xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 31eeb6b0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 }
86 
87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
88  * window scaling factor due to loss of precision.
89  * If window has been shrunk, what should we make? It is not clear at all.
90  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92  * invalid. OK, let's make this for now:
93  */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 	const struct tcp_sock *tp = tcp_sk(sk);
97 
98 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
99 	    (tp->rx_opt.wscale_ok &&
100 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
101 		return tp->snd_nxt;
102 	else
103 		return tcp_wnd_end(tp);
104 }
105 
106 /* Calculate mss to advertise in SYN segment.
107  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108  *
109  * 1. It is independent of path mtu.
110  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
111  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
112  *    attached devices, because some buggy hosts are confused by
113  *    large MSS.
114  * 4. We do not make 3, we advertise MSS, calculated from first
115  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
116  *    This may be overridden via information stored in routing table.
117  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
118  *    probably even Jumbo".
119  */
120 static __u16 tcp_advertise_mss(struct sock *sk)
121 {
122 	struct tcp_sock *tp = tcp_sk(sk);
123 	const struct dst_entry *dst = __sk_dst_get(sk);
124 	int mss = tp->advmss;
125 
126 	if (dst) {
127 		unsigned int metric = dst_metric_advmss(dst);
128 
129 		if (metric < mss) {
130 			mss = metric;
131 			tp->advmss = mss;
132 		}
133 	}
134 
135 	return (__u16)mss;
136 }
137 
138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
139  * This is the first part of cwnd validation mechanism.
140  */
141 void tcp_cwnd_restart(struct sock *sk, s32 delta)
142 {
143 	struct tcp_sock *tp = tcp_sk(sk);
144 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
145 	u32 cwnd = tp->snd_cwnd;
146 
147 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
148 
149 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
150 	restart_cwnd = min(restart_cwnd, cwnd);
151 
152 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
153 		cwnd >>= 1;
154 	tp->snd_cwnd = max(cwnd, restart_cwnd);
155 	tp->snd_cwnd_stamp = tcp_jiffies32;
156 	tp->snd_cwnd_used = 0;
157 }
158 
159 /* Congestion state accounting after a packet has been sent. */
160 static void tcp_event_data_sent(struct tcp_sock *tp,
161 				struct sock *sk)
162 {
163 	struct inet_connection_sock *icsk = inet_csk(sk);
164 	const u32 now = tcp_jiffies32;
165 
166 	if (tcp_packets_in_flight(tp) == 0)
167 		tcp_ca_event(sk, CA_EVENT_TX_START);
168 
169 	/* If this is the first data packet sent in response to the
170 	 * previous received data,
171 	 * and it is a reply for ato after last received packet,
172 	 * increase pingpong count.
173 	 */
174 	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
175 	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_inc_pingpong_cnt(sk);
177 
178 	tp->lsndtime = now;
179 }
180 
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
183 				      u32 rcv_nxt)
184 {
185 	struct tcp_sock *tp = tcp_sk(sk);
186 
187 	if (unlikely(tp->compressed_ack)) {
188 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
189 			      tp->compressed_ack);
190 		tp->compressed_ack = 0;
191 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
192 			__sock_put(sk);
193 	}
194 
195 	if (unlikely(rcv_nxt != tp->rcv_nxt))
196 		return;  /* Special ACK sent by DCTCP to reflect ECN */
197 	tcp_dec_quickack_mode(sk, pkts);
198 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
199 }
200 
201 /* Determine a window scaling and initial window to offer.
202  * Based on the assumption that the given amount of space
203  * will be offered. Store the results in the tp structure.
204  * NOTE: for smooth operation initial space offering should
205  * be a multiple of mss if possible. We assume here that mss >= 1.
206  * This MUST be enforced by all callers.
207  */
208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
209 			       __u32 *rcv_wnd, __u32 *window_clamp,
210 			       int wscale_ok, __u8 *rcv_wscale,
211 			       __u32 init_rcv_wnd)
212 {
213 	unsigned int space = (__space < 0 ? 0 : __space);
214 
215 	/* If no clamp set the clamp to the max possible scaled window */
216 	if (*window_clamp == 0)
217 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
218 	space = min(*window_clamp, space);
219 
220 	/* Quantize space offering to a multiple of mss if possible. */
221 	if (space > mss)
222 		space = rounddown(space, mss);
223 
224 	/* NOTE: offering an initial window larger than 32767
225 	 * will break some buggy TCP stacks. If the admin tells us
226 	 * it is likely we could be speaking with such a buggy stack
227 	 * we will truncate our initial window offering to 32K-1
228 	 * unless the remote has sent us a window scaling option,
229 	 * which we interpret as a sign the remote TCP is not
230 	 * misinterpreting the window field as a signed quantity.
231 	 */
232 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
233 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 	else
235 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
236 
237 	if (init_rcv_wnd)
238 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239 
240 	*rcv_wscale = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window */
243 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
244 		space = max_t(u32, space, sysctl_rmem_max);
245 		space = min_t(u32, space, *window_clamp);
246 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
247 				      0, TCP_MAX_WSCALE);
248 	}
249 	/* Set the clamp no higher than max representable value */
250 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
251 }
252 EXPORT_SYMBOL(tcp_select_initial_window);
253 
254 /* Chose a new window to advertise, update state in tcp_sock for the
255  * socket, and return result with RFC1323 scaling applied.  The return
256  * value can be stuffed directly into th->window for an outgoing
257  * frame.
258  */
259 static u16 tcp_select_window(struct sock *sk)
260 {
261 	struct tcp_sock *tp = tcp_sk(sk);
262 	u32 old_win = tp->rcv_wnd;
263 	u32 cur_win = tcp_receive_window(tp);
264 	u32 new_win = __tcp_select_window(sk);
265 
266 	/* Never shrink the offered window */
267 	if (new_win < cur_win) {
268 		/* Danger Will Robinson!
269 		 * Don't update rcv_wup/rcv_wnd here or else
270 		 * we will not be able to advertise a zero
271 		 * window in time.  --DaveM
272 		 *
273 		 * Relax Will Robinson.
274 		 */
275 		if (new_win == 0)
276 			NET_INC_STATS(sock_net(sk),
277 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
278 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
279 	}
280 	tp->rcv_wnd = new_win;
281 	tp->rcv_wup = tp->rcv_nxt;
282 
283 	/* Make sure we do not exceed the maximum possible
284 	 * scaled window.
285 	 */
286 	if (!tp->rx_opt.rcv_wscale &&
287 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
288 		new_win = min(new_win, MAX_TCP_WINDOW);
289 	else
290 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
291 
292 	/* RFC1323 scaling applied */
293 	new_win >>= tp->rx_opt.rcv_wscale;
294 
295 	/* If we advertise zero window, disable fast path. */
296 	if (new_win == 0) {
297 		tp->pred_flags = 0;
298 		if (old_win)
299 			NET_INC_STATS(sock_net(sk),
300 				      LINUX_MIB_TCPTOZEROWINDOWADV);
301 	} else if (old_win == 0) {
302 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
303 	}
304 
305 	return new_win;
306 }
307 
308 /* Packet ECN state for a SYN-ACK */
309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
310 {
311 	const struct tcp_sock *tp = tcp_sk(sk);
312 
313 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
314 	if (!(tp->ecn_flags & TCP_ECN_OK))
315 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
316 	else if (tcp_ca_needs_ecn(sk) ||
317 		 tcp_bpf_ca_needs_ecn(sk))
318 		INET_ECN_xmit(sk);
319 }
320 
321 /* Packet ECN state for a SYN.  */
322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
323 {
324 	struct tcp_sock *tp = tcp_sk(sk);
325 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
326 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
327 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
328 
329 	if (!use_ecn) {
330 		const struct dst_entry *dst = __sk_dst_get(sk);
331 
332 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
333 			use_ecn = true;
334 	}
335 
336 	tp->ecn_flags = 0;
337 
338 	if (use_ecn) {
339 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
340 		tp->ecn_flags = TCP_ECN_OK;
341 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
342 			INET_ECN_xmit(sk);
343 	}
344 }
345 
346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
347 {
348 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
349 		/* tp->ecn_flags are cleared at a later point in time when
350 		 * SYN ACK is ultimatively being received.
351 		 */
352 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
353 }
354 
355 static void
356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
357 {
358 	if (inet_rsk(req)->ecn_ok)
359 		th->ece = 1;
360 }
361 
362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
363  * be sent.
364  */
365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
366 			 struct tcphdr *th, int tcp_header_len)
367 {
368 	struct tcp_sock *tp = tcp_sk(sk);
369 
370 	if (tp->ecn_flags & TCP_ECN_OK) {
371 		/* Not-retransmitted data segment: set ECT and inject CWR. */
372 		if (skb->len != tcp_header_len &&
373 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
374 			INET_ECN_xmit(sk);
375 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
376 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
377 				th->cwr = 1;
378 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
379 			}
380 		} else if (!tcp_ca_needs_ecn(sk)) {
381 			/* ACK or retransmitted segment: clear ECT|CE */
382 			INET_ECN_dontxmit(sk);
383 		}
384 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
385 			th->ece = 1;
386 	}
387 }
388 
389 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390  * auto increment end seqno.
391  */
392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
393 {
394 	skb->ip_summed = CHECKSUM_PARTIAL;
395 
396 	TCP_SKB_CB(skb)->tcp_flags = flags;
397 
398 	tcp_skb_pcount_set(skb, 1);
399 
400 	TCP_SKB_CB(skb)->seq = seq;
401 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
402 		seq++;
403 	TCP_SKB_CB(skb)->end_seq = seq;
404 }
405 
406 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
407 {
408 	return tp->snd_una != tp->snd_up;
409 }
410 
411 #define OPTION_SACK_ADVERTISE	BIT(0)
412 #define OPTION_TS		BIT(1)
413 #define OPTION_MD5		BIT(2)
414 #define OPTION_WSCALE		BIT(3)
415 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
416 #define OPTION_SMC		BIT(9)
417 #define OPTION_MPTCP		BIT(10)
418 
419 static void smc_options_write(__be32 *ptr, u16 *options)
420 {
421 #if IS_ENABLED(CONFIG_SMC)
422 	if (static_branch_unlikely(&tcp_have_smc)) {
423 		if (unlikely(OPTION_SMC & *options)) {
424 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
425 				       (TCPOPT_NOP  << 16) |
426 				       (TCPOPT_EXP <<  8) |
427 				       (TCPOLEN_EXP_SMC_BASE));
428 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
429 		}
430 	}
431 #endif
432 }
433 
434 struct tcp_out_options {
435 	u16 options;		/* bit field of OPTION_* */
436 	u16 mss;		/* 0 to disable */
437 	u8 ws;			/* window scale, 0 to disable */
438 	u8 num_sack_blocks;	/* number of SACK blocks to include */
439 	u8 hash_size;		/* bytes in hash_location */
440 	u8 bpf_opt_len;		/* length of BPF hdr option */
441 	__u8 *hash_location;	/* temporary pointer, overloaded */
442 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
443 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
444 	struct mptcp_out_options mptcp;
445 };
446 
447 static void mptcp_options_write(__be32 *ptr, const struct tcp_sock *tp,
448 				struct tcp_out_options *opts)
449 {
450 #if IS_ENABLED(CONFIG_MPTCP)
451 	if (unlikely(OPTION_MPTCP & opts->options))
452 		mptcp_write_options(ptr, tp, &opts->mptcp);
453 #endif
454 }
455 
456 #ifdef CONFIG_CGROUP_BPF
457 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
458 					enum tcp_synack_type synack_type)
459 {
460 	if (unlikely(!skb))
461 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
462 
463 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
464 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
465 
466 	return 0;
467 }
468 
469 /* req, syn_skb and synack_type are used when writing synack */
470 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
471 				  struct request_sock *req,
472 				  struct sk_buff *syn_skb,
473 				  enum tcp_synack_type synack_type,
474 				  struct tcp_out_options *opts,
475 				  unsigned int *remaining)
476 {
477 	struct bpf_sock_ops_kern sock_ops;
478 	int err;
479 
480 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
481 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
482 	    !*remaining)
483 		return;
484 
485 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
486 
487 	/* init sock_ops */
488 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
489 
490 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
491 
492 	if (req) {
493 		/* The listen "sk" cannot be passed here because
494 		 * it is not locked.  It would not make too much
495 		 * sense to do bpf_setsockopt(listen_sk) based
496 		 * on individual connection request also.
497 		 *
498 		 * Thus, "req" is passed here and the cgroup-bpf-progs
499 		 * of the listen "sk" will be run.
500 		 *
501 		 * "req" is also used here for fastopen even the "sk" here is
502 		 * a fullsock "child" sk.  It is to keep the behavior
503 		 * consistent between fastopen and non-fastopen on
504 		 * the bpf programming side.
505 		 */
506 		sock_ops.sk = (struct sock *)req;
507 		sock_ops.syn_skb = syn_skb;
508 	} else {
509 		sock_owned_by_me(sk);
510 
511 		sock_ops.is_fullsock = 1;
512 		sock_ops.sk = sk;
513 	}
514 
515 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
516 	sock_ops.remaining_opt_len = *remaining;
517 	/* tcp_current_mss() does not pass a skb */
518 	if (skb)
519 		bpf_skops_init_skb(&sock_ops, skb, 0);
520 
521 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
522 
523 	if (err || sock_ops.remaining_opt_len == *remaining)
524 		return;
525 
526 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
527 	/* round up to 4 bytes */
528 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
529 
530 	*remaining -= opts->bpf_opt_len;
531 }
532 
533 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
534 				    struct request_sock *req,
535 				    struct sk_buff *syn_skb,
536 				    enum tcp_synack_type synack_type,
537 				    struct tcp_out_options *opts)
538 {
539 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
540 	struct bpf_sock_ops_kern sock_ops;
541 	int err;
542 
543 	if (likely(!max_opt_len))
544 		return;
545 
546 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
547 
548 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
549 
550 	if (req) {
551 		sock_ops.sk = (struct sock *)req;
552 		sock_ops.syn_skb = syn_skb;
553 	} else {
554 		sock_owned_by_me(sk);
555 
556 		sock_ops.is_fullsock = 1;
557 		sock_ops.sk = sk;
558 	}
559 
560 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
561 	sock_ops.remaining_opt_len = max_opt_len;
562 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
563 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
564 
565 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
566 
567 	if (err)
568 		nr_written = 0;
569 	else
570 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
571 
572 	if (nr_written < max_opt_len)
573 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
574 		       max_opt_len - nr_written);
575 }
576 #else
577 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
578 				  struct request_sock *req,
579 				  struct sk_buff *syn_skb,
580 				  enum tcp_synack_type synack_type,
581 				  struct tcp_out_options *opts,
582 				  unsigned int *remaining)
583 {
584 }
585 
586 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
587 				    struct request_sock *req,
588 				    struct sk_buff *syn_skb,
589 				    enum tcp_synack_type synack_type,
590 				    struct tcp_out_options *opts)
591 {
592 }
593 #endif
594 
595 /* Write previously computed TCP options to the packet.
596  *
597  * Beware: Something in the Internet is very sensitive to the ordering of
598  * TCP options, we learned this through the hard way, so be careful here.
599  * Luckily we can at least blame others for their non-compliance but from
600  * inter-operability perspective it seems that we're somewhat stuck with
601  * the ordering which we have been using if we want to keep working with
602  * those broken things (not that it currently hurts anybody as there isn't
603  * particular reason why the ordering would need to be changed).
604  *
605  * At least SACK_PERM as the first option is known to lead to a disaster
606  * (but it may well be that other scenarios fail similarly).
