1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of two TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 int sysctl_tcp_mtu_probing __read_mostly = 0; 63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS; 64 65 /* By default, RFC2861 behavior. */ 66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 67 68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX; 69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat); 70 71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 72 int push_one, gfp_t gfp); 73 74 /* Account for new data that has been sent to the network. */ 75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 76 { 77 struct inet_connection_sock *icsk = inet_csk(sk); 78 struct tcp_sock *tp = tcp_sk(sk); 79 unsigned int prior_packets = tp->packets_out; 80 81 tcp_advance_send_head(sk, skb); 82 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 83 84 tp->packets_out += tcp_skb_pcount(skb); 85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 86 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 87 tcp_rearm_rto(sk); 88 } 89 90 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 91 tcp_skb_pcount(skb)); 92 } 93 94 /* SND.NXT, if window was not shrunk. 95 * If window has been shrunk, what should we make? It is not clear at all. 96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 98 * invalid. OK, let's make this for now: 99 */ 100 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 101 { 102 const struct tcp_sock *tp = tcp_sk(sk); 103 104 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 105 return tp->snd_nxt; 106 else 107 return tcp_wnd_end(tp); 108 } 109 110 /* Calculate mss to advertise in SYN segment. 111 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 112 * 113 * 1. It is independent of path mtu. 114 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 115 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 116 * attached devices, because some buggy hosts are confused by 117 * large MSS. 118 * 4. We do not make 3, we advertise MSS, calculated from first 119 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 120 * This may be overridden via information stored in routing table. 121 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 122 * probably even Jumbo". 123 */ 124 static __u16 tcp_advertise_mss(struct sock *sk) 125 { 126 struct tcp_sock *tp = tcp_sk(sk); 127 const struct dst_entry *dst = __sk_dst_get(sk); 128 int mss = tp->advmss; 129 130 if (dst) { 131 unsigned int metric = dst_metric_advmss(dst); 132 133 if (metric < mss) { 134 mss = metric; 135 tp->advmss = mss; 136 } 137 } 138 139 return (__u16)mss; 140 } 141 142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 143 * This is the first part of cwnd validation mechanism. */ 144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 145 { 146 struct tcp_sock *tp = tcp_sk(sk); 147 s32 delta = tcp_time_stamp - tp->lsndtime; 148 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 149 u32 cwnd = tp->snd_cwnd; 150 151 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 152 153 tp->snd_ssthresh = tcp_current_ssthresh(sk); 154 restart_cwnd = min(restart_cwnd, cwnd); 155 156 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 157 cwnd >>= 1; 158 tp->snd_cwnd = max(cwnd, restart_cwnd); 159 tp->snd_cwnd_stamp = tcp_time_stamp; 160 tp->snd_cwnd_used = 0; 161 } 162 163 /* Congestion state accounting after a packet has been sent. */ 164 static void tcp_event_data_sent(struct tcp_sock *tp, 165 struct sock *sk) 166 { 167 struct inet_connection_sock *icsk = inet_csk(sk); 168 const u32 now = tcp_time_stamp; 169 const struct dst_entry *dst = __sk_dst_get(sk); 170 171 if (sysctl_tcp_slow_start_after_idle && 172 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 173 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 174 175 tp->lsndtime = now; 176 177 /* If it is a reply for ato after last received 178 * packet, enter pingpong mode. 179 */ 180 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato && 181 (!dst || !dst_metric(dst, RTAX_QUICKACK))) 182 icsk->icsk_ack.pingpong = 1; 183 } 184 185 /* Account for an ACK we sent. */ 186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 187 { 188 tcp_dec_quickack_mode(sk, pkts); 189 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 190 } 191 192 193 u32 tcp_default_init_rwnd(u32 mss) 194 { 195 /* Initial receive window should be twice of TCP_INIT_CWND to 196 * enable proper sending of new unsent data during fast recovery 197 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 198 * limit when mss is larger than 1460. 199 */ 200 u32 init_rwnd = TCP_INIT_CWND * 2; 201 202 if (mss > 1460) 203 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 204 return init_rwnd; 205 } 206 207 /* Determine a window scaling and initial window to offer. 208 * Based on the assumption that the given amount of space 209 * will be offered. Store the results in the tp structure. 210 * NOTE: for smooth operation initial space offering should 211 * be a multiple of mss if possible. We assume here that mss >= 1. 212 * This MUST be enforced by all callers. 213 */ 214 void tcp_select_initial_window(int __space, __u32 mss, 215 __u32 *rcv_wnd, __u32 *window_clamp, 216 int wscale_ok, __u8 *rcv_wscale, 217 __u32 init_rcv_wnd) 218 { 219 unsigned int space = (__space < 0 ? 0 : __space); 220 221 /* If no clamp set the clamp to the max possible scaled window */ 222 if (*window_clamp == 0) 223 (*window_clamp) = (65535 << 14); 224 space = min(*window_clamp, space); 225 226 /* Quantize space offering to a multiple of mss if possible. */ 227 if (space > mss) 228 space = (space / mss) * mss; 229 230 /* NOTE: offering an initial window larger than 32767 231 * will break some buggy TCP stacks. If the admin tells us 232 * it is likely we could be speaking with such a buggy stack 233 * we will truncate our initial window offering to 32K-1 234 * unless the remote has sent us a window scaling option, 235 * which we interpret as a sign the remote TCP is not 236 * misinterpreting the window field as a signed quantity. 237 */ 238 if (sysctl_tcp_workaround_signed_windows) 239 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 240 else 241 (*rcv_wnd) = space; 242 243 (*rcv_wscale) = 0; 244 if (wscale_ok) { 245 /* Set window scaling on max possible window 246 * See RFC1323 for an explanation of the limit to 14 247 */ 248 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 249 space = min_t(u32, space, *window_clamp); 250 while (space > 65535 && (*rcv_wscale) < 14) { 251 space >>= 1; 252 (*rcv_wscale)++; 253 } 254 } 255 256 if (mss > (1 << *rcv_wscale)) { 257 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 258 init_rcv_wnd = tcp_default_init_rwnd(mss); 259 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 260 } 261 262 /* Set the clamp no higher than max representable value */ 263 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 264 } 265 EXPORT_SYMBOL(tcp_select_initial_window); 266 267 /* Chose a new window to advertise, update state in tcp_sock for the 268 * socket, and return result with RFC1323 scaling applied. The return 269 * value can be stuffed directly into th->window for an outgoing 270 * frame. 271 */ 272 static u16 tcp_select_window(struct sock *sk) 273 { 274 struct tcp_sock *tp = tcp_sk(sk); 275 u32 old_win = tp->rcv_wnd; 276 u32 cur_win = tcp_receive_window(tp); 277 u32 new_win = __tcp_select_window(sk); 278 279 /* Never shrink the offered window */ 280 if (new_win < cur_win) { 281 /* Danger Will Robinson! 282 * Don't update rcv_wup/rcv_wnd here or else 283 * we will not be able to advertise a zero 284 * window in time. --DaveM 285 * 286 * Relax Will Robinson. 287 */ 288 if (new_win == 0) 289 NET_INC_STATS(sock_net(sk), 290 LINUX_MIB_TCPWANTZEROWINDOWADV); 291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 292 } 293 tp->rcv_wnd = new_win; 294 tp->rcv_wup = tp->rcv_nxt; 295 296 /* Make sure we do not exceed the maximum possible 297 * scaled window. 298 */ 299 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 300 new_win = min(new_win, MAX_TCP_WINDOW); 301 else 302 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 303 304 /* RFC1323 scaling applied */ 305 new_win >>= tp->rx_opt.rcv_wscale; 306 307 /* If we advertise zero window, disable fast path. */ 308 if (new_win == 0) { 309 tp->pred_flags = 0; 310 if (old_win) 311 NET_INC_STATS(sock_net(sk), 312 LINUX_MIB_TCPTOZEROWINDOWADV); 313 } else if (old_win == 0) { 314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 315 } 316 317 return new_win; 318 } 319 320 /* Packet ECN state for a SYN-ACK */ 321 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 322 { 323 const struct tcp_sock *tp = tcp_sk(sk); 324 325 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 326 if (!(tp->ecn_flags & TCP_ECN_OK)) 327 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 328 else if (tcp_ca_needs_ecn(sk)) 329 INET_ECN_xmit(sk); 330 } 331 332 /* Packet ECN state for a SYN. */ 333 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 334 { 335 struct tcp_sock *tp = tcp_sk(sk); 336 337 tp->ecn_flags = 0; 338 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 339 tcp_ca_needs_ecn(sk)) { 340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 341 tp->ecn_flags = TCP_ECN_OK; 342 if (tcp_ca_needs_ecn(sk)) 343 INET_ECN_xmit(sk); 344 } 345 } 346 347 static void 348 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th, 349 struct sock *sk) 350 { 351 if (inet_rsk(req)->ecn_ok) { 352 th->ece = 1; 353 if (tcp_ca_needs_ecn(sk)) 354 INET_ECN_xmit(sk); 355 } 356 } 357 358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 359 * be sent. 360 */ 361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 362 int tcp_header_len) 363 { 364 struct tcp_sock *tp = tcp_sk(sk); 365 366 if (tp->ecn_flags & TCP_ECN_OK) { 367 /* Not-retransmitted data segment: set ECT and inject CWR. */ 368 if (skb->len != tcp_header_len && 369 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 370 INET_ECN_xmit(sk); 371 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 372 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 373 tcp_hdr(skb)->cwr = 1; 374 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 375 } 376 } else if (!tcp_ca_needs_ecn(sk)) { 377 /* ACK or retransmitted segment: clear ECT|CE */ 378 INET_ECN_dontxmit(sk); 379 } 380 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 381 tcp_hdr(skb)->ece = 1; 382 } 383 } 384 385 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 386 * auto increment end seqno. 387 */ 388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 389 { 390 struct skb_shared_info *shinfo = skb_shinfo(skb); 391 392 skb->ip_summed = CHECKSUM_PARTIAL; 393 skb->csum = 0; 394 395 TCP_SKB_CB(skb)->tcp_flags = flags; 396 TCP_SKB_CB(skb)->sacked = 0; 397 398 tcp_skb_pcount_set(skb, 1); 399 shinfo->gso_size = 0; 400 shinfo->gso_type = 0; 401 402 TCP_SKB_CB(skb)->seq = seq; 403 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 404 seq++; 405 TCP_SKB_CB(skb)->end_seq = seq; 406 } 407 408 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 409 { 410 return tp->snd_una != tp->snd_up; 411 } 412 413 #define OPTION_SACK_ADVERTISE (1 << 0) 414 #define OPTION_TS (1 << 1) 415 #define OPTION_MD5 (1 << 2) 416 #define OPTION_WSCALE (1 << 3) 417 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 418 419 struct tcp_out_options { 420 u16 options; /* bit field of OPTION_* */ 421 u16 mss; /* 0 to disable */ 422 u8 ws; /* window scale, 0 to disable */ 423 u8 num_sack_blocks; /* number of SACK blocks to include */ 424 u8 hash_size; /* bytes in hash_location */ 425 __u8 *hash_location; /* temporary pointer, overloaded */ 426 __u32 tsval, tsecr; /* need to include OPTION_TS */ 427 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 428 }; 429 430 /* Write previously computed TCP options to the packet. 431 * 432 * Beware: Something in the Internet is very sensitive to the ordering of 433 * TCP options, we learned this through the hard way, so be careful here. 434 * Luckily we can at least blame others for their non-compliance but from 435 * inter-operability perspective it seems that we're somewhat stuck with 436 * the ordering which we have been using if we want to keep working with 437 * those broken things (not that it currently hurts anybody as there isn't 438 * particular reason why the ordering would need to be changed). 439 * 440 * At least SACK_PERM as the first option is known to lead to a disaster 441 * (but it may well be that other scenarios fail similarly). 