1067 /* This routine actually transmits TCP packets queued in by 1068 * tcp_do_sendmsg(). This is used by both the initial 1069 * transmission and possible later retransmissions. 1070 * All SKB's seen here are completely headerless. It is our 1071 * job to build the TCP header, and pass the packet down to 1072 * IP so it can do the same plus pass the packet off to the 1073 * device. 1074 * 1075 * We are working here with either a clone of the original 1076 * SKB, or a fresh unique copy made by the retransmit engine. 1077 */ 1078 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1079 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1080 { 1081 const struct inet_connection_sock *icsk = inet_csk(sk); 1082 struct inet_sock *inet; 1083 struct tcp_sock *tp; 1084 struct tcp_skb_cb *tcb; 1085 struct tcp_out_options opts; 1086 unsigned int tcp_options_size, tcp_header_size; 1087 struct sk_buff *oskb = NULL; 1088 struct tcp_md5sig_key *md5; 1089 struct tcphdr *th; 1090 u64 prior_wstamp; 1091 int err; 1092 1093 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1094 tp = tcp_sk(sk); 1095 prior_wstamp = tp->tcp_wstamp_ns; 1096 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1097 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1098 if (clone_it) { 1099 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1100 - tp->snd_una; 1101 oskb = skb; 1102 1103 tcp_skb_tsorted_save(oskb) { 1104 if (unlikely(skb_cloned(oskb))) 1105 skb = pskb_copy(oskb, gfp_mask); 1106 else 1107 skb = skb_clone(oskb, gfp_mask); 1108 } tcp_skb_tsorted_restore(oskb); 1109 1110 if (unlikely(!skb)) 1111 return -ENOBUFS; 1112 } 1113 1114 inet = inet_sk(sk); 1115 tcb = TCP_SKB_CB(skb); 1116 memset(&opts, 0, sizeof(opts)); 1117 1118 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1119 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1120 } else { 1121 tcp_options_size = tcp_established_options(sk, skb, &opts, 1122 &md5); 1123 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1124 * at receiver : This slightly improve GRO performance. 1125 * Note that we do not force the PSH flag for non GSO packets, 1126 * because they might be sent under high congestion events, 1127 * and in this case it is better to delay the delivery of 1-MSS 1128 * packets and thus the corresponding ACK packet that would 1129 * release the following packet. 1130 */ 1131 if (tcp_skb_pcount(skb) > 1) 1132 tcb->tcp_flags |= TCPHDR_PSH; 1133 } 1134 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1135 1136 /* if no packet is in qdisc/device queue, then allow XPS to select 1137 * another queue. We can be called from tcp_tsq_handler() 1138 * which holds one reference to sk. 1139 * 1140 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1141 * One way to get this would be to set skb->truesize = 2 on them. 1142 */ 1143 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1144 1145 /* If we had to use memory reserve to allocate this skb, 1146 * this might cause drops if packet is looped back : 1147 * Other socket might not have SOCK_MEMALLOC. 1148 * Packets not looped back do not care about pfmemalloc. 1149 */ 1150 skb->pfmemalloc = 0; 1151 1152 skb_push(skb, tcp_header_size); 1153 skb_reset_transport_header(skb); 1154 1155 skb_orphan(skb); 1156 skb->sk = sk; 1157 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1158 skb_set_hash_from_sk(skb, sk); 1159 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1160 1161 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1162 1163 /* Build TCP header and checksum it. */ 1164 th = (struct tcphdr *)skb->data; 1165 th->source = inet->inet_sport; 1166 th->dest = inet->inet_dport; 1167 th->seq = htonl(tcb->seq); 1168 th->ack_seq = htonl(rcv_nxt); 1169 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1170 tcb->tcp_flags); 1171 1172 th->check = 0; 1173 th->urg_ptr = 0; 1174 1175 /* The urg_mode check is necessary during a below snd_una win probe */ 1176 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1177 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1178 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1179 th->urg = 1; 1180 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1181 th->urg_ptr = htons(0xFFFF); 1182 th->urg = 1; 1183 } 1184 } 1185 1186 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1187 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1188 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1189 th->window = htons(tcp_select_window(sk)); 1190 tcp_ecn_send(sk, skb, th, tcp_header_size); 1191 } else { 1192 /* RFC1323: The window in SYN & SYN/ACK segments 1193 * is never scaled. 1194 */ 1195 th->window = htons(min(tp->rcv_wnd, 65535U)); 1196 } 1197 #ifdef CONFIG_TCP_MD5SIG 1198 /* Calculate the MD5 hash, as we have all we need now */ 1199 if (md5) { 1200 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1201 tp->af_specific->calc_md5_hash(opts.hash_location, 1202 md5, sk, skb); 1203 } 1204 #endif 1205 1206 icsk->icsk_af_ops->send_check(sk, skb); 1207 1208 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1209 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1210 1211 if (skb->len != tcp_header_size) { 1212 tcp_event_data_sent(tp, sk); 1213 tp->data_segs_out += tcp_skb_pcount(skb); 1214 tp->bytes_sent += skb->len - tcp_header_size; 1215 } 1216 1217 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1218 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1219 tcp_skb_pcount(skb)); 1220 1221 tp->segs_out += tcp_skb_pcount(skb); 1222 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1223 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1224 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1225 1226 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1227 1228 /* Cleanup our debris for IP stacks */ 1229 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1230 sizeof(struct inet6_skb_parm))); 1231 1232 tcp_add_tx_delay(skb, tp); 1233 1234 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1235 1236 if (unlikely(err > 0)) { 1237 tcp_enter_cwr(sk); 1238 err = net_xmit_eval(err); 1239 } 1240 if (!err && oskb) { 1241 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1242 tcp_rate_skb_sent(sk, oskb); 1243 } 1244 return err; 1245 } 1246 1247 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1248 gfp_t gfp_mask) 1249 { 1250 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1251 tcp_sk(sk)->rcv_nxt); 1252 } 1253 1254 /* This routine just queues the buffer for sending. 1255 * 1256 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1257 * otherwise socket can stall. 1258 */ 1259 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1260 { 1261 struct tcp_sock *tp = tcp_sk(sk); 1262 1263 /* Advance write_seq and place onto the write_queue. */ 1264 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1265 __skb_header_release(skb); 1266 tcp_add_write_queue_tail(sk, skb); 1267 sk_wmem_queued_add(sk, skb->truesize); 1268 sk_mem_charge(sk, skb->truesize); 1269 } 1270 1271 /* Initialize TSO segments for a packet. */ 1272 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1273 { 1274 if (skb->len <= mss_now) { 1275 /* Avoid the costly divide in the normal 1276 * non-TSO case. 1277 */ 1278 tcp_skb_pcount_set(skb, 1); 1279 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1280 } else { 1281 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1282 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1283 } 1284 } 1285 1286 /* Pcount in the middle of the write queue got changed, we need to do various 1287 * tweaks to fix counters 1288 */ 1289 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1290 { 1291 struct tcp_sock *tp = tcp_sk(sk); 1292 1293 tp->packets_out -= decr; 1294 1295 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1296 tp->sacked_out -= decr; 1297 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1298 tp->retrans_out -= decr; 1299 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1300 tp->lost_out -= decr; 1301 1302 /* Reno case is special. Sigh... */ 1303 if (tcp_is_reno(tp) && decr > 0) 1304 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1305 1306 if (tp->lost_skb_hint && 1307 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1308 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1309 tp->lost_cnt_hint -= decr; 1310 1311 tcp_verify_left_out(tp); 1312 } 1313 1314 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1315 { 1316 return TCP_SKB_CB(skb)->txstamp_ack || 1317 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1318 } 1319 1320 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1321 { 1322 struct skb_shared_info *shinfo = skb_shinfo(skb); 1323 1324 if (unlikely(tcp_has_tx_tstamp(skb)) && 1325 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1326 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1327 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1328 1329 shinfo->tx_flags &= ~tsflags; 1330 shinfo2->tx_flags |= tsflags; 1331 swap(shinfo->tskey, shinfo2->tskey); 1332 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1333 TCP_SKB_CB(skb)->txstamp_ack = 0; 1334 } 1335 } 1336 1337 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1338 { 1339 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1340 TCP_SKB_CB(skb)->eor = 0; 1341 } 1342 1343 /* Insert buff after skb on the write or rtx queue of sk. */ 1344 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1345 struct sk_buff *buff, 1346 struct sock *sk, 1347 enum tcp_queue tcp_queue) 1348 { 1349 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1350 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1351 else 1352 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1353 } 1354 1355 /* Function to create two new TCP segments. Shrinks the given segment 1356 * to the specified size and appends a new segment with the rest of the 1357 * packet to the list. This won't be called frequently, I hope. 1358 * Remember, these are still headerless SKBs at this point. 1359 */ 1360 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1361 struct sk_buff *skb, u32 len, 1362 unsigned int mss_now, gfp_t gfp) 1363 { 1364 struct tcp_sock *tp = tcp_sk(sk); 1365 struct sk_buff *buff; 1366 int nsize, old_factor; 1367 long limit; 1368 int nlen; 1369 u8 flags; 1370 1371 if (WARN_ON(len > skb->len)) 1372 return -EINVAL; 1373 1374 nsize = skb_headlen(skb) - len; 1375 if (nsize < 0) 1376 nsize = 0; 1377 1378 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1379 * We need some allowance to not penalize applications setting small 1380 * SO_SNDBUF values. 1381 * Also allow first and last skb in retransmit queue to be split. 1382 */ 1383 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE); 1384 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1385 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1386 skb != tcp_rtx_queue_head(sk) && 1387 skb != tcp_rtx_queue_tail(sk))) { 1388 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1389 return -ENOMEM; 1390 } 1391 1392 if (skb_unclone(skb, gfp)) 1393 return -ENOMEM; 1394 1395 /* Get a new skb... force flag on. */ 1396 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1397 if (!buff) 1398 return -ENOMEM; /* We'll just try again later. */ 1399 skb_copy_decrypted(buff, skb); 1400 1401 sk_wmem_queued_add(sk, buff->truesize); 1402 sk_mem_charge(sk, buff->truesize); 1403 nlen = skb->len - len - nsize; 1404 buff->truesize += nlen; 1405 skb->truesize -= nlen; 1406 1407 /* Correct the sequence numbers. */ 1408 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1409 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1410 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1411 1412 /* PSH and FIN should only be set in the second packet. */ 1413 flags = TCP_SKB_CB(skb)->tcp_flags; 1414 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1415 TCP_SKB_CB(buff)->tcp_flags = flags; 1416 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1417 tcp_skb_fragment_eor(skb, buff); 1418 1419 skb_split(skb, buff, len); 1420 1421 buff->ip_summed = CHECKSUM_PARTIAL; 1422 1423 buff->tstamp = skb->tstamp; 1424 tcp_fragment_tstamp(skb, buff); 1425 1426 old_factor = tcp_skb_pcount(skb); 1427 1428 /* Fix up tso_factor for both original and new SKB. */ 1429 tcp_set_skb_tso_segs(skb, mss_now); 1430 tcp_set_skb_tso_segs(buff, mss_now); 1431 1432 /* Update delivered info for the new segment */ 1433 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1434 1435 /* If this packet has been sent out already, we must 1436 * adjust the various packet counters. 