607  */
608 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
609 			      struct tcp_out_options *opts)
610 {
611 	u16 options = opts->options;	/* mungable copy */
612 
613 	if (unlikely(OPTION_MD5 & options)) {
614 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
615 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
616 		/* overload cookie hash location */
617 		opts->hash_location = (__u8 *)ptr;
618 		ptr += 4;
619 	}
620 
621 	if (unlikely(opts->mss)) {
622 		*ptr++ = htonl((TCPOPT_MSS << 24) |
623 			       (TCPOLEN_MSS << 16) |
624 			       opts->mss);
625 	}
626 
627 	if (likely(OPTION_TS & options)) {
628 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
629 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
630 				       (TCPOLEN_SACK_PERM << 16) |
631 				       (TCPOPT_TIMESTAMP << 8) |
632 				       TCPOLEN_TIMESTAMP);
633 			options &= ~OPTION_SACK_ADVERTISE;
634 		} else {
635 			*ptr++ = htonl((TCPOPT_NOP << 24) |
636 				       (TCPOPT_NOP << 16) |
637 				       (TCPOPT_TIMESTAMP << 8) |
638 				       TCPOLEN_TIMESTAMP);
639 		}
640 		*ptr++ = htonl(opts->tsval);
641 		*ptr++ = htonl(opts->tsecr);
642 	}
643 
644 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
645 		*ptr++ = htonl((TCPOPT_NOP << 24) |
646 			       (TCPOPT_NOP << 16) |
647 			       (TCPOPT_SACK_PERM << 8) |
648 			       TCPOLEN_SACK_PERM);
649 	}
650 
651 	if (unlikely(OPTION_WSCALE & options)) {
652 		*ptr++ = htonl((TCPOPT_NOP << 24) |
653 			       (TCPOPT_WINDOW << 16) |
654 			       (TCPOLEN_WINDOW << 8) |
655 			       opts->ws);
656 	}
657 
658 	if (unlikely(opts->num_sack_blocks)) {
659 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
660 			tp->duplicate_sack : tp->selective_acks;
661 		int this_sack;
662 
663 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
664 			       (TCPOPT_NOP  << 16) |
665 			       (TCPOPT_SACK <<  8) |
666 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
667 						     TCPOLEN_SACK_PERBLOCK)));
668 
669 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
670 		     ++this_sack) {
671 			*ptr++ = htonl(sp[this_sack].start_seq);
672 			*ptr++ = htonl(sp[this_sack].end_seq);
673 		}
674 
675 		tp->rx_opt.dsack = 0;
676 	}
677 
678 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
679 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
680 		u8 *p = (u8 *)ptr;
681 		u32 len; /* Fast Open option length */
682 
683 		if (foc->exp) {
684 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
685 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
686 				     TCPOPT_FASTOPEN_MAGIC);
687 			p += TCPOLEN_EXP_FASTOPEN_BASE;
688 		} else {
689 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
690 			*p++ = TCPOPT_FASTOPEN;
691 			*p++ = len;
692 		}
693 
694 		memcpy(p, foc->val, foc->len);
695 		if ((len & 3) == 2) {
696 			p[foc->len] = TCPOPT_NOP;
697 			p[foc->len + 1] = TCPOPT_NOP;
698 		}
699 		ptr += (len + 3) >> 2;
700 	}
701 
702 	smc_options_write(ptr, &options);
703 
704 	mptcp_options_write(ptr, tp, opts);
705 }
706 
707 static void smc_set_option(const struct tcp_sock *tp,
708 			   struct tcp_out_options *opts,
709 			   unsigned int *remaining)
710 {
711 #if IS_ENABLED(CONFIG_SMC)
712 	if (static_branch_unlikely(&tcp_have_smc)) {
713 		if (tp->syn_smc) {
714 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
715 				opts->options |= OPTION_SMC;
716 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
717 			}
718 		}
719 	}
720 #endif
721 }
722 
723 static void smc_set_option_cond(const struct tcp_sock *tp,
724 				const struct inet_request_sock *ireq,
725 				struct tcp_out_options *opts,
726 				unsigned int *remaining)
727 {
728 #if IS_ENABLED(CONFIG_SMC)
729 	if (static_branch_unlikely(&tcp_have_smc)) {
730 		if (tp->syn_smc && ireq->smc_ok) {
731 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
732 				opts->options |= OPTION_SMC;
733 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
734 			}
735 		}
736 	}
737 #endif
738 }
739 
740 static void mptcp_set_option_cond(const struct request_sock *req,
741 				  struct tcp_out_options *opts,
742 				  unsigned int *remaining)
743 {
744 	if (rsk_is_mptcp(req)) {
745 		unsigned int size;
746 
747 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
748 			if (*remaining >= size) {
749 				opts->options |= OPTION_MPTCP;
750 				*remaining -= size;
751 			}
752 		}
753 	}
754 }
755 
756 /* Compute TCP options for SYN packets. This is not the final
757  * network wire format yet.
758  */
759 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
760 				struct tcp_out_options *opts,
761 				struct tcp_md5sig_key **md5)
762 {
763 	struct tcp_sock *tp = tcp_sk(sk);
764 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
765 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
766 
767 	*md5 = NULL;
768 #ifdef CONFIG_TCP_MD5SIG
769 	if (static_branch_unlikely(&tcp_md5_needed) &&
770 	    rcu_access_pointer(tp->md5sig_info)) {
771 		*md5 = tp->af_specific->md5_lookup(sk, sk);
772 		if (*md5) {
773 			opts->options |= OPTION_MD5;
774 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
775 		}
776 	}
777 #endif
778 
779 	/* We always get an MSS option.  The option bytes which will be seen in
780 	 * normal data packets should timestamps be used, must be in the MSS
781 	 * advertised.  But we subtract them from tp->mss_cache so that
782 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
783 	 * fact here if necessary.  If we don't do this correctly, as a
784 	 * receiver we won't recognize data packets as being full sized when we
785 	 * should, and thus we won't abide by the delayed ACK rules correctly.
786 	 * SACKs don't matter, we never delay an ACK when we have any of those
787 	 * going out.  */
788 	opts->mss = tcp_advertise_mss(sk);
789 	remaining -= TCPOLEN_MSS_ALIGNED;
790 
791 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
792 		opts->options |= OPTION_TS;
793 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
794 		opts->tsecr = tp->rx_opt.ts_recent;
795 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
796 	}
797 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
798 		opts->ws = tp->rx_opt.rcv_wscale;
799 		opts->options |= OPTION_WSCALE;
800 		remaining -= TCPOLEN_WSCALE_ALIGNED;
801 	}
802 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
803 		opts->options |= OPTION_SACK_ADVERTISE;
804 		if (unlikely(!(OPTION_TS & opts->options)))
805 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
806 	}
807 
808 	if (fastopen && fastopen->cookie.len >= 0) {
809 		u32 need = fastopen->cookie.len;
810 
811 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
812 					       TCPOLEN_FASTOPEN_BASE;
813 		need = (need + 3) & ~3U;  /* Align to 32 bits */
814 		if (remaining >= need) {
815 			opts->options |= OPTION_FAST_OPEN_COOKIE;
816 			opts->fastopen_cookie = &fastopen->cookie;
817 			remaining -= need;
818 			tp->syn_fastopen = 1;
819 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
820 		}
821 	}
822 
823 	smc_set_option(tp, opts, &remaining);
824 
825 	if (sk_is_mptcp(sk)) {
826 		unsigned int size;
827 
828 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
829 			opts->options |= OPTION_MPTCP;
830 			remaining -= size;
831 		}
832 	}
833 
834 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
835 
836 	return MAX_TCP_OPTION_SPACE - remaining;
837 }
838 
839 /* Set up TCP options for SYN-ACKs. */
840 static unsigned int tcp_synack_options(const struct sock *sk,
841 				       struct request_sock *req,
842 				       unsigned int mss, struct sk_buff *skb,
843 				       struct tcp_out_options *opts,
844 				       const struct tcp_md5sig_key *md5,
845 				       struct tcp_fastopen_cookie *foc,
846 				       enum tcp_synack_type synack_type,
847 				       struct sk_buff *syn_skb)
848 {
849 	struct inet_request_sock *ireq = inet_rsk(req);
850 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
851 
852 #ifdef CONFIG_TCP_MD5SIG
853 	if (md5) {
854 		opts->options |= OPTION_MD5;
855 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
856 
857 		/* We can't fit any SACK blocks in a packet with MD5 + TS
858 		 * options. There was discussion about disabling SACK
859 		 * rather than TS in order to fit in better with old,
860 		 * buggy kernels, but that was deemed to be unnecessary.
861 		 */
862 		if (synack_type != TCP_SYNACK_COOKIE)
863 			ireq->tstamp_ok &= !ireq->sack_ok;
864 	}
865 #endif
866 
867 	/* We always send an MSS option. */
868 	opts->mss = mss;
869 	remaining -= TCPOLEN_MSS_ALIGNED;
870 
871 	if (likely(ireq->wscale_ok)) {
872 		opts->ws = ireq->rcv_wscale;
873 		opts->options |= OPTION_WSCALE;
874 		remaining -= TCPOLEN_WSCALE_ALIGNED;
875 	}
876 	if (likely(ireq->tstamp_ok)) {
877 		opts->options |= OPTION_TS;
878 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
879 		opts->tsecr = req->ts_recent;
880 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
881 	}
882 	if (likely(ireq->sack_ok)) {
883 		opts->options |= OPTION_SACK_ADVERTISE;
884 		if (unlikely(!ireq->tstamp_ok))
885 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
886 	}
887 	if (foc != NULL && foc->len >= 0) {
888 		u32 need = foc->len;
889 
890 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
891 				   TCPOLEN_FASTOPEN_BASE;
892 		need = (need + 3) & ~3U;  /* Align to 32 bits */
893 		if (remaining >= need) {
894 			opts->options |= OPTION_FAST_OPEN_COOKIE;
895 			opts->fastopen_cookie = foc;
896 			remaining -= need;
897 		}
898 	}
899 
900 	mptcp_set_option_cond(req, opts, &remaining);
901 
902 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
903 
904 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
905 			      synack_type, opts, &remaining);
906 
907 	return MAX_TCP_OPTION_SPACE - remaining;
908 }
909 
910 /* Compute TCP options for ESTABLISHED sockets. This is not the
911  * final wire format yet.
912  */
913 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
914 					struct tcp_out_options *opts,
915 					struct tcp_md5sig_key **md5)
916 {
917 	struct tcp_sock *tp = tcp_sk(sk);
918 	unsigned int size = 0;
919 	unsigned int eff_sacks;
920 
921 	opts->options = 0;
922 
923 	*md5 = NULL;
924 #ifdef CONFIG_TCP_MD5SIG
925 	if (static_branch_unlikely(&tcp_md5_needed) &&
926 	    rcu_access_pointer(tp->md5sig_info)) {
927 		*md5 = tp->af_specific->md5_lookup(sk, sk);
928 		if (*md5) {
929 			opts->options |= OPTION_MD5;
930 			size += TCPOLEN_MD5SIG_ALIGNED;
931 		}
932 	}
933 #endif
934 
935 	if (likely(tp->rx_opt.tstamp_ok)) {
936 		opts->options |= OPTION_TS;
937 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
938 		opts->tsecr = tp->rx_opt.ts_recent;
939 		size += TCPOLEN_TSTAMP_ALIGNED;
940 	}
941 
942 	/* MPTCP options have precedence over SACK for the limited TCP
943 	 * option space because a MPTCP connection would be forced to
944 	 * fall back to regular TCP if a required multipath option is
945 	 * missing. SACK still gets a chance to use whatever space is
946 	 * left.
947 	 */
948 	if (sk_is_mptcp(sk)) {
949 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
950 		unsigned int opt_size = 0;
951 
952 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
953 					      &opts->mptcp)) {
954 			opts->options |= OPTION_MPTCP;
955 			size += opt_size;
956 		}
957 	}
958 
959 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
960 	if (unlikely(eff_sacks)) {
961 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
962 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
963 					 TCPOLEN_SACK_PERBLOCK))
964 			return size;
965 
966 		opts->num_sack_blocks =
967 			min_t(unsigned int, eff_sacks,
968 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
969 			      TCPOLEN_SACK_PERBLOCK);
970 
971 		size += TCPOLEN_SACK_BASE_ALIGNED +
972 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
973 	}
974 
975 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
976 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
977 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
978 
979 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
980 
981 		size = MAX_TCP_OPTION_SPACE - remaining;
982 	}
983 
984 	return size;
985 }
986 
987 
988 /* TCP SMALL QUEUES (TSQ)
989  *
990  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
991  * to reduce RTT and bufferbloat.
992  * We do this using a special skb destructor (tcp_wfree).
993  *
994  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
995  * needs to be reallocated in a driver.
996  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
997  *
998  * Since transmit from skb destructor is forbidden, we use a tasklet
999  * to process all sockets that eventually need to send more skbs.
1000  * We use one tasklet per cpu, with its own queue of sockets.
1001  */
1002 struct tsq_tasklet {
1003 	struct tasklet_struct	tasklet;
1004 	struct list_head	head; /* queue of tcp sockets */
1005 };
1006 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1007 
1008 static void tcp_tsq_write(struct sock *sk)
1009 {
1010 	if ((1 << sk->sk_state) &
1011 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1012 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1013 		struct tcp_sock *tp = tcp_sk(sk);
1014 
1015 		if (tp->lost_out > tp->retrans_out &&
1016 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
1017 			tcp_mstamp_refresh(tp);
1018 			tcp_xmit_retransmit_queue(sk);
1019 		}
1020 
1021 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1022 			       0, GFP_ATOMIC);
1023 	}
1024 }
1025 
1026 static void tcp_tsq_handler(struct sock *sk)
1027 {
1028 	bh_lock_sock(sk);
1029 	if (!sock_owned_by_user(sk))
1030 		tcp_tsq_write(sk);
1031 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1032 		sock_hold(sk);
1033 	bh_unlock_sock(sk);
1034 }
1035 /*
1036  * One tasklet per cpu tries to send more skbs.
1037  * We run in tasklet context but need to disable irqs when
1038  * transferring tsq->head because tcp_wfree() might
1039  * interrupt us (non NAPI drivers)
1040  */
1041 static void tcp_tasklet_func(struct tasklet_struct *t)
1042 {
1043 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1044 	LIST_HEAD(list);
1045 	unsigned long flags;
1046 	struct list_head *q, *n;
1047 	struct tcp_sock *tp;
1048 	struct sock *sk;
1049 
1050 	local_irq_save(flags);
1051 	list_splice_init(&tsq->head, &list);
1052 	local_irq_restore(flags);
1053 
1054 	list_for_each_safe(q, n, &list) {
1055 		tp = list_entry(q, struct tcp_sock, tsq_node);
1056 		list_del(&tp->tsq_node);
1057 
1058 		sk = (struct sock *)tp;
1059 		smp_mb__before_atomic();
1060 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1061 
1062 		tcp_tsq_handler(sk);
1063 		sk_free(sk);
1064 	}
1065 }
1066 
1067 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1068 			  TCPF_WRITE_TIMER_DEFERRED |	\
1069 			  TCPF_DELACK_TIMER_DEFERRED |	\
1070 			  TCPF_MTU_REDUCED_DEFERRED)
1071 /**
1072  * tcp_release_cb - tcp release_sock() callback
1073  * @sk: socket
1074  *
1075  * called from release_sock() to perform protocol dependent
1076  * actions before socket release.