442 */ 443 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 444 struct tcp_out_options *opts) 445 { 446 u16 options = opts->options; /* mungable copy */ 447 448 if (unlikely(OPTION_MD5 & options)) { 449 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 450 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 451 /* overload cookie hash location */ 452 opts->hash_location = (__u8 *)ptr; 453 ptr += 4; 454 } 455 456 if (unlikely(opts->mss)) { 457 *ptr++ = htonl((TCPOPT_MSS << 24) | 458 (TCPOLEN_MSS << 16) | 459 opts->mss); 460 } 461 462 if (likely(OPTION_TS & options)) { 463 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 464 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 465 (TCPOLEN_SACK_PERM << 16) | 466 (TCPOPT_TIMESTAMP << 8) | 467 TCPOLEN_TIMESTAMP); 468 options &= ~OPTION_SACK_ADVERTISE; 469 } else { 470 *ptr++ = htonl((TCPOPT_NOP << 24) | 471 (TCPOPT_NOP << 16) | 472 (TCPOPT_TIMESTAMP << 8) | 473 TCPOLEN_TIMESTAMP); 474 } 475 *ptr++ = htonl(opts->tsval); 476 *ptr++ = htonl(opts->tsecr); 477 } 478 479 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 480 *ptr++ = htonl((TCPOPT_NOP << 24) | 481 (TCPOPT_NOP << 16) | 482 (TCPOPT_SACK_PERM << 8) | 483 TCPOLEN_SACK_PERM); 484 } 485 486 if (unlikely(OPTION_WSCALE & options)) { 487 *ptr++ = htonl((TCPOPT_NOP << 24) | 488 (TCPOPT_WINDOW << 16) | 489 (TCPOLEN_WINDOW << 8) | 490 opts->ws); 491 } 492 493 if (unlikely(opts->num_sack_blocks)) { 494 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 495 tp->duplicate_sack : tp->selective_acks; 496 int this_sack; 497 498 *ptr++ = htonl((TCPOPT_NOP << 24) | 499 (TCPOPT_NOP << 16) | 500 (TCPOPT_SACK << 8) | 501 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 502 TCPOLEN_SACK_PERBLOCK))); 503 504 for (this_sack = 0; this_sack < opts->num_sack_blocks; 505 ++this_sack) { 506 *ptr++ = htonl(sp[this_sack].start_seq); 507 *ptr++ = htonl(sp[this_sack].end_seq); 508 } 509 510 tp->rx_opt.dsack = 0; 511 } 512 513 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 514 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 515 516 *ptr++ = htonl((TCPOPT_EXP << 24) | 517 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) | 518 TCPOPT_FASTOPEN_MAGIC); 519 520 memcpy(ptr, foc->val, foc->len); 521 if ((foc->len & 3) == 2) { 522 u8 *align = ((u8 *)ptr) + foc->len; 523 align[0] = align[1] = TCPOPT_NOP; 524 } 525 ptr += (foc->len + 3) >> 2; 526 } 527 } 528 529 /* Compute TCP options for SYN packets. This is not the final 530 * network wire format yet. 531 */ 532 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 533 struct tcp_out_options *opts, 534 struct tcp_md5sig_key **md5) 535 { 536 struct tcp_sock *tp = tcp_sk(sk); 537 unsigned int remaining = MAX_TCP_OPTION_SPACE; 538 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 539 540 #ifdef CONFIG_TCP_MD5SIG 541 *md5 = tp->af_specific->md5_lookup(sk, sk); 542 if (*md5) { 543 opts->options |= OPTION_MD5; 544 remaining -= TCPOLEN_MD5SIG_ALIGNED; 545 } 546 #else 547 *md5 = NULL; 548 #endif 549 550 /* We always get an MSS option. The option bytes which will be seen in 551 * normal data packets should timestamps be used, must be in the MSS 552 * advertised. But we subtract them from tp->mss_cache so that 553 * calculations in tcp_sendmsg are simpler etc. So account for this 554 * fact here if necessary. If we don't do this correctly, as a 555 * receiver we won't recognize data packets as being full sized when we 556 * should, and thus we won't abide by the delayed ACK rules correctly. 557 * SACKs don't matter, we never delay an ACK when we have any of those 558 * going out. */ 559 opts->mss = tcp_advertise_mss(sk); 560 remaining -= TCPOLEN_MSS_ALIGNED; 561 562 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 563 opts->options |= OPTION_TS; 564 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 565 opts->tsecr = tp->rx_opt.ts_recent; 566 remaining -= TCPOLEN_TSTAMP_ALIGNED; 567 } 568 if (likely(sysctl_tcp_window_scaling)) { 569 opts->ws = tp->rx_opt.rcv_wscale; 570 opts->options |= OPTION_WSCALE; 571 remaining -= TCPOLEN_WSCALE_ALIGNED; 572 } 573 if (likely(sysctl_tcp_sack)) { 574 opts->options |= OPTION_SACK_ADVERTISE; 575 if (unlikely(!(OPTION_TS & opts->options))) 576 remaining -= TCPOLEN_SACKPERM_ALIGNED; 577 } 578 579 if (fastopen && fastopen->cookie.len >= 0) { 580 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len; 581 need = (need + 3) & ~3U; /* Align to 32 bits */ 582 if (remaining >= need) { 583 opts->options |= OPTION_FAST_OPEN_COOKIE; 584 opts->fastopen_cookie = &fastopen->cookie; 585 remaining -= need; 586 tp->syn_fastopen = 1; 587 } 588 } 589 590 return MAX_TCP_OPTION_SPACE - remaining; 591 } 592 593 /* Set up TCP options for SYN-ACKs. */ 594 static unsigned int tcp_synack_options(struct sock *sk, 595 struct request_sock *req, 596 unsigned int mss, struct sk_buff *skb, 597 struct tcp_out_options *opts, 598 struct tcp_md5sig_key **md5, 599 struct tcp_fastopen_cookie *foc) 600 { 601 struct inet_request_sock *ireq = inet_rsk(req); 602 unsigned int remaining = MAX_TCP_OPTION_SPACE; 603 604 #ifdef CONFIG_TCP_MD5SIG 605 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 606 if (*md5) { 607 opts->options |= OPTION_MD5; 608 remaining -= TCPOLEN_MD5SIG_ALIGNED; 609 610 /* We can't fit any SACK blocks in a packet with MD5 + TS 611 * options. There was discussion about disabling SACK 612 * rather than TS in order to fit in better with old, 613 * buggy kernels, but that was deemed to be unnecessary. 614 */ 615 ireq->tstamp_ok &= !ireq->sack_ok; 616 } 617 #else 618 *md5 = NULL; 619 #endif 620 621 /* We always send an MSS option. */ 622 opts->mss = mss; 623 remaining -= TCPOLEN_MSS_ALIGNED; 624 625 if (likely(ireq->wscale_ok)) { 626 opts->ws = ireq->rcv_wscale; 627 opts->options |= OPTION_WSCALE; 628 remaining -= TCPOLEN_WSCALE_ALIGNED; 629 } 630 if (likely(ireq->tstamp_ok)) { 631 opts->options |= OPTION_TS; 632 opts->tsval = tcp_skb_timestamp(skb); 633 opts->tsecr = req->ts_recent; 634 remaining -= TCPOLEN_TSTAMP_ALIGNED; 635 } 636 if (likely(ireq->sack_ok)) { 637 opts->options |= OPTION_SACK_ADVERTISE; 638 if (unlikely(!ireq->tstamp_ok)) 639 remaining -= TCPOLEN_SACKPERM_ALIGNED; 640 } 641 if (foc != NULL && foc->len >= 0) { 642 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 643 need = (need + 3) & ~3U; /* Align to 32 bits */ 644 if (remaining >= need) { 645 opts->options |= OPTION_FAST_OPEN_COOKIE; 646 opts->fastopen_cookie = foc; 647 remaining -= need; 648 } 649 } 650 651 return MAX_TCP_OPTION_SPACE - remaining; 652 } 653 654 /* Compute TCP options for ESTABLISHED sockets. This is not the 655 * final wire format yet. 656 */ 657 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 658 struct tcp_out_options *opts, 659 struct tcp_md5sig_key **md5) 660 { 661 struct tcp_sock *tp = tcp_sk(sk); 662 unsigned int size = 0; 663 unsigned int eff_sacks; 664 665 opts->options = 0; 666 667 #ifdef CONFIG_TCP_MD5SIG 668 *md5 = tp->af_specific->md5_lookup(sk, sk); 669 if (unlikely(*md5)) { 670 opts->options |= OPTION_MD5; 671 size += TCPOLEN_MD5SIG_ALIGNED; 672 } 673 #else 674 *md5 = NULL; 675 #endif 676 677 if (likely(tp->rx_opt.tstamp_ok)) { 678 opts->options |= OPTION_TS; 679 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 680 opts->tsecr = tp->rx_opt.ts_recent; 681 size += TCPOLEN_TSTAMP_ALIGNED; 682 } 683 684 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 685 if (unlikely(eff_sacks)) { 686 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 687 opts->num_sack_blocks = 688 min_t(unsigned int, eff_sacks, 689 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 690 TCPOLEN_SACK_PERBLOCK); 691 size += TCPOLEN_SACK_BASE_ALIGNED + 692 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 693 } 694 695 return size; 696 } 697 698 699 /* TCP SMALL QUEUES (TSQ) 700 * 701 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 702 * to reduce RTT and bufferbloat. 703 * We do this using a special skb destructor (tcp_wfree). 704 * 705 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 706 * needs to be reallocated in a driver. 707 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 708 * 709 * Since transmit from skb destructor is forbidden, we use a tasklet 710 * to process all sockets that eventually need to send more skbs. 711 * We use one tasklet per cpu, with its own queue of sockets. 712 */ 713 struct tsq_tasklet { 714 struct tasklet_struct tasklet; 715 struct list_head head; /* queue of tcp sockets */ 716 }; 717 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 718 719 static void tcp_tsq_handler(struct sock *sk) 720 { 721 if ((1 << sk->sk_state) & 722 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 723 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 724 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle, 725 0, GFP_ATOMIC); 726 } 727 /* 728 * One tasklet per cpu tries to send more skbs. 729 * We run in tasklet context but need to disable irqs when 730 * transferring tsq->head because tcp_wfree() might 731 * interrupt us (non NAPI drivers) 732 */ 733 static void tcp_tasklet_func(unsigned long data) 734 { 735 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 736 LIST_HEAD(list); 737 unsigned long flags; 738 struct list_head *q, *n; 739 struct tcp_sock *tp; 740 struct sock *sk; 741 742 local_irq_save(flags); 743 list_splice_init(&tsq->head, &list); 744 local_irq_restore(flags); 745 746 list_for_each_safe(q, n, &list) { 747 tp = list_entry(q, struct tcp_sock, tsq_node); 748 list_del(&tp->tsq_node); 749 750 sk = (struct sock *)tp; 751 bh_lock_sock(sk); 752 753 if (!sock_owned_by_user(sk)) { 754 tcp_tsq_handler(sk); 755 } else { 756 /* defer the work to tcp_release_cb() */ 757 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 758 } 759 bh_unlock_sock(sk); 760 761 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 762 sk_free(sk); 763 } 764 } 765 766 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 767 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 768 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 769 (1UL << TCP_MTU_REDUCED_DEFERRED)) 770 /** 771 * tcp_release_cb - tcp release_sock() callback 772 * @sk: socket 773 * 774 * called from release_sock() to perform protocol dependent 775 * actions before socket release. 776 */ 777 void tcp_release_cb(struct sock *sk) 778 { 779 struct tcp_sock *tp = tcp_sk(sk); 780 unsigned long flags, nflags; 781 782 /* perform an atomic operation only if at least one flag is set */ 783 do { 784 flags = tp->tsq_flags; 785 if (!(flags & TCP_DEFERRED_ALL)) 786 return; 787 nflags = flags & ~TCP_DEFERRED_ALL; 788 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 789 790 if (flags & (1UL << TCP_TSQ_DEFERRED)) 791 tcp_tsq_handler(sk); 792 793 /* Here begins the tricky part : 794 * We are called from release_sock() with : 795 * 1) BH disabled 796 * 2) sk_lock.slock spinlock held 797 * 3) socket owned by us (sk->sk_lock.owned == 1) 798 * 799 * But following code is meant to be called from BH handlers, 800 * so we should keep BH disabled, but early release socket ownership 801 */ 802 sock_release_ownership(sk); 803 804 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 805 tcp_write_timer_handler(sk); 806 __sock_put(sk); 807 } 808 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 809 tcp_delack_timer_handler(sk); 810 __sock_put(sk); 811 } 812 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 813 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 814 __sock_put(sk); 815 } 816 } 817 EXPORT_SYMBOL(tcp_release_cb); 818 819 void __init tcp_tasklet_init(void) 820 { 821 int i; 822 823 for_each_possible_cpu(i) { 824 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 825 826 INIT_LIST_HEAD(&tsq->head); 827 tasklet_init(&tsq->tasklet, 828 tcp_tasklet_func, 829 (unsigned long)tsq); 830 } 831 } 832 833 /* 834 * Write buffer destructor automatically called from kfree_skb. 835 * We can't xmit new skbs from this context, as we might already 836 * hold qdisc lock. 837 */ 838 void tcp_wfree(struct sk_buff *skb) 839 { 840 struct sock *sk = skb->sk; 841 struct tcp_sock *tp = tcp_sk(sk); 842 int wmem; 843 844 /* Keep one reference on sk_wmem_alloc. 845 * Will be released by sk_free() from here or tcp_tasklet_func() 846 */ 847 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 848 849 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 850 * Wait until our queues (qdisc + devices) are drained. 851 * This gives : 852 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 853 * - chance for incoming ACK (processed by another cpu maybe) 854 * to migrate this flow (skb->ooo_okay will be eventually set) 855 */ 856 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 857 goto out; 858 859 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 860 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 861 unsigned long flags; 862 struct tsq_tasklet *tsq; 863 864 /* queue this socket to tasklet queue */ 865 local_irq_save(flags); 866 tsq = this_cpu_ptr(&tsq_tasklet); 867 list_add(&tp->tsq_node, &tsq->head); 868 tasklet_schedule(&tsq->tasklet); 869 local_irq_restore(flags); 870 return; 871 } 872 out: 873 sk_free(sk); 874 } 875 876 /* This routine actually transmits TCP packets queued in by 877 * tcp_do_sendmsg(). This is used by both the initial 878 * transmission and possible later retransmissions. 879 * All SKB's seen here are completely headerless. It is our 880 * job to build the TCP header, and pass the packet down to 881 * IP so it can do the same plus pass the packet off to the 882 * device. 883 * 884 * We are working here with either a clone of the original 885 * SKB, or a fresh unique copy made by the retransmit engine. 