1437 */ 1438 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1439 int diff = old_factor - tcp_skb_pcount(skb) - 1440 tcp_skb_pcount(buff); 1441 1442 if (diff) 1443 tcp_adjust_pcount(sk, skb, diff); 1444 } 1445 1446 /* Link BUFF into the send queue. */ 1447 __skb_header_release(buff); 1448 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1449 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1450 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1451 1452 return 0; 1453 } 1454 1455 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1456 * data is not copied, but immediately discarded. 1457 */ 1458 static int __pskb_trim_head(struct sk_buff *skb, int len) 1459 { 1460 struct skb_shared_info *shinfo; 1461 int i, k, eat; 1462 1463 eat = min_t(int, len, skb_headlen(skb)); 1464 if (eat) { 1465 __skb_pull(skb, eat); 1466 len -= eat; 1467 if (!len) 1468 return 0; 1469 } 1470 eat = len; 1471 k = 0; 1472 shinfo = skb_shinfo(skb); 1473 for (i = 0; i < shinfo->nr_frags; i++) { 1474 int size = skb_frag_size(&shinfo->frags[i]); 1475 1476 if (size <= eat) { 1477 skb_frag_unref(skb, i); 1478 eat -= size; 1479 } else { 1480 shinfo->frags[k] = shinfo->frags[i]; 1481 if (eat) { 1482 skb_frag_off_add(&shinfo->frags[k], eat); 1483 skb_frag_size_sub(&shinfo->frags[k], eat); 1484 eat = 0; 1485 } 1486 k++; 1487 } 1488 } 1489 shinfo->nr_frags = k; 1490 1491 skb->data_len -= len; 1492 skb->len = skb->data_len; 1493 return len; 1494 } 1495 1496 /* Remove acked data from a packet in the transmit queue. */ 1497 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1498 { 1499 u32 delta_truesize; 1500 1501 if (skb_unclone(skb, GFP_ATOMIC)) 1502 return -ENOMEM; 1503 1504 delta_truesize = __pskb_trim_head(skb, len); 1505 1506 TCP_SKB_CB(skb)->seq += len; 1507 skb->ip_summed = CHECKSUM_PARTIAL; 1508 1509 if (delta_truesize) { 1510 skb->truesize -= delta_truesize; 1511 sk_wmem_queued_add(sk, -delta_truesize); 1512 sk_mem_uncharge(sk, delta_truesize); 1513 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1514 } 1515 1516 /* Any change of skb->len requires recalculation of tso factor. */ 1517 if (tcp_skb_pcount(skb) > 1) 1518 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1519 1520 return 0; 1521 } 1522 1523 /* Calculate MSS not accounting any TCP options. */ 1524 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1525 { 1526 const struct tcp_sock *tp = tcp_sk(sk); 1527 const struct inet_connection_sock *icsk = inet_csk(sk); 1528 int mss_now; 1529 1530 /* Calculate base mss without TCP options: 1531 It is MMS_S - sizeof(tcphdr) of rfc1122 1532 */ 1533 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1534 1535 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1536 if (icsk->icsk_af_ops->net_frag_header_len) { 1537 const struct dst_entry *dst = __sk_dst_get(sk); 1538 1539 if (dst && dst_allfrag(dst)) 1540 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1541 } 1542 1543 /* Clamp it (mss_clamp does not include tcp options) */ 1544 if (mss_now > tp->rx_opt.mss_clamp) 1545 mss_now = tp->rx_opt.mss_clamp; 1546 1547 /* Now subtract optional transport overhead */ 1548 mss_now -= icsk->icsk_ext_hdr_len; 1549 1550 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1551 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss); 1552 return mss_now; 1553 } 1554 1555 /* Calculate MSS. Not accounting for SACKs here. */ 1556 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1557 { 1558 /* Subtract TCP options size, not including SACKs */ 1559 return __tcp_mtu_to_mss(sk, pmtu) - 1560 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1561 } 1562 1563 /* Inverse of above */ 1564 int tcp_mss_to_mtu(struct sock *sk, int mss) 1565 { 1566 const struct tcp_sock *tp = tcp_sk(sk); 1567 const struct inet_connection_sock *icsk = inet_csk(sk); 1568 int mtu; 1569 1570 mtu = mss + 1571 tp->tcp_header_len + 1572 icsk->icsk_ext_hdr_len + 1573 icsk->icsk_af_ops->net_header_len; 1574 1575 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1576 if (icsk->icsk_af_ops->net_frag_header_len) { 1577 const struct dst_entry *dst = __sk_dst_get(sk); 1578 1579 if (dst && dst_allfrag(dst)) 1580 mtu += icsk->icsk_af_ops->net_frag_header_len; 1581 } 1582 return mtu; 1583 } 1584 EXPORT_SYMBOL(tcp_mss_to_mtu); 1585 1586 /* MTU probing init per socket */ 1587 void tcp_mtup_init(struct sock *sk) 1588 { 1589 struct tcp_sock *tp = tcp_sk(sk); 1590 struct inet_connection_sock *icsk = inet_csk(sk); 1591 struct net *net = sock_net(sk); 1592 1593 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1594 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1595 icsk->icsk_af_ops->net_header_len; 1596 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1597 icsk->icsk_mtup.probe_size = 0; 1598 if (icsk->icsk_mtup.enabled) 1599 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1600 } 1601 EXPORT_SYMBOL(tcp_mtup_init); 1602 1603 /* This function synchronize snd mss to current pmtu/exthdr set. 1604 1605 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1606 for TCP options, but includes only bare TCP header. 1607 1608 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1609 It is minimum of user_mss and mss received with SYN. 1610 It also does not include TCP options. 1611 1612 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1613 1614 tp->mss_cache is current effective sending mss, including 1615 all tcp options except for SACKs. It is evaluated, 1616 taking into account current pmtu, but never exceeds 1617 tp->rx_opt.mss_clamp. 1618 1619 NOTE1. rfc1122 clearly states that advertised MSS 1620 DOES NOT include either tcp or ip options. 1621 1622 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1623 are READ ONLY outside this function. --ANK (980731) 1624 */ 1625 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1626 { 1627 struct tcp_sock *tp = tcp_sk(sk); 1628 struct inet_connection_sock *icsk = inet_csk(sk); 1629 int mss_now; 1630 1631 if (icsk->icsk_mtup.search_high > pmtu) 1632 icsk->icsk_mtup.search_high = pmtu; 1633 1634 mss_now = tcp_mtu_to_mss(sk, pmtu); 1635 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1636 1637 /* And store cached results */ 1638 icsk->icsk_pmtu_cookie = pmtu; 1639 if (icsk->icsk_mtup.enabled) 1640 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1641 tp->mss_cache = mss_now; 1642 1643 return mss_now; 1644 } 1645 EXPORT_SYMBOL(tcp_sync_mss); 1646 1647 /* Compute the current effective MSS, taking SACKs and IP options, 1648 * and even PMTU discovery events into account. 1649 */ 1650 unsigned int tcp_current_mss(struct sock *sk) 1651 { 1652 const struct tcp_sock *tp = tcp_sk(sk); 1653 const struct dst_entry *dst = __sk_dst_get(sk); 1654 u32 mss_now; 1655 unsigned int header_len; 1656 struct tcp_out_options opts; 1657 struct tcp_md5sig_key *md5; 1658 1659 mss_now = tp->mss_cache; 1660 1661 if (dst) { 1662 u32 mtu = dst_mtu(dst); 1663 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1664 mss_now = tcp_sync_mss(sk, mtu); 1665 } 1666 1667 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1668 sizeof(struct tcphdr); 1669 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1670 * some common options. If this is an odd packet (because we have SACK 1671 * blocks etc) then our calculated header_len will be different, and 1672 * we have to adjust mss_now correspondingly */ 1673 if (header_len != tp->tcp_header_len) { 1674 int delta = (int) header_len - tp->tcp_header_len; 1675 mss_now -= delta; 1676 } 1677 1678 return mss_now; 1679 } 1680 1681 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1682 * As additional protections, we do not touch cwnd in retransmission phases, 1683 * and if application hit its sndbuf limit recently. 1684 */ 1685 static void tcp_cwnd_application_limited(struct sock *sk) 1686 { 1687 struct tcp_sock *tp = tcp_sk(sk); 1688 1689 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1690 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1691 /* Limited by application or receiver window. */ 1692 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1693 u32 win_used = max(tp->snd_cwnd_used, init_win); 1694 if (win_used < tp->snd_cwnd) { 1695 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1696 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1697 } 1698 tp->snd_cwnd_used = 0; 1699 } 1700 tp->snd_cwnd_stamp = tcp_jiffies32; 1701 } 1702 1703 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1704 { 1705 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1706 struct tcp_sock *tp = tcp_sk(sk); 1707 1708 /* Track the maximum number of outstanding packets in each 1709 * window, and remember whether we were cwnd-limited then. 1710 */ 1711 if (!before(tp->snd_una, tp->max_packets_seq) || 1712 tp->packets_out > tp->max_packets_out) { 1713 tp->max_packets_out = tp->packets_out; 1714 tp->max_packets_seq = tp->snd_nxt; 1715 tp->is_cwnd_limited = is_cwnd_limited; 1716 } 1717 1718 if (tcp_is_cwnd_limited(sk)) { 1719 /* Network is feed fully. */ 1720 tp->snd_cwnd_used = 0; 1721 tp->snd_cwnd_stamp = tcp_jiffies32; 1722 } else { 1723 /* Network starves. */ 1724 if (tp->packets_out > tp->snd_cwnd_used) 1725 tp->snd_cwnd_used = tp->packets_out; 1726 1727 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1728 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1729 !ca_ops->cong_control) 1730 tcp_cwnd_application_limited(sk); 1731 1732 /* The following conditions together indicate the starvation 1733 * is caused by insufficient sender buffer: 1734 * 1) just sent some data (see tcp_write_xmit) 1735 * 2) not cwnd limited (this else condition) 1736 * 3) no more data to send (tcp_write_queue_empty()) 1737 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1738 */ 1739 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1740 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1741 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1742 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1743 } 1744 } 1745 1746 /* Minshall's variant of the Nagle send check. */ 1747 static bool tcp_minshall_check(const struct tcp_sock *tp) 1748 { 1749 return after(tp->snd_sml, tp->snd_una) && 1750 !after(tp->snd_sml, tp->snd_nxt); 1751 } 1752 1753 /* Update snd_sml if this skb is under mss 1754 * Note that a TSO packet might end with a sub-mss segment 1755 * The test is really : 1756 * if ((skb->len % mss) != 0) 1757 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1758 * But we can avoid doing the divide again given we already have 1759 * skb_pcount = skb->len / mss_now 1760 */ 1761 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1762 const struct sk_buff *skb) 1763 { 1764 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1765 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1766 } 1767 1768 /* Return false, if packet can be sent now without violation Nagle's rules: 1769 * 1. It is full sized. (provided by caller in %partial bool) 1770 * 2. Or it contains FIN. (already checked by caller) 1771 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1772 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1773 * With Minshall's modification: all sent small packets are ACKed. 