1077  */
1078 void tcp_release_cb(struct sock *sk)
1079 {
1080 	unsigned long flags, nflags;
1081 
1082 	/* perform an atomic operation only if at least one flag is set */
1083 	do {
1084 		flags = sk->sk_tsq_flags;
1085 		if (!(flags & TCP_DEFERRED_ALL))
1086 			return;
1087 		nflags = flags & ~TCP_DEFERRED_ALL;
1088 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1089 
1090 	if (flags & TCPF_TSQ_DEFERRED) {
1091 		tcp_tsq_write(sk);
1092 		__sock_put(sk);
1093 	}
1094 	/* Here begins the tricky part :
1095 	 * We are called from release_sock() with :
1096 	 * 1) BH disabled
1097 	 * 2) sk_lock.slock spinlock held
1098 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1099 	 *
1100 	 * But following code is meant to be called from BH handlers,
1101 	 * so we should keep BH disabled, but early release socket ownership
1102 	 */
1103 	sock_release_ownership(sk);
1104 
1105 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1106 		tcp_write_timer_handler(sk);
1107 		__sock_put(sk);
1108 	}
1109 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1110 		tcp_delack_timer_handler(sk);
1111 		__sock_put(sk);
1112 	}
1113 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1114 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1115 		__sock_put(sk);
1116 	}
1117 }
1118 EXPORT_SYMBOL(tcp_release_cb);
1119 
1120 void __init tcp_tasklet_init(void)
1121 {
1122 	int i;
1123 
1124 	for_each_possible_cpu(i) {
1125 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1126 
1127 		INIT_LIST_HEAD(&tsq->head);
1128 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1129 	}
1130 }
1131 
1132 /*
1133  * Write buffer destructor automatically called from kfree_skb.
1134  * We can't xmit new skbs from this context, as we might already
1135  * hold qdisc lock.
1136  */
1137 void tcp_wfree(struct sk_buff *skb)
1138 {
1139 	struct sock *sk = skb->sk;
1140 	struct tcp_sock *tp = tcp_sk(sk);
1141 	unsigned long flags, nval, oval;
1142 
1143 	/* Keep one reference on sk_wmem_alloc.
1144 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1145 	 */
1146 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1147 
1148 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1149 	 * Wait until our queues (qdisc + devices) are drained.
1150 	 * This gives :
1151 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1152 	 * - chance for incoming ACK (processed by another cpu maybe)
1153 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1154 	 */
1155 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1156 		goto out;
1157 
1158 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1159 		struct tsq_tasklet *tsq;
1160 		bool empty;
1161 
1162 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1163 			goto out;
1164 
1165 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1166 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1167 		if (nval != oval)
1168 			continue;
1169 
1170 		/* queue this socket to tasklet queue */
1171 		local_irq_save(flags);
1172 		tsq = this_cpu_ptr(&tsq_tasklet);
1173 		empty = list_empty(&tsq->head);
1174 		list_add(&tp->tsq_node, &tsq->head);
1175 		if (empty)
1176 			tasklet_schedule(&tsq->tasklet);
1177 		local_irq_restore(flags);
1178 		return;
1179 	}
1180 out:
1181 	sk_free(sk);
1182 }
1183 
1184 /* Note: Called under soft irq.
1185  * We can call TCP stack right away, unless socket is owned by user.
1186  */
1187 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1188 {
1189 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1190 	struct sock *sk = (struct sock *)tp;
1191 
1192 	tcp_tsq_handler(sk);
1193 	sock_put(sk);
1194 
1195 	return HRTIMER_NORESTART;
1196 }
1197 
1198 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1199 				      u64 prior_wstamp)
1200 {
1201 	struct tcp_sock *tp = tcp_sk(sk);
1202 
1203 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1204 		unsigned long rate = sk->sk_pacing_rate;
1205 
1206 		/* Original sch_fq does not pace first 10 MSS
1207 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1208 		 * this is a minor annoyance.
1209 		 */
1210 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1211 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1212 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1213 
1214 			/* take into account OS jitter */
1215 			len_ns -= min_t(u64, len_ns / 2, credit);
1216 			tp->tcp_wstamp_ns += len_ns;
1217 		}
1218 	}
1219 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1220 }
1221 
1222 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1223 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1224 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1225 
1226 /* This routine actually transmits TCP packets queued in by
1227  * tcp_do_sendmsg().  This is used by both the initial
1228  * transmission and possible later retransmissions.
1229  * All SKB's seen here are completely headerless.  It is our
1230  * job to build the TCP header, and pass the packet down to
1231  * IP so it can do the same plus pass the packet off to the
1232  * device.
1233  *
1234  * We are working here with either a clone of the original
1235  * SKB, or a fresh unique copy made by the retransmit engine.
1236  */
1237 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1238 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1239 {
1240 	const struct inet_connection_sock *icsk = inet_csk(sk);
1241 	struct inet_sock *inet;
1242 	struct tcp_sock *tp;
1243 	struct tcp_skb_cb *tcb;
1244 	struct tcp_out_options opts;
1245 	unsigned int tcp_options_size, tcp_header_size;
1246 	struct sk_buff *oskb = NULL;
1247 	struct tcp_md5sig_key *md5;
1248 	struct tcphdr *th;
1249 	u64 prior_wstamp;
1250 	int err;
1251 
1252 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1253 	tp = tcp_sk(sk);
1254 	prior_wstamp = tp->tcp_wstamp_ns;
1255 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1256 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1257 	if (clone_it) {
1258 		oskb = skb;
1259 
1260 		tcp_skb_tsorted_save(oskb) {
1261 			if (unlikely(skb_cloned(oskb)))
1262 				skb = pskb_copy(oskb, gfp_mask);
1263 			else
1264 				skb = skb_clone(oskb, gfp_mask);
1265 		} tcp_skb_tsorted_restore(oskb);
1266 
1267 		if (unlikely(!skb))
1268 			return -ENOBUFS;
1269 		/* retransmit skbs might have a non zero value in skb->dev
1270 		 * because skb->dev is aliased with skb->rbnode.rb_left
1271 		 */
1272 		skb->dev = NULL;
1273 	}
1274 
1275 	inet = inet_sk(sk);
1276 	tcb = TCP_SKB_CB(skb);
1277 	memset(&opts, 0, sizeof(opts));
1278 
1279 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1280 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1281 	} else {
1282 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1283 							   &md5);
1284 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1285 		 * at receiver : This slightly improve GRO performance.
1286 		 * Note that we do not force the PSH flag for non GSO packets,
1287 		 * because they might be sent under high congestion events,
1288 		 * and in this case it is better to delay the delivery of 1-MSS
1289 		 * packets and thus the corresponding ACK packet that would
1290 		 * release the following packet.
1291 		 */
1292 		if (tcp_skb_pcount(skb) > 1)
1293 			tcb->tcp_flags |= TCPHDR_PSH;
1294 	}
1295 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1296 
1297 	/* if no packet is in qdisc/device queue, then allow XPS to select
1298 	 * another queue. We can be called from tcp_tsq_handler()
1299 	 * which holds one reference to sk.
1300 	 *
1301 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1302 	 * One way to get this would be to set skb->truesize = 2 on them.
1303 	 */
1304 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1305 
1306 	/* If we had to use memory reserve to allocate this skb,
1307 	 * this might cause drops if packet is looped back :
1308 	 * Other socket might not have SOCK_MEMALLOC.
1309 	 * Packets not looped back do not care about pfmemalloc.
1310 	 */
1311 	skb->pfmemalloc = 0;
1312 
1313 	skb_push(skb, tcp_header_size);
1314 	skb_reset_transport_header(skb);
1315 
1316 	skb_orphan(skb);
1317 	skb->sk = sk;
1318 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1319 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1320 
1321 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1322 
1323 	/* Build TCP header and checksum it. */
1324 	th = (struct tcphdr *)skb->data;
1325 	th->source		= inet->inet_sport;
1326 	th->dest		= inet->inet_dport;
1327 	th->seq			= htonl(tcb->seq);
1328 	th->ack_seq		= htonl(rcv_nxt);
1329 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1330 					tcb->tcp_flags);
1331 
1332 	th->check		= 0;
1333 	th->urg_ptr		= 0;
1334 
1335 	/* The urg_mode check is necessary during a below snd_una win probe */
1336 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1337 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1338 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1339 			th->urg = 1;
1340 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1341 			th->urg_ptr = htons(0xFFFF);
1342 			th->urg = 1;
1343 		}
1344 	}
1345 
1346 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1347 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1348 		th->window      = htons(tcp_select_window(sk));
1349 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1350 	} else {
1351 		/* RFC1323: The window in SYN & SYN/ACK segments
1352 		 * is never scaled.
1353 		 */
1354 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1355 	}
1356 
1357 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1358 
1359 #ifdef CONFIG_TCP_MD5SIG
1360 	/* Calculate the MD5 hash, as we have all we need now */
1361 	if (md5) {
1362 		sk_gso_disable(sk);
1363 		tp->af_specific->calc_md5_hash(opts.hash_location,
1364 					       md5, sk, skb);
1365 	}
1366 #endif
1367 
1368 	/* BPF prog is the last one writing header option */
1369 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1370 
1371 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1372 			   tcp_v6_send_check, tcp_v4_send_check,
1373 			   sk, skb);
1374 
1375 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1376 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1377 
1378 	if (skb->len != tcp_header_size) {
1379 		tcp_event_data_sent(tp, sk);
1380 		tp->data_segs_out += tcp_skb_pcount(skb);
1381 		tp->bytes_sent += skb->len - tcp_header_size;
1382 	}
1383 
1384 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1385 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1386 			      tcp_skb_pcount(skb));
1387 
1388 	tp->segs_out += tcp_skb_pcount(skb);
1389 	skb_set_hash_from_sk(skb, sk);
1390 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1391 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1392 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1393 
1394 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1395 
1396 	/* Cleanup our debris for IP stacks */
1397 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1398 			       sizeof(struct inet6_skb_parm)));
1399 
1400 	tcp_add_tx_delay(skb, tp);
1401 
1402 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1403 				 inet6_csk_xmit, ip_queue_xmit,
1404 				 sk, skb, &inet->cork.fl);
1405 
1406 	if (unlikely(err > 0)) {
1407 		tcp_enter_cwr(sk);
1408 		err = net_xmit_eval(err);
1409 	}
1410 	if (!err && oskb) {
1411 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1412 		tcp_rate_skb_sent(sk, oskb);
1413 	}
1414 	return err;
1415 }
1416 
1417 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1418 			    gfp_t gfp_mask)
1419 {
1420 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1421 				  tcp_sk(sk)->rcv_nxt);
1422 }
1423 
1424 /* This routine just queues the buffer for sending.
1425  *
1426  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1427  * otherwise socket can stall.
1428  */
1429 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1430 {
1431 	struct tcp_sock *tp = tcp_sk(sk);
1432 
1433 	/* Advance write_seq and place onto the write_queue. */
1434 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1435 	__skb_header_release(skb);
1436 	tcp_add_write_queue_tail(sk, skb);
1437 	sk_wmem_queued_add(sk, skb->truesize);
1438 	sk_mem_charge(sk, skb->truesize);
1439 }
1440 
1441 /* Initialize TSO segments for a packet. */
1442 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1443 {
1444 	if (skb->len <= mss_now) {
1445 		/* Avoid the costly divide in the normal
1446 		 * non-TSO case.
1447 		 */
1448 		tcp_skb_pcount_set(skb, 1);
1449 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1450 	} else {
1451 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1452 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1453 	}
1454 }
1455 
1456 /* Pcount in the middle of the write queue got changed, we need to do various
1457  * tweaks to fix counters
1458  */
1459 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1460 {
1461 	struct tcp_sock *tp = tcp_sk(sk);
1462 
1463 	tp->packets_out -= decr;
1464 
1465 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1466 		tp->sacked_out -= decr;
1467 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1468 		tp->retrans_out -= decr;
1469 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1470 		tp->lost_out -= decr;
1471 
1472 	/* Reno case is special. Sigh... */
1473 	if (tcp_is_reno(tp) && decr > 0)
1474 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1475 
1476 	if (tp->lost_skb_hint &&
1477 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1478 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1479 		tp->lost_cnt_hint -= decr;
1480 
1481 	tcp_verify_left_out(tp);
1482 }
1483 
1484 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1485 {
1486 	return TCP_SKB_CB(skb)->txstamp_ack ||
1487 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1488 }
1489 
1490 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1491 {
1492 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1493 
1494 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1495 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1496 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1497 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1498 
1499 		shinfo->tx_flags &= ~tsflags;
1500 		shinfo2->tx_flags |= tsflags;
1501 		swap(shinfo->tskey, shinfo2->tskey);
1502 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1503 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1504 	}
1505 }
1506 
1507 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1508 {
1509 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1510 	TCP_SKB_CB(skb)->eor = 0;
1511 }
1512 
1513 /* Insert buff after skb on the write or rtx queue of sk.  */
1514 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1515 					 struct sk_buff *buff,
1516 					 struct sock *sk,
1517 					 enum tcp_queue tcp_queue)
1518 {
1519 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1520 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1521 	else
1522 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1523 }
1524 
1525 /* Function to create two new TCP segments.  Shrinks the given segment
1526  * to the specified size and appends a new segment with the rest of the
1527  * packet to the list.  This won't be called frequently, I hope.
1528  * Remember, these are still headerless SKBs at this point.
1529  */
1530 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1531 		 struct sk_buff *skb, u32 len,
1532 		 unsigned int mss_now, gfp_t gfp)
1533 {
1534 	struct tcp_sock *tp = tcp_sk(sk);
1535 	struct sk_buff *buff;
1536 	int nsize, old_factor;
1537 	long limit;
1538 	int nlen;
1539 	u8 flags;
1540 
1541 	if (WARN_ON(len > skb->len))
1542 		return -EINVAL;
1543 
1544 	nsize = skb_headlen(skb) - len;
1545 	if (nsize < 0)
1546 		nsize = 0;
1547 
1548 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1549 	 * We need some allowance to not penalize applications setting small
1550 	 * SO_SNDBUF values.
1551 	 * Also allow first and last skb in retransmit queue to be split.
1552 	 */
1553 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1554 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1555 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1556 		     skb != tcp_rtx_queue_head(sk) &&
1557 		     skb != tcp_rtx_queue_tail(sk))) {
1558 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1559 		return -ENOMEM;
1560 	}
1561 
1562 	if (skb_unclone_keeptruesize(skb, gfp))
1563 		return -ENOMEM;
1564 
1565 	/* Get a new skb... force flag on. */
1566 	buff = tcp_stream_alloc_skb(sk, nsize, gfp, true);
1567 	if (!buff)
1568 		return -ENOMEM; /* We'll just try again later. */
1569 	skb_copy_decrypted(buff, skb);
1570 	mptcp_skb_ext_copy(buff, skb);
1571 
1572 	sk_wmem_queued_add(sk, buff->truesize);
1573 	sk_mem_charge(sk, buff->truesize);
1574 	nlen = skb->len - len - nsize;
1575 	buff->truesize += nlen;
1576 	skb->truesize -= nlen;
1577 
1578 	/* Correct the sequence numbers. */
1579 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1580 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1581 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1582 
1583 	/* PSH and FIN should only be set in the second packet. */
1584 	flags = TCP_SKB_CB(skb)->tcp_flags;
1585 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1586 	TCP_SKB_CB(buff)->tcp_flags = flags;
1587 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1588 	tcp_skb_fragment_eor(skb, buff);
1589 
1590 	skb_split(skb, buff, len);
1591 
1592 	buff->tstamp = skb->tstamp;
1593 	tcp_fragment_tstamp(skb, buff);
1594 
1595 	old_factor = tcp_skb_pcount(skb);
1596 
1597 	/* Fix up tso_factor for both original and new SKB.  */
1598 	tcp_set_skb_tso_segs(skb, mss_now);
1599 	tcp_set_skb_tso_segs(buff, mss_now);
1600 
1601 	/* Update delivered info for the new segment */
1602 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1603 
1604 	/* If this packet has been sent out already, we must
1605 	 * adjust the various packet counters.
1606 	 */
1607 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1608 		int diff = old_factor - tcp_skb_pcount(skb) -
1609 			tcp_skb_pcount(buff);
1610 
1611 		if (diff)
1612 			tcp_adjust_pcount(sk, skb, diff);
1613 	}
1614 
1615 	/* Link BUFF into the send queue. */
1616 	__skb_header_release(buff);
1617 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1618 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1619 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1620 
1621 	return 0;
1622 }
1623 
1624 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1625  * data is not copied, but immediately discarded.
