1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 66 int push_one, gfp_t gfp); 67 68 /* Account for new data that has been sent to the network. */ 69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 70 { 71 struct inet_connection_sock *icsk = inet_csk(sk); 72 struct tcp_sock *tp = tcp_sk(sk); 73 unsigned int prior_packets = tp->packets_out; 74 75 tcp_advance_send_head(sk, skb); 76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 80 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 81 tcp_rearm_rto(sk); 82 } 83 84 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 85 tcp_skb_pcount(skb)); 86 } 87 88 /* SND.NXT, if window was not shrunk. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 99 return tp->snd_nxt; 100 else 101 return tcp_wnd_end(tp); 102 } 103 104 /* Calculate mss to advertise in SYN segment. 105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 106 * 107 * 1. It is independent of path mtu. 108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 110 * attached devices, because some buggy hosts are confused by 111 * large MSS. 112 * 4. We do not make 3, we advertise MSS, calculated from first 113 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 114 * This may be overridden via information stored in routing table. 115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 116 * probably even Jumbo". 117 */ 118 static __u16 tcp_advertise_mss(struct sock *sk) 119 { 120 struct tcp_sock *tp = tcp_sk(sk); 121 const struct dst_entry *dst = __sk_dst_get(sk); 122 int mss = tp->advmss; 123 124 if (dst) { 125 unsigned int metric = dst_metric_advmss(dst); 126 127 if (metric < mss) { 128 mss = metric; 129 tp->advmss = mss; 130 } 131 } 132 133 return (__u16)mss; 134 } 135 136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 137 * This is the first part of cwnd validation mechanism. 138 */ 139 void tcp_cwnd_restart(struct sock *sk, s32 delta) 140 { 141 struct tcp_sock *tp = tcp_sk(sk); 142 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 143 u32 cwnd = tp->snd_cwnd; 144 145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 146 147 tp->snd_ssthresh = tcp_current_ssthresh(sk); 148 restart_cwnd = min(restart_cwnd, cwnd); 149 150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 151 cwnd >>= 1; 152 tp->snd_cwnd = max(cwnd, restart_cwnd); 153 tp->snd_cwnd_stamp = tcp_time_stamp; 154 tp->snd_cwnd_used = 0; 155 } 156 157 /* Congestion state accounting after a packet has been sent. */ 158 static void tcp_event_data_sent(struct tcp_sock *tp, 159 struct sock *sk) 160 { 161 struct inet_connection_sock *icsk = inet_csk(sk); 162 const u32 now = tcp_time_stamp; 163 164 if (tcp_packets_in_flight(tp) == 0) 165 tcp_ca_event(sk, CA_EVENT_TX_START); 166 167 tp->lsndtime = now; 168 169 /* If it is a reply for ato after last received 170 * packet, enter pingpong mode. 171 */ 172 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 173 icsk->icsk_ack.pingpong = 1; 174 } 175 176 /* Account for an ACK we sent. */ 177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 178 { 179 tcp_dec_quickack_mode(sk, pkts); 180 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 181 } 182 183 184 u32 tcp_default_init_rwnd(u32 mss) 185 { 186 /* Initial receive window should be twice of TCP_INIT_CWND to 187 * enable proper sending of new unsent data during fast recovery 188 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 189 * limit when mss is larger than 1460. 190 */ 191 u32 init_rwnd = TCP_INIT_CWND * 2; 192 193 if (mss > 1460) 194 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 195 return init_rwnd; 196 } 197 198 /* Determine a window scaling and initial window to offer. 199 * Based on the assumption that the given amount of space 200 * will be offered. Store the results in the tp structure. 201 * NOTE: for smooth operation initial space offering should 202 * be a multiple of mss if possible. We assume here that mss >= 1. 203 * This MUST be enforced by all callers. 204 */ 205 void tcp_select_initial_window(int __space, __u32 mss, 206 __u32 *rcv_wnd, __u32 *window_clamp, 207 int wscale_ok, __u8 *rcv_wscale, 208 __u32 init_rcv_wnd) 209 { 210 unsigned int space = (__space < 0 ? 0 : __space); 211 212 /* If no clamp set the clamp to the max possible scaled window */ 213 if (*window_clamp == 0) 214 (*window_clamp) = (65535 << 14); 215 space = min(*window_clamp, space); 216 217 /* Quantize space offering to a multiple of mss if possible. */ 218 if (space > mss) 219 space = (space / mss) * mss; 220 221 /* NOTE: offering an initial window larger than 32767 222 * will break some buggy TCP stacks. If the admin tells us 223 * it is likely we could be speaking with such a buggy stack 224 * we will truncate our initial window offering to 32K-1 225 * unless the remote has sent us a window scaling option, 226 * which we interpret as a sign the remote TCP is not 227 * misinterpreting the window field as a signed quantity. 228 */ 229 if (sysctl_tcp_workaround_signed_windows) 230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 231 else 232 (*rcv_wnd) = space; 233 234 (*rcv_wscale) = 0; 235 if (wscale_ok) { 236 /* Set window scaling on max possible window 237 * See RFC1323 for an explanation of the limit to 14 238 */ 239 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 240 space = min_t(u32, space, *window_clamp); 241 while (space > 65535 && (*rcv_wscale) < 14) { 242 space >>= 1; 243 (*rcv_wscale)++; 244 } 245 } 246 247 if (mss > (1 << *rcv_wscale)) { 248 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 249 init_rcv_wnd = tcp_default_init_rwnd(mss); 250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 251 } 252 253 /* Set the clamp no higher than max representable value */ 254 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 255 } 256 EXPORT_SYMBOL(tcp_select_initial_window); 257 258 /* Chose a new window to advertise, update state in tcp_sock for the 259 * socket, and return result with RFC1323 scaling applied. The return 260 * value can be stuffed directly into th->window for an outgoing 261 * frame. 262 */ 263 static u16 tcp_select_window(struct sock *sk) 264 { 265 struct tcp_sock *tp = tcp_sk(sk); 266 u32 old_win = tp->rcv_wnd; 267 u32 cur_win = tcp_receive_window(tp); 268 u32 new_win = __tcp_select_window(sk); 269 270 /* Never shrink the offered window */ 271 if (new_win < cur_win) { 272 /* Danger Will Robinson! 273 * Don't update rcv_wup/rcv_wnd here or else 274 * we will not be able to advertise a zero 275 * window in time. --DaveM 276 * 277 * Relax Will Robinson. 278 */ 279 if (new_win == 0) 280 NET_INC_STATS(sock_net(sk), 281 LINUX_MIB_TCPWANTZEROWINDOWADV); 282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 283 } 284 tp->rcv_wnd = new_win; 285 tp->rcv_wup = tp->rcv_nxt; 286 287 /* Make sure we do not exceed the maximum possible 288 * scaled window. 289 */ 290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 291 new_win = min(new_win, MAX_TCP_WINDOW); 292 else 293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 294 295 /* RFC1323 scaling applied */ 296 new_win >>= tp->rx_opt.rcv_wscale; 297 298 /* If we advertise zero window, disable fast path. */ 299 if (new_win == 0) { 300 tp->pred_flags = 0; 301 if (old_win) 302 NET_INC_STATS(sock_net(sk), 303 LINUX_MIB_TCPTOZEROWINDOWADV); 304 } else if (old_win == 0) { 305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 306 } 307 308 return new_win; 309 } 310 311 /* Packet ECN state for a SYN-ACK */ 312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 313 { 314 const struct tcp_sock *tp = tcp_sk(sk); 315 316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 317 if (!(tp->ecn_flags & TCP_ECN_OK)) 318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 319 else if (tcp_ca_needs_ecn(sk)) 320 INET_ECN_xmit(sk); 321 } 322 323 /* Packet ECN state for a SYN. */ 324 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 325 { 326 struct tcp_sock *tp = tcp_sk(sk); 327 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 328 tcp_ca_needs_ecn(sk); 329 330 if (!use_ecn) { 331 const struct dst_entry *dst = __sk_dst_get(sk); 332 333 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 334 use_ecn = true; 335 } 336 337 tp->ecn_flags = 0; 338 339 if (use_ecn) { 340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 341 tp->ecn_flags = TCP_ECN_OK; 342 if (tcp_ca_needs_ecn(sk)) 343 INET_ECN_xmit(sk); 344 } 345 } 346 347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 348 { 349 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 350 /* tp->ecn_flags are cleared at a later point in time when 351 * SYN ACK is ultimatively being received. 352 */ 353 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 354 } 355 356 static void 357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 358 { 359 if (inet_rsk(req)->ecn_ok) 360 th->ece = 1; 361 } 362 363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 364 * be sent. 365 */ 366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 367 int tcp_header_len) 368 { 369 struct tcp_sock *tp = tcp_sk(sk); 370 371 if (tp->ecn_flags & TCP_ECN_OK) { 372 /* Not-retransmitted data segment: set ECT and inject CWR. */ 373 if (skb->len != tcp_header_len && 374 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 375 INET_ECN_xmit(sk); 376 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 377 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 378 tcp_hdr(skb)->cwr = 1; 379 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 380 } 381 } else if (!tcp_ca_needs_ecn(sk)) { 382 /* ACK or retransmitted segment: clear ECT|CE */ 383 INET_ECN_dontxmit(sk); 384 } 385 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 386 tcp_hdr(skb)->ece = 1; 387 } 388 } 389 390 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 391 * auto increment end seqno. 392 */ 393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 394 { 395 skb->ip_summed = CHECKSUM_PARTIAL; 396 skb->csum = 0; 397 398 TCP_SKB_CB(skb)->tcp_flags = flags; 399 TCP_SKB_CB(skb)->sacked = 0; 400 401 tcp_skb_pcount_set(skb, 1); 402 403 TCP_SKB_CB(skb)->seq = seq; 404 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 405 seq++; 406 TCP_SKB_CB(skb)->end_seq = seq; 407 } 408 409 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 410 { 411 return tp->snd_una != tp->snd_up; 412 } 413 414 #define OPTION_SACK_ADVERTISE (1 << 0) 415 #define OPTION_TS (1 << 1) 416 #define OPTION_MD5 (1 << 2) 417 #define OPTION_WSCALE (1 << 3) 418 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 419 420 struct tcp_out_options { 421 u16 options; /* bit field of OPTION_* */ 422 u16 mss; /* 0 to disable */ 423 u8 ws; /* window scale, 0 to disable */ 424 u8 num_sack_blocks; /* number of SACK blocks to include */ 425 u8 hash_size; /* bytes in hash_location */ 426 __u8 *hash_location; /* temporary pointer, overloaded */ 427 __u32 tsval, tsecr; /* need to include OPTION_TS */ 428 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 429 }; 430 431 /* Write previously computed TCP options to the packet. 432 * 433 * Beware: Something in the Internet is very sensitive to the ordering of 434 * TCP options, we learned this through the hard way, so be careful here. 435 * Luckily we can at least blame others for their non-compliance but from 436 * inter-operability perspective it seems that we're somewhat stuck with 437 * the ordering which we have been using if we want to keep working with 438 * those broken things (not that it currently hurts anybody as there isn't 439 * particular reason why the ordering would need to be changed). 440 * 441 * At least SACK_PERM as the first option is known to lead to a disaster 442 * (but it may well be that other scenarios fail similarly). 443 */ 444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 445 struct tcp_out_options *opts) 446 { 447 u16 options = opts->options; /* mungable copy */ 448 449 if (unlikely(OPTION_MD5 & options)) { 450 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 451 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 452 /* overload cookie hash location */ 453 opts->hash_location = (__u8 *)ptr; 454 ptr += 4; 455 } 456 457 if (unlikely(opts->mss)) { 458 *ptr++ = htonl((TCPOPT_MSS << 24) | 459 (TCPOLEN_MSS << 16) | 460 opts->mss); 461 } 462 463 if (likely(OPTION_TS & options)) { 464 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 465 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 466 (TCPOLEN_SACK_PERM << 16) | 467 (TCPOPT_TIMESTAMP << 8) | 468 TCPOLEN_TIMESTAMP); 469 options &= ~OPTION_SACK_ADVERTISE; 470 } else { 471 *ptr++ = htonl((TCPOPT_NOP << 24) | 472 (TCPOPT_NOP << 16) | 473 (TCPOPT_TIMESTAMP << 8) | 474 TCPOLEN_TIMESTAMP); 475 } 476 *ptr++ = htonl(opts->tsval); 477 *ptr++ = htonl(opts->tsecr); 478 } 479 480 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 481 *ptr++ = htonl((TCPOPT_NOP << 24) | 482 (TCPOPT_NOP << 16) | 483 (TCPOPT_SACK_PERM << 8) | 484 TCPOLEN_SACK_PERM); 485 } 486 487 if (unlikely(OPTION_WSCALE & options)) { 488 *ptr++ = htonl((TCPOPT_NOP << 24) | 489 (TCPOPT_WINDOW << 16) | 490 (TCPOLEN_WINDOW << 8) | 491 opts->ws); 492 } 493 494 if (unlikely(opts->num_sack_blocks)) { 495 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 496 tp->duplicate_sack : tp->selective_acks; 497 int this_sack; 498 499 *ptr++ = htonl((TCPOPT_NOP << 24) | 500 (TCPOPT_NOP << 16) | 501 (TCPOPT_SACK << 8) | 502 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 503 TCPOLEN_SACK_PERBLOCK))); 504 505 for (this_sack = 0; this_sack < opts->num_sack_blocks; 506 ++this_sack) { 507 *ptr++ = htonl(sp[this_sack].start_seq); 508 *ptr++ = htonl(sp[this_sack].end_seq); 509 } 510 511 tp->rx_opt.dsack = 0; 512 } 513 514 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 515 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 516 u8 *p = (u8 *)ptr; 517 u32 len; /* Fast Open option length */ 518 519 if (foc->exp) { 520 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 521 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 522 TCPOPT_FASTOPEN_MAGIC); 523 p += TCPOLEN_EXP_FASTOPEN_BASE; 524 } else { 525 len = TCPOLEN_FASTOPEN_BASE + foc->len; 526 *p++ = TCPOPT_FASTOPEN; 527 *p++ = len; 528 } 529 530 memcpy(p, foc->val, foc->len); 531 if ((len & 3) == 2) { 532 p[foc->len] = TCPOPT_NOP; 533 p[foc->len + 1] = TCPOPT_NOP; 534 } 535 ptr += (len + 3) >> 2; 536 } 537 } 538 539 /* Compute TCP options for SYN packets. This is not the final 540 * network wire format yet. 541 */ 542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 543 struct tcp_out_options *opts, 544 struct tcp_md5sig_key **md5) 545 { 546 struct tcp_sock *tp = tcp_sk(sk); 547 unsigned int remaining = MAX_TCP_OPTION_SPACE; 548 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 549 550 #ifdef CONFIG_TCP_MD5SIG 551 *md5 = tp->af_specific->md5_lookup(sk, sk); 552 if (*md5) { 553 opts->options |= OPTION_MD5; 554 remaining -= TCPOLEN_MD5SIG_ALIGNED; 555 } 556 #else 557 *md5 = NULL; 558 #endif 559 560 /* We always get an MSS option. The option bytes which will be seen in 561 * normal data packets should timestamps be used, must be in the MSS 562 * advertised. But we subtract them from tp->mss_cache so that 563 * calculations in tcp_sendmsg are simpler etc. So account for this 564 * fact here if necessary. If we don't do this correctly, as a 565 * receiver we won't recognize data packets as being full sized when we 566 * should, and thus we won't abide by the delayed ACK rules correctly. 