1774 */ 1775 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1776 int nonagle) 1777 { 1778 return partial && 1779 ((nonagle & TCP_NAGLE_CORK) || 1780 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1781 } 1782 1783 /* Return how many segs we'd like on a TSO packet, 1784 * to send one TSO packet per ms 1785 */ 1786 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1787 int min_tso_segs) 1788 { 1789 u32 bytes, segs; 1790 1791 bytes = min_t(unsigned long, 1792 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift), 1793 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1794 1795 /* Goal is to send at least one packet per ms, 1796 * not one big TSO packet every 100 ms. 1797 * This preserves ACK clocking and is consistent 1798 * with tcp_tso_should_defer() heuristic. 1799 */ 1800 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1801 1802 return segs; 1803 } 1804 1805 /* Return the number of segments we want in the skb we are transmitting. 1806 * See if congestion control module wants to decide; otherwise, autosize. 1807 */ 1808 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1809 { 1810 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1811 u32 min_tso, tso_segs; 1812 1813 min_tso = ca_ops->min_tso_segs ? 1814 ca_ops->min_tso_segs(sk) : 1815 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1816 1817 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1818 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1819 } 1820 1821 /* Returns the portion of skb which can be sent right away */ 1822 static unsigned int tcp_mss_split_point(const struct sock *sk, 1823 const struct sk_buff *skb, 1824 unsigned int mss_now, 1825 unsigned int max_segs, 1826 int nonagle) 1827 { 1828 const struct tcp_sock *tp = tcp_sk(sk); 1829 u32 partial, needed, window, max_len; 1830 1831 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1832 max_len = mss_now * max_segs; 1833 1834 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1835 return max_len; 1836 1837 needed = min(skb->len, window); 1838 1839 if (max_len <= needed) 1840 return max_len; 1841 1842 partial = needed % mss_now; 1843 /* If last segment is not a full MSS, check if Nagle rules allow us 1844 * to include this last segment in this skb. 1845 * Otherwise, we'll split the skb at last MSS boundary 1846 */ 1847 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1848 return needed - partial; 1849 1850 return needed; 1851 } 1852 1853 /* Can at least one segment of SKB be sent right now, according to the 1854 * congestion window rules? If so, return how many segments are allowed. 1855 */ 1856 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1857 const struct sk_buff *skb) 1858 { 1859 u32 in_flight, cwnd, halfcwnd; 1860 1861 /* Don't be strict about the congestion window for the final FIN. */ 1862 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1863 tcp_skb_pcount(skb) == 1) 1864 return 1; 1865 1866 in_flight = tcp_packets_in_flight(tp); 1867 cwnd = tp->snd_cwnd; 1868 if (in_flight >= cwnd) 1869 return 0; 1870 1871 /* For better scheduling, ensure we have at least 1872 * 2 GSO packets in flight. 1873 */ 1874 halfcwnd = max(cwnd >> 1, 1U); 1875 return min(halfcwnd, cwnd - in_flight); 1876 } 1877 1878 /* Initialize TSO state of a skb. 1879 * This must be invoked the first time we consider transmitting 1880 * SKB onto the wire. 1881 */ 1882 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1883 { 1884 int tso_segs = tcp_skb_pcount(skb); 1885 1886 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1887 tcp_set_skb_tso_segs(skb, mss_now); 1888 tso_segs = tcp_skb_pcount(skb); 1889 } 1890 return tso_segs; 1891 } 1892 1893 1894 /* Return true if the Nagle test allows this packet to be 1895 * sent now. 1896 */ 1897 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1898 unsigned int cur_mss, int nonagle) 1899 { 1900 /* Nagle rule does not apply to frames, which sit in the middle of the 1901 * write_queue (they have no chances to get new data). 1902 * 1903 * This is implemented in the callers, where they modify the 'nonagle' 1904 * argument based upon the location of SKB in the send queue. 1905 */ 1906 if (nonagle & TCP_NAGLE_PUSH) 1907 return true; 1908 1909 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1910 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1911 return true; 1912 1913 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1914 return true; 1915 1916 return false; 1917 } 1918 1919 /* Does at least the first segment of SKB fit into the send window? */ 1920 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1921 const struct sk_buff *skb, 1922 unsigned int cur_mss) 1923 { 1924 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1925 1926 if (skb->len > cur_mss) 1927 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1928 1929 return !after(end_seq, tcp_wnd_end(tp)); 1930 } 1931 1932 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1933 * which is put after SKB on the list. It is very much like 1934 * tcp_fragment() except that it may make several kinds of assumptions 1935 * in order to speed up the splitting operation. In particular, we 1936 * know that all the data is in scatter-gather pages, and that the 1937 * packet has never been sent out before (and thus is not cloned). 1938 */ 1939 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1940 unsigned int mss_now, gfp_t gfp) 1941 { 1942 int nlen = skb->len - len; 1943 struct sk_buff *buff; 1944 u8 flags; 1945 1946 /* All of a TSO frame must be composed of paged data. */ 1947 if (skb->len != skb->data_len) 1948 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 1949 skb, len, mss_now, gfp); 1950 1951 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1952 if (unlikely(!buff)) 1953 return -ENOMEM; 1954 skb_copy_decrypted(buff, skb); 1955 1956 sk_wmem_queued_add(sk, buff->truesize); 1957 sk_mem_charge(sk, buff->truesize); 1958 buff->truesize += nlen; 1959 skb->truesize -= nlen; 1960 1961 /* Correct the sequence numbers. */ 1962 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1963 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1964 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1965 1966 /* PSH and FIN should only be set in the second packet. */ 1967 flags = TCP_SKB_CB(skb)->tcp_flags; 1968 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1969 TCP_SKB_CB(buff)->tcp_flags = flags; 1970 1971 /* This packet was never sent out yet, so no SACK bits. */ 1972 TCP_SKB_CB(buff)->sacked = 0; 1973 1974 tcp_skb_fragment_eor(skb, buff); 1975 1976 buff->ip_summed = CHECKSUM_PARTIAL; 1977 skb_split(skb, buff, len); 1978 tcp_fragment_tstamp(skb, buff); 1979 1980 /* Fix up tso_factor for both original and new SKB. */ 1981 tcp_set_skb_tso_segs(skb, mss_now); 1982 tcp_set_skb_tso_segs(buff, mss_now); 1983 1984 /* Link BUFF into the send queue. */ 1985 __skb_header_release(buff); 1986 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 1987 1988 return 0; 1989 } 1990 1991 /* Try to defer sending, if possible, in order to minimize the amount 1992 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1993 * 1994 * This algorithm is from John Heffner. 1995 */ 1996 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1997 bool *is_cwnd_limited, 1998 bool *is_rwnd_limited, 1999 u32 max_segs) 2000 { 2001 const struct inet_connection_sock *icsk = inet_csk(sk); 2002 u32 send_win, cong_win, limit, in_flight; 2003 struct tcp_sock *tp = tcp_sk(sk); 2004 struct sk_buff *head; 2005 int win_divisor; 2006 s64 delta; 2007 2008 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2009 goto send_now; 2010 2011 /* Avoid bursty behavior by allowing defer 2012 * only if the last write was recent (1 ms). 2013 * Note that tp->tcp_wstamp_ns can be in the future if we have 2014 * packets waiting in a qdisc or device for EDT delivery. 2015 */ 2016 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2017 if (delta > 0) 2018 goto send_now; 2019 2020 in_flight = tcp_packets_in_flight(tp); 2021 2022 BUG_ON(tcp_skb_pcount(skb) <= 1); 2023 BUG_ON(tp->snd_cwnd <= in_flight); 2024 2025 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2026 2027 /* From in_flight test above, we know that cwnd > in_flight. */ 2028 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 2029 2030 limit = min(send_win, cong_win); 2031 2032 /* If a full-sized TSO skb can be sent, do it. */ 2033 if (limit >= max_segs * tp->mss_cache) 2034 goto send_now; 2035 2036 /* Middle in queue won't get any more data, full sendable already? */ 2037 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2038 goto send_now; 2039 2040 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2041 if (win_divisor) { 2042 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 2043 2044 /* If at least some fraction of a window is available, 2045 * just use it. 2046 */ 2047 chunk /= win_divisor; 2048 if (limit >= chunk) 2049 goto send_now; 2050 } else { 2051 /* Different approach, try not to defer past a single 2052 * ACK. Receiver should ACK every other full sized 2053 * frame, so if we have space for more than 3 frames 2054 * then send now. 2055 */ 2056 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2057 goto send_now; 2058 } 2059 2060 /* TODO : use tsorted_sent_queue ? */ 2061 head = tcp_rtx_queue_head(sk); 2062 if (!head) 2063 goto send_now; 2064 delta = tp->tcp_clock_cache - head->tstamp; 2065 /* If next ACK is likely to come too late (half srtt), do not defer */ 2066 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2067 goto send_now; 2068 2069 /* Ok, it looks like it is advisable to defer. 2070 * Three cases are tracked : 2071 * 1) We are cwnd-limited 2072 * 2) We are rwnd-limited 2073 * 3) We are application limited. 2074 */ 2075 if (cong_win < send_win) { 2076 if (cong_win <= skb->len) { 2077 *is_cwnd_limited = true; 2078 return true; 2079 } 2080 } else { 2081 if (send_win <= skb->len) { 2082 *is_rwnd_limited = true; 2083 return true; 2084 } 2085 } 2086 2087 /* If this packet won't get more data, do not wait. */ 2088 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2089 TCP_SKB_CB(skb)->eor) 2090 goto send_now; 2091 2092 return true; 2093 2094 send_now: 2095 return false; 2096 } 2097 2098 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2099 { 2100 struct inet_connection_sock *icsk = inet_csk(sk); 2101 struct tcp_sock *tp = tcp_sk(sk); 2102 struct net *net = sock_net(sk); 2103 u32 interval; 2104 s32 delta; 2105 2106 interval = net->ipv4.sysctl_tcp_probe_interval; 2107 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2108 if (unlikely(delta >= interval * HZ)) { 2109 int mss = tcp_current_mss(sk); 2110 2111 /* Update current search range */ 2112 icsk->icsk_mtup.probe_size = 0; 2113 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2114 sizeof(struct tcphdr) + 2115 icsk->icsk_af_ops->net_header_len; 2116 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2117 2118 /* Update probe time stamp */ 2119 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2120 } 2121 } 2122 2123 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2124 { 2125 struct sk_buff *skb, *next; 2126 2127 skb = tcp_send_head(sk); 2128 tcp_for_write_queue_from_safe(skb, next, sk) { 2129 if (len <= skb->len) 2130 break; 2131 2132 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb)) 2133 return false; 2134 2135 len -= skb->len; 2136 } 2137 2138 return true; 2139 } 2140 2141 /* Create a new MTU probe if we are ready. 