1626  */
1627 static int __pskb_trim_head(struct sk_buff *skb, int len)
1628 {
1629 	struct skb_shared_info *shinfo;
1630 	int i, k, eat;
1631 
1632 	eat = min_t(int, len, skb_headlen(skb));
1633 	if (eat) {
1634 		__skb_pull(skb, eat);
1635 		len -= eat;
1636 		if (!len)
1637 			return 0;
1638 	}
1639 	eat = len;
1640 	k = 0;
1641 	shinfo = skb_shinfo(skb);
1642 	for (i = 0; i < shinfo->nr_frags; i++) {
1643 		int size = skb_frag_size(&shinfo->frags[i]);
1644 
1645 		if (size <= eat) {
1646 			skb_frag_unref(skb, i);
1647 			eat -= size;
1648 		} else {
1649 			shinfo->frags[k] = shinfo->frags[i];
1650 			if (eat) {
1651 				skb_frag_off_add(&shinfo->frags[k], eat);
1652 				skb_frag_size_sub(&shinfo->frags[k], eat);
1653 				eat = 0;
1654 			}
1655 			k++;
1656 		}
1657 	}
1658 	shinfo->nr_frags = k;
1659 
1660 	skb->data_len -= len;
1661 	skb->len = skb->data_len;
1662 	return len;
1663 }
1664 
1665 /* Remove acked data from a packet in the transmit queue. */
1666 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1667 {
1668 	u32 delta_truesize;
1669 
1670 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1671 		return -ENOMEM;
1672 
1673 	delta_truesize = __pskb_trim_head(skb, len);
1674 
1675 	TCP_SKB_CB(skb)->seq += len;
1676 
1677 	if (delta_truesize) {
1678 		skb->truesize	   -= delta_truesize;
1679 		sk_wmem_queued_add(sk, -delta_truesize);
1680 		if (!skb_zcopy_pure(skb))
1681 			sk_mem_uncharge(sk, delta_truesize);
1682 	}
1683 
1684 	/* Any change of skb->len requires recalculation of tso factor. */
1685 	if (tcp_skb_pcount(skb) > 1)
1686 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1687 
1688 	return 0;
1689 }
1690 
1691 /* Calculate MSS not accounting any TCP options.  */
1692 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1693 {
1694 	const struct tcp_sock *tp = tcp_sk(sk);
1695 	const struct inet_connection_sock *icsk = inet_csk(sk);
1696 	int mss_now;
1697 
1698 	/* Calculate base mss without TCP options:
1699 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1700 	 */
1701 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1702 
1703 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1704 	if (icsk->icsk_af_ops->net_frag_header_len) {
1705 		const struct dst_entry *dst = __sk_dst_get(sk);
1706 
1707 		if (dst && dst_allfrag(dst))
1708 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1709 	}
1710 
1711 	/* Clamp it (mss_clamp does not include tcp options) */
1712 	if (mss_now > tp->rx_opt.mss_clamp)
1713 		mss_now = tp->rx_opt.mss_clamp;
1714 
1715 	/* Now subtract optional transport overhead */
1716 	mss_now -= icsk->icsk_ext_hdr_len;
1717 
1718 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1719 	mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1720 	return mss_now;
1721 }
1722 
1723 /* Calculate MSS. Not accounting for SACKs here.  */
1724 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1725 {
1726 	/* Subtract TCP options size, not including SACKs */
1727 	return __tcp_mtu_to_mss(sk, pmtu) -
1728 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1729 }
1730 EXPORT_SYMBOL(tcp_mtu_to_mss);
1731 
1732 /* Inverse of above */
1733 int tcp_mss_to_mtu(struct sock *sk, int mss)
1734 {
1735 	const struct tcp_sock *tp = tcp_sk(sk);
1736 	const struct inet_connection_sock *icsk = inet_csk(sk);
1737 	int mtu;
1738 
1739 	mtu = mss +
1740 	      tp->tcp_header_len +
1741 	      icsk->icsk_ext_hdr_len +
1742 	      icsk->icsk_af_ops->net_header_len;
1743 
1744 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1745 	if (icsk->icsk_af_ops->net_frag_header_len) {
1746 		const struct dst_entry *dst = __sk_dst_get(sk);
1747 
1748 		if (dst && dst_allfrag(dst))
1749 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1750 	}
1751 	return mtu;
1752 }
1753 EXPORT_SYMBOL(tcp_mss_to_mtu);
1754 
1755 /* MTU probing init per socket */
1756 void tcp_mtup_init(struct sock *sk)
1757 {
1758 	struct tcp_sock *tp = tcp_sk(sk);
1759 	struct inet_connection_sock *icsk = inet_csk(sk);
1760 	struct net *net = sock_net(sk);
1761 
1762 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1763 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1764 			       icsk->icsk_af_ops->net_header_len;
1765 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1766 	icsk->icsk_mtup.probe_size = 0;
1767 	if (icsk->icsk_mtup.enabled)
1768 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1769 }
1770 EXPORT_SYMBOL(tcp_mtup_init);
1771 
1772 /* This function synchronize snd mss to current pmtu/exthdr set.
1773 
1774    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1775    for TCP options, but includes only bare TCP header.
1776 
1777    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1778    It is minimum of user_mss and mss received with SYN.
1779    It also does not include TCP options.
1780 
1781    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1782 
1783    tp->mss_cache is current effective sending mss, including
1784    all tcp options except for SACKs. It is evaluated,
1785    taking into account current pmtu, but never exceeds
1786    tp->rx_opt.mss_clamp.
1787 
1788    NOTE1. rfc1122 clearly states that advertised MSS
1789    DOES NOT include either tcp or ip options.
1790 
1791    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1792    are READ ONLY outside this function.		--ANK (980731)
1793  */
1794 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1795 {
1796 	struct tcp_sock *tp = tcp_sk(sk);
1797 	struct inet_connection_sock *icsk = inet_csk(sk);
1798 	int mss_now;
1799 
1800 	if (icsk->icsk_mtup.search_high > pmtu)
1801 		icsk->icsk_mtup.search_high = pmtu;
1802 
1803 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1804 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1805 
1806 	/* And store cached results */
1807 	icsk->icsk_pmtu_cookie = pmtu;
1808 	if (icsk->icsk_mtup.enabled)
1809 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1810 	tp->mss_cache = mss_now;
1811 
1812 	return mss_now;
1813 }
1814 EXPORT_SYMBOL(tcp_sync_mss);
1815 
1816 /* Compute the current effective MSS, taking SACKs and IP options,
1817  * and even PMTU discovery events into account.
1818  */
1819 unsigned int tcp_current_mss(struct sock *sk)
1820 {
1821 	const struct tcp_sock *tp = tcp_sk(sk);
1822 	const struct dst_entry *dst = __sk_dst_get(sk);
1823 	u32 mss_now;
1824 	unsigned int header_len;
1825 	struct tcp_out_options opts;
1826 	struct tcp_md5sig_key *md5;
1827 
1828 	mss_now = tp->mss_cache;
1829 
1830 	if (dst) {
1831 		u32 mtu = dst_mtu(dst);
1832 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1833 			mss_now = tcp_sync_mss(sk, mtu);
1834 	}
1835 
1836 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1837 		     sizeof(struct tcphdr);
1838 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1839 	 * some common options. If this is an odd packet (because we have SACK
1840 	 * blocks etc) then our calculated header_len will be different, and
1841 	 * we have to adjust mss_now correspondingly */
1842 	if (header_len != tp->tcp_header_len) {
1843 		int delta = (int) header_len - tp->tcp_header_len;
1844 		mss_now -= delta;
1845 	}
1846 
1847 	return mss_now;
1848 }
1849 
1850 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1851  * As additional protections, we do not touch cwnd in retransmission phases,
1852  * and if application hit its sndbuf limit recently.
1853  */
1854 static void tcp_cwnd_application_limited(struct sock *sk)
1855 {
1856 	struct tcp_sock *tp = tcp_sk(sk);
1857 
1858 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1859 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1860 		/* Limited by application or receiver window. */
1861 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1862 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1863 		if (win_used < tp->snd_cwnd) {
1864 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1865 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1866 		}
1867 		tp->snd_cwnd_used = 0;
1868 	}
1869 	tp->snd_cwnd_stamp = tcp_jiffies32;
1870 }
1871 
1872 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1873 {
1874 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1875 	struct tcp_sock *tp = tcp_sk(sk);
1876 
1877 	/* Track the maximum number of outstanding packets in each
1878 	 * window, and remember whether we were cwnd-limited then.
1879 	 */
1880 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1881 	    tp->packets_out > tp->max_packets_out ||
1882 	    is_cwnd_limited) {
1883 		tp->max_packets_out = tp->packets_out;
1884 		tp->max_packets_seq = tp->snd_nxt;
1885 		tp->is_cwnd_limited = is_cwnd_limited;
1886 	}
1887 
1888 	if (tcp_is_cwnd_limited(sk)) {
1889 		/* Network is feed fully. */
1890 		tp->snd_cwnd_used = 0;
1891 		tp->snd_cwnd_stamp = tcp_jiffies32;
1892 	} else {
1893 		/* Network starves. */
1894 		if (tp->packets_out > tp->snd_cwnd_used)
1895 			tp->snd_cwnd_used = tp->packets_out;
1896 
1897 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1898 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1899 		    !ca_ops->cong_control)
1900 			tcp_cwnd_application_limited(sk);
1901 
1902 		/* The following conditions together indicate the starvation
1903 		 * is caused by insufficient sender buffer:
1904 		 * 1) just sent some data (see tcp_write_xmit)
1905 		 * 2) not cwnd limited (this else condition)
1906 		 * 3) no more data to send (tcp_write_queue_empty())
1907 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1908 		 */
1909 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1910 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1911 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1912 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1913 	}
1914 }
1915 
1916 /* Minshall's variant of the Nagle send check. */
1917 static bool tcp_minshall_check(const struct tcp_sock *tp)
1918 {
1919 	return after(tp->snd_sml, tp->snd_una) &&
1920 		!after(tp->snd_sml, tp->snd_nxt);
1921 }
1922 
1923 /* Update snd_sml if this skb is under mss
1924  * Note that a TSO packet might end with a sub-mss segment
1925  * The test is really :
1926  * if ((skb->len % mss) != 0)
1927  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1928  * But we can avoid doing the divide again given we already have
1929  *  skb_pcount = skb->len / mss_now
1930  */
1931 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1932 				const struct sk_buff *skb)
1933 {
1934 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1935 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1936 }
1937 
1938 /* Return false, if packet can be sent now without violation Nagle's rules:
1939  * 1. It is full sized. (provided by caller in %partial bool)
1940  * 2. Or it contains FIN. (already checked by caller)
1941  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1942  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1943  *    With Minshall's modification: all sent small packets are ACKed.
1944  */
1945 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1946 			    int nonagle)
1947 {
1948 	return partial &&
1949 		((nonagle & TCP_NAGLE_CORK) ||
1950 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1951 }
1952 
1953 /* Return how many segs we'd like on a TSO packet,
1954  * to send one TSO packet per ms
1955  */
1956 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1957 			    int min_tso_segs)
1958 {
1959 	u32 bytes, segs;
1960 
1961 	bytes = min_t(unsigned long,
1962 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1963 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1964 
1965 	/* Goal is to send at least one packet per ms,
1966 	 * not one big TSO packet every 100 ms.
1967 	 * This preserves ACK clocking and is consistent
1968 	 * with tcp_tso_should_defer() heuristic.
1969 	 */
1970 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1971 
1972 	return segs;
1973 }
1974 
1975 /* Return the number of segments we want in the skb we are transmitting.
1976  * See if congestion control module wants to decide; otherwise, autosize.
1977  */
1978 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1979 {
1980 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1981 	u32 min_tso, tso_segs;
1982 
1983 	min_tso = ca_ops->min_tso_segs ?
1984 			ca_ops->min_tso_segs(sk) :
1985 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1986 
1987 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1988 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1989 }
1990 
1991 /* Returns the portion of skb which can be sent right away */
1992 static unsigned int tcp_mss_split_point(const struct sock *sk,
1993 					const struct sk_buff *skb,
1994 					unsigned int mss_now,
1995 					unsigned int max_segs,
1996 					int nonagle)
1997 {
1998 	const struct tcp_sock *tp = tcp_sk(sk);
1999 	u32 partial, needed, window, max_len;
2000 
2001 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2002 	max_len = mss_now * max_segs;
2003 
2004 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2005 		return max_len;
2006 
2007 	needed = min(skb->len, window);
2008 
2009 	if (max_len <= needed)
2010 		return max_len;
2011 
2012 	partial = needed % mss_now;
2013 	/* If last segment is not a full MSS, check if Nagle rules allow us
2014 	 * to include this last segment in this skb.
2015 	 * Otherwise, we'll split the skb at last MSS boundary
2016 	 */
2017 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2018 		return needed - partial;
2019 
2020 	return needed;
2021 }
2022 
2023 /* Can at least one segment of SKB be sent right now, according to the
2024  * congestion window rules?  If so, return how many segments are allowed.
2025  */
2026 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2027 					 const struct sk_buff *skb)
2028 {
2029 	u32 in_flight, cwnd, halfcwnd;
2030 
2031 	/* Don't be strict about the congestion window for the final FIN.  */
2032 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2033 	    tcp_skb_pcount(skb) == 1)
2034 		return 1;
2035 
2036 	in_flight = tcp_packets_in_flight(tp);
2037 	cwnd = tp->snd_cwnd;
2038 	if (in_flight >= cwnd)
2039 		return 0;
2040 
2041 	/* For better scheduling, ensure we have at least
2042 	 * 2 GSO packets in flight.
2043 	 */
2044 	halfcwnd = max(cwnd >> 1, 1U);
2045 	return min(halfcwnd, cwnd - in_flight);
2046 }
2047 
2048 /* Initialize TSO state of a skb.
2049  * This must be invoked the first time we consider transmitting
2050  * SKB onto the wire.
2051  */
2052 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2053 {
2054 	int tso_segs = tcp_skb_pcount(skb);
2055 
2056 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2057 		tcp_set_skb_tso_segs(skb, mss_now);
2058 		tso_segs = tcp_skb_pcount(skb);
2059 	}
2060 	return tso_segs;
2061 }
2062 
2063 
2064 /* Return true if the Nagle test allows this packet to be
2065  * sent now.
2066  */
2067 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2068 				  unsigned int cur_mss, int nonagle)
2069 {
2070 	/* Nagle rule does not apply to frames, which sit in the middle of the
2071 	 * write_queue (they have no chances to get new data).
2072 	 *
2073 	 * This is implemented in the callers, where they modify the 'nonagle'
2074 	 * argument based upon the location of SKB in the send queue.
2075 	 */
2076 	if (nonagle & TCP_NAGLE_PUSH)
2077 		return true;
2078 
2079 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2080 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2081 		return true;
2082 
2083 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2084 		return true;
2085 
2086 	return false;
2087 }
2088 
2089 /* Does at least the first segment of SKB fit into the send window? */
2090 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2091 			     const struct sk_buff *skb,
2092 			     unsigned int cur_mss)
2093 {
2094 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2095 
2096 	if (skb->len > cur_mss)
2097 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2098 
2099 	return !after(end_seq, tcp_wnd_end(tp));
2100 }
2101 
2102 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2103  * which is put after SKB on the list.  It is very much like
2104  * tcp_fragment() except that it may make several kinds of assumptions
2105  * in order to speed up the splitting operation.  In particular, we
2106  * know that all the data is in scatter-gather pages, and that the
2107  * packet has never been sent out before (and thus is not cloned).
