xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 2d33394e23d63b750dcba40e5feaeba425427b52)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
67 
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 			   int push_one, gfp_t gfp);
70 
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 	struct inet_connection_sock *icsk = inet_csk(sk);
75 	struct tcp_sock *tp = tcp_sk(sk);
76 	unsigned int prior_packets = tp->packets_out;
77 
78 	tcp_advance_send_head(sk, skb);
79 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80 
81 	tp->packets_out += tcp_skb_pcount(skb);
82 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 		tcp_rearm_rto(sk);
85 	}
86 
87 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
88 		      tcp_skb_pcount(skb));
89 }
90 
91 /* SND.NXT, if window was not shrunk.
92  * If window has been shrunk, what should we make? It is not clear at all.
93  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95  * invalid. OK, let's make this for now:
96  */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 	const struct tcp_sock *tp = tcp_sk(sk);
100 
101 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism. */
141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
142 {
143 	struct tcp_sock *tp = tcp_sk(sk);
144 	s32 delta = tcp_time_stamp - tp->lsndtime;
145 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
146 	u32 cwnd = tp->snd_cwnd;
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tp->snd_cwnd = max(cwnd, restart_cwnd);
156 	tp->snd_cwnd_stamp = tcp_time_stamp;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_time_stamp;
166 	const struct dst_entry *dst = __sk_dst_get(sk);
167 
168 	if (sysctl_tcp_slow_start_after_idle &&
169 	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
171 
172 	tp->lsndtime = now;
173 
174 	/* If it is a reply for ato after last received
175 	 * packet, enter pingpong mode.
176 	 */
177 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
178 	    (!dst || !dst_metric(dst, RTAX_QUICKACK)))
179 			icsk->icsk_ack.pingpong = 1;
180 }
181 
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
184 {
185 	tcp_dec_quickack_mode(sk, pkts);
186 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
187 }
188 
189 
190 u32 tcp_default_init_rwnd(u32 mss)
191 {
192 	/* Initial receive window should be twice of TCP_INIT_CWND to
193 	 * enable proper sending of new unsent data during fast recovery
194 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 	 * limit when mss is larger than 1460.
196 	 */
197 	u32 init_rwnd = TCP_INIT_CWND * 2;
198 
199 	if (mss > 1460)
200 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201 	return init_rwnd;
202 }
203 
204 /* Determine a window scaling and initial window to offer.
205  * Based on the assumption that the given amount of space
206  * will be offered. Store the results in the tp structure.
207  * NOTE: for smooth operation initial space offering should
208  * be a multiple of mss if possible. We assume here that mss >= 1.
209  * This MUST be enforced by all callers.
210  */
211 void tcp_select_initial_window(int __space, __u32 mss,
212 			       __u32 *rcv_wnd, __u32 *window_clamp,
213 			       int wscale_ok, __u8 *rcv_wscale,
214 			       __u32 init_rcv_wnd)
215 {
216 	unsigned int space = (__space < 0 ? 0 : __space);
217 
218 	/* If no clamp set the clamp to the max possible scaled window */
219 	if (*window_clamp == 0)
220 		(*window_clamp) = (65535 << 14);
221 	space = min(*window_clamp, space);
222 
223 	/* Quantize space offering to a multiple of mss if possible. */
224 	if (space > mss)
225 		space = (space / mss) * mss;
226 
227 	/* NOTE: offering an initial window larger than 32767
228 	 * will break some buggy TCP stacks. If the admin tells us
229 	 * it is likely we could be speaking with such a buggy stack
230 	 * we will truncate our initial window offering to 32K-1
231 	 * unless the remote has sent us a window scaling option,
232 	 * which we interpret as a sign the remote TCP is not
233 	 * misinterpreting the window field as a signed quantity.
234 	 */
235 	if (sysctl_tcp_workaround_signed_windows)
236 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 	else
238 		(*rcv_wnd) = space;
239 
240 	(*rcv_wscale) = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window
243 		 * See RFC1323 for an explanation of the limit to 14
244 		 */
245 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
246 		space = min_t(u32, space, *window_clamp);
247 		while (space > 65535 && (*rcv_wscale) < 14) {
248 			space >>= 1;
249 			(*rcv_wscale)++;
250 		}
251 	}
252 
253 	if (mss > (1 << *rcv_wscale)) {
254 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
255 			init_rcv_wnd = tcp_default_init_rwnd(mss);
256 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
257 	}
258 
259 	/* Set the clamp no higher than max representable value */
260 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
261 }
262 EXPORT_SYMBOL(tcp_select_initial_window);
263 
264 /* Chose a new window to advertise, update state in tcp_sock for the
265  * socket, and return result with RFC1323 scaling applied.  The return
266  * value can be stuffed directly into th->window for an outgoing
267  * frame.
268  */
269 static u16 tcp_select_window(struct sock *sk)
270 {
271 	struct tcp_sock *tp = tcp_sk(sk);
272 	u32 old_win = tp->rcv_wnd;
273 	u32 cur_win = tcp_receive_window(tp);
274 	u32 new_win = __tcp_select_window(sk);
275 
276 	/* Never shrink the offered window */
277 	if (new_win < cur_win) {
278 		/* Danger Will Robinson!
279 		 * Don't update rcv_wup/rcv_wnd here or else
280 		 * we will not be able to advertise a zero
281 		 * window in time.  --DaveM
282 		 *
283 		 * Relax Will Robinson.
284 		 */
285 		if (new_win == 0)
286 			NET_INC_STATS(sock_net(sk),
287 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
288 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
289 	}
290 	tp->rcv_wnd = new_win;
291 	tp->rcv_wup = tp->rcv_nxt;
292 
293 	/* Make sure we do not exceed the maximum possible
294 	 * scaled window.
295 	 */
296 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
297 		new_win = min(new_win, MAX_TCP_WINDOW);
298 	else
299 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
300 
301 	/* RFC1323 scaling applied */
302 	new_win >>= tp->rx_opt.rcv_wscale;
303 
304 	/* If we advertise zero window, disable fast path. */
305 	if (new_win == 0) {
306 		tp->pred_flags = 0;
307 		if (old_win)
308 			NET_INC_STATS(sock_net(sk),
309 				      LINUX_MIB_TCPTOZEROWINDOWADV);
310 	} else if (old_win == 0) {
311 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
312 	}
313 
314 	return new_win;
315 }
316 
317 /* Packet ECN state for a SYN-ACK */
318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
319 {
320 	const struct tcp_sock *tp = tcp_sk(sk);
321 
322 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
323 	if (!(tp->ecn_flags & TCP_ECN_OK))
324 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
325 	else if (tcp_ca_needs_ecn(sk))
326 		INET_ECN_xmit(sk);
327 }
328 
329 /* Packet ECN state for a SYN.  */
330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
331 {
332 	struct tcp_sock *tp = tcp_sk(sk);
333 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
334 		       tcp_ca_needs_ecn(sk);
335 
336 	if (!use_ecn) {
337 		const struct dst_entry *dst = __sk_dst_get(sk);
338 
339 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340 			use_ecn = true;
341 	}
342 
343 	tp->ecn_flags = 0;
344 
345 	if (use_ecn) {
346 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347 		tp->ecn_flags = TCP_ECN_OK;
348 		if (tcp_ca_needs_ecn(sk))
349 			INET_ECN_xmit(sk);
350 	}
351 }
352 
353 static void
354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th,
355 		    struct sock *sk)
356 {
357 	if (inet_rsk(req)->ecn_ok) {
358 		th->ece = 1;
359 		if (tcp_ca_needs_ecn(sk))
360 			INET_ECN_xmit(sk);
361 	}
362 }
363 
364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365  * be sent.
366  */
367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
368 				int tcp_header_len)
369 {
370 	struct tcp_sock *tp = tcp_sk(sk);
371 
372 	if (tp->ecn_flags & TCP_ECN_OK) {
373 		/* Not-retransmitted data segment: set ECT and inject CWR. */
374 		if (skb->len != tcp_header_len &&
375 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
376 			INET_ECN_xmit(sk);
377 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
378 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
379 				tcp_hdr(skb)->cwr = 1;
380 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381 			}
382 		} else if (!tcp_ca_needs_ecn(sk)) {
383 			/* ACK or retransmitted segment: clear ECT|CE */
384 			INET_ECN_dontxmit(sk);
385 		}
386 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
387 			tcp_hdr(skb)->ece = 1;
388 	}
389 }
390 
391 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
392  * auto increment end seqno.
393  */
394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395 {
396 	struct skb_shared_info *shinfo = skb_shinfo(skb);
397 
398 	skb->ip_summed = CHECKSUM_PARTIAL;
399 	skb->csum = 0;
400 
401 	TCP_SKB_CB(skb)->tcp_flags = flags;
402 	TCP_SKB_CB(skb)->sacked = 0;
403 
404 	tcp_skb_pcount_set(skb, 1);
405 	shinfo->gso_size = 0;
406 	shinfo->gso_type = 0;
407 
408 	TCP_SKB_CB(skb)->seq = seq;
409 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
410 		seq++;
411 	TCP_SKB_CB(skb)->end_seq = seq;
412 }
413 
414 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
415 {
416 	return tp->snd_una != tp->snd_up;
417 }
418 
419 #define OPTION_SACK_ADVERTISE	(1 << 0)
420 #define OPTION_TS		(1 << 1)
421 #define OPTION_MD5		(1 << 2)
422 #define OPTION_WSCALE		(1 << 3)
423 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
424 
425 struct tcp_out_options {
426 	u16 options;		/* bit field of OPTION_* */
427 	u16 mss;		/* 0 to disable */
428 	u8 ws;			/* window scale, 0 to disable */
429 	u8 num_sack_blocks;	/* number of SACK blocks to include */
430 	u8 hash_size;		/* bytes in hash_location */
431 	__u8 *hash_location;	/* temporary pointer, overloaded */
432 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
433 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
434 };
435 
436 /* Write previously computed TCP options to the packet.
437  *
438  * Beware: Something in the Internet is very sensitive to the ordering of
439  * TCP options, we learned this through the hard way, so be careful here.
440  * Luckily we can at least blame others for their non-compliance but from
441  * inter-operability perspective it seems that we're somewhat stuck with
442  * the ordering which we have been using if we want to keep working with
443  * those broken things (not that it currently hurts anybody as there isn't
444  * particular reason why the ordering would need to be changed).
445  *
446  * At least SACK_PERM as the first option is known to lead to a disaster
447  * (but it may well be that other scenarios fail similarly).
448  */
449 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
450 			      struct tcp_out_options *opts)
451 {
452 	u16 options = opts->options;	/* mungable copy */
453 
454 	if (unlikely(OPTION_MD5 & options)) {
455 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
456 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
457 		/* overload cookie hash location */
458 		opts->hash_location = (__u8 *)ptr;
459 		ptr += 4;
460 	}
461 
462 	if (unlikely(opts->mss)) {
463 		*ptr++ = htonl((TCPOPT_MSS << 24) |
464 			       (TCPOLEN_MSS << 16) |
465 			       opts->mss);
466 	}
467 
468 	if (likely(OPTION_TS & options)) {
469 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
470 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
471 				       (TCPOLEN_SACK_PERM << 16) |
472 				       (TCPOPT_TIMESTAMP << 8) |
473 				       TCPOLEN_TIMESTAMP);
474 			options &= ~OPTION_SACK_ADVERTISE;
475 		} else {
476 			*ptr++ = htonl((TCPOPT_NOP << 24) |
477 				       (TCPOPT_NOP << 16) |
478 				       (TCPOPT_TIMESTAMP << 8) |
479 				       TCPOLEN_TIMESTAMP);
480 		}
481 		*ptr++ = htonl(opts->tsval);
482 		*ptr++ = htonl(opts->tsecr);
483 	}
484 
485 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
486 		*ptr++ = htonl((TCPOPT_NOP << 24) |
487 			       (TCPOPT_NOP << 16) |
488 			       (TCPOPT_SACK_PERM << 8) |
489 			       TCPOLEN_SACK_PERM);
490 	}
491 
492 	if (unlikely(OPTION_WSCALE & options)) {
493 		*ptr++ = htonl((TCPOPT_NOP << 24) |
494 			       (TCPOPT_WINDOW << 16) |
495 			       (TCPOLEN_WINDOW << 8) |
496 			       opts->ws);
497 	}
498 
499 	if (unlikely(opts->num_sack_blocks)) {
500 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
501 			tp->duplicate_sack : tp->selective_acks;
502 		int this_sack;
503 
504 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
505 			       (TCPOPT_NOP  << 16) |
506 			       (TCPOPT_SACK <<  8) |
507 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
508 						     TCPOLEN_SACK_PERBLOCK)));
509 
510 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
511 		     ++this_sack) {
512 			*ptr++ = htonl(sp[this_sack].start_seq);
513 			*ptr++ = htonl(sp[this_sack].end_seq);
514 		}
515 
516 		tp->rx_opt.dsack = 0;
517 	}
518 
519 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
520 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
521 
522 		*ptr++ = htonl((TCPOPT_EXP << 24) |
523 			       ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
524 			       TCPOPT_FASTOPEN_MAGIC);
525 
526 		memcpy(ptr, foc->val, foc->len);
527 		if ((foc->len & 3) == 2) {
528 			u8 *align = ((u8 *)ptr) + foc->len;
529 			align[0] = align[1] = TCPOPT_NOP;
530 		}
531 		ptr += (foc->len + 3) >> 2;
532 	}
533 }
534 
535 /* Compute TCP options for SYN packets. This is not the final
536  * network wire format yet.