886 */ 887 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 888 gfp_t gfp_mask) 889 { 890 const struct inet_connection_sock *icsk = inet_csk(sk); 891 struct inet_sock *inet; 892 struct tcp_sock *tp; 893 struct tcp_skb_cb *tcb; 894 struct tcp_out_options opts; 895 unsigned int tcp_options_size, tcp_header_size; 896 struct tcp_md5sig_key *md5; 897 struct tcphdr *th; 898 int err; 899 900 BUG_ON(!skb || !tcp_skb_pcount(skb)); 901 902 if (clone_it) { 903 skb_mstamp_get(&skb->skb_mstamp); 904 905 if (unlikely(skb_cloned(skb))) 906 skb = pskb_copy(skb, gfp_mask); 907 else 908 skb = skb_clone(skb, gfp_mask); 909 if (unlikely(!skb)) 910 return -ENOBUFS; 911 } 912 913 inet = inet_sk(sk); 914 tp = tcp_sk(sk); 915 tcb = TCP_SKB_CB(skb); 916 memset(&opts, 0, sizeof(opts)); 917 918 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 919 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 920 else 921 tcp_options_size = tcp_established_options(sk, skb, &opts, 922 &md5); 923 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 924 925 if (tcp_packets_in_flight(tp) == 0) 926 tcp_ca_event(sk, CA_EVENT_TX_START); 927 928 /* if no packet is in qdisc/device queue, then allow XPS to select 929 * another queue. We can be called from tcp_tsq_handler() 930 * which holds one reference to sk_wmem_alloc. 931 * 932 * TODO: Ideally, in-flight pure ACK packets should not matter here. 933 * One way to get this would be to set skb->truesize = 2 on them. 934 */ 935 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 936 937 skb_push(skb, tcp_header_size); 938 skb_reset_transport_header(skb); 939 940 skb_orphan(skb); 941 skb->sk = sk; 942 skb->destructor = tcp_wfree; 943 skb_set_hash_from_sk(skb, sk); 944 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 945 946 /* Build TCP header and checksum it. */ 947 th = tcp_hdr(skb); 948 th->source = inet->inet_sport; 949 th->dest = inet->inet_dport; 950 th->seq = htonl(tcb->seq); 951 th->ack_seq = htonl(tp->rcv_nxt); 952 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 953 tcb->tcp_flags); 954 955 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 956 /* RFC1323: The window in SYN & SYN/ACK segments 957 * is never scaled. 958 */ 959 th->window = htons(min(tp->rcv_wnd, 65535U)); 960 } else { 961 th->window = htons(tcp_select_window(sk)); 962 } 963 th->check = 0; 964 th->urg_ptr = 0; 965 966 /* The urg_mode check is necessary during a below snd_una win probe */ 967 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 968 if (before(tp->snd_up, tcb->seq + 0x10000)) { 969 th->urg_ptr = htons(tp->snd_up - tcb->seq); 970 th->urg = 1; 971 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 972 th->urg_ptr = htons(0xFFFF); 973 th->urg = 1; 974 } 975 } 976 977 tcp_options_write((__be32 *)(th + 1), tp, &opts); 978 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 979 tcp_ecn_send(sk, skb, tcp_header_size); 980 981 #ifdef CONFIG_TCP_MD5SIG 982 /* Calculate the MD5 hash, as we have all we need now */ 983 if (md5) { 984 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 985 tp->af_specific->calc_md5_hash(opts.hash_location, 986 md5, sk, NULL, skb); 987 } 988 #endif 989 990 icsk->icsk_af_ops->send_check(sk, skb); 991 992 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 993 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 994 995 if (skb->len != tcp_header_size) 996 tcp_event_data_sent(tp, sk); 997 998 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 999 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1000 tcp_skb_pcount(skb)); 1001 1002 /* OK, its time to fill skb_shinfo(skb)->gso_segs */ 1003 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1004 1005 /* Our usage of tstamp should remain private */ 1006 skb->tstamp.tv64 = 0; 1007 1008 /* Cleanup our debris for IP stacks */ 1009 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1010 sizeof(struct inet6_skb_parm))); 1011 1012 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1013 1014 if (likely(err <= 0)) 1015 return err; 1016 1017 tcp_enter_cwr(sk); 1018 1019 return net_xmit_eval(err); 1020 } 1021 1022 /* This routine just queues the buffer for sending. 1023 * 1024 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1025 * otherwise socket can stall. 1026 */ 1027 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1028 { 1029 struct tcp_sock *tp = tcp_sk(sk); 1030 1031 /* Advance write_seq and place onto the write_queue. */ 1032 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1033 __skb_header_release(skb); 1034 tcp_add_write_queue_tail(sk, skb); 1035 sk->sk_wmem_queued += skb->truesize; 1036 sk_mem_charge(sk, skb->truesize); 1037 } 1038 1039 /* Initialize TSO segments for a packet. */ 1040 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 1041 unsigned int mss_now) 1042 { 1043 struct skb_shared_info *shinfo = skb_shinfo(skb); 1044 1045 /* Make sure we own this skb before messing gso_size/gso_segs */ 1046 WARN_ON_ONCE(skb_cloned(skb)); 1047 1048 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1049 /* Avoid the costly divide in the normal 1050 * non-TSO case. 1051 */ 1052 tcp_skb_pcount_set(skb, 1); 1053 shinfo->gso_size = 0; 1054 shinfo->gso_type = 0; 1055 } else { 1056 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1057 shinfo->gso_size = mss_now; 1058 shinfo->gso_type = sk->sk_gso_type; 1059 } 1060 } 1061 1062 /* When a modification to fackets out becomes necessary, we need to check 1063 * skb is counted to fackets_out or not. 1064 */ 1065 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1066 int decr) 1067 { 1068 struct tcp_sock *tp = tcp_sk(sk); 1069 1070 if (!tp->sacked_out || tcp_is_reno(tp)) 1071 return; 1072 1073 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1074 tp->fackets_out -= decr; 1075 } 1076 1077 /* Pcount in the middle of the write queue got changed, we need to do various 1078 * tweaks to fix counters 1079 */ 1080 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1081 { 1082 struct tcp_sock *tp = tcp_sk(sk); 1083 1084 tp->packets_out -= decr; 1085 1086 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1087 tp->sacked_out -= decr; 1088 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1089 tp->retrans_out -= decr; 1090 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1091 tp->lost_out -= decr; 1092 1093 /* Reno case is special. Sigh... */ 1094 if (tcp_is_reno(tp) && decr > 0) 1095 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1096 1097 tcp_adjust_fackets_out(sk, skb, decr); 1098 1099 if (tp->lost_skb_hint && 1100 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1101 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1102 tp->lost_cnt_hint -= decr; 1103 1104 tcp_verify_left_out(tp); 1105 } 1106 1107 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1108 { 1109 struct skb_shared_info *shinfo = skb_shinfo(skb); 1110 1111 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) && 1112 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1113 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1114 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1115 1116 shinfo->tx_flags &= ~tsflags; 1117 shinfo2->tx_flags |= tsflags; 1118 swap(shinfo->tskey, shinfo2->tskey); 1119 } 1120 } 1121 1122 /* Function to create two new TCP segments. Shrinks the given segment 1123 * to the specified size and appends a new segment with the rest of the 1124 * packet to the list. This won't be called frequently, I hope. 1125 * Remember, these are still headerless SKBs at this point. 1126 */ 1127 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1128 unsigned int mss_now, gfp_t gfp) 1129 { 1130 struct tcp_sock *tp = tcp_sk(sk); 1131 struct sk_buff *buff; 1132 int nsize, old_factor; 1133 int nlen; 1134 u8 flags; 1135 1136 if (WARN_ON(len > skb->len)) 1137 return -EINVAL; 1138 1139 nsize = skb_headlen(skb) - len; 1140 if (nsize < 0) 1141 nsize = 0; 1142 1143 if (skb_unclone(skb, gfp)) 1144 return -ENOMEM; 1145 1146 /* Get a new skb... force flag on. */ 1147 buff = sk_stream_alloc_skb(sk, nsize, gfp); 1148 if (buff == NULL) 1149 return -ENOMEM; /* We'll just try again later. */ 1150 1151 sk->sk_wmem_queued += buff->truesize; 1152 sk_mem_charge(sk, buff->truesize); 1153 nlen = skb->len - len - nsize; 1154 buff->truesize += nlen; 1155 skb->truesize -= nlen; 1156 1157 /* Correct the sequence numbers. */ 1158 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1159 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1160 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1161 1162 /* PSH and FIN should only be set in the second packet. */ 1163 flags = TCP_SKB_CB(skb)->tcp_flags; 1164 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1165 TCP_SKB_CB(buff)->tcp_flags = flags; 1166 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1167 1168 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1169 /* Copy and checksum data tail into the new buffer. */ 1170 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1171 skb_put(buff, nsize), 1172 nsize, 0); 1173 1174 skb_trim(skb, len); 1175 1176 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1177 } else { 1178 skb->ip_summed = CHECKSUM_PARTIAL; 1179 skb_split(skb, buff, len); 1180 } 1181 1182 buff->ip_summed = skb->ip_summed; 1183 1184 buff->tstamp = skb->tstamp; 1185 tcp_fragment_tstamp(skb, buff); 1186 1187 old_factor = tcp_skb_pcount(skb); 1188 1189 /* Fix up tso_factor for both original and new SKB. */ 1190 tcp_set_skb_tso_segs(sk, skb, mss_now); 1191 tcp_set_skb_tso_segs(sk, buff, mss_now); 1192 1193 /* If this packet has been sent out already, we must 1194 * adjust the various packet counters. 1195 */ 1196 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1197 int diff = old_factor - tcp_skb_pcount(skb) - 1198 tcp_skb_pcount(buff); 1199 1200 if (diff) 1201 tcp_adjust_pcount(sk, skb, diff); 1202 } 1203 1204 /* Link BUFF into the send queue. */ 1205 __skb_header_release(buff); 1206 tcp_insert_write_queue_after(skb, buff, sk); 1207 1208 return 0; 1209 } 1210 1211 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1212 * eventually). The difference is that pulled data not copied, but 1213 * immediately discarded. 1214 */ 1215 static void __pskb_trim_head(struct sk_buff *skb, int len) 1216 { 1217 struct skb_shared_info *shinfo; 1218 int i, k, eat; 1219 1220 eat = min_t(int, len, skb_headlen(skb)); 1221 if (eat) { 1222 __skb_pull(skb, eat); 1223 len -= eat; 1224 if (!len) 1225 return; 1226 } 1227 eat = len; 1228 k = 0; 1229 shinfo = skb_shinfo(skb); 1230 for (i = 0; i < shinfo->nr_frags; i++) { 1231 int size = skb_frag_size(&shinfo->frags[i]); 1232 1233 if (size <= eat) { 1234 skb_frag_unref(skb, i); 1235 eat -= size; 1236 } else { 1237 shinfo->frags[k] = shinfo->frags[i]; 1238 if (eat) { 1239 shinfo->frags[k].page_offset += eat; 1240 skb_frag_size_sub(&shinfo->frags[k], eat); 1241 eat = 0; 1242 } 1243 k++; 1244 } 1245 } 1246 shinfo->nr_frags = k; 1247 1248 skb_reset_tail_pointer(skb); 1249 skb->data_len -= len; 1250 skb->len = skb->data_len; 1251 } 1252 1253 /* Remove acked data from a packet in the transmit queue. */ 1254 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1255 { 1256 if (skb_unclone(skb, GFP_ATOMIC)) 1257 return -ENOMEM; 1258 1259 __pskb_trim_head(skb, len); 1260 1261 TCP_SKB_CB(skb)->seq += len; 1262 skb->ip_summed = CHECKSUM_PARTIAL; 1263 1264 skb->truesize -= len; 1265 sk->sk_wmem_queued -= len; 1266 sk_mem_uncharge(sk, len); 1267 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1268 1269 /* Any change of skb->len requires recalculation of tso factor. */ 1270 if (tcp_skb_pcount(skb) > 1) 1271 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1272 1273 return 0; 1274 } 1275 1276 /* Calculate MSS not accounting any TCP options. */ 1277 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1278 { 1279 const struct tcp_sock *tp = tcp_sk(sk); 1280 const struct inet_connection_sock *icsk = inet_csk(sk); 1281 int mss_now; 1282 1283 /* Calculate base mss without TCP options: 1284 It is MMS_S - sizeof(tcphdr) of rfc1122 1285 */ 1286 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1287 1288 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1289 if (icsk->icsk_af_ops->net_frag_header_len) { 1290 const struct dst_entry *dst = __sk_dst_get(sk); 1291 1292 if (dst && dst_allfrag(dst)) 1293 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1294 } 1295 1296 /* Clamp it (mss_clamp does not include tcp options) */ 1297 if (mss_now > tp->rx_opt.mss_clamp) 1298 mss_now = tp->rx_opt.mss_clamp; 1299 1300 /* Now subtract optional transport overhead */ 1301 mss_now -= icsk->icsk_ext_hdr_len; 1302 1303 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1304 if (mss_now < 48) 1305 mss_now = 48; 1306 return mss_now; 1307 } 1308 1309 /* Calculate MSS. Not accounting for SACKs here. */ 1310 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1311 { 1312 /* Subtract TCP options size, not including SACKs */ 1313 return __tcp_mtu_to_mss(sk, pmtu) - 1314 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1315 } 1316 1317 /* Inverse of above */ 1318 int tcp_mss_to_mtu(struct sock *sk, int mss) 1319 { 1320 const struct tcp_sock *tp = tcp_sk(sk); 1321 const struct inet_connection_sock *icsk = inet_csk(sk); 1322 int mtu; 1323 1324 mtu = mss + 1325 tp->tcp_header_len + 1326 icsk->icsk_ext_hdr_len + 1327 icsk->icsk_af_ops->net_header_len; 1328 1329 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1330 if (icsk->icsk_af_ops->net_frag_header_len) { 1331 const struct dst_entry *dst = __sk_dst_get(sk); 1332 1333 if (dst && dst_allfrag(dst)) 1334 mtu += icsk->icsk_af_ops->net_frag_header_len; 1335 } 1336 return mtu; 1337 } 1338 1339 /* MTU probing init per socket */ 1340 void tcp_mtup_init(struct sock *sk) 1341 { 1342 struct tcp_sock *tp = tcp_sk(sk); 1343 struct inet_connection_sock *icsk = inet_csk(sk); 1344 1345 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 1346 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1347 icsk->icsk_af_ops->net_header_len; 1348 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 1349 icsk->icsk_mtup.probe_size = 0; 1350 } 1351 EXPORT_SYMBOL(tcp_mtup_init); 1352 1353 /* This function synchronize snd mss to current pmtu/exthdr set. 1354 1355 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1356 for TCP options, but includes only bare TCP header. 