2108  */
2109 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2110 			unsigned int mss_now, gfp_t gfp)
2111 {
2112 	int nlen = skb->len - len;
2113 	struct sk_buff *buff;
2114 	u8 flags;
2115 
2116 	/* All of a TSO frame must be composed of paged data.  */
2117 	if (skb->len != skb->data_len)
2118 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2119 				    skb, len, mss_now, gfp);
2120 
2121 	buff = tcp_stream_alloc_skb(sk, 0, gfp, true);
2122 	if (unlikely(!buff))
2123 		return -ENOMEM;
2124 	skb_copy_decrypted(buff, skb);
2125 	mptcp_skb_ext_copy(buff, skb);
2126 
2127 	sk_wmem_queued_add(sk, buff->truesize);
2128 	sk_mem_charge(sk, buff->truesize);
2129 	buff->truesize += nlen;
2130 	skb->truesize -= nlen;
2131 
2132 	/* Correct the sequence numbers. */
2133 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2134 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2135 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2136 
2137 	/* PSH and FIN should only be set in the second packet. */
2138 	flags = TCP_SKB_CB(skb)->tcp_flags;
2139 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2140 	TCP_SKB_CB(buff)->tcp_flags = flags;
2141 
2142 	tcp_skb_fragment_eor(skb, buff);
2143 
2144 	skb_split(skb, buff, len);
2145 	tcp_fragment_tstamp(skb, buff);
2146 
2147 	/* Fix up tso_factor for both original and new SKB.  */
2148 	tcp_set_skb_tso_segs(skb, mss_now);
2149 	tcp_set_skb_tso_segs(buff, mss_now);
2150 
2151 	/* Link BUFF into the send queue. */
2152 	__skb_header_release(buff);
2153 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2154 
2155 	return 0;
2156 }
2157 
2158 /* Try to defer sending, if possible, in order to minimize the amount
2159  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2160  *
2161  * This algorithm is from John Heffner.
2162  */
2163 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2164 				 bool *is_cwnd_limited,
2165 				 bool *is_rwnd_limited,
2166 				 u32 max_segs)
2167 {
2168 	const struct inet_connection_sock *icsk = inet_csk(sk);
2169 	u32 send_win, cong_win, limit, in_flight;
2170 	struct tcp_sock *tp = tcp_sk(sk);
2171 	struct sk_buff *head;
2172 	int win_divisor;
2173 	s64 delta;
2174 
2175 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2176 		goto send_now;
2177 
2178 	/* Avoid bursty behavior by allowing defer
2179 	 * only if the last write was recent (1 ms).
2180 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2181 	 * packets waiting in a qdisc or device for EDT delivery.
2182 	 */
2183 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2184 	if (delta > 0)
2185 		goto send_now;
2186 
2187 	in_flight = tcp_packets_in_flight(tp);
2188 
2189 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2190 	BUG_ON(tp->snd_cwnd <= in_flight);
2191 
2192 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2193 
2194 	/* From in_flight test above, we know that cwnd > in_flight.  */
2195 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2196 
2197 	limit = min(send_win, cong_win);
2198 
2199 	/* If a full-sized TSO skb can be sent, do it. */
2200 	if (limit >= max_segs * tp->mss_cache)
2201 		goto send_now;
2202 
2203 	/* Middle in queue won't get any more data, full sendable already? */
2204 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2205 		goto send_now;
2206 
2207 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2208 	if (win_divisor) {
2209 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2210 
2211 		/* If at least some fraction of a window is available,
2212 		 * just use it.
2213 		 */
2214 		chunk /= win_divisor;
2215 		if (limit >= chunk)
2216 			goto send_now;
2217 	} else {
2218 		/* Different approach, try not to defer past a single
2219 		 * ACK.  Receiver should ACK every other full sized
2220 		 * frame, so if we have space for more than 3 frames
2221 		 * then send now.
2222 		 */
2223 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2224 			goto send_now;
2225 	}
2226 
2227 	/* TODO : use tsorted_sent_queue ? */
2228 	head = tcp_rtx_queue_head(sk);
2229 	if (!head)
2230 		goto send_now;
2231 	delta = tp->tcp_clock_cache - head->tstamp;
2232 	/* If next ACK is likely to come too late (half srtt), do not defer */
2233 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2234 		goto send_now;
2235 
2236 	/* Ok, it looks like it is advisable to defer.
2237 	 * Three cases are tracked :
2238 	 * 1) We are cwnd-limited
2239 	 * 2) We are rwnd-limited
2240 	 * 3) We are application limited.
2241 	 */
2242 	if (cong_win < send_win) {
2243 		if (cong_win <= skb->len) {
2244 			*is_cwnd_limited = true;
2245 			return true;
2246 		}
2247 	} else {
2248 		if (send_win <= skb->len) {
2249 			*is_rwnd_limited = true;
2250 			return true;
2251 		}
2252 	}
2253 
2254 	/* If this packet won't get more data, do not wait. */
2255 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2256 	    TCP_SKB_CB(skb)->eor)
2257 		goto send_now;
2258 
2259 	return true;
2260 
2261 send_now:
2262 	return false;
2263 }
2264 
2265 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2266 {
2267 	struct inet_connection_sock *icsk = inet_csk(sk);
2268 	struct tcp_sock *tp = tcp_sk(sk);
2269 	struct net *net = sock_net(sk);
2270 	u32 interval;
2271 	s32 delta;
2272 
2273 	interval = net->ipv4.sysctl_tcp_probe_interval;
2274 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2275 	if (unlikely(delta >= interval * HZ)) {
2276 		int mss = tcp_current_mss(sk);
2277 
2278 		/* Update current search range */
2279 		icsk->icsk_mtup.probe_size = 0;
2280 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2281 			sizeof(struct tcphdr) +
2282 			icsk->icsk_af_ops->net_header_len;
2283 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2284 
2285 		/* Update probe time stamp */
2286 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2287 	}
2288 }
2289 
2290 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2291 {
2292 	struct sk_buff *skb, *next;
2293 
2294 	skb = tcp_send_head(sk);
2295 	tcp_for_write_queue_from_safe(skb, next, sk) {
2296 		if (len <= skb->len)
2297 			break;
2298 
2299 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2300 		    tcp_has_tx_tstamp(skb) ||
2301 		    !skb_pure_zcopy_same(skb, next))
2302 			return false;
2303 
2304 		len -= skb->len;
2305 	}
2306 
2307 	return true;
2308 }
2309 
2310 /* Create a new MTU probe if we are ready.
2311  * MTU probe is regularly attempting to increase the path MTU by
2312  * deliberately sending larger packets.  This discovers routing
2313  * changes resulting in larger path MTUs.
2314  *
2315  * Returns 0 if we should wait to probe (no cwnd available),
2316  *         1 if a probe was sent,
2317  *         -1 otherwise
2318  */
2319 static int tcp_mtu_probe(struct sock *sk)
2320 {
2321 	struct inet_connection_sock *icsk = inet_csk(sk);
2322 	struct tcp_sock *tp = tcp_sk(sk);
2323 	struct sk_buff *skb, *nskb, *next;
2324 	struct net *net = sock_net(sk);
2325 	int probe_size;
2326 	int size_needed;
2327 	int copy, len;
2328 	int mss_now;
2329 	int interval;
2330 
2331 	/* Not currently probing/verifying,
2332 	 * not in recovery,
2333 	 * have enough cwnd, and
2334 	 * not SACKing (the variable headers throw things off)
2335 	 */
2336 	if (likely(!icsk->icsk_mtup.enabled ||
2337 		   icsk->icsk_mtup.probe_size ||
2338 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2339 		   tp->snd_cwnd < 11 ||
2340 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2341 		return -1;
2342 
2343 	/* Use binary search for probe_size between tcp_mss_base,
2344 	 * and current mss_clamp. if (search_high - search_low)
2345 	 * smaller than a threshold, backoff from probing.
2346 	 */
2347 	mss_now = tcp_current_mss(sk);
2348 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2349 				    icsk->icsk_mtup.search_low) >> 1);
2350 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2351 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2352 	/* When misfortune happens, we are reprobing actively,
2353 	 * and then reprobe timer has expired. We stick with current
2354 	 * probing process by not resetting search range to its orignal.
2355 	 */
2356 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2357 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2358 		/* Check whether enough time has elaplased for
2359 		 * another round of probing.
2360 		 */
2361 		tcp_mtu_check_reprobe(sk);
2362 		return -1;
2363 	}
2364 
2365 	/* Have enough data in the send queue to probe? */
2366 	if (tp->write_seq - tp->snd_nxt < size_needed)
2367 		return -1;
2368 
2369 	if (tp->snd_wnd < size_needed)
2370 		return -1;
2371 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2372 		return 0;
2373 
2374 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2375 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2376 		if (!tcp_packets_in_flight(tp))
2377 			return -1;
2378 		else
2379 			return 0;
2380 	}
2381 
2382 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2383 		return -1;
2384 
2385 	/* We're allowed to probe.  Build it now. */
2386 	nskb = tcp_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2387 	if (!nskb)
2388 		return -1;
2389 	sk_wmem_queued_add(sk, nskb->truesize);
2390 	sk_mem_charge(sk, nskb->truesize);
2391 
2392 	skb = tcp_send_head(sk);
2393 	skb_copy_decrypted(nskb, skb);
2394 	mptcp_skb_ext_copy(nskb, skb);
2395 
2396 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2397 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2398 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2399 
2400 	tcp_insert_write_queue_before(nskb, skb, sk);
2401 	tcp_highest_sack_replace(sk, skb, nskb);
2402 
2403 	len = 0;
2404 	tcp_for_write_queue_from_safe(skb, next, sk) {
2405 		copy = min_t(int, skb->len, probe_size - len);
2406 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2407 
2408 		if (skb->len <= copy) {
2409 			/* We've eaten all the data from this skb.
2410 			 * Throw it away. */
2411 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2412 			/* If this is the last SKB we copy and eor is set
2413 			 * we need to propagate it to the new skb.
2414 			 */
2415 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2416 			tcp_skb_collapse_tstamp(nskb, skb);
2417 			tcp_unlink_write_queue(skb, sk);
2418 			tcp_wmem_free_skb(sk, skb);
2419 		} else {
2420 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2421 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2422 			if (!skb_shinfo(skb)->nr_frags) {
2423 				skb_pull(skb, copy);
2424 			} else {
2425 				__pskb_trim_head(skb, copy);
2426 				tcp_set_skb_tso_segs(skb, mss_now);
2427 			}
2428 			TCP_SKB_CB(skb)->seq += copy;
2429 		}
2430 
2431 		len += copy;
2432 
2433 		if (len >= probe_size)
2434 			break;
2435 	}
2436 	tcp_init_tso_segs(nskb, nskb->len);
2437 
2438 	/* We're ready to send.  If this fails, the probe will
2439 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2440 	 */
2441 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2442 		/* Decrement cwnd here because we are sending
2443 		 * effectively two packets. */
2444 		tp->snd_cwnd--;
2445 		tcp_event_new_data_sent(sk, nskb);
2446 
2447 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2448 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2449 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2450 
2451 		return 1;
2452 	}
2453 
2454 	return -1;
2455 }
2456 
2457 static bool tcp_pacing_check(struct sock *sk)
2458 {
2459 	struct tcp_sock *tp = tcp_sk(sk);
2460 
2461 	if (!tcp_needs_internal_pacing(sk))
2462 		return false;
2463 
2464 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2465 		return false;
2466 
2467 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2468 		hrtimer_start(&tp->pacing_timer,
2469 			      ns_to_ktime(tp->tcp_wstamp_ns),
2470 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2471 		sock_hold(sk);
2472 	}
2473 	return true;
2474 }
2475 
2476 /* TCP Small Queues :
2477  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2478  * (These limits are doubled for retransmits)
2479  * This allows for :
2480  *  - better RTT estimation and ACK scheduling
2481  *  - faster recovery
2482  *  - high rates
2483  * Alas, some drivers / subsystems require a fair amount
2484  * of queued bytes to ensure line rate.
2485  * One example is wifi aggregation (802.11 AMPDU)
2486  */
2487 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2488 				  unsigned int factor)
2489 {
2490 	unsigned long limit;
2491 
2492 	limit = max_t(unsigned long,
2493 		      2 * skb->truesize,
2494 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2495 	if (sk->sk_pacing_status == SK_PACING_NONE)
2496 		limit = min_t(unsigned long, limit,
2497 			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2498 	limit <<= factor;
2499 
2500 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2501 	    tcp_sk(sk)->tcp_tx_delay) {
2502 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2503 
2504 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2505 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2506 		 * USEC_PER_SEC is approximated by 2^20.
2507 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2508 		 */
2509 		extra_bytes >>= (20 - 1);
2510 		limit += extra_bytes;
2511 	}
2512 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2513 		/* Always send skb if rtx queue is empty.
2514 		 * No need to wait for TX completion to call us back,
2515 		 * after softirq/tasklet schedule.
2516 		 * This helps when TX completions are delayed too much.
2517 		 */
2518 		if (tcp_rtx_queue_empty(sk))
2519 			return false;
2520 
2521 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2522 		/* It is possible TX completion already happened
2523 		 * before we set TSQ_THROTTLED, so we must
2524 		 * test again the condition.
2525 		 */
2526 		smp_mb__after_atomic();
2527 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2528 			return true;
2529 	}
2530 	return false;
2531 }
2532 
2533 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2534 {
2535 	const u32 now = tcp_jiffies32;
2536 	enum tcp_chrono old = tp->chrono_type;
2537 
2538 	if (old > TCP_CHRONO_UNSPEC)
2539 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2540 	tp->chrono_start = now;
2541 	tp->chrono_type = new;
2542 }
2543 
2544 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2545 {
2546 	struct tcp_sock *tp = tcp_sk(sk);
2547 
2548 	/* If there are multiple conditions worthy of tracking in a
2549 	 * chronograph then the highest priority enum takes precedence
2550 	 * over the other conditions. So that if something "more interesting"
2551 	 * starts happening, stop the previous chrono and start a new one.
2552 	 */
2553 	if (type > tp->chrono_type)
2554 		tcp_chrono_set(tp, type);
2555 }
2556 
2557 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2558 {
2559 	struct tcp_sock *tp = tcp_sk(sk);
2560 
2561 
2562 	/* There are multiple conditions worthy of tracking in a
2563 	 * chronograph, so that the highest priority enum takes
2564 	 * precedence over the other conditions (see tcp_chrono_start).
2565 	 * If a condition stops, we only stop chrono tracking if
2566 	 * it's the "most interesting" or current chrono we are
2567 	 * tracking and starts busy chrono if we have pending data.
2568 	 */
2569 	if (tcp_rtx_and_write_queues_empty(sk))
2570 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2571 	else if (type == tp->chrono_type)
2572 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2573 }
2574 
2575 /* This routine writes packets to the network.  It advances the
2576  * send_head.  This happens as incoming acks open up the remote
2577  * window for us.
2578  *
2579  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2580  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2581  * account rare use of URG, this is not a big flaw.
2582  *
2583  * Send at most one packet when push_one > 0. Temporarily ignore
2584  * cwnd limit to force at most one packet out when push_one == 2.
2585 
2586  * Returns true, if no segments are in flight and we have queued segments,
2587  * but cannot send anything now because of SWS or another problem.