537  */
538 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
539 				struct tcp_out_options *opts,
540 				struct tcp_md5sig_key **md5)
541 {
542 	struct tcp_sock *tp = tcp_sk(sk);
543 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
544 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
545 
546 #ifdef CONFIG_TCP_MD5SIG
547 	*md5 = tp->af_specific->md5_lookup(sk, sk);
548 	if (*md5) {
549 		opts->options |= OPTION_MD5;
550 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
551 	}
552 #else
553 	*md5 = NULL;
554 #endif
555 
556 	/* We always get an MSS option.  The option bytes which will be seen in
557 	 * normal data packets should timestamps be used, must be in the MSS
558 	 * advertised.  But we subtract them from tp->mss_cache so that
559 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
560 	 * fact here if necessary.  If we don't do this correctly, as a
561 	 * receiver we won't recognize data packets as being full sized when we
562 	 * should, and thus we won't abide by the delayed ACK rules correctly.
563 	 * SACKs don't matter, we never delay an ACK when we have any of those
564 	 * going out.  */
565 	opts->mss = tcp_advertise_mss(sk);
566 	remaining -= TCPOLEN_MSS_ALIGNED;
567 
568 	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
569 		opts->options |= OPTION_TS;
570 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
571 		opts->tsecr = tp->rx_opt.ts_recent;
572 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
573 	}
574 	if (likely(sysctl_tcp_window_scaling)) {
575 		opts->ws = tp->rx_opt.rcv_wscale;
576 		opts->options |= OPTION_WSCALE;
577 		remaining -= TCPOLEN_WSCALE_ALIGNED;
578 	}
579 	if (likely(sysctl_tcp_sack)) {
580 		opts->options |= OPTION_SACK_ADVERTISE;
581 		if (unlikely(!(OPTION_TS & opts->options)))
582 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
583 	}
584 
585 	if (fastopen && fastopen->cookie.len >= 0) {
586 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
587 		need = (need + 3) & ~3U;  /* Align to 32 bits */
588 		if (remaining >= need) {
589 			opts->options |= OPTION_FAST_OPEN_COOKIE;
590 			opts->fastopen_cookie = &fastopen->cookie;
591 			remaining -= need;
592 			tp->syn_fastopen = 1;
593 		}
594 	}
595 
596 	return MAX_TCP_OPTION_SPACE - remaining;
597 }
598 
599 /* Set up TCP options for SYN-ACKs. */
600 static unsigned int tcp_synack_options(struct sock *sk,
601 				   struct request_sock *req,
602 				   unsigned int mss, struct sk_buff *skb,
603 				   struct tcp_out_options *opts,
604 				   struct tcp_md5sig_key **md5,
605 				   struct tcp_fastopen_cookie *foc)
606 {
607 	struct inet_request_sock *ireq = inet_rsk(req);
608 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
609 
610 #ifdef CONFIG_TCP_MD5SIG
611 	*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
612 	if (*md5) {
613 		opts->options |= OPTION_MD5;
614 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
615 
616 		/* We can't fit any SACK blocks in a packet with MD5 + TS
617 		 * options. There was discussion about disabling SACK
618 		 * rather than TS in order to fit in better with old,
619 		 * buggy kernels, but that was deemed to be unnecessary.
620 		 */
621 		ireq->tstamp_ok &= !ireq->sack_ok;
622 	}
623 #else
624 	*md5 = NULL;
625 #endif
626 
627 	/* We always send an MSS option. */
628 	opts->mss = mss;
629 	remaining -= TCPOLEN_MSS_ALIGNED;
630 
631 	if (likely(ireq->wscale_ok)) {
632 		opts->ws = ireq->rcv_wscale;
633 		opts->options |= OPTION_WSCALE;
634 		remaining -= TCPOLEN_WSCALE_ALIGNED;
635 	}
636 	if (likely(ireq->tstamp_ok)) {
637 		opts->options |= OPTION_TS;
638 		opts->tsval = tcp_skb_timestamp(skb);
639 		opts->tsecr = req->ts_recent;
640 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
641 	}
642 	if (likely(ireq->sack_ok)) {
643 		opts->options |= OPTION_SACK_ADVERTISE;
644 		if (unlikely(!ireq->tstamp_ok))
645 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
646 	}
647 	if (foc != NULL && foc->len >= 0) {
648 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
649 		need = (need + 3) & ~3U;  /* Align to 32 bits */
650 		if (remaining >= need) {
651 			opts->options |= OPTION_FAST_OPEN_COOKIE;
652 			opts->fastopen_cookie = foc;
653 			remaining -= need;
654 		}
655 	}
656 
657 	return MAX_TCP_OPTION_SPACE - remaining;
658 }
659 
660 /* Compute TCP options for ESTABLISHED sockets. This is not the
661  * final wire format yet.
662  */
663 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
664 					struct tcp_out_options *opts,
665 					struct tcp_md5sig_key **md5)
666 {
667 	struct tcp_sock *tp = tcp_sk(sk);
668 	unsigned int size = 0;
669 	unsigned int eff_sacks;
670 
671 	opts->options = 0;
672 
673 #ifdef CONFIG_TCP_MD5SIG
674 	*md5 = tp->af_specific->md5_lookup(sk, sk);
675 	if (unlikely(*md5)) {
676 		opts->options |= OPTION_MD5;
677 		size += TCPOLEN_MD5SIG_ALIGNED;
678 	}
679 #else
680 	*md5 = NULL;
681 #endif
682 
683 	if (likely(tp->rx_opt.tstamp_ok)) {
684 		opts->options |= OPTION_TS;
685 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
686 		opts->tsecr = tp->rx_opt.ts_recent;
687 		size += TCPOLEN_TSTAMP_ALIGNED;
688 	}
689 
690 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
691 	if (unlikely(eff_sacks)) {
692 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
693 		opts->num_sack_blocks =
694 			min_t(unsigned int, eff_sacks,
695 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
696 			      TCPOLEN_SACK_PERBLOCK);
697 		size += TCPOLEN_SACK_BASE_ALIGNED +
698 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
699 	}
700 
701 	return size;
702 }
703 
704 
705 /* TCP SMALL QUEUES (TSQ)
706  *
707  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
708  * to reduce RTT and bufferbloat.
709  * We do this using a special skb destructor (tcp_wfree).
710  *
711  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
712  * needs to be reallocated in a driver.
713  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
714  *
715  * Since transmit from skb destructor is forbidden, we use a tasklet
716  * to process all sockets that eventually need to send more skbs.
717  * We use one tasklet per cpu, with its own queue of sockets.
718  */
719 struct tsq_tasklet {
720 	struct tasklet_struct	tasklet;
721 	struct list_head	head; /* queue of tcp sockets */
722 };
723 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
724 
725 static void tcp_tsq_handler(struct sock *sk)
726 {
727 	if ((1 << sk->sk_state) &
728 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
729 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
730 		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
731 			       0, GFP_ATOMIC);
732 }
733 /*
734  * One tasklet per cpu tries to send more skbs.
735  * We run in tasklet context but need to disable irqs when
736  * transferring tsq->head because tcp_wfree() might
737  * interrupt us (non NAPI drivers)
738  */
739 static void tcp_tasklet_func(unsigned long data)
740 {
741 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
742 	LIST_HEAD(list);
743 	unsigned long flags;
744 	struct list_head *q, *n;
745 	struct tcp_sock *tp;
746 	struct sock *sk;
747 
748 	local_irq_save(flags);
749 	list_splice_init(&tsq->head, &list);
750 	local_irq_restore(flags);
751 
752 	list_for_each_safe(q, n, &list) {
753 		tp = list_entry(q, struct tcp_sock, tsq_node);
754 		list_del(&tp->tsq_node);
755 
756 		sk = (struct sock *)tp;
757 		bh_lock_sock(sk);
758 
759 		if (!sock_owned_by_user(sk)) {
760 			tcp_tsq_handler(sk);
761 		} else {
762 			/* defer the work to tcp_release_cb() */
763 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
764 		}
765 		bh_unlock_sock(sk);
766 
767 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
768 		sk_free(sk);
769 	}
770 }
771 
772 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
773 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
774 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
775 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
776 /**
777  * tcp_release_cb - tcp release_sock() callback
778  * @sk: socket
779  *
780  * called from release_sock() to perform protocol dependent
781  * actions before socket release.
782  */
783 void tcp_release_cb(struct sock *sk)
784 {
785 	struct tcp_sock *tp = tcp_sk(sk);
786 	unsigned long flags, nflags;
787 
788 	/* perform an atomic operation only if at least one flag is set */
789 	do {
790 		flags = tp->tsq_flags;
791 		if (!(flags & TCP_DEFERRED_ALL))
792 			return;
793 		nflags = flags & ~TCP_DEFERRED_ALL;
794 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
795 
796 	if (flags & (1UL << TCP_TSQ_DEFERRED))
797 		tcp_tsq_handler(sk);
798 
799 	/* Here begins the tricky part :
800 	 * We are called from release_sock() with :
801 	 * 1) BH disabled
802 	 * 2) sk_lock.slock spinlock held
803 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
804 	 *
805 	 * But following code is meant to be called from BH handlers,
806 	 * so we should keep BH disabled, but early release socket ownership
807 	 */
808 	sock_release_ownership(sk);
809 
810 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
811 		tcp_write_timer_handler(sk);
812 		__sock_put(sk);
813 	}
814 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
815 		tcp_delack_timer_handler(sk);
816 		__sock_put(sk);
817 	}
818 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
819 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
820 		__sock_put(sk);
821 	}
822 }
823 EXPORT_SYMBOL(tcp_release_cb);
824 
825 void __init tcp_tasklet_init(void)
826 {
827 	int i;
828 
829 	for_each_possible_cpu(i) {
830 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
831 
832 		INIT_LIST_HEAD(&tsq->head);
833 		tasklet_init(&tsq->tasklet,
834 			     tcp_tasklet_func,
835 			     (unsigned long)tsq);
836 	}
837 }
838 
839 /*
840  * Write buffer destructor automatically called from kfree_skb.
841  * We can't xmit new skbs from this context, as we might already
842  * hold qdisc lock.
843  */
844 void tcp_wfree(struct sk_buff *skb)
845 {
846 	struct sock *sk = skb->sk;
847 	struct tcp_sock *tp = tcp_sk(sk);
848 	int wmem;
849 
850 	/* Keep one reference on sk_wmem_alloc.
851 	 * Will be released by sk_free() from here or tcp_tasklet_func()
852 	 */
853 	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
854 
855 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
856 	 * Wait until our queues (qdisc + devices) are drained.
857 	 * This gives :
858 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
859 	 * - chance for incoming ACK (processed by another cpu maybe)
860 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
861 	 */
862 	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
863 		goto out;
864 
865 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
866 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
867 		unsigned long flags;
868 		struct tsq_tasklet *tsq;
869 
870 		/* queue this socket to tasklet queue */
871 		local_irq_save(flags);
872 		tsq = this_cpu_ptr(&tsq_tasklet);
873 		list_add(&tp->tsq_node, &tsq->head);
874 		tasklet_schedule(&tsq->tasklet);
875 		local_irq_restore(flags);
876 		return;
877 	}
878 out:
879 	sk_free(sk);
880 }
881 
882 /* This routine actually transmits TCP packets queued in by
883  * tcp_do_sendmsg().  This is used by both the initial
884  * transmission and possible later retransmissions.
885  * All SKB's seen here are completely headerless.  It is our
886  * job to build the TCP header, and pass the packet down to
887  * IP so it can do the same plus pass the packet off to the
888  * device.
889  *
890  * We are working here with either a clone of the original
891  * SKB, or a fresh unique copy made by the retransmit engine.
892  */
893 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
894 			    gfp_t gfp_mask)
895 {
896 	const struct inet_connection_sock *icsk = inet_csk(sk);
897 	struct inet_sock *inet;
898 	struct tcp_sock *tp;
899 	struct tcp_skb_cb *tcb;
900 	struct tcp_out_options opts;
901 	unsigned int tcp_options_size, tcp_header_size;
902 	struct tcp_md5sig_key *md5;
903 	struct tcphdr *th;
904 	int err;
905 
906 	BUG_ON(!skb || !tcp_skb_pcount(skb));
907 
908 	if (clone_it) {
909 		skb_mstamp_get(&skb->skb_mstamp);
910 
911 		if (unlikely(skb_cloned(skb)))
912 			skb = pskb_copy(skb, gfp_mask);
913 		else
914 			skb = skb_clone(skb, gfp_mask);
915 		if (unlikely(!skb))
916 			return -ENOBUFS;
917 	}
918 
919 	inet = inet_sk(sk);
920 	tp = tcp_sk(sk);
921 	tcb = TCP_SKB_CB(skb);
922 	memset(&opts, 0, sizeof(opts));
923 
924 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
925 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
926 	else
927 		tcp_options_size = tcp_established_options(sk, skb, &opts,
928 							   &md5);
929 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
930 
931 	if (tcp_packets_in_flight(tp) == 0)
932 		tcp_ca_event(sk, CA_EVENT_TX_START);
933 
934 	/* if no packet is in qdisc/device queue, then allow XPS to select
935 	 * another queue. We can be called from tcp_tsq_handler()
936 	 * which holds one reference to sk_wmem_alloc.
937 	 *
938 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
939 	 * One way to get this would be to set skb->truesize = 2 on them.