1357 1358 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1359 It is minimum of user_mss and mss received with SYN. 1360 It also does not include TCP options. 1361 1362 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1363 1364 tp->mss_cache is current effective sending mss, including 1365 all tcp options except for SACKs. It is evaluated, 1366 taking into account current pmtu, but never exceeds 1367 tp->rx_opt.mss_clamp. 1368 1369 NOTE1. rfc1122 clearly states that advertised MSS 1370 DOES NOT include either tcp or ip options. 1371 1372 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1373 are READ ONLY outside this function. --ANK (980731) 1374 */ 1375 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1376 { 1377 struct tcp_sock *tp = tcp_sk(sk); 1378 struct inet_connection_sock *icsk = inet_csk(sk); 1379 int mss_now; 1380 1381 if (icsk->icsk_mtup.search_high > pmtu) 1382 icsk->icsk_mtup.search_high = pmtu; 1383 1384 mss_now = tcp_mtu_to_mss(sk, pmtu); 1385 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1386 1387 /* And store cached results */ 1388 icsk->icsk_pmtu_cookie = pmtu; 1389 if (icsk->icsk_mtup.enabled) 1390 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1391 tp->mss_cache = mss_now; 1392 1393 return mss_now; 1394 } 1395 EXPORT_SYMBOL(tcp_sync_mss); 1396 1397 /* Compute the current effective MSS, taking SACKs and IP options, 1398 * and even PMTU discovery events into account. 1399 */ 1400 unsigned int tcp_current_mss(struct sock *sk) 1401 { 1402 const struct tcp_sock *tp = tcp_sk(sk); 1403 const struct dst_entry *dst = __sk_dst_get(sk); 1404 u32 mss_now; 1405 unsigned int header_len; 1406 struct tcp_out_options opts; 1407 struct tcp_md5sig_key *md5; 1408 1409 mss_now = tp->mss_cache; 1410 1411 if (dst) { 1412 u32 mtu = dst_mtu(dst); 1413 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1414 mss_now = tcp_sync_mss(sk, mtu); 1415 } 1416 1417 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1418 sizeof(struct tcphdr); 1419 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1420 * some common options. If this is an odd packet (because we have SACK 1421 * blocks etc) then our calculated header_len will be different, and 1422 * we have to adjust mss_now correspondingly */ 1423 if (header_len != tp->tcp_header_len) { 1424 int delta = (int) header_len - tp->tcp_header_len; 1425 mss_now -= delta; 1426 } 1427 1428 return mss_now; 1429 } 1430 1431 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1432 * As additional protections, we do not touch cwnd in retransmission phases, 1433 * and if application hit its sndbuf limit recently. 1434 */ 1435 static void tcp_cwnd_application_limited(struct sock *sk) 1436 { 1437 struct tcp_sock *tp = tcp_sk(sk); 1438 1439 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1440 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1441 /* Limited by application or receiver window. */ 1442 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1443 u32 win_used = max(tp->snd_cwnd_used, init_win); 1444 if (win_used < tp->snd_cwnd) { 1445 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1446 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1447 } 1448 tp->snd_cwnd_used = 0; 1449 } 1450 tp->snd_cwnd_stamp = tcp_time_stamp; 1451 } 1452 1453 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1454 { 1455 struct tcp_sock *tp = tcp_sk(sk); 1456 1457 /* Track the maximum number of outstanding packets in each 1458 * window, and remember whether we were cwnd-limited then. 1459 */ 1460 if (!before(tp->snd_una, tp->max_packets_seq) || 1461 tp->packets_out > tp->max_packets_out) { 1462 tp->max_packets_out = tp->packets_out; 1463 tp->max_packets_seq = tp->snd_nxt; 1464 tp->is_cwnd_limited = is_cwnd_limited; 1465 } 1466 1467 if (tcp_is_cwnd_limited(sk)) { 1468 /* Network is feed fully. */ 1469 tp->snd_cwnd_used = 0; 1470 tp->snd_cwnd_stamp = tcp_time_stamp; 1471 } else { 1472 /* Network starves. */ 1473 if (tp->packets_out > tp->snd_cwnd_used) 1474 tp->snd_cwnd_used = tp->packets_out; 1475 1476 if (sysctl_tcp_slow_start_after_idle && 1477 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1478 tcp_cwnd_application_limited(sk); 1479 } 1480 } 1481 1482 /* Minshall's variant of the Nagle send check. */ 1483 static bool tcp_minshall_check(const struct tcp_sock *tp) 1484 { 1485 return after(tp->snd_sml, tp->snd_una) && 1486 !after(tp->snd_sml, tp->snd_nxt); 1487 } 1488 1489 /* Update snd_sml if this skb is under mss 1490 * Note that a TSO packet might end with a sub-mss segment 1491 * The test is really : 1492 * if ((skb->len % mss) != 0) 1493 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1494 * But we can avoid doing the divide again given we already have 1495 * skb_pcount = skb->len / mss_now 1496 */ 1497 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1498 const struct sk_buff *skb) 1499 { 1500 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1501 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1502 } 1503 1504 /* Return false, if packet can be sent now without violation Nagle's rules: 1505 * 1. It is full sized. (provided by caller in %partial bool) 1506 * 2. Or it contains FIN. (already checked by caller) 1507 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1508 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1509 * With Minshall's modification: all sent small packets are ACKed. 1510 */ 1511 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1512 int nonagle) 1513 { 1514 return partial && 1515 ((nonagle & TCP_NAGLE_CORK) || 1516 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1517 } 1518 /* Returns the portion of skb which can be sent right away */ 1519 static unsigned int tcp_mss_split_point(const struct sock *sk, 1520 const struct sk_buff *skb, 1521 unsigned int mss_now, 1522 unsigned int max_segs, 1523 int nonagle) 1524 { 1525 const struct tcp_sock *tp = tcp_sk(sk); 1526 u32 partial, needed, window, max_len; 1527 1528 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1529 max_len = mss_now * max_segs; 1530 1531 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1532 return max_len; 1533 1534 needed = min(skb->len, window); 1535 1536 if (max_len <= needed) 1537 return max_len; 1538 1539 partial = needed % mss_now; 1540 /* If last segment is not a full MSS, check if Nagle rules allow us 1541 * to include this last segment in this skb. 1542 * Otherwise, we'll split the skb at last MSS boundary 1543 */ 1544 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1545 return needed - partial; 1546 1547 return needed; 1548 } 1549 1550 /* Can at least one segment of SKB be sent right now, according to the 1551 * congestion window rules? If so, return how many segments are allowed. 1552 */ 1553 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1554 const struct sk_buff *skb) 1555 { 1556 u32 in_flight, cwnd; 1557 1558 /* Don't be strict about the congestion window for the final FIN. */ 1559 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1560 tcp_skb_pcount(skb) == 1) 1561 return 1; 1562 1563 in_flight = tcp_packets_in_flight(tp); 1564 cwnd = tp->snd_cwnd; 1565 if (in_flight < cwnd) 1566 return (cwnd - in_flight); 1567 1568 return 0; 1569 } 1570 1571 /* Initialize TSO state of a skb. 1572 * This must be invoked the first time we consider transmitting 1573 * SKB onto the wire. 1574 */ 1575 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1576 unsigned int mss_now) 1577 { 1578 int tso_segs = tcp_skb_pcount(skb); 1579 1580 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1581 tcp_set_skb_tso_segs(sk, skb, mss_now); 1582 tso_segs = tcp_skb_pcount(skb); 1583 } 1584 return tso_segs; 1585 } 1586 1587 1588 /* Return true if the Nagle test allows this packet to be 1589 * sent now. 1590 */ 1591 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1592 unsigned int cur_mss, int nonagle) 1593 { 1594 /* Nagle rule does not apply to frames, which sit in the middle of the 1595 * write_queue (they have no chances to get new data). 1596 * 1597 * This is implemented in the callers, where they modify the 'nonagle' 1598 * argument based upon the location of SKB in the send queue. 1599 */ 1600 if (nonagle & TCP_NAGLE_PUSH) 1601 return true; 1602 1603 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1604 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1605 return true; 1606 1607 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1608 return true; 1609 1610 return false; 1611 } 1612 1613 /* Does at least the first segment of SKB fit into the send window? */ 1614 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1615 const struct sk_buff *skb, 1616 unsigned int cur_mss) 1617 { 1618 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1619 1620 if (skb->len > cur_mss) 1621 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1622 1623 return !after(end_seq, tcp_wnd_end(tp)); 1624 } 1625 1626 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1627 * should be put on the wire right now. If so, it returns the number of 1628 * packets allowed by the congestion window. 1629 */ 1630 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1631 unsigned int cur_mss, int nonagle) 1632 { 1633 const struct tcp_sock *tp = tcp_sk(sk); 1634 unsigned int cwnd_quota; 1635 1636 tcp_init_tso_segs(sk, skb, cur_mss); 1637 1638 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1639 return 0; 1640 1641 cwnd_quota = tcp_cwnd_test(tp, skb); 1642 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1643 cwnd_quota = 0; 1644 1645 return cwnd_quota; 1646 } 1647 1648 /* Test if sending is allowed right now. */ 1649 bool tcp_may_send_now(struct sock *sk) 1650 { 1651 const struct tcp_sock *tp = tcp_sk(sk); 1652 struct sk_buff *skb = tcp_send_head(sk); 1653 1654 return skb && 1655 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1656 (tcp_skb_is_last(sk, skb) ? 1657 tp->nonagle : TCP_NAGLE_PUSH)); 1658 } 1659 1660 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1661 * which is put after SKB on the list. It is very much like 1662 * tcp_fragment() except that it may make several kinds of assumptions 1663 * in order to speed up the splitting operation. In particular, we 1664 * know that all the data is in scatter-gather pages, and that the 1665 * packet has never been sent out before (and thus is not cloned). 1666 */ 1667 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1668 unsigned int mss_now, gfp_t gfp) 1669 { 1670 struct sk_buff *buff; 1671 int nlen = skb->len - len; 1672 u8 flags; 1673 1674 /* All of a TSO frame must be composed of paged data. */ 1675 if (skb->len != skb->data_len) 1676 return tcp_fragment(sk, skb, len, mss_now, gfp); 1677 1678 buff = sk_stream_alloc_skb(sk, 0, gfp); 1679 if (unlikely(buff == NULL)) 1680 return -ENOMEM; 1681 1682 sk->sk_wmem_queued += buff->truesize; 1683 sk_mem_charge(sk, buff->truesize); 1684 buff->truesize += nlen; 1685 skb->truesize -= nlen; 1686 1687 /* Correct the sequence numbers. */ 1688 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1689 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1690 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1691 1692 /* PSH and FIN should only be set in the second packet. */ 1693 flags = TCP_SKB_CB(skb)->tcp_flags; 1694 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1695 TCP_SKB_CB(buff)->tcp_flags = flags; 1696 1697 /* This packet was never sent out yet, so no SACK bits. */ 1698 TCP_SKB_CB(buff)->sacked = 0; 1699 1700 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1701 skb_split(skb, buff, len); 1702 tcp_fragment_tstamp(skb, buff); 1703 1704 /* Fix up tso_factor for both original and new SKB. */ 1705 tcp_set_skb_tso_segs(sk, skb, mss_now); 1706 tcp_set_skb_tso_segs(sk, buff, mss_now); 1707 1708 /* Link BUFF into the send queue. */ 1709 __skb_header_release(buff); 1710 tcp_insert_write_queue_after(skb, buff, sk); 1711 1712 return 0; 1713 } 1714 1715 /* Try to defer sending, if possible, in order to minimize the amount 1716 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1717 * 1718 * This algorithm is from John Heffner. 