2588  */
2589 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2590 			   int push_one, gfp_t gfp)
2591 {
2592 	struct tcp_sock *tp = tcp_sk(sk);
2593 	struct sk_buff *skb;
2594 	unsigned int tso_segs, sent_pkts;
2595 	int cwnd_quota;
2596 	int result;
2597 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2598 	u32 max_segs;
2599 
2600 	sent_pkts = 0;
2601 
2602 	tcp_mstamp_refresh(tp);
2603 	if (!push_one) {
2604 		/* Do MTU probing. */
2605 		result = tcp_mtu_probe(sk);
2606 		if (!result) {
2607 			return false;
2608 		} else if (result > 0) {
2609 			sent_pkts = 1;
2610 		}
2611 	}
2612 
2613 	max_segs = tcp_tso_segs(sk, mss_now);
2614 	while ((skb = tcp_send_head(sk))) {
2615 		unsigned int limit;
2616 
2617 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2618 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2619 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2620 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2621 			tcp_init_tso_segs(skb, mss_now);
2622 			goto repair; /* Skip network transmission */
2623 		}
2624 
2625 		if (tcp_pacing_check(sk))
2626 			break;
2627 
2628 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2629 		BUG_ON(!tso_segs);
2630 
2631 		cwnd_quota = tcp_cwnd_test(tp, skb);
2632 		if (!cwnd_quota) {
2633 			if (push_one == 2)
2634 				/* Force out a loss probe pkt. */
2635 				cwnd_quota = 1;
2636 			else
2637 				break;
2638 		}
2639 
2640 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2641 			is_rwnd_limited = true;
2642 			break;
2643 		}
2644 
2645 		if (tso_segs == 1) {
2646 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2647 						     (tcp_skb_is_last(sk, skb) ?
2648 						      nonagle : TCP_NAGLE_PUSH))))
2649 				break;
2650 		} else {
2651 			if (!push_one &&
2652 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2653 						 &is_rwnd_limited, max_segs))
2654 				break;
2655 		}
2656 
2657 		limit = mss_now;
2658 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2659 			limit = tcp_mss_split_point(sk, skb, mss_now,
2660 						    min_t(unsigned int,
2661 							  cwnd_quota,
2662 							  max_segs),
2663 						    nonagle);
2664 
2665 		if (skb->len > limit &&
2666 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2667 			break;
2668 
2669 		if (tcp_small_queue_check(sk, skb, 0))
2670 			break;
2671 
2672 		/* Argh, we hit an empty skb(), presumably a thread
2673 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2674 		 * We do not want to send a pure-ack packet and have
2675 		 * a strange looking rtx queue with empty packet(s).
2676 		 */
2677 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2678 			break;
2679 
2680 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2681 			break;
2682 
2683 repair:
2684 		/* Advance the send_head.  This one is sent out.
2685 		 * This call will increment packets_out.
2686 		 */
2687 		tcp_event_new_data_sent(sk, skb);
2688 
2689 		tcp_minshall_update(tp, mss_now, skb);
2690 		sent_pkts += tcp_skb_pcount(skb);
2691 
2692 		if (push_one)
2693 			break;
2694 	}
2695 
2696 	if (is_rwnd_limited)
2697 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2698 	else
2699 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2700 
2701 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2702 	if (likely(sent_pkts || is_cwnd_limited))
2703 		tcp_cwnd_validate(sk, is_cwnd_limited);
2704 
2705 	if (likely(sent_pkts)) {
2706 		if (tcp_in_cwnd_reduction(sk))
2707 			tp->prr_out += sent_pkts;
2708 
2709 		/* Send one loss probe per tail loss episode. */
2710 		if (push_one != 2)
2711 			tcp_schedule_loss_probe(sk, false);
2712 		return false;
2713 	}
2714 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2715 }
2716 
2717 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2718 {
2719 	struct inet_connection_sock *icsk = inet_csk(sk);
2720 	struct tcp_sock *tp = tcp_sk(sk);
2721 	u32 timeout, rto_delta_us;
2722 	int early_retrans;
2723 
2724 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2725 	 * finishes.
2726 	 */
2727 	if (rcu_access_pointer(tp->fastopen_rsk))
2728 		return false;
2729 
2730 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2731 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2732 	 * not in loss recovery, that are either limited by cwnd or application.
2733 	 */
2734 	if ((early_retrans != 3 && early_retrans != 4) ||
2735 	    !tp->packets_out || !tcp_is_sack(tp) ||
2736 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2737 	     icsk->icsk_ca_state != TCP_CA_CWR))
2738 		return false;
2739 
2740 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2741 	 * for delayed ack when there's one outstanding packet. If no RTT
2742 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2743 	 */
2744 	if (tp->srtt_us) {
2745 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2746 		if (tp->packets_out == 1)
2747 			timeout += TCP_RTO_MIN;
2748 		else
2749 			timeout += TCP_TIMEOUT_MIN;
2750 	} else {
2751 		timeout = TCP_TIMEOUT_INIT;
2752 	}
2753 
2754 	/* If the RTO formula yields an earlier time, then use that time. */
2755 	rto_delta_us = advancing_rto ?
2756 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2757 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2758 	if (rto_delta_us > 0)
2759 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2760 
2761 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2762 	return true;
2763 }
2764 
2765 /* Thanks to skb fast clones, we can detect if a prior transmit of
2766  * a packet is still in a qdisc or driver queue.
2767  * In this case, there is very little point doing a retransmit !
2768  */
2769 static bool skb_still_in_host_queue(struct sock *sk,
2770 				    const struct sk_buff *skb)
2771 {
2772 	if (unlikely(skb_fclone_busy(sk, skb))) {
2773 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2774 		smp_mb__after_atomic();
2775 		if (skb_fclone_busy(sk, skb)) {
2776 			NET_INC_STATS(sock_net(sk),
2777 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2778 			return true;
2779 		}
2780 	}
2781 	return false;
2782 }
2783 
2784 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2785  * retransmit the last segment.
2786  */
2787 void tcp_send_loss_probe(struct sock *sk)
2788 {
2789 	struct tcp_sock *tp = tcp_sk(sk);
2790 	struct sk_buff *skb;
2791 	int pcount;
2792 	int mss = tcp_current_mss(sk);
2793 
2794 	/* At most one outstanding TLP */
2795 	if (tp->tlp_high_seq)
2796 		goto rearm_timer;
2797 
2798 	tp->tlp_retrans = 0;
2799 	skb = tcp_send_head(sk);
2800 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2801 		pcount = tp->packets_out;
2802 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2803 		if (tp->packets_out > pcount)
2804 			goto probe_sent;
2805 		goto rearm_timer;
2806 	}
2807 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2808 	if (unlikely(!skb)) {
2809 		WARN_ONCE(tp->packets_out,
2810 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2811 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2812 		inet_csk(sk)->icsk_pending = 0;
2813 		return;
2814 	}
2815 
2816 	if (skb_still_in_host_queue(sk, skb))
2817 		goto rearm_timer;
2818 
2819 	pcount = tcp_skb_pcount(skb);
2820 	if (WARN_ON(!pcount))
2821 		goto rearm_timer;
2822 
2823 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2824 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2825 					  (pcount - 1) * mss, mss,
2826 					  GFP_ATOMIC)))
2827 			goto rearm_timer;
2828 		skb = skb_rb_next(skb);
2829 	}
2830 
2831 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2832 		goto rearm_timer;
2833 
2834 	if (__tcp_retransmit_skb(sk, skb, 1))
2835 		goto rearm_timer;
2836 
2837 	tp->tlp_retrans = 1;
2838 
2839 probe_sent:
2840 	/* Record snd_nxt for loss detection. */
2841 	tp->tlp_high_seq = tp->snd_nxt;
2842 
2843 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2844 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2845 	inet_csk(sk)->icsk_pending = 0;
2846 rearm_timer:
2847 	tcp_rearm_rto(sk);
2848 }
2849 
2850 /* Push out any pending frames which were held back due to
2851  * TCP_CORK or attempt at coalescing tiny packets.
2852  * The socket must be locked by the caller.
2853  */
2854 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2855 			       int nonagle)
2856 {
2857 	/* If we are closed, the bytes will have to remain here.
2858 	 * In time closedown will finish, we empty the write queue and
2859 	 * all will be happy.
2860 	 */
2861 	if (unlikely(sk->sk_state == TCP_CLOSE))
2862 		return;
2863 
2864 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2865 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2866 		tcp_check_probe_timer(sk);
2867 }
2868 
2869 /* Send _single_ skb sitting at the send head. This function requires
2870  * true push pending frames to setup probe timer etc.
2871  */
2872 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2873 {
2874 	struct sk_buff *skb = tcp_send_head(sk);
2875 
2876 	BUG_ON(!skb || skb->len < mss_now);
2877 
2878 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2879 }
2880 
2881 /* This function returns the amount that we can raise the
2882  * usable window based on the following constraints
2883  *
2884  * 1. The window can never be shrunk once it is offered (RFC 793)
2885  * 2. We limit memory per socket
2886  *
2887  * RFC 1122:
2888  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2889  *  RECV.NEXT + RCV.WIN fixed until:
2890  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2891  *
2892  * i.e. don't raise the right edge of the window until you can raise
2893  * it at least MSS bytes.
2894  *
2895  * Unfortunately, the recommended algorithm breaks header prediction,
2896  * since header prediction assumes th->window stays fixed.
2897  *
2898  * Strictly speaking, keeping th->window fixed violates the receiver
2899  * side SWS prevention criteria. The problem is that under this rule
2900  * a stream of single byte packets will cause the right side of the
2901  * window to always advance by a single byte.
2902  *
2903  * Of course, if the sender implements sender side SWS prevention
2904  * then this will not be a problem.
2905  *
2906  * BSD seems to make the following compromise:
2907  *
2908  *	If the free space is less than the 1/4 of the maximum
2909  *	space available and the free space is less than 1/2 mss,
2910  *	then set the window to 0.
2911  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2912  *	Otherwise, just prevent the window from shrinking
2913  *	and from being larger than the largest representable value.
2914  *
2915  * This prevents incremental opening of the window in the regime
2916  * where TCP is limited by the speed of the reader side taking
2917  * data out of the TCP receive queue. It does nothing about
2918  * those cases where the window is constrained on the sender side
2919  * because the pipeline is full.
2920  *
2921  * BSD also seems to "accidentally" limit itself to windows that are a
2922  * multiple of MSS, at least until the free space gets quite small.
2923  * This would appear to be a side effect of the mbuf implementation.
2924  * Combining these two algorithms results in the observed behavior
2925  * of having a fixed window size at almost all times.
2926  *
2927  * Below we obtain similar behavior by forcing the offered window to
2928  * a multiple of the mss when it is feasible to do so.
2929  *
2930  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2931  * Regular options like TIMESTAMP are taken into account.
2932  */
2933 u32 __tcp_select_window(struct sock *sk)
2934 {
2935 	struct inet_connection_sock *icsk = inet_csk(sk);
2936 	struct tcp_sock *tp = tcp_sk(sk);
2937 	/* MSS for the peer's data.  Previous versions used mss_clamp
2938 	 * here.  I don't know if the value based on our guesses
2939 	 * of peer's MSS is better for the performance.  It's more correct
2940 	 * but may be worse for the performance because of rcv_mss
2941 	 * fluctuations.  --SAW  1998/11/1
2942 	 */
2943 	int mss = icsk->icsk_ack.rcv_mss;
2944 	int free_space = tcp_space(sk);
2945 	int allowed_space = tcp_full_space(sk);
2946 	int full_space, window;
2947 
2948 	if (sk_is_mptcp(sk))
2949 		mptcp_space(sk, &free_space, &allowed_space);
2950 
2951 	full_space = min_t(int, tp->window_clamp, allowed_space);
2952 
2953 	if (unlikely(mss > full_space)) {
2954 		mss = full_space;
2955 		if (mss <= 0)
2956 			return 0;
2957 	}
2958 	if (free_space < (full_space >> 1)) {
2959 		icsk->icsk_ack.quick = 0;
2960 
2961 		if (tcp_under_memory_pressure(sk))
2962 			tcp_adjust_rcv_ssthresh(sk);
2963 
2964 		/* free_space might become our new window, make sure we don't
2965 		 * increase it due to wscale.
2966 		 */
2967 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2968 
2969 		/* if free space is less than mss estimate, or is below 1/16th
2970 		 * of the maximum allowed, try to move to zero-window, else
2971 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2972 		 * new incoming data is dropped due to memory limits.
2973 		 * With large window, mss test triggers way too late in order
2974 		 * to announce zero window in time before rmem limit kicks in.
2975 		 */
2976 		if (free_space < (allowed_space >> 4) || free_space < mss)
2977 			return 0;
2978 	}
2979 
2980 	if (free_space > tp->rcv_ssthresh)
2981 		free_space = tp->rcv_ssthresh;
2982 
2983 	/* Don't do rounding if we are using window scaling, since the
2984 	 * scaled window will not line up with the MSS boundary anyway.
2985 	 */
2986 	if (tp->rx_opt.rcv_wscale) {
2987 		window = free_space;
2988 
2989 		/* Advertise enough space so that it won't get scaled away.
2990 		 * Import case: prevent zero window announcement if
2991 		 * 1<<rcv_wscale > mss.
2992 		 */
2993 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2994 	} else {
2995 		window = tp->rcv_wnd;
2996 		/* Get the largest window that is a nice multiple of mss.
2997 		 * Window clamp already applied above.
2998 		 * If our current window offering is within 1 mss of the
2999 		 * free space we just keep it. This prevents the divide
3000 		 * and multiply from happening most of the time.
3001 		 * We also don't do any window rounding when the free space
3002 		 * is too small.
3003 		 */
3004 		if (window <= free_space - mss || window > free_space)
3005 			window = rounddown(free_space, mss);
3006 		else if (mss == full_space &&
3007 			 free_space > window + (full_space >> 1))
3008 			window = free_space;
3009 	}
3010 
3011 	return window;
3012 }
3013 
3014 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3015 			     const struct sk_buff *next_skb)
3016 {
3017 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3018 		const struct skb_shared_info *next_shinfo =
3019 			skb_shinfo(next_skb);
3020 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3021 
3022 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3023 		shinfo->tskey = next_shinfo->tskey;
3024 		TCP_SKB_CB(skb)->txstamp_ack |=
3025 			TCP_SKB_CB(next_skb)->txstamp_ack;
3026 	}
3027 }
3028 
3029 /* Collapses two adjacent SKB's during retransmission. */
3030 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3031 {
3032 	struct tcp_sock *tp = tcp_sk(sk);
3033 	struct sk_buff *next_skb = skb_rb_next(skb);
3034 	int next_skb_size;
3035 
3036 	next_skb_size = next_skb->len;
3037 
3038 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3039 
3040 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3041 		return false;
3042 
3043 	tcp_highest_sack_replace(sk, next_skb, skb);
3044 
3045 	/* Update sequence range on original skb. */
3046 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3047 
3048 	/* Merge over control information. This moves PSH/FIN etc. over */
3049 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3050 
3051 	/* All done, get rid of second SKB and account for it so
3052 	 * packet counting does not break.
3053 	 */
3054 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3055 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3056 
3057 	/* changed transmit queue under us so clear hints */
3058 	tcp_clear_retrans_hints_partial(tp);
3059 	if (next_skb == tp->retransmit_skb_hint)
3060 		tp->retransmit_skb_hint = skb;
3061 
3062 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3063 
3064 	tcp_skb_collapse_tstamp(skb, next_skb);
3065 
3066 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3067 	return true;
3068 }
3069 
3070 /* Check if coalescing SKBs is legal. */
3071 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3072 {
3073 	if (tcp_skb_pcount(skb) > 1)
3074 		return false;
3075 	if (skb_cloned(skb))
3076 		return false;
3077 	/* Some heuristics for collapsing over SACK'd could be invented */
3078 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3079 		return false;
3080 
3081 	return true;
3082 }
3083 
3084 /* Collapse packets in the retransmit queue to make to create
3085  * less packets on the wire. This is only done on retransmission.