940 	 */
941 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
942 
943 	skb_push(skb, tcp_header_size);
944 	skb_reset_transport_header(skb);
945 
946 	skb_orphan(skb);
947 	skb->sk = sk;
948 	skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
949 	skb_set_hash_from_sk(skb, sk);
950 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
951 
952 	/* Build TCP header and checksum it. */
953 	th = tcp_hdr(skb);
954 	th->source		= inet->inet_sport;
955 	th->dest		= inet->inet_dport;
956 	th->seq			= htonl(tcb->seq);
957 	th->ack_seq		= htonl(tp->rcv_nxt);
958 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
959 					tcb->tcp_flags);
960 
961 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
962 		/* RFC1323: The window in SYN & SYN/ACK segments
963 		 * is never scaled.
964 		 */
965 		th->window	= htons(min(tp->rcv_wnd, 65535U));
966 	} else {
967 		th->window	= htons(tcp_select_window(sk));
968 	}
969 	th->check		= 0;
970 	th->urg_ptr		= 0;
971 
972 	/* The urg_mode check is necessary during a below snd_una win probe */
973 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
974 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
975 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
976 			th->urg = 1;
977 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
978 			th->urg_ptr = htons(0xFFFF);
979 			th->urg = 1;
980 		}
981 	}
982 
983 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
984 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
985 		tcp_ecn_send(sk, skb, tcp_header_size);
986 
987 #ifdef CONFIG_TCP_MD5SIG
988 	/* Calculate the MD5 hash, as we have all we need now */
989 	if (md5) {
990 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
991 		tp->af_specific->calc_md5_hash(opts.hash_location,
992 					       md5, sk, NULL, skb);
993 	}
994 #endif
995 
996 	icsk->icsk_af_ops->send_check(sk, skb);
997 
998 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
999 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1000 
1001 	if (skb->len != tcp_header_size)
1002 		tcp_event_data_sent(tp, sk);
1003 
1004 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1005 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1006 			      tcp_skb_pcount(skb));
1007 
1008 	/* OK, its time to fill skb_shinfo(skb)->gso_segs */
1009 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1010 
1011 	/* Our usage of tstamp should remain private */
1012 	skb->tstamp.tv64 = 0;
1013 
1014 	/* Cleanup our debris for IP stacks */
1015 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1016 			       sizeof(struct inet6_skb_parm)));
1017 
1018 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1019 
1020 	if (likely(err <= 0))
1021 		return err;
1022 
1023 	tcp_enter_cwr(sk);
1024 
1025 	return net_xmit_eval(err);
1026 }
1027 
1028 /* This routine just queues the buffer for sending.
1029  *
1030  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1031  * otherwise socket can stall.
1032  */
1033 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1034 {
1035 	struct tcp_sock *tp = tcp_sk(sk);
1036 
1037 	/* Advance write_seq and place onto the write_queue. */
1038 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1039 	__skb_header_release(skb);
1040 	tcp_add_write_queue_tail(sk, skb);
1041 	sk->sk_wmem_queued += skb->truesize;
1042 	sk_mem_charge(sk, skb->truesize);
1043 }
1044 
1045 /* Initialize TSO segments for a packet. */
1046 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1047 				 unsigned int mss_now)
1048 {
1049 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1050 
1051 	/* Make sure we own this skb before messing gso_size/gso_segs */
1052 	WARN_ON_ONCE(skb_cloned(skb));
1053 
1054 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1055 		/* Avoid the costly divide in the normal
1056 		 * non-TSO case.
1057 		 */
1058 		tcp_skb_pcount_set(skb, 1);
1059 		shinfo->gso_size = 0;
1060 		shinfo->gso_type = 0;
1061 	} else {
1062 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1063 		shinfo->gso_size = mss_now;
1064 		shinfo->gso_type = sk->sk_gso_type;
1065 	}
1066 }
1067 
1068 /* When a modification to fackets out becomes necessary, we need to check
1069  * skb is counted to fackets_out or not.
1070  */
1071 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1072 				   int decr)
1073 {
1074 	struct tcp_sock *tp = tcp_sk(sk);
1075 
1076 	if (!tp->sacked_out || tcp_is_reno(tp))
1077 		return;
1078 
1079 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1080 		tp->fackets_out -= decr;
1081 }
1082 
1083 /* Pcount in the middle of the write queue got changed, we need to do various
1084  * tweaks to fix counters
1085  */
1086 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1087 {
1088 	struct tcp_sock *tp = tcp_sk(sk);
1089 
1090 	tp->packets_out -= decr;
1091 
1092 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1093 		tp->sacked_out -= decr;
1094 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1095 		tp->retrans_out -= decr;
1096 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1097 		tp->lost_out -= decr;
1098 
1099 	/* Reno case is special. Sigh... */
1100 	if (tcp_is_reno(tp) && decr > 0)
1101 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1102 
1103 	tcp_adjust_fackets_out(sk, skb, decr);
1104 
1105 	if (tp->lost_skb_hint &&
1106 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1107 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1108 		tp->lost_cnt_hint -= decr;
1109 
1110 	tcp_verify_left_out(tp);
1111 }
1112 
1113 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1114 {
1115 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1116 
1117 	if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1118 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1119 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1120 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1121 
1122 		shinfo->tx_flags &= ~tsflags;
1123 		shinfo2->tx_flags |= tsflags;
1124 		swap(shinfo->tskey, shinfo2->tskey);
1125 	}
1126 }
1127 
1128 /* Function to create two new TCP segments.  Shrinks the given segment
1129  * to the specified size and appends a new segment with the rest of the
1130  * packet to the list.  This won't be called frequently, I hope.
1131  * Remember, these are still headerless SKBs at this point.
1132  */
1133 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1134 		 unsigned int mss_now, gfp_t gfp)
1135 {
1136 	struct tcp_sock *tp = tcp_sk(sk);
1137 	struct sk_buff *buff;
1138 	int nsize, old_factor;
1139 	int nlen;
1140 	u8 flags;
1141 
1142 	if (WARN_ON(len > skb->len))
1143 		return -EINVAL;
1144 
1145 	nsize = skb_headlen(skb) - len;
1146 	if (nsize < 0)
1147 		nsize = 0;
1148 
1149 	if (skb_unclone(skb, gfp))
1150 		return -ENOMEM;
1151 
1152 	/* Get a new skb... force flag on. */
1153 	buff = sk_stream_alloc_skb(sk, nsize, gfp);
1154 	if (buff == NULL)
1155 		return -ENOMEM; /* We'll just try again later. */
1156 
1157 	sk->sk_wmem_queued += buff->truesize;
1158 	sk_mem_charge(sk, buff->truesize);
1159 	nlen = skb->len - len - nsize;
1160 	buff->truesize += nlen;
1161 	skb->truesize -= nlen;
1162 
1163 	/* Correct the sequence numbers. */
1164 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1165 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1166 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1167 
1168 	/* PSH and FIN should only be set in the second packet. */
1169 	flags = TCP_SKB_CB(skb)->tcp_flags;
1170 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1171 	TCP_SKB_CB(buff)->tcp_flags = flags;
1172 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1173 
1174 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1175 		/* Copy and checksum data tail into the new buffer. */
1176 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1177 						       skb_put(buff, nsize),
1178 						       nsize, 0);
1179 
1180 		skb_trim(skb, len);
1181 
1182 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1183 	} else {
1184 		skb->ip_summed = CHECKSUM_PARTIAL;
1185 		skb_split(skb, buff, len);
1186 	}
1187 
1188 	buff->ip_summed = skb->ip_summed;
1189 
1190 	buff->tstamp = skb->tstamp;
1191 	tcp_fragment_tstamp(skb, buff);
1192 
1193 	old_factor = tcp_skb_pcount(skb);
1194 
1195 	/* Fix up tso_factor for both original and new SKB.  */
1196 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1197 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1198 
1199 	/* If this packet has been sent out already, we must
1200 	 * adjust the various packet counters.
1201 	 */
1202 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1203 		int diff = old_factor - tcp_skb_pcount(skb) -
1204 			tcp_skb_pcount(buff);
1205 
1206 		if (diff)
1207 			tcp_adjust_pcount(sk, skb, diff);
1208 	}
1209 
1210 	/* Link BUFF into the send queue. */
1211 	__skb_header_release(buff);
1212 	tcp_insert_write_queue_after(skb, buff, sk);
1213 
1214 	return 0;
1215 }
1216 
1217 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1218  * eventually). The difference is that pulled data not copied, but
1219  * immediately discarded.
1220  */
1221 static void __pskb_trim_head(struct sk_buff *skb, int len)
1222 {
1223 	struct skb_shared_info *shinfo;
1224 	int i, k, eat;
1225 
1226 	eat = min_t(int, len, skb_headlen(skb));
1227 	if (eat) {
1228 		__skb_pull(skb, eat);
1229 		len -= eat;
1230 		if (!len)
1231 			return;
1232 	}
1233 	eat = len;
1234 	k = 0;
1235 	shinfo = skb_shinfo(skb);
1236 	for (i = 0; i < shinfo->nr_frags; i++) {
1237 		int size = skb_frag_size(&shinfo->frags[i]);
1238 
1239 		if (size <= eat) {
1240 			skb_frag_unref(skb, i);
1241 			eat -= size;
1242 		} else {
1243 			shinfo->frags[k] = shinfo->frags[i];
1244 			if (eat) {
1245 				shinfo->frags[k].page_offset += eat;
1246 				skb_frag_size_sub(&shinfo->frags[k], eat);
1247 				eat = 0;
1248 			}
1249 			k++;
1250 		}
1251 	}
1252 	shinfo->nr_frags = k;
1253 
1254 	skb_reset_tail_pointer(skb);
1255 	skb->data_len -= len;
1256 	skb->len = skb->data_len;
1257 }
1258 
1259 /* Remove acked data from a packet in the transmit queue. */
1260 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1261 {
1262 	if (skb_unclone(skb, GFP_ATOMIC))
1263 		return -ENOMEM;
1264 
1265 	__pskb_trim_head(skb, len);
1266 
1267 	TCP_SKB_CB(skb)->seq += len;
1268 	skb->ip_summed = CHECKSUM_PARTIAL;
1269 
1270 	skb->truesize	     -= len;
1271 	sk->sk_wmem_queued   -= len;
1272 	sk_mem_uncharge(sk, len);
1273 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1274 
1275 	/* Any change of skb->len requires recalculation of tso factor. */
1276 	if (tcp_skb_pcount(skb) > 1)
1277 		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1278 
1279 	return 0;
1280 }
1281 
1282 /* Calculate MSS not accounting any TCP options.  */
1283 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1284 {
1285 	const struct tcp_sock *tp = tcp_sk(sk);
1286 	const struct inet_connection_sock *icsk = inet_csk(sk);
1287 	int mss_now;
1288 
1289 	/* Calculate base mss without TCP options:
1290 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1291 	 */
1292 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1293 
1294 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1295 	if (icsk->icsk_af_ops->net_frag_header_len) {
1296 		const struct dst_entry *dst = __sk_dst_get(sk);
1297 
1298 		if (dst && dst_allfrag(dst))
1299 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1300 	}
1301 
1302 	/* Clamp it (mss_clamp does not include tcp options) */
1303 	if (mss_now > tp->rx_opt.mss_clamp)
1304 		mss_now = tp->rx_opt.mss_clamp;
1305 
1306 	/* Now subtract optional transport overhead */
1307 	mss_now -= icsk->icsk_ext_hdr_len;
1308 
1309 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1310 	if (mss_now < 48)
1311 		mss_now = 48;
1312 	return mss_now;
1313 }
1314 
1315 /* Calculate MSS. Not accounting for SACKs here.  */
1316 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1317 {
1318 	/* Subtract TCP options size, not including SACKs */
1319 	return __tcp_mtu_to_mss(sk, pmtu) -
1320 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1321 }
1322 
1323 /* Inverse of above */
1324 int tcp_mss_to_mtu(struct sock *sk, int mss)
1325 {
1326 	const struct tcp_sock *tp = tcp_sk(sk);
1327 	const struct inet_connection_sock *icsk = inet_csk(sk);
1328 	int mtu;
1329 
1330 	mtu = mss +
1331 	      tp->tcp_header_len +
1332 	      icsk->icsk_ext_hdr_len +
1333 	      icsk->icsk_af_ops->net_header_len;
1334 
1335 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1336 	if (icsk->icsk_af_ops->net_frag_header_len) {
1337 		const struct dst_entry *dst = __sk_dst_get(sk);
1338 
1339 		if (dst && dst_allfrag(dst))
1340 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1341 	}
1342 	return mtu;
1343 }
1344 
1345 /* MTU probing init per socket */
1346 void tcp_mtup_init(struct sock *sk)
1347 {
1348 	struct tcp_sock *tp = tcp_sk(sk);
1349 	struct inet_connection_sock *icsk = inet_csk(sk);
1350 	struct net *net = sock_net(sk);
1351 
1352 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1353 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1354 			       icsk->icsk_af_ops->net_header_len;
1355 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1356 	icsk->icsk_mtup.probe_size = 0;
1357 	if (icsk->icsk_mtup.enabled)
1358 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1359 }
1360 EXPORT_SYMBOL(tcp_mtup_init);
1361 
1362 /* This function synchronize snd mss to current pmtu/exthdr set.
1363 
1364    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1365    for TCP options, but includes only bare TCP header.
1366 
1367    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1368    It is minimum of user_mss and mss received with SYN.
1369    It also does not include TCP options.
1370 
1371    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1372 
1373    tp->mss_cache is current effective sending mss, including
1374    all tcp options except for SACKs. It is evaluated,
1375    taking into account current pmtu, but never exceeds
1376    tp->rx_opt.mss_clamp.