1719 */ 1720 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1721 bool *is_cwnd_limited) 1722 { 1723 struct tcp_sock *tp = tcp_sk(sk); 1724 const struct inet_connection_sock *icsk = inet_csk(sk); 1725 u32 send_win, cong_win, limit, in_flight; 1726 int win_divisor; 1727 1728 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1729 goto send_now; 1730 1731 if (icsk->icsk_ca_state != TCP_CA_Open) 1732 goto send_now; 1733 1734 /* Defer for less than two clock ticks. */ 1735 if (tp->tso_deferred && 1736 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1737 goto send_now; 1738 1739 in_flight = tcp_packets_in_flight(tp); 1740 1741 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1742 1743 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1744 1745 /* From in_flight test above, we know that cwnd > in_flight. */ 1746 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1747 1748 limit = min(send_win, cong_win); 1749 1750 /* If a full-sized TSO skb can be sent, do it. */ 1751 if (limit >= min_t(unsigned int, sk->sk_gso_max_size, 1752 tp->xmit_size_goal_segs * tp->mss_cache)) 1753 goto send_now; 1754 1755 /* Middle in queue won't get any more data, full sendable already? */ 1756 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1757 goto send_now; 1758 1759 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1760 if (win_divisor) { 1761 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1762 1763 /* If at least some fraction of a window is available, 1764 * just use it. 1765 */ 1766 chunk /= win_divisor; 1767 if (limit >= chunk) 1768 goto send_now; 1769 } else { 1770 /* Different approach, try not to defer past a single 1771 * ACK. Receiver should ACK every other full sized 1772 * frame, so if we have space for more than 3 frames 1773 * then send now. 1774 */ 1775 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1776 goto send_now; 1777 } 1778 1779 /* Ok, it looks like it is advisable to defer. 1780 * Do not rearm the timer if already set to not break TCP ACK clocking. 1781 */ 1782 if (!tp->tso_deferred) 1783 tp->tso_deferred = 1 | (jiffies << 1); 1784 1785 if (cong_win < send_win && cong_win < skb->len) 1786 *is_cwnd_limited = true; 1787 1788 return true; 1789 1790 send_now: 1791 tp->tso_deferred = 0; 1792 return false; 1793 } 1794 1795 /* Create a new MTU probe if we are ready. 1796 * MTU probe is regularly attempting to increase the path MTU by 1797 * deliberately sending larger packets. This discovers routing 1798 * changes resulting in larger path MTUs. 1799 * 1800 * Returns 0 if we should wait to probe (no cwnd available), 1801 * 1 if a probe was sent, 1802 * -1 otherwise 1803 */ 1804 static int tcp_mtu_probe(struct sock *sk) 1805 { 1806 struct tcp_sock *tp = tcp_sk(sk); 1807 struct inet_connection_sock *icsk = inet_csk(sk); 1808 struct sk_buff *skb, *nskb, *next; 1809 int len; 1810 int probe_size; 1811 int size_needed; 1812 int copy; 1813 int mss_now; 1814 1815 /* Not currently probing/verifying, 1816 * not in recovery, 1817 * have enough cwnd, and 1818 * not SACKing (the variable headers throw things off) */ 1819 if (!icsk->icsk_mtup.enabled || 1820 icsk->icsk_mtup.probe_size || 1821 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1822 tp->snd_cwnd < 11 || 1823 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1824 return -1; 1825 1826 /* Very simple search strategy: just double the MSS. */ 1827 mss_now = tcp_current_mss(sk); 1828 probe_size = 2 * tp->mss_cache; 1829 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1830 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1831 /* TODO: set timer for probe_converge_event */ 1832 return -1; 1833 } 1834 1835 /* Have enough data in the send queue to probe? */ 1836 if (tp->write_seq - tp->snd_nxt < size_needed) 1837 return -1; 1838 1839 if (tp->snd_wnd < size_needed) 1840 return -1; 1841 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1842 return 0; 1843 1844 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1845 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1846 if (!tcp_packets_in_flight(tp)) 1847 return -1; 1848 else 1849 return 0; 1850 } 1851 1852 /* We're allowed to probe. Build it now. */ 1853 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1854 return -1; 1855 sk->sk_wmem_queued += nskb->truesize; 1856 sk_mem_charge(sk, nskb->truesize); 1857 1858 skb = tcp_send_head(sk); 1859 1860 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1861 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1862 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1863 TCP_SKB_CB(nskb)->sacked = 0; 1864 nskb->csum = 0; 1865 nskb->ip_summed = skb->ip_summed; 1866 1867 tcp_insert_write_queue_before(nskb, skb, sk); 1868 1869 len = 0; 1870 tcp_for_write_queue_from_safe(skb, next, sk) { 1871 copy = min_t(int, skb->len, probe_size - len); 1872 if (nskb->ip_summed) 1873 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1874 else 1875 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1876 skb_put(nskb, copy), 1877 copy, nskb->csum); 1878 1879 if (skb->len <= copy) { 1880 /* We've eaten all the data from this skb. 1881 * Throw it away. */ 1882 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1883 tcp_unlink_write_queue(skb, sk); 1884 sk_wmem_free_skb(sk, skb); 1885 } else { 1886 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1887 ~(TCPHDR_FIN|TCPHDR_PSH); 1888 if (!skb_shinfo(skb)->nr_frags) { 1889 skb_pull(skb, copy); 1890 if (skb->ip_summed != CHECKSUM_PARTIAL) 1891 skb->csum = csum_partial(skb->data, 1892 skb->len, 0); 1893 } else { 1894 __pskb_trim_head(skb, copy); 1895 tcp_set_skb_tso_segs(sk, skb, mss_now); 1896 } 1897 TCP_SKB_CB(skb)->seq += copy; 1898 } 1899 1900 len += copy; 1901 1902 if (len >= probe_size) 1903 break; 1904 } 1905 tcp_init_tso_segs(sk, nskb, nskb->len); 1906 1907 /* We're ready to send. If this fails, the probe will 1908 * be resegmented into mss-sized pieces by tcp_write_xmit(). 1909 */ 1910 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1911 /* Decrement cwnd here because we are sending 1912 * effectively two packets. */ 1913 tp->snd_cwnd--; 1914 tcp_event_new_data_sent(sk, nskb); 1915 1916 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1917 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1918 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1919 1920 return 1; 1921 } 1922 1923 return -1; 1924 } 1925 1926 /* This routine writes packets to the network. It advances the 1927 * send_head. This happens as incoming acks open up the remote 1928 * window for us. 1929 * 1930 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1931 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1932 * account rare use of URG, this is not a big flaw. 1933 * 1934 * Send at most one packet when push_one > 0. Temporarily ignore 1935 * cwnd limit to force at most one packet out when push_one == 2. 1936 1937 * Returns true, if no segments are in flight and we have queued segments, 1938 * but cannot send anything now because of SWS or another problem. 1939 */ 1940 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1941 int push_one, gfp_t gfp) 1942 { 1943 struct tcp_sock *tp = tcp_sk(sk); 1944 struct sk_buff *skb; 1945 unsigned int tso_segs, sent_pkts; 1946 int cwnd_quota; 1947 int result; 1948 bool is_cwnd_limited = false; 1949 1950 sent_pkts = 0; 1951 1952 if (!push_one) { 1953 /* Do MTU probing. */ 1954 result = tcp_mtu_probe(sk); 1955 if (!result) { 1956 return false; 1957 } else if (result > 0) { 1958 sent_pkts = 1; 1959 } 1960 } 1961 1962 while ((skb = tcp_send_head(sk))) { 1963 unsigned int limit; 1964 1965 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1966 BUG_ON(!tso_segs); 1967 1968 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 1969 /* "skb_mstamp" is used as a start point for the retransmit timer */ 1970 skb_mstamp_get(&skb->skb_mstamp); 1971 goto repair; /* Skip network transmission */ 1972 } 1973 1974 cwnd_quota = tcp_cwnd_test(tp, skb); 1975 if (!cwnd_quota) { 1976 is_cwnd_limited = true; 1977 if (push_one == 2) 1978 /* Force out a loss probe pkt. */ 1979 cwnd_quota = 1; 1980 else 1981 break; 1982 } 1983 1984 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1985 break; 1986 1987 if (tso_segs == 1) { 1988 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1989 (tcp_skb_is_last(sk, skb) ? 1990 nonagle : TCP_NAGLE_PUSH)))) 1991 break; 1992 } else { 1993 if (!push_one && 1994 tcp_tso_should_defer(sk, skb, &is_cwnd_limited)) 1995 break; 1996 } 1997 1998 /* TCP Small Queues : 1999 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2000 * This allows for : 2001 * - better RTT estimation and ACK scheduling 2002 * - faster recovery 2003 * - high rates 2004 * Alas, some drivers / subsystems require a fair amount 2005 * of queued bytes to ensure line rate. 2006 * One example is wifi aggregation (802.11 AMPDU) 2007 */ 2008 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes, 2009 sk->sk_pacing_rate >> 10); 2010 2011 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2012 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 2013 /* It is possible TX completion already happened 2014 * before we set TSQ_THROTTLED, so we must 2015 * test again the condition. 2016 */ 2017 smp_mb__after_atomic(); 2018 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2019 break; 2020 } 2021 2022 limit = mss_now; 2023 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2024 limit = tcp_mss_split_point(sk, skb, mss_now, 2025 min_t(unsigned int, 2026 cwnd_quota, 2027 sk->sk_gso_max_segs), 2028 nonagle); 2029 2030 if (skb->len > limit && 2031 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2032 break; 2033 2034 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2035 break; 2036 2037 repair: 2038 /* Advance the send_head. This one is sent out. 2039 * This call will increment packets_out. 2040 */ 2041 tcp_event_new_data_sent(sk, skb); 2042 2043 tcp_minshall_update(tp, mss_now, skb); 2044 sent_pkts += tcp_skb_pcount(skb); 2045 2046 if (push_one) 2047 break; 2048 } 2049 2050 if (likely(sent_pkts)) { 2051 if (tcp_in_cwnd_reduction(sk)) 2052 tp->prr_out += sent_pkts; 2053 2054 /* Send one loss probe per tail loss episode. */ 2055 if (push_one != 2) 2056 tcp_schedule_loss_probe(sk); 2057 tcp_cwnd_validate(sk, is_cwnd_limited); 2058 return false; 2059 } 2060 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk)); 2061 } 2062 2063 bool tcp_schedule_loss_probe(struct sock *sk) 2064 { 2065 struct inet_connection_sock *icsk = inet_csk(sk); 2066 struct tcp_sock *tp = tcp_sk(sk); 2067 u32 timeout, tlp_time_stamp, rto_time_stamp; 2068 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2069 2070 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 2071 return false; 2072 /* No consecutive loss probes. */ 2073 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2074 tcp_rearm_rto(sk); 2075 return false; 2076 } 2077 /* Don't do any loss probe on a Fast Open connection before 3WHS 2078 * finishes. 2079 */ 2080 if (sk->sk_state == TCP_SYN_RECV) 2081 return false; 2082 2083 /* TLP is only scheduled when next timer event is RTO. */ 2084 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2085 return false; 2086 2087 /* Schedule a loss probe in 2*RTT for SACK capable connections 2088 * in Open state, that are either limited by cwnd or application. 2089 */ 2090 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out || 2091 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2092 return false; 2093 2094 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2095 tcp_send_head(sk)) 2096 return false; 2097 2098 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2099 * for delayed ack when there's one outstanding packet. 2100 */ 2101 timeout = rtt << 1; 2102 if (tp->packets_out == 1) 2103 timeout = max_t(u32, timeout, 2104 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2105 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2106 2107 /* If RTO is shorter, just schedule TLP in its place. */ 2108 tlp_time_stamp = tcp_time_stamp + timeout; 2109 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2110 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2111 s32 delta = rto_time_stamp - tcp_time_stamp; 2112 if (delta > 0) 2113 timeout = delta; 2114 } 2115 2116 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2117 TCP_RTO_MAX); 2118 return true; 2119 } 2120 2121 /* Thanks to skb fast clones, we can detect if a prior transmit of 2122 * a packet is still in a qdisc or driver queue. 2123 * In this case, there is very little point doing a retransmit ! 2124 * Note: This is called from BH context only. 2125 */ 2126 static bool skb_still_in_host_queue(const struct sock *sk, 2127 const struct sk_buff *skb) 2128 { 2129 if (unlikely(skb_fclone_busy(skb))) { 2130 NET_INC_STATS_BH(sock_net(sk), 2131 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2132 return true; 2133 } 2134 return false; 2135 } 2136 2137 /* When probe timeout (PTO) fires, send a new segment if one exists, else 2138 * retransmit the last segment. 