2142 * MTU probe is regularly attempting to increase the path MTU by 2143 * deliberately sending larger packets. This discovers routing 2144 * changes resulting in larger path MTUs. 2145 * 2146 * Returns 0 if we should wait to probe (no cwnd available), 2147 * 1 if a probe was sent, 2148 * -1 otherwise 2149 */ 2150 static int tcp_mtu_probe(struct sock *sk) 2151 { 2152 struct inet_connection_sock *icsk = inet_csk(sk); 2153 struct tcp_sock *tp = tcp_sk(sk); 2154 struct sk_buff *skb, *nskb, *next; 2155 struct net *net = sock_net(sk); 2156 int probe_size; 2157 int size_needed; 2158 int copy, len; 2159 int mss_now; 2160 int interval; 2161 2162 /* Not currently probing/verifying, 2163 * not in recovery, 2164 * have enough cwnd, and 2165 * not SACKing (the variable headers throw things off) 2166 */ 2167 if (likely(!icsk->icsk_mtup.enabled || 2168 icsk->icsk_mtup.probe_size || 2169 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2170 tp->snd_cwnd < 11 || 2171 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2172 return -1; 2173 2174 /* Use binary search for probe_size between tcp_mss_base, 2175 * and current mss_clamp. if (search_high - search_low) 2176 * smaller than a threshold, backoff from probing. 2177 */ 2178 mss_now = tcp_current_mss(sk); 2179 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2180 icsk->icsk_mtup.search_low) >> 1); 2181 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2182 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2183 /* When misfortune happens, we are reprobing actively, 2184 * and then reprobe timer has expired. We stick with current 2185 * probing process by not resetting search range to its orignal. 2186 */ 2187 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2188 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2189 /* Check whether enough time has elaplased for 2190 * another round of probing. 2191 */ 2192 tcp_mtu_check_reprobe(sk); 2193 return -1; 2194 } 2195 2196 /* Have enough data in the send queue to probe? */ 2197 if (tp->write_seq - tp->snd_nxt < size_needed) 2198 return -1; 2199 2200 if (tp->snd_wnd < size_needed) 2201 return -1; 2202 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2203 return 0; 2204 2205 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2206 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2207 if (!tcp_packets_in_flight(tp)) 2208 return -1; 2209 else 2210 return 0; 2211 } 2212 2213 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2214 return -1; 2215 2216 /* We're allowed to probe. Build it now. */ 2217 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2218 if (!nskb) 2219 return -1; 2220 sk_wmem_queued_add(sk, nskb->truesize); 2221 sk_mem_charge(sk, nskb->truesize); 2222 2223 skb = tcp_send_head(sk); 2224 skb_copy_decrypted(nskb, skb); 2225 2226 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2227 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2228 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2229 TCP_SKB_CB(nskb)->sacked = 0; 2230 nskb->csum = 0; 2231 nskb->ip_summed = CHECKSUM_PARTIAL; 2232 2233 tcp_insert_write_queue_before(nskb, skb, sk); 2234 tcp_highest_sack_replace(sk, skb, nskb); 2235 2236 len = 0; 2237 tcp_for_write_queue_from_safe(skb, next, sk) { 2238 copy = min_t(int, skb->len, probe_size - len); 2239 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2240 2241 if (skb->len <= copy) { 2242 /* We've eaten all the data from this skb. 2243 * Throw it away. */ 2244 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2245 /* If this is the last SKB we copy and eor is set 2246 * we need to propagate it to the new skb. 2247 */ 2248 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2249 tcp_skb_collapse_tstamp(nskb, skb); 2250 tcp_unlink_write_queue(skb, sk); 2251 sk_wmem_free_skb(sk, skb); 2252 } else { 2253 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2254 ~(TCPHDR_FIN|TCPHDR_PSH); 2255 if (!skb_shinfo(skb)->nr_frags) { 2256 skb_pull(skb, copy); 2257 } else { 2258 __pskb_trim_head(skb, copy); 2259 tcp_set_skb_tso_segs(skb, mss_now); 2260 } 2261 TCP_SKB_CB(skb)->seq += copy; 2262 } 2263 2264 len += copy; 2265 2266 if (len >= probe_size) 2267 break; 2268 } 2269 tcp_init_tso_segs(nskb, nskb->len); 2270 2271 /* We're ready to send. If this fails, the probe will 2272 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2273 */ 2274 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2275 /* Decrement cwnd here because we are sending 2276 * effectively two packets. */ 2277 tp->snd_cwnd--; 2278 tcp_event_new_data_sent(sk, nskb); 2279 2280 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2281 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2282 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2283 2284 return 1; 2285 } 2286 2287 return -1; 2288 } 2289 2290 static bool tcp_pacing_check(struct sock *sk) 2291 { 2292 struct tcp_sock *tp = tcp_sk(sk); 2293 2294 if (!tcp_needs_internal_pacing(sk)) 2295 return false; 2296 2297 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2298 return false; 2299 2300 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2301 hrtimer_start(&tp->pacing_timer, 2302 ns_to_ktime(tp->tcp_wstamp_ns), 2303 HRTIMER_MODE_ABS_PINNED_SOFT); 2304 sock_hold(sk); 2305 } 2306 return true; 2307 } 2308 2309 /* TCP Small Queues : 2310 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2311 * (These limits are doubled for retransmits) 2312 * This allows for : 2313 * - better RTT estimation and ACK scheduling 2314 * - faster recovery 2315 * - high rates 2316 * Alas, some drivers / subsystems require a fair amount 2317 * of queued bytes to ensure line rate. 2318 * One example is wifi aggregation (802.11 AMPDU) 2319 */ 2320 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2321 unsigned int factor) 2322 { 2323 unsigned long limit; 2324 2325 limit = max_t(unsigned long, 2326 2 * skb->truesize, 2327 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift)); 2328 if (sk->sk_pacing_status == SK_PACING_NONE) 2329 limit = min_t(unsigned long, limit, 2330 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2331 limit <<= factor; 2332 2333 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2334 tcp_sk(sk)->tcp_tx_delay) { 2335 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2336 2337 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2338 * approximate our needs assuming an ~100% skb->truesize overhead. 2339 * USEC_PER_SEC is approximated by 2^20. 2340 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2341 */ 2342 extra_bytes >>= (20 - 1); 2343 limit += extra_bytes; 2344 } 2345 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2346 /* Always send skb if rtx queue is empty. 2347 * No need to wait for TX completion to call us back, 2348 * after softirq/tasklet schedule. 2349 * This helps when TX completions are delayed too much. 2350 */ 2351 if (tcp_rtx_queue_empty(sk)) 2352 return false; 2353 2354 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2355 /* It is possible TX completion already happened 2356 * before we set TSQ_THROTTLED, so we must 2357 * test again the condition. 2358 */ 2359 smp_mb__after_atomic(); 2360 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2361 return true; 2362 } 2363 return false; 2364 } 2365 2366 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2367 { 2368 const u32 now = tcp_jiffies32; 2369 enum tcp_chrono old = tp->chrono_type; 2370 2371 if (old > TCP_CHRONO_UNSPEC) 2372 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2373 tp->chrono_start = now; 2374 tp->chrono_type = new; 2375 } 2376 2377 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2378 { 2379 struct tcp_sock *tp = tcp_sk(sk); 2380 2381 /* If there are multiple conditions worthy of tracking in a 2382 * chronograph then the highest priority enum takes precedence 2383 * over the other conditions. So that if something "more interesting" 2384 * starts happening, stop the previous chrono and start a new one. 2385 */ 2386 if (type > tp->chrono_type) 2387 tcp_chrono_set(tp, type); 2388 } 2389 2390 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2391 { 2392 struct tcp_sock *tp = tcp_sk(sk); 2393 2394 2395 /* There are multiple conditions worthy of tracking in a 2396 * chronograph, so that the highest priority enum takes 2397 * precedence over the other conditions (see tcp_chrono_start). 2398 * If a condition stops, we only stop chrono tracking if 2399 * it's the "most interesting" or current chrono we are 2400 * tracking and starts busy chrono if we have pending data. 2401 */ 2402 if (tcp_rtx_and_write_queues_empty(sk)) 2403 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2404 else if (type == tp->chrono_type) 2405 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2406 } 2407 2408 /* This routine writes packets to the network. It advances the 2409 * send_head. This happens as incoming acks open up the remote 2410 * window for us. 2411 * 2412 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2413 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2414 * account rare use of URG, this is not a big flaw. 2415 * 2416 * Send at most one packet when push_one > 0. Temporarily ignore 2417 * cwnd limit to force at most one packet out when push_one == 2. 2418 2419 * Returns true, if no segments are in flight and we have queued segments, 2420 * but cannot send anything now because of SWS or another problem. 2421 */ 2422 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2423 int push_one, gfp_t gfp) 2424 { 2425 struct tcp_sock *tp = tcp_sk(sk); 2426 struct sk_buff *skb; 2427 unsigned int tso_segs, sent_pkts; 2428 int cwnd_quota; 2429 int result; 2430 bool is_cwnd_limited = false, is_rwnd_limited = false; 2431 u32 max_segs; 2432 2433 sent_pkts = 0; 2434 2435 tcp_mstamp_refresh(tp); 2436 if (!push_one) { 2437 /* Do MTU probing. */ 2438 result = tcp_mtu_probe(sk); 2439 if (!result) { 2440 return false; 2441 } else if (result > 0) { 2442 sent_pkts = 1; 2443 } 2444 } 2445 2446 max_segs = tcp_tso_segs(sk, mss_now); 2447 while ((skb = tcp_send_head(sk))) { 2448 unsigned int limit; 2449 2450 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2451 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2452 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2453 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2454 tcp_init_tso_segs(skb, mss_now); 2455 goto repair; /* Skip network transmission */ 2456 } 2457 2458 if (tcp_pacing_check(sk)) 2459 break; 2460 2461 tso_segs = tcp_init_tso_segs(skb, mss_now); 2462 BUG_ON(!tso_segs); 2463 2464 cwnd_quota = tcp_cwnd_test(tp, skb); 2465 if (!cwnd_quota) { 2466 if (push_one == 2) 2467 /* Force out a loss probe pkt. */ 2468 cwnd_quota = 1; 2469 else 2470 break; 2471 } 2472 2473 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2474 is_rwnd_limited = true; 2475 break; 2476 } 2477 2478 if (tso_segs == 1) { 2479 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2480 (tcp_skb_is_last(sk, skb) ? 2481 nonagle : TCP_NAGLE_PUSH)))) 2482 break; 2483 } else { 2484 if (!push_one && 2485 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2486 &is_rwnd_limited, max_segs)) 2487 break; 2488 } 2489 2490 limit = mss_now; 2491 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2492 limit = tcp_mss_split_point(sk, skb, mss_now, 2493 min_t(unsigned int, 2494 cwnd_quota, 2495 max_segs), 2496 nonagle); 2497 2498 if (skb->len > limit && 2499 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2500 break; 2501 2502 if (tcp_small_queue_check(sk, skb, 0)) 2503 break; 2504 2505 /* Argh, we hit an empty skb(), presumably a thread 2506 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2507 * We do not want to send a pure-ack packet and have 2508 * a strange looking rtx queue with empty packet(s). 