567 * SACKs don't matter, we never delay an ACK when we have any of those 568 * going out. */ 569 opts->mss = tcp_advertise_mss(sk); 570 remaining -= TCPOLEN_MSS_ALIGNED; 571 572 if (likely(sysctl_tcp_timestamps && !*md5)) { 573 opts->options |= OPTION_TS; 574 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 575 opts->tsecr = tp->rx_opt.ts_recent; 576 remaining -= TCPOLEN_TSTAMP_ALIGNED; 577 } 578 if (likely(sysctl_tcp_window_scaling)) { 579 opts->ws = tp->rx_opt.rcv_wscale; 580 opts->options |= OPTION_WSCALE; 581 remaining -= TCPOLEN_WSCALE_ALIGNED; 582 } 583 if (likely(sysctl_tcp_sack)) { 584 opts->options |= OPTION_SACK_ADVERTISE; 585 if (unlikely(!(OPTION_TS & opts->options))) 586 remaining -= TCPOLEN_SACKPERM_ALIGNED; 587 } 588 589 if (fastopen && fastopen->cookie.len >= 0) { 590 u32 need = fastopen->cookie.len; 591 592 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 593 TCPOLEN_FASTOPEN_BASE; 594 need = (need + 3) & ~3U; /* Align to 32 bits */ 595 if (remaining >= need) { 596 opts->options |= OPTION_FAST_OPEN_COOKIE; 597 opts->fastopen_cookie = &fastopen->cookie; 598 remaining -= need; 599 tp->syn_fastopen = 1; 600 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 601 } 602 } 603 604 return MAX_TCP_OPTION_SPACE - remaining; 605 } 606 607 /* Set up TCP options for SYN-ACKs. */ 608 static unsigned int tcp_synack_options(struct request_sock *req, 609 unsigned int mss, struct sk_buff *skb, 610 struct tcp_out_options *opts, 611 const struct tcp_md5sig_key *md5, 612 struct tcp_fastopen_cookie *foc) 613 { 614 struct inet_request_sock *ireq = inet_rsk(req); 615 unsigned int remaining = MAX_TCP_OPTION_SPACE; 616 617 #ifdef CONFIG_TCP_MD5SIG 618 if (md5) { 619 opts->options |= OPTION_MD5; 620 remaining -= TCPOLEN_MD5SIG_ALIGNED; 621 622 /* We can't fit any SACK blocks in a packet with MD5 + TS 623 * options. There was discussion about disabling SACK 624 * rather than TS in order to fit in better with old, 625 * buggy kernels, but that was deemed to be unnecessary. 626 */ 627 ireq->tstamp_ok &= !ireq->sack_ok; 628 } 629 #endif 630 631 /* We always send an MSS option. */ 632 opts->mss = mss; 633 remaining -= TCPOLEN_MSS_ALIGNED; 634 635 if (likely(ireq->wscale_ok)) { 636 opts->ws = ireq->rcv_wscale; 637 opts->options |= OPTION_WSCALE; 638 remaining -= TCPOLEN_WSCALE_ALIGNED; 639 } 640 if (likely(ireq->tstamp_ok)) { 641 opts->options |= OPTION_TS; 642 opts->tsval = tcp_skb_timestamp(skb); 643 opts->tsecr = req->ts_recent; 644 remaining -= TCPOLEN_TSTAMP_ALIGNED; 645 } 646 if (likely(ireq->sack_ok)) { 647 opts->options |= OPTION_SACK_ADVERTISE; 648 if (unlikely(!ireq->tstamp_ok)) 649 remaining -= TCPOLEN_SACKPERM_ALIGNED; 650 } 651 if (foc != NULL && foc->len >= 0) { 652 u32 need = foc->len; 653 654 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 655 TCPOLEN_FASTOPEN_BASE; 656 need = (need + 3) & ~3U; /* Align to 32 bits */ 657 if (remaining >= need) { 658 opts->options |= OPTION_FAST_OPEN_COOKIE; 659 opts->fastopen_cookie = foc; 660 remaining -= need; 661 } 662 } 663 664 return MAX_TCP_OPTION_SPACE - remaining; 665 } 666 667 /* Compute TCP options for ESTABLISHED sockets. This is not the 668 * final wire format yet. 669 */ 670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 671 struct tcp_out_options *opts, 672 struct tcp_md5sig_key **md5) 673 { 674 struct tcp_sock *tp = tcp_sk(sk); 675 unsigned int size = 0; 676 unsigned int eff_sacks; 677 678 opts->options = 0; 679 680 #ifdef CONFIG_TCP_MD5SIG 681 *md5 = tp->af_specific->md5_lookup(sk, sk); 682 if (unlikely(*md5)) { 683 opts->options |= OPTION_MD5; 684 size += TCPOLEN_MD5SIG_ALIGNED; 685 } 686 #else 687 *md5 = NULL; 688 #endif 689 690 if (likely(tp->rx_opt.tstamp_ok)) { 691 opts->options |= OPTION_TS; 692 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 693 opts->tsecr = tp->rx_opt.ts_recent; 694 size += TCPOLEN_TSTAMP_ALIGNED; 695 } 696 697 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 698 if (unlikely(eff_sacks)) { 699 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 700 opts->num_sack_blocks = 701 min_t(unsigned int, eff_sacks, 702 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 703 TCPOLEN_SACK_PERBLOCK); 704 size += TCPOLEN_SACK_BASE_ALIGNED + 705 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 706 } 707 708 return size; 709 } 710 711 712 /* TCP SMALL QUEUES (TSQ) 713 * 714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 715 * to reduce RTT and bufferbloat. 716 * We do this using a special skb destructor (tcp_wfree). 717 * 718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 719 * needs to be reallocated in a driver. 720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 721 * 722 * Since transmit from skb destructor is forbidden, we use a tasklet 723 * to process all sockets that eventually need to send more skbs. 724 * We use one tasklet per cpu, with its own queue of sockets. 725 */ 726 struct tsq_tasklet { 727 struct tasklet_struct tasklet; 728 struct list_head head; /* queue of tcp sockets */ 729 }; 730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 731 732 static void tcp_tsq_handler(struct sock *sk) 733 { 734 if ((1 << sk->sk_state) & 735 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 736 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 737 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle, 738 0, GFP_ATOMIC); 739 } 740 /* 741 * One tasklet per cpu tries to send more skbs. 742 * We run in tasklet context but need to disable irqs when 743 * transferring tsq->head because tcp_wfree() might 744 * interrupt us (non NAPI drivers) 745 */ 746 static void tcp_tasklet_func(unsigned long data) 747 { 748 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 749 LIST_HEAD(list); 750 unsigned long flags; 751 struct list_head *q, *n; 752 struct tcp_sock *tp; 753 struct sock *sk; 754 755 local_irq_save(flags); 756 list_splice_init(&tsq->head, &list); 757 local_irq_restore(flags); 758 759 list_for_each_safe(q, n, &list) { 760 tp = list_entry(q, struct tcp_sock, tsq_node); 761 list_del(&tp->tsq_node); 762 763 sk = (struct sock *)tp; 764 bh_lock_sock(sk); 765 766 if (!sock_owned_by_user(sk)) { 767 tcp_tsq_handler(sk); 768 } else { 769 /* defer the work to tcp_release_cb() */ 770 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 771 } 772 bh_unlock_sock(sk); 773 774 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 775 sk_free(sk); 776 } 777 } 778 779 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 780 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 781 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 782 (1UL << TCP_MTU_REDUCED_DEFERRED)) 783 /** 784 * tcp_release_cb - tcp release_sock() callback 785 * @sk: socket 786 * 787 * called from release_sock() to perform protocol dependent 788 * actions before socket release. 789 */ 790 void tcp_release_cb(struct sock *sk) 791 { 792 struct tcp_sock *tp = tcp_sk(sk); 793 unsigned long flags, nflags; 794 795 /* perform an atomic operation only if at least one flag is set */ 796 do { 797 flags = tp->tsq_flags; 798 if (!(flags & TCP_DEFERRED_ALL)) 799 return; 800 nflags = flags & ~TCP_DEFERRED_ALL; 801 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 802 803 if (flags & (1UL << TCP_TSQ_DEFERRED)) 804 tcp_tsq_handler(sk); 805 806 /* Here begins the tricky part : 807 * We are called from release_sock() with : 808 * 1) BH disabled 809 * 2) sk_lock.slock spinlock held 810 * 3) socket owned by us (sk->sk_lock.owned == 1) 811 * 812 * But following code is meant to be called from BH handlers, 813 * so we should keep BH disabled, but early release socket ownership 814 */ 815 sock_release_ownership(sk); 816 817 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 818 tcp_write_timer_handler(sk); 819 __sock_put(sk); 820 } 821 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 822 tcp_delack_timer_handler(sk); 823 __sock_put(sk); 824 } 825 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 826 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 827 __sock_put(sk); 828 } 829 } 830 EXPORT_SYMBOL(tcp_release_cb); 831 832 void __init tcp_tasklet_init(void) 833 { 834 int i; 835 836 for_each_possible_cpu(i) { 837 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 838 839 INIT_LIST_HEAD(&tsq->head); 840 tasklet_init(&tsq->tasklet, 841 tcp_tasklet_func, 842 (unsigned long)tsq); 843 } 844 } 845 846 /* 847 * Write buffer destructor automatically called from kfree_skb. 848 * We can't xmit new skbs from this context, as we might already 849 * hold qdisc lock. 850 */ 851 void tcp_wfree(struct sk_buff *skb) 852 { 853 struct sock *sk = skb->sk; 854 struct tcp_sock *tp = tcp_sk(sk); 855 int wmem; 856 857 /* Keep one reference on sk_wmem_alloc. 858 * Will be released by sk_free() from here or tcp_tasklet_func() 859 */ 860 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 861 862 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 863 * Wait until our queues (qdisc + devices) are drained. 864 * This gives : 865 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 866 * - chance for incoming ACK (processed by another cpu maybe) 867 * to migrate this flow (skb->ooo_okay will be eventually set) 868 */ 869 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 870 goto out; 871 872 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 873 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 874 unsigned long flags; 875 struct tsq_tasklet *tsq; 876 877 /* queue this socket to tasklet queue */ 878 local_irq_save(flags); 879 tsq = this_cpu_ptr(&tsq_tasklet); 880 list_add(&tp->tsq_node, &tsq->head); 881 tasklet_schedule(&tsq->tasklet); 882 local_irq_restore(flags); 883 return; 884 } 885 out: 886 sk_free(sk); 887 } 888 889 /* This routine actually transmits TCP packets queued in by 890 * tcp_do_sendmsg(). This is used by both the initial 891 * transmission and possible later retransmissions. 892 * All SKB's seen here are completely headerless. It is our 893 * job to build the TCP header, and pass the packet down to 894 * IP so it can do the same plus pass the packet off to the 895 * device. 896 * 897 * We are working here with either a clone of the original 898 * SKB, or a fresh unique copy made by the retransmit engine. 899 */ 900 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 901 gfp_t gfp_mask) 902 { 903 const struct inet_connection_sock *icsk = inet_csk(sk); 904 struct inet_sock *inet; 905 struct tcp_sock *tp; 906 struct tcp_skb_cb *tcb; 907 struct tcp_out_options opts; 908 unsigned int tcp_options_size, tcp_header_size; 909 struct tcp_md5sig_key *md5; 910 struct tcphdr *th; 911 int err; 912 913 BUG_ON(!skb || !tcp_skb_pcount(skb)); 914 915 if (clone_it) { 916 skb_mstamp_get(&skb->skb_mstamp); 917 918 if (unlikely(skb_cloned(skb))) 919 skb = pskb_copy(skb, gfp_mask); 920 else 921 skb = skb_clone(skb, gfp_mask); 922 if (unlikely(!skb)) 923 return -ENOBUFS; 924 } 925 926 inet = inet_sk(sk); 927 tp = tcp_sk(sk); 928 tcb = TCP_SKB_CB(skb); 929 memset(&opts, 0, sizeof(opts)); 930 931 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 932 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 933 else 934 tcp_options_size = tcp_established_options(sk, skb, &opts, 935 &md5); 936 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 937 938 /* if no packet is in qdisc/device queue, then allow XPS to select 939 * another queue. We can be called from tcp_tsq_handler() 940 * which holds one reference to sk_wmem_alloc. 941 * 942 * TODO: Ideally, in-flight pure ACK packets should not matter here. 943 * One way to get this would be to set skb->truesize = 2 on them. 944 */ 945 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 946 947 skb_push(skb, tcp_header_size); 948 skb_reset_transport_header(skb); 949 950 skb_orphan(skb); 951 skb->sk = sk; 952 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree; 953 skb_set_hash_from_sk(skb, sk); 954 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 955 956 /* Build TCP header and checksum it. */ 957 th = tcp_hdr(skb); 958 th->source = inet->inet_sport; 959 th->dest = inet->inet_dport; 960 th->seq = htonl(tcb->seq); 961 th->ack_seq = htonl(tp->rcv_nxt); 962 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 963 tcb->tcp_flags); 964 965 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 966 /* RFC1323: The window in SYN & SYN/ACK segments 967 * is never scaled. 