2139 */ 2140 void tcp_send_loss_probe(struct sock *sk) 2141 { 2142 struct tcp_sock *tp = tcp_sk(sk); 2143 struct sk_buff *skb; 2144 int pcount; 2145 int mss = tcp_current_mss(sk); 2146 int err = -1; 2147 2148 if (tcp_send_head(sk) != NULL) { 2149 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2150 goto rearm_timer; 2151 } 2152 2153 /* At most one outstanding TLP retransmission. */ 2154 if (tp->tlp_high_seq) 2155 goto rearm_timer; 2156 2157 /* Retransmit last segment. */ 2158 skb = tcp_write_queue_tail(sk); 2159 if (WARN_ON(!skb)) 2160 goto rearm_timer; 2161 2162 if (skb_still_in_host_queue(sk, skb)) 2163 goto rearm_timer; 2164 2165 pcount = tcp_skb_pcount(skb); 2166 if (WARN_ON(!pcount)) 2167 goto rearm_timer; 2168 2169 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2170 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2171 GFP_ATOMIC))) 2172 goto rearm_timer; 2173 skb = tcp_write_queue_tail(sk); 2174 } 2175 2176 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2177 goto rearm_timer; 2178 2179 err = __tcp_retransmit_skb(sk, skb); 2180 2181 /* Record snd_nxt for loss detection. */ 2182 if (likely(!err)) 2183 tp->tlp_high_seq = tp->snd_nxt; 2184 2185 rearm_timer: 2186 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2187 inet_csk(sk)->icsk_rto, 2188 TCP_RTO_MAX); 2189 2190 if (likely(!err)) 2191 NET_INC_STATS_BH(sock_net(sk), 2192 LINUX_MIB_TCPLOSSPROBES); 2193 } 2194 2195 /* Push out any pending frames which were held back due to 2196 * TCP_CORK or attempt at coalescing tiny packets. 2197 * The socket must be locked by the caller. 2198 */ 2199 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2200 int nonagle) 2201 { 2202 /* If we are closed, the bytes will have to remain here. 2203 * In time closedown will finish, we empty the write queue and 2204 * all will be happy. 2205 */ 2206 if (unlikely(sk->sk_state == TCP_CLOSE)) 2207 return; 2208 2209 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2210 sk_gfp_atomic(sk, GFP_ATOMIC))) 2211 tcp_check_probe_timer(sk); 2212 } 2213 2214 /* Send _single_ skb sitting at the send head. This function requires 2215 * true push pending frames to setup probe timer etc. 2216 */ 2217 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2218 { 2219 struct sk_buff *skb = tcp_send_head(sk); 2220 2221 BUG_ON(!skb || skb->len < mss_now); 2222 2223 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2224 } 2225 2226 /* This function returns the amount that we can raise the 2227 * usable window based on the following constraints 2228 * 2229 * 1. The window can never be shrunk once it is offered (RFC 793) 2230 * 2. We limit memory per socket 2231 * 2232 * RFC 1122: 2233 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2234 * RECV.NEXT + RCV.WIN fixed until: 2235 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2236 * 2237 * i.e. don't raise the right edge of the window until you can raise 2238 * it at least MSS bytes. 2239 * 2240 * Unfortunately, the recommended algorithm breaks header prediction, 2241 * since header prediction assumes th->window stays fixed. 2242 * 2243 * Strictly speaking, keeping th->window fixed violates the receiver 2244 * side SWS prevention criteria. The problem is that under this rule 2245 * a stream of single byte packets will cause the right side of the 2246 * window to always advance by a single byte. 2247 * 2248 * Of course, if the sender implements sender side SWS prevention 2249 * then this will not be a problem. 2250 * 2251 * BSD seems to make the following compromise: 2252 * 2253 * If the free space is less than the 1/4 of the maximum 2254 * space available and the free space is less than 1/2 mss, 2255 * then set the window to 0. 2256 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2257 * Otherwise, just prevent the window from shrinking 2258 * and from being larger than the largest representable value. 2259 * 2260 * This prevents incremental opening of the window in the regime 2261 * where TCP is limited by the speed of the reader side taking 2262 * data out of the TCP receive queue. It does nothing about 2263 * those cases where the window is constrained on the sender side 2264 * because the pipeline is full. 2265 * 2266 * BSD also seems to "accidentally" limit itself to windows that are a 2267 * multiple of MSS, at least until the free space gets quite small. 2268 * This would appear to be a side effect of the mbuf implementation. 2269 * Combining these two algorithms results in the observed behavior 2270 * of having a fixed window size at almost all times. 2271 * 2272 * Below we obtain similar behavior by forcing the offered window to 2273 * a multiple of the mss when it is feasible to do so. 2274 * 2275 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2276 * Regular options like TIMESTAMP are taken into account. 2277 */ 2278 u32 __tcp_select_window(struct sock *sk) 2279 { 2280 struct inet_connection_sock *icsk = inet_csk(sk); 2281 struct tcp_sock *tp = tcp_sk(sk); 2282 /* MSS for the peer's data. Previous versions used mss_clamp 2283 * here. I don't know if the value based on our guesses 2284 * of peer's MSS is better for the performance. It's more correct 2285 * but may be worse for the performance because of rcv_mss 2286 * fluctuations. --SAW 1998/11/1 2287 */ 2288 int mss = icsk->icsk_ack.rcv_mss; 2289 int free_space = tcp_space(sk); 2290 int allowed_space = tcp_full_space(sk); 2291 int full_space = min_t(int, tp->window_clamp, allowed_space); 2292 int window; 2293 2294 if (mss > full_space) 2295 mss = full_space; 2296 2297 if (free_space < (full_space >> 1)) { 2298 icsk->icsk_ack.quick = 0; 2299 2300 if (sk_under_memory_pressure(sk)) 2301 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2302 4U * tp->advmss); 2303 2304 /* free_space might become our new window, make sure we don't 2305 * increase it due to wscale. 2306 */ 2307 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2308 2309 /* if free space is less than mss estimate, or is below 1/16th 2310 * of the maximum allowed, try to move to zero-window, else 2311 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2312 * new incoming data is dropped due to memory limits. 2313 * With large window, mss test triggers way too late in order 2314 * to announce zero window in time before rmem limit kicks in. 2315 */ 2316 if (free_space < (allowed_space >> 4) || free_space < mss) 2317 return 0; 2318 } 2319 2320 if (free_space > tp->rcv_ssthresh) 2321 free_space = tp->rcv_ssthresh; 2322 2323 /* Don't do rounding if we are using window scaling, since the 2324 * scaled window will not line up with the MSS boundary anyway. 2325 */ 2326 window = tp->rcv_wnd; 2327 if (tp->rx_opt.rcv_wscale) { 2328 window = free_space; 2329 2330 /* Advertise enough space so that it won't get scaled away. 2331 * Import case: prevent zero window announcement if 2332 * 1<<rcv_wscale > mss. 2333 */ 2334 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2335 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2336 << tp->rx_opt.rcv_wscale); 2337 } else { 2338 /* Get the largest window that is a nice multiple of mss. 2339 * Window clamp already applied above. 2340 * If our current window offering is within 1 mss of the 2341 * free space we just keep it. This prevents the divide 2342 * and multiply from happening most of the time. 2343 * We also don't do any window rounding when the free space 2344 * is too small. 2345 */ 2346 if (window <= free_space - mss || window > free_space) 2347 window = (free_space / mss) * mss; 2348 else if (mss == full_space && 2349 free_space > window + (full_space >> 1)) 2350 window = free_space; 2351 } 2352 2353 return window; 2354 } 2355 2356 /* Collapses two adjacent SKB's during retransmission. */ 2357 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2358 { 2359 struct tcp_sock *tp = tcp_sk(sk); 2360 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2361 int skb_size, next_skb_size; 2362 2363 skb_size = skb->len; 2364 next_skb_size = next_skb->len; 2365 2366 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2367 2368 tcp_highest_sack_combine(sk, next_skb, skb); 2369 2370 tcp_unlink_write_queue(next_skb, sk); 2371 2372 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2373 next_skb_size); 2374 2375 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2376 skb->ip_summed = CHECKSUM_PARTIAL; 2377 2378 if (skb->ip_summed != CHECKSUM_PARTIAL) 2379 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2380 2381 /* Update sequence range on original skb. */ 2382 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2383 2384 /* Merge over control information. This moves PSH/FIN etc. over */ 2385 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2386 2387 /* All done, get rid of second SKB and account for it so 2388 * packet counting does not break. 2389 */ 2390 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2391 2392 /* changed transmit queue under us so clear hints */ 2393 tcp_clear_retrans_hints_partial(tp); 2394 if (next_skb == tp->retransmit_skb_hint) 2395 tp->retransmit_skb_hint = skb; 2396 2397 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2398 2399 sk_wmem_free_skb(sk, next_skb); 2400 } 2401 2402 /* Check if coalescing SKBs is legal. */ 2403 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2404 { 2405 if (tcp_skb_pcount(skb) > 1) 2406 return false; 2407 /* TODO: SACK collapsing could be used to remove this condition */ 2408 if (skb_shinfo(skb)->nr_frags != 0) 2409 return false; 2410 if (skb_cloned(skb)) 2411 return false; 2412 if (skb == tcp_send_head(sk)) 2413 return false; 2414 /* Some heurestics for collapsing over SACK'd could be invented */ 2415 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2416 return false; 2417 2418 return true; 2419 } 2420 2421 /* Collapse packets in the retransmit queue to make to create 2422 * less packets on the wire. This is only done on retransmission. 2423 */ 2424 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2425 int space) 2426 { 2427 struct tcp_sock *tp = tcp_sk(sk); 2428 struct sk_buff *skb = to, *tmp; 2429 bool first = true; 2430 2431 if (!sysctl_tcp_retrans_collapse) 2432 return; 2433 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2434 return; 2435 2436 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2437 if (!tcp_can_collapse(sk, skb)) 2438 break; 2439 2440 space -= skb->len; 2441 2442 if (first) { 2443 first = false; 2444 continue; 2445 } 2446 2447 if (space < 0) 2448 break; 2449 /* Punt if not enough space exists in the first SKB for 2450 * the data in the second 2451 */ 2452 if (skb->len > skb_availroom(to)) 2453 break; 2454 2455 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2456 break; 2457 2458 tcp_collapse_retrans(sk, to); 2459 } 2460 } 2461 2462 /* This retransmits one SKB. Policy decisions and retransmit queue 2463 * state updates are done by the caller. Returns non-zero if an 2464 * error occurred which prevented the send. 2465 */ 2466 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2467 { 2468 struct tcp_sock *tp = tcp_sk(sk); 2469 struct inet_connection_sock *icsk = inet_csk(sk); 2470 unsigned int cur_mss; 2471 int err; 2472 2473 /* Inconslusive MTU probe */ 2474 if (icsk->icsk_mtup.probe_size) { 2475 icsk->icsk_mtup.probe_size = 0; 2476 } 2477 2478 /* Do not sent more than we queued. 1/4 is reserved for possible 2479 * copying overhead: fragmentation, tunneling, mangling etc. 2480 */ 2481 if (atomic_read(&sk->sk_wmem_alloc) > 2482 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2483 return -EAGAIN; 2484 2485 if (skb_still_in_host_queue(sk, skb)) 2486 return -EBUSY; 2487 2488 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2489 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2490 BUG(); 2491 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2492 return -ENOMEM; 2493 } 2494 2495 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2496 return -EHOSTUNREACH; /* Routing failure or similar. */ 2497 2498 cur_mss = tcp_current_mss(sk); 2499 2500 /* If receiver has shrunk his window, and skb is out of 2501 * new window, do not retransmit it. The exception is the 2502 * case, when window is shrunk to zero. In this case 2503 * our retransmit serves as a zero window probe. 2504 */ 2505 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2506 TCP_SKB_CB(skb)->seq != tp->snd_una) 2507 return -EAGAIN; 2508 2509 if (skb->len > cur_mss) { 2510 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC)) 2511 return -ENOMEM; /* We'll try again later. */ 2512 } else { 2513 int oldpcount = tcp_skb_pcount(skb); 2514 2515 if (unlikely(oldpcount > 1)) { 2516 if (skb_unclone(skb, GFP_ATOMIC)) 2517 return -ENOMEM; 2518 tcp_init_tso_segs(sk, skb, cur_mss); 2519 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2520 } 2521 } 2522 2523 tcp_retrans_try_collapse(sk, skb, cur_mss); 2524 2525 /* Make a copy, if the first transmission SKB clone we made 2526 * is still in somebody's hands, else make a clone. 2527 */ 2528 2529 /* make sure skb->data is aligned on arches that require it 2530 * and check if ack-trimming & collapsing extended the headroom 2531 * beyond what csum_start can cover. 