1377 
1378    NOTE1. rfc1122 clearly states that advertised MSS
1379    DOES NOT include either tcp or ip options.
1380 
1381    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1382    are READ ONLY outside this function.		--ANK (980731)
1383  */
1384 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1385 {
1386 	struct tcp_sock *tp = tcp_sk(sk);
1387 	struct inet_connection_sock *icsk = inet_csk(sk);
1388 	int mss_now;
1389 
1390 	if (icsk->icsk_mtup.search_high > pmtu)
1391 		icsk->icsk_mtup.search_high = pmtu;
1392 
1393 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1394 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1395 
1396 	/* And store cached results */
1397 	icsk->icsk_pmtu_cookie = pmtu;
1398 	if (icsk->icsk_mtup.enabled)
1399 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1400 	tp->mss_cache = mss_now;
1401 
1402 	return mss_now;
1403 }
1404 EXPORT_SYMBOL(tcp_sync_mss);
1405 
1406 /* Compute the current effective MSS, taking SACKs and IP options,
1407  * and even PMTU discovery events into account.
1408  */
1409 unsigned int tcp_current_mss(struct sock *sk)
1410 {
1411 	const struct tcp_sock *tp = tcp_sk(sk);
1412 	const struct dst_entry *dst = __sk_dst_get(sk);
1413 	u32 mss_now;
1414 	unsigned int header_len;
1415 	struct tcp_out_options opts;
1416 	struct tcp_md5sig_key *md5;
1417 
1418 	mss_now = tp->mss_cache;
1419 
1420 	if (dst) {
1421 		u32 mtu = dst_mtu(dst);
1422 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1423 			mss_now = tcp_sync_mss(sk, mtu);
1424 	}
1425 
1426 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1427 		     sizeof(struct tcphdr);
1428 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1429 	 * some common options. If this is an odd packet (because we have SACK
1430 	 * blocks etc) then our calculated header_len will be different, and
1431 	 * we have to adjust mss_now correspondingly */
1432 	if (header_len != tp->tcp_header_len) {
1433 		int delta = (int) header_len - tp->tcp_header_len;
1434 		mss_now -= delta;
1435 	}
1436 
1437 	return mss_now;
1438 }
1439 
1440 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1441  * As additional protections, we do not touch cwnd in retransmission phases,
1442  * and if application hit its sndbuf limit recently.
1443  */
1444 static void tcp_cwnd_application_limited(struct sock *sk)
1445 {
1446 	struct tcp_sock *tp = tcp_sk(sk);
1447 
1448 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1449 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1450 		/* Limited by application or receiver window. */
1451 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1452 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1453 		if (win_used < tp->snd_cwnd) {
1454 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1455 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1456 		}
1457 		tp->snd_cwnd_used = 0;
1458 	}
1459 	tp->snd_cwnd_stamp = tcp_time_stamp;
1460 }
1461 
1462 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1463 {
1464 	struct tcp_sock *tp = tcp_sk(sk);
1465 
1466 	/* Track the maximum number of outstanding packets in each
1467 	 * window, and remember whether we were cwnd-limited then.
1468 	 */
1469 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1470 	    tp->packets_out > tp->max_packets_out) {
1471 		tp->max_packets_out = tp->packets_out;
1472 		tp->max_packets_seq = tp->snd_nxt;
1473 		tp->is_cwnd_limited = is_cwnd_limited;
1474 	}
1475 
1476 	if (tcp_is_cwnd_limited(sk)) {
1477 		/* Network is feed fully. */
1478 		tp->snd_cwnd_used = 0;
1479 		tp->snd_cwnd_stamp = tcp_time_stamp;
1480 	} else {
1481 		/* Network starves. */
1482 		if (tp->packets_out > tp->snd_cwnd_used)
1483 			tp->snd_cwnd_used = tp->packets_out;
1484 
1485 		if (sysctl_tcp_slow_start_after_idle &&
1486 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1487 			tcp_cwnd_application_limited(sk);
1488 	}
1489 }
1490 
1491 /* Minshall's variant of the Nagle send check. */
1492 static bool tcp_minshall_check(const struct tcp_sock *tp)
1493 {
1494 	return after(tp->snd_sml, tp->snd_una) &&
1495 		!after(tp->snd_sml, tp->snd_nxt);
1496 }
1497 
1498 /* Update snd_sml if this skb is under mss
1499  * Note that a TSO packet might end with a sub-mss segment
1500  * The test is really :
1501  * if ((skb->len % mss) != 0)
1502  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1503  * But we can avoid doing the divide again given we already have
1504  *  skb_pcount = skb->len / mss_now
1505  */
1506 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1507 				const struct sk_buff *skb)
1508 {
1509 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1510 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1511 }
1512 
1513 /* Return false, if packet can be sent now without violation Nagle's rules:
1514  * 1. It is full sized. (provided by caller in %partial bool)
1515  * 2. Or it contains FIN. (already checked by caller)
1516  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1517  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1518  *    With Minshall's modification: all sent small packets are ACKed.
1519  */
1520 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1521 			    int nonagle)
1522 {
1523 	return partial &&
1524 		((nonagle & TCP_NAGLE_CORK) ||
1525 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1526 }
1527 
1528 /* Return how many segs we'd like on a TSO packet,
1529  * to send one TSO packet per ms
1530  */
1531 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1532 {
1533 	u32 bytes, segs;
1534 
1535 	bytes = min(sk->sk_pacing_rate >> 10,
1536 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1537 
1538 	/* Goal is to send at least one packet per ms,
1539 	 * not one big TSO packet every 100 ms.
1540 	 * This preserves ACK clocking and is consistent
1541 	 * with tcp_tso_should_defer() heuristic.
1542 	 */
1543 	segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1544 
1545 	return min_t(u32, segs, sk->sk_gso_max_segs);
1546 }
1547 
1548 /* Returns the portion of skb which can be sent right away */
1549 static unsigned int tcp_mss_split_point(const struct sock *sk,
1550 					const struct sk_buff *skb,
1551 					unsigned int mss_now,
1552 					unsigned int max_segs,
1553 					int nonagle)
1554 {
1555 	const struct tcp_sock *tp = tcp_sk(sk);
1556 	u32 partial, needed, window, max_len;
1557 
1558 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1559 	max_len = mss_now * max_segs;
1560 
1561 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1562 		return max_len;
1563 
1564 	needed = min(skb->len, window);
1565 
1566 	if (max_len <= needed)
1567 		return max_len;
1568 
1569 	partial = needed % mss_now;
1570 	/* If last segment is not a full MSS, check if Nagle rules allow us
1571 	 * to include this last segment in this skb.
1572 	 * Otherwise, we'll split the skb at last MSS boundary
1573 	 */
1574 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1575 		return needed - partial;
1576 
1577 	return needed;
1578 }
1579 
1580 /* Can at least one segment of SKB be sent right now, according to the
1581  * congestion window rules?  If so, return how many segments are allowed.
1582  */
1583 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1584 					 const struct sk_buff *skb)
1585 {
1586 	u32 in_flight, cwnd, halfcwnd;
1587 
1588 	/* Don't be strict about the congestion window for the final FIN.  */
1589 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1590 	    tcp_skb_pcount(skb) == 1)
1591 		return 1;
1592 
1593 	in_flight = tcp_packets_in_flight(tp);
1594 	cwnd = tp->snd_cwnd;
1595 	if (in_flight >= cwnd)
1596 		return 0;
1597 
1598 	/* For better scheduling, ensure we have at least
1599 	 * 2 GSO packets in flight.
1600 	 */
1601 	halfcwnd = max(cwnd >> 1, 1U);
1602 	return min(halfcwnd, cwnd - in_flight);
1603 }
1604 
1605 /* Initialize TSO state of a skb.
1606  * This must be invoked the first time we consider transmitting
1607  * SKB onto the wire.
1608  */
1609 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1610 			     unsigned int mss_now)
1611 {
1612 	int tso_segs = tcp_skb_pcount(skb);
1613 
1614 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1615 		tcp_set_skb_tso_segs(sk, skb, mss_now);
1616 		tso_segs = tcp_skb_pcount(skb);
1617 	}
1618 	return tso_segs;
1619 }
1620 
1621 
1622 /* Return true if the Nagle test allows this packet to be
1623  * sent now.
1624  */
1625 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1626 				  unsigned int cur_mss, int nonagle)
1627 {
1628 	/* Nagle rule does not apply to frames, which sit in the middle of the
1629 	 * write_queue (they have no chances to get new data).
1630 	 *
1631 	 * This is implemented in the callers, where they modify the 'nonagle'
1632 	 * argument based upon the location of SKB in the send queue.
1633 	 */
1634 	if (nonagle & TCP_NAGLE_PUSH)
1635 		return true;
1636 
1637 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1638 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1639 		return true;
1640 
1641 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1642 		return true;
1643 
1644 	return false;
1645 }
1646 
1647 /* Does at least the first segment of SKB fit into the send window? */
1648 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1649 			     const struct sk_buff *skb,
1650 			     unsigned int cur_mss)
1651 {
1652 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1653 
1654 	if (skb->len > cur_mss)
1655 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1656 
1657 	return !after(end_seq, tcp_wnd_end(tp));
1658 }
1659 
1660 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1661  * should be put on the wire right now.  If so, it returns the number of
1662  * packets allowed by the congestion window.
1663  */
1664 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1665 				 unsigned int cur_mss, int nonagle)
1666 {
1667 	const struct tcp_sock *tp = tcp_sk(sk);
1668 	unsigned int cwnd_quota;
1669 
1670 	tcp_init_tso_segs(sk, skb, cur_mss);
1671 
1672 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1673 		return 0;
1674 
1675 	cwnd_quota = tcp_cwnd_test(tp, skb);
1676 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1677 		cwnd_quota = 0;
1678 
1679 	return cwnd_quota;
1680 }
1681 
1682 /* Test if sending is allowed right now. */
1683 bool tcp_may_send_now(struct sock *sk)
1684 {
1685 	const struct tcp_sock *tp = tcp_sk(sk);
1686 	struct sk_buff *skb = tcp_send_head(sk);
1687 
1688 	return skb &&
1689 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1690 			     (tcp_skb_is_last(sk, skb) ?
1691 			      tp->nonagle : TCP_NAGLE_PUSH));
1692 }
1693 
1694 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1695  * which is put after SKB on the list.  It is very much like
1696  * tcp_fragment() except that it may make several kinds of assumptions
1697  * in order to speed up the splitting operation.  In particular, we
1698  * know that all the data is in scatter-gather pages, and that the
1699  * packet has never been sent out before (and thus is not cloned).
1700  */
1701 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1702 			unsigned int mss_now, gfp_t gfp)
1703 {
1704 	struct sk_buff *buff;
1705 	int nlen = skb->len - len;
1706 	u8 flags;
1707 
1708 	/* All of a TSO frame must be composed of paged data.  */
1709 	if (skb->len != skb->data_len)
1710 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1711 
1712 	buff = sk_stream_alloc_skb(sk, 0, gfp);
1713 	if (unlikely(buff == NULL))
1714 		return -ENOMEM;
1715 
1716 	sk->sk_wmem_queued += buff->truesize;
1717 	sk_mem_charge(sk, buff->truesize);
1718 	buff->truesize += nlen;
1719 	skb->truesize -= nlen;
1720 
1721 	/* Correct the sequence numbers. */
1722 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1723 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1724 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1725 
1726 	/* PSH and FIN should only be set in the second packet. */
1727 	flags = TCP_SKB_CB(skb)->tcp_flags;
1728 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1729 	TCP_SKB_CB(buff)->tcp_flags = flags;
1730 
1731 	/* This packet was never sent out yet, so no SACK bits. */
1732 	TCP_SKB_CB(buff)->sacked = 0;
1733 
1734 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1735 	skb_split(skb, buff, len);
1736 	tcp_fragment_tstamp(skb, buff);
1737 
1738 	/* Fix up tso_factor for both original and new SKB.  */
1739 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1740 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1741 
1742 	/* Link BUFF into the send queue. */
1743 	__skb_header_release(buff);
1744 	tcp_insert_write_queue_after(skb, buff, sk);
1745 
1746 	return 0;
1747 }
1748 
1749 /* Try to defer sending, if possible, in order to minimize the amount
1750  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1751  *
1752  * This algorithm is from John Heffner.
1753  */
1754 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1755 				 bool *is_cwnd_limited, u32 max_segs)
1756 {
1757 	const struct inet_connection_sock *icsk = inet_csk(sk);
1758 	u32 age, send_win, cong_win, limit, in_flight;
1759 	struct tcp_sock *tp = tcp_sk(sk);
1760 	struct skb_mstamp now;
1761 	struct sk_buff *head;
1762 	int win_divisor;
1763 
1764 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1765 		goto send_now;
1766 
1767 	if (!((1 << icsk->icsk_ca_state) & (TCPF_CA_Open | TCPF_CA_CWR)))
1768 		goto send_now;
1769 
1770 	/* Avoid bursty behavior by allowing defer
1771 	 * only if the last write was recent.
1772 	 */
1773 	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1774 		goto send_now;
1775 
1776 	in_flight = tcp_packets_in_flight(tp);
1777 
1778 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1779 
1780 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1781 
1782 	/* From in_flight test above, we know that cwnd > in_flight.  */
1783 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1784 
1785 	limit = min(send_win, cong_win);
1786 
1787 	/* If a full-sized TSO skb can be sent, do it. */
1788 	if (limit >= max_segs * tp->mss_cache)
1789 		goto send_now;
1790 
1791 	/* Middle in queue won't get any more data, full sendable already? */
1792 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1793 		goto send_now;
1794 
1795 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1796 	if (win_divisor) {
1797 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1798 
1799 		/* If at least some fraction of a window is available,
1800 		 * just use it.