3086  */
3087 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3088 				     int space)
3089 {
3090 	struct tcp_sock *tp = tcp_sk(sk);
3091 	struct sk_buff *skb = to, *tmp;
3092 	bool first = true;
3093 
3094 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
3095 		return;
3096 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3097 		return;
3098 
3099 	skb_rbtree_walk_from_safe(skb, tmp) {
3100 		if (!tcp_can_collapse(sk, skb))
3101 			break;
3102 
3103 		if (!tcp_skb_can_collapse(to, skb))
3104 			break;
3105 
3106 		space -= skb->len;
3107 
3108 		if (first) {
3109 			first = false;
3110 			continue;
3111 		}
3112 
3113 		if (space < 0)
3114 			break;
3115 
3116 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3117 			break;
3118 
3119 		if (!tcp_collapse_retrans(sk, to))
3120 			break;
3121 	}
3122 }
3123 
3124 /* This retransmits one SKB.  Policy decisions and retransmit queue
3125  * state updates are done by the caller.  Returns non-zero if an
3126  * error occurred which prevented the send.
3127  */
3128 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3129 {
3130 	struct inet_connection_sock *icsk = inet_csk(sk);
3131 	struct tcp_sock *tp = tcp_sk(sk);
3132 	unsigned int cur_mss;
3133 	int diff, len, err;
3134 
3135 
3136 	/* Inconclusive MTU probe */
3137 	if (icsk->icsk_mtup.probe_size)
3138 		icsk->icsk_mtup.probe_size = 0;
3139 
3140 	if (skb_still_in_host_queue(sk, skb))
3141 		return -EBUSY;
3142 
3143 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3144 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3145 			WARN_ON_ONCE(1);
3146 			return -EINVAL;
3147 		}
3148 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3149 			return -ENOMEM;
3150 	}
3151 
3152 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3153 		return -EHOSTUNREACH; /* Routing failure or similar. */
3154 
3155 	cur_mss = tcp_current_mss(sk);
3156 
3157 	/* If receiver has shrunk his window, and skb is out of
3158 	 * new window, do not retransmit it. The exception is the
3159 	 * case, when window is shrunk to zero. In this case
3160 	 * our retransmit serves as a zero window probe.
3161 	 */
3162 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
3163 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
3164 		return -EAGAIN;
3165 
3166 	len = cur_mss * segs;
3167 	if (skb->len > len) {
3168 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3169 				 cur_mss, GFP_ATOMIC))
3170 			return -ENOMEM; /* We'll try again later. */
3171 	} else {
3172 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3173 			return -ENOMEM;
3174 
3175 		diff = tcp_skb_pcount(skb);
3176 		tcp_set_skb_tso_segs(skb, cur_mss);
3177 		diff -= tcp_skb_pcount(skb);
3178 		if (diff)
3179 			tcp_adjust_pcount(sk, skb, diff);
3180 		if (skb->len < cur_mss)
3181 			tcp_retrans_try_collapse(sk, skb, cur_mss);
3182 	}
3183 
3184 	/* RFC3168, section 6.1.1.1. ECN fallback */
3185 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3186 		tcp_ecn_clear_syn(sk, skb);
3187 
3188 	/* Update global and local TCP statistics. */
3189 	segs = tcp_skb_pcount(skb);
3190 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3191 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3192 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3193 	tp->total_retrans += segs;
3194 	tp->bytes_retrans += skb->len;
3195 
3196 	/* make sure skb->data is aligned on arches that require it
3197 	 * and check if ack-trimming & collapsing extended the headroom
3198 	 * beyond what csum_start can cover.
3199 	 */
3200 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3201 		     skb_headroom(skb) >= 0xFFFF)) {
3202 		struct sk_buff *nskb;
3203 
3204 		tcp_skb_tsorted_save(skb) {
3205 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3206 			if (nskb) {
3207 				nskb->dev = NULL;
3208 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3209 			} else {
3210 				err = -ENOBUFS;
3211 			}
3212 		} tcp_skb_tsorted_restore(skb);
3213 
3214 		if (!err) {
3215 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3216 			tcp_rate_skb_sent(sk, skb);
3217 		}
3218 	} else {
3219 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3220 	}
3221 
3222 	/* To avoid taking spuriously low RTT samples based on a timestamp
3223 	 * for a transmit that never happened, always mark EVER_RETRANS
3224 	 */
3225 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3226 
3227 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3228 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3229 				  TCP_SKB_CB(skb)->seq, segs, err);
3230 
3231 	if (likely(!err)) {
3232 		trace_tcp_retransmit_skb(sk, skb);
3233 	} else if (err != -EBUSY) {
3234 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3235 	}
3236 	return err;
3237 }
3238 
3239 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3240 {
3241 	struct tcp_sock *tp = tcp_sk(sk);
3242 	int err = __tcp_retransmit_skb(sk, skb, segs);
3243 
3244 	if (err == 0) {
3245 #if FASTRETRANS_DEBUG > 0
3246 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3247 			net_dbg_ratelimited("retrans_out leaked\n");
3248 		}
3249 #endif
3250 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3251 		tp->retrans_out += tcp_skb_pcount(skb);
3252 	}
3253 
3254 	/* Save stamp of the first (attempted) retransmit. */
3255 	if (!tp->retrans_stamp)
3256 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3257 
3258 	if (tp->undo_retrans < 0)
3259 		tp->undo_retrans = 0;
3260 	tp->undo_retrans += tcp_skb_pcount(skb);
3261 	return err;
3262 }
3263 
3264 /* This gets called after a retransmit timeout, and the initially
3265  * retransmitted data is acknowledged.  It tries to continue
3266  * resending the rest of the retransmit queue, until either
3267  * we've sent it all or the congestion window limit is reached.
3268  */
3269 void tcp_xmit_retransmit_queue(struct sock *sk)
3270 {
3271 	const struct inet_connection_sock *icsk = inet_csk(sk);
3272 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3273 	struct tcp_sock *tp = tcp_sk(sk);
3274 	bool rearm_timer = false;
3275 	u32 max_segs;
3276 	int mib_idx;
3277 
3278 	if (!tp->packets_out)
3279 		return;
3280 
3281 	rtx_head = tcp_rtx_queue_head(sk);
3282 	skb = tp->retransmit_skb_hint ?: rtx_head;
3283 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3284 	skb_rbtree_walk_from(skb) {
3285 		__u8 sacked;
3286 		int segs;
3287 
3288 		if (tcp_pacing_check(sk))
3289 			break;
3290 
3291 		/* we could do better than to assign each time */
3292 		if (!hole)
3293 			tp->retransmit_skb_hint = skb;
3294 
3295 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3296 		if (segs <= 0)
3297 			break;
3298 		sacked = TCP_SKB_CB(skb)->sacked;
3299 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3300 		 * we need to make sure not sending too bigs TSO packets
3301 		 */
3302 		segs = min_t(int, segs, max_segs);
3303 
3304 		if (tp->retrans_out >= tp->lost_out) {
3305 			break;
3306 		} else if (!(sacked & TCPCB_LOST)) {
3307 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3308 				hole = skb;
3309 			continue;
3310 
3311 		} else {
3312 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3313 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3314 			else
3315 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3316 		}
3317 
3318 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3319 			continue;
3320 
3321 		if (tcp_small_queue_check(sk, skb, 1))
3322 			break;
3323 
3324 		if (tcp_retransmit_skb(sk, skb, segs))
3325 			break;
3326 
3327 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3328 
3329 		if (tcp_in_cwnd_reduction(sk))
3330 			tp->prr_out += tcp_skb_pcount(skb);
3331 
3332 		if (skb == rtx_head &&
3333 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3334 			rearm_timer = true;
3335 
3336 	}
3337 	if (rearm_timer)
3338 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3339 				     inet_csk(sk)->icsk_rto,
3340 				     TCP_RTO_MAX);
3341 }
3342 
3343 /* We allow to exceed memory limits for FIN packets to expedite
3344  * connection tear down and (memory) recovery.
3345  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3346  * or even be forced to close flow without any FIN.
3347  * In general, we want to allow one skb per socket to avoid hangs
3348  * with edge trigger epoll()
3349  */
3350 void sk_forced_mem_schedule(struct sock *sk, int size)
3351 {
3352 	int amt;
3353 
3354 	if (size <= sk->sk_forward_alloc)
3355 		return;
3356 	amt = sk_mem_pages(size);
3357 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3358 	sk_memory_allocated_add(sk, amt);
3359 
3360 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3361 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3362 					gfp_memcg_charge() | __GFP_NOFAIL);
3363 }
3364 
3365 /* Send a FIN. The caller locks the socket for us.
3366  * We should try to send a FIN packet really hard, but eventually give up.
3367  */
3368 void tcp_send_fin(struct sock *sk)
3369 {
3370 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3371 	struct tcp_sock *tp = tcp_sk(sk);
3372 
3373 	/* Optimization, tack on the FIN if we have one skb in write queue and
3374 	 * this skb was not yet sent, or we are under memory pressure.
3375 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3376 	 * as TCP stack thinks it has already been transmitted.
3377 	 */
3378 	tskb = tail;
3379 	if (!tskb && tcp_under_memory_pressure(sk))
3380 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3381 
3382 	if (tskb) {
3383 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3384 		TCP_SKB_CB(tskb)->end_seq++;
3385 		tp->write_seq++;
3386 		if (!tail) {
3387 			/* This means tskb was already sent.
3388 			 * Pretend we included the FIN on previous transmit.
3389 			 * We need to set tp->snd_nxt to the value it would have
3390 			 * if FIN had been sent. This is because retransmit path
3391 			 * does not change tp->snd_nxt.
3392 			 */
3393 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3394 			return;
3395 		}
3396 	} else {
3397 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3398 		if (unlikely(!skb))
3399 			return;
3400 
3401 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3402 		skb_reserve(skb, MAX_TCP_HEADER);
3403 		sk_forced_mem_schedule(sk, skb->truesize);
3404 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3405 		tcp_init_nondata_skb(skb, tp->write_seq,
3406 				     TCPHDR_ACK | TCPHDR_FIN);
3407 		tcp_queue_skb(sk, skb);
3408 	}
3409 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3410 }
3411 
3412 /* We get here when a process closes a file descriptor (either due to
3413  * an explicit close() or as a byproduct of exit()'ing) and there
3414  * was unread data in the receive queue.  This behavior is recommended
3415  * by RFC 2525, section 2.17.  -DaveM
3416  */
3417 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3418 {
3419 	struct sk_buff *skb;
3420 
3421 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3422 
3423 	/* NOTE: No TCP options attached and we never retransmit this. */
3424 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3425 	if (!skb) {
3426 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3427 		return;
3428 	}
3429 
3430 	/* Reserve space for headers and prepare control bits. */
3431 	skb_reserve(skb, MAX_TCP_HEADER);
3432 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3433 			     TCPHDR_ACK | TCPHDR_RST);
3434 	tcp_mstamp_refresh(tcp_sk(sk));
3435 	/* Send it off. */
3436 	if (tcp_transmit_skb(sk, skb, 0, priority))
3437 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3438 
3439 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3440 	 * skb here is different to the troublesome skb, so use NULL
3441 	 */
3442 	trace_tcp_send_reset(sk, NULL);
3443 }
3444 
3445 /* Send a crossed SYN-ACK during socket establishment.
3446  * WARNING: This routine must only be called when we have already sent
3447  * a SYN packet that crossed the incoming SYN that caused this routine
3448  * to get called. If this assumption fails then the initial rcv_wnd
3449  * and rcv_wscale values will not be correct.
3450  */
3451 int tcp_send_synack(struct sock *sk)
3452 {
3453 	struct sk_buff *skb;
3454 
3455 	skb = tcp_rtx_queue_head(sk);
3456 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3457 		pr_err("%s: wrong queue state\n", __func__);
3458 		return -EFAULT;
3459 	}
3460 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3461 		if (skb_cloned(skb)) {
3462 			struct sk_buff *nskb;
3463 
3464 			tcp_skb_tsorted_save(skb) {
3465 				nskb = skb_copy(skb, GFP_ATOMIC);
3466 			} tcp_skb_tsorted_restore(skb);
3467 			if (!nskb)
3468 				return -ENOMEM;
3469 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3470 			tcp_highest_sack_replace(sk, skb, nskb);
3471 			tcp_rtx_queue_unlink_and_free(skb, sk);
3472 			__skb_header_release(nskb);
3473 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3474 			sk_wmem_queued_add(sk, nskb->truesize);
3475 			sk_mem_charge(sk, nskb->truesize);
3476 			skb = nskb;
3477 		}
3478 
3479 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3480 		tcp_ecn_send_synack(sk, skb);
3481 	}
3482 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3483 }
3484 
3485 /**
3486  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3487  * @sk: listener socket
3488  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3489  *       should not use it again.
3490  * @req: request_sock pointer
3491  * @foc: cookie for tcp fast open
3492  * @synack_type: Type of synack to prepare
3493  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3494  */
3495 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3496 				struct request_sock *req,
3497 				struct tcp_fastopen_cookie *foc,
3498 				enum tcp_synack_type synack_type,
3499 				struct sk_buff *syn_skb)
3500 {
3501 	struct inet_request_sock *ireq = inet_rsk(req);
3502 	const struct tcp_sock *tp = tcp_sk(sk);
3503 	struct tcp_md5sig_key *md5 = NULL;
3504 	struct tcp_out_options opts;
3505 	struct sk_buff *skb;
3506 	int tcp_header_size;
3507 	struct tcphdr *th;
3508 	int mss;
3509 	u64 now;
3510 
3511 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3512 	if (unlikely(!skb)) {
3513 		dst_release(dst);
3514 		return NULL;
3515 	}
3516 	/* Reserve space for headers. */
3517 	skb_reserve(skb, MAX_TCP_HEADER);
3518 
3519 	switch (synack_type) {
3520 	case TCP_SYNACK_NORMAL:
3521 		skb_set_owner_w(skb, req_to_sk(req));
3522 		break;
3523 	case TCP_SYNACK_COOKIE:
3524 		/* Under synflood, we do not attach skb to a socket,
3525 		 * to avoid false sharing.
3526 		 */
3527 		break;
3528 	case TCP_SYNACK_FASTOPEN:
3529 		/* sk is a const pointer, because we want to express multiple
3530 		 * cpu might call us concurrently.
3531 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3532 		 */
3533 		skb_set_owner_w(skb, (struct sock *)sk);
3534 		break;
3535 	}
3536 	skb_dst_set(skb, dst);
3537 
3538 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3539 
3540 	memset(&opts, 0, sizeof(opts));
3541 	now = tcp_clock_ns();
3542 #ifdef CONFIG_SYN_COOKIES
3543 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3544 		skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3545 	else
3546 #endif
3547 	{
3548 		skb->skb_mstamp_ns = now;
3549 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3550 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3551 	}
3552 
3553 #ifdef CONFIG_TCP_MD5SIG
3554 	rcu_read_lock();
3555 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3556 #endif
3557 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3558 	/* bpf program will be interested in the tcp_flags */
3559 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3560 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3561 					     foc, synack_type,
3562 					     syn_skb) + sizeof(*th);
3563 
3564 	skb_push(skb, tcp_header_size);
3565 	skb_reset_transport_header(skb);
3566 
3567 	th = (struct tcphdr *)skb->data;
3568 	memset(th, 0, sizeof(struct tcphdr));
3569 	th->syn = 1;
3570 	th->ack = 1;
3571 	tcp_ecn_make_synack(req, th);
3572 	th->source = htons(ireq->ir_num);
3573 	th->dest = ireq->ir_rmt_port;
3574 	skb->mark = ireq->ir_mark;
3575 	skb->ip_summed = CHECKSUM_PARTIAL;
3576 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3577 	/* XXX data is queued and acked as is. No buffer/window check */
3578 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3579 
3580 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3581 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3582 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3583 	th->doff = (tcp_header_size >> 2);
3584 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3585 
3586 #ifdef CONFIG_TCP_MD5SIG
3587 	/* Okay, we have all we need - do the md5 hash if needed */
3588 	if (md5)
3589 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3590 					       md5, req_to_sk(req), skb);
3591 	rcu_read_unlock();
3592 #endif
3593 
3594 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3595 				synack_type, &opts);
3596 
3597 	skb->skb_mstamp_ns = now;
3598 	tcp_add_tx_delay(skb, tp);
3599 
3600 	return skb;
3601 }
3602 EXPORT_SYMBOL(tcp_make_synack);
3603 
3604 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3605 {
3606 	struct inet_connection_sock *icsk = inet_csk(sk);
3607 	const struct tcp_congestion_ops *ca;
3608 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3609 
3610 	if (ca_key == TCP_CA_UNSPEC)
3611 		return;
3612 
3613 	rcu_read_lock();
3614 	ca = tcp_ca_find_key(ca_key);
3615 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3616 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3617 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3618 		icsk->icsk_ca_ops = ca;
3619 	}
3620 	rcu_read_unlock();
3621 }
3622 
3623 /* Do all connect socket setups that can be done AF independent. */
3624 static void tcp_connect_init(struct sock *sk)
3625 {
3626 	const struct dst_entry *dst = __sk_dst_get(sk);
3627 	struct tcp_sock *tp = tcp_sk(sk);
3628 	__u8 rcv_wscale;
3629 	u32 rcv_wnd;
3630 
3631 	/* We'll fix this up when we get a response from the other end.