968 */ 969 th->window = htons(min(tp->rcv_wnd, 65535U)); 970 } else { 971 th->window = htons(tcp_select_window(sk)); 972 } 973 th->check = 0; 974 th->urg_ptr = 0; 975 976 /* The urg_mode check is necessary during a below snd_una win probe */ 977 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 978 if (before(tp->snd_up, tcb->seq + 0x10000)) { 979 th->urg_ptr = htons(tp->snd_up - tcb->seq); 980 th->urg = 1; 981 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 982 th->urg_ptr = htons(0xFFFF); 983 th->urg = 1; 984 } 985 } 986 987 tcp_options_write((__be32 *)(th + 1), tp, &opts); 988 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 989 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 990 tcp_ecn_send(sk, skb, tcp_header_size); 991 992 #ifdef CONFIG_TCP_MD5SIG 993 /* Calculate the MD5 hash, as we have all we need now */ 994 if (md5) { 995 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 996 tp->af_specific->calc_md5_hash(opts.hash_location, 997 md5, sk, skb); 998 } 999 #endif 1000 1001 icsk->icsk_af_ops->send_check(sk, skb); 1002 1003 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1004 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1005 1006 if (skb->len != tcp_header_size) { 1007 tcp_event_data_sent(tp, sk); 1008 tp->data_segs_out += tcp_skb_pcount(skb); 1009 } 1010 1011 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1012 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1013 tcp_skb_pcount(skb)); 1014 1015 tp->segs_out += tcp_skb_pcount(skb); 1016 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1017 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1018 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1019 1020 /* Our usage of tstamp should remain private */ 1021 skb->tstamp.tv64 = 0; 1022 1023 /* Cleanup our debris for IP stacks */ 1024 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1025 sizeof(struct inet6_skb_parm))); 1026 1027 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1028 1029 if (likely(err <= 0)) 1030 return err; 1031 1032 tcp_enter_cwr(sk); 1033 1034 return net_xmit_eval(err); 1035 } 1036 1037 /* This routine just queues the buffer for sending. 1038 * 1039 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1040 * otherwise socket can stall. 1041 */ 1042 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1043 { 1044 struct tcp_sock *tp = tcp_sk(sk); 1045 1046 /* Advance write_seq and place onto the write_queue. */ 1047 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1048 __skb_header_release(skb); 1049 tcp_add_write_queue_tail(sk, skb); 1050 sk->sk_wmem_queued += skb->truesize; 1051 sk_mem_charge(sk, skb->truesize); 1052 } 1053 1054 /* Initialize TSO segments for a packet. */ 1055 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1056 { 1057 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1058 /* Avoid the costly divide in the normal 1059 * non-TSO case. 1060 */ 1061 tcp_skb_pcount_set(skb, 1); 1062 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1063 } else { 1064 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1065 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1066 } 1067 } 1068 1069 /* When a modification to fackets out becomes necessary, we need to check 1070 * skb is counted to fackets_out or not. 1071 */ 1072 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1073 int decr) 1074 { 1075 struct tcp_sock *tp = tcp_sk(sk); 1076 1077 if (!tp->sacked_out || tcp_is_reno(tp)) 1078 return; 1079 1080 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1081 tp->fackets_out -= decr; 1082 } 1083 1084 /* Pcount in the middle of the write queue got changed, we need to do various 1085 * tweaks to fix counters 1086 */ 1087 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1088 { 1089 struct tcp_sock *tp = tcp_sk(sk); 1090 1091 tp->packets_out -= decr; 1092 1093 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1094 tp->sacked_out -= decr; 1095 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1096 tp->retrans_out -= decr; 1097 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1098 tp->lost_out -= decr; 1099 1100 /* Reno case is special. Sigh... */ 1101 if (tcp_is_reno(tp) && decr > 0) 1102 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1103 1104 tcp_adjust_fackets_out(sk, skb, decr); 1105 1106 if (tp->lost_skb_hint && 1107 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1108 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1109 tp->lost_cnt_hint -= decr; 1110 1111 tcp_verify_left_out(tp); 1112 } 1113 1114 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1115 { 1116 struct skb_shared_info *shinfo = skb_shinfo(skb); 1117 1118 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) && 1119 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1120 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1121 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1122 1123 shinfo->tx_flags &= ~tsflags; 1124 shinfo2->tx_flags |= tsflags; 1125 swap(shinfo->tskey, shinfo2->tskey); 1126 } 1127 } 1128 1129 /* Function to create two new TCP segments. Shrinks the given segment 1130 * to the specified size and appends a new segment with the rest of the 1131 * packet to the list. This won't be called frequently, I hope. 1132 * Remember, these are still headerless SKBs at this point. 1133 */ 1134 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1135 unsigned int mss_now, gfp_t gfp) 1136 { 1137 struct tcp_sock *tp = tcp_sk(sk); 1138 struct sk_buff *buff; 1139 int nsize, old_factor; 1140 int nlen; 1141 u8 flags; 1142 1143 if (WARN_ON(len > skb->len)) 1144 return -EINVAL; 1145 1146 nsize = skb_headlen(skb) - len; 1147 if (nsize < 0) 1148 nsize = 0; 1149 1150 if (skb_unclone(skb, gfp)) 1151 return -ENOMEM; 1152 1153 /* Get a new skb... force flag on. */ 1154 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1155 if (!buff) 1156 return -ENOMEM; /* We'll just try again later. */ 1157 1158 sk->sk_wmem_queued += buff->truesize; 1159 sk_mem_charge(sk, buff->truesize); 1160 nlen = skb->len - len - nsize; 1161 buff->truesize += nlen; 1162 skb->truesize -= nlen; 1163 1164 /* Correct the sequence numbers. */ 1165 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1166 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1167 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1168 1169 /* PSH and FIN should only be set in the second packet. */ 1170 flags = TCP_SKB_CB(skb)->tcp_flags; 1171 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1172 TCP_SKB_CB(buff)->tcp_flags = flags; 1173 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1174 1175 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1176 /* Copy and checksum data tail into the new buffer. */ 1177 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1178 skb_put(buff, nsize), 1179 nsize, 0); 1180 1181 skb_trim(skb, len); 1182 1183 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1184 } else { 1185 skb->ip_summed = CHECKSUM_PARTIAL; 1186 skb_split(skb, buff, len); 1187 } 1188 1189 buff->ip_summed = skb->ip_summed; 1190 1191 buff->tstamp = skb->tstamp; 1192 tcp_fragment_tstamp(skb, buff); 1193 1194 old_factor = tcp_skb_pcount(skb); 1195 1196 /* Fix up tso_factor for both original and new SKB. */ 1197 tcp_set_skb_tso_segs(skb, mss_now); 1198 tcp_set_skb_tso_segs(buff, mss_now); 1199 1200 /* If this packet has been sent out already, we must 1201 * adjust the various packet counters. 1202 */ 1203 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1204 int diff = old_factor - tcp_skb_pcount(skb) - 1205 tcp_skb_pcount(buff); 1206 1207 if (diff) 1208 tcp_adjust_pcount(sk, skb, diff); 1209 } 1210 1211 /* Link BUFF into the send queue. */ 1212 __skb_header_release(buff); 1213 tcp_insert_write_queue_after(skb, buff, sk); 1214 1215 return 0; 1216 } 1217 1218 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1219 * eventually). The difference is that pulled data not copied, but 1220 * immediately discarded. 1221 */ 1222 static void __pskb_trim_head(struct sk_buff *skb, int len) 1223 { 1224 struct skb_shared_info *shinfo; 1225 int i, k, eat; 1226 1227 eat = min_t(int, len, skb_headlen(skb)); 1228 if (eat) { 1229 __skb_pull(skb, eat); 1230 len -= eat; 1231 if (!len) 1232 return; 1233 } 1234 eat = len; 1235 k = 0; 1236 shinfo = skb_shinfo(skb); 1237 for (i = 0; i < shinfo->nr_frags; i++) { 1238 int size = skb_frag_size(&shinfo->frags[i]); 1239 1240 if (size <= eat) { 1241 skb_frag_unref(skb, i); 1242 eat -= size; 1243 } else { 1244 shinfo->frags[k] = shinfo->frags[i]; 1245 if (eat) { 1246 shinfo->frags[k].page_offset += eat; 1247 skb_frag_size_sub(&shinfo->frags[k], eat); 1248 eat = 0; 1249 } 1250 k++; 1251 } 1252 } 1253 shinfo->nr_frags = k; 1254 1255 skb_reset_tail_pointer(skb); 1256 skb->data_len -= len; 1257 skb->len = skb->data_len; 1258 } 1259 1260 /* Remove acked data from a packet in the transmit queue. */ 1261 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1262 { 1263 if (skb_unclone(skb, GFP_ATOMIC)) 1264 return -ENOMEM; 1265 1266 __pskb_trim_head(skb, len); 1267 1268 TCP_SKB_CB(skb)->seq += len; 1269 skb->ip_summed = CHECKSUM_PARTIAL; 1270 1271 skb->truesize -= len; 1272 sk->sk_wmem_queued -= len; 1273 sk_mem_uncharge(sk, len); 1274 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1275 1276 /* Any change of skb->len requires recalculation of tso factor. */ 1277 if (tcp_skb_pcount(skb) > 1) 1278 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1279 1280 return 0; 1281 } 1282 1283 /* Calculate MSS not accounting any TCP options. */ 1284 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1285 { 1286 const struct tcp_sock *tp = tcp_sk(sk); 1287 const struct inet_connection_sock *icsk = inet_csk(sk); 1288 int mss_now; 1289 1290 /* Calculate base mss without TCP options: 1291 It is MMS_S - sizeof(tcphdr) of rfc1122 1292 */ 1293 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1294 1295 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1296 if (icsk->icsk_af_ops->net_frag_header_len) { 1297 const struct dst_entry *dst = __sk_dst_get(sk); 1298 1299 if (dst && dst_allfrag(dst)) 1300 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1301 } 1302 1303 /* Clamp it (mss_clamp does not include tcp options) */ 1304 if (mss_now > tp->rx_opt.mss_clamp) 1305 mss_now = tp->rx_opt.mss_clamp; 1306 1307 /* Now subtract optional transport overhead */ 1308 mss_now -= icsk->icsk_ext_hdr_len; 1309 1310 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1311 if (mss_now < 48) 1312 mss_now = 48; 1313 return mss_now; 1314 } 1315 1316 /* Calculate MSS. Not accounting for SACKs here. */ 1317 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1318 { 1319 /* Subtract TCP options size, not including SACKs */ 1320 return __tcp_mtu_to_mss(sk, pmtu) - 1321 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1322 } 1323 1324 /* Inverse of above */ 1325 int tcp_mss_to_mtu(struct sock *sk, int mss) 1326 { 1327 const struct tcp_sock *tp = tcp_sk(sk); 1328 const struct inet_connection_sock *icsk = inet_csk(sk); 1329 int mtu; 1330 1331 mtu = mss + 1332 tp->tcp_header_len + 1333 icsk->icsk_ext_hdr_len + 1334 icsk->icsk_af_ops->net_header_len; 1335 1336 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1337 if (icsk->icsk_af_ops->net_frag_header_len) { 1338 const struct dst_entry *dst = __sk_dst_get(sk); 1339 1340 if (dst && dst_allfrag(dst)) 1341 mtu += icsk->icsk_af_ops->net_frag_header_len; 1342 } 1343 return mtu; 1344 } 1345 1346 /* MTU probing init per socket */ 1347 void tcp_mtup_init(struct sock *sk) 1348 { 1349 struct tcp_sock *tp = tcp_sk(sk); 1350 struct inet_connection_sock *icsk = inet_csk(sk); 1351 struct net *net = sock_net(sk); 1352 1353 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1354 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1355 icsk->icsk_af_ops->net_header_len; 1356 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1357 icsk->icsk_mtup.probe_size = 0; 1358 if (icsk->icsk_mtup.enabled) 1359 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1360 } 1361 EXPORT_SYMBOL(tcp_mtup_init); 1362 1363 /* This function synchronize snd mss to current pmtu/exthdr set. 1364 1365 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1366 for TCP options, but includes only bare TCP header. 1367 1368 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1369 It is minimum of user_mss and mss received with SYN. 1370 It also does not include TCP options. 1371 1372 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1373 1374 tp->mss_cache is current effective sending mss, including 1375 all tcp options except for SACKs. It is evaluated, 1376 taking into account current pmtu, but never exceeds 1377 tp->rx_opt.mss_clamp. 1378 1379 NOTE1. rfc1122 clearly states that advertised MSS 1380 DOES NOT include either tcp or ip options. 1381 1382 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1383 are READ ONLY outside this function. --ANK (980731) 1384 */ 1385 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1386 { 1387 struct tcp_sock *tp = tcp_sk(sk); 1388 struct inet_connection_sock *icsk = inet_csk(sk); 1389 int mss_now; 1390 1391 if (icsk->icsk_mtup.search_high > pmtu) 1392 icsk->icsk_mtup.search_high = pmtu; 1393 1394 mss_now = tcp_mtu_to_mss(sk, pmtu); 1395 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1396 1397 /* And store cached results */ 1398 icsk->icsk_pmtu_cookie = pmtu; 1399 if (icsk->icsk_mtup.enabled) 1400 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1401 tp->mss_cache = mss_now; 1402 1403 return mss_now; 1404 } 1405 EXPORT_SYMBOL(tcp_sync_mss); 1406 1407 /* Compute the current effective MSS, taking SACKs and IP options, 1408 * and even PMTU discovery events into account. 