2509 */ 2510 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2511 break; 2512 2513 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2514 break; 2515 2516 repair: 2517 /* Advance the send_head. This one is sent out. 2518 * This call will increment packets_out. 2519 */ 2520 tcp_event_new_data_sent(sk, skb); 2521 2522 tcp_minshall_update(tp, mss_now, skb); 2523 sent_pkts += tcp_skb_pcount(skb); 2524 2525 if (push_one) 2526 break; 2527 } 2528 2529 if (is_rwnd_limited) 2530 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2531 else 2532 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2533 2534 if (likely(sent_pkts)) { 2535 if (tcp_in_cwnd_reduction(sk)) 2536 tp->prr_out += sent_pkts; 2537 2538 /* Send one loss probe per tail loss episode. */ 2539 if (push_one != 2) 2540 tcp_schedule_loss_probe(sk, false); 2541 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2542 tcp_cwnd_validate(sk, is_cwnd_limited); 2543 return false; 2544 } 2545 return !tp->packets_out && !tcp_write_queue_empty(sk); 2546 } 2547 2548 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2549 { 2550 struct inet_connection_sock *icsk = inet_csk(sk); 2551 struct tcp_sock *tp = tcp_sk(sk); 2552 u32 timeout, rto_delta_us; 2553 int early_retrans; 2554 2555 /* Don't do any loss probe on a Fast Open connection before 3WHS 2556 * finishes. 2557 */ 2558 if (rcu_access_pointer(tp->fastopen_rsk)) 2559 return false; 2560 2561 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2562 /* Schedule a loss probe in 2*RTT for SACK capable connections 2563 * not in loss recovery, that are either limited by cwnd or application. 2564 */ 2565 if ((early_retrans != 3 && early_retrans != 4) || 2566 !tp->packets_out || !tcp_is_sack(tp) || 2567 (icsk->icsk_ca_state != TCP_CA_Open && 2568 icsk->icsk_ca_state != TCP_CA_CWR)) 2569 return false; 2570 2571 /* Probe timeout is 2*rtt. Add minimum RTO to account 2572 * for delayed ack when there's one outstanding packet. If no RTT 2573 * sample is available then probe after TCP_TIMEOUT_INIT. 2574 */ 2575 if (tp->srtt_us) { 2576 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2577 if (tp->packets_out == 1) 2578 timeout += TCP_RTO_MIN; 2579 else 2580 timeout += TCP_TIMEOUT_MIN; 2581 } else { 2582 timeout = TCP_TIMEOUT_INIT; 2583 } 2584 2585 /* If the RTO formula yields an earlier time, then use that time. */ 2586 rto_delta_us = advancing_rto ? 2587 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2588 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2589 if (rto_delta_us > 0) 2590 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2591 2592 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2593 TCP_RTO_MAX, NULL); 2594 return true; 2595 } 2596 2597 /* Thanks to skb fast clones, we can detect if a prior transmit of 2598 * a packet is still in a qdisc or driver queue. 2599 * In this case, there is very little point doing a retransmit ! 2600 */ 2601 static bool skb_still_in_host_queue(const struct sock *sk, 2602 const struct sk_buff *skb) 2603 { 2604 if (unlikely(skb_fclone_busy(sk, skb))) { 2605 NET_INC_STATS(sock_net(sk), 2606 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2607 return true; 2608 } 2609 return false; 2610 } 2611 2612 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2613 * retransmit the last segment. 2614 */ 2615 void tcp_send_loss_probe(struct sock *sk) 2616 { 2617 struct tcp_sock *tp = tcp_sk(sk); 2618 struct sk_buff *skb; 2619 int pcount; 2620 int mss = tcp_current_mss(sk); 2621 2622 skb = tcp_send_head(sk); 2623 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2624 pcount = tp->packets_out; 2625 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2626 if (tp->packets_out > pcount) 2627 goto probe_sent; 2628 goto rearm_timer; 2629 } 2630 skb = skb_rb_last(&sk->tcp_rtx_queue); 2631 if (unlikely(!skb)) { 2632 WARN_ONCE(tp->packets_out, 2633 "invalid inflight: %u state %u cwnd %u mss %d\n", 2634 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); 2635 inet_csk(sk)->icsk_pending = 0; 2636 return; 2637 } 2638 2639 /* At most one outstanding TLP retransmission. */ 2640 if (tp->tlp_high_seq) 2641 goto rearm_timer; 2642 2643 if (skb_still_in_host_queue(sk, skb)) 2644 goto rearm_timer; 2645 2646 pcount = tcp_skb_pcount(skb); 2647 if (WARN_ON(!pcount)) 2648 goto rearm_timer; 2649 2650 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2651 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2652 (pcount - 1) * mss, mss, 2653 GFP_ATOMIC))) 2654 goto rearm_timer; 2655 skb = skb_rb_next(skb); 2656 } 2657 2658 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2659 goto rearm_timer; 2660 2661 if (__tcp_retransmit_skb(sk, skb, 1)) 2662 goto rearm_timer; 2663 2664 /* Record snd_nxt for loss detection. */ 2665 tp->tlp_high_seq = tp->snd_nxt; 2666 2667 probe_sent: 2668 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2669 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2670 inet_csk(sk)->icsk_pending = 0; 2671 rearm_timer: 2672 tcp_rearm_rto(sk); 2673 } 2674 2675 /* Push out any pending frames which were held back due to 2676 * TCP_CORK or attempt at coalescing tiny packets. 2677 * The socket must be locked by the caller. 2678 */ 2679 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2680 int nonagle) 2681 { 2682 /* If we are closed, the bytes will have to remain here. 2683 * In time closedown will finish, we empty the write queue and 2684 * all will be happy. 2685 */ 2686 if (unlikely(sk->sk_state == TCP_CLOSE)) 2687 return; 2688 2689 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2690 sk_gfp_mask(sk, GFP_ATOMIC))) 2691 tcp_check_probe_timer(sk); 2692 } 2693 2694 /* Send _single_ skb sitting at the send head. This function requires 2695 * true push pending frames to setup probe timer etc. 2696 */ 2697 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2698 { 2699 struct sk_buff *skb = tcp_send_head(sk); 2700 2701 BUG_ON(!skb || skb->len < mss_now); 2702 2703 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2704 } 2705 2706 /* This function returns the amount that we can raise the 2707 * usable window based on the following constraints 2708 * 2709 * 1. The window can never be shrunk once it is offered (RFC 793) 2710 * 2. We limit memory per socket 2711 * 2712 * RFC 1122: 2713 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2714 * RECV.NEXT + RCV.WIN fixed until: 2715 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2716 * 2717 * i.e. don't raise the right edge of the window until you can raise 2718 * it at least MSS bytes. 2719 * 2720 * Unfortunately, the recommended algorithm breaks header prediction, 2721 * since header prediction assumes th->window stays fixed. 2722 * 2723 * Strictly speaking, keeping th->window fixed violates the receiver 2724 * side SWS prevention criteria. The problem is that under this rule 2725 * a stream of single byte packets will cause the right side of the 2726 * window to always advance by a single byte. 2727 * 2728 * Of course, if the sender implements sender side SWS prevention 2729 * then this will not be a problem. 2730 * 2731 * BSD seems to make the following compromise: 2732 * 2733 * If the free space is less than the 1/4 of the maximum 2734 * space available and the free space is less than 1/2 mss, 2735 * then set the window to 0. 2736 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2737 * Otherwise, just prevent the window from shrinking 2738 * and from being larger than the largest representable value. 2739 * 2740 * This prevents incremental opening of the window in the regime 2741 * where TCP is limited by the speed of the reader side taking 2742 * data out of the TCP receive queue. It does nothing about 2743 * those cases where the window is constrained on the sender side 2744 * because the pipeline is full. 2745 * 2746 * BSD also seems to "accidentally" limit itself to windows that are a 2747 * multiple of MSS, at least until the free space gets quite small. 2748 * This would appear to be a side effect of the mbuf implementation. 2749 * Combining these two algorithms results in the observed behavior 2750 * of having a fixed window size at almost all times. 2751 * 2752 * Below we obtain similar behavior by forcing the offered window to 2753 * a multiple of the mss when it is feasible to do so. 2754 * 2755 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2756 * Regular options like TIMESTAMP are taken into account. 2757 */ 2758 u32 __tcp_select_window(struct sock *sk) 2759 { 2760 struct inet_connection_sock *icsk = inet_csk(sk); 2761 struct tcp_sock *tp = tcp_sk(sk); 2762 /* MSS for the peer's data. Previous versions used mss_clamp 2763 * here. I don't know if the value based on our guesses 2764 * of peer's MSS is better for the performance. It's more correct 2765 * but may be worse for the performance because of rcv_mss 2766 * fluctuations. --SAW 1998/11/1 2767 */ 2768 int mss = icsk->icsk_ack.rcv_mss; 2769 int free_space = tcp_space(sk); 2770 int allowed_space = tcp_full_space(sk); 2771 int full_space = min_t(int, tp->window_clamp, allowed_space); 2772 int window; 2773 2774 if (unlikely(mss > full_space)) { 2775 mss = full_space; 2776 if (mss <= 0) 2777 return 0; 2778 } 2779 if (free_space < (full_space >> 1)) { 2780 icsk->icsk_ack.quick = 0; 2781 2782 if (tcp_under_memory_pressure(sk)) 2783 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2784 4U * tp->advmss); 2785 2786 /* free_space might become our new window, make sure we don't 2787 * increase it due to wscale. 2788 */ 2789 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2790 2791 /* if free space is less than mss estimate, or is below 1/16th 2792 * of the maximum allowed, try to move to zero-window, else 2793 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2794 * new incoming data is dropped due to memory limits. 2795 * With large window, mss test triggers way too late in order 2796 * to announce zero window in time before rmem limit kicks in. 2797 */ 2798 if (free_space < (allowed_space >> 4) || free_space < mss) 2799 return 0; 2800 } 2801 2802 if (free_space > tp->rcv_ssthresh) 2803 free_space = tp->rcv_ssthresh; 2804 2805 /* Don't do rounding if we are using window scaling, since the 2806 * scaled window will not line up with the MSS boundary anyway. 2807 */ 2808 if (tp->rx_opt.rcv_wscale) { 2809 window = free_space; 2810 2811 /* Advertise enough space so that it won't get scaled away. 2812 * Import case: prevent zero window announcement if 2813 * 1<<rcv_wscale > mss. 2814 */ 2815 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2816 } else { 2817 window = tp->rcv_wnd; 2818 /* Get the largest window that is a nice multiple of mss. 2819 * Window clamp already applied above. 2820 * If our current window offering is within 1 mss of the 2821 * free space we just keep it. This prevents the divide 2822 * and multiply from happening most of the time. 2823 * We also don't do any window rounding when the free space 2824 * is too small. 