3632 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3633 	 */
3634 	tp->tcp_header_len = sizeof(struct tcphdr);
3635 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3636 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3637 
3638 #ifdef CONFIG_TCP_MD5SIG
3639 	if (tp->af_specific->md5_lookup(sk, sk))
3640 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3641 #endif
3642 
3643 	/* If user gave his TCP_MAXSEG, record it to clamp */
3644 	if (tp->rx_opt.user_mss)
3645 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3646 	tp->max_window = 0;
3647 	tcp_mtup_init(sk);
3648 	tcp_sync_mss(sk, dst_mtu(dst));
3649 
3650 	tcp_ca_dst_init(sk, dst);
3651 
3652 	if (!tp->window_clamp)
3653 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3654 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3655 
3656 	tcp_initialize_rcv_mss(sk);
3657 
3658 	/* limit the window selection if the user enforce a smaller rx buffer */
3659 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3660 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3661 		tp->window_clamp = tcp_full_space(sk);
3662 
3663 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3664 	if (rcv_wnd == 0)
3665 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3666 
3667 	tcp_select_initial_window(sk, tcp_full_space(sk),
3668 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3669 				  &tp->rcv_wnd,
3670 				  &tp->window_clamp,
3671 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3672 				  &rcv_wscale,
3673 				  rcv_wnd);
3674 
3675 	tp->rx_opt.rcv_wscale = rcv_wscale;
3676 	tp->rcv_ssthresh = tp->rcv_wnd;
3677 
3678 	sk->sk_err = 0;
3679 	sock_reset_flag(sk, SOCK_DONE);
3680 	tp->snd_wnd = 0;
3681 	tcp_init_wl(tp, 0);
3682 	tcp_write_queue_purge(sk);
3683 	tp->snd_una = tp->write_seq;
3684 	tp->snd_sml = tp->write_seq;
3685 	tp->snd_up = tp->write_seq;
3686 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3687 
3688 	if (likely(!tp->repair))
3689 		tp->rcv_nxt = 0;
3690 	else
3691 		tp->rcv_tstamp = tcp_jiffies32;
3692 	tp->rcv_wup = tp->rcv_nxt;
3693 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3694 
3695 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3696 	inet_csk(sk)->icsk_retransmits = 0;
3697 	tcp_clear_retrans(tp);
3698 }
3699 
3700 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3701 {
3702 	struct tcp_sock *tp = tcp_sk(sk);
3703 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3704 
3705 	tcb->end_seq += skb->len;
3706 	__skb_header_release(skb);
3707 	sk_wmem_queued_add(sk, skb->truesize);
3708 	sk_mem_charge(sk, skb->truesize);
3709 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3710 	tp->packets_out += tcp_skb_pcount(skb);
3711 }
3712 
3713 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3714  * queue a data-only packet after the regular SYN, such that regular SYNs
3715  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3716  * only the SYN sequence, the data are retransmitted in the first ACK.
3717  * If cookie is not cached or other error occurs, falls back to send a
3718  * regular SYN with Fast Open cookie request option.
3719  */
3720 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3721 {
3722 	struct tcp_sock *tp = tcp_sk(sk);
3723 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3724 	int space, err = 0;
3725 	struct sk_buff *syn_data;
3726 
3727 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3728 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3729 		goto fallback;
3730 
3731 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3732 	 * user-MSS. Reserve maximum option space for middleboxes that add
3733 	 * private TCP options. The cost is reduced data space in SYN :(
3734 	 */
3735 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3736 
3737 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3738 		MAX_TCP_OPTION_SPACE;
3739 
3740 	space = min_t(size_t, space, fo->size);
3741 
3742 	/* limit to order-0 allocations */
3743 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3744 
3745 	syn_data = tcp_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3746 	if (!syn_data)
3747 		goto fallback;
3748 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3749 	if (space) {
3750 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3751 					    &fo->data->msg_iter);
3752 		if (unlikely(!copied)) {
3753 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3754 			kfree_skb(syn_data);
3755 			goto fallback;
3756 		}
3757 		if (copied != space) {
3758 			skb_trim(syn_data, copied);
3759 			space = copied;
3760 		}
3761 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3762 	}
3763 	/* No more data pending in inet_wait_for_connect() */
3764 	if (space == fo->size)
3765 		fo->data = NULL;
3766 	fo->copied = space;
3767 
3768 	tcp_connect_queue_skb(sk, syn_data);
3769 	if (syn_data->len)
3770 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3771 
3772 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3773 
3774 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3775 
3776 	/* Now full SYN+DATA was cloned and sent (or not),
3777 	 * remove the SYN from the original skb (syn_data)
3778 	 * we keep in write queue in case of a retransmit, as we
3779 	 * also have the SYN packet (with no data) in the same queue.
3780 	 */
3781 	TCP_SKB_CB(syn_data)->seq++;
3782 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3783 	if (!err) {
3784 		tp->syn_data = (fo->copied > 0);
3785 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3786 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3787 		goto done;
3788 	}
3789 
3790 	/* data was not sent, put it in write_queue */
3791 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3792 	tp->packets_out -= tcp_skb_pcount(syn_data);
3793 
3794 fallback:
3795 	/* Send a regular SYN with Fast Open cookie request option */
3796 	if (fo->cookie.len > 0)
3797 		fo->cookie.len = 0;
3798 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3799 	if (err)
3800 		tp->syn_fastopen = 0;
3801 done:
3802 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3803 	return err;
3804 }
3805 
3806 /* Build a SYN and send it off. */
3807 int tcp_connect(struct sock *sk)
3808 {
3809 	struct tcp_sock *tp = tcp_sk(sk);
3810 	struct sk_buff *buff;
3811 	int err;
3812 
3813 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3814 
3815 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3816 		return -EHOSTUNREACH; /* Routing failure or similar. */
3817 
3818 	tcp_connect_init(sk);
3819 
3820 	if (unlikely(tp->repair)) {
3821 		tcp_finish_connect(sk, NULL);
3822 		return 0;
3823 	}
3824 
3825 	buff = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3826 	if (unlikely(!buff))
3827 		return -ENOBUFS;
3828 
3829 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3830 	tcp_mstamp_refresh(tp);
3831 	tp->retrans_stamp = tcp_time_stamp(tp);
3832 	tcp_connect_queue_skb(sk, buff);
3833 	tcp_ecn_send_syn(sk, buff);
3834 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3835 
3836 	/* Send off SYN; include data in Fast Open. */
3837 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3838 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3839 	if (err == -ECONNREFUSED)
3840 		return err;
3841 
3842 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3843 	 * in order to make this packet get counted in tcpOutSegs.
3844 	 */
3845 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3846 	tp->pushed_seq = tp->write_seq;
3847 	buff = tcp_send_head(sk);
3848 	if (unlikely(buff)) {
3849 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3850 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3851 	}
3852 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3853 
3854 	/* Timer for repeating the SYN until an answer. */
3855 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3856 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3857 	return 0;
3858 }
3859 EXPORT_SYMBOL(tcp_connect);
3860 
3861 /* Send out a delayed ack, the caller does the policy checking
3862  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3863  * for details.
3864  */
3865 void tcp_send_delayed_ack(struct sock *sk)
3866 {
3867 	struct inet_connection_sock *icsk = inet_csk(sk);
3868 	int ato = icsk->icsk_ack.ato;
3869 	unsigned long timeout;
3870 
3871 	if (ato > TCP_DELACK_MIN) {
3872 		const struct tcp_sock *tp = tcp_sk(sk);
3873 		int max_ato = HZ / 2;
3874 
3875 		if (inet_csk_in_pingpong_mode(sk) ||
3876 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3877 			max_ato = TCP_DELACK_MAX;
3878 
3879 		/* Slow path, intersegment interval is "high". */
3880 
3881 		/* If some rtt estimate is known, use it to bound delayed ack.
3882 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3883 		 * directly.
3884 		 */
3885 		if (tp->srtt_us) {
3886 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3887 					TCP_DELACK_MIN);
3888 
3889 			if (rtt < max_ato)
3890 				max_ato = rtt;
3891 		}
3892 
3893 		ato = min(ato, max_ato);
3894 	}
3895 
3896 	ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3897 
3898 	/* Stay within the limit we were given */
3899 	timeout = jiffies + ato;
3900 
3901 	/* Use new timeout only if there wasn't a older one earlier. */
3902 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3903 		/* If delack timer is about to expire, send ACK now. */
3904 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3905 			tcp_send_ack(sk);
3906 			return;
3907 		}
3908 
3909 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3910 			timeout = icsk->icsk_ack.timeout;
3911 	}
3912 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3913 	icsk->icsk_ack.timeout = timeout;
3914 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3915 }
3916 
3917 /* This routine sends an ack and also updates the window. */
3918 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3919 {
3920 	struct sk_buff *buff;
3921 
3922 	/* If we have been reset, we may not send again. */
3923 	if (sk->sk_state == TCP_CLOSE)
3924 		return;
3925 
3926 	/* We are not putting this on the write queue, so
3927 	 * tcp_transmit_skb() will set the ownership to this
3928 	 * sock.
3929 	 */
3930 	buff = alloc_skb(MAX_TCP_HEADER,
3931 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3932 	if (unlikely(!buff)) {
3933 		struct inet_connection_sock *icsk = inet_csk(sk);
3934 		unsigned long delay;
3935 
3936 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3937 		if (delay < TCP_RTO_MAX)
3938 			icsk->icsk_ack.retry++;
3939 		inet_csk_schedule_ack(sk);
3940 		icsk->icsk_ack.ato = TCP_ATO_MIN;
3941 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3942 		return;
3943 	}
3944 
3945 	/* Reserve space for headers and prepare control bits. */
3946 	skb_reserve(buff, MAX_TCP_HEADER);
3947 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3948 
3949 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3950 	 * too much.
3951 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3952 	 */
3953 	skb_set_tcp_pure_ack(buff);
3954 
3955 	/* Send it off, this clears delayed acks for us. */
3956 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3957 }
3958 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3959 
3960 void tcp_send_ack(struct sock *sk)
3961 {
3962 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3963 }
3964 
3965 /* This routine sends a packet with an out of date sequence
3966  * number. It assumes the other end will try to ack it.
3967  *
3968  * Question: what should we make while urgent mode?
3969  * 4.4BSD forces sending single byte of data. We cannot send
3970  * out of window data, because we have SND.NXT==SND.MAX...
3971  *
3972  * Current solution: to send TWO zero-length segments in urgent mode:
3973  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3974  * out-of-date with SND.UNA-1 to probe window.
3975  */
3976 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3977 {
3978 	struct tcp_sock *tp = tcp_sk(sk);
3979 	struct sk_buff *skb;
3980 
3981 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3982 	skb = alloc_skb(MAX_TCP_HEADER,
3983 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3984 	if (!skb)
3985 		return -1;
3986 
3987 	/* Reserve space for headers and set control bits. */
3988 	skb_reserve(skb, MAX_TCP_HEADER);
3989 	/* Use a previous sequence.  This should cause the other
3990 	 * end to send an ack.  Don't queue or clone SKB, just
3991 	 * send it.
3992 	 */
3993 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3994 	NET_INC_STATS(sock_net(sk), mib);
3995 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3996 }
3997 
3998 /* Called from setsockopt( ... TCP_REPAIR ) */
3999 void tcp_send_window_probe(struct sock *sk)
4000 {
4001 	if (sk->sk_state == TCP_ESTABLISHED) {
4002 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4003 		tcp_mstamp_refresh(tcp_sk(sk));
4004 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4005 	}
4006 }
4007 
4008 /* Initiate keepalive or window probe from timer. */
4009 int tcp_write_wakeup(struct sock *sk, int mib)
4010 {
4011 	struct tcp_sock *tp = tcp_sk(sk);
4012 	struct sk_buff *skb;
4013 
4014 	if (sk->sk_state == TCP_CLOSE)
4015 		return -1;
4016 
4017 	skb = tcp_send_head(sk);
4018 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4019 		int err;
4020 		unsigned int mss = tcp_current_mss(sk);
4021 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4022 
4023 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4024 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4025 
4026 		/* We are probing the opening of a window
4027 		 * but the window size is != 0
4028 		 * must have been a result SWS avoidance ( sender )
4029 		 */
4030 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4031 		    skb->len > mss) {
4032 			seg_size = min(seg_size, mss);
4033 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4034 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4035 					 skb, seg_size, mss, GFP_ATOMIC))
4036 				return -1;
4037 		} else if (!tcp_skb_pcount(skb))
4038 			tcp_set_skb_tso_segs(skb, mss);
4039 
4040 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4041 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4042 		if (!err)
4043 			tcp_event_new_data_sent(sk, skb);
4044 		return err;
4045 	} else {
4046 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4047 			tcp_xmit_probe_skb(sk, 1, mib);
4048 		return tcp_xmit_probe_skb(sk, 0, mib);
4049 	}
4050 }
4051 
4052 /* A window probe timeout has occurred.  If window is not closed send
4053  * a partial packet else a zero probe.
4054  */
4055 void tcp_send_probe0(struct sock *sk)
4056 {
4057 	struct inet_connection_sock *icsk = inet_csk(sk);
4058 	struct tcp_sock *tp = tcp_sk(sk);
4059 	struct net *net = sock_net(sk);
4060 	unsigned long timeout;
4061 	int err;
4062 
4063 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4064 
4065 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4066 		/* Cancel probe timer, if it is not required. */
4067 		icsk->icsk_probes_out = 0;
4068 		icsk->icsk_backoff = 0;
4069 		icsk->icsk_probes_tstamp = 0;
4070 		return;
4071 	}
4072 
4073 	icsk->icsk_probes_out++;
4074 	if (err <= 0) {
4075 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
4076 			icsk->icsk_backoff++;
4077 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4078 	} else {
4079 		/* If packet was not sent due to local congestion,
4080 		 * Let senders fight for local resources conservatively.
4081 		 */
4082 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4083 	}
4084 
4085 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4086 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4087 }
4088 
4089 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4090 {
4091 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4092 	struct flowi fl;
4093 	int res;
4094 
4095 	tcp_rsk(req)->txhash = net_tx_rndhash();
4096 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4097 				  NULL);
4098 	if (!res) {
4099 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4100 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4101 		if (unlikely(tcp_passive_fastopen(sk)))
4102 			tcp_sk(sk)->total_retrans++;
4103 		trace_tcp_retransmit_synack(sk, req);
4104 	}
4105 	return res;
4106 }
4107 EXPORT_SYMBOL(tcp_rtx_synack);
4108