2532 */ 2533 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2534 skb_headroom(skb) >= 0xFFFF)) { 2535 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2536 GFP_ATOMIC); 2537 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2538 -ENOBUFS; 2539 } else { 2540 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2541 } 2542 2543 if (likely(!err)) { 2544 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2545 /* Update global TCP statistics. */ 2546 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2547 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2548 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2549 tp->total_retrans++; 2550 } 2551 return err; 2552 } 2553 2554 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2555 { 2556 struct tcp_sock *tp = tcp_sk(sk); 2557 int err = __tcp_retransmit_skb(sk, skb); 2558 2559 if (err == 0) { 2560 #if FASTRETRANS_DEBUG > 0 2561 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2562 net_dbg_ratelimited("retrans_out leaked\n"); 2563 } 2564 #endif 2565 if (!tp->retrans_out) 2566 tp->lost_retrans_low = tp->snd_nxt; 2567 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2568 tp->retrans_out += tcp_skb_pcount(skb); 2569 2570 /* Save stamp of the first retransmit. */ 2571 if (!tp->retrans_stamp) 2572 tp->retrans_stamp = tcp_skb_timestamp(skb); 2573 2574 /* snd_nxt is stored to detect loss of retransmitted segment, 2575 * see tcp_input.c tcp_sacktag_write_queue(). 2576 */ 2577 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2578 } else if (err != -EBUSY) { 2579 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2580 } 2581 2582 if (tp->undo_retrans < 0) 2583 tp->undo_retrans = 0; 2584 tp->undo_retrans += tcp_skb_pcount(skb); 2585 return err; 2586 } 2587 2588 /* Check if we forward retransmits are possible in the current 2589 * window/congestion state. 2590 */ 2591 static bool tcp_can_forward_retransmit(struct sock *sk) 2592 { 2593 const struct inet_connection_sock *icsk = inet_csk(sk); 2594 const struct tcp_sock *tp = tcp_sk(sk); 2595 2596 /* Forward retransmissions are possible only during Recovery. */ 2597 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2598 return false; 2599 2600 /* No forward retransmissions in Reno are possible. */ 2601 if (tcp_is_reno(tp)) 2602 return false; 2603 2604 /* Yeah, we have to make difficult choice between forward transmission 2605 * and retransmission... Both ways have their merits... 2606 * 2607 * For now we do not retransmit anything, while we have some new 2608 * segments to send. In the other cases, follow rule 3 for 2609 * NextSeg() specified in RFC3517. 2610 */ 2611 2612 if (tcp_may_send_now(sk)) 2613 return false; 2614 2615 return true; 2616 } 2617 2618 /* This gets called after a retransmit timeout, and the initially 2619 * retransmitted data is acknowledged. It tries to continue 2620 * resending the rest of the retransmit queue, until either 2621 * we've sent it all or the congestion window limit is reached. 2622 * If doing SACK, the first ACK which comes back for a timeout 2623 * based retransmit packet might feed us FACK information again. 2624 * If so, we use it to avoid unnecessarily retransmissions. 2625 */ 2626 void tcp_xmit_retransmit_queue(struct sock *sk) 2627 { 2628 const struct inet_connection_sock *icsk = inet_csk(sk); 2629 struct tcp_sock *tp = tcp_sk(sk); 2630 struct sk_buff *skb; 2631 struct sk_buff *hole = NULL; 2632 u32 last_lost; 2633 int mib_idx; 2634 int fwd_rexmitting = 0; 2635 2636 if (!tp->packets_out) 2637 return; 2638 2639 if (!tp->lost_out) 2640 tp->retransmit_high = tp->snd_una; 2641 2642 if (tp->retransmit_skb_hint) { 2643 skb = tp->retransmit_skb_hint; 2644 last_lost = TCP_SKB_CB(skb)->end_seq; 2645 if (after(last_lost, tp->retransmit_high)) 2646 last_lost = tp->retransmit_high; 2647 } else { 2648 skb = tcp_write_queue_head(sk); 2649 last_lost = tp->snd_una; 2650 } 2651 2652 tcp_for_write_queue_from(skb, sk) { 2653 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2654 2655 if (skb == tcp_send_head(sk)) 2656 break; 2657 /* we could do better than to assign each time */ 2658 if (hole == NULL) 2659 tp->retransmit_skb_hint = skb; 2660 2661 /* Assume this retransmit will generate 2662 * only one packet for congestion window 2663 * calculation purposes. This works because 2664 * tcp_retransmit_skb() will chop up the 2665 * packet to be MSS sized and all the 2666 * packet counting works out. 2667 */ 2668 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2669 return; 2670 2671 if (fwd_rexmitting) { 2672 begin_fwd: 2673 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2674 break; 2675 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2676 2677 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2678 tp->retransmit_high = last_lost; 2679 if (!tcp_can_forward_retransmit(sk)) 2680 break; 2681 /* Backtrack if necessary to non-L'ed skb */ 2682 if (hole != NULL) { 2683 skb = hole; 2684 hole = NULL; 2685 } 2686 fwd_rexmitting = 1; 2687 goto begin_fwd; 2688 2689 } else if (!(sacked & TCPCB_LOST)) { 2690 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2691 hole = skb; 2692 continue; 2693 2694 } else { 2695 last_lost = TCP_SKB_CB(skb)->end_seq; 2696 if (icsk->icsk_ca_state != TCP_CA_Loss) 2697 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2698 else 2699 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2700 } 2701 2702 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2703 continue; 2704 2705 if (tcp_retransmit_skb(sk, skb)) 2706 return; 2707 2708 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2709 2710 if (tcp_in_cwnd_reduction(sk)) 2711 tp->prr_out += tcp_skb_pcount(skb); 2712 2713 if (skb == tcp_write_queue_head(sk)) 2714 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2715 inet_csk(sk)->icsk_rto, 2716 TCP_RTO_MAX); 2717 } 2718 } 2719 2720 /* Send a fin. The caller locks the socket for us. This cannot be 2721 * allowed to fail queueing a FIN frame under any circumstances. 2722 */ 2723 void tcp_send_fin(struct sock *sk) 2724 { 2725 struct tcp_sock *tp = tcp_sk(sk); 2726 struct sk_buff *skb = tcp_write_queue_tail(sk); 2727 int mss_now; 2728 2729 /* Optimization, tack on the FIN if we have a queue of 2730 * unsent frames. But be careful about outgoing SACKS 2731 * and IP options. 2732 */ 2733 mss_now = tcp_current_mss(sk); 2734 2735 if (tcp_send_head(sk) != NULL) { 2736 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN; 2737 TCP_SKB_CB(skb)->end_seq++; 2738 tp->write_seq++; 2739 } else { 2740 /* Socket is locked, keep trying until memory is available. */ 2741 for (;;) { 2742 skb = alloc_skb_fclone(MAX_TCP_HEADER, 2743 sk->sk_allocation); 2744 if (skb) 2745 break; 2746 yield(); 2747 } 2748 2749 /* Reserve space for headers and prepare control bits. */ 2750 skb_reserve(skb, MAX_TCP_HEADER); 2751 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2752 tcp_init_nondata_skb(skb, tp->write_seq, 2753 TCPHDR_ACK | TCPHDR_FIN); 2754 tcp_queue_skb(sk, skb); 2755 } 2756 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2757 } 2758 2759 /* We get here when a process closes a file descriptor (either due to 2760 * an explicit close() or as a byproduct of exit()'ing) and there 2761 * was unread data in the receive queue. This behavior is recommended 2762 * by RFC 2525, section 2.17. -DaveM 2763 */ 2764 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2765 { 2766 struct sk_buff *skb; 2767 2768 /* NOTE: No TCP options attached and we never retransmit this. */ 2769 skb = alloc_skb(MAX_TCP_HEADER, priority); 2770 if (!skb) { 2771 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2772 return; 2773 } 2774 2775 /* Reserve space for headers and prepare control bits. */ 2776 skb_reserve(skb, MAX_TCP_HEADER); 2777 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2778 TCPHDR_ACK | TCPHDR_RST); 2779 /* Send it off. */ 2780 if (tcp_transmit_skb(sk, skb, 0, priority)) 2781 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2782 2783 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2784 } 2785 2786 /* Send a crossed SYN-ACK during socket establishment. 2787 * WARNING: This routine must only be called when we have already sent 2788 * a SYN packet that crossed the incoming SYN that caused this routine 2789 * to get called. If this assumption fails then the initial rcv_wnd 2790 * and rcv_wscale values will not be correct. 2791 */ 2792 int tcp_send_synack(struct sock *sk) 2793 { 2794 struct sk_buff *skb; 2795 2796 skb = tcp_write_queue_head(sk); 2797 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2798 pr_debug("%s: wrong queue state\n", __func__); 2799 return -EFAULT; 2800 } 2801 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2802 if (skb_cloned(skb)) { 2803 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2804 if (nskb == NULL) 2805 return -ENOMEM; 2806 tcp_unlink_write_queue(skb, sk); 2807 __skb_header_release(nskb); 2808 __tcp_add_write_queue_head(sk, nskb); 2809 sk_wmem_free_skb(sk, skb); 2810 sk->sk_wmem_queued += nskb->truesize; 2811 sk_mem_charge(sk, nskb->truesize); 2812 skb = nskb; 2813 } 2814 2815 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2816 tcp_ecn_send_synack(sk, skb); 2817 } 2818 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2819 } 2820 2821 /** 2822 * tcp_make_synack - Prepare a SYN-ACK. 2823 * sk: listener socket 2824 * dst: dst entry attached to the SYNACK 2825 * req: request_sock pointer 2826 * 2827 * Allocate one skb and build a SYNACK packet. 2828 * @dst is consumed : Caller should not use it again. 2829 */ 2830 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2831 struct request_sock *req, 2832 struct tcp_fastopen_cookie *foc) 2833 { 2834 struct tcp_out_options opts; 2835 struct inet_request_sock *ireq = inet_rsk(req); 2836 struct tcp_sock *tp = tcp_sk(sk); 2837 struct tcphdr *th; 2838 struct sk_buff *skb; 2839 struct tcp_md5sig_key *md5; 2840 int tcp_header_size; 2841 int mss; 2842 2843 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC); 2844 if (unlikely(!skb)) { 2845 dst_release(dst); 2846 return NULL; 2847 } 2848 /* Reserve space for headers. */ 2849 skb_reserve(skb, MAX_TCP_HEADER); 2850 2851 skb_dst_set(skb, dst); 2852 security_skb_owned_by(skb, sk); 2853 2854 mss = dst_metric_advmss(dst); 2855 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2856 mss = tp->rx_opt.user_mss; 2857 2858 memset(&opts, 0, sizeof(opts)); 2859 #ifdef CONFIG_SYN_COOKIES 2860 if (unlikely(req->cookie_ts)) 2861 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 2862 else 2863 #endif 2864 skb_mstamp_get(&skb->skb_mstamp); 2865 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5, 2866 foc) + sizeof(*th); 2867 2868 skb_push(skb, tcp_header_size); 2869 skb_reset_transport_header(skb); 2870 2871 th = tcp_hdr(skb); 2872 memset(th, 0, sizeof(struct tcphdr)); 2873 th->syn = 1; 2874 th->ack = 1; 2875 tcp_ecn_make_synack(req, th, sk); 2876 th->source = htons(ireq->ir_num); 2877 th->dest = ireq->ir_rmt_port; 2878 /* Setting of flags are superfluous here for callers (and ECE is 2879 * not even correctly set) 2880 */ 2881 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2882 TCPHDR_SYN | TCPHDR_ACK); 2883 2884 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2885 /* XXX data is queued and acked as is. No buffer/window check */ 2886 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 2887 2888 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2889 th->window = htons(min(req->rcv_wnd, 65535U)); 2890 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2891 th->doff = (tcp_header_size >> 2); 2892 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS); 2893 2894 #ifdef CONFIG_TCP_MD5SIG 2895 /* Okay, we have all we need - do the md5 hash if needed */ 2896 if (md5) { 2897 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2898 md5, NULL, req, skb); 2899 } 2900 #endif 2901 2902 return skb; 2903 } 2904 EXPORT_SYMBOL(tcp_make_synack); 2905 2906 /* Do all connect socket setups that can be done AF independent. */ 2907 static void tcp_connect_init(struct sock *sk) 2908 { 2909 const struct dst_entry *dst = __sk_dst_get(sk); 2910 struct tcp_sock *tp = tcp_sk(sk); 2911 __u8 rcv_wscale; 2912 2913 /* We'll fix this up when we get a response from the other end. 2914 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2915 */ 2916 tp->tcp_header_len = sizeof(struct tcphdr) + 2917 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2918 2919 #ifdef CONFIG_TCP_MD5SIG 2920 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2921 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2922 #endif 2923 2924 /* If user gave his TCP_MAXSEG, record it to clamp */ 2925 if (tp->rx_opt.user_mss) 2926 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2927 tp->max_window = 0; 2928 tcp_mtup_init(sk); 2929 tcp_sync_mss(sk, dst_mtu(dst)); 2930 2931 if (!tp->window_clamp) 2932 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2933 tp->advmss = dst_metric_advmss(dst); 2934 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2935 tp->advmss = tp->rx_opt.user_mss; 2936 2937 tcp_initialize_rcv_mss(sk); 2938 2939 /* limit the window selection if the user enforce a smaller rx buffer */ 2940 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2941 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 2942 tp->window_clamp = tcp_full_space(sk); 2943 2944 tcp_select_initial_window(tcp_full_space(sk), 2945 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2946 &tp->rcv_wnd, 2947 &tp->window_clamp, 2948 sysctl_tcp_window_scaling, 2949 &rcv_wscale, 2950 dst_metric(dst, RTAX_INITRWND)); 2951 2952 tp->rx_opt.rcv_wscale = rcv_wscale; 2953 tp->rcv_ssthresh = tp->rcv_wnd; 2954 2955 sk->sk_err = 0; 2956 sock_reset_flag(sk, SOCK_DONE); 2957 tp->snd_wnd = 0; 2958 tcp_init_wl(tp, 0); 2959 tp->snd_una = tp->write_seq; 2960 tp->snd_sml = tp->write_seq; 2961 tp->snd_up = tp->write_seq; 2962 tp->snd_nxt = tp->write_seq; 2963 2964 if (likely(!tp->repair)) 2965 tp->rcv_nxt = 0; 2966 else 2967 tp->rcv_tstamp = tcp_time_stamp; 2968 tp->rcv_wup = tp->rcv_nxt; 2969 tp->copied_seq = tp->rcv_nxt; 2970 2971 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2972 inet_csk(sk)->icsk_retransmits = 0; 2973 tcp_clear_retrans(tp); 2974 } 2975 2976 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 2977 { 2978 struct tcp_sock *tp = tcp_sk(sk); 2979 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 2980 2981 tcb->end_seq += skb->len; 2982 __skb_header_release(skb); 2983 __tcp_add_write_queue_tail(sk, skb); 2984 sk->sk_wmem_queued += skb->truesize; 2985 sk_mem_charge(sk, skb->truesize); 2986 tp->write_seq = tcb->end_seq; 2987 tp->packets_out += tcp_skb_pcount(skb); 2988 } 2989 2990 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 2991 * queue a data-only packet after the regular SYN, such that regular SYNs 2992 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 2993 * only the SYN sequence, the data are retransmitted in the first ACK. 2994 * If cookie is not cached or other error occurs, falls back to send a 2995 * regular SYN with Fast Open cookie request option. 