1801 		 */
1802 		chunk /= win_divisor;
1803 		if (limit >= chunk)
1804 			goto send_now;
1805 	} else {
1806 		/* Different approach, try not to defer past a single
1807 		 * ACK.  Receiver should ACK every other full sized
1808 		 * frame, so if we have space for more than 3 frames
1809 		 * then send now.
1810 		 */
1811 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1812 			goto send_now;
1813 	}
1814 
1815 	head = tcp_write_queue_head(sk);
1816 	skb_mstamp_get(&now);
1817 	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1818 	/* If next ACK is likely to come too late (half srtt), do not defer */
1819 	if (age < (tp->srtt_us >> 4))
1820 		goto send_now;
1821 
1822 	/* Ok, it looks like it is advisable to defer. */
1823 
1824 	if (cong_win < send_win && cong_win < skb->len)
1825 		*is_cwnd_limited = true;
1826 
1827 	return true;
1828 
1829 send_now:
1830 	return false;
1831 }
1832 
1833 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1834 {
1835 	struct inet_connection_sock *icsk = inet_csk(sk);
1836 	struct tcp_sock *tp = tcp_sk(sk);
1837 	struct net *net = sock_net(sk);
1838 	u32 interval;
1839 	s32 delta;
1840 
1841 	interval = net->ipv4.sysctl_tcp_probe_interval;
1842 	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1843 	if (unlikely(delta >= interval * HZ)) {
1844 		int mss = tcp_current_mss(sk);
1845 
1846 		/* Update current search range */
1847 		icsk->icsk_mtup.probe_size = 0;
1848 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1849 			sizeof(struct tcphdr) +
1850 			icsk->icsk_af_ops->net_header_len;
1851 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1852 
1853 		/* Update probe time stamp */
1854 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1855 	}
1856 }
1857 
1858 /* Create a new MTU probe if we are ready.
1859  * MTU probe is regularly attempting to increase the path MTU by
1860  * deliberately sending larger packets.  This discovers routing
1861  * changes resulting in larger path MTUs.
1862  *
1863  * Returns 0 if we should wait to probe (no cwnd available),
1864  *         1 if a probe was sent,
1865  *         -1 otherwise
1866  */
1867 static int tcp_mtu_probe(struct sock *sk)
1868 {
1869 	struct tcp_sock *tp = tcp_sk(sk);
1870 	struct inet_connection_sock *icsk = inet_csk(sk);
1871 	struct sk_buff *skb, *nskb, *next;
1872 	struct net *net = sock_net(sk);
1873 	int len;
1874 	int probe_size;
1875 	int size_needed;
1876 	int copy;
1877 	int mss_now;
1878 	int interval;
1879 
1880 	/* Not currently probing/verifying,
1881 	 * not in recovery,
1882 	 * have enough cwnd, and
1883 	 * not SACKing (the variable headers throw things off) */
1884 	if (!icsk->icsk_mtup.enabled ||
1885 	    icsk->icsk_mtup.probe_size ||
1886 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1887 	    tp->snd_cwnd < 11 ||
1888 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1889 		return -1;
1890 
1891 	/* Use binary search for probe_size between tcp_mss_base,
1892 	 * and current mss_clamp. if (search_high - search_low)
1893 	 * smaller than a threshold, backoff from probing.
1894 	 */
1895 	mss_now = tcp_current_mss(sk);
1896 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1897 				    icsk->icsk_mtup.search_low) >> 1);
1898 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1899 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1900 	/* When misfortune happens, we are reprobing actively,
1901 	 * and then reprobe timer has expired. We stick with current
1902 	 * probing process by not resetting search range to its orignal.
1903 	 */
1904 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1905 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1906 		/* Check whether enough time has elaplased for
1907 		 * another round of probing.
1908 		 */
1909 		tcp_mtu_check_reprobe(sk);
1910 		return -1;
1911 	}
1912 
1913 	/* Have enough data in the send queue to probe? */
1914 	if (tp->write_seq - tp->snd_nxt < size_needed)
1915 		return -1;
1916 
1917 	if (tp->snd_wnd < size_needed)
1918 		return -1;
1919 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1920 		return 0;
1921 
1922 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1923 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1924 		if (!tcp_packets_in_flight(tp))
1925 			return -1;
1926 		else
1927 			return 0;
1928 	}
1929 
1930 	/* We're allowed to probe.  Build it now. */
1931 	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1932 		return -1;
1933 	sk->sk_wmem_queued += nskb->truesize;
1934 	sk_mem_charge(sk, nskb->truesize);
1935 
1936 	skb = tcp_send_head(sk);
1937 
1938 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1939 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1940 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1941 	TCP_SKB_CB(nskb)->sacked = 0;
1942 	nskb->csum = 0;
1943 	nskb->ip_summed = skb->ip_summed;
1944 
1945 	tcp_insert_write_queue_before(nskb, skb, sk);
1946 
1947 	len = 0;
1948 	tcp_for_write_queue_from_safe(skb, next, sk) {
1949 		copy = min_t(int, skb->len, probe_size - len);
1950 		if (nskb->ip_summed)
1951 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1952 		else
1953 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1954 							    skb_put(nskb, copy),
1955 							    copy, nskb->csum);
1956 
1957 		if (skb->len <= copy) {
1958 			/* We've eaten all the data from this skb.
1959 			 * Throw it away. */
1960 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1961 			tcp_unlink_write_queue(skb, sk);
1962 			sk_wmem_free_skb(sk, skb);
1963 		} else {
1964 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1965 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1966 			if (!skb_shinfo(skb)->nr_frags) {
1967 				skb_pull(skb, copy);
1968 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1969 					skb->csum = csum_partial(skb->data,
1970 								 skb->len, 0);
1971 			} else {
1972 				__pskb_trim_head(skb, copy);
1973 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1974 			}
1975 			TCP_SKB_CB(skb)->seq += copy;
1976 		}
1977 
1978 		len += copy;
1979 
1980 		if (len >= probe_size)
1981 			break;
1982 	}
1983 	tcp_init_tso_segs(sk, nskb, nskb->len);
1984 
1985 	/* We're ready to send.  If this fails, the probe will
1986 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
1987 	 */
1988 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1989 		/* Decrement cwnd here because we are sending
1990 		 * effectively two packets. */
1991 		tp->snd_cwnd--;
1992 		tcp_event_new_data_sent(sk, nskb);
1993 
1994 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1995 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1996 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1997 
1998 		return 1;
1999 	}
2000 
2001 	return -1;
2002 }
2003 
2004 /* This routine writes packets to the network.  It advances the
2005  * send_head.  This happens as incoming acks open up the remote
2006  * window for us.
2007  *
2008  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2009  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2010  * account rare use of URG, this is not a big flaw.
2011  *
2012  * Send at most one packet when push_one > 0. Temporarily ignore
2013  * cwnd limit to force at most one packet out when push_one == 2.
2014 
2015  * Returns true, if no segments are in flight and we have queued segments,
2016  * but cannot send anything now because of SWS or another problem.
2017  */
2018 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2019 			   int push_one, gfp_t gfp)
2020 {
2021 	struct tcp_sock *tp = tcp_sk(sk);
2022 	struct sk_buff *skb;
2023 	unsigned int tso_segs, sent_pkts;
2024 	int cwnd_quota;
2025 	int result;
2026 	bool is_cwnd_limited = false;
2027 	u32 max_segs;
2028 
2029 	sent_pkts = 0;
2030 
2031 	if (!push_one) {
2032 		/* Do MTU probing. */
2033 		result = tcp_mtu_probe(sk);
2034 		if (!result) {
2035 			return false;
2036 		} else if (result > 0) {
2037 			sent_pkts = 1;
2038 		}
2039 	}
2040 
2041 	max_segs = tcp_tso_autosize(sk, mss_now);
2042 	while ((skb = tcp_send_head(sk))) {
2043 		unsigned int limit;
2044 
2045 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
2046 		BUG_ON(!tso_segs);
2047 
2048 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2049 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2050 			skb_mstamp_get(&skb->skb_mstamp);
2051 			goto repair; /* Skip network transmission */
2052 		}
2053 
2054 		cwnd_quota = tcp_cwnd_test(tp, skb);
2055 		if (!cwnd_quota) {
2056 			is_cwnd_limited = true;
2057 			if (push_one == 2)
2058 				/* Force out a loss probe pkt. */
2059 				cwnd_quota = 1;
2060 			else
2061 				break;
2062 		}
2063 
2064 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2065 			break;
2066 
2067 		if (tso_segs == 1 || !max_segs) {
2068 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2069 						     (tcp_skb_is_last(sk, skb) ?
2070 						      nonagle : TCP_NAGLE_PUSH))))
2071 				break;
2072 		} else {
2073 			if (!push_one &&
2074 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2075 						 max_segs))
2076 				break;
2077 		}
2078 
2079 		limit = mss_now;
2080 		if (tso_segs > 1 && max_segs && !tcp_urg_mode(tp))
2081 			limit = tcp_mss_split_point(sk, skb, mss_now,
2082 						    min_t(unsigned int,
2083 							  cwnd_quota,
2084 							  max_segs),
2085 						    nonagle);
2086 
2087 		if (skb->len > limit &&
2088 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2089 			break;
2090 
2091 		/* TCP Small Queues :
2092 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2093 		 * This allows for :
2094 		 *  - better RTT estimation and ACK scheduling
2095 		 *  - faster recovery
2096 		 *  - high rates
2097 		 * Alas, some drivers / subsystems require a fair amount
2098 		 * of queued bytes to ensure line rate.
2099 		 * One example is wifi aggregation (802.11 AMPDU)
2100 		 */
2101 		limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2102 		limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2103 
2104 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2105 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2106 			/* It is possible TX completion already happened
2107 			 * before we set TSQ_THROTTLED, so we must
2108 			 * test again the condition.
2109 			 */
2110 			smp_mb__after_atomic();
2111 			if (atomic_read(&sk->sk_wmem_alloc) > limit)
2112 				break;
2113 		}
2114 
2115 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2116 			break;
2117 
2118 repair:
2119 		/* Advance the send_head.  This one is sent out.
2120 		 * This call will increment packets_out.
2121 		 */
2122 		tcp_event_new_data_sent(sk, skb);
2123 
2124 		tcp_minshall_update(tp, mss_now, skb);
2125 		sent_pkts += tcp_skb_pcount(skb);
2126 
2127 		if (push_one)
2128 			break;
2129 	}
2130 
2131 	if (likely(sent_pkts)) {
2132 		if (tcp_in_cwnd_reduction(sk))
2133 			tp->prr_out += sent_pkts;
2134 
2135 		/* Send one loss probe per tail loss episode. */
2136 		if (push_one != 2)
2137 			tcp_schedule_loss_probe(sk);
2138 		tcp_cwnd_validate(sk, is_cwnd_limited);
2139 		return false;
2140 	}
2141 	return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2142 }
2143 
2144 bool tcp_schedule_loss_probe(struct sock *sk)
2145 {
2146 	struct inet_connection_sock *icsk = inet_csk(sk);
2147 	struct tcp_sock *tp = tcp_sk(sk);
2148 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2149 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2150 
2151 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2152 		return false;
2153 	/* No consecutive loss probes. */
2154 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2155 		tcp_rearm_rto(sk);
2156 		return false;
2157 	}
2158 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2159 	 * finishes.
2160 	 */
2161 	if (sk->sk_state == TCP_SYN_RECV)
2162 		return false;
2163 
2164 	/* TLP is only scheduled when next timer event is RTO. */
2165 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2166 		return false;
2167 
2168 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2169 	 * in Open state, that are either limited by cwnd or application.
2170 	 */
2171 	if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2172 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2173 		return false;
2174 
2175 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2176 	     tcp_send_head(sk))
2177 		return false;
2178 
2179 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2180 	 * for delayed ack when there's one outstanding packet.
2181 	 */
2182 	timeout = rtt << 1;
2183 	if (tp->packets_out == 1)
2184 		timeout = max_t(u32, timeout,
2185 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2186 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2187 
2188 	/* If RTO is shorter, just schedule TLP in its place. */
2189 	tlp_time_stamp = tcp_time_stamp + timeout;
2190 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2191 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2192 		s32 delta = rto_time_stamp - tcp_time_stamp;
2193 		if (delta > 0)
2194 			timeout = delta;
2195 	}
2196 
2197 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2198 				  TCP_RTO_MAX);
2199 	return true;
2200 }
2201 
2202 /* Thanks to skb fast clones, we can detect if a prior transmit of
2203  * a packet is still in a qdisc or driver queue.
2204  * In this case, there is very little point doing a retransmit !
2205  * Note: This is called from BH context only.
2206  */
2207 static bool skb_still_in_host_queue(const struct sock *sk,
2208 				    const struct sk_buff *skb)
2209 {
2210 	if (unlikely(skb_fclone_busy(sk, skb))) {
2211 		NET_INC_STATS_BH(sock_net(sk),
2212 				 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2213 		return true;
2214 	}
2215 	return false;
2216 }
2217 
2218 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2219  * retransmit the last segment.