1409 */ 1410 unsigned int tcp_current_mss(struct sock *sk) 1411 { 1412 const struct tcp_sock *tp = tcp_sk(sk); 1413 const struct dst_entry *dst = __sk_dst_get(sk); 1414 u32 mss_now; 1415 unsigned int header_len; 1416 struct tcp_out_options opts; 1417 struct tcp_md5sig_key *md5; 1418 1419 mss_now = tp->mss_cache; 1420 1421 if (dst) { 1422 u32 mtu = dst_mtu(dst); 1423 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1424 mss_now = tcp_sync_mss(sk, mtu); 1425 } 1426 1427 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1428 sizeof(struct tcphdr); 1429 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1430 * some common options. If this is an odd packet (because we have SACK 1431 * blocks etc) then our calculated header_len will be different, and 1432 * we have to adjust mss_now correspondingly */ 1433 if (header_len != tp->tcp_header_len) { 1434 int delta = (int) header_len - tp->tcp_header_len; 1435 mss_now -= delta; 1436 } 1437 1438 return mss_now; 1439 } 1440 1441 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1442 * As additional protections, we do not touch cwnd in retransmission phases, 1443 * and if application hit its sndbuf limit recently. 1444 */ 1445 static void tcp_cwnd_application_limited(struct sock *sk) 1446 { 1447 struct tcp_sock *tp = tcp_sk(sk); 1448 1449 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1450 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1451 /* Limited by application or receiver window. */ 1452 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1453 u32 win_used = max(tp->snd_cwnd_used, init_win); 1454 if (win_used < tp->snd_cwnd) { 1455 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1456 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1457 } 1458 tp->snd_cwnd_used = 0; 1459 } 1460 tp->snd_cwnd_stamp = tcp_time_stamp; 1461 } 1462 1463 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1464 { 1465 struct tcp_sock *tp = tcp_sk(sk); 1466 1467 /* Track the maximum number of outstanding packets in each 1468 * window, and remember whether we were cwnd-limited then. 1469 */ 1470 if (!before(tp->snd_una, tp->max_packets_seq) || 1471 tp->packets_out > tp->max_packets_out) { 1472 tp->max_packets_out = tp->packets_out; 1473 tp->max_packets_seq = tp->snd_nxt; 1474 tp->is_cwnd_limited = is_cwnd_limited; 1475 } 1476 1477 if (tcp_is_cwnd_limited(sk)) { 1478 /* Network is feed fully. */ 1479 tp->snd_cwnd_used = 0; 1480 tp->snd_cwnd_stamp = tcp_time_stamp; 1481 } else { 1482 /* Network starves. */ 1483 if (tp->packets_out > tp->snd_cwnd_used) 1484 tp->snd_cwnd_used = tp->packets_out; 1485 1486 if (sysctl_tcp_slow_start_after_idle && 1487 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1488 tcp_cwnd_application_limited(sk); 1489 } 1490 } 1491 1492 /* Minshall's variant of the Nagle send check. */ 1493 static bool tcp_minshall_check(const struct tcp_sock *tp) 1494 { 1495 return after(tp->snd_sml, tp->snd_una) && 1496 !after(tp->snd_sml, tp->snd_nxt); 1497 } 1498 1499 /* Update snd_sml if this skb is under mss 1500 * Note that a TSO packet might end with a sub-mss segment 1501 * The test is really : 1502 * if ((skb->len % mss) != 0) 1503 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1504 * But we can avoid doing the divide again given we already have 1505 * skb_pcount = skb->len / mss_now 1506 */ 1507 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1508 const struct sk_buff *skb) 1509 { 1510 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1511 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1512 } 1513 1514 /* Return false, if packet can be sent now without violation Nagle's rules: 1515 * 1. It is full sized. (provided by caller in %partial bool) 1516 * 2. Or it contains FIN. (already checked by caller) 1517 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1518 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1519 * With Minshall's modification: all sent small packets are ACKed. 1520 */ 1521 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1522 int nonagle) 1523 { 1524 return partial && 1525 ((nonagle & TCP_NAGLE_CORK) || 1526 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1527 } 1528 1529 /* Return how many segs we'd like on a TSO packet, 1530 * to send one TSO packet per ms 1531 */ 1532 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now) 1533 { 1534 u32 bytes, segs; 1535 1536 bytes = min(sk->sk_pacing_rate >> 10, 1537 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1538 1539 /* Goal is to send at least one packet per ms, 1540 * not one big TSO packet every 100 ms. 1541 * This preserves ACK clocking and is consistent 1542 * with tcp_tso_should_defer() heuristic. 1543 */ 1544 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs); 1545 1546 return min_t(u32, segs, sk->sk_gso_max_segs); 1547 } 1548 1549 /* Returns the portion of skb which can be sent right away */ 1550 static unsigned int tcp_mss_split_point(const struct sock *sk, 1551 const struct sk_buff *skb, 1552 unsigned int mss_now, 1553 unsigned int max_segs, 1554 int nonagle) 1555 { 1556 const struct tcp_sock *tp = tcp_sk(sk); 1557 u32 partial, needed, window, max_len; 1558 1559 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1560 max_len = mss_now * max_segs; 1561 1562 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1563 return max_len; 1564 1565 needed = min(skb->len, window); 1566 1567 if (max_len <= needed) 1568 return max_len; 1569 1570 partial = needed % mss_now; 1571 /* If last segment is not a full MSS, check if Nagle rules allow us 1572 * to include this last segment in this skb. 1573 * Otherwise, we'll split the skb at last MSS boundary 1574 */ 1575 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1576 return needed - partial; 1577 1578 return needed; 1579 } 1580 1581 /* Can at least one segment of SKB be sent right now, according to the 1582 * congestion window rules? If so, return how many segments are allowed. 1583 */ 1584 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1585 const struct sk_buff *skb) 1586 { 1587 u32 in_flight, cwnd, halfcwnd; 1588 1589 /* Don't be strict about the congestion window for the final FIN. */ 1590 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1591 tcp_skb_pcount(skb) == 1) 1592 return 1; 1593 1594 in_flight = tcp_packets_in_flight(tp); 1595 cwnd = tp->snd_cwnd; 1596 if (in_flight >= cwnd) 1597 return 0; 1598 1599 /* For better scheduling, ensure we have at least 1600 * 2 GSO packets in flight. 1601 */ 1602 halfcwnd = max(cwnd >> 1, 1U); 1603 return min(halfcwnd, cwnd - in_flight); 1604 } 1605 1606 /* Initialize TSO state of a skb. 1607 * This must be invoked the first time we consider transmitting 1608 * SKB onto the wire. 1609 */ 1610 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1611 { 1612 int tso_segs = tcp_skb_pcount(skb); 1613 1614 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1615 tcp_set_skb_tso_segs(skb, mss_now); 1616 tso_segs = tcp_skb_pcount(skb); 1617 } 1618 return tso_segs; 1619 } 1620 1621 1622 /* Return true if the Nagle test allows this packet to be 1623 * sent now. 1624 */ 1625 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1626 unsigned int cur_mss, int nonagle) 1627 { 1628 /* Nagle rule does not apply to frames, which sit in the middle of the 1629 * write_queue (they have no chances to get new data). 1630 * 1631 * This is implemented in the callers, where they modify the 'nonagle' 1632 * argument based upon the location of SKB in the send queue. 1633 */ 1634 if (nonagle & TCP_NAGLE_PUSH) 1635 return true; 1636 1637 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1638 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1639 return true; 1640 1641 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1642 return true; 1643 1644 return false; 1645 } 1646 1647 /* Does at least the first segment of SKB fit into the send window? */ 1648 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1649 const struct sk_buff *skb, 1650 unsigned int cur_mss) 1651 { 1652 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1653 1654 if (skb->len > cur_mss) 1655 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1656 1657 return !after(end_seq, tcp_wnd_end(tp)); 1658 } 1659 1660 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1661 * should be put on the wire right now. If so, it returns the number of 1662 * packets allowed by the congestion window. 1663 */ 1664 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1665 unsigned int cur_mss, int nonagle) 1666 { 1667 const struct tcp_sock *tp = tcp_sk(sk); 1668 unsigned int cwnd_quota; 1669 1670 tcp_init_tso_segs(skb, cur_mss); 1671 1672 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1673 return 0; 1674 1675 cwnd_quota = tcp_cwnd_test(tp, skb); 1676 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1677 cwnd_quota = 0; 1678 1679 return cwnd_quota; 1680 } 1681 1682 /* Test if sending is allowed right now. */ 1683 bool tcp_may_send_now(struct sock *sk) 1684 { 1685 const struct tcp_sock *tp = tcp_sk(sk); 1686 struct sk_buff *skb = tcp_send_head(sk); 1687 1688 return skb && 1689 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1690 (tcp_skb_is_last(sk, skb) ? 1691 tp->nonagle : TCP_NAGLE_PUSH)); 1692 } 1693 1694 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1695 * which is put after SKB on the list. It is very much like 1696 * tcp_fragment() except that it may make several kinds of assumptions 1697 * in order to speed up the splitting operation. In particular, we 1698 * know that all the data is in scatter-gather pages, and that the 1699 * packet has never been sent out before (and thus is not cloned). 1700 */ 1701 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1702 unsigned int mss_now, gfp_t gfp) 1703 { 1704 struct sk_buff *buff; 1705 int nlen = skb->len - len; 1706 u8 flags; 1707 1708 /* All of a TSO frame must be composed of paged data. */ 1709 if (skb->len != skb->data_len) 1710 return tcp_fragment(sk, skb, len, mss_now, gfp); 1711 1712 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1713 if (unlikely(!buff)) 1714 return -ENOMEM; 1715 1716 sk->sk_wmem_queued += buff->truesize; 1717 sk_mem_charge(sk, buff->truesize); 1718 buff->truesize += nlen; 1719 skb->truesize -= nlen; 1720 1721 /* Correct the sequence numbers. */ 1722 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1723 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1724 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1725 1726 /* PSH and FIN should only be set in the second packet. */ 1727 flags = TCP_SKB_CB(skb)->tcp_flags; 1728 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1729 TCP_SKB_CB(buff)->tcp_flags = flags; 1730 1731 /* This packet was never sent out yet, so no SACK bits. */ 1732 TCP_SKB_CB(buff)->sacked = 0; 1733 1734 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1735 skb_split(skb, buff, len); 1736 tcp_fragment_tstamp(skb, buff); 1737 1738 /* Fix up tso_factor for both original and new SKB. */ 1739 tcp_set_skb_tso_segs(skb, mss_now); 1740 tcp_set_skb_tso_segs(buff, mss_now); 1741 1742 /* Link BUFF into the send queue. */ 1743 __skb_header_release(buff); 1744 tcp_insert_write_queue_after(skb, buff, sk); 1745 1746 return 0; 1747 } 1748 1749 /* Try to defer sending, if possible, in order to minimize the amount 1750 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1751 * 1752 * This algorithm is from John Heffner. 1753 */ 1754 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1755 bool *is_cwnd_limited, u32 max_segs) 1756 { 1757 const struct inet_connection_sock *icsk = inet_csk(sk); 1758 u32 age, send_win, cong_win, limit, in_flight; 1759 struct tcp_sock *tp = tcp_sk(sk); 1760 struct skb_mstamp now; 1761 struct sk_buff *head; 1762 int win_divisor; 1763 1764 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1765 goto send_now; 1766 1767 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1768 goto send_now; 1769 1770 /* Avoid bursty behavior by allowing defer 1771 * only if the last write was recent. 1772 */ 1773 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0) 1774 goto send_now; 1775 1776 in_flight = tcp_packets_in_flight(tp); 1777 1778 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1779 1780 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1781 1782 /* From in_flight test above, we know that cwnd > in_flight. */ 1783 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1784 1785 limit = min(send_win, cong_win); 1786 1787 /* If a full-sized TSO skb can be sent, do it. */ 1788 if (limit >= max_segs * tp->mss_cache) 1789 goto send_now; 1790 1791 /* Middle in queue won't get any more data, full sendable already? */ 1792 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1793 goto send_now; 1794 1795 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1796 if (win_divisor) { 1797 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1798 1799 /* If at least some fraction of a window is available, 1800 * just use it. 1801 */ 1802 chunk /= win_divisor; 1803 if (limit >= chunk) 1804 goto send_now; 1805 } else { 1806 /* Different approach, try not to defer past a single 1807 * ACK. Receiver should ACK every other full sized 1808 * frame, so if we have space for more than 3 frames 1809 * then send now. 1810 */ 1811 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1812 goto send_now; 1813 } 1814 1815 head = tcp_write_queue_head(sk); 1816 skb_mstamp_get(&now); 1817 age = skb_mstamp_us_delta(&now, &head->skb_mstamp); 1818 /* If next ACK is likely to come too late (half srtt), do not defer */ 1819 if (age < (tp->srtt_us >> 4)) 1820 goto send_now; 1821 1822 /* Ok, it looks like it is advisable to defer. */ 1823 1824 if (cong_win < send_win && cong_win <= skb->len) 1825 *is_cwnd_limited = true; 1826 1827 return true; 1828 1829 send_now: 1830 return false; 1831 } 1832 1833 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1834 { 1835 struct inet_connection_sock *icsk = inet_csk(sk); 1836 struct tcp_sock *tp = tcp_sk(sk); 1837 struct net *net = sock_net(sk); 1838 u32 interval; 1839 s32 delta; 1840 1841 interval = net->ipv4.sysctl_tcp_probe_interval; 1842 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp; 1843 if (unlikely(delta >= interval * HZ)) { 1844 int mss = tcp_current_mss(sk); 1845 1846 /* Update current search range */ 1847 icsk->icsk_mtup.probe_size = 0; 1848 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1849 sizeof(struct tcphdr) + 1850 icsk->icsk_af_ops->net_header_len; 1851 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1852 1853 /* Update probe time stamp */ 1854 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1855 } 1856 } 1857 1858 /* Create a new MTU probe if we are ready. 