2996 */ 2997 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 2998 { 2999 struct tcp_sock *tp = tcp_sk(sk); 3000 struct tcp_fastopen_request *fo = tp->fastopen_req; 3001 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen; 3002 struct sk_buff *syn_data = NULL, *data; 3003 unsigned long last_syn_loss = 0; 3004 3005 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3006 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 3007 &syn_loss, &last_syn_loss); 3008 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 3009 if (syn_loss > 1 && 3010 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 3011 fo->cookie.len = -1; 3012 goto fallback; 3013 } 3014 3015 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 3016 fo->cookie.len = -1; 3017 else if (fo->cookie.len <= 0) 3018 goto fallback; 3019 3020 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3021 * user-MSS. Reserve maximum option space for middleboxes that add 3022 * private TCP options. The cost is reduced data space in SYN :( 3023 */ 3024 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 3025 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3026 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3027 MAX_TCP_OPTION_SPACE; 3028 3029 space = min_t(size_t, space, fo->size); 3030 3031 /* limit to order-0 allocations */ 3032 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3033 3034 syn_data = skb_copy_expand(syn, MAX_TCP_HEADER, space, 3035 sk->sk_allocation); 3036 if (syn_data == NULL) 3037 goto fallback; 3038 3039 for (i = 0; i < iovlen && syn_data->len < space; ++i) { 3040 struct iovec *iov = &fo->data->msg_iov[i]; 3041 unsigned char __user *from = iov->iov_base; 3042 int len = iov->iov_len; 3043 3044 if (syn_data->len + len > space) 3045 len = space - syn_data->len; 3046 else if (i + 1 == iovlen) 3047 /* No more data pending in inet_wait_for_connect() */ 3048 fo->data = NULL; 3049 3050 if (skb_add_data(syn_data, from, len)) 3051 goto fallback; 3052 } 3053 3054 /* Queue a data-only packet after the regular SYN for retransmission */ 3055 data = pskb_copy(syn_data, sk->sk_allocation); 3056 if (data == NULL) 3057 goto fallback; 3058 TCP_SKB_CB(data)->seq++; 3059 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN; 3060 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH); 3061 tcp_connect_queue_skb(sk, data); 3062 fo->copied = data->len; 3063 3064 /* syn_data is about to be sent, we need to take current time stamps 3065 * for the packets that are in write queue : SYN packet and DATA 3066 */ 3067 skb_mstamp_get(&syn->skb_mstamp); 3068 data->skb_mstamp = syn->skb_mstamp; 3069 3070 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) { 3071 tp->syn_data = (fo->copied > 0); 3072 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3073 goto done; 3074 } 3075 syn_data = NULL; 3076 3077 fallback: 3078 /* Send a regular SYN with Fast Open cookie request option */ 3079 if (fo->cookie.len > 0) 3080 fo->cookie.len = 0; 3081 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3082 if (err) 3083 tp->syn_fastopen = 0; 3084 kfree_skb(syn_data); 3085 done: 3086 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3087 return err; 3088 } 3089 3090 /* Build a SYN and send it off. */ 3091 int tcp_connect(struct sock *sk) 3092 { 3093 struct tcp_sock *tp = tcp_sk(sk); 3094 struct sk_buff *buff; 3095 int err; 3096 3097 tcp_connect_init(sk); 3098 3099 if (unlikely(tp->repair)) { 3100 tcp_finish_connect(sk, NULL); 3101 return 0; 3102 } 3103 3104 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 3105 if (unlikely(buff == NULL)) 3106 return -ENOBUFS; 3107 3108 /* Reserve space for headers. */ 3109 skb_reserve(buff, MAX_TCP_HEADER); 3110 3111 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3112 tp->retrans_stamp = tcp_time_stamp; 3113 tcp_connect_queue_skb(sk, buff); 3114 tcp_ecn_send_syn(sk, buff); 3115 3116 /* Send off SYN; include data in Fast Open. */ 3117 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3118 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3119 if (err == -ECONNREFUSED) 3120 return err; 3121 3122 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3123 * in order to make this packet get counted in tcpOutSegs. 3124 */ 3125 tp->snd_nxt = tp->write_seq; 3126 tp->pushed_seq = tp->write_seq; 3127 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3128 3129 /* Timer for repeating the SYN until an answer. */ 3130 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3131 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3132 return 0; 3133 } 3134 EXPORT_SYMBOL(tcp_connect); 3135 3136 /* Send out a delayed ack, the caller does the policy checking 3137 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3138 * for details. 3139 */ 3140 void tcp_send_delayed_ack(struct sock *sk) 3141 { 3142 struct inet_connection_sock *icsk = inet_csk(sk); 3143 int ato = icsk->icsk_ack.ato; 3144 unsigned long timeout; 3145 3146 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3147 3148 if (ato > TCP_DELACK_MIN) { 3149 const struct tcp_sock *tp = tcp_sk(sk); 3150 int max_ato = HZ / 2; 3151 3152 if (icsk->icsk_ack.pingpong || 3153 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3154 max_ato = TCP_DELACK_MAX; 3155 3156 /* Slow path, intersegment interval is "high". */ 3157 3158 /* If some rtt estimate is known, use it to bound delayed ack. 3159 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3160 * directly. 3161 */ 3162 if (tp->srtt_us) { 3163 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3164 TCP_DELACK_MIN); 3165 3166 if (rtt < max_ato) 3167 max_ato = rtt; 3168 } 3169 3170 ato = min(ato, max_ato); 3171 } 3172 3173 /* Stay within the limit we were given */ 3174 timeout = jiffies + ato; 3175 3176 /* Use new timeout only if there wasn't a older one earlier. */ 3177 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3178 /* If delack timer was blocked or is about to expire, 3179 * send ACK now. 3180 */ 3181 if (icsk->icsk_ack.blocked || 3182 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3183 tcp_send_ack(sk); 3184 return; 3185 } 3186 3187 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3188 timeout = icsk->icsk_ack.timeout; 3189 } 3190 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3191 icsk->icsk_ack.timeout = timeout; 3192 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3193 } 3194 3195 /* This routine sends an ack and also updates the window. */ 3196 void tcp_send_ack(struct sock *sk) 3197 { 3198 struct sk_buff *buff; 3199 3200 /* If we have been reset, we may not send again. */ 3201 if (sk->sk_state == TCP_CLOSE) 3202 return; 3203 3204 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3205 3206 /* We are not putting this on the write queue, so 3207 * tcp_transmit_skb() will set the ownership to this 3208 * sock. 3209 */ 3210 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3211 if (buff == NULL) { 3212 inet_csk_schedule_ack(sk); 3213 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3214 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3215 TCP_DELACK_MAX, TCP_RTO_MAX); 3216 return; 3217 } 3218 3219 /* Reserve space for headers and prepare control bits. */ 3220 skb_reserve(buff, MAX_TCP_HEADER); 3221 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3222 3223 /* Send it off, this clears delayed acks for us. */ 3224 skb_mstamp_get(&buff->skb_mstamp); 3225 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC)); 3226 } 3227 EXPORT_SYMBOL_GPL(tcp_send_ack); 3228 3229 /* This routine sends a packet with an out of date sequence 3230 * number. It assumes the other end will try to ack it. 3231 * 3232 * Question: what should we make while urgent mode? 3233 * 4.4BSD forces sending single byte of data. We cannot send 3234 * out of window data, because we have SND.NXT==SND.MAX... 3235 * 3236 * Current solution: to send TWO zero-length segments in urgent mode: 3237 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3238 * out-of-date with SND.UNA-1 to probe window. 3239 */ 3240 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 3241 { 3242 struct tcp_sock *tp = tcp_sk(sk); 3243 struct sk_buff *skb; 3244 3245 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3246 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3247 if (skb == NULL) 3248 return -1; 3249 3250 /* Reserve space for headers and set control bits. */ 3251 skb_reserve(skb, MAX_TCP_HEADER); 3252 /* Use a previous sequence. This should cause the other 3253 * end to send an ack. Don't queue or clone SKB, just 3254 * send it. 3255 */ 3256 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3257 skb_mstamp_get(&skb->skb_mstamp); 3258 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3259 } 3260 3261 void tcp_send_window_probe(struct sock *sk) 3262 { 3263 if (sk->sk_state == TCP_ESTABLISHED) { 3264 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3265 tcp_xmit_probe_skb(sk, 0); 3266 } 3267 } 3268 3269 /* Initiate keepalive or window probe from timer. */ 3270 int tcp_write_wakeup(struct sock *sk) 3271 { 3272 struct tcp_sock *tp = tcp_sk(sk); 3273 struct sk_buff *skb; 3274 3275 if (sk->sk_state == TCP_CLOSE) 3276 return -1; 3277 3278 if ((skb = tcp_send_head(sk)) != NULL && 3279 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3280 int err; 3281 unsigned int mss = tcp_current_mss(sk); 3282 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3283 3284 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3285 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3286 3287 /* We are probing the opening of a window 3288 * but the window size is != 0 3289 * must have been a result SWS avoidance ( sender ) 3290 */ 3291 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3292 skb->len > mss) { 3293 seg_size = min(seg_size, mss); 3294 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3295 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3296 return -1; 3297 } else if (!tcp_skb_pcount(skb)) 3298 tcp_set_skb_tso_segs(sk, skb, mss); 3299 3300 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3301 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3302 if (!err) 3303 tcp_event_new_data_sent(sk, skb); 3304 return err; 3305 } else { 3306 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3307 tcp_xmit_probe_skb(sk, 1); 3308 return tcp_xmit_probe_skb(sk, 0); 3309 } 3310 } 3311 3312 /* A window probe timeout has occurred. If window is not closed send 3313 * a partial packet else a zero probe. 3314 */ 3315 void tcp_send_probe0(struct sock *sk) 3316 { 3317 struct inet_connection_sock *icsk = inet_csk(sk); 3318 struct tcp_sock *tp = tcp_sk(sk); 3319 unsigned long probe_max; 3320 int err; 3321 3322 err = tcp_write_wakeup(sk); 3323 3324 if (tp->packets_out || !tcp_send_head(sk)) { 3325 /* Cancel probe timer, if it is not required. */ 3326 icsk->icsk_probes_out = 0; 3327 icsk->icsk_backoff = 0; 3328 return; 3329 } 3330 3331 if (err <= 0) { 3332 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3333 icsk->icsk_backoff++; 3334 icsk->icsk_probes_out++; 3335 probe_max = TCP_RTO_MAX; 3336 } else { 3337 /* If packet was not sent due to local congestion, 3338 * do not backoff and do not remember icsk_probes_out. 3339 * Let local senders to fight for local resources. 3340 * 3341 * Use accumulated backoff yet. 3342 */ 3343 if (!icsk->icsk_probes_out) 3344 icsk->icsk_probes_out = 1; 3345 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3346 } 3347 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3348 inet_csk_rto_backoff(icsk, probe_max), 3349 TCP_RTO_MAX); 3350 } 3351 3352 int tcp_rtx_synack(struct sock *sk, struct request_sock *req) 3353 { 3354 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3355 struct flowi fl; 3356 int res; 3357 3358 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL); 3359 if (!res) { 3360 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS); 3361 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3362 } 3363 return res; 3364 } 3365 EXPORT_SYMBOL(tcp_rtx_synack); 3366