2220  */
2221 void tcp_send_loss_probe(struct sock *sk)
2222 {
2223 	struct tcp_sock *tp = tcp_sk(sk);
2224 	struct sk_buff *skb;
2225 	int pcount;
2226 	int mss = tcp_current_mss(sk);
2227 	int err = -1;
2228 
2229 	if (tcp_send_head(sk) != NULL) {
2230 		err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2231 		goto rearm_timer;
2232 	}
2233 
2234 	/* At most one outstanding TLP retransmission. */
2235 	if (tp->tlp_high_seq)
2236 		goto rearm_timer;
2237 
2238 	/* Retransmit last segment. */
2239 	skb = tcp_write_queue_tail(sk);
2240 	if (WARN_ON(!skb))
2241 		goto rearm_timer;
2242 
2243 	if (skb_still_in_host_queue(sk, skb))
2244 		goto rearm_timer;
2245 
2246 	pcount = tcp_skb_pcount(skb);
2247 	if (WARN_ON(!pcount))
2248 		goto rearm_timer;
2249 
2250 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2251 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2252 					  GFP_ATOMIC)))
2253 			goto rearm_timer;
2254 		skb = tcp_write_queue_tail(sk);
2255 	}
2256 
2257 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2258 		goto rearm_timer;
2259 
2260 	err = __tcp_retransmit_skb(sk, skb);
2261 
2262 	/* Record snd_nxt for loss detection. */
2263 	if (likely(!err))
2264 		tp->tlp_high_seq = tp->snd_nxt;
2265 
2266 rearm_timer:
2267 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2268 				  inet_csk(sk)->icsk_rto,
2269 				  TCP_RTO_MAX);
2270 
2271 	if (likely(!err))
2272 		NET_INC_STATS_BH(sock_net(sk),
2273 				 LINUX_MIB_TCPLOSSPROBES);
2274 }
2275 
2276 /* Push out any pending frames which were held back due to
2277  * TCP_CORK or attempt at coalescing tiny packets.
2278  * The socket must be locked by the caller.
2279  */
2280 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2281 			       int nonagle)
2282 {
2283 	/* If we are closed, the bytes will have to remain here.
2284 	 * In time closedown will finish, we empty the write queue and
2285 	 * all will be happy.
2286 	 */
2287 	if (unlikely(sk->sk_state == TCP_CLOSE))
2288 		return;
2289 
2290 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2291 			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2292 		tcp_check_probe_timer(sk);
2293 }
2294 
2295 /* Send _single_ skb sitting at the send head. This function requires
2296  * true push pending frames to setup probe timer etc.
2297  */
2298 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2299 {
2300 	struct sk_buff *skb = tcp_send_head(sk);
2301 
2302 	BUG_ON(!skb || skb->len < mss_now);
2303 
2304 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2305 }
2306 
2307 /* This function returns the amount that we can raise the
2308  * usable window based on the following constraints
2309  *
2310  * 1. The window can never be shrunk once it is offered (RFC 793)
2311  * 2. We limit memory per socket
2312  *
2313  * RFC 1122:
2314  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2315  *  RECV.NEXT + RCV.WIN fixed until:
2316  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2317  *
2318  * i.e. don't raise the right edge of the window until you can raise
2319  * it at least MSS bytes.
2320  *
2321  * Unfortunately, the recommended algorithm breaks header prediction,
2322  * since header prediction assumes th->window stays fixed.
2323  *
2324  * Strictly speaking, keeping th->window fixed violates the receiver
2325  * side SWS prevention criteria. The problem is that under this rule
2326  * a stream of single byte packets will cause the right side of the
2327  * window to always advance by a single byte.
2328  *
2329  * Of course, if the sender implements sender side SWS prevention
2330  * then this will not be a problem.
2331  *
2332  * BSD seems to make the following compromise:
2333  *
2334  *	If the free space is less than the 1/4 of the maximum
2335  *	space available and the free space is less than 1/2 mss,
2336  *	then set the window to 0.
2337  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2338  *	Otherwise, just prevent the window from shrinking
2339  *	and from being larger than the largest representable value.
2340  *
2341  * This prevents incremental opening of the window in the regime
2342  * where TCP is limited by the speed of the reader side taking
2343  * data out of the TCP receive queue. It does nothing about
2344  * those cases where the window is constrained on the sender side
2345  * because the pipeline is full.
2346  *
2347  * BSD also seems to "accidentally" limit itself to windows that are a
2348  * multiple of MSS, at least until the free space gets quite small.
2349  * This would appear to be a side effect of the mbuf implementation.
2350  * Combining these two algorithms results in the observed behavior
2351  * of having a fixed window size at almost all times.
2352  *
2353  * Below we obtain similar behavior by forcing the offered window to
2354  * a multiple of the mss when it is feasible to do so.
2355  *
2356  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2357  * Regular options like TIMESTAMP are taken into account.
2358  */
2359 u32 __tcp_select_window(struct sock *sk)
2360 {
2361 	struct inet_connection_sock *icsk = inet_csk(sk);
2362 	struct tcp_sock *tp = tcp_sk(sk);
2363 	/* MSS for the peer's data.  Previous versions used mss_clamp
2364 	 * here.  I don't know if the value based on our guesses
2365 	 * of peer's MSS is better for the performance.  It's more correct
2366 	 * but may be worse for the performance because of rcv_mss
2367 	 * fluctuations.  --SAW  1998/11/1
2368 	 */
2369 	int mss = icsk->icsk_ack.rcv_mss;
2370 	int free_space = tcp_space(sk);
2371 	int allowed_space = tcp_full_space(sk);
2372 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2373 	int window;
2374 
2375 	if (mss > full_space)
2376 		mss = full_space;
2377 
2378 	if (free_space < (full_space >> 1)) {
2379 		icsk->icsk_ack.quick = 0;
2380 
2381 		if (sk_under_memory_pressure(sk))
2382 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2383 					       4U * tp->advmss);
2384 
2385 		/* free_space might become our new window, make sure we don't
2386 		 * increase it due to wscale.
2387 		 */
2388 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2389 
2390 		/* if free space is less than mss estimate, or is below 1/16th
2391 		 * of the maximum allowed, try to move to zero-window, else
2392 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2393 		 * new incoming data is dropped due to memory limits.
2394 		 * With large window, mss test triggers way too late in order
2395 		 * to announce zero window in time before rmem limit kicks in.
2396 		 */
2397 		if (free_space < (allowed_space >> 4) || free_space < mss)
2398 			return 0;
2399 	}
2400 
2401 	if (free_space > tp->rcv_ssthresh)
2402 		free_space = tp->rcv_ssthresh;
2403 
2404 	/* Don't do rounding if we are using window scaling, since the
2405 	 * scaled window will not line up with the MSS boundary anyway.
2406 	 */
2407 	window = tp->rcv_wnd;
2408 	if (tp->rx_opt.rcv_wscale) {
2409 		window = free_space;
2410 
2411 		/* Advertise enough space so that it won't get scaled away.
2412 		 * Import case: prevent zero window announcement if
2413 		 * 1<<rcv_wscale > mss.
2414 		 */
2415 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2416 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2417 				  << tp->rx_opt.rcv_wscale);
2418 	} else {
2419 		/* Get the largest window that is a nice multiple of mss.
2420 		 * Window clamp already applied above.
2421 		 * If our current window offering is within 1 mss of the
2422 		 * free space we just keep it. This prevents the divide
2423 		 * and multiply from happening most of the time.
2424 		 * We also don't do any window rounding when the free space
2425 		 * is too small.
2426 		 */
2427 		if (window <= free_space - mss || window > free_space)
2428 			window = (free_space / mss) * mss;
2429 		else if (mss == full_space &&
2430 			 free_space > window + (full_space >> 1))
2431 			window = free_space;
2432 	}
2433 
2434 	return window;
2435 }
2436 
2437 /* Collapses two adjacent SKB's during retransmission. */
2438 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2439 {
2440 	struct tcp_sock *tp = tcp_sk(sk);
2441 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2442 	int skb_size, next_skb_size;
2443 
2444 	skb_size = skb->len;
2445 	next_skb_size = next_skb->len;
2446 
2447 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2448 
2449 	tcp_highest_sack_combine(sk, next_skb, skb);
2450 
2451 	tcp_unlink_write_queue(next_skb, sk);
2452 
2453 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2454 				  next_skb_size);
2455 
2456 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2457 		skb->ip_summed = CHECKSUM_PARTIAL;
2458 
2459 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2460 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2461 
2462 	/* Update sequence range on original skb. */
2463 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2464 
2465 	/* Merge over control information. This moves PSH/FIN etc. over */
2466 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2467 
2468 	/* All done, get rid of second SKB and account for it so
2469 	 * packet counting does not break.
2470 	 */
2471 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2472 
2473 	/* changed transmit queue under us so clear hints */
2474 	tcp_clear_retrans_hints_partial(tp);
2475 	if (next_skb == tp->retransmit_skb_hint)
2476 		tp->retransmit_skb_hint = skb;
2477 
2478 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2479 
2480 	sk_wmem_free_skb(sk, next_skb);
2481 }
2482 
2483 /* Check if coalescing SKBs is legal. */
2484 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2485 {
2486 	if (tcp_skb_pcount(skb) > 1)
2487 		return false;
2488 	/* TODO: SACK collapsing could be used to remove this condition */
2489 	if (skb_shinfo(skb)->nr_frags != 0)
2490 		return false;
2491 	if (skb_cloned(skb))
2492 		return false;
2493 	if (skb == tcp_send_head(sk))
2494 		return false;
2495 	/* Some heurestics for collapsing over SACK'd could be invented */
2496 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2497 		return false;
2498 
2499 	return true;
2500 }
2501 
2502 /* Collapse packets in the retransmit queue to make to create
2503  * less packets on the wire. This is only done on retransmission.
2504  */
2505 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2506 				     int space)
2507 {
2508 	struct tcp_sock *tp = tcp_sk(sk);
2509 	struct sk_buff *skb = to, *tmp;
2510 	bool first = true;
2511 
2512 	if (!sysctl_tcp_retrans_collapse)
2513 		return;
2514 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2515 		return;
2516 
2517 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2518 		if (!tcp_can_collapse(sk, skb))
2519 			break;
2520 
2521 		space -= skb->len;
2522 
2523 		if (first) {
2524 			first = false;
2525 			continue;
2526 		}
2527 
2528 		if (space < 0)
2529 			break;
2530 		/* Punt if not enough space exists in the first SKB for
2531 		 * the data in the second
2532 		 */
2533 		if (skb->len > skb_availroom(to))
2534 			break;
2535 
2536 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2537 			break;
2538 
2539 		tcp_collapse_retrans(sk, to);
2540 	}
2541 }
2542 
2543 /* This retransmits one SKB.  Policy decisions and retransmit queue
2544  * state updates are done by the caller.  Returns non-zero if an
2545  * error occurred which prevented the send.
2546  */
2547 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2548 {
2549 	struct tcp_sock *tp = tcp_sk(sk);
2550 	struct inet_connection_sock *icsk = inet_csk(sk);
2551 	unsigned int cur_mss;
2552 	int err;
2553 
2554 	/* Inconslusive MTU probe */
2555 	if (icsk->icsk_mtup.probe_size) {
2556 		icsk->icsk_mtup.probe_size = 0;
2557 	}
2558 
2559 	/* Do not sent more than we queued. 1/4 is reserved for possible
2560 	 * copying overhead: fragmentation, tunneling, mangling etc.
2561 	 */
2562 	if (atomic_read(&sk->sk_wmem_alloc) >
2563 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2564 		return -EAGAIN;
2565 
2566 	if (skb_still_in_host_queue(sk, skb))
2567 		return -EBUSY;
2568 
2569 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2570 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2571 			BUG();
2572 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2573 			return -ENOMEM;
2574 	}
2575 
2576 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2577 		return -EHOSTUNREACH; /* Routing failure or similar. */
2578 
2579 	cur_mss = tcp_current_mss(sk);
2580 
2581 	/* If receiver has shrunk his window, and skb is out of
2582 	 * new window, do not retransmit it. The exception is the
2583 	 * case, when window is shrunk to zero. In this case
2584 	 * our retransmit serves as a zero window probe.
2585 	 */
2586 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2587 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2588 		return -EAGAIN;
2589 
2590 	if (skb->len > cur_mss) {
2591 		if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2592 			return -ENOMEM; /* We'll try again later. */
2593 	} else {
2594 		int oldpcount = tcp_skb_pcount(skb);
2595 
2596 		if (unlikely(oldpcount > 1)) {
2597 			if (skb_unclone(skb, GFP_ATOMIC))
2598 				return -ENOMEM;
2599 			tcp_init_tso_segs(sk, skb, cur_mss);
2600 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2601 		}
2602 	}
2603 
2604 	tcp_retrans_try_collapse(sk, skb, cur_mss);
2605 
2606 	/* Make a copy, if the first transmission SKB clone we made
2607 	 * is still in somebody's hands, else make a clone.
2608 	 */
2609 
2610 	/* make sure skb->data is aligned on arches that require it
2611 	 * and check if ack-trimming & collapsing extended the headroom
2612 	 * beyond what csum_start can cover.
2613 	 */
2614 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2615 		     skb_headroom(skb) >= 0xFFFF)) {
2616 		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2617 						   GFP_ATOMIC);
2618 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2619 			     -ENOBUFS;
2620 	} else {
2621 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2622 	}
2623 
2624 	if (likely(!err)) {
2625 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2626 		/* Update global TCP statistics. */
2627 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2628 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2629 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2630 		tp->total_retrans++;
2631 	}
2632 	return err;
2633 }
2634 
2635 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2636 {
2637 	struct tcp_sock *tp = tcp_sk(sk);
2638 	int err = __tcp_retransmit_skb(sk, skb);
2639 
2640 	if (err == 0) {
2641 #if FASTRETRANS_DEBUG > 0
2642 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2643 			net_dbg_ratelimited("retrans_out leaked\n");
2644 		}
2645 #endif
2646 		if (!tp->retrans_out)
2647 			tp->lost_retrans_low = tp->snd_nxt;
2648 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2649 		tp->retrans_out += tcp_skb_pcount(skb);
2650 
2651 		/* Save stamp of the first retransmit. */
2652 		if (!tp->retrans_stamp)
2653 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2654 
2655 		/* snd_nxt is stored to detect loss of retransmitted segment,
2656 		 * see tcp_input.c tcp_sacktag_write_queue().