1859 * MTU probe is regularly attempting to increase the path MTU by 1860 * deliberately sending larger packets. This discovers routing 1861 * changes resulting in larger path MTUs. 1862 * 1863 * Returns 0 if we should wait to probe (no cwnd available), 1864 * 1 if a probe was sent, 1865 * -1 otherwise 1866 */ 1867 static int tcp_mtu_probe(struct sock *sk) 1868 { 1869 struct tcp_sock *tp = tcp_sk(sk); 1870 struct inet_connection_sock *icsk = inet_csk(sk); 1871 struct sk_buff *skb, *nskb, *next; 1872 struct net *net = sock_net(sk); 1873 int len; 1874 int probe_size; 1875 int size_needed; 1876 int copy; 1877 int mss_now; 1878 int interval; 1879 1880 /* Not currently probing/verifying, 1881 * not in recovery, 1882 * have enough cwnd, and 1883 * not SACKing (the variable headers throw things off) */ 1884 if (!icsk->icsk_mtup.enabled || 1885 icsk->icsk_mtup.probe_size || 1886 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1887 tp->snd_cwnd < 11 || 1888 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1889 return -1; 1890 1891 /* Use binary search for probe_size between tcp_mss_base, 1892 * and current mss_clamp. if (search_high - search_low) 1893 * smaller than a threshold, backoff from probing. 1894 */ 1895 mss_now = tcp_current_mss(sk); 1896 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 1897 icsk->icsk_mtup.search_low) >> 1); 1898 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1899 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 1900 /* When misfortune happens, we are reprobing actively, 1901 * and then reprobe timer has expired. We stick with current 1902 * probing process by not resetting search range to its orignal. 1903 */ 1904 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 1905 interval < net->ipv4.sysctl_tcp_probe_threshold) { 1906 /* Check whether enough time has elaplased for 1907 * another round of probing. 1908 */ 1909 tcp_mtu_check_reprobe(sk); 1910 return -1; 1911 } 1912 1913 /* Have enough data in the send queue to probe? */ 1914 if (tp->write_seq - tp->snd_nxt < size_needed) 1915 return -1; 1916 1917 if (tp->snd_wnd < size_needed) 1918 return -1; 1919 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1920 return 0; 1921 1922 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1923 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1924 if (!tcp_packets_in_flight(tp)) 1925 return -1; 1926 else 1927 return 0; 1928 } 1929 1930 /* We're allowed to probe. Build it now. */ 1931 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 1932 if (!nskb) 1933 return -1; 1934 sk->sk_wmem_queued += nskb->truesize; 1935 sk_mem_charge(sk, nskb->truesize); 1936 1937 skb = tcp_send_head(sk); 1938 1939 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1940 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1941 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1942 TCP_SKB_CB(nskb)->sacked = 0; 1943 nskb->csum = 0; 1944 nskb->ip_summed = skb->ip_summed; 1945 1946 tcp_insert_write_queue_before(nskb, skb, sk); 1947 1948 len = 0; 1949 tcp_for_write_queue_from_safe(skb, next, sk) { 1950 copy = min_t(int, skb->len, probe_size - len); 1951 if (nskb->ip_summed) 1952 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1953 else 1954 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1955 skb_put(nskb, copy), 1956 copy, nskb->csum); 1957 1958 if (skb->len <= copy) { 1959 /* We've eaten all the data from this skb. 1960 * Throw it away. */ 1961 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1962 tcp_unlink_write_queue(skb, sk); 1963 sk_wmem_free_skb(sk, skb); 1964 } else { 1965 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1966 ~(TCPHDR_FIN|TCPHDR_PSH); 1967 if (!skb_shinfo(skb)->nr_frags) { 1968 skb_pull(skb, copy); 1969 if (skb->ip_summed != CHECKSUM_PARTIAL) 1970 skb->csum = csum_partial(skb->data, 1971 skb->len, 0); 1972 } else { 1973 __pskb_trim_head(skb, copy); 1974 tcp_set_skb_tso_segs(skb, mss_now); 1975 } 1976 TCP_SKB_CB(skb)->seq += copy; 1977 } 1978 1979 len += copy; 1980 1981 if (len >= probe_size) 1982 break; 1983 } 1984 tcp_init_tso_segs(nskb, nskb->len); 1985 1986 /* We're ready to send. If this fails, the probe will 1987 * be resegmented into mss-sized pieces by tcp_write_xmit(). 1988 */ 1989 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1990 /* Decrement cwnd here because we are sending 1991 * effectively two packets. */ 1992 tp->snd_cwnd--; 1993 tcp_event_new_data_sent(sk, nskb); 1994 1995 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1996 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1997 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1998 1999 return 1; 2000 } 2001 2002 return -1; 2003 } 2004 2005 /* This routine writes packets to the network. It advances the 2006 * send_head. This happens as incoming acks open up the remote 2007 * window for us. 2008 * 2009 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2010 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2011 * account rare use of URG, this is not a big flaw. 2012 * 2013 * Send at most one packet when push_one > 0. Temporarily ignore 2014 * cwnd limit to force at most one packet out when push_one == 2. 2015 2016 * Returns true, if no segments are in flight and we have queued segments, 2017 * but cannot send anything now because of SWS or another problem. 2018 */ 2019 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2020 int push_one, gfp_t gfp) 2021 { 2022 struct tcp_sock *tp = tcp_sk(sk); 2023 struct sk_buff *skb; 2024 unsigned int tso_segs, sent_pkts; 2025 int cwnd_quota; 2026 int result; 2027 bool is_cwnd_limited = false; 2028 u32 max_segs; 2029 2030 sent_pkts = 0; 2031 2032 if (!push_one) { 2033 /* Do MTU probing. */ 2034 result = tcp_mtu_probe(sk); 2035 if (!result) { 2036 return false; 2037 } else if (result > 0) { 2038 sent_pkts = 1; 2039 } 2040 } 2041 2042 max_segs = tcp_tso_autosize(sk, mss_now); 2043 while ((skb = tcp_send_head(sk))) { 2044 unsigned int limit; 2045 2046 tso_segs = tcp_init_tso_segs(skb, mss_now); 2047 BUG_ON(!tso_segs); 2048 2049 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2050 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2051 skb_mstamp_get(&skb->skb_mstamp); 2052 goto repair; /* Skip network transmission */ 2053 } 2054 2055 cwnd_quota = tcp_cwnd_test(tp, skb); 2056 if (!cwnd_quota) { 2057 if (push_one == 2) 2058 /* Force out a loss probe pkt. */ 2059 cwnd_quota = 1; 2060 else 2061 break; 2062 } 2063 2064 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 2065 break; 2066 2067 if (tso_segs == 1) { 2068 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2069 (tcp_skb_is_last(sk, skb) ? 2070 nonagle : TCP_NAGLE_PUSH)))) 2071 break; 2072 } else { 2073 if (!push_one && 2074 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2075 max_segs)) 2076 break; 2077 } 2078 2079 limit = mss_now; 2080 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2081 limit = tcp_mss_split_point(sk, skb, mss_now, 2082 min_t(unsigned int, 2083 cwnd_quota, 2084 max_segs), 2085 nonagle); 2086 2087 if (skb->len > limit && 2088 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2089 break; 2090 2091 /* TCP Small Queues : 2092 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2093 * This allows for : 2094 * - better RTT estimation and ACK scheduling 2095 * - faster recovery 2096 * - high rates 2097 * Alas, some drivers / subsystems require a fair amount 2098 * of queued bytes to ensure line rate. 2099 * One example is wifi aggregation (802.11 AMPDU) 2100 */ 2101 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2102 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2103 2104 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2105 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 2106 /* It is possible TX completion already happened 2107 * before we set TSQ_THROTTLED, so we must 2108 * test again the condition. 2109 */ 2110 smp_mb__after_atomic(); 2111 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2112 break; 2113 } 2114 2115 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2116 break; 2117 2118 repair: 2119 /* Advance the send_head. This one is sent out. 2120 * This call will increment packets_out. 2121 */ 2122 tcp_event_new_data_sent(sk, skb); 2123 2124 tcp_minshall_update(tp, mss_now, skb); 2125 sent_pkts += tcp_skb_pcount(skb); 2126 2127 if (push_one) 2128 break; 2129 } 2130 2131 if (likely(sent_pkts)) { 2132 if (tcp_in_cwnd_reduction(sk)) 2133 tp->prr_out += sent_pkts; 2134 2135 /* Send one loss probe per tail loss episode. */ 2136 if (push_one != 2) 2137 tcp_schedule_loss_probe(sk); 2138 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2139 tcp_cwnd_validate(sk, is_cwnd_limited); 2140 return false; 2141 } 2142 return !tp->packets_out && tcp_send_head(sk); 2143 } 2144 2145 bool tcp_schedule_loss_probe(struct sock *sk) 2146 { 2147 struct inet_connection_sock *icsk = inet_csk(sk); 2148 struct tcp_sock *tp = tcp_sk(sk); 2149 u32 timeout, tlp_time_stamp, rto_time_stamp; 2150 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2151 2152 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 2153 return false; 2154 /* No consecutive loss probes. */ 2155 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2156 tcp_rearm_rto(sk); 2157 return false; 2158 } 2159 /* Don't do any loss probe on a Fast Open connection before 3WHS 2160 * finishes. 2161 */ 2162 if (tp->fastopen_rsk) 2163 return false; 2164 2165 /* TLP is only scheduled when next timer event is RTO. */ 2166 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2167 return false; 2168 2169 /* Schedule a loss probe in 2*RTT for SACK capable connections 2170 * in Open state, that are either limited by cwnd or application. 2171 */ 2172 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out || 2173 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2174 return false; 2175 2176 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2177 tcp_send_head(sk)) 2178 return false; 2179 2180 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2181 * for delayed ack when there's one outstanding packet. If no RTT 2182 * sample is available then probe after TCP_TIMEOUT_INIT. 2183 */ 2184 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT; 2185 if (tp->packets_out == 1) 2186 timeout = max_t(u32, timeout, 2187 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2188 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2189 2190 /* If RTO is shorter, just schedule TLP in its place. */ 2191 tlp_time_stamp = tcp_time_stamp + timeout; 2192 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2193 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2194 s32 delta = rto_time_stamp - tcp_time_stamp; 2195 if (delta > 0) 2196 timeout = delta; 2197 } 2198 2199 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2200 TCP_RTO_MAX); 2201 return true; 2202 } 2203 2204 /* Thanks to skb fast clones, we can detect if a prior transmit of 2205 * a packet is still in a qdisc or driver queue. 2206 * In this case, there is very little point doing a retransmit ! 2207 * Note: This is called from BH context only. 2208 */ 2209 static bool skb_still_in_host_queue(const struct sock *sk, 2210 const struct sk_buff *skb) 2211 { 2212 if (unlikely(skb_fclone_busy(sk, skb))) { 2213 NET_INC_STATS_BH(sock_net(sk), 2214 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2215 return true; 2216 } 2217 return false; 2218 } 2219 2220 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2221 * retransmit the last segment. 2222 */ 2223 void tcp_send_loss_probe(struct sock *sk) 2224 { 2225 struct tcp_sock *tp = tcp_sk(sk); 2226 struct sk_buff *skb; 2227 int pcount; 2228 int mss = tcp_current_mss(sk); 2229 2230 skb = tcp_send_head(sk); 2231 if (skb) { 2232 if (tcp_snd_wnd_test(tp, skb, mss)) { 2233 pcount = tp->packets_out; 2234 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2235 if (tp->packets_out > pcount) 2236 goto probe_sent; 2237 goto rearm_timer; 2238 } 2239 skb = tcp_write_queue_prev(sk, skb); 2240 } else { 2241 skb = tcp_write_queue_tail(sk); 2242 } 2243 2244 /* At most one outstanding TLP retransmission. */ 2245 if (tp->tlp_high_seq) 2246 goto rearm_timer; 2247 2248 /* Retransmit last segment. */ 2249 if (WARN_ON(!skb)) 2250 goto rearm_timer; 2251 2252 if (skb_still_in_host_queue(sk, skb)) 2253 goto rearm_timer; 2254 2255 pcount = tcp_skb_pcount(skb); 2256 if (WARN_ON(!pcount)) 2257 goto rearm_timer; 2258 2259 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2260 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2261 GFP_ATOMIC))) 2262 goto rearm_timer; 2263 skb = tcp_write_queue_next(sk, skb); 2264 } 2265 2266 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2267 goto rearm_timer; 2268 2269 if (__tcp_retransmit_skb(sk, skb)) 2270 goto rearm_timer; 2271 2272 /* Record snd_nxt for loss detection. */ 2273 tp->tlp_high_seq = tp->snd_nxt; 2274 2275 probe_sent: 2276 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2277 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2278 inet_csk(sk)->icsk_pending = 0; 2279 rearm_timer: 2280 tcp_rearm_rto(sk); 2281 } 2282 2283 /* Push out any pending frames which were held back due to 2284 * TCP_CORK or attempt at coalescing tiny packets. 