2825 */ 2826 if (window <= free_space - mss || window > free_space) 2827 window = rounddown(free_space, mss); 2828 else if (mss == full_space && 2829 free_space > window + (full_space >> 1)) 2830 window = free_space; 2831 } 2832 2833 return window; 2834 } 2835 2836 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2837 const struct sk_buff *next_skb) 2838 { 2839 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2840 const struct skb_shared_info *next_shinfo = 2841 skb_shinfo(next_skb); 2842 struct skb_shared_info *shinfo = skb_shinfo(skb); 2843 2844 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2845 shinfo->tskey = next_shinfo->tskey; 2846 TCP_SKB_CB(skb)->txstamp_ack |= 2847 TCP_SKB_CB(next_skb)->txstamp_ack; 2848 } 2849 } 2850 2851 /* Collapses two adjacent SKB's during retransmission. */ 2852 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2853 { 2854 struct tcp_sock *tp = tcp_sk(sk); 2855 struct sk_buff *next_skb = skb_rb_next(skb); 2856 int next_skb_size; 2857 2858 next_skb_size = next_skb->len; 2859 2860 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2861 2862 if (next_skb_size) { 2863 if (next_skb_size <= skb_availroom(skb)) 2864 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2865 next_skb_size); 2866 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 2867 return false; 2868 } 2869 tcp_highest_sack_replace(sk, next_skb, skb); 2870 2871 /* Update sequence range on original skb. */ 2872 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2873 2874 /* Merge over control information. This moves PSH/FIN etc. over */ 2875 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2876 2877 /* All done, get rid of second SKB and account for it so 2878 * packet counting does not break. 2879 */ 2880 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2881 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2882 2883 /* changed transmit queue under us so clear hints */ 2884 tcp_clear_retrans_hints_partial(tp); 2885 if (next_skb == tp->retransmit_skb_hint) 2886 tp->retransmit_skb_hint = skb; 2887 2888 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2889 2890 tcp_skb_collapse_tstamp(skb, next_skb); 2891 2892 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2893 return true; 2894 } 2895 2896 /* Check if coalescing SKBs is legal. */ 2897 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2898 { 2899 if (tcp_skb_pcount(skb) > 1) 2900 return false; 2901 if (skb_cloned(skb)) 2902 return false; 2903 /* Some heuristics for collapsing over SACK'd could be invented */ 2904 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2905 return false; 2906 2907 return true; 2908 } 2909 2910 /* Collapse packets in the retransmit queue to make to create 2911 * less packets on the wire. This is only done on retransmission. 2912 */ 2913 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2914 int space) 2915 { 2916 struct tcp_sock *tp = tcp_sk(sk); 2917 struct sk_buff *skb = to, *tmp; 2918 bool first = true; 2919 2920 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2921 return; 2922 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2923 return; 2924 2925 skb_rbtree_walk_from_safe(skb, tmp) { 2926 if (!tcp_can_collapse(sk, skb)) 2927 break; 2928 2929 if (!tcp_skb_can_collapse(to, skb)) 2930 break; 2931 2932 space -= skb->len; 2933 2934 if (first) { 2935 first = false; 2936 continue; 2937 } 2938 2939 if (space < 0) 2940 break; 2941 2942 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2943 break; 2944 2945 if (!tcp_collapse_retrans(sk, to)) 2946 break; 2947 } 2948 } 2949 2950 /* This retransmits one SKB. Policy decisions and retransmit queue 2951 * state updates are done by the caller. Returns non-zero if an 2952 * error occurred which prevented the send. 2953 */ 2954 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2955 { 2956 struct inet_connection_sock *icsk = inet_csk(sk); 2957 struct tcp_sock *tp = tcp_sk(sk); 2958 unsigned int cur_mss; 2959 int diff, len, err; 2960 2961 2962 /* Inconclusive MTU probe */ 2963 if (icsk->icsk_mtup.probe_size) 2964 icsk->icsk_mtup.probe_size = 0; 2965 2966 /* Do not sent more than we queued. 1/4 is reserved for possible 2967 * copying overhead: fragmentation, tunneling, mangling etc. 2968 */ 2969 if (refcount_read(&sk->sk_wmem_alloc) > 2970 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2971 sk->sk_sndbuf)) 2972 return -EAGAIN; 2973 2974 if (skb_still_in_host_queue(sk, skb)) 2975 return -EBUSY; 2976 2977 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2978 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2979 WARN_ON_ONCE(1); 2980 return -EINVAL; 2981 } 2982 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2983 return -ENOMEM; 2984 } 2985 2986 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2987 return -EHOSTUNREACH; /* Routing failure or similar. */ 2988 2989 cur_mss = tcp_current_mss(sk); 2990 2991 /* If receiver has shrunk his window, and skb is out of 2992 * new window, do not retransmit it. The exception is the 2993 * case, when window is shrunk to zero. In this case 2994 * our retransmit serves as a zero window probe. 2995 */ 2996 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2997 TCP_SKB_CB(skb)->seq != tp->snd_una) 2998 return -EAGAIN; 2999 3000 len = cur_mss * segs; 3001 if (skb->len > len) { 3002 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3003 cur_mss, GFP_ATOMIC)) 3004 return -ENOMEM; /* We'll try again later. */ 3005 } else { 3006 if (skb_unclone(skb, GFP_ATOMIC)) 3007 return -ENOMEM; 3008 3009 diff = tcp_skb_pcount(skb); 3010 tcp_set_skb_tso_segs(skb, cur_mss); 3011 diff -= tcp_skb_pcount(skb); 3012 if (diff) 3013 tcp_adjust_pcount(sk, skb, diff); 3014 if (skb->len < cur_mss) 3015 tcp_retrans_try_collapse(sk, skb, cur_mss); 3016 } 3017 3018 /* RFC3168, section 6.1.1.1. ECN fallback */ 3019 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3020 tcp_ecn_clear_syn(sk, skb); 3021 3022 /* Update global and local TCP statistics. */ 3023 segs = tcp_skb_pcount(skb); 3024 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3025 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3026 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3027 tp->total_retrans += segs; 3028 tp->bytes_retrans += skb->len; 3029 3030 /* make sure skb->data is aligned on arches that require it 3031 * and check if ack-trimming & collapsing extended the headroom 3032 * beyond what csum_start can cover. 3033 */ 3034 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3035 skb_headroom(skb) >= 0xFFFF)) { 3036 struct sk_buff *nskb; 3037 3038 tcp_skb_tsorted_save(skb) { 3039 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3040 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 3041 -ENOBUFS; 3042 } tcp_skb_tsorted_restore(skb); 3043 3044 if (!err) { 3045 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3046 tcp_rate_skb_sent(sk, skb); 3047 } 3048 } else { 3049 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3050 } 3051 3052 /* To avoid taking spuriously low RTT samples based on a timestamp 3053 * for a transmit that never happened, always mark EVER_RETRANS 3054 */ 3055 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3056 3057 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3058 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3059 TCP_SKB_CB(skb)->seq, segs, err); 3060 3061 if (likely(!err)) { 3062 trace_tcp_retransmit_skb(sk, skb); 3063 } else if (err != -EBUSY) { 3064 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3065 } 3066 return err; 3067 } 3068 3069 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3070 { 3071 struct tcp_sock *tp = tcp_sk(sk); 3072 int err = __tcp_retransmit_skb(sk, skb, segs); 3073 3074 if (err == 0) { 3075 #if FASTRETRANS_DEBUG > 0 3076 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3077 net_dbg_ratelimited("retrans_out leaked\n"); 3078 } 3079 #endif 3080 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3081 tp->retrans_out += tcp_skb_pcount(skb); 3082 } 3083 3084 /* Save stamp of the first (attempted) retransmit. */ 3085 if (!tp->retrans_stamp) 3086 tp->retrans_stamp = tcp_skb_timestamp(skb); 3087 3088 if (tp->undo_retrans < 0) 3089 tp->undo_retrans = 0; 3090 tp->undo_retrans += tcp_skb_pcount(skb); 3091 return err; 3092 } 3093 3094 /* This gets called after a retransmit timeout, and the initially 3095 * retransmitted data is acknowledged. It tries to continue 3096 * resending the rest of the retransmit queue, until either 3097 * we've sent it all or the congestion window limit is reached. 3098 */ 3099 void tcp_xmit_retransmit_queue(struct sock *sk) 3100 { 3101 const struct inet_connection_sock *icsk = inet_csk(sk); 3102 struct sk_buff *skb, *rtx_head, *hole = NULL; 3103 struct tcp_sock *tp = tcp_sk(sk); 3104 u32 max_segs; 3105 int mib_idx; 3106 3107 if (!tp->packets_out) 3108 return; 3109 3110 rtx_head = tcp_rtx_queue_head(sk); 3111 skb = tp->retransmit_skb_hint ?: rtx_head; 3112 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3113 skb_rbtree_walk_from(skb) { 3114 __u8 sacked; 3115 int segs; 3116 3117 if (tcp_pacing_check(sk)) 3118 break; 3119 3120 /* we could do better than to assign each time */ 3121 if (!hole) 3122 tp->retransmit_skb_hint = skb; 3123 3124 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 3125 if (segs <= 0) 3126 return; 3127 sacked = TCP_SKB_CB(skb)->sacked; 3128 /* In case tcp_shift_skb_data() have aggregated large skbs, 3129 * we need to make sure not sending too bigs TSO packets 3130 */ 3131 segs = min_t(int, segs, max_segs); 3132 3133 if (tp->retrans_out >= tp->lost_out) { 3134 break; 3135 } else if (!(sacked & TCPCB_LOST)) { 3136 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3137 hole = skb; 3138 continue; 3139 3140 } else { 3141 if (icsk->icsk_ca_state != TCP_CA_Loss) 3142 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3143 else 3144 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3145 } 3146 3147 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3148 continue; 3149 3150 if (tcp_small_queue_check(sk, skb, 1)) 3151 return; 3152 3153 if (tcp_retransmit_skb(sk, skb, segs)) 3154 return; 3155 3156 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3157 3158 if (tcp_in_cwnd_reduction(sk)) 3159 tp->prr_out += tcp_skb_pcount(skb); 3160 3161 if (skb == rtx_head && 3162 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3163 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3164 inet_csk(sk)->icsk_rto, 3165 TCP_RTO_MAX, 3166 skb); 3167 } 3168 } 3169 3170 /* We allow to exceed memory limits for FIN packets to expedite 3171 * connection tear down and (memory) recovery. 3172 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3173 * or even be forced to close flow without any FIN. 3174 * In general, we want to allow one skb per socket to avoid hangs 3175 * with edge trigger epoll() 3176 */ 3177 void sk_forced_mem_schedule(struct sock *sk, int size) 3178 { 3179 int amt; 3180 3181 if (size <= sk->sk_forward_alloc) 3182 return; 3183 amt = sk_mem_pages(size); 3184 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3185 sk_memory_allocated_add(sk, amt); 3186 3187 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3188 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3189 } 3190 3191 /* Send a FIN. The caller locks the socket for us. 3192 * We should try to send a FIN packet really hard, but eventually give up. 3193 */ 3194 void tcp_send_fin(struct sock *sk) 3195 { 3196 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3197 struct tcp_sock *tp = tcp_sk(sk); 3198 3199 /* Optimization, tack on the FIN if we have one skb in write queue and 3200 * this skb was not yet sent, or we are under memory pressure. 3201 * Note: in the latter case, FIN packet will be sent after a timeout, 3202 * as TCP stack thinks it has already been transmitted. 3203 */ 3204 tskb = tail; 3205 if (!tskb && tcp_under_memory_pressure(sk)) 3206 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3207 3208 if (tskb) { 3209 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3210 TCP_SKB_CB(tskb)->end_seq++; 3211 tp->write_seq++; 3212 if (!tail) { 3213 /* This means tskb was already sent. 3214 * Pretend we included the FIN on previous transmit. 