2657 		 */
2658 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2659 	} else if (err != -EBUSY) {
2660 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2661 	}
2662 
2663 	if (tp->undo_retrans < 0)
2664 		tp->undo_retrans = 0;
2665 	tp->undo_retrans += tcp_skb_pcount(skb);
2666 	return err;
2667 }
2668 
2669 /* Check if we forward retransmits are possible in the current
2670  * window/congestion state.
2671  */
2672 static bool tcp_can_forward_retransmit(struct sock *sk)
2673 {
2674 	const struct inet_connection_sock *icsk = inet_csk(sk);
2675 	const struct tcp_sock *tp = tcp_sk(sk);
2676 
2677 	/* Forward retransmissions are possible only during Recovery. */
2678 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2679 		return false;
2680 
2681 	/* No forward retransmissions in Reno are possible. */
2682 	if (tcp_is_reno(tp))
2683 		return false;
2684 
2685 	/* Yeah, we have to make difficult choice between forward transmission
2686 	 * and retransmission... Both ways have their merits...
2687 	 *
2688 	 * For now we do not retransmit anything, while we have some new
2689 	 * segments to send. In the other cases, follow rule 3 for
2690 	 * NextSeg() specified in RFC3517.
2691 	 */
2692 
2693 	if (tcp_may_send_now(sk))
2694 		return false;
2695 
2696 	return true;
2697 }
2698 
2699 /* This gets called after a retransmit timeout, and the initially
2700  * retransmitted data is acknowledged.  It tries to continue
2701  * resending the rest of the retransmit queue, until either
2702  * we've sent it all or the congestion window limit is reached.
2703  * If doing SACK, the first ACK which comes back for a timeout
2704  * based retransmit packet might feed us FACK information again.
2705  * If so, we use it to avoid unnecessarily retransmissions.
2706  */
2707 void tcp_xmit_retransmit_queue(struct sock *sk)
2708 {
2709 	const struct inet_connection_sock *icsk = inet_csk(sk);
2710 	struct tcp_sock *tp = tcp_sk(sk);
2711 	struct sk_buff *skb;
2712 	struct sk_buff *hole = NULL;
2713 	u32 last_lost;
2714 	int mib_idx;
2715 	int fwd_rexmitting = 0;
2716 
2717 	if (!tp->packets_out)
2718 		return;
2719 
2720 	if (!tp->lost_out)
2721 		tp->retransmit_high = tp->snd_una;
2722 
2723 	if (tp->retransmit_skb_hint) {
2724 		skb = tp->retransmit_skb_hint;
2725 		last_lost = TCP_SKB_CB(skb)->end_seq;
2726 		if (after(last_lost, tp->retransmit_high))
2727 			last_lost = tp->retransmit_high;
2728 	} else {
2729 		skb = tcp_write_queue_head(sk);
2730 		last_lost = tp->snd_una;
2731 	}
2732 
2733 	tcp_for_write_queue_from(skb, sk) {
2734 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2735 
2736 		if (skb == tcp_send_head(sk))
2737 			break;
2738 		/* we could do better than to assign each time */
2739 		if (hole == NULL)
2740 			tp->retransmit_skb_hint = skb;
2741 
2742 		/* Assume this retransmit will generate
2743 		 * only one packet for congestion window
2744 		 * calculation purposes.  This works because
2745 		 * tcp_retransmit_skb() will chop up the
2746 		 * packet to be MSS sized and all the
2747 		 * packet counting works out.
2748 		 */
2749 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2750 			return;
2751 
2752 		if (fwd_rexmitting) {
2753 begin_fwd:
2754 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2755 				break;
2756 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2757 
2758 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2759 			tp->retransmit_high = last_lost;
2760 			if (!tcp_can_forward_retransmit(sk))
2761 				break;
2762 			/* Backtrack if necessary to non-L'ed skb */
2763 			if (hole != NULL) {
2764 				skb = hole;
2765 				hole = NULL;
2766 			}
2767 			fwd_rexmitting = 1;
2768 			goto begin_fwd;
2769 
2770 		} else if (!(sacked & TCPCB_LOST)) {
2771 			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2772 				hole = skb;
2773 			continue;
2774 
2775 		} else {
2776 			last_lost = TCP_SKB_CB(skb)->end_seq;
2777 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2778 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2779 			else
2780 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2781 		}
2782 
2783 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2784 			continue;
2785 
2786 		if (tcp_retransmit_skb(sk, skb))
2787 			return;
2788 
2789 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2790 
2791 		if (tcp_in_cwnd_reduction(sk))
2792 			tp->prr_out += tcp_skb_pcount(skb);
2793 
2794 		if (skb == tcp_write_queue_head(sk))
2795 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2796 						  inet_csk(sk)->icsk_rto,
2797 						  TCP_RTO_MAX);
2798 	}
2799 }
2800 
2801 /* Send a fin.  The caller locks the socket for us.  This cannot be
2802  * allowed to fail queueing a FIN frame under any circumstances.
2803  */
2804 void tcp_send_fin(struct sock *sk)
2805 {
2806 	struct tcp_sock *tp = tcp_sk(sk);
2807 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2808 	int mss_now;
2809 
2810 	/* Optimization, tack on the FIN if we have a queue of
2811 	 * unsent frames.  But be careful about outgoing SACKS
2812 	 * and IP options.
2813 	 */
2814 	mss_now = tcp_current_mss(sk);
2815 
2816 	if (tcp_send_head(sk) != NULL) {
2817 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2818 		TCP_SKB_CB(skb)->end_seq++;
2819 		tp->write_seq++;
2820 	} else {
2821 		/* Socket is locked, keep trying until memory is available. */
2822 		for (;;) {
2823 			skb = alloc_skb_fclone(MAX_TCP_HEADER,
2824 					       sk->sk_allocation);
2825 			if (skb)
2826 				break;
2827 			yield();
2828 		}
2829 
2830 		/* Reserve space for headers and prepare control bits. */
2831 		skb_reserve(skb, MAX_TCP_HEADER);
2832 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2833 		tcp_init_nondata_skb(skb, tp->write_seq,
2834 				     TCPHDR_ACK | TCPHDR_FIN);
2835 		tcp_queue_skb(sk, skb);
2836 	}
2837 	__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2838 }
2839 
2840 /* We get here when a process closes a file descriptor (either due to
2841  * an explicit close() or as a byproduct of exit()'ing) and there
2842  * was unread data in the receive queue.  This behavior is recommended
2843  * by RFC 2525, section 2.17.  -DaveM
2844  */
2845 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2846 {
2847 	struct sk_buff *skb;
2848 
2849 	/* NOTE: No TCP options attached and we never retransmit this. */
2850 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2851 	if (!skb) {
2852 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2853 		return;
2854 	}
2855 
2856 	/* Reserve space for headers and prepare control bits. */
2857 	skb_reserve(skb, MAX_TCP_HEADER);
2858 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2859 			     TCPHDR_ACK | TCPHDR_RST);
2860 	/* Send it off. */
2861 	if (tcp_transmit_skb(sk, skb, 0, priority))
2862 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2863 
2864 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2865 }
2866 
2867 /* Send a crossed SYN-ACK during socket establishment.
2868  * WARNING: This routine must only be called when we have already sent
2869  * a SYN packet that crossed the incoming SYN that caused this routine
2870  * to get called. If this assumption fails then the initial rcv_wnd
2871  * and rcv_wscale values will not be correct.
2872  */
2873 int tcp_send_synack(struct sock *sk)
2874 {
2875 	struct sk_buff *skb;
2876 
2877 	skb = tcp_write_queue_head(sk);
2878 	if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2879 		pr_debug("%s: wrong queue state\n", __func__);
2880 		return -EFAULT;
2881 	}
2882 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2883 		if (skb_cloned(skb)) {
2884 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2885 			if (nskb == NULL)
2886 				return -ENOMEM;
2887 			tcp_unlink_write_queue(skb, sk);
2888 			__skb_header_release(nskb);
2889 			__tcp_add_write_queue_head(sk, nskb);
2890 			sk_wmem_free_skb(sk, skb);
2891 			sk->sk_wmem_queued += nskb->truesize;
2892 			sk_mem_charge(sk, nskb->truesize);
2893 			skb = nskb;
2894 		}
2895 
2896 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2897 		tcp_ecn_send_synack(sk, skb);
2898 	}
2899 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2900 }
2901 
2902 /**
2903  * tcp_make_synack - Prepare a SYN-ACK.
2904  * sk: listener socket
2905  * dst: dst entry attached to the SYNACK
2906  * req: request_sock pointer
2907  *
2908  * Allocate one skb and build a SYNACK packet.
2909  * @dst is consumed : Caller should not use it again.
2910  */
2911 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2912 				struct request_sock *req,
2913 				struct tcp_fastopen_cookie *foc)
2914 {
2915 	struct tcp_out_options opts;
2916 	struct inet_request_sock *ireq = inet_rsk(req);
2917 	struct tcp_sock *tp = tcp_sk(sk);
2918 	struct tcphdr *th;
2919 	struct sk_buff *skb;
2920 	struct tcp_md5sig_key *md5;
2921 	int tcp_header_size;
2922 	int mss;
2923 
2924 	skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2925 	if (unlikely(!skb)) {
2926 		dst_release(dst);
2927 		return NULL;
2928 	}
2929 	/* Reserve space for headers. */
2930 	skb_reserve(skb, MAX_TCP_HEADER);
2931 
2932 	skb_dst_set(skb, dst);
2933 	security_skb_owned_by(skb, sk);
2934 
2935 	mss = dst_metric_advmss(dst);
2936 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2937 		mss = tp->rx_opt.user_mss;
2938 
2939 	memset(&opts, 0, sizeof(opts));
2940 #ifdef CONFIG_SYN_COOKIES
2941 	if (unlikely(req->cookie_ts))
2942 		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2943 	else
2944 #endif
2945 	skb_mstamp_get(&skb->skb_mstamp);
2946 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2947 					     foc) + sizeof(*th);
2948 
2949 	skb_push(skb, tcp_header_size);
2950 	skb_reset_transport_header(skb);
2951 
2952 	th = tcp_hdr(skb);
2953 	memset(th, 0, sizeof(struct tcphdr));
2954 	th->syn = 1;
2955 	th->ack = 1;
2956 	tcp_ecn_make_synack(req, th, sk);
2957 	th->source = htons(ireq->ir_num);
2958 	th->dest = ireq->ir_rmt_port;
2959 	/* Setting of flags are superfluous here for callers (and ECE is
2960 	 * not even correctly set)
2961 	 */
2962 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2963 			     TCPHDR_SYN | TCPHDR_ACK);
2964 
2965 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2966 	/* XXX data is queued and acked as is. No buffer/window check */
2967 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2968 
2969 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2970 	th->window = htons(min(req->rcv_wnd, 65535U));
2971 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
2972 	th->doff = (tcp_header_size >> 2);
2973 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2974 
2975 #ifdef CONFIG_TCP_MD5SIG
2976 	/* Okay, we have all we need - do the md5 hash if needed */
2977 	if (md5) {
2978 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2979 					       md5, NULL, req, skb);
2980 	}
2981 #endif
2982 
2983 	return skb;
2984 }
2985 EXPORT_SYMBOL(tcp_make_synack);
2986 
2987 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
2988 {
2989 	struct inet_connection_sock *icsk = inet_csk(sk);
2990 	const struct tcp_congestion_ops *ca;
2991 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
2992 
2993 	if (ca_key == TCP_CA_UNSPEC)
2994 		return;
2995 
2996 	rcu_read_lock();
2997 	ca = tcp_ca_find_key(ca_key);
2998 	if (likely(ca && try_module_get(ca->owner))) {
2999 		module_put(icsk->icsk_ca_ops->owner);
3000 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3001 		icsk->icsk_ca_ops = ca;
3002 	}
3003 	rcu_read_unlock();
3004 }
3005 
3006 /* Do all connect socket setups that can be done AF independent. */
3007 static void tcp_connect_init(struct sock *sk)
3008 {
3009 	const struct dst_entry *dst = __sk_dst_get(sk);
3010 	struct tcp_sock *tp = tcp_sk(sk);
3011 	__u8 rcv_wscale;
3012 
3013 	/* We'll fix this up when we get a response from the other end.