2285 * The socket must be locked by the caller. 2286 */ 2287 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2288 int nonagle) 2289 { 2290 /* If we are closed, the bytes will have to remain here. 2291 * In time closedown will finish, we empty the write queue and 2292 * all will be happy. 2293 */ 2294 if (unlikely(sk->sk_state == TCP_CLOSE)) 2295 return; 2296 2297 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2298 sk_gfp_mask(sk, GFP_ATOMIC))) 2299 tcp_check_probe_timer(sk); 2300 } 2301 2302 /* Send _single_ skb sitting at the send head. This function requires 2303 * true push pending frames to setup probe timer etc. 2304 */ 2305 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2306 { 2307 struct sk_buff *skb = tcp_send_head(sk); 2308 2309 BUG_ON(!skb || skb->len < mss_now); 2310 2311 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2312 } 2313 2314 /* This function returns the amount that we can raise the 2315 * usable window based on the following constraints 2316 * 2317 * 1. The window can never be shrunk once it is offered (RFC 793) 2318 * 2. We limit memory per socket 2319 * 2320 * RFC 1122: 2321 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2322 * RECV.NEXT + RCV.WIN fixed until: 2323 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2324 * 2325 * i.e. don't raise the right edge of the window until you can raise 2326 * it at least MSS bytes. 2327 * 2328 * Unfortunately, the recommended algorithm breaks header prediction, 2329 * since header prediction assumes th->window stays fixed. 2330 * 2331 * Strictly speaking, keeping th->window fixed violates the receiver 2332 * side SWS prevention criteria. The problem is that under this rule 2333 * a stream of single byte packets will cause the right side of the 2334 * window to always advance by a single byte. 2335 * 2336 * Of course, if the sender implements sender side SWS prevention 2337 * then this will not be a problem. 2338 * 2339 * BSD seems to make the following compromise: 2340 * 2341 * If the free space is less than the 1/4 of the maximum 2342 * space available and the free space is less than 1/2 mss, 2343 * then set the window to 0. 2344 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2345 * Otherwise, just prevent the window from shrinking 2346 * and from being larger than the largest representable value. 2347 * 2348 * This prevents incremental opening of the window in the regime 2349 * where TCP is limited by the speed of the reader side taking 2350 * data out of the TCP receive queue. It does nothing about 2351 * those cases where the window is constrained on the sender side 2352 * because the pipeline is full. 2353 * 2354 * BSD also seems to "accidentally" limit itself to windows that are a 2355 * multiple of MSS, at least until the free space gets quite small. 2356 * This would appear to be a side effect of the mbuf implementation. 2357 * Combining these two algorithms results in the observed behavior 2358 * of having a fixed window size at almost all times. 2359 * 2360 * Below we obtain similar behavior by forcing the offered window to 2361 * a multiple of the mss when it is feasible to do so. 2362 * 2363 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2364 * Regular options like TIMESTAMP are taken into account. 2365 */ 2366 u32 __tcp_select_window(struct sock *sk) 2367 { 2368 struct inet_connection_sock *icsk = inet_csk(sk); 2369 struct tcp_sock *tp = tcp_sk(sk); 2370 /* MSS for the peer's data. Previous versions used mss_clamp 2371 * here. I don't know if the value based on our guesses 2372 * of peer's MSS is better for the performance. It's more correct 2373 * but may be worse for the performance because of rcv_mss 2374 * fluctuations. --SAW 1998/11/1 2375 */ 2376 int mss = icsk->icsk_ack.rcv_mss; 2377 int free_space = tcp_space(sk); 2378 int allowed_space = tcp_full_space(sk); 2379 int full_space = min_t(int, tp->window_clamp, allowed_space); 2380 int window; 2381 2382 if (mss > full_space) 2383 mss = full_space; 2384 2385 if (free_space < (full_space >> 1)) { 2386 icsk->icsk_ack.quick = 0; 2387 2388 if (tcp_under_memory_pressure(sk)) 2389 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2390 4U * tp->advmss); 2391 2392 /* free_space might become our new window, make sure we don't 2393 * increase it due to wscale. 2394 */ 2395 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2396 2397 /* if free space is less than mss estimate, or is below 1/16th 2398 * of the maximum allowed, try to move to zero-window, else 2399 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2400 * new incoming data is dropped due to memory limits. 2401 * With large window, mss test triggers way too late in order 2402 * to announce zero window in time before rmem limit kicks in. 2403 */ 2404 if (free_space < (allowed_space >> 4) || free_space < mss) 2405 return 0; 2406 } 2407 2408 if (free_space > tp->rcv_ssthresh) 2409 free_space = tp->rcv_ssthresh; 2410 2411 /* Don't do rounding if we are using window scaling, since the 2412 * scaled window will not line up with the MSS boundary anyway. 2413 */ 2414 window = tp->rcv_wnd; 2415 if (tp->rx_opt.rcv_wscale) { 2416 window = free_space; 2417 2418 /* Advertise enough space so that it won't get scaled away. 2419 * Import case: prevent zero window announcement if 2420 * 1<<rcv_wscale > mss. 2421 */ 2422 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2423 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2424 << tp->rx_opt.rcv_wscale); 2425 } else { 2426 /* Get the largest window that is a nice multiple of mss. 2427 * Window clamp already applied above. 2428 * If our current window offering is within 1 mss of the 2429 * free space we just keep it. This prevents the divide 2430 * and multiply from happening most of the time. 2431 * We also don't do any window rounding when the free space 2432 * is too small. 2433 */ 2434 if (window <= free_space - mss || window > free_space) 2435 window = (free_space / mss) * mss; 2436 else if (mss == full_space && 2437 free_space > window + (full_space >> 1)) 2438 window = free_space; 2439 } 2440 2441 return window; 2442 } 2443 2444 /* Collapses two adjacent SKB's during retransmission. */ 2445 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2446 { 2447 struct tcp_sock *tp = tcp_sk(sk); 2448 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2449 int skb_size, next_skb_size; 2450 2451 skb_size = skb->len; 2452 next_skb_size = next_skb->len; 2453 2454 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2455 2456 tcp_highest_sack_combine(sk, next_skb, skb); 2457 2458 tcp_unlink_write_queue(next_skb, sk); 2459 2460 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2461 next_skb_size); 2462 2463 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2464 skb->ip_summed = CHECKSUM_PARTIAL; 2465 2466 if (skb->ip_summed != CHECKSUM_PARTIAL) 2467 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2468 2469 /* Update sequence range on original skb. */ 2470 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2471 2472 /* Merge over control information. This moves PSH/FIN etc. over */ 2473 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2474 2475 /* All done, get rid of second SKB and account for it so 2476 * packet counting does not break. 2477 */ 2478 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2479 2480 /* changed transmit queue under us so clear hints */ 2481 tcp_clear_retrans_hints_partial(tp); 2482 if (next_skb == tp->retransmit_skb_hint) 2483 tp->retransmit_skb_hint = skb; 2484 2485 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2486 2487 sk_wmem_free_skb(sk, next_skb); 2488 } 2489 2490 /* Check if coalescing SKBs is legal. */ 2491 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2492 { 2493 if (tcp_skb_pcount(skb) > 1) 2494 return false; 2495 /* TODO: SACK collapsing could be used to remove this condition */ 2496 if (skb_shinfo(skb)->nr_frags != 0) 2497 return false; 2498 if (skb_cloned(skb)) 2499 return false; 2500 if (skb == tcp_send_head(sk)) 2501 return false; 2502 /* Some heurestics for collapsing over SACK'd could be invented */ 2503 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2504 return false; 2505 2506 return true; 2507 } 2508 2509 /* Collapse packets in the retransmit queue to make to create 2510 * less packets on the wire. This is only done on retransmission. 2511 */ 2512 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2513 int space) 2514 { 2515 struct tcp_sock *tp = tcp_sk(sk); 2516 struct sk_buff *skb = to, *tmp; 2517 bool first = true; 2518 2519 if (!sysctl_tcp_retrans_collapse) 2520 return; 2521 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2522 return; 2523 2524 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2525 if (!tcp_can_collapse(sk, skb)) 2526 break; 2527 2528 space -= skb->len; 2529 2530 if (first) { 2531 first = false; 2532 continue; 2533 } 2534 2535 if (space < 0) 2536 break; 2537 /* Punt if not enough space exists in the first SKB for 2538 * the data in the second 2539 */ 2540 if (skb->len > skb_availroom(to)) 2541 break; 2542 2543 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2544 break; 2545 2546 tcp_collapse_retrans(sk, to); 2547 } 2548 } 2549 2550 /* This retransmits one SKB. Policy decisions and retransmit queue 2551 * state updates are done by the caller. Returns non-zero if an 2552 * error occurred which prevented the send. 2553 */ 2554 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2555 { 2556 struct tcp_sock *tp = tcp_sk(sk); 2557 struct inet_connection_sock *icsk = inet_csk(sk); 2558 unsigned int cur_mss; 2559 int err; 2560 2561 /* Inconslusive MTU probe */ 2562 if (icsk->icsk_mtup.probe_size) { 2563 icsk->icsk_mtup.probe_size = 0; 2564 } 2565 2566 /* Do not sent more than we queued. 1/4 is reserved for possible 2567 * copying overhead: fragmentation, tunneling, mangling etc. 2568 */ 2569 if (atomic_read(&sk->sk_wmem_alloc) > 2570 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2571 return -EAGAIN; 2572 2573 if (skb_still_in_host_queue(sk, skb)) 2574 return -EBUSY; 2575 2576 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2577 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2578 BUG(); 2579 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2580 return -ENOMEM; 2581 } 2582 2583 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2584 return -EHOSTUNREACH; /* Routing failure or similar. */ 2585 2586 cur_mss = tcp_current_mss(sk); 2587 2588 /* If receiver has shrunk his window, and skb is out of 2589 * new window, do not retransmit it. The exception is the 2590 * case, when window is shrunk to zero. In this case 2591 * our retransmit serves as a zero window probe. 2592 */ 2593 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2594 TCP_SKB_CB(skb)->seq != tp->snd_una) 2595 return -EAGAIN; 2596 2597 if (skb->len > cur_mss) { 2598 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC)) 2599 return -ENOMEM; /* We'll try again later. */ 2600 } else { 2601 int oldpcount = tcp_skb_pcount(skb); 2602 2603 if (unlikely(oldpcount > 1)) { 2604 if (skb_unclone(skb, GFP_ATOMIC)) 2605 return -ENOMEM; 2606 tcp_init_tso_segs(skb, cur_mss); 2607 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2608 } 2609 } 2610 2611 /* RFC3168, section 6.1.1.1. ECN fallback */ 2612 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2613 tcp_ecn_clear_syn(sk, skb); 2614 2615 tcp_retrans_try_collapse(sk, skb, cur_mss); 2616 2617 /* Make a copy, if the first transmission SKB clone we made 2618 * is still in somebody's hands, else make a clone. 2619 */ 2620 2621 /* make sure skb->data is aligned on arches that require it 2622 * and check if ack-trimming & collapsing extended the headroom 2623 * beyond what csum_start can cover. 2624 */ 2625 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2626 skb_headroom(skb) >= 0xFFFF)) { 2627 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2628 GFP_ATOMIC); 2629 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2630 -ENOBUFS; 2631 } else { 2632 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2633 } 2634 2635 if (likely(!err)) { 2636 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2637 /* Update global TCP statistics. */ 2638 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2639 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2640 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2641 tp->total_retrans++; 2642 } 2643 return err; 2644 } 2645 2646 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2647 { 2648 struct tcp_sock *tp = tcp_sk(sk); 2649 int err = __tcp_retransmit_skb(sk, skb); 2650 2651 if (err == 0) { 2652 #if FASTRETRANS_DEBUG > 0 2653 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2654 net_dbg_ratelimited("retrans_out leaked\n"); 2655 } 2656 #endif 2657 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2658 tp->retrans_out += tcp_skb_pcount(skb); 2659 2660 /* Save stamp of the first retransmit. */ 2661 if (!tp->retrans_stamp) 2662 tp->retrans_stamp = tcp_skb_timestamp(skb); 2663 2664 } else if (err != -EBUSY) { 2665 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2666 } 2667 2668 if (tp->undo_retrans < 0) 2669 tp->undo_retrans = 0; 2670 tp->undo_retrans += tcp_skb_pcount(skb); 2671 return err; 2672 } 2673 2674 /* Check if we forward retransmits are possible in the current 2675 * window/congestion state. 