3215 * We need to set tp->snd_nxt to the value it would have 3216 * if FIN had been sent. This is because retransmit path 3217 * does not change tp->snd_nxt. 3218 */ 3219 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3220 return; 3221 } 3222 } else { 3223 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3224 if (unlikely(!skb)) 3225 return; 3226 3227 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3228 skb_reserve(skb, MAX_TCP_HEADER); 3229 sk_forced_mem_schedule(sk, skb->truesize); 3230 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3231 tcp_init_nondata_skb(skb, tp->write_seq, 3232 TCPHDR_ACK | TCPHDR_FIN); 3233 tcp_queue_skb(sk, skb); 3234 } 3235 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3236 } 3237 3238 /* We get here when a process closes a file descriptor (either due to 3239 * an explicit close() or as a byproduct of exit()'ing) and there 3240 * was unread data in the receive queue. This behavior is recommended 3241 * by RFC 2525, section 2.17. -DaveM 3242 */ 3243 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3244 { 3245 struct sk_buff *skb; 3246 3247 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3248 3249 /* NOTE: No TCP options attached and we never retransmit this. */ 3250 skb = alloc_skb(MAX_TCP_HEADER, priority); 3251 if (!skb) { 3252 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3253 return; 3254 } 3255 3256 /* Reserve space for headers and prepare control bits. */ 3257 skb_reserve(skb, MAX_TCP_HEADER); 3258 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3259 TCPHDR_ACK | TCPHDR_RST); 3260 tcp_mstamp_refresh(tcp_sk(sk)); 3261 /* Send it off. */ 3262 if (tcp_transmit_skb(sk, skb, 0, priority)) 3263 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3264 3265 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3266 * skb here is different to the troublesome skb, so use NULL 3267 */ 3268 trace_tcp_send_reset(sk, NULL); 3269 } 3270 3271 /* Send a crossed SYN-ACK during socket establishment. 3272 * WARNING: This routine must only be called when we have already sent 3273 * a SYN packet that crossed the incoming SYN that caused this routine 3274 * to get called. If this assumption fails then the initial rcv_wnd 3275 * and rcv_wscale values will not be correct. 3276 */ 3277 int tcp_send_synack(struct sock *sk) 3278 { 3279 struct sk_buff *skb; 3280 3281 skb = tcp_rtx_queue_head(sk); 3282 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3283 pr_err("%s: wrong queue state\n", __func__); 3284 return -EFAULT; 3285 } 3286 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3287 if (skb_cloned(skb)) { 3288 struct sk_buff *nskb; 3289 3290 tcp_skb_tsorted_save(skb) { 3291 nskb = skb_copy(skb, GFP_ATOMIC); 3292 } tcp_skb_tsorted_restore(skb); 3293 if (!nskb) 3294 return -ENOMEM; 3295 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3296 tcp_highest_sack_replace(sk, skb, nskb); 3297 tcp_rtx_queue_unlink_and_free(skb, sk); 3298 __skb_header_release(nskb); 3299 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3300 sk_wmem_queued_add(sk, nskb->truesize); 3301 sk_mem_charge(sk, nskb->truesize); 3302 skb = nskb; 3303 } 3304 3305 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3306 tcp_ecn_send_synack(sk, skb); 3307 } 3308 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3309 } 3310 3311 /** 3312 * tcp_make_synack - Prepare a SYN-ACK. 3313 * sk: listener socket 3314 * dst: dst entry attached to the SYNACK 3315 * req: request_sock pointer 3316 * 3317 * Allocate one skb and build a SYNACK packet. 3318 * @dst is consumed : Caller should not use it again. 3319 */ 3320 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3321 struct request_sock *req, 3322 struct tcp_fastopen_cookie *foc, 3323 enum tcp_synack_type synack_type) 3324 { 3325 struct inet_request_sock *ireq = inet_rsk(req); 3326 const struct tcp_sock *tp = tcp_sk(sk); 3327 struct tcp_md5sig_key *md5 = NULL; 3328 struct tcp_out_options opts; 3329 struct sk_buff *skb; 3330 int tcp_header_size; 3331 struct tcphdr *th; 3332 int mss; 3333 u64 now; 3334 3335 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3336 if (unlikely(!skb)) { 3337 dst_release(dst); 3338 return NULL; 3339 } 3340 /* Reserve space for headers. */ 3341 skb_reserve(skb, MAX_TCP_HEADER); 3342 3343 switch (synack_type) { 3344 case TCP_SYNACK_NORMAL: 3345 skb_set_owner_w(skb, req_to_sk(req)); 3346 break; 3347 case TCP_SYNACK_COOKIE: 3348 /* Under synflood, we do not attach skb to a socket, 3349 * to avoid false sharing. 3350 */ 3351 break; 3352 case TCP_SYNACK_FASTOPEN: 3353 /* sk is a const pointer, because we want to express multiple 3354 * cpu might call us concurrently. 3355 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3356 */ 3357 skb_set_owner_w(skb, (struct sock *)sk); 3358 break; 3359 } 3360 skb_dst_set(skb, dst); 3361 3362 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3363 3364 memset(&opts, 0, sizeof(opts)); 3365 now = tcp_clock_ns(); 3366 #ifdef CONFIG_SYN_COOKIES 3367 if (unlikely(req->cookie_ts)) 3368 skb->skb_mstamp_ns = cookie_init_timestamp(req, now); 3369 else 3370 #endif 3371 { 3372 skb->skb_mstamp_ns = now; 3373 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3374 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3375 } 3376 3377 #ifdef CONFIG_TCP_MD5SIG 3378 rcu_read_lock(); 3379 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3380 #endif 3381 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3382 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3383 foc) + sizeof(*th); 3384 3385 skb_push(skb, tcp_header_size); 3386 skb_reset_transport_header(skb); 3387 3388 th = (struct tcphdr *)skb->data; 3389 memset(th, 0, sizeof(struct tcphdr)); 3390 th->syn = 1; 3391 th->ack = 1; 3392 tcp_ecn_make_synack(req, th); 3393 th->source = htons(ireq->ir_num); 3394 th->dest = ireq->ir_rmt_port; 3395 skb->mark = ireq->ir_mark; 3396 skb->ip_summed = CHECKSUM_PARTIAL; 3397 th->seq = htonl(tcp_rsk(req)->snt_isn); 3398 /* XXX data is queued and acked as is. No buffer/window check */ 3399 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3400 3401 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3402 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3403 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3404 th->doff = (tcp_header_size >> 2); 3405 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3406 3407 #ifdef CONFIG_TCP_MD5SIG 3408 /* Okay, we have all we need - do the md5 hash if needed */ 3409 if (md5) 3410 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3411 md5, req_to_sk(req), skb); 3412 rcu_read_unlock(); 3413 #endif 3414 3415 skb->skb_mstamp_ns = now; 3416 tcp_add_tx_delay(skb, tp); 3417 3418 return skb; 3419 } 3420 EXPORT_SYMBOL(tcp_make_synack); 3421 3422 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3423 { 3424 struct inet_connection_sock *icsk = inet_csk(sk); 3425 const struct tcp_congestion_ops *ca; 3426 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3427 3428 if (ca_key == TCP_CA_UNSPEC) 3429 return; 3430 3431 rcu_read_lock(); 3432 ca = tcp_ca_find_key(ca_key); 3433 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3434 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3435 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3436 icsk->icsk_ca_ops = ca; 3437 } 3438 rcu_read_unlock(); 3439 } 3440 3441 /* Do all connect socket setups that can be done AF independent. */ 3442 static void tcp_connect_init(struct sock *sk) 3443 { 3444 const struct dst_entry *dst = __sk_dst_get(sk); 3445 struct tcp_sock *tp = tcp_sk(sk); 3446 __u8 rcv_wscale; 3447 u32 rcv_wnd; 3448 3449 /* We'll fix this up when we get a response from the other end. 3450 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3451 */ 3452 tp->tcp_header_len = sizeof(struct tcphdr); 3453 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3454 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3455 3456 #ifdef CONFIG_TCP_MD5SIG 3457 if (tp->af_specific->md5_lookup(sk, sk)) 3458 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3459 #endif 3460 3461 /* If user gave his TCP_MAXSEG, record it to clamp */ 3462 if (tp->rx_opt.user_mss) 3463 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3464 tp->max_window = 0; 3465 tcp_mtup_init(sk); 3466 tcp_sync_mss(sk, dst_mtu(dst)); 3467 3468 tcp_ca_dst_init(sk, dst); 3469 3470 if (!tp->window_clamp) 3471 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3472 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3473 3474 tcp_initialize_rcv_mss(sk); 3475 3476 /* limit the window selection if the user enforce a smaller rx buffer */ 3477 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3478 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3479 tp->window_clamp = tcp_full_space(sk); 3480 3481 rcv_wnd = tcp_rwnd_init_bpf(sk); 3482 if (rcv_wnd == 0) 3483 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3484 3485 tcp_select_initial_window(sk, tcp_full_space(sk), 3486 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3487 &tp->rcv_wnd, 3488 &tp->window_clamp, 3489 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3490 &rcv_wscale, 3491 rcv_wnd); 3492 3493 tp->rx_opt.rcv_wscale = rcv_wscale; 3494 tp->rcv_ssthresh = tp->rcv_wnd; 3495 3496 sk->sk_err = 0; 3497 sock_reset_flag(sk, SOCK_DONE); 3498 tp->snd_wnd = 0; 3499 tcp_init_wl(tp, 0); 3500 tcp_write_queue_purge(sk); 3501 tp->snd_una = tp->write_seq; 3502 tp->snd_sml = tp->write_seq; 3503 tp->snd_up = tp->write_seq; 3504 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3505 3506 if (likely(!tp->repair)) 3507 tp->rcv_nxt = 0; 3508 else 3509 tp->rcv_tstamp = tcp_jiffies32; 3510 tp->rcv_wup = tp->rcv_nxt; 3511 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3512 3513 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3514 inet_csk(sk)->icsk_retransmits = 0; 3515 tcp_clear_retrans(tp); 3516 } 3517 3518 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3519 { 3520 struct tcp_sock *tp = tcp_sk(sk); 3521 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3522 3523 tcb->end_seq += skb->len; 3524 __skb_header_release(skb); 3525 sk_wmem_queued_add(sk, skb->truesize); 3526 sk_mem_charge(sk, skb->truesize); 3527 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3528 tp->packets_out += tcp_skb_pcount(skb); 3529 } 3530 3531 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3532 * queue a data-only packet after the regular SYN, such that regular SYNs 3533 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3534 * only the SYN sequence, the data are retransmitted in the first ACK. 3535 * If cookie is not cached or other error occurs, falls back to send a 3536 * regular SYN with Fast Open cookie request option. 