3014 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3015 	 */
3016 	tp->tcp_header_len = sizeof(struct tcphdr) +
3017 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3018 
3019 #ifdef CONFIG_TCP_MD5SIG
3020 	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
3021 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3022 #endif
3023 
3024 	/* If user gave his TCP_MAXSEG, record it to clamp */
3025 	if (tp->rx_opt.user_mss)
3026 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3027 	tp->max_window = 0;
3028 	tcp_mtup_init(sk);
3029 	tcp_sync_mss(sk, dst_mtu(dst));
3030 
3031 	tcp_ca_dst_init(sk, dst);
3032 
3033 	if (!tp->window_clamp)
3034 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3035 	tp->advmss = dst_metric_advmss(dst);
3036 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3037 		tp->advmss = tp->rx_opt.user_mss;
3038 
3039 	tcp_initialize_rcv_mss(sk);
3040 
3041 	/* limit the window selection if the user enforce a smaller rx buffer */
3042 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3043 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3044 		tp->window_clamp = tcp_full_space(sk);
3045 
3046 	tcp_select_initial_window(tcp_full_space(sk),
3047 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3048 				  &tp->rcv_wnd,
3049 				  &tp->window_clamp,
3050 				  sysctl_tcp_window_scaling,
3051 				  &rcv_wscale,
3052 				  dst_metric(dst, RTAX_INITRWND));
3053 
3054 	tp->rx_opt.rcv_wscale = rcv_wscale;
3055 	tp->rcv_ssthresh = tp->rcv_wnd;
3056 
3057 	sk->sk_err = 0;
3058 	sock_reset_flag(sk, SOCK_DONE);
3059 	tp->snd_wnd = 0;
3060 	tcp_init_wl(tp, 0);
3061 	tp->snd_una = tp->write_seq;
3062 	tp->snd_sml = tp->write_seq;
3063 	tp->snd_up = tp->write_seq;
3064 	tp->snd_nxt = tp->write_seq;
3065 
3066 	if (likely(!tp->repair))
3067 		tp->rcv_nxt = 0;
3068 	else
3069 		tp->rcv_tstamp = tcp_time_stamp;
3070 	tp->rcv_wup = tp->rcv_nxt;
3071 	tp->copied_seq = tp->rcv_nxt;
3072 
3073 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3074 	inet_csk(sk)->icsk_retransmits = 0;
3075 	tcp_clear_retrans(tp);
3076 }
3077 
3078 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3079 {
3080 	struct tcp_sock *tp = tcp_sk(sk);
3081 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3082 
3083 	tcb->end_seq += skb->len;
3084 	__skb_header_release(skb);
3085 	__tcp_add_write_queue_tail(sk, skb);
3086 	sk->sk_wmem_queued += skb->truesize;
3087 	sk_mem_charge(sk, skb->truesize);
3088 	tp->write_seq = tcb->end_seq;
3089 	tp->packets_out += tcp_skb_pcount(skb);
3090 }
3091 
3092 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3093  * queue a data-only packet after the regular SYN, such that regular SYNs
3094  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3095  * only the SYN sequence, the data are retransmitted in the first ACK.
3096  * If cookie is not cached or other error occurs, falls back to send a
3097  * regular SYN with Fast Open cookie request option.
3098  */
3099 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3100 {
3101 	struct tcp_sock *tp = tcp_sk(sk);
3102 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3103 	int syn_loss = 0, space, err = 0, copied;
3104 	unsigned long last_syn_loss = 0;
3105 	struct sk_buff *syn_data;
3106 
3107 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3108 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3109 			       &syn_loss, &last_syn_loss);
3110 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
3111 	if (syn_loss > 1 &&
3112 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3113 		fo->cookie.len = -1;
3114 		goto fallback;
3115 	}
3116 
3117 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3118 		fo->cookie.len = -1;
3119 	else if (fo->cookie.len <= 0)
3120 		goto fallback;
3121 
3122 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3123 	 * user-MSS. Reserve maximum option space for middleboxes that add
3124 	 * private TCP options. The cost is reduced data space in SYN :(
3125 	 */
3126 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3127 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3128 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3129 		MAX_TCP_OPTION_SPACE;
3130 
3131 	space = min_t(size_t, space, fo->size);
3132 
3133 	/* limit to order-0 allocations */
3134 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3135 
3136 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation);
3137 	if (!syn_data)
3138 		goto fallback;
3139 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3140 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3141 	copied = copy_from_iter(skb_put(syn_data, space), space,
3142 				&fo->data->msg_iter);
3143 	if (unlikely(!copied)) {
3144 		kfree_skb(syn_data);
3145 		goto fallback;
3146 	}
3147 	if (copied != space) {
3148 		skb_trim(syn_data, copied);
3149 		space = copied;
3150 	}
3151 
3152 	/* No more data pending in inet_wait_for_connect() */
3153 	if (space == fo->size)
3154 		fo->data = NULL;
3155 	fo->copied = space;
3156 
3157 	tcp_connect_queue_skb(sk, syn_data);
3158 
3159 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3160 
3161 	syn->skb_mstamp = syn_data->skb_mstamp;
3162 
3163 	/* Now full SYN+DATA was cloned and sent (or not),
3164 	 * remove the SYN from the original skb (syn_data)
3165 	 * we keep in write queue in case of a retransmit, as we
3166 	 * also have the SYN packet (with no data) in the same queue.
3167 	 */
3168 	TCP_SKB_CB(syn_data)->seq++;
3169 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3170 	if (!err) {
3171 		tp->syn_data = (fo->copied > 0);
3172 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3173 		goto done;
3174 	}
3175 
3176 fallback:
3177 	/* Send a regular SYN with Fast Open cookie request option */
3178 	if (fo->cookie.len > 0)
3179 		fo->cookie.len = 0;
3180 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3181 	if (err)
3182 		tp->syn_fastopen = 0;
3183 done:
3184 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3185 	return err;
3186 }
3187 
3188 /* Build a SYN and send it off. */
3189 int tcp_connect(struct sock *sk)
3190 {
3191 	struct tcp_sock *tp = tcp_sk(sk);
3192 	struct sk_buff *buff;
3193 	int err;
3194 
3195 	tcp_connect_init(sk);
3196 
3197 	if (unlikely(tp->repair)) {
3198 		tcp_finish_connect(sk, NULL);
3199 		return 0;
3200 	}
3201 
3202 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
3203 	if (unlikely(!buff))
3204 		return -ENOBUFS;
3205 
3206 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3207 	tp->retrans_stamp = tcp_time_stamp;
3208 	tcp_connect_queue_skb(sk, buff);
3209 	tcp_ecn_send_syn(sk, buff);
3210 
3211 	/* Send off SYN; include data in Fast Open. */
3212 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3213 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3214 	if (err == -ECONNREFUSED)
3215 		return err;
3216 
3217 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3218 	 * in order to make this packet get counted in tcpOutSegs.
3219 	 */
3220 	tp->snd_nxt = tp->write_seq;
3221 	tp->pushed_seq = tp->write_seq;
3222 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3223 
3224 	/* Timer for repeating the SYN until an answer. */
3225 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3226 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3227 	return 0;
3228 }
3229 EXPORT_SYMBOL(tcp_connect);
3230 
3231 /* Send out a delayed ack, the caller does the policy checking
3232  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3233  * for details.
3234  */
3235 void tcp_send_delayed_ack(struct sock *sk)
3236 {
3237 	struct inet_connection_sock *icsk = inet_csk(sk);
3238 	int ato = icsk->icsk_ack.ato;
3239 	unsigned long timeout;
3240 
3241 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3242 
3243 	if (ato > TCP_DELACK_MIN) {
3244 		const struct tcp_sock *tp = tcp_sk(sk);
3245 		int max_ato = HZ / 2;
3246 
3247 		if (icsk->icsk_ack.pingpong ||
3248 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3249 			max_ato = TCP_DELACK_MAX;
3250 
3251 		/* Slow path, intersegment interval is "high". */
3252 
3253 		/* If some rtt estimate is known, use it to bound delayed ack.
3254 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3255 		 * directly.
3256 		 */
3257 		if (tp->srtt_us) {
3258 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3259 					TCP_DELACK_MIN);
3260 
3261 			if (rtt < max_ato)
3262 				max_ato = rtt;
3263 		}
3264 
3265 		ato = min(ato, max_ato);
3266 	}
3267 
3268 	/* Stay within the limit we were given */
3269 	timeout = jiffies + ato;
3270 
3271 	/* Use new timeout only if there wasn't a older one earlier. */
3272 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3273 		/* If delack timer was blocked or is about to expire,
3274 		 * send ACK now.
3275 		 */
3276 		if (icsk->icsk_ack.blocked ||
3277 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3278 			tcp_send_ack(sk);
3279 			return;
3280 		}
3281 
3282 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3283 			timeout = icsk->icsk_ack.timeout;
3284 	}
3285 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3286 	icsk->icsk_ack.timeout = timeout;
3287 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3288 }
3289 
3290 /* This routine sends an ack and also updates the window. */
3291 void tcp_send_ack(struct sock *sk)
3292 {
3293 	struct sk_buff *buff;
3294 
3295 	/* If we have been reset, we may not send again. */
3296 	if (sk->sk_state == TCP_CLOSE)
3297 		return;
3298 
3299 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3300 
3301 	/* We are not putting this on the write queue, so
3302 	 * tcp_transmit_skb() will set the ownership to this
3303 	 * sock.
3304 	 */
3305 	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3306 	if (buff == NULL) {
3307 		inet_csk_schedule_ack(sk);
3308 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3309 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3310 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3311 		return;
3312 	}
3313 
3314 	/* Reserve space for headers and prepare control bits. */
3315 	skb_reserve(buff, MAX_TCP_HEADER);
3316 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3317 
3318 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3319 	 * too much.
3320 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3321 	 * We also avoid tcp_wfree() overhead (cache line miss accessing
3322 	 * tp->tsq_flags) by using regular sock_wfree()
3323 	 */
3324 	skb_set_tcp_pure_ack(buff);
3325 
3326 	/* Send it off, this clears delayed acks for us. */
3327 	skb_mstamp_get(&buff->skb_mstamp);
3328 	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3329 }
3330 EXPORT_SYMBOL_GPL(tcp_send_ack);
3331 
3332 /* This routine sends a packet with an out of date sequence
3333  * number. It assumes the other end will try to ack it.
3334  *
3335  * Question: what should we make while urgent mode?
3336  * 4.4BSD forces sending single byte of data. We cannot send
3337  * out of window data, because we have SND.NXT==SND.MAX...
3338  *
3339  * Current solution: to send TWO zero-length segments in urgent mode:
3340  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3341  * out-of-date with SND.UNA-1 to probe window.
3342  */
3343 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3344 {
3345 	struct tcp_sock *tp = tcp_sk(sk);
3346 	struct sk_buff *skb;
3347 
3348 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3349 	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3350 	if (skb == NULL)
3351 		return -1;
3352 
3353 	/* Reserve space for headers and set control bits. */
3354 	skb_reserve(skb, MAX_TCP_HEADER);
3355 	/* Use a previous sequence.  This should cause the other
3356 	 * end to send an ack.  Don't queue or clone SKB, just
3357 	 * send it.
3358 	 */
3359 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3360 	skb_mstamp_get(&skb->skb_mstamp);
3361 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3362 }
3363 
3364 void tcp_send_window_probe(struct sock *sk)
3365 {
3366 	if (sk->sk_state == TCP_ESTABLISHED) {
3367 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3368 		tcp_xmit_probe_skb(sk, 0);
3369 	}
3370 }
3371 
3372 /* Initiate keepalive or window probe from timer. */
3373 int tcp_write_wakeup(struct sock *sk)
3374 {
3375 	struct tcp_sock *tp = tcp_sk(sk);
3376 	struct sk_buff *skb;
3377 
3378 	if (sk->sk_state == TCP_CLOSE)
3379 		return -1;
3380 
3381 	if ((skb = tcp_send_head(sk)) != NULL &&
3382 	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3383 		int err;
3384 		unsigned int mss = tcp_current_mss(sk);
3385 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3386 
3387 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3388 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3389 
3390 		/* We are probing the opening of a window
3391 		 * but the window size is != 0
3392 		 * must have been a result SWS avoidance ( sender )
3393 		 */
3394 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3395 		    skb->len > mss) {
3396 			seg_size = min(seg_size, mss);
3397 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3398 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3399 				return -1;
3400 		} else if (!tcp_skb_pcount(skb))
3401 			tcp_set_skb_tso_segs(sk, skb, mss);
3402 
3403 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3404 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3405 		if (!err)
3406 			tcp_event_new_data_sent(sk, skb);
3407 		return err;
3408 	} else {
3409 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3410 			tcp_xmit_probe_skb(sk, 1);
3411 		return tcp_xmit_probe_skb(sk, 0);
3412 	}
3413 }
3414 
3415 /* A window probe timeout has occurred.  If window is not closed send
3416  * a partial packet else a zero probe.
3417  */
3418 void tcp_send_probe0(struct sock *sk)
3419 {
3420 	struct inet_connection_sock *icsk = inet_csk(sk);
3421 	struct tcp_sock *tp = tcp_sk(sk);
3422 	unsigned long probe_max;
3423 	int err;
3424 
3425 	err = tcp_write_wakeup(sk);
3426 
3427 	if (tp->packets_out || !tcp_send_head(sk)) {
3428 		/* Cancel probe timer, if it is not required. */
3429 		icsk->icsk_probes_out = 0;
3430 		icsk->icsk_backoff = 0;
3431 		return;
3432 	}
3433 
3434 	if (err <= 0) {
3435 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3436 			icsk->icsk_backoff++;
3437 		icsk->icsk_probes_out++;
3438 		probe_max = TCP_RTO_MAX;
3439 	} else {
3440 		/* If packet was not sent due to local congestion,
3441 		 * do not backoff and do not remember icsk_probes_out.
3442 		 * Let local senders to fight for local resources.
3443 		 *
3444 		 * Use accumulated backoff yet.
3445 		 */
3446 		if (!icsk->icsk_probes_out)
3447 			icsk->icsk_probes_out = 1;
3448 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3449 	}
3450 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3451 				  inet_csk_rto_backoff(icsk, probe_max),
3452 				  TCP_RTO_MAX);
3453 }
3454 
3455 int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3456 {
3457 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3458 	struct flowi fl;
3459 	int res;
3460 
3461 	res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3462 	if (!res) {
3463 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3464 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3465 	}
3466 	return res;
3467 }
3468 EXPORT_SYMBOL(tcp_rtx_synack);
3469