2676 */ 2677 static bool tcp_can_forward_retransmit(struct sock *sk) 2678 { 2679 const struct inet_connection_sock *icsk = inet_csk(sk); 2680 const struct tcp_sock *tp = tcp_sk(sk); 2681 2682 /* Forward retransmissions are possible only during Recovery. */ 2683 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2684 return false; 2685 2686 /* No forward retransmissions in Reno are possible. */ 2687 if (tcp_is_reno(tp)) 2688 return false; 2689 2690 /* Yeah, we have to make difficult choice between forward transmission 2691 * and retransmission... Both ways have their merits... 2692 * 2693 * For now we do not retransmit anything, while we have some new 2694 * segments to send. In the other cases, follow rule 3 for 2695 * NextSeg() specified in RFC3517. 2696 */ 2697 2698 if (tcp_may_send_now(sk)) 2699 return false; 2700 2701 return true; 2702 } 2703 2704 /* This gets called after a retransmit timeout, and the initially 2705 * retransmitted data is acknowledged. It tries to continue 2706 * resending the rest of the retransmit queue, until either 2707 * we've sent it all or the congestion window limit is reached. 2708 * If doing SACK, the first ACK which comes back for a timeout 2709 * based retransmit packet might feed us FACK information again. 2710 * If so, we use it to avoid unnecessarily retransmissions. 2711 */ 2712 void tcp_xmit_retransmit_queue(struct sock *sk) 2713 { 2714 const struct inet_connection_sock *icsk = inet_csk(sk); 2715 struct tcp_sock *tp = tcp_sk(sk); 2716 struct sk_buff *skb; 2717 struct sk_buff *hole = NULL; 2718 u32 last_lost; 2719 int mib_idx; 2720 int fwd_rexmitting = 0; 2721 2722 if (!tp->packets_out) 2723 return; 2724 2725 if (!tp->lost_out) 2726 tp->retransmit_high = tp->snd_una; 2727 2728 if (tp->retransmit_skb_hint) { 2729 skb = tp->retransmit_skb_hint; 2730 last_lost = TCP_SKB_CB(skb)->end_seq; 2731 if (after(last_lost, tp->retransmit_high)) 2732 last_lost = tp->retransmit_high; 2733 } else { 2734 skb = tcp_write_queue_head(sk); 2735 last_lost = tp->snd_una; 2736 } 2737 2738 tcp_for_write_queue_from(skb, sk) { 2739 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2740 2741 if (skb == tcp_send_head(sk)) 2742 break; 2743 /* we could do better than to assign each time */ 2744 if (!hole) 2745 tp->retransmit_skb_hint = skb; 2746 2747 /* Assume this retransmit will generate 2748 * only one packet for congestion window 2749 * calculation purposes. This works because 2750 * tcp_retransmit_skb() will chop up the 2751 * packet to be MSS sized and all the 2752 * packet counting works out. 2753 */ 2754 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2755 return; 2756 2757 if (fwd_rexmitting) { 2758 begin_fwd: 2759 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2760 break; 2761 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2762 2763 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2764 tp->retransmit_high = last_lost; 2765 if (!tcp_can_forward_retransmit(sk)) 2766 break; 2767 /* Backtrack if necessary to non-L'ed skb */ 2768 if (hole) { 2769 skb = hole; 2770 hole = NULL; 2771 } 2772 fwd_rexmitting = 1; 2773 goto begin_fwd; 2774 2775 } else if (!(sacked & TCPCB_LOST)) { 2776 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2777 hole = skb; 2778 continue; 2779 2780 } else { 2781 last_lost = TCP_SKB_CB(skb)->end_seq; 2782 if (icsk->icsk_ca_state != TCP_CA_Loss) 2783 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2784 else 2785 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2786 } 2787 2788 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2789 continue; 2790 2791 if (tcp_retransmit_skb(sk, skb)) 2792 return; 2793 2794 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2795 2796 if (tcp_in_cwnd_reduction(sk)) 2797 tp->prr_out += tcp_skb_pcount(skb); 2798 2799 if (skb == tcp_write_queue_head(sk)) 2800 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2801 inet_csk(sk)->icsk_rto, 2802 TCP_RTO_MAX); 2803 } 2804 } 2805 2806 /* We allow to exceed memory limits for FIN packets to expedite 2807 * connection tear down and (memory) recovery. 2808 * Otherwise tcp_send_fin() could be tempted to either delay FIN 2809 * or even be forced to close flow without any FIN. 2810 * In general, we want to allow one skb per socket to avoid hangs 2811 * with edge trigger epoll() 2812 */ 2813 void sk_forced_mem_schedule(struct sock *sk, int size) 2814 { 2815 int amt; 2816 2817 if (size <= sk->sk_forward_alloc) 2818 return; 2819 amt = sk_mem_pages(size); 2820 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2821 sk_memory_allocated_add(sk, amt); 2822 2823 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2824 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 2825 } 2826 2827 /* Send a FIN. The caller locks the socket for us. 2828 * We should try to send a FIN packet really hard, but eventually give up. 2829 */ 2830 void tcp_send_fin(struct sock *sk) 2831 { 2832 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 2833 struct tcp_sock *tp = tcp_sk(sk); 2834 2835 /* Optimization, tack on the FIN if we have one skb in write queue and 2836 * this skb was not yet sent, or we are under memory pressure. 2837 * Note: in the latter case, FIN packet will be sent after a timeout, 2838 * as TCP stack thinks it has already been transmitted. 2839 */ 2840 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) { 2841 coalesce: 2842 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 2843 TCP_SKB_CB(tskb)->end_seq++; 2844 tp->write_seq++; 2845 if (!tcp_send_head(sk)) { 2846 /* This means tskb was already sent. 2847 * Pretend we included the FIN on previous transmit. 2848 * We need to set tp->snd_nxt to the value it would have 2849 * if FIN had been sent. This is because retransmit path 2850 * does not change tp->snd_nxt. 2851 */ 2852 tp->snd_nxt++; 2853 return; 2854 } 2855 } else { 2856 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 2857 if (unlikely(!skb)) { 2858 if (tskb) 2859 goto coalesce; 2860 return; 2861 } 2862 skb_reserve(skb, MAX_TCP_HEADER); 2863 sk_forced_mem_schedule(sk, skb->truesize); 2864 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2865 tcp_init_nondata_skb(skb, tp->write_seq, 2866 TCPHDR_ACK | TCPHDR_FIN); 2867 tcp_queue_skb(sk, skb); 2868 } 2869 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 2870 } 2871 2872 /* We get here when a process closes a file descriptor (either due to 2873 * an explicit close() or as a byproduct of exit()'ing) and there 2874 * was unread data in the receive queue. This behavior is recommended 2875 * by RFC 2525, section 2.17. -DaveM 2876 */ 2877 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2878 { 2879 struct sk_buff *skb; 2880 2881 /* NOTE: No TCP options attached and we never retransmit this. */ 2882 skb = alloc_skb(MAX_TCP_HEADER, priority); 2883 if (!skb) { 2884 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2885 return; 2886 } 2887 2888 /* Reserve space for headers and prepare control bits. */ 2889 skb_reserve(skb, MAX_TCP_HEADER); 2890 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2891 TCPHDR_ACK | TCPHDR_RST); 2892 skb_mstamp_get(&skb->skb_mstamp); 2893 /* Send it off. */ 2894 if (tcp_transmit_skb(sk, skb, 0, priority)) 2895 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2896 2897 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2898 } 2899 2900 /* Send a crossed SYN-ACK during socket establishment. 2901 * WARNING: This routine must only be called when we have already sent 2902 * a SYN packet that crossed the incoming SYN that caused this routine 2903 * to get called. If this assumption fails then the initial rcv_wnd 2904 * and rcv_wscale values will not be correct. 2905 */ 2906 int tcp_send_synack(struct sock *sk) 2907 { 2908 struct sk_buff *skb; 2909 2910 skb = tcp_write_queue_head(sk); 2911 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2912 pr_debug("%s: wrong queue state\n", __func__); 2913 return -EFAULT; 2914 } 2915 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2916 if (skb_cloned(skb)) { 2917 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2918 if (!nskb) 2919 return -ENOMEM; 2920 tcp_unlink_write_queue(skb, sk); 2921 __skb_header_release(nskb); 2922 __tcp_add_write_queue_head(sk, nskb); 2923 sk_wmem_free_skb(sk, skb); 2924 sk->sk_wmem_queued += nskb->truesize; 2925 sk_mem_charge(sk, nskb->truesize); 2926 skb = nskb; 2927 } 2928 2929 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2930 tcp_ecn_send_synack(sk, skb); 2931 } 2932 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2933 } 2934 2935 /** 2936 * tcp_make_synack - Prepare a SYN-ACK. 2937 * sk: listener socket 2938 * dst: dst entry attached to the SYNACK 2939 * req: request_sock pointer 2940 * 2941 * Allocate one skb and build a SYNACK packet. 2942 * @dst is consumed : Caller should not use it again. 2943 */ 2944 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 2945 struct request_sock *req, 2946 struct tcp_fastopen_cookie *foc, 2947 bool attach_req) 2948 { 2949 struct inet_request_sock *ireq = inet_rsk(req); 2950 const struct tcp_sock *tp = tcp_sk(sk); 2951 struct tcp_md5sig_key *md5 = NULL; 2952 struct tcp_out_options opts; 2953 struct sk_buff *skb; 2954 int tcp_header_size; 2955 struct tcphdr *th; 2956 u16 user_mss; 2957 int mss; 2958 2959 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2960 if (unlikely(!skb)) { 2961 dst_release(dst); 2962 return NULL; 2963 } 2964 /* Reserve space for headers. */ 2965 skb_reserve(skb, MAX_TCP_HEADER); 2966 2967 if (attach_req) { 2968 skb_set_owner_w(skb, req_to_sk(req)); 2969 } else { 2970 /* sk is a const pointer, because we want to express multiple 2971 * cpu might call us concurrently. 2972 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 2973 */ 2974 skb_set_owner_w(skb, (struct sock *)sk); 2975 } 2976 skb_dst_set(skb, dst); 2977 2978 mss = dst_metric_advmss(dst); 2979 user_mss = READ_ONCE(tp->rx_opt.user_mss); 2980 if (user_mss && user_mss < mss) 2981 mss = user_mss; 2982 2983 memset(&opts, 0, sizeof(opts)); 2984 #ifdef CONFIG_SYN_COOKIES 2985 if (unlikely(req->cookie_ts)) 2986 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 2987 else 2988 #endif 2989 skb_mstamp_get(&skb->skb_mstamp); 2990 2991 #ifdef CONFIG_TCP_MD5SIG 2992 rcu_read_lock(); 2993 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 2994 #endif 2995 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 2996 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) + 2997 sizeof(*th); 2998 2999 skb_push(skb, tcp_header_size); 3000 skb_reset_transport_header(skb); 3001 3002 th = tcp_hdr(skb); 3003 memset(th, 0, sizeof(struct tcphdr)); 3004 th->syn = 1; 3005 th->ack = 1; 3006 tcp_ecn_make_synack(req, th); 3007 th->source = htons(ireq->ir_num); 3008 th->dest = ireq->ir_rmt_port; 3009 /* Setting of flags are superfluous here for callers (and ECE is 3010 * not even correctly set) 3011 */ 3012 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3013 TCPHDR_SYN | TCPHDR_ACK); 3014 3015 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3016 /* XXX data is queued and acked as is. No buffer/window check */ 3017 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3018 3019 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3020 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3021 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3022 th->doff = (tcp_header_size >> 2); 3023 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS); 3024 3025 #ifdef CONFIG_TCP_MD5SIG 3026 /* Okay, we have all we need - do the md5 hash if needed */ 3027 if (md5) 3028 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3029 md5, req_to_sk(req), skb); 3030 rcu_read_unlock(); 3031 #endif 3032 3033 /* Do not fool tcpdump (if any), clean our debris */ 3034 skb->tstamp.tv64 = 0; 3035 return skb; 3036 } 3037 EXPORT_SYMBOL(tcp_make_synack); 3038 3039 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3040 { 3041 struct inet_connection_sock *icsk = inet_csk(sk); 3042 const struct tcp_congestion_ops *ca; 3043 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3044 3045 if (ca_key == TCP_CA_UNSPEC) 3046 return; 3047 3048 rcu_read_lock(); 3049 ca = tcp_ca_find_key(ca_key); 3050 if (likely(ca && try_module_get(ca->owner))) { 3051 module_put(icsk->icsk_ca_ops->owner); 3052 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3053 icsk->icsk_ca_ops = ca; 3054 } 3055 rcu_read_unlock(); 3056 } 3057 3058 /* Do all connect socket setups that can be done AF independent. */ 3059 static void tcp_connect_init(struct sock *sk) 3060 { 3061 const struct dst_entry *dst = __sk_dst_get(sk); 3062 struct tcp_sock *tp = tcp_sk(sk); 3063 __u8 rcv_wscale; 3064 3065 /* We'll fix this up when we get a response from the other end. 3066 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3067 */ 3068 tp->tcp_header_len = sizeof(struct tcphdr) + 3069 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 3070 3071 #ifdef CONFIG_TCP_MD5SIG 3072 if (tp->af_specific->md5_lookup(sk, sk)) 3073 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3074 #endif 3075 3076 /* If user gave his TCP_MAXSEG, record it to clamp */ 3077 if (tp->rx_opt.user_mss) 3078 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3079 tp->max_window = 0; 3080 tcp_mtup_init(sk); 3081 tcp_sync_mss(sk, dst_mtu(dst)); 3082 3083 tcp_ca_dst_init(sk, dst); 3084 3085 if (!tp->window_clamp) 3086 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3087 tp->advmss = dst_metric_advmss(dst); 3088 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 3089 tp->advmss = tp->rx_opt.user_mss; 3090 3091 tcp_initialize_rcv_mss(sk); 3092 3093 /* limit the window selection if the user enforce a smaller rx buffer */ 3094 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3095 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3096 tp->window_clamp = tcp_full_space(sk); 3097 3098 tcp_select_initial_window(tcp_full_space(sk), 3099 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3100 &tp->rcv_wnd, 3101 &tp->window_clamp, 3102 sysctl_tcp_window_scaling, 3103 &rcv_wscale, 3104 dst_metric(dst, RTAX_INITRWND)); 3105 3106 tp->rx_opt.rcv_wscale = rcv_wscale; 3107 tp->rcv_ssthresh = tp->rcv_wnd; 3108 3109 sk->sk_err = 0; 3110 sock_reset_flag(sk, SOCK_DONE); 3111 tp->snd_wnd = 0; 3112 tcp_init_wl(tp, 0); 3113 tp->snd_una = tp->write_seq; 3114 tp->snd_sml = tp->write_seq; 3115 tp->snd_up = tp->write_seq; 3116 tp->snd_nxt = tp->write_seq; 3117 3118 if (likely(!tp->repair)) 3119 tp->rcv_nxt = 0; 3120 else 3121 tp->rcv_tstamp = tcp_time_stamp; 3122 tp->rcv_wup = tp->rcv_nxt; 3123 tp->copied_seq = tp->rcv_nxt; 3124 3125 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3126 inet_csk(sk)->icsk_retransmits = 0; 3127 tcp_clear_retrans(tp); 3128 } 3129 3130 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3131 { 3132 struct tcp_sock *tp = tcp_sk(sk); 3133 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3134 3135 tcb->end_seq += skb->len; 3136 __skb_header_release(skb); 3137 __tcp_add_write_queue_tail(sk, skb); 3138 sk->sk_wmem_queued += skb->truesize; 3139 sk_mem_charge(sk, skb->truesize); 3140 tp->write_seq = tcb->end_seq; 3141 tp->packets_out += tcp_skb_pcount(skb); 3142 } 3143 3144 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3145 * queue a data-only packet after the regular SYN, such that regular SYNs 3146 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3147 * only the SYN sequence, the data are retransmitted in the first ACK. 3148 * If cookie is not cached or other error occurs, falls back to send a 3149 * regular SYN with Fast Open cookie request option. 