3537 */ 3538 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3539 { 3540 struct tcp_sock *tp = tcp_sk(sk); 3541 struct tcp_fastopen_request *fo = tp->fastopen_req; 3542 int space, err = 0; 3543 struct sk_buff *syn_data; 3544 3545 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3546 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3547 goto fallback; 3548 3549 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3550 * user-MSS. Reserve maximum option space for middleboxes that add 3551 * private TCP options. The cost is reduced data space in SYN :( 3552 */ 3553 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3554 3555 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3556 MAX_TCP_OPTION_SPACE; 3557 3558 space = min_t(size_t, space, fo->size); 3559 3560 /* limit to order-0 allocations */ 3561 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3562 3563 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3564 if (!syn_data) 3565 goto fallback; 3566 syn_data->ip_summed = CHECKSUM_PARTIAL; 3567 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3568 if (space) { 3569 int copied = copy_from_iter(skb_put(syn_data, space), space, 3570 &fo->data->msg_iter); 3571 if (unlikely(!copied)) { 3572 tcp_skb_tsorted_anchor_cleanup(syn_data); 3573 kfree_skb(syn_data); 3574 goto fallback; 3575 } 3576 if (copied != space) { 3577 skb_trim(syn_data, copied); 3578 space = copied; 3579 } 3580 skb_zcopy_set(syn_data, fo->uarg, NULL); 3581 } 3582 /* No more data pending in inet_wait_for_connect() */ 3583 if (space == fo->size) 3584 fo->data = NULL; 3585 fo->copied = space; 3586 3587 tcp_connect_queue_skb(sk, syn_data); 3588 if (syn_data->len) 3589 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3590 3591 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3592 3593 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3594 3595 /* Now full SYN+DATA was cloned and sent (or not), 3596 * remove the SYN from the original skb (syn_data) 3597 * we keep in write queue in case of a retransmit, as we 3598 * also have the SYN packet (with no data) in the same queue. 3599 */ 3600 TCP_SKB_CB(syn_data)->seq++; 3601 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3602 if (!err) { 3603 tp->syn_data = (fo->copied > 0); 3604 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3605 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3606 goto done; 3607 } 3608 3609 /* data was not sent, put it in write_queue */ 3610 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3611 tp->packets_out -= tcp_skb_pcount(syn_data); 3612 3613 fallback: 3614 /* Send a regular SYN with Fast Open cookie request option */ 3615 if (fo->cookie.len > 0) 3616 fo->cookie.len = 0; 3617 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3618 if (err) 3619 tp->syn_fastopen = 0; 3620 done: 3621 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3622 return err; 3623 } 3624 3625 /* Build a SYN and send it off. */ 3626 int tcp_connect(struct sock *sk) 3627 { 3628 struct tcp_sock *tp = tcp_sk(sk); 3629 struct sk_buff *buff; 3630 int err; 3631 3632 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3633 3634 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3635 return -EHOSTUNREACH; /* Routing failure or similar. */ 3636 3637 tcp_connect_init(sk); 3638 3639 if (unlikely(tp->repair)) { 3640 tcp_finish_connect(sk, NULL); 3641 return 0; 3642 } 3643 3644 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3645 if (unlikely(!buff)) 3646 return -ENOBUFS; 3647 3648 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3649 tcp_mstamp_refresh(tp); 3650 tp->retrans_stamp = tcp_time_stamp(tp); 3651 tcp_connect_queue_skb(sk, buff); 3652 tcp_ecn_send_syn(sk, buff); 3653 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3654 3655 /* Send off SYN; include data in Fast Open. */ 3656 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3657 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3658 if (err == -ECONNREFUSED) 3659 return err; 3660 3661 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3662 * in order to make this packet get counted in tcpOutSegs. 3663 */ 3664 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3665 tp->pushed_seq = tp->write_seq; 3666 buff = tcp_send_head(sk); 3667 if (unlikely(buff)) { 3668 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3669 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3670 } 3671 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3672 3673 /* Timer for repeating the SYN until an answer. */ 3674 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3675 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3676 return 0; 3677 } 3678 EXPORT_SYMBOL(tcp_connect); 3679 3680 /* Send out a delayed ack, the caller does the policy checking 3681 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3682 * for details. 3683 */ 3684 void tcp_send_delayed_ack(struct sock *sk) 3685 { 3686 struct inet_connection_sock *icsk = inet_csk(sk); 3687 int ato = icsk->icsk_ack.ato; 3688 unsigned long timeout; 3689 3690 if (ato > TCP_DELACK_MIN) { 3691 const struct tcp_sock *tp = tcp_sk(sk); 3692 int max_ato = HZ / 2; 3693 3694 if (inet_csk_in_pingpong_mode(sk) || 3695 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3696 max_ato = TCP_DELACK_MAX; 3697 3698 /* Slow path, intersegment interval is "high". */ 3699 3700 /* If some rtt estimate is known, use it to bound delayed ack. 3701 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3702 * directly. 3703 */ 3704 if (tp->srtt_us) { 3705 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3706 TCP_DELACK_MIN); 3707 3708 if (rtt < max_ato) 3709 max_ato = rtt; 3710 } 3711 3712 ato = min(ato, max_ato); 3713 } 3714 3715 /* Stay within the limit we were given */ 3716 timeout = jiffies + ato; 3717 3718 /* Use new timeout only if there wasn't a older one earlier. */ 3719 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3720 /* If delack timer was blocked or is about to expire, 3721 * send ACK now. 3722 */ 3723 if (icsk->icsk_ack.blocked || 3724 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3725 tcp_send_ack(sk); 3726 return; 3727 } 3728 3729 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3730 timeout = icsk->icsk_ack.timeout; 3731 } 3732 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3733 icsk->icsk_ack.timeout = timeout; 3734 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3735 } 3736 3737 /* This routine sends an ack and also updates the window. */ 3738 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3739 { 3740 struct sk_buff *buff; 3741 3742 /* If we have been reset, we may not send again. */ 3743 if (sk->sk_state == TCP_CLOSE) 3744 return; 3745 3746 /* We are not putting this on the write queue, so 3747 * tcp_transmit_skb() will set the ownership to this 3748 * sock. 3749 */ 3750 buff = alloc_skb(MAX_TCP_HEADER, 3751 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3752 if (unlikely(!buff)) { 3753 inet_csk_schedule_ack(sk); 3754 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3755 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3756 TCP_DELACK_MAX, TCP_RTO_MAX); 3757 return; 3758 } 3759 3760 /* Reserve space for headers and prepare control bits. */ 3761 skb_reserve(buff, MAX_TCP_HEADER); 3762 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3763 3764 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3765 * too much. 3766 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3767 */ 3768 skb_set_tcp_pure_ack(buff); 3769 3770 /* Send it off, this clears delayed acks for us. */ 3771 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3772 } 3773 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3774 3775 void tcp_send_ack(struct sock *sk) 3776 { 3777 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3778 } 3779 3780 /* This routine sends a packet with an out of date sequence 3781 * number. It assumes the other end will try to ack it. 3782 * 3783 * Question: what should we make while urgent mode? 3784 * 4.4BSD forces sending single byte of data. We cannot send 3785 * out of window data, because we have SND.NXT==SND.MAX... 3786 * 3787 * Current solution: to send TWO zero-length segments in urgent mode: 3788 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3789 * out-of-date with SND.UNA-1 to probe window. 3790 */ 3791 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3792 { 3793 struct tcp_sock *tp = tcp_sk(sk); 3794 struct sk_buff *skb; 3795 3796 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3797 skb = alloc_skb(MAX_TCP_HEADER, 3798 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3799 if (!skb) 3800 return -1; 3801 3802 /* Reserve space for headers and set control bits. */ 3803 skb_reserve(skb, MAX_TCP_HEADER); 3804 /* Use a previous sequence. This should cause the other 3805 * end to send an ack. Don't queue or clone SKB, just 3806 * send it. 3807 */ 3808 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3809 NET_INC_STATS(sock_net(sk), mib); 3810 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3811 } 3812 3813 /* Called from setsockopt( ... TCP_REPAIR ) */ 3814 void tcp_send_window_probe(struct sock *sk) 3815 { 3816 if (sk->sk_state == TCP_ESTABLISHED) { 3817 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3818 tcp_mstamp_refresh(tcp_sk(sk)); 3819 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3820 } 3821 } 3822 3823 /* Initiate keepalive or window probe from timer. */ 3824 int tcp_write_wakeup(struct sock *sk, int mib) 3825 { 3826 struct tcp_sock *tp = tcp_sk(sk); 3827 struct sk_buff *skb; 3828 3829 if (sk->sk_state == TCP_CLOSE) 3830 return -1; 3831 3832 skb = tcp_send_head(sk); 3833 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3834 int err; 3835 unsigned int mss = tcp_current_mss(sk); 3836 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3837 3838 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3839 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3840 3841 /* We are probing the opening of a window 3842 * but the window size is != 0 3843 * must have been a result SWS avoidance ( sender ) 3844 */ 3845 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3846 skb->len > mss) { 3847 seg_size = min(seg_size, mss); 3848 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3849 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3850 skb, seg_size, mss, GFP_ATOMIC)) 3851 return -1; 3852 } else if (!tcp_skb_pcount(skb)) 3853 tcp_set_skb_tso_segs(skb, mss); 3854 3855 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3856 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3857 if (!err) 3858 tcp_event_new_data_sent(sk, skb); 3859 return err; 3860 } else { 3861 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3862 tcp_xmit_probe_skb(sk, 1, mib); 3863 return tcp_xmit_probe_skb(sk, 0, mib); 3864 } 3865 } 3866 3867 /* A window probe timeout has occurred. If window is not closed send 3868 * a partial packet else a zero probe. 3869 */ 3870 void tcp_send_probe0(struct sock *sk) 3871 { 3872 struct inet_connection_sock *icsk = inet_csk(sk); 3873 struct tcp_sock *tp = tcp_sk(sk); 3874 struct net *net = sock_net(sk); 3875 unsigned long timeout; 3876 int err; 3877 3878 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3879 3880 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3881 /* Cancel probe timer, if it is not required. */ 3882 icsk->icsk_probes_out = 0; 3883 icsk->icsk_backoff = 0; 3884 return; 3885 } 3886 3887 icsk->icsk_probes_out++; 3888 if (err <= 0) { 3889 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3890 icsk->icsk_backoff++; 3891 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 3892 } else { 3893 /* If packet was not sent due to local congestion, 3894 * Let senders fight for local resources conservatively. 3895 */ 3896 timeout = TCP_RESOURCE_PROBE_INTERVAL; 3897 } 3898 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL); 3899 } 3900 3901 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3902 { 3903 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3904 struct flowi fl; 3905 int res; 3906 3907 tcp_rsk(req)->txhash = net_tx_rndhash(); 3908 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3909 if (!res) { 3910 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3911 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3912 if (unlikely(tcp_passive_fastopen(sk))) 3913 tcp_sk(sk)->total_retrans++; 3914 trace_tcp_retransmit_synack(sk, req); 3915 } 3916 return res; 3917 } 3918 EXPORT_SYMBOL(tcp_rtx_synack); 3919