3150 */ 3151 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3152 { 3153 struct tcp_sock *tp = tcp_sk(sk); 3154 struct tcp_fastopen_request *fo = tp->fastopen_req; 3155 int syn_loss = 0, space, err = 0; 3156 unsigned long last_syn_loss = 0; 3157 struct sk_buff *syn_data; 3158 3159 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3160 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 3161 &syn_loss, &last_syn_loss); 3162 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 3163 if (syn_loss > 1 && 3164 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 3165 fo->cookie.len = -1; 3166 goto fallback; 3167 } 3168 3169 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 3170 fo->cookie.len = -1; 3171 else if (fo->cookie.len <= 0) 3172 goto fallback; 3173 3174 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3175 * user-MSS. Reserve maximum option space for middleboxes that add 3176 * private TCP options. The cost is reduced data space in SYN :( 3177 */ 3178 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 3179 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3180 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3181 MAX_TCP_OPTION_SPACE; 3182 3183 space = min_t(size_t, space, fo->size); 3184 3185 /* limit to order-0 allocations */ 3186 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3187 3188 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3189 if (!syn_data) 3190 goto fallback; 3191 syn_data->ip_summed = CHECKSUM_PARTIAL; 3192 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3193 if (space) { 3194 int copied = copy_from_iter(skb_put(syn_data, space), space, 3195 &fo->data->msg_iter); 3196 if (unlikely(!copied)) { 3197 kfree_skb(syn_data); 3198 goto fallback; 3199 } 3200 if (copied != space) { 3201 skb_trim(syn_data, copied); 3202 space = copied; 3203 } 3204 } 3205 /* No more data pending in inet_wait_for_connect() */ 3206 if (space == fo->size) 3207 fo->data = NULL; 3208 fo->copied = space; 3209 3210 tcp_connect_queue_skb(sk, syn_data); 3211 3212 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3213 3214 syn->skb_mstamp = syn_data->skb_mstamp; 3215 3216 /* Now full SYN+DATA was cloned and sent (or not), 3217 * remove the SYN from the original skb (syn_data) 3218 * we keep in write queue in case of a retransmit, as we 3219 * also have the SYN packet (with no data) in the same queue. 3220 */ 3221 TCP_SKB_CB(syn_data)->seq++; 3222 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3223 if (!err) { 3224 tp->syn_data = (fo->copied > 0); 3225 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3226 goto done; 3227 } 3228 3229 fallback: 3230 /* Send a regular SYN with Fast Open cookie request option */ 3231 if (fo->cookie.len > 0) 3232 fo->cookie.len = 0; 3233 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3234 if (err) 3235 tp->syn_fastopen = 0; 3236 done: 3237 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3238 return err; 3239 } 3240 3241 /* Build a SYN and send it off. */ 3242 int tcp_connect(struct sock *sk) 3243 { 3244 struct tcp_sock *tp = tcp_sk(sk); 3245 struct sk_buff *buff; 3246 int err; 3247 3248 tcp_connect_init(sk); 3249 3250 if (unlikely(tp->repair)) { 3251 tcp_finish_connect(sk, NULL); 3252 return 0; 3253 } 3254 3255 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3256 if (unlikely(!buff)) 3257 return -ENOBUFS; 3258 3259 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3260 tp->retrans_stamp = tcp_time_stamp; 3261 tcp_connect_queue_skb(sk, buff); 3262 tcp_ecn_send_syn(sk, buff); 3263 3264 /* Send off SYN; include data in Fast Open. */ 3265 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3266 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3267 if (err == -ECONNREFUSED) 3268 return err; 3269 3270 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3271 * in order to make this packet get counted in tcpOutSegs. 3272 */ 3273 tp->snd_nxt = tp->write_seq; 3274 tp->pushed_seq = tp->write_seq; 3275 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3276 3277 /* Timer for repeating the SYN until an answer. */ 3278 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3279 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3280 return 0; 3281 } 3282 EXPORT_SYMBOL(tcp_connect); 3283 3284 /* Send out a delayed ack, the caller does the policy checking 3285 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3286 * for details. 3287 */ 3288 void tcp_send_delayed_ack(struct sock *sk) 3289 { 3290 struct inet_connection_sock *icsk = inet_csk(sk); 3291 int ato = icsk->icsk_ack.ato; 3292 unsigned long timeout; 3293 3294 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3295 3296 if (ato > TCP_DELACK_MIN) { 3297 const struct tcp_sock *tp = tcp_sk(sk); 3298 int max_ato = HZ / 2; 3299 3300 if (icsk->icsk_ack.pingpong || 3301 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3302 max_ato = TCP_DELACK_MAX; 3303 3304 /* Slow path, intersegment interval is "high". */ 3305 3306 /* If some rtt estimate is known, use it to bound delayed ack. 3307 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3308 * directly. 3309 */ 3310 if (tp->srtt_us) { 3311 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3312 TCP_DELACK_MIN); 3313 3314 if (rtt < max_ato) 3315 max_ato = rtt; 3316 } 3317 3318 ato = min(ato, max_ato); 3319 } 3320 3321 /* Stay within the limit we were given */ 3322 timeout = jiffies + ato; 3323 3324 /* Use new timeout only if there wasn't a older one earlier. */ 3325 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3326 /* If delack timer was blocked or is about to expire, 3327 * send ACK now. 3328 */ 3329 if (icsk->icsk_ack.blocked || 3330 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3331 tcp_send_ack(sk); 3332 return; 3333 } 3334 3335 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3336 timeout = icsk->icsk_ack.timeout; 3337 } 3338 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3339 icsk->icsk_ack.timeout = timeout; 3340 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3341 } 3342 3343 /* This routine sends an ack and also updates the window. */ 3344 void tcp_send_ack(struct sock *sk) 3345 { 3346 struct sk_buff *buff; 3347 3348 /* If we have been reset, we may not send again. */ 3349 if (sk->sk_state == TCP_CLOSE) 3350 return; 3351 3352 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3353 3354 /* We are not putting this on the write queue, so 3355 * tcp_transmit_skb() will set the ownership to this 3356 * sock. 3357 */ 3358 buff = alloc_skb(MAX_TCP_HEADER, 3359 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3360 if (unlikely(!buff)) { 3361 inet_csk_schedule_ack(sk); 3362 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3363 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3364 TCP_DELACK_MAX, TCP_RTO_MAX); 3365 return; 3366 } 3367 3368 /* Reserve space for headers and prepare control bits. */ 3369 skb_reserve(buff, MAX_TCP_HEADER); 3370 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3371 3372 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3373 * too much. 3374 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3375 * We also avoid tcp_wfree() overhead (cache line miss accessing 3376 * tp->tsq_flags) by using regular sock_wfree() 3377 */ 3378 skb_set_tcp_pure_ack(buff); 3379 3380 /* Send it off, this clears delayed acks for us. */ 3381 skb_mstamp_get(&buff->skb_mstamp); 3382 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3383 } 3384 EXPORT_SYMBOL_GPL(tcp_send_ack); 3385 3386 /* This routine sends a packet with an out of date sequence 3387 * number. It assumes the other end will try to ack it. 3388 * 3389 * Question: what should we make while urgent mode? 3390 * 4.4BSD forces sending single byte of data. We cannot send 3391 * out of window data, because we have SND.NXT==SND.MAX... 3392 * 3393 * Current solution: to send TWO zero-length segments in urgent mode: 3394 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3395 * out-of-date with SND.UNA-1 to probe window. 3396 */ 3397 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3398 { 3399 struct tcp_sock *tp = tcp_sk(sk); 3400 struct sk_buff *skb; 3401 3402 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3403 skb = alloc_skb(MAX_TCP_HEADER, 3404 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3405 if (!skb) 3406 return -1; 3407 3408 /* Reserve space for headers and set control bits. */ 3409 skb_reserve(skb, MAX_TCP_HEADER); 3410 /* Use a previous sequence. This should cause the other 3411 * end to send an ack. Don't queue or clone SKB, just 3412 * send it. 3413 */ 3414 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3415 skb_mstamp_get(&skb->skb_mstamp); 3416 NET_INC_STATS(sock_net(sk), mib); 3417 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3418 } 3419 3420 void tcp_send_window_probe(struct sock *sk) 3421 { 3422 if (sk->sk_state == TCP_ESTABLISHED) { 3423 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3424 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3425 } 3426 } 3427 3428 /* Initiate keepalive or window probe from timer. */ 3429 int tcp_write_wakeup(struct sock *sk, int mib) 3430 { 3431 struct tcp_sock *tp = tcp_sk(sk); 3432 struct sk_buff *skb; 3433 3434 if (sk->sk_state == TCP_CLOSE) 3435 return -1; 3436 3437 skb = tcp_send_head(sk); 3438 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3439 int err; 3440 unsigned int mss = tcp_current_mss(sk); 3441 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3442 3443 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3444 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3445 3446 /* We are probing the opening of a window 3447 * but the window size is != 0 3448 * must have been a result SWS avoidance ( sender ) 3449 */ 3450 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3451 skb->len > mss) { 3452 seg_size = min(seg_size, mss); 3453 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3454 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3455 return -1; 3456 } else if (!tcp_skb_pcount(skb)) 3457 tcp_set_skb_tso_segs(skb, mss); 3458 3459 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3460 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3461 if (!err) 3462 tcp_event_new_data_sent(sk, skb); 3463 return err; 3464 } else { 3465 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3466 tcp_xmit_probe_skb(sk, 1, mib); 3467 return tcp_xmit_probe_skb(sk, 0, mib); 3468 } 3469 } 3470 3471 /* A window probe timeout has occurred. If window is not closed send 3472 * a partial packet else a zero probe. 3473 */ 3474 void tcp_send_probe0(struct sock *sk) 3475 { 3476 struct inet_connection_sock *icsk = inet_csk(sk); 3477 struct tcp_sock *tp = tcp_sk(sk); 3478 struct net *net = sock_net(sk); 3479 unsigned long probe_max; 3480 int err; 3481 3482 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3483 3484 if (tp->packets_out || !tcp_send_head(sk)) { 3485 /* Cancel probe timer, if it is not required. */ 3486 icsk->icsk_probes_out = 0; 3487 icsk->icsk_backoff = 0; 3488 return; 3489 } 3490 3491 if (err <= 0) { 3492 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3493 icsk->icsk_backoff++; 3494 icsk->icsk_probes_out++; 3495 probe_max = TCP_RTO_MAX; 3496 } else { 3497 /* If packet was not sent due to local congestion, 3498 * do not backoff and do not remember icsk_probes_out. 3499 * Let local senders to fight for local resources. 3500 * 3501 * Use accumulated backoff yet. 3502 */ 3503 if (!icsk->icsk_probes_out) 3504 icsk->icsk_probes_out = 1; 3505 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3506 } 3507 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3508 tcp_probe0_when(sk, probe_max), 3509 TCP_RTO_MAX); 3510 } 3511 3512 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3513 { 3514 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3515 struct flowi fl; 3516 int res; 3517 3518 tcp_rsk(req)->txhash = net_tx_rndhash(); 3519 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, true); 3520 if (!res) { 3521 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS); 3522 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3523 } 3524 return res; 3525 } 3526 EXPORT_SYMBOL(tcp_rtx_synack); 3527